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Wahlquist metric revisited
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Abstract. Here we continue studying the Wahlquist metric. We know
that the wave equation written for a zero mass scalar particle in the
background of this metric gives Heun type solutions. To be able to use
the existing literature on Heun functions, we try to put our wave equation
to the standard form for these functions. Then we calculate the reflection
coefficient of a wave coming from infinity and scattered at the center using
this formalism.

1. Introduction

The work on Heun class solutions of wave equations written for particles in
the background metric of different metrics is still popular. One of the most
recent papers is given in [1]. Here we study a similar problem for a metric,
which was given a while ago.

The Wahlquist metric [2, 3, 4] is an exact interior solution for a finite rotating
body of perfect fluid to Einstein’s field equations with equation of state
corresponding to constant gravitational mass density. It is also given in the
celebrated book Ezact Solutions to Einstein’s Field Equations [5]. This metric
is axially symmetric, stationary and is type D. As stated in [6]”, quoting
Wahlquist [2], it can be "described as a superposition of a Kerr-NUT metric
[7, 8] and is a rigidly rotation perfect fluid in the same space-time region”.
Equation of the state for the p perfect fluid is p + 3p = g, a constant.

The original metric written in [2], was slightly modified by Senovilla [9, 10],
and put to new form by Mars [11], ”to show that the Kerr-de Sitter and Kerr
metrics are contained as sub cases”. Mars states in [11] that Kramer [12]
showed the vanishing of the Simon tensor [13] for this metric. Mars also states
that the space-time admits a Killing tensor as shown in [14]”.
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A negative point about this metric is the paper, [15], where it was shown that
7 the Wahlquist perfect fluid space-time can not be smoothly joined to an
exterior asymptotically flat vacuum region since the conditions for matching
the induced metrics and extrinsic curvatures are mutually contradictory”.
Thus, 7 the Wahlquist metric can not describe an isolated rotating body”.
Bradley et al., however, showed that this obstruction is removed for a limiting
form of the Wahlquist solution [16], and also for every D-type metric [17] if
the requirement of an asymptotically flatness is removed.

More recent work in this field exists, "where the existence of a rank-
2 generalized closed conformal Killing-Yano tensor with a skew-symmetric
torsion ” [18], and ”the separability of the Maxwell equation on the Wahlquist
spacetime” are shown [19].

Here we start with the metric as given in [18] and try to write the wave
equation, in the background of this metric, as given in [6], in the standard
form given by [20]. How to perform this task is described in [21], as quoted
by [22], and used meticulously by [23, 24]. The same method is recently used
by Vieira et al in [25] . We need the standard form of the wave equation to
be able to apply the information given in the existing literature to our work.
We will first summarize our previous work, [6], then show how to convert
the wave equation to the standard form. In the third section, we give the
approximate reflection coefficient if a wave , coming from infinity is scattered
at the origin. We conclude with a few remarks.

2. Summary of former work
Here, we will summarize the work in [6] below. First, using the metric given
in [2], we try to calculate ¢ where it obeys the equation

1
—0ug""\/90y¢ = 0. (1)
\/g I \/> v
Here g is the determinant of the metric coefficients g, .
We first write the metric as is given in [18], which is equivalent to the one
giving in [11]. We follow some of the work in [18] in the first part, and [6] in
the second part of this section.
Here ”the comoving, pseudoconfocal, spatial coordinates are used, which are
closely related to the oblate-spheroidal coordinates in Euclidean geometry”
[2]. We set 4G = ¢ = 1. Then, the metric reads
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This metric has six real constants Qq, a1, as, vy, tg, 5. Here a; is related to the
NUT [26, 27] parameter; ag is related to the mass parameter. One writes the
other variables to express the energy density, pressure and the fluid velocity
of the perfect fluid. Here § is related to the scaling of z and w, both space
coordinates, in the linear transformation of these variables given in the original
paper by Wahlquist [2]. U and V are are related to ha, b in the original metric.
All these parameters are scaled so that they do not vanish in the 8 going to

zero limit.
When we use the ansatz

¢ = R(2)Y (w)T(7)S(0)

(6)

for the solution, the wave equation written in this metric separates easily. We
have two Killing vectors since the metric does not depend on 7 and o, related
to ¢t and @ in the original metric [2]. If we make a Wick rotation which changes
w to y = iw, ag to —iag [11] where i is the square root of minus unity, the

metric becomes symmetrical

2 2
A

V1 + v2

(dr —vado)? —

(dr+v1do)?. (7)

U1 + V2

Then we have identical equations for z and y. The equation for z reads

2
0.(U0.)R(=) + (1102 +2720,0, + %83)}% 0. (8)

We get exactly the same equation for the new variable y, with appropriate
changes like U going to V' and v; going to vs.

v3 v 1
y(VO,)S(y) + (307 +2:0-00 + 1:05)S(y) = 0. (9)

Since the functions vy,U ( similarly vy, V) don’t depend on 7 and o, the
solutions for 7 and o are just exponential functions, giving us constants upon

differentiation.
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Here we will first try to write the differential equation for a zero mass scalar
field for the radial coordinate z, in the background of this metric. Then,
we make more independent variable changes to put our equation in the the
standard form , as given in [20].

We find that this is not an easy task. The presence of hyperbolic sine
and cosine functions in the wave equation prevents us from using standard
analytical methods in solving differential equations. We change our variables
to © = exp(25z) which makes it possible to write the hyperbolic sine and
cosine functions in terms of powers. sinh28z = 1/2[x — 1/x], cosh2fz — 1 =
1/2[x + 1/x — 2]. Then, however, exists the relation z = Inz/(25).

The codes we have to solve differential equations analytically, does not
recognize [nx. Thus, we can not give an exact solution for all values of the
independent variable . We can get solutions only in one patch, by using an
algebraic expression approximating Inz in this region.

Upon the variable change from z to x, we get the new equation

d2 au
) (B D)Ly - L 2 ) -0 ()

Here we used the solution to the 7 equation in the form exp(—iw7) and the
solution for the io equation a solution in the form exp(—ios). Note that our
metric had Killing vectors for both 7 and o. Here

(x—1/z) [uo 2 ](ac— 1?2 o (22 — 1)]

U:Q0+a1 4/3 47/34 4763 —{—8—[341n$7 s (11)
—1)2
o (12)
aUu 1 1 1 1

From here on, we will define pf = (;T%) and v = (4%)’ ay = a1/p and use

these new constants in our equations.

By studying the equation written in terms of the variable x, we know that there
is a singularity near x = 1. To study the solution around this singularity, we
expand [nz in the neighborhood of this point and use z — 1 instead of Inz
in the wave equation we use in our calculation, after we differentiate U with
respect to x.

We find that, if we keep all our constants non zero, we get [6] the exact solution
in terms the general Heun function [20, 28, 29, 30] up to an exponential
and terms (powers of polynomials) multiplying this function. The regular
singularities are at zero and at three other finite points.
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Then we try the next possible choice. We try to find the solution when we
keep all the terms in U aside from Q)g, which we set equal to zero. Then, our
equation, again, has four regular singularities at 0,1 and the points

1/2
xa:_T%(M_[N] / )7 (14)
ry = —5 (M + [N]?) (15)
2410, ’
where

M = (a} = v — 24, (16)
N? = M? — Apl(d) + v+ 1h). (17)
The HeunG, General Heun form solution is retained when we set Qg to zero.

To further simplify our expressions, we define af = %, vy = :—9.

0 0

3. Reduction to the standard form

How to reduce an equation with four regular singular points at finite values
to an equation with singularities at zero, unity, a finite point and infinity
is described in [22]. If the coefficients of the first derivatives satisfy a linear
relation, one just has to make a homographic substitution to bring three of the
original singularities b1, bg, by to zero, unity and infinity. This transformation
is

_$—b1b2—b4

= 18
Y xr — b4 b2 — b4 ( )
In our case by = 0,by = 1,b3 = x4,by = x3, which gives u = x(xl_;ai”)
The singularity at x; is moved to infinity, the singularity at z, is moved to
w. Then our equation reads
b—Za
d2¢(u) ( 1 1 (14 xp) — Tapo )d¢(u) L o)
- u
du? Taty  w—1  (1—z,)(u+ %) du 2Tu
1,D 2sw 252 452 w?
(= =0.(19
i mtprt Flu— 0T " Hu—12 4(:caa:bu)2)¢(u> (19)
$a(1 — xb)
T = _ 20
(w4 0 (20)
1 w(l—x4) 25
D= _ 21
(xp —mq)?" 2B2z, 1-— xa) ’ (21)
E = 4dz,xp(Tp — 240), (22)
F=(1—-x)%1—x)(zp — 4) (23)
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H=(1-2,)%(1—)° (24)
w2y (1 — 4)

J=—
ﬁ4$2x§($b - l'a)

(25)

The new equation is not in the standard General Heun form, though. One has
to remove the terms where the singularities are in quadratic form from the
new differential equation. One makes a F-homotopic transformation on the
dependent variable ¢(u) in the form

o(u) = () (u— 1S+ 2Ly (26)

Tp — Tq

which gives rather complicated expressions for these indices.

1 w?
A=l 1o 9
5| \/ 454(%%)2}’ 27)
452
=144/1- 9
¢ \/ T —w P m)2 (28)
1 La ZLaq U)(.%'a - 1) 4s
=—= -1+ 2 _ — 2], 9
" Q[xa—a:b \/(ma—xb) ( To3? (xa—l)) ] (29)
Now we can write the new wave equation as
d?g(u) ¢ d e d ABu+Q
- ——g(u)+ g(u) =0.
du? (u u—1 (u+w))du U(U—l)(u-l-x‘;il:;ib))
(30)
Here
w?
c=[1- 1_m], (31)
d=1-2/1 5 9
R VA ey Y Y (32)
N (e (33)
B Tg — Tp Z’a52 ([Ea — 1)
Using the relation
c+d+e=A+B+1, (34)

which is valid when our equation has Heun form, we can also calculate A and
B.

1
A=glctdte—1+/(ctd+e—1)2-48), (35)
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1
B:§(c+d+e—1—\/(c+d+e—1)2—45). (36)

The expression inside the square root above simplifies

TaTp —1 o

(c+d+e—1)2—48 = [%xb + (- ooty —22)
ooy~ T a" 87
If we write Q = Q1 + Qa, we get
Q= —jlec+ x?ilb_%dc * a:f;b((lxb_z l)a) * <a:1b+zba>_<f axfcixiaxb]’ (38)
0 w?ap(1 — w4 Sw (39)

N 204222 (xp — x4) B 282z (T — T40)

4. Scattering at the origin
While changing our independent variable from z to x, we overlooked one point.
Now x corresponds to minus infinity for z. To scatter from origin , we need

to take x = 1. We, therefore, change our variables to u — 1 = —y. We know

that v = 1 is the same point as x = 1. Then our equation reads

d*g(y) c . d e d AB(y—1)-Q
+( Fot ) —g(y) + 9(y) =0,

2 — (1-a) (1-2q)
dy y—l y (y— ==ty dy yly— Dy — =2 =)
(40)
which gives as solution
xb(l - xa)

g(y):Hc(i,—Q—AB;A,B,d,C,G;y:1—’LL), (41)

Ty — Xq

where Hg is the generalized Heun function, in the standard form[20]. We had
a singular point at infinity. We want to have our wave to come from infinity
and scatter at the origin. The other singular point at x, can be arranged to
be at a complex value.

For the scattering process, we will use the formula given by Dekar et al [31].
This formula is between two finite points. We bring the the point infinity to
unity by using the transformation ¢ = ﬁ Now the point where y and ¢ are
equal to zero coincide, and y going to infinity is given by ¢ = 1.

The new equation is not of the Heun form. To bring it back to the Heun form,
we multiply the solution g((¢) by a power

g(t) = (t = 1)"h(t) (42)



DERELI-FS-2021 IOP Publishing
Journal of Physics: Conference Series 2191(2022) 012015  doi:10.1088/1742-6596/2191/1/012015

and try to use h(t) in our further calculations. Our new dependent variable
h(t) satisfies the equation

d’h(t) ,A+1-B d e d (A(d+e— B)t+ Q1
5t (—— ) h ()4 ( — =< )h(t) = 0.
1 IR Ut Gl =)
(43)

At this point, we make a change in our notation. We want to use the
standard Heun notation. This means we will redefine our parameters as
A+1—B =46,d = v,d+e— B = (. The other parameters are defined
as e = ¢, A = « will remain as they are. Now, we can use the standard
notation, since our equations will be of the Heun form in the further part of
this work, and we will be able to use known relations for this function.

Now, the differential equation is written as

Pht) .y 6 € d (aB)t + @a
+ (= + + —T —h(t)+ — h(t) = 0.
aw T Ry S G x;’(&ix:)w)
(44)
Q) = (2 — za)(a(y + €~ ) = Q) — ya(ap(l — za) (45)

xa(1 — xp)

From now on, we will rename h(t) as y;. Now we have to write y; in terms of
the two linearly independent solutions, which we name y3(1 —¢) and y4(1 —1),
the two linearly independent solutions one gets when one expands around
1-t=w.

In other words, we want to write

y1(t) = Crys(1 —t) + Coya(1 — t). (46)

The right hand side gives us the two Heun solutions when the same equation
is expanded as a function of 1 — ¢t. This expansion is easily done

(Ta — )
xa(l — p)

where Q3 = Q1 — a3, and which is the solution of the equation

y3:HG( 7Q3;O‘7/3;577a6;v:1_t)7 (47)

d?ys(v ) € d af)v +
() o (S ) <0
v Tq(l—xyp) U(U - 1)(U - g;a(l_xb))
(48)
Then, we make the transformation
ya(v) = v Vj(v), (49)
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where j(v) satisfies the equation

d?j(v 2—9 € d . +e—a)(y+e—Blv+ .
djv(2 >+(’U z 1+ v + — %o Za )dv](v)—i—(w 1 (xfiw Q4)](U) =0.
v za(l—mp) U(U - 1)(’[) B xa(l—xb))
(50)
to give
Tgq — Tp)

ya = (1— )17 (He( JQuyte—a),yte—B;2—8, 7,60 =1-1),

(51)
where Q4 = Q3 — (1 —0)(y If&:ﬁ’b) + €). Note that this last transformation
is one of the transformations which does not change the Heun form of the
differential equation. Furthermore,the relation 1 + a + 8 = v+ § + € is valid
in this part of our calculations.

At this point we use the formula given in [31] for expanding H¢(t) in terms of
two linearly independent solutions of the equation written for Hg(1 — ¢t = v),
our equation (46).

za(l — zp)

y1(t) = Crys(1 — 1) + Coya(l — 1) (52)
We find a )
C1 = Ho(( =5 @i B, 1) (53)

Tp(1 — x4 Tp(l — x4
Co = HG(wZ((l — xb§’Q3_(xZ((1 — xb;

Note that the factor multiplying j(1 — ¢) in y4 can be written as

)v(1=€);v+e—a, y+e—5;7, €6 1). (54)

52

exp[(Zi\/—1+ (1_%)2(1_%)2)ln1—t]. (55)

Then we can write our eq. (46,52) as

exp —i(V In(1 —t))y1(¢)
= Crexp —i(VIn(1 —t))ys(1 —t) + Caexp (V' In(1 —¢))j(1 —¢), (56)

where

32
vz\/—1+(1_%)2(1_mb)2. (57)

Then our reflection coefficient is given by
02 2
R=]—|". 58
= (58)

This calculation is a formal one. We have to make sure that the Heun function,
found by expansion around zero, is also finite at the second singular point for
appropriate values of the parameters of our wave equation. A proper Leaver

analysis [32] shows that for i:g:ﬁ:g

< 1, these terms are convergent at unity.
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5. Conclusion

Here we put the wave equation for a zero mass scalar particle coupled to
the Wahlquist metric to a form to give the Heun solutions in the standard
notation and calculated the reflection coefficient for a particle coming from
infinity at the origin.
Note that this calculation has weak points. We made an approximation by
taking Inx = x — 1. This is valid only when z is close to unity. We made few
transformations on the independent variable. We can not guarantee that this
approximation is valid in the range we work. We have no choice, though, since
we can not solve differential equations whose coeflicients are transcendental
functions. An interesting point is that we can satisfy an important algebraic
constraint, given in [21, 20], in reducing the first equation to the standard
form only if we make this approximation after we calculate ‘é—g exactly, and
apply this approximation only after the differentiation is done.
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