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We discuss a field transformation from fields ψa to other fields φi that involves derivatives,
φi = φ̄i(ψa, ∂αψa, . . . ; xμ), and derive conditions for this transformation to be invertible,
primarily focusing on the simplest case that the transformation maps between a pair of
fields and involves up to their first derivatives. General field transformation of this type
changes the number of degrees of freedom; hence, for the transformation to be invertible,
it must satisfy certain degeneracy conditions so that additional degrees of freedom do not
appear. Our derivation of necessary and sufficient conditions for invertible transformation
is based on the method of characteristics, which is used to count the number of independent
solutions of a given differential equation. As applications of the invertibility conditions, we
show some non-trivial examples of the invertible field transformations with derivatives, and
also give a rigorous proof that a simple extension of the disformal transformation involving
a second derivative of the scalar field is not invertible.
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1. Introduction
Field transformations are ubiquitous in every field of physics and mathematics. The reason is
that by using suitable fields (variables), one can often get a better and more intuitive insight into
physical phenomena, find a different form of equations of motion which may allow solutions
to be obtained more easily, and so on. For these purposes, the (local) invertibility of a field
transformation is essential because, otherwise, physics would not be the same after the field
transformation. If a field transformation does not involve derivatives, its local invertibility can
be judged by the well-known inverse function theorem. On the other hand, when a field trans-
formation does involve derivatives, it is clear that the invertibility conditions become much more
complicated. If one regards such a field transformation as differential equations for old vari-
ables (fields), one can naively expect the presence of integration constants associated with the
derivatives, which breaks the one-to-one correspondence between the old and new variables.
Thus, apparently, one might arrive at the conclusion that no invertible transformation with
derivatives exists. But, of course, this is not true in general. If one assumes specific degeneracy
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of the derivative terms in a field transformation which prohibits the appearance of associated
integration constants, one can have an invertible field transformation with the derivatives. In-
deed, in Ref. [1] we gave explicit necessary and sufficient conditions for the invertibility of a
field transformation involving two fields and first derivatives.1

The purpose of this paper is twofold. First, we give a full and complete proof of neces-
sary and sufficient conditions for the invertibility of field transformations with derivatives.
Here, we fill some gaps in the proof that that were present in Ref. [1]. More importantly, we
provide a full proof for the sufficient condition, while we previously gave it only within the
perturbative regime. The second goal of this paper is to prove the no-go theorem of disfor-
mal transformation of the metric that involves second derivatives of a scalar field. We were
strongly motivated by pursuing extensions of conformal and disformal transformations, which
are often used in gravity, cosmology, and many other fields (see, e.g., Ref. [3] for a classifica-
tion of new theories generated from a simpler theory [4] using disformal transformations). A
disformal transformation involving the first derivative of a scalar field is a natural extension
of a conformal transformation [5]. The next natural question is whether one can further ex-
tend a disformal transformation to one involving the second derivatives of a field, or even its
higher derivatives. As a useful application of our invertibility conditions, we explicitly prove
that there is no invertible disformal transformation involving the second derivatives given by
g̃ = C(χ, X )g + D(χ, X )∇χ∇χ + E (χ, X )∇∇χ (X ≡ (∇χ )2) with E �= 0. To the best of our
knowledge, this is the first rigorous proof of the absence of such a transformation.

The organization of this paper is as follows. In Sect. 2, we give a complete derivation of the
necessary conditions. The results in Sect. 2.1 apply to field transformations involving an arbi-
trary number of fields and their first derivatives. To show the explicit form of the invertibility
conditions, in Sects. 2.2 and 2.3 we focus on the field transformation between two fields and
their first derivatives. In Sect. 3, the complete proof of the sufficient conditions is given. As
an application of our result, in Sect. 4 we construct some examples of invertible field trans-
formation by solving the invertibility conditions. As another application, in Sect. 5 the no-go
theorem for a class of disformal transformations of the metric with second derivatives is proven.
Section 6 is devoted to conclusions and discussion. In Appendix A we examine a field transfor-
mation that changes the number of fields, and show that it cannot be invertible in our sense. In
Appendices B and C, we show details of some of the calculations in Sect. 2. Appendix D shows
that transformations between single fields and their derivatives can never be invertible, which
implies that the two-field case we focus on is the simplest non-trivial case. In Appendix E, the
necessity for nonlinear analysis in the inverse function theorem is explained. Appendix F gives
some technical details of the derivation in Sect. 4, and Appendix G discusses an extension of
the results given in Sect. 5.

1.1 Notation
Here we summarize the convention for indices used in this work:

∂μ1μ2···μn := ∂μ1∂μ2 · · · ∂μn, (1)

C(μ1μ2 ) = 1
2 (Cμ1μ2 + Cμ2μ1 ) , (2)

1See, e.g., Ref. [2] for earlier discussions on invertibility conditions of field transformations.
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C[μ1μ2] = 1
2 (Cμ1μ2 − Cμ2μ1 ) . (3)

C(μ1μ2···μn ) and C[μ1μ2···μn] are defined similarly by permutation (with a factor (n!)−1). We intro-
duce the Levi-Civita symbol εi1···inin+1···iN , which satisfies the following identities:

εi1···inin+1···iN ε j1··· jn jn+1··· jN Mi1
j1 · · · Min

jnMin+1
k

= εi1···iN ε j1··· jN δ
j1
[l1

· · · δ jn
ln

δk
ln+1]Mi1

l1 · · · Min+1
ln+1

= 1
(n + 1)!(N − n − 1)!

εi1···iN ε j1··· jN ε j1··· jnkln+2···lN εl1···lN Mi1
l1 · · · Min+1

ln+1

= n!(N − n)!
(n + 1)!(N − n − 1)!

εi1···iN εl1···lN Mi1
l1 · · · Min+1

ln+1δk
[ jn+1

δ
ln+2
jn+2

· · · δlN
jN ]

= N − n
n + 1

εi1···iN εl1···lN Mi1
l1 · · · Min+1

ln+1δk
[ jn+1

δ
ln+2
jn+2

· · · δlN
jN ] . (4)

Throughout this work, we do not distinguish the lower and upper indices for the field space
indices a, b, … and i, j, …, while in some parts upper/lower indices are used for clarity of the
notation.

2. Derivation of the necessary conditions
In this section we present a complete derivation of the necessary conditions for the invertibility
of the transformation φi = φ̄i(ψa, ∂αψa, xμ) that transforms fields φi into fields ψa.2 We divide
the derivation of the invertibility conditions into two parts. In Sect. 2.1, we derive necessary
conditions for invertibility. An invertible transformation preserves the number of degrees of
freedom, while a transformation with field derivatives typically generates additional degrees of
freedom. To formulate such an idea mathematically, we employ the method of characteristics
for a differential equation to count the number of propagating modes [6].

In Sect. 2.1.1 we explain our approach to deriving the necessary conditions for invertibility
based on the method of characteristics. In this approach, the transformation equation in Eq. (5)
is converted to a set of differential equations that relates old variables to new ones, and the num-
ber of independent solutions for these equations is related to the number of degrees of free-
dom. To establish invertibility, the transformation must satisfy certain degeneracy conditions
to remove unnecessary additional modes originating from the derivatives in the transformation
equation. Such degeneracy conditions must be imposed at each order of the aforementioned
differential equations, as summarized in Sects. 2.1.2 and 2.1.3. This procedure should be ap-
plied iteratively until the number of independent solutions is reduced appropriately, and then
we may impose the non-degeneracy conditions to ensure the number of degrees of freedom is
not changed by the transformation. We summarize this procedure in Sect. 2.1.4.

The procedure in Sect. 2.1 applies to field transformations for a general number of fields. To
illustrate our method, we focus on the transformation between two fields in Sects. 2.2 and 2.3.
The necessary conditions for invertibility in the two-field case are derived in Sect. 2.2 based on
the general method introduced in the previous sections. The expressions for these conditions
are rather complicated, and actually they can be simplified by solving part of the conditions

2Here, we concentrate on the case with first-order derivatives. However, our idea of using characteristics
and degeneracy applies to the case with arbitrary-order derivatives (and an arbitrary number of fields)
in the same way.
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explicitly. Based on such an idea, the expressions of the necessary conditions are simplified in
Sects. 2.3.1, 2.3.2, and 2.3.3. After simplification, the necessary conditions for the invertibility
of two-field transformations are summarized in Eqs. (50), (68), and (73).

After deriving the necessary conditions in this section, in Sect. 3 we show that these conditions
are actually sufficient to guarantee invertibility.

2.1 Method of characteristics as the key to deriving the necessary conditions
2.1.1 Invertibility and the number of degeneracies. Let us consider a field transformation from
ψa to φi given by

φi = φ̄i(ψa, ∂αψa, xμ), (5)

where φ̄i is a function of ψa, ∂αψa, and xμ. We suppose that the numbers of the fields before
and after the transformation are the same; that is, we assume that both a and i run from 1 to
N, where N is the number of field ψa.3

If the transformation in Eq. (5) is invertible, it does not change physical properties of theories
before and after the transformation, and particularly the causal structure should be invariant.
If the transformation changes the number of characteristic hypersurfaces, the causal structure
is changed correspondingly. Therefore, for invertibility, the transformation should not change
the number of characteristic hypersurfaces. This gives the necessary conditions for invertibility.

To examine whether the transformation in Eq. (5) changes the number of characteristic hy-
persurfaces, we employ the method of characteristics for partial differential equations. This
method can be applied only to quasi-linear differential equations, while the transformation
equation in Eq. (5) is nonlinear in ∂αψ i in general. To convert Eq. (5) to a quasi-linear partial
differential equation, we act a differential operator K (μ1···μn )

bi ∂μ1···μn on it to obtain

K (μ1···μn )
bi ∂μ1···μnφi

= K (μ1···μn )
bi Aμn+1

ia ∂μ1···μn+1ψa

+
(

K (μ1···μn )
bi Bia + n K (αμ1···μn−1 )

bi ∂αAμn
ia

)
∂μ1···μnψa

+
(

n K (αμ1···μn−1 )
bi ∂αBia + n(n − 1)

2
K (α1α2μ1···μn−2 )

bi ∂α1α2A
μn−1
ia

)
∂μ1···μn−1ψa + · · ·

+
((

n
k

)
K (α1···αkμ1···μn−k )

bi ∂α1···αk Bia

+
(

n
k + 1

)
K (α1···αk+1μ1···μn−k−1 )

bi ∂α1···αk+1A
μn−k
ia

)
∂μ1···μn−kψa

+ · · · + O
(
∂� n

2 �+1ψa, ∂
� n

2 �ψa, . . .
)

, (6)

where Aα
ia and Bia are N × N matrices defined by

Aα
ia := ∂φ̄i

∂ (∂αψa)
, Bia := ∂φ̄i

∂ψa
, (7)

3For a field transformation that involves two fields and its first derivatives, it can be explicitly shown
that a transformation that changes the number of fields can never be invertible. See Appendix A for
details.
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and
(n

k

)
is the binomial coefficient for k ≤ n − � n

2� − 2. In this expression, ∂� n
2 �+2ψa and higher

derivatives of ψa appear linearly, while the O
(
∂� n

2 �+1ψa, ∂
� n

2 �ψa, . . .
)

part is a nonlinear function
of lower-order derivatives of ψa. We show the derivation of Eq. (6) in Appendix B.

The operation of the differential operator K (μ1···μn )
bi ∂μ1···μn introduces additional characteristic

hypersurfaces to those of Eq. (5). Hence, the characteristics of ψa, determined by the right-
hand side of Eq. (6), are comprised of the original ones inherent to the field transformation
equation in Eq. (5) and the additional ones generated by the operation of K (μ1···μn )

bi ∂μ1···μn .
Now we can analyze the characteristics of the quasi-linear differential equation in Eq. (6),

regarding this equation as a partial differential equation in ψa. We have N differential equations
with (n + 1)th-order derivatives of ψa. Therefore, they generically give N × (n + 1) integration
constants in a solution ψa, which corresponds to N × (n + 1) characteristics. However, if the
field transformation in Eq. (5) is invertible, there are no characteristics inherent to Eq. (5),
which implies that Eq. (6) has only the additional characteristics generated by the operation of
K (μ1···μn )

bi ∂μ1···μn . The number of these additional characteristics is N × n, and hence there is a
mismatch between the number of derivatives in the equations, N × (n + 1), and the number of
characteristics required by the invertibility, N × n.

Such a mismatch can be resolved if the structure of the highest-order derivative part is degen-
erate. Since the difference between them is N, invertibility requires N degrees of degeneracies.
We derive the conditions giving such N degeneracies below.

2.1.2 Degeneracy condition at leading order. The characteristic equation for Eq. (6) is given
by

det
(

K (μ1···μn )
bi Aμn+1

ia ξμ1 · · · ξμn+1

)
= det

(
K (μ1···μn )

bi ξμ1 · · · ξμn

)
det
(
Aμn+1

ia ξμn+1

) = 0, (8)

where ξμ is a vector which is not tangent to would-be characteristics hypersurfaces. If
det
(
Aμ

iaξμ

)
does not vanish identically for any ξμ, the characteristic equation in Eq. (8) im-

plies that there are N × (n + 1) characteristics, and then the transformation in Eq. (5) is not
invertible, as explained above. Hence, for invertibility, Aμ

iaξμ must be degenerate for any ξμ, that
is,

det
(
Aμ

iaξμ

) = 0 for any ξμ. (9)

This condition is equivalent to∑
a∈Sn

sgn(a)A(α1
1a1

· · · AαN )
NaN

= 1
N!

εi1···iN εa1···aN Aα1
i1a1

· · · AαN
iN aN

= 0, (10)

where N is the number of fields, and the sum is computed over the set Sn of all permutations a
= {a1, …, aN} of {1, …, N}. Here, sgn(a) denotes the signature of a permutation a, which is +1
whenever the reordering a can be achieved by successively interchanging two entries an even
number of times, and −1 whenever it can be achieved by an odd number of such interchanges.

2.1.3 Degeneracy condition at subleading order. The condition in Eq. (10) indicates the de-
generacy of the highest-order derivatives of Eq. (6). If the degeneracy number is N (i.e. the
dimension of the kernel Aμ

iaξμ is N), it implies that Aμ
ia = 0, and thus the transformation is in-

dependent of ∂μψa. This is a trivial case; we can directly use the implicit function theorem for
Eq. (5). Therefore, we consider non-trivial cases where the number of degeneracy of Eq. (10)
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is less than N. Here, we discuss the case where the degeneracy number of Eq. (10) is 1 for sim-
plicity. Generic cases may be discussed in a similar manner.

For later use, we introduce the adjugate matrix of Aμ
ia, which is the transposed cofactor matrix,

as

Āα1···αN−1
ai := tĀα1···αN−1

ia = (−1)i+a
∑
ā∈S̄n

sgn(ā)A(α1

ī1ā1
· · · AαN−1 )

īN−1āN−1

= 1
(N − 1)!

ε
i1···iN−1

i ε a1···aN−1
a Aα1

i1a1
· · · AαN−1

iN−1aN−1
, (11)

where {ī1, . . . , īN−1} = {1, . . . , i − 1, i + 1, . . . , N}, and the sum is computed over the set S̄n of
all permutations ā = {ā1, . . . , āN−1} of {1, …, a − 1, a + 1, …, N}. This adjugate matrix satis-
fies

Ā(α1···αN−1
ai AαN )

ib = 0, A(α1
ia Āα2···αN )

a j = 0. (12)

As commented above, we suppose that the dimension of the kernel of Aμ
iaξμ is 1 for any ξμ.

Then the adjugate matrix is a rank-1 matrix.
The fact that the highest derivative part of Eq. (6) is degenerate in one dimension implies

that Eq. (6) contains one equation that involves only lower-order derivatives of ψa. This
does not necessarily imply that one of the equations in Eq. (6) contains only lower-derivative
terms; instead, generically, by combining equations in Eq. (6) one should be able to find one
lower-derivative equation. Let us extract this subleading equation. First, setting the operator
K (μ1···μn )

bi ∂μ1···μn in Eq. (6) to K̃ (μ1···μm )
b Āα1···αN−1

bi ∂μ1···μmα1···αN−1 with m = n − N + 1, Eq. (6) yields

K̃ (μ1···μm )
b Āα1···αN−1

bi ∂μ1···μmα1···αN−1φi

= K̃ (μ1···μm )
b Ā(α1···αN−1

bi AαN )
ia ∂μ1···μmα1···αN ψa

+ K̃ (μ1···μm )
b

[
Āα1···αN−1

bi Bia + (N − 1)Āβα1···αN−2

bi

(
∂βAαN−1

ia

)]
∂μ1···μmα1···αN−1ψa

+ mK̃ (βμ1···μm−1 )
b Āα1···αN−1

bi

(
∂βAμm

ia

)
∂μ1···μmα1···αN−1ψa + O

(
∂m+N−2ψ

)
. (13)

The first term on the right-hand side vanishes because of Eq. (12). Moreover, Eq. (12) gives

Ā(α1···αN−1

bi

(
∂βAαN )

ia

)
= −

(
∂βĀ(α1···αN−1

bi

)
AαN )

ia . (14)

This equation shows that the last term on the right-hand side of Eq. (13) is written as

mK̃ (βμ1···μm−1 )
b Āα1···αN−1

bi

(
∂βAμm

ia

)
∂μ1···μmα1···αN−1ψa

= −mK̃ (βμ1···μm−1 )
b

(
∂βĀα1···αN−1

bi

)
Aμm

ia ∂μ1···μmα1···αN−1ψa. (15)

Next, Eq. (6) with K (μ1···μn )
bi ∂μ1···μn replaced by mK̃ (βμ1···μm−1 )

b

(
∂βĀα1···αN−1

bi

)
∂μ1···μm−1α1···αN−1 gives

mK̃ (βμ1···μm−1 )
b

(
∂βĀα1···αN−1

bi

)
∂μ1···μm−1α1···αN−1φi

= mK̃ (βμ1···μm−1 )
b

(
∂βĀα1···αN−1

bi

)
Aμm

ia ∂μ1···μmα1···αN−1ψa + O
(
∂m+N−2ψ

)
. (16)

Then, the last term on the right-hand side of Eq. (13) can be replaced with the derivatives of φi

andO
(
∂m+N−2ψ

)
terms. Expanding Eq. (13) up to ∂m + N − 2ψ and eliminating some ∂m + N − 1ψ

and ∂m + N − 2ψ terms in favor of ∂m + N − 2φ and ∂m + N − 3φ terms, as we did above, we finally
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obtain

K̃ (μ1···μm )
b Āα1···αN−1

bi ∂μ1···μmα1···αN−1φi + mK̃ (βμ1···μm−1 )
b

(
∂βĀα1···αN−1

bi

)
∂μ1···μm−1α1···αN−1φi

+
(

m
2

)
K̃ (βγμ1···μm−2 )

b

(
∂βγ Āα1···αN−1

bi

)
∂μ1···μm−2α1···αN−1φi

= K̃ (μ1···μm )
b Aα1···αN−1

2,ba ∂μ1···μmα1···αN−1ψa

+
[
K̃ (μ1···μm )

b Bα1···αN−2

2,ba + mK̃ (βμ1···μm−1 )
b

(
∂βAμmα1···αN−2

2,ba

)]
∂μ1···μmα1···αN−2ψa

+ O
(
∂m+N−3ψ

)
, (17)

where

Aα1···αN−1

2,ba := Āα1···αN−1

bi Bia + (N − 1)Āβ(α1···αN−2

bi

(
∂βAαN−1 )

ia

)
, (18)

Bα1···αN−2

2,ba := (N − 1)
[

Āβα1···αN−2

bi

(
∂βBia

)+ N − 2
2

Āβγ (α1···αN−3

bi

(
∂βγ AαN−2 )

ia

)]
. (19)

The right-hand side of Eq. (17) has one less derivative compared to that of Eq. (6); that is, it is
the subleading equation. The combination of the non-degenerate part of Eq. (6), which has N
− 1 equations, and Eq. (17) gives the structure of the characteristics in the subleading order.

So farm we have established the presence of one degeneracy. To ensure invertibility, there must
be N degeneracies. Hence, the characteristics at this subleading order should be degenerate too.
By assumption, the matrix Aμ

iaξμ has one degeneracy; that is, there exists only one eigenvector
with a zero eigenvalue, which is denoted ψ⊥

a (ξ ). The other components of ψa are collectively
defined as ψ

‖
a (ξ ). (Hereinafter, we omit (ξ ) from ψ⊥

a (ξ ) and ψ
‖
a (ξ ) for brevity.) The characteristic

matrix for the highest-derivative part of Eq. (17) and the non-degenerate part of Eq. (6) is
written as

ψ‖ ψ⊥

non-degenerate part of Eq. (6)
Eq. (17)

(
(nd)Aμ

iaξμ 0
Ka K

)
, (20)

where (Ka, K ) = K̃ (μ1···μm )
b Aα1···αN−1

2,ba ξμ1 · · · ξμmξα1 · · · ξαN−1 ,
4 and (nd)Aμ

iaξμ is an (N − 1) × (N − 1)
matrix indicating only the non-degenerate components of Aμ

iaξμ, that is, det
(

(nd)Aμ
iaξμ

) �= 0. This
matrix determines the subleading characteristics, and it should be degenerate for invertibility.
Since (nd)Aμ

iaξμ is regular, the requirement of degeneracy gives the condition that K = 0 for any
K̃ (μ1···μm )

b , i.e. Aα1···αN−1

2,ba ξα1 · · · ξαN−1ψ
⊥
a vanishes for any ξ .

In order to show the condition explicitly, we express ψ⊥ in terms of Aμ
ia. This can be done

with the adjugate matrix Āμ1···μN−1
ai ξμ1 · · · ξμN−1 . Equation (12) shows that Āμ1···μN−1

ai ξμ1 · · · ξμN−1

is the projection matrix to the kernel of Aμ
iaξμ, in which ψ⊥ lives by definition. Therefore, the

subleading degeneracy condition is written as

A(α1···αN−1

2,ba Āμ1···μN−1 )
ai = 0. (21)

4Using the projection tensor EN − 1, ab onto the ψ� space defined by Eq. (26), the components of the
vector (Ka, K) may be expressed more precisely as

Ka ∝ K̃ (μ1···μm )
b Aα1···αN−1

2,bc EN−1,cbξμ1 · · · ξμmξα1 · · · ξαN−1 ,

K ∝ K̃ (μ1···μm )
b Aα1···αN−1

2,bc Āν1···μN−1
ci ĀνN ···ν2N−2

ai ξμ1 · · · ξμmξα1 · · · ξαN−1ξν1 · · · ξν2N−2 .

See Sect. 2.1.4 for more details on this decomposition.
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2.1.4 Degeneracy and non-degeneracy conditions at lower orders. So far, two degeneracies were
realized by imposing the degeneracy conditions in Eqs. (10) and (21). The condition in Eq. (21)
makes the matrix in Eq. (20) degenerate, and then the highest-order derivative of the component
parallel to ψ⊥ appears in a lower-order equation, that is, the subsubleading-order equation.
The characteristic matrix is composed of the leading-order equation for the ψ� components
and the subsubleading-order equation for the ψ⊥ component. Now we have two degeneracies,
and thus for N > 2 this subsubleading characteristic matrix must give an additional degeneracy
for invertibility. Then, similar to the analysis of the subleading order, the degeneracy implies
that the highest-order derivative for the ψ⊥ component in the subsubleading equation should
vanish. This procedure is done iteratively until N degeneracies are established. After that, we
impose the condition that the next-order characteristic matrix is not degenerate, in order for the
transformation to be invertible. The last condition corresponds to that of the inverse function
theorem (without derivatives).

In order to implement the procedure described above, it is useful to introduce a projection
matrix EN − 1, ij(ξ ) to the (N − 1)-dimensional field space of ψ�; that is, EN − 1, ij(ξ ) is the identity
matrix for the (N − 1)-dimensional field space and zero for the one-dimensional field space
parallel to ψ⊥. Let us express EN − 1, ij(ξ ) in terms of Aμ

iaξμ. We consider the matrix

Ãμ1···μ2N−3
ai = 1

(N − 1)!
εi

i1···iN−1εa
a1···aN−1Ā(μ1···μN−1

a1i1 AμN
i2a2

· · · Aμ2N−3 )
iN−1aN−1

. (22)

This matrix satisfies

(N − 1)Ãμ1···μ2N−3
ai Aμ2N−2

ib ξμ1 · · · ξμ2N−2

= (Ā2,μ1...μ2N−2δab − Āμ1...μN−1
ai ĀμN ...μ2N−2

bi

)
ξμ1 · · · ξμ2N−2

= EN−1,ab(ξ )Ā2,μ1···μ2N−2ξμ1 · · · ξμ2N−2, (23)

where

Ā2,μ1···μ2N−2 := Ā(μ1···μN−1
ai ĀμN ···μ2N−2 )

ai = Ã(μ1···μ2N−3
ai Aμ2N−2 )

ia . (24)

In the calculation in Eq. (23), we use the fact that Āμ1···μN−1
ai ξμ1 · · · ξμN−1 is rank-1 matrix, and

then the components of Āμ1···μN−1
ai ĀμN ···μ2N−2

bi ξμ1 · · · ξμ2N−2 are zero except for the ψ⊥–ψ⊥ com-
ponent. The value of this nonzero component is shown to be Ā2,μ1···μ2N−2ξμ1 · · · ξμ2N−2 by direct
calculations. Equation (23) divided by Ā2,μ1···μ2N−2ξμ1 · · · ξμ2N−2 gives EN − 1, ab(ξ ), which can be
regarded as a projector to the (N − 1)-dimensional space of ψ�. Since Eq. (23) holds for any
ξμ, it can be expressed equivalently as

Ā(μ1···μN−1
ai ĀμN ···μ2N−2)

bi + (N − 1)Ã(μ1···μ2N−3
ai Aμ2N−2)

ib = Ā2,(μ1···μ2N−2 )δab. (25)

Let us demonstrate how to obtain the lower-order equations iteratively with the projection
tensor of Eq. (23). On the right-hand side of Eq. (17), the leading term is the first term propor-
tional to ∂m + N − 1ψa. The degeneracy condition for the subleading-order Eq. (21) implies that
the first term does not have the ψ⊥ component, i.e. it can be written as

K̃ (μ1···μm )
b Aα1···αN−1

2,ba ∂μ1···μmα1···αN−1ψa

= K̃ (μ1···μm )
b Aα1···αN−1

2,bc EN−1,cd (∂ )∂μ1···μmα1···αN−1ψd . (26)
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Considering the case with K̃μ1···μm
b = ≈

K
μ1···μm′
b Ā2,γ1···γ2N−2 , we can rewrite Eq. (26) as

≈
K

μ1···μm′
b Ā2,γ1···γ2N−2Aα1···αN−1

2,bc EN−1,ca(∂ )∂μ1···μm′γ1···γ2N−2α1···αN−1ψk

= (N − 1)
≈
K

μ1···μm′
b Aα1···αN−1

2,bc Ãγ1···γ2N−3
ci Aγ2N−2

ia ∂μ1···μm′α1···αN−1γ1···γ2N−2ψk, (27)

where we used Eq. (23). Then, by subtracting Eq. (17) from Eq. (6) with its coefficient set to

Kμ1···μm
bi = (N − 1)

≈
K

μ1···μm′
b Aα1···αN−1

2,bc Ãγ1···γ2N−3
ci , the subleading (∂m′+3N−3ψ) term is canceled out

and the subsubleading-order equation is obtained as a result.
The degeneracy condition can be obtained applying the procedure explained around Eq. (20)

to the subsubleading equation, and the condition will be similar to the condition in Eq. (21)
for the subleading-order equation. Then, using the projector EN − 1, ab again, we can construct
the lower-order equation. Applying this procedure iteratively, we can derive N degeneracy con-
ditions and the final non-degeneracy condition, which constitute the necessary conditions for
invertibility.

2.2 Necessary conditions in the two-field case
Although we have already derived the leading and subleading degeneracy conditions in the pre-
vious subsection using the general procedure, it is instructive to follow a concrete example to
understand the method. For this purpose, based on the discussion in the previous section, we
demonstrate how to derive the necessary conditions for the invertibility of a field transforma-
tion of two fields involving up to the first derivative.5 That is, we consider the case where N = 2,
i = 1, 2, and a = 1, 2. In this section we complete the iterations to derive all the degeneracies and
the final non-degeneracy conditions. The conditions obtained will be simplified in Sect. 2.3.

We apply the procedure explained in Sect. 2.1 to the two-field case. In this case, Āμ
ai, A

μ

2,ab,
and B2,ab that appeared in the previous section are written as

Āμ
ai = εi

i1εa
a1Aμ

i1a1
, Aμ

2,ab := Āμ
aiBib + Āβ

ai∂βAμ

ib, B2,ab := Āβ
ai∂βBib, (28)

and Ãμ
ai is simplified as

Ãμ
ai = εi

i1εa
a1Āμ

a1i1 = εi
i1εa

a1εi1
i2εa1

a2Aμ
i2a2

= Aμ
ia. (29)

Then, the identity in Eq. (25) becomes

Ā(μ1
ai Āμ2 )

bi + Ã(μ1
ai Aμ2 )

ib = Ā(μ1
ai Āμ2 )

bi + A(μ1
ia Aμ2 )

ib = Ā2,μ1μ2δab. (30)

We operate K (μ1···μn )∂μ1···μn on the field transformation equation, Eq. (5), to obtain

K (μ1···μn )∂μ1···μnφi = K (μ1···μn )Aμn+1
ia ∂μ1···μn+1ψa + O (∂nψ ) . (31)

For Eq. (5) to be invertible, the coefficient of the highest-order derivative on the right-hand side
of Eq. (31) must be degenerate, which implies

for all ξμ, det(Aμ
iaξμ) = 0 ⇔ εi1i2εa1a2A(α1

i1a1
Aα2 )

i2a2
= 0. (32)

Following the previous section, we assume that the matrix Aμ
iaξμ is degenerate only in one di-

mension. Then the kernel of Aμ
iaξμ parallel to ψ⊥

a and the field space in the other direction
parallel to ψ‖

a are one dimension each.

5As will be explicitly shown in Appendix D, there is no invertible field transformation of one field
involving first derivatives. Hence, among (possibly invertible) transformations with up to first derivatives,
the two-field case is the simplest.
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The degeneracy condition at the subleading order is obtained following the procedure in
Sect. 2.1.3. To construct the subleading equation from Eq. (5), we have to pick up the compo-
nent of this equation corresponding to the kernel of the coefficient of the highest-order deriva-
tive, Aμ

ia. This can be done by operating K̃ (μ1···μn )Āμn+1

bi ∂μ1···μn+1 on the transformation equation
in Eq. (5) as

K̃ (μ1···μn )Āμn+1

bi ∂μ1···μn+1φi

= K̃ (μ1···μn )Āμn+1

bi Aν
ia∂μ1···μn+1νψa

+
(

K̃ (μ1···μn )Āμn+1

bi Bia + n K̃ (αμ1···μn−1 )Āμn
bi ∂αAμn+1

ia + K̃ (μ1···μn )Āα
bi∂αAμn+1

ia

)
∂μ1···μn+1ψa

+ O (∂nψ ) . (33)

The first term on the right-hand side vanishes thanks to Eq. (32). As shown in
Sect. 2.1.3, the second term in the brackets proportional to n can be canceled by adding
nK̃ (αμ1···μn−1 )

(
∂αĀμn

bi

)
∂μ1···μnφi to Eq. (33). Nevertheless, without such a cancellation, we can di-

rectly obtain the same subleading condition from Eq. (33) by rewriting it as

K̃ (μ1···μn )Āμn+1

bi ∂μ1···μn+1φi

=
(

K̃ (μ1···μn )Aμn+1

2,ba + n K̃ (αμ1···μn−1 )Āμn
bi ∂αAμn+1

ia

)
∂μ1···μn+1ψa + O (∂nψ ) . (34)

The subleading degeneracy condition is given by demanding that the coefficient of the highest-
order derivative for ψ⊥ vanishes. Noting that Āν

aiξν works as a projector onto the ψ⊥ space, this
condition is written as(

K̃ (μ1···μn )Aμn+1

2,ba + n K̃ (αμ1···μn−1 )Āμn
bi ∂αAμn+1

ia

)
Āν

a jξμ1 · · · ξμn+1ξν = 0. (35)

The second term vanishes, which is shown by using Eqs. (12) and (14) as

K̃ (αμ1···μn−1 )Āμn
bi

(
∂αAμn+1

ia

)
Āν

a jξμ1 · · · ξμn+1ξν

= −K̃ (αμ1···μn−1 ) (∂αĀμn
bi

)
Aμn+1

ia Āν
a jξμ1 · · · ξμn+1ξν = 0. (36)

Since K̃ (μ1···μn ) is arbitrary, the subleading condition is

for all ξμ, Aμ

2,baĀν
a jξμξν = 0 ⇔ A(μ

2,baĀν)
a j = Ā(μ

bi BiaĀν)
a j + Āβ

bi

(
∂βA(μ

ia

)
Āν)

a j = 0. (37)

The non-degeneracy condition at the subsubleading order can be constructed following the
procedure in Sect. 2.1.4. In this procedure we need to see the structure of the coefficient of
the highest-order derivative term in Eq. (33) decomposing the variables into the ψ⊥ and ψ�

space. For this purpose we use Eq. (30). Operating
≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3 on Eq. (5),
we have

≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3φi

=
( ≈

K (μ1···μn )Aμn+1

2,ba Ā2,μn+2μn+3 + n
≈
K (αμ1···μn−1 )Ā2,μnμn+1Āμn+2

bi ∂αAμn+3
ia

+ 2
≈
K (μ1···μn )Ā2,μn+1αĀμn+2

bi ∂αAμn+3
ia

)
∂μ1···μn+3ψa + O

(
∂n+2ψ

)
. (38)
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Using Eq. (30) for the first term in brackets and Eq. (14) for the other two, we have

≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3φi

=
( ≈

K (μ1···μn )Aμn+1

2,bc Ãμn+2
ci − n

≈
K (αμ1···μn−1 )Ā2,μnμn+1∂αĀμn+2

bi

− 2
≈
K (μ1···μn )Ā2,μn+1α∂αĀμn+2

bi

)
Aμn+3

ia ∂μ1···μn+3ψa + O
(
∂n+2ψ

)
. (39)

The ∂n + 3ψ term on the right-hand side can be reproduced by applying the operator[ ≈
K (μ1···μn )Aμn+1

2,bc Ãμn+2
ci −

(
n

≈
K (αμ1···μn−1 )Ā2,μnμn+1 + 2

≈
K (μ1···μn )Ā2,μn+1α

)
∂αĀμn+2

bi

]
∂μ1···μn+2

to Eq. (5). Hence, by subtracting it from Eq. (39), we obtain the subsubleading-order equation
involving terms only up to ∂n + 2ψ . Expanding Eqs. (6) and (39) up to the ∂n + 2ψ terms, we find
(see Appendix C for details)

≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3φi −
[ ≈

K (μ1···μn )Aμn+1

2,bc Ãμn+2
ci

−
(

n
≈
K (αμ1···μn−1 )Ā2,μnμn+1 + 2

≈
K (μ1···μn )Ā2,μn+1α

)
∂αĀμn+2

bi

]
∂μ1···μn+2φi

=
{
−n(n − 1)

2

≈
K (α1α2μ1···μn−2 )Ā2,μn−1μn

(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia

+ n
≈
K (α1μ1···μn−1 )

[
−2Ā2,μnα2

(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia − Aμn
2,bcÃ

μn+1
ci ∂α1A

μn+2
ia

+ Ā2,μnμn+1∂α1A
μn+2

ba

]
+ ≈

K (μ1···μn )
[
−Ā2,α1α2

(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia + 2Ā2,μn+1α∂αAμn+2

2,ba + Ā2,μn+1μn+2Āα
bi∂αBia

− 2A(α
2,bcÃ

μn+1 )
ci ∂αAμn+2

ia − Aμn+1

2,bc Ãμn+2
ci Bia

]}
∂μ1···μn+2ψa + O

(
∂n+1ψa

)
. (40)

The coefficient of the ψ⊥ component of the highest-order derivative term ∂n + 2ψ on the right-
hand side of Eq. (40) determines the (non-)degeneracy of the characteristics in the subsublead-
ing order. This coefficient is obtained by contracting Āμn+3

ai with the coefficient of ∂n + 2ψa in

Eq. (40). We can show that the terms proportional to
≈
K (α1α2μ1···μn−2 ) and

≈
K (α1μ1···μn−1 ) become

zero (see Appendix C). Among the terms proportional to
≈
K (μ1···μn ), the first one, ∂α1α2Ā

μn+1

bi ,
vanishes by acting Āμn+3

ai , and the remaining term must not vanish for the ψ⊥ component to be
non-degenerate in this order. Hence, the non-degeneracy condition is given by(

Ā2,μ1μ2B2,ab − Aμ1
2,acÃ

μ2
c j B jb + 2Ā2,αμ1∂αAμ2

2,ab − 2A(α
2,acÃ

μ1 )
c j ∂αAμ2

jb

)
Āμ3

bi ξμ1ξμ2ξμ3 �= 0 (41)

for any ξ . Using Eq. (30), this can also be written as(
Ā2,μ1μ2B2,abĀμ3

bi − Aμ1
2,abÃμ2

b j B jcĀ
μ3
ci + 2A[α|

2,abÃμ1
b j A|μ2]

jc ∂αĀμ3
ci

− Aμ1
2,abĀα

b jĀ
μ2
c j ∂αĀμ3

ci

)
ξμ1ξμ2ξμ3 �= 0. (42)

To summarize, the necessary conditions for invertibility are given by Eqs. (32), (37), and (42).
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2.3 Simplification of the necessary conditions
Above, we derived the necessary conditions for invertibility, Eqs. (32), (37), and (42), in the
two-field case with first-order derivative. We present a simpler form of these expressions in this
section. The simplified form of the necessary conditions will be helpful in the proof that these
conditions are also sufficient in the next section. In addition, we will use these expressions for
building examples of invertible transformations.

2.3.1 Simplification of Eq. (32). First of all, we simplify the condition in Eq. (32), which
implies that the rank of Aμ

iaξμ is less than two. Since we have assumed that Aμ
iaξμ has only one

eigenvector with a zero eigenvalue, the rank of Aμ
iaξμ has to be unity for any ξ , i.e.

ξ0A0
ia + ξ1A1

ia + · · · + ξDAD
ia (43)

is a rank-1 matrix for any ξμ = {ξ 0, ξ 1, …, ξD}, where D is the spacetime dimension. Then, by
setting ξμ = δμν for each 1 ≤ ν ≤ D, we find that Aν

ia is a rank-1 matrix for any ν. Any rank-1 2
× 2 matrix can be written as a product of vectors, i.e. the matrices A0

ia, A1
ia, . . . , AD

ia are written
as

A0
ia = V 0

i U 0
a , A1

ia = V 1
i U 1

a , . . . , AD
ia = V D

i U D
a . (44)

Below, we show by the induction that, if the rank of Eq. (43) is 1 for any ξ , Aμ
ia can be written

as

Aμ
ia = ViU μ

a or Aμ
ia = V μ

i Ua. (45)

For μ ≤ 0 (that is, μ = 0), A0
ia is written as V 0

i U 0
a , and thus, regarding (V 0

i ,U 0
a ) as (Vi,U μ

a )
or (V μ

i ,Ua) for μ = 0, Eq. (45) is satisfied. Then, what we need to show is that, for any inte-
ger k, Eq. (45) is satisfied for μ ≤ k + 1 if it is satisfied for μ ≤ k. Since the two choices of
Eq. (45) are symmetric with respect to Ua and Vi, without loss of generality we assume the
former (Aμ

ia = ViU
μ
a ) is satisfied for μ ≤ k. If Ak+1

ia = 0, Aμ
ia = ViU

μ
a for μ ≤ k + 1 is trivially

satisfied. Therefore, we consider the case where Ak+1
ia = V k+1

i U k+1
a �= 0. If V k+1

i is parallel to Vi,
by rescaling V k+1

i → cV k+1
i = Vi, U k+1

a → U k+1
a /c with a constant c, we can satisfy Aμ

ia = ViU
μ
a

for μ ≤ k + 1.
We show that if V k+1

i is not parallel to Vi, all the U μ
a for μ ≤ k + 1 become parallel, and thus

Aμ
ia can be written as V μ

i Ua. We consider a vector ξμ = (ξ 0, ξ 1, …, ξk + 1, 0, 0, …), where the ξμ

(μ ≤ k + 1) are arbitrary. Since Aμ
iaξμ should have an eigenvector ea(ξμ) with zero eigenvalue,

we have

0 = Aμ
iaξμea = Vi

k∑
μ=0

U μ
a eaξμ + V k+1

i U k+1
a eaξk+1. (46)

If V k+1
i is not parallel to Vi, the above equation gives

k∑
μ=0

U μ
a ξμea = 0, U k+1

a ξk+1ea = 0. (47)

Now suppose that ξk + 1 �= 0. In this case, the latter of these equations uniquely fixes ea because
the field space dimension is two. Then, because ea is independent of ξμ (μ ≤ k), and also the
ξμ for μ ≤ k are arbitrary, Eq. (47) implies

U μ
a ea = 0

(
μ ≤ k + 1

)
. (48)
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This implies that all the U μ
a (μ ≤ k + 1) are normal to ea. Since ea is non-zero and the space

of index a is two-dimensional, all the U μ
a (μ ≤ k + 1) are parallel to each other. Therefore, by

rescaling Ua, Aμ
ia can be expressed in terms of the common Ua as

Aμ
ia = CμViUa (μ ≤ k), Ak+1

ia = V k+1
i Ua, (49)

where Cμ is a normalization factor. Therefore, by redefining {CμV μ
i ,V k+1

i } (μ ≤ k) as
{Vi,V k+1

i }, Aμ
ia is written as V μ

i Ua for μ ≤ k + 1.

2.3.2 Further decomposition of Aμ
ia. We have seen that one of the invertibility conditions,

Eq. (32), implies that Aμ
ia is decomposed as Eq. (45). Using the other conditions, we show that

Aμ
ia can be decomposed further as

Aμ
ia = aμViUa. (50)

Let us show the proof in each case of Eq. (45).

2.3.2.1 Aμ
ia = ViU

μ
a

In this case, if we can show U μ
a = aμUa, Aμ

ia is expressed as aμViUa. We define a vector ni normal
to Vj as

n j := εi jVj . (51)

We also define a vector mμ
a with spacetime index μ as

mμ
a := εabU

μ

b . (52)

Then, Āμ
ia and Ãμ

ia are written as

Āμ
ai = mμ

a ni, Ãai = U μ
a Vi, (53)

and the condition in Eq. (37) becomes

niBiamμ
a = 0 (for any μ). (54)

Now we show that U μ
a has to be written as aμUa. This can be proven by contradiction: the

assumption that two of the U μ
a are not parallel to each other (for instance, U 0

a is not parallel
to U 1

a ) leads to a contradiction. Under this assumption, two of the mμ
a are correspondingly not

parallel. Since the space spanned by index a is two-dimensional, Eq. (54) implies that

niBia = 0. (55)

Then, the left-hand side of Eq. (42) becomes[
V 2

j U μ1
c U μ2

c mβ
a nk
(
∂βBkb

)
mμ3

b ni − mβ
aU μ1

b nk
(
∂βVk

)
U μ2

b VjBjcmμ3
c ni

− mβ
aU μ1

b nk
(
∂βVk

)
mα

b n jmμ2
c n j∂α

(
mμ3

c ni
)+ mβ

aU α
b nk

(
∂βVk

)
U μ1

b VjU μ2
c Vj∂α

(
mμ3

c ni
)

− mβ
aU μ1

b nk
(
∂βVk

)
U μ2

b VjU α
c Vj∂α

(
mμ3

c ni
)]

ξμ1ξμ2ξμ3

=
{

V 2
j U μ1

c U μ2
c mβ

a mμ3
b ni

[
nk
(
∂βBkb

)+ (∂βnk
)

Bkb
]

− V 2
j mβ

a nk
(
∂βVk

)
U μ1

b U μ2
b

(
U μ3

c mα
c + U α

c mμ3
c

)
(∂αni)

− V 2
j mβ

a nk
(
∂βVk

) (
U μ1

b mα
b mμ2

c − U α
b U μ1

b U μ2
c + U μ1

b U μ2
b U α

c

) (
∂αmμ3

c

)
ni

}
ξμ1ξμ2ξμ3

= 0. (56)
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Here, we used Eq. (55) and

Aμ

2,ab = mβ
aU μ

b nk
(
∂βVk

)
, B2,ab = mβ

a ni∂βBib, Ā2,μ1μ2 = U μ1
a U μ2

a ViVi,

mμ
a mν

a = U μ
a U ν

a , U (μ1
c mμ2 )

c = 0, VkVj + nkn j = V 2
i δk j,

m(μ1

b mμ2 )
c + U (μ1

b U μ2 )
c = U μ1

a U μ2
a δbc, (57)

nk
(
∂βVk

)
VjBjc = − (∂βnk

)
VkVjBjc = − (∂βnk

) (
VkVj + nkn j

)
Bjc = −V 2

k

(
∂βn j

)
Bjc,

nk
(
∂βBkb

)+ (∂βnk
)

Bkb = ∂β (nkBkb) = 0,

U (μ1|
b mα

b m|μ2 )
c − U α

b U (μ1

b U μ2 )
c + U (μ1

b U μ2 )
b U α

c

= −U α
b

(
m(μ1

b mμ2 )
c + U μ1

b U μ2
c

)+ U μ1
b U μ2

b U α
c = 0.

Equation (56) is inconsistent with the non-degeneracy condition in Eq. (42), and thus all the
U μ

a are parallel. Hence, U μ
a can be written as aμUa.

2.3.2.2 Aμ
ia = V μ

i Ua

The proof in this case is parallel to that for the case Aμ
ia = ViU

μ
a shown above. Defining ma and

nμ
i similarly as

ma := εi jUa, nμ
i := εi jV

μ
j , (58)

the condition in Eq. (37) becomes

nμ
i

(
Bia − V β

i ∂βUa

)
ma = 0 (for any μ), (59)

where we used

nβ
i V μ

i = εi jV
β
j V μ

i = −V β
i nμ

i . (60)

As we have Aμ
ia = ViU

μ
a , we show that V μ

i = aμVi by contradiction: we assume that two of
the V μ

i are not parallel to each other. Then, two of the nμ
i are not parallel to each other, which

gives the condition

(
Bia − V β

i ∂βUa
)
ma = 0. (61)
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However, we can show that this is inconsistent with the non-degeneracy condition in Eq. (42).
The left-hand side of Eq. (42) is calculated as{

U 2
c V μ1

k V μ2
k manβ

j

(
∂βBjb

)
mbnμ3

i − ma

[
nμ1

j B jb + nβ
j ∂β

(
V μ1

j Ub

)]
UbV

μ2
k Bkcmcn

μ3
i

+ 2ma

[
n[α|

j B jb + nβ
j ∂β

(
V [α|

j Ub

)]
UbV

μ1
k V |μ2]

k Uc∂α

(
mcn

μ3
i

)}
ξμ1ξμ2ξμ3

=
{

maV
μ1

k V μ2
k nβ

j

[(
∂βBjc

)
U 2

b mc + BjbUbUc∂βmc + ∂β

(
V α

j Ub

)
UbUc∂αmc

]
nμ3

i

− ma

[
nμ1

j B jb + nβ
j ∂β

(
V μ1

j Ub

)]
UbV

μ2
k

(
Bkc − V α

k ∂αUc
)

mcn
μ3
i

}
ξμ1ξμ2ξμ3

= maV
μ1

k V μ2
k nβ

j

[
∂β

(
Bjcmc

)
U 2

b − Bjbmbmc∂βmc + ∂β

(
V α

j Ub

)
UbUc∂αmc

]
nμ3

i ξμ1ξμ2ξμ3

= maV
μ1

k V μ2
k nβ

j

{
∂β

[
V α

j (∂αUc) mc

]
U 2

b − V α
j (∂αUb) mbmc∂βmc

+
(
∂βV α

j

)
U 2

b Uc∂αmc + V α
j

(
∂βUb

)
UbUc∂αmc

}
nμ3

i ξμ1ξμ2ξμ3

= maV
μ1

k V μ2
k nβ

j

{
U 2

b

[(
∂βV α

j

)
(∂αUc) mc + V α

j (∂αUc) ∂βmc +
(
∂βV α

j

)
Uc∂αmc

]
− V α

j (∂αUb) (UbUc + mbmc) ∂βmc

}
nμ3

i ξμ1ξμ2ξμ3

= 0, (62)

where we used Eqs. (60) and (61), and

Aμ

2,ab = ma

[
nμ

i Bib + nβ
i ∂β

(
V μ

i Ub
)]

, B2,ab = manβ
i ∂βBib, Ā2,μ1μ2 = UaUaV

μ1
i V μ2

i ,

Aμ

2,abmb = 0, Uc∂αmc = − (∂αUc) mc, V α
j nβ

j ∂αβUc = 0,

UaUb + mamb = U 2
c δab, nβ

j V
α
j

(
∂βUb

)
UbUc (∂αmc) = −nβ

j V
α
j (∂αUb)UbUc

(
∂βmc

)
.

(63)

This is inconsistent with the non-degeneracy condition in Eq. (42), and thus all the nμ
i are

parallel. This implies that V μ
i can be written as

V μ
j = aμVi. (64)

2.3.3 Further simplification of Eqs. (37) and (42). We have shown that, for the invertibility
conditions to be satisfied, Aμ

ia should be written as

Aμ
ia = aμViUa. (65)

Without loss of generality, we can normalize Vi and Ua as ViVi = 1 = UaUa. We define unit
vectors ni and ma that are normal to Vi and Ua respectively as

ni := εi jVj, ma := εabUb. (66)

Since Aμ
ia is written with aμ, Vi, and Ua, the matrices Āμ

ai, Ãμ
ai, Ā2,μν , Aμ

2,ab, and B2,ab are written
as

Āμ
ai = aμmani, Ãμ

ai = aμUaVi, Ā2,μν = aμaν,

Aμ

2,ab = aμmani
[
Bib + aβ

(
∂βVi

)
Ub
]
, B2,ab = maniaβ∂βBib. (67)
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Substituting the above equations into Eq. (37) we have

niBiama = 0. (68)

The non-degeneracy condition in Eq. (42) becomes

niaβ
(
∂βBia

)
ma − niBiaUaVjBjbmb − niaβ

(
∂βVi

)
VjBjama �= 0. (69)

The first term on the left-hand side can be transformed as

niaβ
(
∂βBia

)
ma = −aβ

(
∂βni

)
Biama − niBiaaβ∂βma

= −aβ
(
∂βni

)
Biama − niBiaUaUbaβ∂βmb

= −aβ
(
∂βni

)
Biama + niBiaUaaβ

(
∂βUb

)
mb, (70)

where we use the fact that UaUb + mamb = δab and Eq. (68). The last term of Eq. (69) can be
transformed as

−niaβ
(
∂βVi

)
VjBjama = aβ

(
∂βni

)
Biama, (71)

where we use the fact that ViVj + ninj = δij and Eq. (68). Then, Eq. (69) can be written as

niBiaUa
(
VjBjb − aβ∂βUb

)
mb �= 0. (72)

This means that both of

niBiaUa �= 0,
(
VjBjb − aβ∂βUb

)
mb �= 0 (73)

should be satisfied. As a result, the invertibility conditions in Eqs. (32), (37), and (42) are equiv-
alent to the simplified conditions in Eqs. (50), (68), and (73).

3. Sufficiency of the invertibility conditions
In the previous section we derived the necessary conditions, Eqs. (50), (68), and (73), for in-
vertibility of a field transformation involving two fields and up to their first-order derivatives.
In this section we show that these conditions are also sufficient conditions, i.e. Eqs. (50), (68),
and (73) are the necessary and sufficient conditions for invertibility in the two-field case. As a
preliminary step, in Sect. 3.1 we introduce the notion of “partial invertibility” for a field trans-
formation whose inverse transformation is uniquely determined for part of the variables. Then,
we show in Sect. 3.2 with the partial invertibility that Eqs. (50), (68), and (73) are the necessary
and sufficient conditions for invertibility.6

3.1 Partial invertibility
We consider the invertibility of a transformation ψa → φi. Suppose that the transformation
can be described by

FI (ψa, ∂μψa, ∂μ∂νψa, . . . ; φi, ∂μφi, ∂μ∂νφi, . . . ; xμ) = 0, (74)

where I runs from 1 to a constant N . If N is equal to the number of all the degrees of freedom
in ψa, ∂μψa, ∂μ∂νψa, …,7 which is denoted by Nψ , we can use the implicit function theorem
by regarding ψa, ∂μψa, ∂μ∂νψa, … as independent variables at a point in spacetime. However,
we may not need to have Nψ equations of the form of Eq. (74) to fix ψa uniquely in terms of

6See Appendix E for the difference between the standard approach based on the inverse function theo-
rem on functional spaces and our approach based on the implicit function theorem on finite-dimensional
subspaces associated with the functional space.

7For instance, if FI depends on up to the second-order derivative of ψa, the number of all the degrees
of freedom of (ψa, ∂μψa, ∂μ∂νψa) is N + N × D + N × D(D + 1)/2, where N and D are the number of
ψa fields and the dimension of spacetime, respectively.

16/37

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/1/013A01/6440171 by D

ESY-Zentralbibliothek user on 24 February 2022



PTEP 2022, 013A01 E. Babichev et al.

φa; indeed, even if we have less than Nψ equations, i.e. N < Nψ , it may be possible to prove the
uniqueness of ψa if the equations have a special structure. Once ψa is fixed in this manner, its
derivatives ∂μψa, ∂μ∂νψa, … are uniquely fixed by differentiating ψa repeatedly.

To illustrate the procedure explained above, we first discuss a generic case where the equations
are for functions of variables xa, yb, zc, and wd,

FI (xa, yb, zc; wd ) = 0, (75)

where xa corresponds to ψa, while yb and zc correspond to some combinations of the derivatives
∂μψa, ∂μ∂νψa, …8 The difference between yb and zc is explained later. wd corresponds to the
other variables φi and their derivatives ∂μφi, ∂μ∂νφi, … If the number of equations is the same
as the sum of those of xa, yb, and zc, we can use the implicit function theorem for them, i.e.
xa, yb, and zc can be fixed uniquely in terms of wd, provided that the conditions for the implicit
function theorem are satisfied. However, even if the number of equations is less than the sum of
those of xa, yb, and zc, it may be possible to fix xa in terms wd uniquely if Eq. (75) have a certain
structure, as explained below. Some of yb and zc may not be fixed uniquely in this process, but
the uniqueness of xa can be shown independently.

The variables xa are fixed by stepwise application of the inverse function theorem provided
that the function FI has a structure given by Eq. (77), which will be introduced shortly. Suppose
that we have N + M equations of the form of Eq. (75), i.e. I runs from 1 to N + M(= N ), where
N denotes the number of the fields xa and M is a positive integer. The variation of Eq. (75) is

δFI (xa, yb, zc; wd ) = ∂FI

∂xa
(xa, yb, zc; wd )δxa + ∂FI

∂yb
(xa, yb, zc; wd )δyb

+ ∂FI

∂zc
(xa, yb, zc; wd )δzc + ∂FI

∂wd
(xa, yb, zc; wd )δwd . (76)

Here, we assume that δyb and δzc appear only as M independent combinations in any δFI, i.e.
δFI is expressed as

δFI (xa, yb, zc; wd ) = ∂FI

∂xa
(xa, yb, zc; wd )δxa + ∂FI

∂wd
(xa, yb, zc; wd )δwd

+
M∑

b=1

BIb(xa, yb, zc; wd )
(
δyb + B̃bc(xa, yb, zc; wd )δzc

)
. (77)

Without loss of generality, the principal components of M independent combinations are set
to be yb, which means that the rank of BIb is M. This makes the difference between yb and zc. It
also fixes the number of yb to be M. Then, picking up M equations from the FI such that yb is
fixed uniquely, we use the implicit function theorem to fix only yb. Without loss of generality,
we assume that these equations are given by FI with N + 1 ≤ I ≤ N + M; that is, the square
matrix BIb with I = N + 1, …, N + M and b = 1, …, M is regular. Since the numbers of these
equations and of yb are the same, we can apply the implicit function theorem for yb, and then
yb is uniquely expressed in terms of xa, zc, and wd.

8For our purpose of proving the invertibility for the two-field case with first-order derivatives given by
Eq. (5), xa corresponds to ψa, yb is a component of ∂μψa, and the zc correspond to the other components
of the derivative ∂μψa and ∂μ∂νψa.
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Now, the yb are uniquely written as functions of xa, zc, and wd. Substituting yb(xa, zc, wd)
into Eq. (75) for N + 1 ≤ I ≤ N + M, the derivative of Eq. (75) with respect to zc is given by

M∑
b=1

BIb(xa, yb, zc; wd )
(

∂yb

∂zc
+ B̃bc

)
= 0. (78)

Since BIb is assumed to be regular, this equation implies that

∂yb

∂zc
+ B̃bc = 0. (79)

This equation fixes the zc dependence of yb(xa, zc, wd). Now the remaining equations can be
written purely in terms of xa, zc, and wd as

FI
(
xa, yb(xa, zc, wd ), zc; wd

) = 0, (80)

where I runs from 1 to N. Their variation is given by

δFI
(
xa, yb(xa, zc, wd ), zc; wd

) =
[

∂FI

∂xa
(xa, yb, zc; wd )δxa + ∂FI

∂wd
(xa, yb, zc; wd )δwd

+
M∑

b=1

BIb(xa, yb, zc; wd )
(

∂yb

∂xa
δxa + ∂yb

∂wd
δwd

)]
yb=yb(xa,zc,wd )

.(81)

The δzc term is canceled here because of Eq. (79). This implies that the FI for I = 1, …, N are
independent of zc, i.e. they are functions of only xa and wd. Since the number of equations is
the same as that of xa, we can use the implicit function theorem; if

det

[
∂FI

∂xa
(xa, yb, zc; wd ) +

M∑
b=1

BIb(xa, yb, zc; wd )
∂yb

∂xa

]
yb=yb(xa,zc,wd )

�= 0 (82)

is satisfied, xa has a unique solution locally and it is written in terms of only wd.
In the next section we will see that the transformation in Eq. (5) in the two-field case behaves

as Eq. (77) once the invertibility conditions in Eqs. (50), (68), and (73) are imposed, and then
ψ i is fixed in terms of φa uniquely as a consequence.

3.2 Sufficient conditions for the invertibility of our transformation
The transformation in Eq. (5) can be rewritten in terms of a function of ψa, ∂μψa, and φi as

Fi(ψa, ∂μψa; φi; xμ) := φ̄i(ψa, ∂μψa; xμ) − φi = 0. (83)

We analyze this equation in the two-field case imposing the necessary conditions for invertibil-
ity, Eqs. (50), (68), and (73). Operating ni∂μ on Eq. (83), we have

Gμ(ψa, ∂μψa; φi, ∂μφi; xμ) := ni∂μFi = niBibUbUa∂μψa − niCiμ − ni∂μφi = 0, (84)

where Bib, ni, and Ua are defined in Sect. 2.3 and Ciμ := ∂φ̄i/∂xμ. The variation of Fi becomes

niδFi = (niBibUb)Uaδψa, (85)

ViδFi = (ViBibUb)Uaδψa + (ViBibmb)maδψa + aμUaδ(∂μψa), (86)

where we omit the variation with respect to φi because it is irrelevant to the condition for the
implicit function theorem.
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Now let us evaluate the variation of aμGμ, which is given as

δ
(
aμGμ

) = aμniδ
(
∂μFi

) = niδ
(
∂μφ̄i

)
= aμniδ

(
∂φ̄i

∂ (∂αψa)
∂μ∂αψa + ∂φ̄i

∂ψa
∂μψa + ∂φ̄i

∂xμ

)

= aμni

[(
∂2φ̄i

∂ (∂αψa) ∂
(
∂βψb

)∂μ∂αψa + ∂2φ̄i

∂ψa∂
(
∂βψb

)∂μψa + ∂2φ̄i

∂xμ∂
(
∂βψb

))δ
(
∂βψb

)

+
(

∂2φ̄i

∂ (∂αψa) ∂ψb
∂μ∂αψa + ∂2φ̄i

∂ψa∂ψb
∂μψa + ∂2φ̄i

∂xμ∂ψb

)
δψb + Biaδ

(
∂μψa

)]
= aμni(∂μBib)UbUaδψa + aμni(∂μBib)mbmaδψa

+ ni(aμ∂μVi + BibUb)aνUaδ(∂νψa), (87)

where we used ∂μFi = 0 at the first equality, and some formulae from Sect. 2.3.3 such as the de-
generacy conditions ni

∂φ̄i
∂ (∂αψa ) = niAα

ia = 0 and niBiama = 0 at the fourth equality. The key point
is that, in Eqs. (85), (86), and (87), δ(∂μψa) appears only in a linear combination aμUaδ(∂μψa).
The last term proportional to aμUaδ(∂μψa) in Eq. (87) corresponds to the last line of Eq. (77)
for M = 1. This allows us to use the result of Sect. 3.1 by regarding ψa, ∂μψa, and ∂μ∂νψa as
independent variables and also identifying xa, yb, and zc as ψa, a component of ∂μψa, and the
other components of (∂μψa, ∂μ∂νψa), respectively. Then, the condition for invertibility is

0 �= det

⎛
⎜⎜⎜⎜⎜⎜⎝

Vi
∂Fi

∂ψa
Ua Vi

∂Fi

∂ψa
ma Vi

∂Fi

∂ (∂νψa)
Ua

ni
∂Fi

∂ψa
Ua ni

∂Fi

∂ψa
ma ni

∂Fi

∂ (∂νψa)
Ua

∂
(
aμGμ

)
∂ψa

Ua
∂
(
aμGμ

)
∂ψa

ma
∂
(
aμGμ

)
∂ (∂νψa)

Ua

⎞
⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎝ ViBiaUa ViBiama aν

niBiaUa 0 0
aμni

(
∂μBia

)
Ua aμni

(
∂μBia

)
ma ni

(
aμ∂μVi + BiaUa

)
aν

⎞
⎟⎠

= −aν (niBiaUa)2(VjBjb − aμ∂μUb)mb, (88)

where the components of the matrix are expressed with respect to the bases (Vi, ni) and (Ua, ma),
and also the degenerate row and column whose components are completely zero are removed.
Equation (88) is satisfied if niBiaUa �= 0 and (VjBjb − aμ∂μUb)mb �= 0. Therefore, the necessary
conditions for invertibility, Eqs. (50), (68), and (73), are also sufficient conditions.

4. Examples of invertible transformations
Invertibility conditions for transformations φi = φi(ψa, ∂ψa) have been established in the pre-
vious sections. In this section we propose some non-trivial examples of field transformations
that satisfy the invertibility conditions. In principle, the most general invertible transformation
could be constructed by finding the general solution of the invertibility conditions. Unfortu-
nately this is not an easy task,9 so we proceed by introducing the following field transformation
ansatze:

(i) φi = b
(
ψa,Yμ

)
Vi(ψa) + Ṽi(ψa)

(
Yμ ≡ Ua(ψa)∂μψa

)
;

9See Ref. [1] for a previous attempt at constructing examples of invertible transformations.
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(ii) φi = b (ψa,Ya)Vi(ψa) + Ṽi(ψa)
(
Ya ≡ ãμ(ψa)∂μψa

)
;

(iii) φi = φi (ψa,Y )
(
Y ≡ ãμ(ψa)Ua(ψa)∂μψa

)
.

These ansatze are chosen so that the first degeneracy condition, Eq. (50), among the invert-
ibility conditions is automatically satisfied. The second degeneracy condition, Eq. (68), and the
non-degeneracy conditions, Eq. (73), are then used to constrain the form of the transforma-
tions. Although these transformations may not span the most general transformation satisfying
the invertibility conditions, they give a good starting point for investigating the most general
invertible field transformation.

In the derivation below, we use the fact that the vector Ua can be set to a constant vector (0,1)
if it depends only on ψa. We explain this method in Appendix F.

4.1 Ansatz 1: φi = b
(
ψa,Ua(ψa)∂μψa

)
Vi(ψa) + Ṽi(ψa)

We first consider the following ansatz for a field transformation:

φi = b
(
ψa,Yμ

)
Vi(ψa) + Ṽi(ψa)

(
Yμ ≡ Ua(ψa)∂μψa

)
, (89)

where Vi is normalized as ViVi = 1. In this transformation, Ua can be set to Ua = (0, 1) without
loss of generality. It then follows that

Ua = (0, 1), ma = (1, 0), ni = εi jVj . (90)

For Eq. (89), the first degeneracy condition, Eq. (50), is given by

Aμ
ia = ∂φi

∂
(
∂μψa

) = ∂b
∂Yμ

UaVi ≡ aμUaVi. (91)

The second degeneracy condition, Eq. (68), is evaluated as follows:

Bia = ∂φi

∂ψa
= ∂b

∂ψa
Vi + b

∂Vi

∂ψa
+ ∂Ṽi

∂ψa
, (92)

niBiama = b
(
ψa,Yμ

)
ni

∂Vi

∂ψ1
+ ni

∂Ṽi

∂ψ1
. (93)

In Eq. (93), only b depends on Yμ while the other terms depend only on ψa. Because Eq. (93)
should be satisfied identically for any ψa and Yμ, it implies that

b ni
∂Vi

∂ψ1
= 0, (94)

ni
∂Ṽi

∂ψ1
= 0. (95)

Equation (94) implies either ni
∂Vi
∂ψ1

= 0 or b = 0. ni
∂Vi
∂ψ1

= 0 implies Vi = Vi(ψ2) thanks to the
normalization ViVi = 1, while b = 0 gives a transformation without derivatives, φi = φi(ψa).
Below, we focus on the case ni

∂Vi
∂ψ1

= 0, in which the transformation depends on derivatives φi

= φi(ψa, ∂ψa). In this case, Eq. (95) implies that ∂Ṽi/∂ψ1 is parallel to Vi, i.e.

∂Ṽi

∂ψ1
= c̃(ψa)Vi(ψ2) ⇒ Ṽi = c(ψa)Vi(ψ2) + V̂i(ψ2) (96)

for some functions c̃(ψa), c(ψ1) = ∫ c̃(ψa)dψ1, and V̂i(ψ2). The cVi term can be absorbed
into the bVi term in the ansatz of Eq. (89), and the remainder V̂i(ψ2) depends only on ψ2.
This implies that, once Eq. (90) is imposed, we may set Ṽi = Ṽi(ψ2) in the ansatz of Eq. (89)
without loss of generality by absorbing the cVi term. Below we continue the derivation under
this assumption.
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The non-degeneracy conditions, Eq. (73), are given by

0 �= niBiaUa = b ni
∂Vi

∂ψ2
+ ni

∂Ṽi

∂ψ2
, (97)

0 �= (ViBia − aμ∂μUa
)

ma =
(

∂b
∂ψa

+ ∂b
∂Yμ

∂μψb
∂Ub

∂ψa
+ Vi

∂Ṽi

∂ψa
− aμ∂μUa

)
ma = ∂b

∂ψ1
, (98)

which can be regarded as constraints on b, Vi, and Ṽi.
To summarize, a transformation given by

φi = b
(
ψa,Yμ

)
Vi(ψ2) + Ṽi(ψ2)

(
Yμ ≡ ∂μψ2

)
(99)

is invertible if Eqs. (97) and (98) are satisfied. One may further apply an invertible transfor-
mation ψa = ψa(ψ̃b) such that det(∂ψa/∂ψ̃b) �= 0 on Eq. (99) to reintroduce non-trivial Ua(ψ̃a)
and construct a transformation of the form of Eq. (89).

4.2 Ansatz 2: φi = b
(
ψa, ãμ(ψa)∂μψa

)
Vi(ψa) + Ṽi(ψa)

The next ansatz is given by

φi = b (ψa,Ya)Vi(ψa) + Ṽi(ψa)
(
Ya ≡ ãμ(ψa)∂μψa

)
. (100)

The first degeneracy condition, Eq. (50), is automatically satisfied for this ansatz:

Aμ
ia = ãμ ∂b

∂Ya
Vi ≡ aμ(ψa,Ya)Ua(ψa,Ya)Vi(ψa). (101)

The second degeneracy condition, Eq. (68), is given as

Bia = ∂b
∂ψa

Vi + b
∂Vi

∂ψa
+ ∂Ṽi

∂ψa
, (102)

∴ niBiama = ni

(
b

∂Vi

∂ψa
+ ∂Ṽi

∂ψa

)
ma ∝ ni

(
b

∂Vi

∂ψa
+ ∂Ṽi

∂ψa

)
εab

∂b
∂Yb

= 0. (103)

Equation (103) is equivalent to

ni

(
b ∂Vi

∂ψ1
+ ∂Ṽi

∂ψ1

)
ni

(
b ∂Vi

∂ψ2
+ ∂Ṽi

∂ψ2

) =
∂b
∂Y1

∂b
∂Y2

≡ −c (ψa,Ya) (104)

⇐⇒ ni

(
b

∂Vi

∂ψ1
+ ∂Ṽi

∂ψ1

)
+ c (ψa,Ya) ni

(
b

∂Vi

∂ψ2
+ ∂Ṽi

∂ψ2

)
= 0,

∂b
∂Y1

+ c(ψa,Ya)
∂b
∂Y2

= 0. (105)

Equation (105) may be solved for Ṽi(ψa) and b(ψa, Ya) once Vi(ψa) and c(ψa, Ya) are freely
specified, and each solution gives an invertible transformation as long as it satisfies the non-
degeneracy conditions of Eq. (73).

In a special case where the function c(ψa, Ya) depends only on ψa but not on Ya, one can
construct invertible transformations more explicitly as follows. When c = c(ψa), we may apply
an invertible transformation ψa = ψa(ψ̃a) on Eq. (105) to eliminate c(ψa); that is, Eq. (105)
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transforms under ψa = ψa(ψ̃a) as

0 = ∂ψ̃a

∂ψ1
ni

(
b

∂Vi

∂ψ̃a
+ ∂Ṽi

∂ψ̃a

)
+ c(ψa)ni

∂ψ̃a

∂ψ2
(ψa,Ya)

(
b

∂Vi

∂ψ̃a
+ ∂Ṽi

∂ψ̃a

)

=
(

∂ψ̃1

∂ψ1
+ c(ψa)

∂ψ̃1

∂ψ2

)
ni

(
b

∂Vi

∂ψ̃1
+ ∂Ṽi

∂ψ̃1

)
+
(

∂ψ̃2

∂ψ1
+ c(ψa)

∂ψ̃2

∂ψ2

)
ni

(
b

∂Vi

∂ψ̃2
+ ∂Ṽi

∂ψ̃2

)
,

(106)

and then the function ψ̃a = ψ̃a(ψa) may be chosen (at least locally) so that

∂ψ̃2

∂ψ1
+ c(ψa)

∂ψ̃2

∂ψ2
= 0, (107)

with which Eq. (106) reduces to

ni

(
b

∂Vi

∂ψ̃1
+ ∂Ṽi

∂ψ̃1

)
= 0. (108)

This is equivalent to setting c(ψa) = 0 in Eq. (105) by means of a transformation in ψa space.
When c(ψa) = 0, Eq. (104) implies that

ni(ψa)

(
b(ψa,Ya)

∂Vi(ψa)
∂ψ1

+ ∂Ṽi(ψa)
∂ψ1

)
= 0,

∂b
∂Y1

= 0. (109)

The second equation implies that b = b(ψa, Y2), which gives Ua = (0, 1) and ma = (1, 0). In
the first equation, the first term involving b(ψa, Y2) depends on Y2 while the second term is
independent of Ya; it then follows that

b(ψa,Y2)ni(ψa)
∂Vi(ψa)

∂ψ1
= 0, (110)

ni(ψa)
∂Ṽi(ψa)

∂ψ1
= 0. (111)

Equation (110) implies either Vi = Vi(ψ2) or b = 0, for the latter of which the transformation
in Eq. (100) does not involve ∂ψa. Below, we focus on the former case, which gives a trans-
formation with derivatives. In this case we can show that Ṽi = f (ψa)Vi(ψ2) + V̂i(ψ2) for some
function f(ψa) and V̂i(ψ2) using Eq. (111) as we did around Eq. (96) for the previous ansatz.
Then, setting Ua = (0, 1), by absorbing the cVi term into the bVi term we may set Ṽi = Ṽi(ψ2)
without loss of generality.

To summarize the results above, a transformation

φi = b(ψa,Y2)Vi(ψ2) + Ṽi(ψ2)
(
Ya ≡ ãμ(ψa)∂μψa

)
(112)

may be invertible if Eq. (111) is satisfied. Adding to that, the non-degeneracy conditions in
Eq. (73) must be satisfied for invertibility, and also an invertible transformation ψa = ψa(ψ̃b)
may be applied to construct a transformation with non-trivial Ua(ψa). Actually, this transfor-
mation is a special case of the transformation in Eq. (99) examined in the previous section,
although we have started from a different ansatz. This result follows from the assumption c =
c(ψa) imposed at Eq. (106), and more general transformations are obtained if we solve Eq. (105)
for c = c(ψa, Ya).

4.3 Ansatz 3: φi = φi
(
ψa, ãμ(ψa)Ua(ψa)∂μψa

)
The third ansatz we consider is

φi = φi (ψa,Y )
(
Y ≡ ãμ(ψa)Ua(ψa)∂μψa

)
, (113)
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for which the first degeneracy condition, Eq. (50), is satisfied automatically as

Aμ
ia = ãμ(ψa)Ua(ψa)

∂φi

∂Y
(ψa,Y ) ≡ aμ(ψa,Y )Ua(ψa)Vi(ψa,Y ). (114)

In this expression, Vi is normalized as ViVi = 1, i.e.

Vi ≡ 1
v(ψa,Y )

∂φi

∂Y
(ψa,Y ), aμ(ψa,Y ) ≡ v(ψa,Y )ãμ(ψa), ViVi = 1, (115)

where v(ψa, Y) is a normalization factor. For simplicity, we assume v �= 0 in the following.
Following the procedure explained in Appendix F, we set Ua = (0, 1) and ma = (1, 0) without

loss of generality. Then, using ni = v−1εij∂φj/∂Y, the second degeneracy condition, Eq. (68), is
evaluated as

Bia = ∂φi

∂ψa
+ ∂φi

∂Y
∂ ãμ

∂ψa
∂μψ2 = ∂φi

∂ψa
+ vVi

∂ ãμ

∂ψa
∂μψ2, (116)

niBiama = v−1εi j
∂φi

∂ψ1

∂φ j

∂Y
= 0. (117)

Equation (117) implies that, provided v �= 0,
∂φ1
∂ψ1

∂φ1
∂Y

=
∂φ2
∂ψ1

∂φ2
∂Y

; (118)

that is, the gradient vectors
(

∂φ1
∂ψ1

,
∂φ1
∂Y

)
and

(
∂φ2
∂ψ1

,
∂φ2
∂Y

)
are parallel to each other in the (ψ1, Y)

space. It then follows that

φ2 = F (ψ2, φ1(ψa,Y )) , (119)

where F(ψ2, φ1) is an arbitrary function of φ1 and ψ2.10

Let us examine the non-degeneracy conditions of Eq. (73). One of them is given by

0 �= niBiaUa = niBi2 = v−1εi j
∂φi

∂ψ2

∂φ j

∂Y
= v−1

(
∂φ1

∂ψ2

∂φ2

∂Y
− ∂φ2

∂ψ2

∂φ1

∂Y

)

= v−1
[

∂φ1

∂ψ2

∂F
∂φ1

∂φ1

∂Y
−
(

∂F
∂ψ2

+ ∂F
∂φ1

∂φ1

∂φ2

)
∂φ1

∂Y

]
= −v−1 ∂F

∂φ1

∂φ1

∂Y
. (120)

This equation implies that v, ∂F/∂φ1, and ∂φ1/∂Y must not vanish. The other non-degeneracy
condition is given by

0 �= (ViBia − aμ∂μUa
)

ma = Vi

(
∂φi
∂ψ1

+ vVi
∂ ãμ

∂ψ1
∂μψ2

)
= Vi

∂φi
∂ψ1

+ v ∂ ãμ

∂ψ1
∂μψ2. (121)

To summarize, a transformation as in Eq. (113) is invertible if φ2 is given by Eq. (119) and
Eqs. (120) and (121) are satisfied.

5. No-go for disformal transformation of the metric with higher derivatives
Here we apply our approach to disformal metric transformation. The disformal transforma-
tions involving only one derivative of the scalar field χ ,

g̃μν = C(χ, X )gμν + D(χ, X )∇μχ∇νχ, (122)

where X = ∂μχ∂μχ , are invertible, provided that C
(
C − dC

dX X − dD
dX X 2

) �= 0; see, e.g., Refs. [7,8].
This follows from the fact that from the above expression one can straightforwardly express the
metric gμν in terms of g̃μν , χ , and ∇μχ . Thus, the transformation in Eq. (122) is a one-to-one

10When the (ψ1, Y) space is separated into connected sets by borders on which the gradient vector(
∂φ1
∂ψ1

,
∂φ1
∂Y

)
vanishes, the function form of F(ψ2, φ1(ψa, Y)) may be different on each connected set on the

(ψ1, Y) space. The non-degeneracy conditions, however, imply that ∂φ1/∂Y �= 0, and this guarantees that
F(ψ2, φ1) is given uniquely on the entire (ψ1, Y) space.
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change of variables (χ, gμν ) ↔ (χ, g̃μν ) as long as the above condition is satisfied. It is useful
to check that the transformation in Eq. (122) is invertible by applying our method. Although
the method we developed above does not apply to metric transformations in general because a
metric is a tensor and has more than two components (except in a one-dimensional spacetime),
we can use it when applied to particular ansatze that contain scalar functions only. Indeed, let
us restrict ourselves to the case of the homogeneous cosmology,

gμνdxμdxν = −n(t)dt2 + a(t)dx2, χ = χ (t), (123)

where a(t) is the square of the scale factor and n(t) is the square of the lapse function. Note that
we keep n(t) in the ansatz of Eq. (123), since it changes under the transformation in Eq. (122).
For Eq. (123) we obtain, under the disformal transformation in Eq. (122),

ñ = Cn − Dχ̇2, ã = Ca, (124)

where a dot denotes a t derivative, and

C = C (χ, X ) = C
(

χ (t), − χ̇2(t)
n(t)

)
, D = D

(
χ (t), − χ̇2(t)

n(t)

)
. (125)

Note that the above transformation can be considered as the change of variables {n, a → ñ, ã}
(with the time-dependent external function χ (t)), which does not involve derivatives. Therefore,
by virtue of the standard theorem on invertibility, the transformation in Eq. (124) is invertible
if det Bia �= 0, where Bia is given by

Bia =
(

C − XCX − X 2DX 0
−a

n
XCX C

)
, (126)

so that we obtain C
(
C − dC

dX X − dD
dX X 2

) �= 0, which reproduces the result we cited above.
On the other hand, one can consider a more general disformal transformation by including

two derivatives of the scalar as follows:

g̃μν = C(χ, X )gμν + D(χ, X )∇μχ∇νχ + E (χ, X )∇μ∇νχ. (127)

For the above transformation one cannot directly express gμν in terms of g̃μν , since the last term
of the right-hand side of Eq. (127) also contains the metric gμν . Therefore, it has been conjec-
tured that the inverse transformation of Eq. (127) does not exist [9]. However, to the best of
our knowledge, this has not yet been proven. Indeed, although the simple inverse of Eq. (127)
does not exist, this does not necessarily mean that there is no more complicated inverse trans-
formation. Using our method, however, we are able to demonstrate that the transformation in
Eq. (127) with non-zero E is indeed not invertible.

To do this, let us assume that the transformation in Eq. (127) is invertible, and we will see that
this assumption leads to a contradiction. The Friedmann–Robertson–Walker (FRW) homoge-
neous ansatz in Eq. (G3) expresses a subspace of functional space described with gμν and χ .
Invertibility limited to this subspace gives the necessary condition of invertibility for the full
functional space. Here, we will show the violation of this necessary condition, which leads to a
contradiction. From Eqs. (127) and (123) we have

ñ = Cn − Dχ̇2 − E
(

χ̈ − χ̇ ṅ

2n

)
, ã = Ca − E

χ̇ ȧ

2n
, (128)

which is a generalization of Eq. (124) for the case of non-zero E.
As in the case considered above, we treat Eq. (128) as a transformation relating a set of two

variables
(
n(t), a(t)

)
with

(
ñ(t), ã(t)

)
with the time-dependent external function χ (t). Contrary

to standard disformal transformation, in this case the transformation involves first derivatives
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of the variables n(t) and a(t), and therefore we should apply our method to check whether the
conditions for this transformation to be invertible are satisfied. We have

Aia = E χ̇

2n

(
1 0
0 −1

)
. (129)

According to our discussion above, the leading-order condition for the transformation given
by Eq. (127) to be invertible is the vanishing of the determinant of Eq. (129). As we can see,
this condition is clearly violated for non-zero E, and therefore we arrive at the conclusion that
the transformation in Eq. (127) is not invertible unless E = 0.

Once we generalize the structure of the higher-derivative term as [10,11]

g̃μν = F0gμν + F1χμχν + F2χμν + F3χ(μ Xν) + F4XμXν + F5χ
α
μχνα, (130)

where Fi = Fi(φ, X,B,Y,Z,W ) and

B = ∇μ∇μχ, Y = ∇μχ∇μX, Z = ∇μX ∇μX, W = ∇μ∇νχ∇μ∇νχ, (131)

the structure of Aia is changed and the no-go result obtained above for the transformation in
Eq. (127) could be avoided. We examine such a possibility in Appendix G.

6. Discussions
In this work we have focused on field transformations that involve up to the first-order derivative
of fields, φi = φ̄i(ψa, ∂αψa, xμ), between two fields ψa and another two fields φi, and shown
conditions for this transformation to be invertible. A field transformation of this type changes
the number of derivatives acting on the fields, and hence in general it changes the number of
degrees of freedom. When the transformation function satisfies certain conditions, however,
the appearance of additional degrees of freedom is hindered and the transformation can then
be invertible.

We emphasize that the degeneracy conditions and the procedure to derive the complete set of
invertibility conditions given in Sect. 2.1 apply to field transformations that involve arbitrary
numbers of fields and arbitrary-order derivatives, though we have presented expressions only
for transformations with first derivatives just for simplicity. We then, for simplicity, limited our
scope to the simplest case where the transformation maps two fields φi (i = 1, 2) to other two
fields ψa (a = 1, 2), and then derived the conditions for this transformation to be invertible.
This is because, as we have shown, there is no invertible transformation with derivatives for the
one-field case and hence the two-field case is the simplest. To derive the necessary conditions
for invertibility, we employed the method of characteristics for partial differential equations
in Sect. 2. If a transformation is invertible, the number of characteristic surfaces, which cor-
responds to the number of physical degrees of freedom, must be invariant. The derivatives
contained in the transformation generate extra characteristic surfaces in general, and then the
necessary conditions are obtained by demanding that the extra characteristic surfaces are re-
moved so that the total number of characteristic surfaces is invariant. After deriving the neces-
sary conditions, in Sect. 3 we confirmed that they are actually sufficient. It turned out that the
invertibility conditions are composed of two degeneracy conditions, Eqs. (50) and (68), and the
two non-degeneracy conditions given in Eq. (73).

As an application of the thus derived invertibility conditions, in Sect. 4 we showed some
examples of invertible transformations satisfying the invertibility conditions. The invertibility
conditions can be regarded as equations for a function of the field transformation, and if we
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could construct their general solution we could obtain the most general invertible transforma-
tion. Instead of finding the general solution, we proposed some ansatze for the transformation
for which part of the invertibility conditions are automatically satisfied, and as a result we ob-
tained three kinds of invertible transformations as non-trivial examples. Although they may not
be the most general, they span a broad class of invertible transformations and would provide
a basis for the construction and classification of various invertible transformations.

As another application, in Sect. 5 we considered a higher-derivative extension of the disformal
transformation in gravity and examined its invertibility. Using our invertibility conditions, just
by simple calculations we showed explicitly that a disformal-type transformation associated
with the second derivative of the scalar field cannot be invertible, which is the first rigorous
proof as far as we are aware.

Several directions of future research are indicated. In this work we considered the simplest
case that the transformation involves only two scalar fields up to their first derivatives. Pro-
vided that our method can be generalized to transformations involving both a scalar field and
a metric, we will be able to apply our results to studies on scalar–tensor theories and various
modified gravity theories. For example, invertible disformal transformations were utilized to
generate and classify the so-called degenerate higher-order scalar–tensor theories from a sim-
pler theory, the Horndeski theory. This scheme may be generalized to incorporate higher-order
derivatives if we could generalize the disformal transformation by introducing higher deriva-
tives. Such an application to modified gravity theory will be an ultimate goal of this study.
As a first step toward such a goal, it would be useful to consider a generalization to involve
more than two scalar fields and more than first-order derivatives. Such generalizations within
transformations of scalar fields, and also further generalizations including more fields such as
metric, will be discussed in future work.
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Appendix A. Non-invertibility of field-number-changing transformations
Let us consider a transformation φi = φi(ψ1, ∂ψ1) (i = 1, 2) for which the number of fields
decreases but the number of derivatives increases. Naively, this transformation should preserve
the degrees of freedom because the product of the number of fields and the order of derivatives
is invariant under the transformation. To examine this expectation, let us evaluate the invert-
ibility conditions. For simplicity we work in the one-dimensional case where the fields depend
on only one variable, i.e. we work in a point-particle system. The first degeneracy condition,
Eq. (50), is given by

Aia = ∂φi

∂ψ̇a
=
(

∂φ1

∂ψ̇1
0

∂φ2

∂ψ̇1
0

)
= aViUa, Vi = 1

a
∂φi

∂ψ̇1
, Ua = (1, 0), (A1)
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where a is chosen to normalize Vi as ViVi = 1. Then, using ni = εijVj and ma = εabUb = (0,
−1), the second degeneracy condition, Eq. (68), and the non-degeneracy conditions, Eq. (73),
are given by

Bia = ∂φi

∂ψa
=
(

∂φ1
∂ψ1

0
∂φ2
∂ψ1

0

)
= ṼiUa, Ṽi = ∂φi

∂ψ1
, (A2)

niBiama = 0, niBiaUa = niṼi,
(
ViBia − aU̇a

)
ma = 0. (A3)

While niBiaUa = niṼi may not hold,
(
ViBia − aU̇a

)
ma vanishes identically and hence the non-

degeneracy condition among the invertibility conditions is violated. Then, we can judge that
the transformation φi = φi(ψ1, ∂ψ1) (i = 1, 2) is not invertible. This result can be understood as
follows. If the transformation were invertible, then an inverse transformation ψ1 = f1(φ1, φ2),
ψ̇1 = f2(φ1, φ2) would exist. This implies that there exists a constraint ḟ1 = f2 between φ1 and
φ2. This is in contradiction with the fact that φ1 and φ2 are independent variables, implying
that the transformation cannot be invertible.

Appendix B. Derivation of Eq. (6)
In this section we sketch the derivation of the formula in Eq. (6), based on which the necessary
conditions for invertibility are derived. Acting ∂μn on φi = φ̄i(ψa, ∂αψa, xμ) gives

∂μnφi(ψa, ∂αψa, xμ) = ∂φ̄i

∂ψa
∂μnψa + ∂φ̄i

∂ (∂αψa)
∂μn∂αψa + ∂φ̄

∂xμn
, (B1)

where the third term is the partial derivative with respect to the explicit xμ dependence of φ̄i.
Then, the highest-derivative term of ψa contained in ∂μ1...μnφi is generated when all the deriva-
tives other than ∂μn act on ∂μn∂αψa in Eq. (B1), i.e.

∂μ1···μnφi � ∂φ̄i

∂ (∂αψa)
∂μ1···μnαψa = Aα

ia∂μ1···μnαψa. (B2)

This term is the origin of the leading ∂n + 1ψa term of Eq. (6). The subleading ∂nψa term is
composed of the following two contributions. The first one is generated when ∂μ1···μn−1 acts on
∂μnψa in Eq. (B1):

∂μ1···μnφi � ∂φ̄i

∂ψa
∂μ1···μnψa = Bia∂μ1···μnψa. (B3)

The second one is generated when n − 1 derivatives among ∂μ1···μn are consumed to generate
Aμn

ia ∂nψa and the other one derivative acts directly on φi, i.e.

∂μ1···μnφi �
n∑

k=1

∂2φ̄i

∂xμk∂ (∂αψa)
∂μ1···μk−1μk+1···μnαψa =

n∑
k=1

∂μk Aα
ia∂μ1···μk−1μk+1···μnαψa. (B4)

Contracting with a totally symmetric coefficient K (μ1···μn )
bi , the expression appearing in Eq. (6)

is obtained as

K (μ1···μn )
bi ∂μ1···μnφi

� K (μ1···μn )
bi

n∑
k=1

∂μk Aα
ia∂μ1···μk−1μk+1···μnαψa = n K (αμ1···μn−1 )

bi ∂αAμn
ia ∂μ1···μnψa. (B5)

The ∂n − kψa term of Eq. (6) is obtained in a similar manner. The ∂kBia term is obtained by
using n − k derivatives to generate ∂n − kψa, and by acting the other derivatives on φi directly.
The ∂k+1Aμ

ia term is obtained by using n − k − 1 derivatives to generate ∂n − kψa, and by acting
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the other derivatives on φi directly. The coefficients of each term,
(n

k

)
and

( n
k+1

)
, correspond to

the number of combinations of the derivatives among ∂n that are used to generate ∂kψa.

Appendix C. Derivation of Eq. (40)
We give the derivation of Eq. (40) based on Eq. (6) and using the degeneracy conditions in the
two-field case, Eqs. (32) and (37). We also use results given in Sect. 2.2.

We start the derivation from

≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3φi

−
[ ≈

K (μ1···μn )Aμn+1

2,bc Ãμn+2
ci

−
(

n
≈
K (αμ1···μn−1 )Ā2,μnμn+1 + 2

≈
K (μ1···μn )Ā2,μn+1α

)
∂αĀμn+2

bi

]
∂μ1···μn+2φi, (C1)

which is given by the ∂n + 2ψ and lower-order terms once rewritten in terms of ψ using Eq. (6),
as explained in Sect. 2.2.

Using Eq. (6), the first term of Eq. (C1) is expressed in terms of ψ as

≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3φi

= [∂n+3ψ term
]

+
{[

n(n − 1)
2

≈
K (α1α2μ1···μn−2 )Āμn−1

bi Ā2,μnμn+1 + n
≈
K (α1μ1···μn−1 )Āα2

bi Ā2,μnμn+1

+ 2n
≈
K (α1μ1···μn−1 )Āμn

bi Ā2,μn+1α2+ ≈
K (μ1···μn ) (2Āα1

bi Ā2,μn+1α2 + Āμn+1

bi Ā2,α1α2
)]

∂α1α2 Aμn+2
ia

+
[

n
≈
K (αμ1···μn−1 )Āμn

bi Ā2,μn+1μn+2

+ ≈
K (μ1···μn ) (Āα

biĀ
2,μn+1μn+2 + 2Āμn+1

bi Ā2,μn+2α
)]

∂αBia

}
∂μ1...μn+2ψa

+ O
(
∂n+1ψa

)
, (C2)

where the terms appearing on the right-hand side are classified according to the positions of
the indices α, α1, α2. Likewise, the second term of Eq. (C1) is expressed as

[ ≈
K (μ1 ···μn )Aμn+1

2,bc Ãμn+2
ci − (n ≈

K (αμ1 ···μn−1 )Ā2,μnμn+1 + 2
≈
K (μ1···μn )Ā2,μn+1α

)
∂αĀμn+2

bi

]
∂μ1 ···μn+2 φi

= [∂n+3ψ term
]

+
{[ ≈

K (μ1···μn )Aμn+1

2,bc Ãμn+2
ci −

(
n

≈
K (αμ1 ···μn−1 )Ā2,μnμn+1 + 2

≈
K (μ1···μn )Ā2,μn+1α

)
∂αĀμn+2

bi

]
Bia

+
{

n
≈
K (α2μ1···μn−1 )Aμn

2,bcÃμn+1
ci + 2

≈
K (μ1 ···μn )A(α2

2,bcÃμn+1 )
ci

− n
[
(n − 1)

≈
K (α1α2μ1···μn−2 )Ā2,μn−1μn ∂α1 Āμn+1

bi

+ ≈
K (α1μ1···μn−1 ) (2Ā2,α2μn ∂α1 Āμn+1

bi + Ā2,μnμn+1 ∂α1 Āα2
bi

)]

− 2
(

n
≈
K (α2μ1 ···μn−1 )Ā2,μnα1 ∂α1 Āμn+1

bi + 2
≈
K (μ1 ···μn )Ā2,α1 (α2 ∂α1 Āμn+1 )

bi

)}
∂α2 Aμn+2

ia

}
∂μ1 ...μn+2 ψa

+ O
(
∂n+1ψa

)
, (C3)
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where the ∂n + 3ψ term on the right-hand side is the same as that in Eq. (C2). Then, in Eq. (C1)
the ∂n + 3ψ terms cancel out, and the remaining terms are given by the difference between
Eqs. (C2) and (C3). Reorganizing the terms according to their tensor structures, it can be ex-
pressed as

≈
K (μ1···μn )Āμn+1

bi Ā2,μn+2μn+3∂μ1···μn+3φi −
[ ≈

K (μ1···μn )Aμn+1

2,bc Ãμn+2
ci −

(
n

≈
K (αμ1···μn−1 )Ā2,μnμn+1

+ 2
≈
K (μ1···μn )Ā2,μn+1α

)
∂αĀμn+2

bi

]
∂μ1···μn+2φi

=
{

n(n − 1)
2

≈
K (α1α2μ1···μn−2 )Ā2,μn−1μn

[
Āμn+1

bi ∂α1α2A
μn+2
ia + 2

(
∂α1Ā

μn+1

bi

)
∂α2A

μn+2
ia

]

+ n
≈
K (α1μ1···μn−1 )

{
−Aμn

2,bcÃ
μn+1
ci ∂α1A

μn+2
ia

+ 2Ā2,μnα2
[
Āμn+1

bi ∂α1α2A
μn+2
ia + (∂α1Ā

μn+1

bi

)
∂α2A

μn+2
ia + (∂α2Ā

μn+1

bi

)
∂α1A

μn+2
ia

]
+ Ā2,μnμn+1

[
Āμn+2

bi ∂α1Bia + (∂α1Ā
μn+2

bi

)
Bia + Āα2

bi ∂α1α2A
μn+2
ia + (∂α1Ā

α2
bi

)
∂α2A

μn+2
ia

]}
+ ≈

K (μ1···μn )
[
Āα1

bi Ā2,μn+1μn+2∂α1Bia − 2A(α2

2,bcÃ
μn+1 )
ci ∂α2A

μn+2
ia − Aμn+1

2,bc Ãμn+2
ci Bia

+ 2Ā2,μn+1α1
(
∂α1Ā

μn+2

bi Bia + Āμn+2

bi ∂α1Bia + Āα2
bi ∂α1α2A

μn+2
ia + ∂α1Ā

α2
bi ∂α2A

μn+2
ia

)
+ Ā2,α1α2

(
Āμn+1

bi ∂α1α2A
μn+2
ia + 2∂α1Ā

μn+1

bi ∂α2A
μn+2
ia

)]}
∂μ1···μn+2ψa

+ O
(
∂n+1ψa

)
=
{
−n(n − 1)

2

≈
K (α1α2μ1···μn−2 )Ā2,μn−1μn

(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia

+ n
≈
K (α1μ1···μn−1 )

[
−Aμn

2,bcÃ
μn+1
ci ∂α1A

μn+2
ia − 2Ā2,μnα2

(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia + Ā2,μnμn+1∂α1A
μn+2

ba

]
+ ≈

K (μ1···μn )
[
Ā2,μn+1μn+2Āα

bi∂αBia − 2A(α
2,bcÃ

μn+1 )
ci ∂αAμn+2

ia − Aμn+1

2,bc Ãμn+2
ci Bia

+ 2Ā2,μn+1α∂αAμn+2

2,ba − Ā2,α1α2
(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia

]}
∂μ1···μn+2ψa

+ O
(
∂n+1ψa

)
. (C4)

At the final equality we used Eq. (28) and the identity that follows from the second derivative
of Eq. (12) in the two-field case, which is given by

∂μ∂ν

(
Ā(α

bi Aβ )
ia

) = (∂μ∂νĀ(α
bi

)
Aβ )

ia + (∂μĀ(α
bi

)
∂νAβ )

ia + (∂νĀ(α
bi

)
∂μAβ )

ia + Ā(α
bi

(
∂μ∂νAβ )

ia

) = 0. (C5)

As argued in Sect. 2.2, to find the last condition for invertibility we should focus on the co-
efficient of the highest-derivative term in the ψ⊥ space, and this coefficient is obtained by re-
placing ∂μ1···μn+2ψa by Āμ3

a j and symmetrizing over μ1, μ2, μ3 in Eq. (C4). Below, we evaluate

each term in Eq. (C4) after this replacement. First, the
≈
K (α1α2μ1···μn−2 ) term vanishes because it

contains A(μn+2
ia Āμ3 )

a j = 0, which is enforced by Eq. (28). Next, the
≈
K (α1μ1···μn−1 ) term also vanishes
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as follows:[
−A(μn

2,bcÃ
μn+1
ci ∂α1A

μn+2
ia − 2Ā2,α2(μn

(
∂α1α2Ā

μn+1

bi

)
Aμn+2

ia + Ā2,(μnμn+1∂α1A
μn+2

ba

]
Āμ3 )

a j

=
(
−A(μn

2,bcÃ
μn+1
ci ∂α1A

μn+2
ia + Ā2,(μnμn+1∂α1A

μn+2

ba

)
Āμ3 )

a j

=
(
A(μn

2,bcÃ
μn+1
ci Aμn+2

ia − Ā2,(μnμn+1Aμn+2

ba

)
∂α1Ā

μ3 )
a j

=
[
A(μn

2,bcÃ
μn+1
ci Aμn+2

ia − A(μn

bc

(
Āμn+1

ci Āμn+2
ai + Ãμn+1

ci Aμn+2
ia

)]
∂α1Ā

μ3 )
a j = 0. (C6)

The first equality follows from Eq. (28). The second equality follows from Eq. (14) and the first
derivative of Eq. (37), i.e.

∂α1A
(μn+2

ba Āμ3 )
a j = −A(μn+2

ba ∂α1Ā
μ3 )
a j . (C7)

At the third equality we replaced Ā2,μnμn+1 using Eq. (30). Then, this equation can be shown to

vanish using Eq. (37). Lastly, in the
≈
K (μ1···μn ) term of Eq. (C4), the last part with Aμn+2

ia vanishes
thanks to Eq. (12). The remaining term gives Eq. (41), once ∂B is rewritten intoB using Eq. (28).

Appendix D. Absence of invertible field transformation with derivatives for the one-field
case
We show here that there is no invertible field transformation of one field involving up to the
first derivative by using the conditions obtained for the two-field case. We consider the trans-
formation

φ1 = φ̄1(ψ1, ∂αψ1, xμ), φ2 = ψ2, (D1)

which essentially represents a one-field transformation with derivatives. Then, the first degen-
eracy condition, Eq. (50), is satisfied as follows:

Aμ
ia = ∂φi

∂
(
∂μψa

) =
(

∂φ1

∂(∂μψ1) 0

0 0

)
= ∂φ1

∂
(
∂μψ1

)UaVi, (D2)

where ∂φ1

∂(∂μψ1) is assumed to be non-zero and

Ua = (1, 0) = Vi, ma = (0, −1) = ni. (D3)

On the other hand, the second degeneracy condition, Eq. (68), is never satisfied, because

Bia = ∂φi

∂ψa
=
(

∂φ1
∂ψ1

0

0 1

)
, niBiama = 1 �= 0. (D4)

Note that one can also easily check that the third conditions, Eq. (73), are also violated be-
cause niBiaUa = 0 and (VjBjb − aβ∂βUb)mb = 0 in this case. Thus, there is no invertible field
transformation of one field involving first derivatives. A similar argument also applies to a case
with more derivatives, φ1 = φ̄1(ψ1, ∂αψ1, ∂α∂βψ1, . . . ; xμ), and we can show that it can never be
invertible.

Appendix E. Inverse function theorem applied directly to the functional space, and
implicit function theorem to finite-dimensional subspaces
In our proof in Sects. 2 and 3, we do not apply the inverse function theorem to the mapping
from ψ(x) to φ(x), but instead use the implicit function theorem for the mapping from (ψ , ∂ψ ,
…) to (φ, ∂φ, …). This is because the former indeed does not work in cases with derivatives. In
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this appendix we explain why it is not applicable in Sect. E.1, and show the idea of our proof
in Sect. E.2.

E.1 Inapplicability of the inverse function theorem to the functional space
The inverse function theorem can be applied to the mapping from a Banach space X to another
Banach space Y. Functional spaces that are discussed in physics are mainly Hilbert spaces, and
thus one might naively think that the inverse function theorem is directly applicable to a field
redefinition with derivatives from ψ(x) to φ(x) by analyzing all spacetime points simultane-
ously. However, if derivatives of fields are involved in the field redefinition, the inverse function
theorem cannot be applied to the functional space. This means that linearized analysis in the
functional space does not give correct statements. Let us see that the inverse function theorem
in functional spaces does not work in cases with derivatives.

We have the condition for degeneracy of the coefficients of the highest-order derivative,

det(Aμ
iaξμ) = 0. (E1)

In the (wrong) linear analysis, this is obtained as an equation which has to be satisfied for a
fixed value of ψa. However, we know from the analysis of the necessary condition discussed
in Sect. 2 that Eq. (E1) should be interpreted as an identity, i.e. the equality has to be satisfied
for any ψa. Since the sufficient condition, which can be obtained from the inverse function
theorem, should be stronger than the necessary condition, Eq. (E1) should be obtained as an
identity (or replaced by a stronger condition).

We shall see in detail why the inverse function theorem is not directly applicable to the field re-
definition with derivatives. For this purpose, let us carefully inspect the statement of the inverse
function theorem for a mapping between Banach spaces [12]:

Let X and Y be Banach spaces. Let U be an open neighborhood of a point x0 ∈ X and F be
a continuously differentiable mapping from U to Y, F: U → Y. Suppose that there exists the
Fréchet derivative dF0 at x0 ∈ U which gives a bounded linear isomorphism that maps U onto
an open neighborhood of F(x0) ∈ Y. Then, there exists an open neighborhood U

′
of x0 ∈ X and

V of F(x0) ∈ Y, and a continuously differentiable map G from V to U
′
, G: V → U

′
, satisfying

F(G(y)) = y.
The important point is that, in the application of the theorem, a mapping is required to be

continuously differentiable. To see the argument clearly, we consider an example given by

φ1 = ψ1ψ̇2 + ψ1, φ2 = ψ̇1 + ψ2. (E2)

We denote this mapping as �: ψa(x) → φi(x). Let us apply the linear analysis to � (although
it gives an incorrect result). We linearize Eq. (E2) as

δφ1 = δψ1ψ̇2 + ψ1 ˙δψ2 + δψ1, δφ2 = ˙δψ1 + δψ2. (E3)

If we consider ψ1(x) = ψ2(x) = 0 for any x, a point in the phase space, the above equations
become

δφ1 = δψ1, δφ2 = ˙δψ1 + δψ2, (E4)

and they can be solved uniquely for δψ1 and δψ2 as

δψ1 = δφ1, δψ2 = δφ2 − ˙δφ1. (E5)

Since the linearized equation is uniquely solved, one might think the inverse function theorem
is applicable, but this is not true. This is because, if the inverse function theorem is applicable,
the mapping � must also be invertible for ψ1(x) = ε( �= 0) and ψ2(x) = 0, which is in the
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neighborhood of ψ1(x) = ψ2(x) = 0 for sufficiently small ε. However, this is not the case because
the linearized equations for ψ1(x) = ε, ψ2(x) = 0 become

δφ1 = ε ˙δψ2 + δψ1, δφ2 = ˙δψ1 + δψ2. (E6)

These equations cannot be solved uniquely for δψ1 and δψ2, and hence the transformation �

is not invertible.
What was wrong in this example? Actually, the derivative of the mapping �

(
ψa(x)

)
(that is,

the field redefinition in Eq. (E2)) cannot be obtained in the linearized analysis. The Fréchet
derivative of � is defined as follows.

If there exists a bounded linear operator A satisfying

lim
||δψa(x)||M→0

||�(ψa(x) + δψa(x)
)− �

(
ψa(x)

)− A δψa(x)||M
||δψa(x)||M = 0, (E7)

the Fréchet derivative is defined as

D�
(
ψa(x)

) = A. (E8)

Otherwise, the Fréchet derivative does not exist. Here, M is an open region in spacetime that
we consider, and || · ||M is a norm for the phase space covered by φi(x) or ψa(x).

For the existence of the Fréchet derivative that is necessary to establish the invertibility, the
linear part of

�
(
ψa(x) + δψa(x)

)− �
(
ψa(x)

) = (δψ1ψ̇2 + ψ1 ˙δψ2 + δψ1 ˙δψ2 + δψ1, ˙δψ1 + δψ2
)

(E9)

must be close to Aδψa(x), where A is a bounded linear operator. One may expect that the linear
part of Eq. (E9) can be approximated by Aδψa(x). However, Eq. (E9) includes derivatives of
δψ , which may not be bounded. Hence, the inverse function theorem is not applicable.

The inverse functional theorem roughly means that, if it is applicable, the linear analysis
works well. However, in the application to an infinite-dimensional space, such as a functional
space, the existence of the Fréchet derivative is required. Without confirmation of this, the result
of invertibility by linear analysis cannot be trusted, and, in the case of the field redefinition with
derivative, it generically does not work.

E.2 Our idea: Application of the implicit function theorem to finite-dimensional
subspaces
To avoid complication due to the derivatives involved in the mapping, we take a different ap-
proach by working in the function space spanned by φi(x0), ∂μφi(x0), ∂μ∂νφi(x0), … as follows.
The field redefinition in Eq. (5) from ψa to φi is obviously unique; Eq. (5) shows that ψa is
uniquely obtained from a fixed φi. Hence, if the mapping from φi to ψa is also unique, the field
redefinition becomes invertible.

Let us give φi in an open region of spacetime; then, its derivatives ∂μφi, ∂μ∂νφi, … are
uniquely obtained. Thus, if we can show that ψa is uniquely fixed for given φi along with its
derivatives ∂μφi, ∂μ∂νφi, …, we can say the inverse mapping is unique. To show this, we use the
implicit function theorem.

The problem appearing in the direct application of the inverse function theorem in Sect. E.1
stems from the dimension of the space being infinite. Even if we use the implicit function the-
orem, we have a similar problem. However, if we use the equations shown in Sect. 3, we can
consider the implicit function theorem at each point of spacetime separately, i.e. for ψa(x0) with
fixed φi(x0) and its derivatives (∂μφi(x0), ∂μ∂νφi(x0), …) at each spacetime point x0. Note that
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now we (are trying to) apply the implicit function theorem to (φi(x0); φi(x0)∂μφi(x0), ∂μ∂νφi(x0),
…) with fixed x0, and thus the dimension of the space is finite. (Here, we consider the case where
the number of derivatives of φ is finite.)

Since the dimension of the space is finite, we are not concerned with infinite dimensions and
the implicit function theorem can be easily applied. Note that the neighborhood in the implicit
function theorem here means for the values of φi(x0), ∂μφi(x0), ∂μ∂νφi(x0), …, not the space-
time point. Hence, the neighborhood or “locality” in our argument means a local region of
functional space, where the deviations of φi(x), ∂μφi(x), ∂μ∂νφi(x), … from a reference value
should be small. This should be acceptable in physics, which usually has the ultraviolet cutoff
scale.

Note that the “neighborhood” in the implicit (or inverse) function theorem is not necessarily
small. Let us take a simple example, f(x) = x2. The inverse function theorem is applicable except
at x = 0. At x = 3, one might take an open neighborhood 2 < x < 4. Then, we take the inverse
function theorem again near x = 2 and the “neighborhood” can be extended to 0 < x. This
extension of the “neighborhood” is general and it is done just before the condition is violated.

Appendix F. Setting Ua = (0, 1) in φi = φi(ψa, Ua(ψa)∂μψa)
In this appendix we consider a transformation in which a derivative of ψa appears only in a
combination Ua(ψa)∂μψa, i.e.

φi = φi
(
ψa,Ua(ψa)∂μψa

)
, (F1)

and show that Ua(ψa) can be set to a constant vector Ua = (0, 1) without loss of generality by
a field transformation ψa = ψa(�̃a). This technique is used in Sect. 4 to simplify examples of
invertible transformations.

F.1 Field transformation to set Ua = (0, 1)
As a first step to setting Ua(ψa) to a constant vector, we rewrite this transformation as

φi = φi
(
ψa, Ũa(ψa)∂μψa

)
, (F2)

where

Ũa ≡ c(ψa)Ua(ψa) (F3)

is a local rescaling of Ua such that Ũa is an irrotational vector in the ψa space, i.e.

∂Ũ1

∂ψ2
− ∂Ũ2

∂ψ1
= 0. (F4)

This Ũa can be obtained by choosing the rescaling factor c(ψa) appropriately. We show the
construction method of c(ψa) and Ũa(ψa) in the next section.

When Eq. (F4) is satisfied, due to the Poincaré lemma there exists a scalar function �1(ψk)
satisfying

Ũa = ∂�2

∂ψa
. (F5)

Let us also introduce another scalar function �1(ψa) that is functionally independent of �1(ψa)
(i.e. det(∂�a/∂ψb) �= 0). Then, there exists a one-to-one mapping between ψa and �a, and the
transformation in Eq. (F2) may be expressed in terms of �a as

φi = φi
(
�a, ∂μ�2

)
. (F6)
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This is equivalent to setting Ua = (0, 1) in the transformation in Eq. (F1). Hence, we may impose
Ui = (0, 1) without loss of generality in the transformation in Eq. (F1), as long as there exists
a rescaling c(ψ i) satisfying the condition in Eq. (F4).

F.2 Finding irrotational Ũi

In the argument above, it is crucial that a rescaling such as Eq. (F3) exists to make Ũa an irro-
tational vector satisfying Eq. (F4). We show how to find such a rescaling in this section.

Using Eq. (F3), the condition in Eq. (F4) can be rewritten as

U1
∂c
∂ψ2

− U2
∂c
∂ψ1

+ c
(

∂U1

∂ψ2
− ∂U2

∂ψ1

)
= 0. (F7)

This equation is a first-order partial differential equation for log c(ψ1, ψ2), and it can be solved
a least locally once an appropriate boundary condition for c is given. For example, when U1

�= 0 we may solve Eq. (F7) as an evolution equation in the “time” direction ψ2 for an initial
condition given by c = 1 on a ψ2 = constant line in the ψa space, regarding ψ1 as the “spatial”
coordinate.

Appendix G. Disformal transformation with higher derivatives for the FRW ansatz
In Sect. 5 we examined a generalization of the disformal transformation to introduce the second
derivative of the scalar field ∇∇χ , and found it non-invertible unless such a second-derivative
term is absent. In this appendix we consider a further generalization of this transformation,
and find that there may be an invertible disformal transformation with higher derivatives if the
metric is limited to the FRW type. Note that the investigation of the FRW type gives a necessary
condition. While the violation of invertibility in the FRW subspace shows the same in the full
space of the metric, establishing it in the subspace does not result in that in the full space.

G.1 Generalized disformal transformation with second derivatives
Let us consider the following generalization of the disformal transformation [10,11]:

g̃μν = F0gμν + F1χμχν + F2χμν + F3χ(μ Xν) + F4XμXν + F5χ
α
μχνα, (G1)

where Fi depends on X, B, Y , Z, and W , which are scalar quantities involving up to the square
of the second derivative of the scalar field ∇∇χ , i.e.

X = χμχμ, B = �χ, Y = χμXμ, Z = XμX μ, W = χμνχμν. (G2)

The subscripts denote covariant derivatives (e.g. χμ = ∇μχ , χμν = ∇μ∇νχ ).
Let us take the FRW homogeneous ansatz for the metric gμν ,

gμνdxμdxν = −n(t)dt2 + a(t)dx2, χ = χ (t). (G3)
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For this ansatz we have

X = − χ̇2

n
, (G4)

B = 1
2n

(
χ̇
ṅ

n
− 3χ̇

ȧ

a
− 2χ̈

)
= Y

2X
− 3χ̇

2n
ȧ

a
,

Y = − χ̇2

n2

(
χ̇
ṅ

n
− 2χ̈

)
,

Z = χ̇2

n3

(
−χ̇2 ṅ

2

n2
+ 4χ̇ χ̈

ṅ

n
− 4χ̈2

)
= − χ̇2

n3

(
χ̇
ṅ

n
− 2χ̈

)2

= Y2

X
,

W = 1
n2

(
χ̇2

4
ṅ2

n2
+ 3χ̇2

4
ȧ2

a2
− χ̇ χ̈

ṅ

n
+ χ̈2

)
=
( Y

2X

)2

+ 1
3

( Y
2X

− B
)2

.

Hence, for the FRW ansatz, Z and W are expressed by X, B, and Y and are not independent.
Also evaluating the terms appearing in Eq. (G1), we find that the metric after the transforma-
tion g̃ is expressed by the FRW ansatz

g̃μν = ñ(t)dt2 + ã(t)dx2, (G5)

and ñ and ã are given by

ñ = n

(
F0 + F1X + F2

Y
2X

+ F3Y + F4
Y2

X
+ F5

( Y
2X

)2
)

:= nFn(X,B,Y ), (G6)

ã = a

(
F0 − F2

1
3

( Y
2X

− B
)

+ F5
1
9

( Y
2X

− B
)2
)

:= aFa(X,B,Y ).

This result implies that the generalized disformal transformation in Eq. (G1) is completely
governed by the functions Fn(X,B,Y ) and Fa(X,B,Y ) for the FRW ansatz.

G.2 The general disformal transformation reduced on the FRW spacetime
The transformation in Eq. (G6) involves only n, a, and their first derivatives, and hence its
invertibility can be analyzed within the framework explained in Sect. 2. Based on this, we derive
the invertibility conditions for the transformation in Eq. (G6) below.

Since the transformation in Eq. (G6) involves ṅ and ȧ, Aia must be degenerate for invertibility:

Aia =
(

∂ ñ/∂ ṅ ∂ ñ/∂ ȧ

∂ ã/∂ ṅ ∂ ã/∂ ȧ

)
= 1

2

√
−X
n

(
Fn,B + 2X Fn,Y − 3n

a
Fn,B

a

n
(Fa,B + 2X Fa,Y ) −3Fa,B

)
, (G7)

det A = 3X 2

2n
(Fa,BFn,Y − Fn,BFa,Y ) = 0. (G8)

Below we assume that the rank of the matrix Aia is 1. When the rank of Aia is zero, all the
components of Aia vanish and then the transformation in Eq. (G6) does not involve ṅ and ȧ.
In this case, the invertibility condition is simply given by det Bia �= 0.

When the degeneracy condition in Eq. (G8) is satisfied, there exist zero eigenvectors ni, ma

and their dual vectors Vi, Ua satisfying

niAia = 0 = Aiama, nini = 1 = mama, ni = εi jVj, ma = εabUb. (G9)

They are given explicitly as

ni = N−1
(
Fa,B, −n

a
Fn,B

)
, ma = M−1

( 3n
a

Fn,B, 2X Fn,Y + Fn,B
)
,

Vi = N−1
(−n

a
Fn,B, −Fa,B

)
, Ua = M−1

(
2X Fn,Y + Fn,B, − 3n

a
Fn,B

)
,

(G10)
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where M and N are normalization coefficients given by

M =
√

(Fn,B + 2X Fn,Y )2 + (3nFn,B/a)2, N =
√

F 2
a,B + (nFn,B/a)2. (G11)

We assume M, N �= 0 below, and discuss the case where either M or N vanishes separately.
Using these expressions, the second degeneracy condition in Eq. (68) in the invertibility con-

ditions is evaluated as

0 = niBiama

= 1
MN

nFn,B
a

[3FnFa,B − Fa (Fn,B + 2X Fn,Y ) + 3X (Fa,X Fn,B − Fa,BFn,X )] , (G12)

where we eliminated Fa,Y using the first degeneracy condition in Eq. (G8).
The non-degeneracy conditions in Eq. (73) in the invertibility conditions are given as follows:

0 �= niBiaUa = MFa

3N
, (G13)

where we used the first and second degeneracy conditions in Eqs. (G8) and (G12) to simplify
the expression. The other non-degeneracy condition can be derived after some calculations as

0 �= (ViBia − aU̇a
)

ma

= 3N
M

[
− (−X )3/2 Fn,B

(
Fn,Y
Fn,B

)′
− Fn + X Fn,X + BFn,B + YFn,Y

]
, (G14)

where a prime (
′
) denotes a derivative with respect to the proper time, i.e. f ′ ≡ n−1/2 ḟ . To

simplify this equation we used the degeneracy conditions in Eqs. (G8) and (G12) and their
t derivatives; that is, we assumed the degeneracy conditions in Eqs. (G8) and (G12) are satisfied
identically at any t.

To summarize, the transformation in Eq. (G6) becomes invertible when the conditions in
Eqs. (G8), (G12), (G13), and (G14) are satisfied. These conditions should be regarded as nec-
essary conditions for the invertibility of the generalized disformal transformation in Eq. (G1)
for a general metric, because the above results are derived only for the FRW ansatz in Eq. (G3),
in which the degrees of freedom of the metric are reduced to two functions n(t), a(t) depending
only on t. The invertibility conditions for a general metric should encompass the conditions in
Eqs. (G8), (G12), (G13), and (G14), while they may contain more stringent conditions in gen-
eral. An obvious next step is to derive the invertibility conditions for a more general metric,
and also it would be interesting to construct examples of invertible transformations based on
the invertibility conditions obtained above. We reserve those issues for future work.

Let us briefly mention the case that either M or N given by Eq. (G11) vanishes. In this case,
it turns out that the degeneracy conditions imply that Fn,B = Fn,Y = Fa,B = 0, i.e. Fn = Fn(X )
and Fa = Fa(X,Y ). For these functions, it follows that

Aia = −
(−X

n

)3/2
(

0 0
aFa,Y 0

)
, (G15)

and Vi = (0, 1), Ua = (1, 0). It can be shown that the first and second degeneracy conditions
are automatically satisfied, and the non-degeneracy conditions are given by

Fn − X Fn,X �= 0, Fa �= 0. (G16)
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