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We discuss a field transformation from fields v, to other fields ¢; that involves derivatives,
¢i = ¢i(Ya, 3 Va, .. .; x*), and derive conditions for this transformation to be invertible,
primarily focusing on the simplest case that the transformation maps between a pair of
fields and involves up to their first derivatives. General field transformation of this type
changes the number of degrees of freedom; hence, for the transformation to be invertible,
it must satisfy certain degeneracy conditions so that additional degrees of freedom do not
appear. Our derivation of necessary and sufficient conditions for invertible transformation
is based on the method of characteristics, which is used to count the number of independent
solutions of a given differential equation. As applications of the invertibility conditions, we
show some non-trivial examples of the invertible field transformations with derivatives, and
also give a rigorous proof that a simple extension of the disformal transformation involving
a second derivative of the scalar field is not invertible.

Subject Index A13, EO3

1. Introduction

Field transformations are ubiquitous in every field of physics and mathematics. The reason is
that by using suitable fields (variables), one can often get a better and more intuitive insight into
physical phenomena, find a different form of equations of motion which may allow solutions
to be obtained more easily, and so on. For these purposes, the (local) invertibility of a field
transformation is essential because, otherwise, physics would not be the same after the field
transformation. If a field transformation does not involve derivatives, its local invertibility can
be judged by the well-known inverse function theorem. On the other hand, when a field trans-
formation does involve derivatives, it is clear that the invertibility conditions become much more
complicated. If one regards such a field transformation as differential equations for old vari-
ables (fields), one can naively expect the presence of integration constants associated with the
derivatives, which breaks the one-to-one correspondence between the old and new variables.
Thus, apparently, one might arrive at the conclusion that no invertible transformation with
derivatives exists. But, of course, this is not true in general. If one assumes specific degeneracy
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of the derivative terms in a field transformation which prohibits the appearance of associated
integration constants, one can have an invertible field transformation with the derivatives. In-
deed, in Ref. [1] we gave explicit necessary and sufficient conditions for the invertibility of a
field transformation involving two fields and first derivatives.!

The purpose of this paper is twofold. First, we give a full and complete proof of neces-
sary and sufficient conditions for the invertibility of field transformations with derivatives.
Here, we fill some gaps in the proof that that were present in Ref. [1]. More importantly, we
provide a full proof for the sufficient condition, while we previously gave it only within the
perturbative regime. The second goal of this paper is to prove the no-go theorem of disfor-
mal transformation of the metric that involves second derivatives of a scalar field. We were
strongly motivated by pursuing extensions of conformal and disformal transformations, which
are often used in gravity, cosmology, and many other fields (see, e.g., Ref. [3] for a classifica-
tion of new theories generated from a simpler theory [4] using disformal transformations). A
disformal transformation involving the first derivative of a scalar field is a natural extension
of a conformal transformation [5]. The next natural question is whether one can further ex-
tend a disformal transformation to one involving the second derivatives of a field, or even its
higher derivatives. As a useful application of our invertibility conditions, we explicitly prove
that there is no invertible disformal transformation involving the second derivatives given by
§=C(x, X)g+D(x,X)VxVx +E(x, X)VVy (X = (Vy)?) with E # 0. To the best of our
knowledge, this is the first rigorous proof of the absence of such a transformation.

The organization of this paper is as follows. In Sect. 2, we give a complete derivation of the
necessary conditions. The results in Sect. 2.1 apply to field transformations involving an arbi-
trary number of fields and their first derivatives. To show the explicit form of the invertibility
conditions, in Sects. 2.2 and 2.3 we focus on the field transformation between two fields and
their first derivatives. In Sect. 3, the complete proof of the sufficient conditions is given. As
an application of our result, in Sect. 4 we construct some examples of invertible field trans-
formation by solving the invertibility conditions. As another application, in Sect. 5 the no-go
theorem for a class of disformal transformations of the metric with second derivatives is proven.
Section 6 is devoted to conclusions and discussion. In Appendix A we examine a field transfor-
mation that changes the number of fields, and show that it cannot be invertible in our sense. In
Appendices B and C, we show details of some of the calculations in Sect. 2. Appendix D shows
that transformations between single fields and their derivatives can never be invertible, which
implies that the two-field case we focus on is the simplest non-trivial case. In Appendix E, the
necessity for nonlinear analysis in the inverse function theorem is explained. Appendix F gives
some technical details of the derivation in Sect. 4, and Appendix G discusses an extension of
the results given in Sect. 5.

1.1 Notation
Here we summarize the convention for indices used in this work:

O ptyopn = 0 Oy~ + Opy,s (1)

Clmin2) — % (CHka  Cramry | (2)

ISee, e.g., Ref. [2] for earlier discussions on invertibility conditions of field transformations.
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Clrmina] — %(Cmuz — Cramry (3)
Clrznn) gnd Clikatal are defined similarly by permutation (with a factor (n!)~!). We intro-

duce the Levi-Civita symbol €'+ “which satisfies the following identities:

-+l +1~-l’1\r X . . . ,/l . . / . k
€ " 6/1"']n]n+l"']NMll M’n anthl

iy ) . jl . jn k i 11 . i ] 1
=€ 6.1!"'.1N5[11 ‘Sln (SIM]M,l M;,
1 o o
— iy Jrejuklya-In h Lyt
= € Ne; i€ €y My - M,
(n + l)y(N —n— 1)| J1JN 1IN Int1
n!(N — n)! I
= e Ne g My M, S gl ...5/9{]
n+ DN —n—1) vt Qi Oy

= N- neil"'izvel WM M,

n+ 1 1IN I In+1

Throughout this work, we do not distinguish the lower and upper indices for the field space
indices a, b, ... and i, j, ..., while in some parts upper/lower indices are used for clarity of the

notation.

ln Zn+2 - lN
+18[jn+18jn+2 6_/1\’] : @

2. Derivation of the necessary conditions

In this section we present a complete derivation of the necessary conditions for the invertibility
of the transformation ¢; = ¢;(V,, 9, V4, x*) that transforms fields ¢; into fields ¥,.> We divide
the derivation of the invertibility conditions into two parts. In Sect. 2.1, we derive necessary
conditions for invertibility. An invertible transformation preserves the number of degrees of
freedom, while a transformation with field derivatives typically generates additional degrees of
freedom. To formulate such an idea mathematically, we employ the method of characteristics
for a differential equation to count the number of propagating modes [6].

In Sect. 2.1.1 we explain our approach to deriving the necessary conditions for invertibility
based on the method of characteristics. In this approach, the transformation equation in Eq. (5)
is converted to a set of differential equations that relates old variables to new ones, and the num-
ber of independent solutions for these equations is related to the number of degrees of free-
dom. To establish invertibility, the transformation must satisfy certain degeneracy conditions
to remove unnecessary additional modes originating from the derivatives in the transformation
equation. Such degeneracy conditions must be imposed at each order of the aforementioned
differential equations, as summarized in Sects. 2.1.2 and 2.1.3. This procedure should be ap-
plied iteratively until the number of independent solutions is reduced appropriately, and then
we may impose the non-degeneracy conditions to ensure the number of degrees of freedom is
not changed by the transformation. We summarize this procedure in Sect. 2.1.4.

The procedure in Sect. 2.1 applies to field transformations for a general number of fields. To
illustrate our method, we focus on the transformation between two fields in Sects. 2.2 and 2.3.
The necessary conditions for invertibility in the two-field case are derived in Sect. 2.2 based on
the general method introduced in the previous sections. The expressions for these conditions
are rather complicated, and actually they can be simplified by solving part of the conditions

>Here, we concentrate on the case with first-order derivatives. However, our idea of using characteristics
and degeneracy applies to the case with arbitrary-order derivatives (and an arbitrary number of fields)
in the same way.
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explicitly. Based on such an idea, the expressions of the necessary conditions are simplified in
Sects. 2.3.1, 2.3.2, and 2.3.3. After simplification, the necessary conditions for the invertibility
of two-field transformations are summarized in Egs. (50), (68), and (73).

After deriving the necessary conditions in this section, in Sect. 3 we show that these conditions
are actually sufficient to guarantee invertibility.

2.1  Method of characteristics as the key to deriving the necessary conditions
2.1.1  Invertibility and the number of degeneracies. Letus consider a field transformation from
¥, to ¢; given by

o= Qgi(%, 8(11#(1’ XM), (5)

where ¢; is a function of ¥, 9,V 4, and x*. We suppose that the numbers of the fields before
and after the transformation are the same; that is, we assume that both ¢ and i run from 1 to
N, where N is the number of field v,.>

If the transformation in Eq. (5) is invertible, it does not change physical properties of theories
before and after the transformation, and particularly the causal structure should be invariant.
If the transformation changes the number of characteristic hypersurfaces, the causal structure
is changed correspondingly. Therefore, for invertibility, the transformation should not change
the number of characteristic hypersurfaces. This gives the necessary conditions for invertibility.

To examine whether the transformation in Eq. (5) changes the number of characteristic hy-
persurfaces, we employ the method of characteristics for partial differential equations. This
method can be applied only to quasi-linear differential equations, while the transformation
equation in Eq. (5) is nonlinear in d,1; in general. To convert Eq. (5) to a quasi-linear partial
differential equation, we act a differential operator Klff‘ v ”)8M -, ON 1t to obtain

Kb(ll'tl...ﬂ'l)aul"'/i’1¢i
_ K(/'Ll~~‘ﬂn)A§Zn+] 3u1‘~un+|wa
i (K(m o +nK(a’” 1) g Aun> RS

n(n — 1) ( n—”) n—
2 Kb?lazm fo 3a1a2A§Z V) Oy Ya

+ <( >K(Oll O by o — k)a
o D{k

+ <nK(aM1 Hn— 1)8 Bla+

+ - I)K(al O 1 1 ok — 1)30” "ak+1A;an> 8#1"'#;«4»1#0
o O (05, 9y, ), (6)
where 4% and Bj, are N x N matrices defined by
o 3¢; 3¢;
Aia = l s Bia = _l» (7)
0(0a¥ra) 0V,

3For a field transformation that involves two fields and its first derivatives, it can be explicitly shown
that a transformation that changes the number of fields can never be invertible. See Appendix A for
details.
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and (}) is the binomial coefficient for k < n — | 4] — 2. In this expression, 3'2/2y, and higher
derivatives of ¥, appear linearly, while the O(3!2/*1y,, 3L21y,, ...) part is a nonlinear function
of lower-order derivatives of ¥ ,. We show the derivation of Eq. (6) in Appendix B.

The operation of the differential operator Klgﬁ‘ i ”)8,“ ..., Introduces additional characteristic
hypersurfaces to those of Eq. (5). Hence, the characteristics of ,, determined by the right-
hand side of Eq. (6), are comprised of the original ones inherent to the field transformation
equation in Eq. (5) and the additional ones generated by the operation of K}fﬁ”""t”)am...un.

Now we can analyze the characteristics of the quasi-linear differential equation in Eq. (6),
regarding this equation as a partial differential equation in vr,. We have N differential equations
with (n 4+ 1)th-order derivatives of i,. Therefore, they generically give N x (n + 1) integration
constants in a solution v,, which corresponds to N x (n + 1) characteristics. However, if the
field transformation in Eq. (5) is invertible, there are no characteristics inherent to Eq. (5),
which implies that Eq. (6) has only the additional characteristics generated by the operation of
K}EZ" v ")8,“...“”. The number of these additional characteristics is N x n, and hence there is a
mismatch between the number of derivatives in the equations, N x (n 4 1), and the number of
characteristics required by the invertibility, N x n.

Such a mismatch can be resolved if the structure of the highest-order derivative part is degen-
erate. Since the difference between them is N, invertibility requires N degrees of degeneracies.
We derive the conditions giving such N degeneracies below.

2.1.2  Degeneracy condition at leading order. The characteristic equation for Eq. (6) is given
by

det (K0 Al g, -y, ) = det (KT8, g, ) det (47E,, ) =0, (®)

where £, is a vector which is not tangent to would-be characteristics hypersurfaces. If
det (A%&,) does not vanish identically for any &,, the characteristic equation in Eq. (8) im-
plies that there are N x (n 4+ 1) characteristics, and then the transformation in Eq. (5) is not
invertible, as explained above. Hence, for invertibility, 4% &, must be degenerate for any &, that
1S,

det (4%£,) =0 for any &,,. 9)
This condition is equivalent to
1 . .
Z Sgn(a)A(llle ce A(J)[Vg\, — m611~--11v€a1-..aNA;_)ilal .. A;X;;N =0, (10)
aes, ’

where N is the number of fields, and the sum is computed over the set S, of all permutations a
={ay,...,ay} of {1, ..., N}. Here, sgn(a) denotes the signature of a permutation a, which is +1
whenever the reordering a can be achieved by successively interchanging two entries an even
number of times, and —1 whenever it can be achieved by an odd number of such interchanges.

2.1.3  Degeneracy condition at subleading order. The condition in Eq. (10) indicates the de-
generacy of the highest-order derivatives of Eq. (6). If the degeneracy number is N (i.e. the
dimension of the kernel 4/ &, is N), it implies that 4% = 0, and thus the transformation is in-
dependent of 9, ,. This is a trivial case; we can directly use the implicit function theorem for

Eq. (5). Therefore, we consider non-trivial cases where the number of degeneracy of Eq. (10)
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is less than N. Here, we discuss the case where the degeneracy number of Eq. (10) is 1 for sim-
plicity. Generic cases may be discussed in a similar manner.
For later use, we introduce the adjugate matrix of A%, which is the transposed cofactor matrix,

as
JUOUN-] g ONo] i+a =\ (a1 ay-1)
A% =14 = (=D sgn(@)Ay - A0
degn
_ 1 ip-In—1 al---aN_lAm AOlel 11
- (N——l)!ei €a iay " Tiy_jay-y? (11)
where {7, ..., iy} ={1,...,i—1,i+1,..., N}, and the sum is computed over the set S, of
all permutations @ = {a@, ..., ay_1}of {1, ...,a—1,a+ 1, ..., N}. This adjugate matrix satis-
fies
Jl@ray-y qan) (o) Fon-—ay) _
A, A, =0, A, Ay =0. (12)

As commented above, we suppose that the dimension of the kernel of 4§, is 1 for any &,.
Then the adjugate matrix is a rank-1 matrix.

The fact that the highest derivative part of Eq. (6) is degenerate in one dimension implies
that Eq. (6) contains one equation that involves only lower-order derivatives of vr,. This
does not necessarily imply that one of the equations in Eq. (6) contains only lower-derivative
terms; instead, generically, by combining equations in Eq. (6) one should be able to find one
lower-derivative equation. Let us extract this subleading equation. First, setting the operator
Ky, in Eq. (6) to KW 4GNS ey, Withm =1 — N + 1, Eq. (6) yields

Ry A By 19
= Ky AR AL By Vi
R [ By OV = DA (83 A57) | Dy Ve
o+ B A (@A) By Y O (37N (13)
The first term on the right-hand side vanishes because of Eq. (12). Moreover, Eq. (12) gives
A (ap457) = = (9p 450 ) A7, (14)
This equation shows that the last term on the right-hand side of Eq. (13) is written as

mK]gﬁﬂl"'Mmfl)A‘;il"'ﬂlmzl (851‘%"') aul-nu.mal-n(x,v,]l//a

= =R (g SN A Ve (15)
Next, Eq. (6) with K" "#3,,, ., replaced by mKP* =) (3, A8 1) 8, oy s glVES

mKlgﬂﬂl"-Mm—l) (85/_1(;1”'UN—1) 8“1"'#171—10[1“'(1N—1¢i

— mk[gﬂﬂl"'ﬂm—l) (8/3/&22‘1".“]\1_1) Aﬁ'ﬁlmammﬂmalwtx/\/,]wa +0 (8m+N72vf) ) (16)

Then, the last term on the right-hand side of Eq. (13) can be replaced with the derivatives of ¢;
and O (0" "V~2y) terms. Expanding Eq. (13) up to 3” * " ~ 2 and eliminating some 8" ¥ ~ !y
and 3"+ =24y terms in favor of 3"+t~ ~2¢ and 3" TV ~ 3¢ terms, as we did above, we finally
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obtain
K[SMIIHMM)AZ;“UN_Ia/Ll“'leOll“'Oleld)i 4 mK[gﬁﬂl"'ﬂm—l) (aﬂlzlzl}...aN_l) alll“'l/«mflal'“aNflqﬁi

my »~ =y
+(2>K}Eﬂ)’ﬂl for=2) (aﬂVAZil aNil) 8/1-1"'//-»1720!1"'01N71¢1'

— ~(”’1"'Hm) ap-@N-1
- Kb ‘AZ,ba 8/“1"'/“»10(]”'0‘N—] Wa

+ [I%lgul“‘ﬂm)l’))g’l[;;a}v—Z + mkb(ﬁﬂl“'ﬂnx—l) <8,3 ;221“'QN—2>] Opyoostts oty s Va

_|_ O (am+N—3w) , (17)
where
g’ll;;ouvq — zzlz;maNleia + (N o 1)1211/.:31_(111..-05/%2 (8/314?;1»'71)) ’ (18)
o ON—D L _ JBai-an o ) N-2 1By (a3 ay-2)
BZ,ba =(MN-1 Abi (aﬁBm) + P Abi 8ﬂyAia : (19)

The right-hand side of Eq. (17) has one less derivative compared to that of Eq. (6); that is, it is
the subleading equation. The combination of the non-degenerate part of Eq. (6), which has N
— 1 equations, and Eq. (17) gives the structure of the characteristics in the subleading order.

So farm we have established the presence of one degeneracy. To ensure invertibility, there must
be N degeneracies. Hence, the characteristics at this subleading order should be degenerate too.
By assumption, the matrix A% &, has one degeneracy; that is, there exists only one eigenvector
with a zero eigenvalue, which is denoted ;- (£). The other components of 1, are collectively
defined as Wﬂ (€). (Hereinafter, we omit (¢) from ¢ (&) and wﬂ (&) for brevity.) The characteristic
matrix for the highest-derivative part of Eq. (17) and the non-degenerate part of Eq. (6) is
written as

! Yt
non-degenerate part of Eq. (6) (ndghe, 0\ (20)
Eq. (17) K, K

where (K, K) = K1 A8, By £y oo Byt and @488, isan (N — 1) x (N = 1)
matrix indicating only the non-degenerate components of A&, thatis, det("¥4%&,) # 0. This
matrix determines the subleading characteristics, and it should be degenerate for invertibility.
Since (nd)/lﬁlsu is regular, the requirement of degeneracy gives the condition that K = 0 for any
1215“""“’”), ie. A‘;"I;'a'“”*'sal -+ &y, Wk vanishes for any &.

In order to show the condition explicitly, we express ¥ in terms of 4% . This can be done
with the adjugate matrix A4/ ""¥'¢, ...£,, . Equation (12) shows that A"/"*"1g, ...&,
is the projection matrix to the kernel of A%&,, in which ¢ lives by definition. Therefore, the
subleading degeneracy condition is written as

AG et gl — g, 21)

4Using the projection tensor Ey _ 1,4 onto the ¥l space defined by Eq. (26), the components of the
vector (K, K) may be expressed more precisely as

o (bn-pim) gor-any -1
K, x Kb " Az,lbc ! En-1.cbdu; - Eppban -+ Sanis

K Klim."M”)A;,]l;c:aNilAzzl'wuNilA;}vam;zgﬂl T Sﬂmgm o %_Ot,\u]svl T Evznuz'

See Sect. 2.1.4 for more details on this decomposition.
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2.1.4  Degeneracy and non-degeneracy conditions at lower orders. So far, two degeneracies were
realized by imposing the degeneracy conditions in Egs. (10) and (21). The condition in Eq. (21)
makes the matrix in Eq. (20) degenerate, and then the highest-order derivative of the component
parallel to ¥+ appears in a lower-order equation, that is, the subsubleading-order equation.
The characteristic matrix is composed of the leading-order equation for the ¥/l components
and the subsubleading-order equation for the ¥+ component. Now we have two degeneracies,
and thus for N > 2 this subsubleading characteristic matrix must give an additional degeneracy
for invertibility. Then, similar to the analysis of the subleading order, the degeneracy implies
that the highest-order derivative for the ¥ component in the subsubleading equation should
vanish. This procedure is done iteratively until N degeneracies are established. After that, we
impose the condition that the next-order characteristic matrix is not degenerate, in order for the
transformation to be invertible. The last condition corresponds to that of the inverse function
theorem (without derivatives).

In order to implement the procedure described above, it is useful to introduce a projection
matrix Ey _ 1, ;i(§) to the (N — 1)-dimensional field space of v I thatis, Ey _ 1,(§) 1s the identity
matrix for the (N — 1)-dimensional field space and zero for the one-dimensional field space
parallel to . Let us express Ey _ 1, (£) in terms of A% &,. We consider the matrix

;lgil MAN-3 1 dpeeiyoi Eaal'”a‘v”/_l

(1 mN=1 gUN MaN—3)
_ l o 2
N—1)° 22)

apiy bay IN-1aN-1"
This matrix satisfies

(N _ 1);151‘1-.-#2,«/73 Aﬁzzl\uz %-Ml . suszz

— (4211 poN— T AN—1 AN - 2N -2
— (A 1. 2N 28, — Aai N Abz’N N )%.M ”'SMZN—z

= EN_l’ab(s);12,#1“#”72%-”1 e SIJLZN_27 (23)
where
A2 11 pan-2 — Iagl/;l"'liN—lAgih""HZN—z) _ Izlgll{l“'lizlvf,%A;Zz,vfz)‘ (24)

In the calculation in Eq. (23), we use the fact that A% “*¥~'g, ...&,  is rank-1 matrix, and
then the components of AL/ ™" 4NN 2g, .. are zero except for the Y-yt com-
ponent. The value of this nonzero component is shown to be A>#1#2v-2¢, ... £, by direct
calculations. Equation (23) divided by A>##2v-2¢, .. £, gives Ey _ 1 4(&), which can be
regarded as a projector to the (N — 1)-dimensional space of ¥ . Since Eq. (23) holds for any
&M, it can be expressed equivalently as

/'151![11-.~uN_1IZIZiN~.u2N_z) + (N _ 1);12;1».-#21»'—314;221\/—2) — ‘Zz’(M]"'MN’z)Sab- (25)

Let us demonstrate how to obtain the lower-order equations iteratively with the projection
tensor of Eq. (23). On the right-hand side of Eq. (17), the leading term is the first term propor-
tional to 9"+~ = 1y,. The degeneracy condition for the subleading-order Eq. (21) implies that
the first term does not have the ¥ component, i.e. it can be written as

o (11 tm)  goe--oy—
Kb 'AZ,ba aﬂ'l MmN wa

= Ry A N B e (0)0 ey Vi (26)
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Considering the case with K" = g}/' 7" 4217v-2 we can rewrite Eq. (26) as

o

WAt 42,Y10VaN—2 A1 ON-1
K | ‘Az,bc EN,l,Ca(a)am‘..um,,,l‘..mfzm..‘aNf,1//k

~

— (N _ I)Kﬁjl.ultm/ Agyll;;mv—lAZE“.VzN_3A;ZN—2 8#1---/Lm/al-~~0t1»u1y1~--)/2Auz ka (27)
where we used Eq. (23). Then, by subtracting Eq. (17) from Eq. (6) with its coefficient set to

Kt = (N — 1)IN(Z‘”'“’"’A‘;’lb"c'“‘v‘lZZ}""’”*, the subleading (3" T3V —3y) term is canceled out
and the subsubleading-order equation is obtained as a result.

The degeneracy condition can be obtained applying the procedure explained around Eq. (20)
to the subsubleading equation, and the condition will be similar to the condition in Eq. (21)
for the subleading-order equation. Then, using the projector Ey _ | 4 again, we can construct
the lower-order equation. Applying this procedure iteratively, we can derive N degeneracy con-
ditions and the final non-degeneracy condition, which constitute the necessary conditions for

invertibility.

2.2 Necessary conditions in the two-field case
Although we have already derived the leading and subleading degeneracy conditions in the pre-
vious subsection using the general procedure, it is instructive to follow a concrete example to
understand the method. For this purpose, based on the discussion in the previous section, we
demonstrate how to derive the necessary conditions for the invertibility of a field transforma-
tion of two fields involving up to the first derivative.’ That is, we consider the case where N = 2,
i=1,2,and a =1, 2. In this section we complete the iterations to derive all the degeneracies and
the final non-degeneracy conditions. The conditions obtained will be simplified in Sect. 2.3.
We apply the procedure explained in Sect. 2.1 to the two-field case. In this case, /_151-, A’Z"ab,
and B, 4 that appeared in the previous section are written as

Al = elre,m 4" A = AlBy + ALag Al By := AP.04 By, (28)

nap’
and A!. is simplified as
I (A Ry} N | B R S N )
Ay =€"e" A, = €€, €€, A}, = A, (29)

Then, the identity in Eq. (25) becomes
AW o JUn gl = gl ) g g g — gRmmeg,, (30)
We operate K“1=#03, . on the field transformation equation, Eq. (5), to obtain
K(ur‘w)am.”un@ — K(Nl“'lin)A;:'anrl Oy Va + O ("W). (31)

For Eq. (5) to be invertible, the coefficient of the highest-order derivative on the right-hand side
of Eq. (31) must be degenerate, which implies

forallg,,  det(d"£)=0 <& et2et®@g® 4% =, (32)

ha\“ " ha
Following the previous section, we assume that the matrix 4 &, is degenerate only in one di-
mension. Then the kernel of A4,

parallel to ¥l are one dimension each.

g, parallel to ;- and the field space in the other direction

3As will be explicitly shown in Appendix D, there is no invertible field transformation of one field
involving first derivatives. Hence, among (possibly invertible) transformations with up to first derivatives,
the two-field case is the simplest.
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The degeneracy condition at the subleading order is obtained following the procedure in
Sect. 2.1.3. To construct the subleading equation from Eq. (5), we have to pick up the compo-
nent of this equation corresponding to the kernel of the coefficient of the highest-order deriva-
tive, A% . This can be done by operating K (’““"‘")/_12‘1."“ 0u,-un., ON the transformation equation
in Eq. (5) as

k(MIMMn)/_l[l;iIHIaﬂ-l“'l’-)z+l¢i
= K00 40 42 3o Va
+ (12(“""””)1;12?’+13ia + nl{'(aulwunq);lginaaAth + f((ul"'lln);lziaaAﬁgm) 8u1~~-un+11//a
+ O @"Y). (33)
The first term on the right-hand side vanishes thanks to Eq. (32). As shown in
Sect. 2.1.3, the second term in the brackets proportional to n can be canceled by adding

nK @10 (9, 44) 3, .. ¢: to Eq. (33). Nevertheless, without such a cancellation, we can di-
rectly obtain the same subleading condition from Eq. (33) by rewriting it as

% M -Mn
K )Abiﬁam--'um‘pi

= (RO A e RO 3o, 4100 ) 0 0 + O (070, (34)

The subleading degeneracy condition is given by demanding that the coefficient of the highest-
order derivative for ¢ vanishes. Noting that 4”&, works as a projector onto the ¥+ space, this
condition is written as

(R At Rmvtoe) 3o, Al ) ALy, 6y 60 = 0. (35)
The second term vanishes, which is shown by using Egs. (12) and (14) as
Rlr oD A0 (9 AR ) Al - -5,
= —KCm) (9, Ay Al A2 £y, £y, & =0, (36)
Since K1) is arbitrary, the subleading condition is

forallg,, AL, 4066 =0 < AV, A =A0B,4)+ 4 (940) 4] =0. (37)

The non-degeneracy condition at the subsubleading order can be constructed following the
procedure in Sect. 2.1.4. In this procedure we need to see the structure of the coefficient of
the highest-order derivative term in Eq. (33) decomposing the variables into the ¥+ and v/

space. For this purpose we use Eq. (30). Operating K Guptn) gt g2miattnng, - oon Eq. (5),
we have

(i1 t) Gt G20 M2 kins .
K ! Abi 4 000yt P

— (E(mmﬂn)A;}Z; A2 M2kt +n g'(a/‘-l"'lln—l)gzvﬂnﬂrﬂrl/_IgiﬂJrZ aaAZZnH
+ 2 K(Ml-.-M;;)AZ,MMW{ZZ»:H80‘A§Zn+3> al/H“‘H«ﬂ+3 wa + O (8n+2¢) ) (38)
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Using Eq. (30) for the first term in brackets and Eq. (14) for the other two, we have

%(MI"'M ) AMnr1 A2, g2 fng 3 .
K AT ARG P

| ) grat Jrne _ (@ 1) 2o Hningt 5 f Pt
= (K A e A = K AT 9 A,

-2 f((“‘"'“”)1212”‘"*‘“8,1,6_[2‘1.”“) AZ—;% 8#«1'"#«n+3 wa + O (an+2w) ) (39)
The 8" * 3y term on the right-hand side can be reproduced by applying the operator

1 Mn+2

[[?(I’LI"'MH)AZ';:;AZ‘"*Z _ <n E(aulwun_l);ﬁ,ununﬂ 42 E(m'--un)AZ,u,ﬁla) 3a/_15,~"+2i| 3M

to Eq. (5). Hence, by subtracting it from Eq. (39), we obtain the subsubleading-order equation
involving terms only up to 8" * 2. Expanding Egs. (6) and (39) up to the 3" * 2 terms, we find
(see Appendix C for details)

(W1 tt) JHnt G2 M2 kins L (1) flnst Y Hnsd
K Abl A " 8“1"'”n+3¢1 K AZ,bc A(,’i

_ (n E’(“Ml"‘ﬂn—l)gzyﬂnﬂrﬂrl 42 I}(M'“Mn)glz,unﬂa) 8"‘;1;:1‘H2i| 8M|~-Mn+z¢i

_ {_n(nz— 1) E(“lazlll"'Mnfz)/_lz’ﬂﬂflﬂ" (8a1a21:1[l:in+l)A$Zn+2

%(amlmun,l) 9 A2 un0 AMn+1 Hnt2 _ AMn Mgl Hnt2
+n K 24 (Baar Ay ) Al Ay A 0y Ay,

+ IzllununﬂaalAZ;H]
+ I}(ﬂl-»-ﬂn) |:_/_12,a1a2 (8a1a21‘_1g,~"+1) A;Z'Hz + 21‘_12’Mn+1a8a-/4§:}:; + 1212,#;1+1#n+2;1‘gi8a3m
— 2A§‘?‘bcilcltin+1)8aA;Zz+z _ AZ'};IAZ"HBM] }8M1~~-//-n+2 wa + O (an+1wa) ] (40)

The coefficient of the ¥+ component of the highest-order derivative term 8" * 2y on the right-
hand side of Eq. (40) determines the (non-)degeneracy of the characteristics in the subsublead-
ing order. This coefficient is obtained by contracting ;151."“ with the coefficient of 8"+ 2y, in

Eq. (40). We can show that the terms proportional to K (@®ki=1i-2) and K@ ki-1-1) become

zero (see Appendix C). Among the terms proportional to K (i1 - the first one, Balazf_ll’jl.”“,

vanishes by acting /_15;“”, and the remaining term must not vanish for the ¥ component to be

non-degenerate in this order. Hence, the non-degeneracy condition is given by
(2124“#232,5,1, — AR AV By 4+ 24P g, AR 2A§f‘ac£1§f;)aaA*;;) ABE, EE, #£0 (41)
for any &. Using Eq. (30), this can also be written as
(A0, Ay — AL, A2 B A 2 AL, A A, 2
— AL A A0, AL ) 1610y 7 0. (42)

To summarize, the necessary conditions for invertibility are given by Eqgs. (32), (37), and (42).
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2.3 Simplification of the necessary conditions

Above, we derived the necessary conditions for invertibility, Egs. (32), (37), and (42), in the
two-field case with first-order derivative. We present a simpler form of these expressions in this
section. The simplified form of the necessary conditions will be helpful in the proof that these
conditions are also sufficient in the next section. In addition, we will use these expressions for
building examples of invertible transformations.

2.3.1  Simplification of Eq. (32). First of all, we simplify the condition in Eq. (32), which
implies that the rank of 4% &, is less than two. Since we have assumed that A% &, has only one

eigenvector with a zero eigenvalue, the rank of 4% &, has to be unity for any &, i.e.

gAY + &AL 4+ FEpAD (43)

is a rank-1 matrix for any &, = {£0, &1, ..., §p}, where D is the spacetime dimension. Then, by
setting £, = §,,, foreach 1 < v < D, we find that 4}, is a rank-1 matrix for any v. Any rank-1 2
x 2 matrix can be written as a product of vectors, i.e. the matrices 4%, Al ..., AP are written

as
A, =vud, a4, =viul, ..., AL=rPUPl. (44)

Below, we show by the induction that, if the rank of Eq. (43) is I for any &, 4/, can be written
as

A, =vult or Al =V!I'U. (45)

For pu < 0 (that is, u = 0), A, is written as VU, and thus, regarding (V°, U°) as (V;, U}")
or (V*, U,) for u = 0, Eq. (45) is satisfied. Then, what we need to show is that, for any inte-
ger k, Eq. (45) is satisfied for u < k + 1 if it is satisfied for u < k. Since the two choices of
Eq. (45) are symmetric with respect to U, and V;, without loss of generality we assume the
former (4%, = V;UJ) is satisfied for u < k. If AX™ =0, A% = V;U} for u < k + 1 is trivially
satisfied. Therefore, we consider the case where A5 = VA UK+ oL 0. Tf P*+! is parallel to V;,
by rescaling V<! — V! = 1, UK — U1 /c with a constant ¢, we can satisfy 4% = V;U}
forpu <k+1.

We show that if V/‘“ is not parallel to V;, all the U} for u < k + 1 become parallel, and thus
Al can be written as V*U,. We consider a vector &, = (£¢, &1, ..., §k+1,0,0, ...), where the § ,
(u < k + 1) are arbitrary. Since A’ &, should have an eigenvector e“(§,,) with zero eigenvalue,
we have

k
0=dAhg.e’ =V; Y Ules, + VT UM gy (46)

n=0

If Vik“ is not parallel to V;, the above equation gives

k
D Ukt =0, UMgpe =0. (47)
n=0

Now suppose that £, | # 0. In this case, the latter of these equations uniquely fixes ¢ because
the field space dimension is two. Then, because ¢“ is independent of &, (u < k), and also the
&M for u < k are arbitrary, Eq. (47) implies

Ule'=0  (n<k+1). (48)
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This implies that all the U} (1« < k + 1) are normal to ¢“. Since ¢ is non-zero and the space
of index a is two-dimensional, all the U} (u < k + 1) are parallel to each other. Therefore, by
rescaling U,, A can be expressed in terms of the common U, as

Ay =C'VU, (n<k), A =vH'u, (49)
where C* is a normalization factor. Therefore, by redefining {C*V", Vl.k“} (w < k) as
(v, Vi1, A% is written as VU, for u < k + 1.

1

2.3.2  Further decomposition of Al,. We have seen that one of the invertibility conditions,
Eq. (32), implies that 4!, is decomposed as Eq. (45). Using the other conditions, we show that
A!, can be decomposed further as

Al = d"V;U,. (50)
Let us show the proof in each case of Eq. (45).
2321 AL =wUl
In this case, if we can show U, = a*U,, A, is expressed as a* V;U,. We define a vector n; normal
to V; as

nj:=e€;V;. (51)
We also define a vector mi; with spacetime index u as
mly = e U}’ (52)
Then, A and A, are written as
A% = m'n;, Ay = UMV, (53)
and the condition in Eq. (37) becomes
n;Bjym!; =0 (for any ). (54)

Now we show that U} has to be written as a* U,. This can be proven by contradiction: the
assumption that two of the U} are not parallel to each other (for instance, U? is not parallel
to U!) leads to a contradiction. Under this assumption, two of the m/; are correspondingly not
parallel. Since the space spanned by index « is two-dimensional, Eq. (54) implies that

n,-B,-a =0. (55)
Then, the left-hand side of Eq. (42) becomes

[Vf UM U mbny (3pBiy) myn; — mEUM e (3gVi) ULV, Bjem!n;
— mB UMy (395 Vie) minym!n ;3 (mn;) + mE Ugny (35 Vie) UL VUV, (min;)
—mP U 'y (Bﬁ Vk) UV, ULV 0y (mi,”n,-)}gméuzgw
= {ijUC‘“ Uc”szmﬁf“ni [nk (aﬁBkb) + (agnk) Bkb]
— Vimln (9pVi) U UL (USmE + USml) (9an:)
— Vimnc (9Vi) (U mimi> — Uy U U2 + U UYRUE) (0aml) ni}smsmsm

=0. (56)
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Here, we used Eq. (55) and

Agab = ng U}fLI’lk (8ﬂ Vk) s BZ,ab = mgniaﬂBib, 1&2’“1#2 = U[f“ U;’ZViVi,
mymy, = UrU),  UMml? =0, ViV +mn; = Vs,
mgmmitz) + Ub(m U#Z) = UM UM8y,, (57)

nj (3/3 Vk) Vijc = — (algnk) VijBjc = — (3ﬁnk) (Vij + nknj) Bjc = _Vk2 (3lgl’lj) Bjc,
i (9pBrs) + (9pm1) By = 0 (micBry) = 0,
U mgml? — UpU UM + UM U U

= — U (m"'m) + U/ UP) + UM URUS = 0.

Equation (56) is inconsistent with the non-degeneracy condition in Eq. (42), and thus all the
U/' are parallel. Hence, U/' can be written as a* U,,.

2322 AL =V/'U,
The proof in this case is parallel to that for the case 4%, = V;U," shown above. Defining m, and
n! similarly as

my = €;;U,, nt = Eij,H, (58)
the condition in Eq. (37) becomes
nt (B =V 0pUs)my =0 (forany ), (59)

where we used

4 1

nf Vit = e Vv = —vlial. (60)

As we have A, = V;U)', we show that V/* = a"V; by contradiction: we assume that two of
the V/* are not parallel to each other. Then, two of the n!* are not parallel to each other, which
gives the condition

(Biw — V85U, m, = 0. (61)
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However, we can show that this is inconsistent with the non-degeneracy condition in Eq. (42).
The left-hand side of Eq. (42) is calculated as

{UC2 v Vkmmani (0pBjp) mpnl> — my [n_’;‘ij + n_’f dp (V}“ Ub)] UpV}* Byemen'®
o 2, [ B+ g (VI1U) | U VUt (o) }Smé‘méw
_ {m VeV | (95B0) Upme + BaUpUsdpme + 0 (VU ) UpUndome | nt*
— Ma [n?‘ij + nfaf‘ (V.im Ub)] UpV{* (Bre = Vi 3 Uc) meni? }Eﬂlsﬂzéﬂs
= ma VI Ve [y (Biome) UR — Bamymedgme + 5 (VOUy) UpUedame | 06, £,k
kk]_/3 Jettte b b Opiite B ]b bYcOuallle [ F; SuiSusSus
= My Vkm Vkmn? dp |:V;" (0. Ue) mc’] sz - V;X (02 Up) mpmdgm,

+ (aﬂ V;x) U})zUcaamc + qu (8,8 Ub) UbUcaamc}n;’Bgmguzgug

=m Vv {2 [ (0s75) QU me+ Vi 0,U) Bgme + (95V) U, |

— V(0 Up) (UpUe + mame) gme |l 61,8158
=0, (62)
where we used Egs. (60) and (61), and
A =g [ B+ 03y (VIU) |, Bos = manl s By, A0 = YUYV,
AL my =0, U, dgme = — (8,U,) me, Ven dup U, = 0,
UaUp + mamy = U8y, 1V (35Up) UpUe (dgmc) = —15 VE (3, Uy) Up Uy (3pme) -
(63)

This is inconsistent with the non-degeneracy condition in Eq. (42), and thus all the n!" are

parallel. This implies that V/* can be written as
Vii=d'V. (64)

2.3.3  Further simplification of Egs. (37) and (42). We have shown that, for the invertibility
conditions to be satisfied, 4/, should be written as

Al = a"ViU,. (65)

Without loss of generality, we can normalize V; and U, as V;V; =1 = U,U,. We define unit
vectors n; and m,, that are normal to V; and U, respectively as

n; :=€;;Vj, my = €, Up. (66)
Since 4% is written with a*, V;, and U,,, the matrices 4", A", 4%1, AL - and By gy are written
as
A% = d*mn;, /]Zi =a"U,V}, AP = a'a’,
‘AlZL,ab = a“mam[B,-b +df (8,3 V,~) U;,], By wp = mania® g Bip. (67)
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Substituting the above equations into Eq. (37) we have

I’l,’Bl‘ama =0. (68)
The non-degeneracy condition in Eq. (42) becomes
nia’ (3gBia) mq — niBiyUyV;Bjymy — nia” (85V;) VB jamy # 0. (69)

The first term on the left-hand side can be transformed as
niaﬁ (aﬁBw) m, = —a? (aﬂni) B;,,m, — n,'Biaaﬁaﬂma
= —d° (aﬁni) B,,m, — n;B;,U, Ubaﬂaﬂmb
= —d° (Bﬁn,-) Bjumy + n;Bi,Ua? (8,3 Ub) my, (70)

where we use the fact that U, U, + m,m;, = §,, and Eq. (68). The last term of Eq. (69) can be
transformed as

—n;d” (8/3 V,~) ViBjum, = a? (E)ﬂni) B;,m,, (71)
where we use the fact that V;V; + nn; = §;; and Eq. (68). Then, Eq. (69) can be written as
niBiaUy(ViBj, — aP 95 Up)my, # 0. (72)
This means that both of
n;Bi,U, # 0, (ViBj, — a’d5Up)my, # 0 (73)

should be satisfied. As a result, the invertibility conditions in Egs. (32), (37), and (42) are equiv-
alent to the simplified conditions in Egs. (50), (68), and (73).

3. Sufficiency of the invertibility conditions

In the previous section we derived the necessary conditions, Egs. (50), (68), and (73), for in-
vertibility of a field transformation involving two fields and up to their first-order derivatives.
In this section we show that these conditions are also sufficient conditions, i.e. Egs. (50), (68),
and (73) are the necessary and sufficient conditions for invertibility in the two-field case. As a
preliminary step, in Sect. 3.1 we introduce the notion of “partial invertibility” for a field trans-
formation whose inverse transformation is uniquely determined for part of the variables. Then,
we show in Sect. 3.2 with the partial invertibility that Egs. (50), (68), and (73) are the necessary
and sufficient conditions for invertibility.®

3.1 Partial invertibility
We consider the invertibility of a transformation ¥, — ¢;. Suppose that the transformation
can be described by

F[(wa’ 8#1”41» 3M3M//a, c P au¢i9 8uav¢i’ cees xM) =0, (74)
where I runs from 1 to a constant NV If N is equal to the number of all the degrees of freedom
in Y¥g, 3% as 3,00y, ..., which is denoted by Ny, we can use the implicit function theorem
by regarding ¥4, 0,,%4, 9,,0,¥ 4, ... as independent variables at a point in spacetime. However,
we may not need to have NV, equations of the form of Eq. (74) to fix ¥, uniquely in terms of

6See Appendix E for the difference between the standard approach based on the inverse function theo-
rem on functional spaces and our approach based on the implicit function theorem on finite-dimensional
subspaces associated with the functional space.

"For instance, if F; depends on up to the second-order derivative of v/, the number of all the degrees
of freedom of (Y4, 0, ¥4, 0,00 a)is N+ N x D+ N x D(D + 1)/2, where N and D are the number of
Y, fields and the dimension of spacetime, respectively.
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¢4; indeed, even if we have less than NV, equations, i.e. N' < Ny, it may be possible to prove the
uniqueness of v, if the equations have a special structure. Once ¥/, is fixed in this manner, its
derivatives d,¥ 4, 9,,0,¥ 4, ... are uniquely fixed by differentiating v, repeatedly.

To illustrate the procedure explained above, we first discuss a generic case where the equations
are for functions of variables x,, y», z., and wy,

Fl(xa, Ybs Zes Wd) =0, (75)

where x, corresponds to v, while y;, and z. correspond to some combinations of the derivatives
0,V a, 0,00V, ...% The difference between y, and z, is explained later. w, corresponds to the
other variables ¢; and their derivatives d,¢;, 9,,0,¢;, ... If the number of equations is the same
as the sum of those of x,, y,, and z., we can use the implicit function theorem for them, i.e.
X4, Vb, and z. can be fixed uniquely in terms of w,, provided that the conditions for the implicit
function theorem are satisfied. However, even if the number of equations is less than the sum of
those of x,, y», and z., it may be possible to fix x, in terms w, uniquely if Eq. (75) have a certain
structure, as explained below. Some of y, and z. may not be fixed uniquely in this process, but
the uniqueness of x, can be shown independently.

The variables x, are fixed by stepwise application of the inverse function theorem provided
that the function Fj has a structure given by Eq. (77), which will be introduced shortly. Suppose
that we have N + M equations of the form of Eq. (75), i.e. Iruns from 1 to N + M (= N'), where
N denotes the number of the fields x, and M is a positive integer. The variation of Eq. (75) is

0f7

0F;
SF1(Xa, Vb, Ze; Wa) = (Xas Ybs Ze3 Wa )84 + a—yb(xa, Vbs Zes Wa)8Vp

a

oF oF
! (Xas Vbs Ze3 Wa)dze + =L

+ 9z, Iwg

(X4, Vb, Zes Wa)dwy. (76)

Here, we assume that §y, and 8z, appear only as M independent combinations in any § F7, i.e.
8 F is expressed as
oF; oF;
8F1(Xa, Yo, Zes Wa) = ——(Xas Vb, Ze3 Wa)8Xq + ——(Xa, Vb, Ze; Wa)SWa
0X, owy
M

- Z Bi(Xay Yoy 2e; Wa) (89 + Boe(Xa, Vi, 263 Wa)S2e). (77)
b—1

Without loss of generality, the principal components of M independent combinations are set
to be y;, which means that the rank of By, is M. This makes the difference between y; and z. It
also fixes the number of y, to be M. Then, picking up M equations from the F; such that yj, is
fixed uniquely, we use the implicit function theorem to fix only y,. Without loss of generality,
we assume that these equations are given by F; with N + 1 < I < N + M, that is, the square
matrix By with I=N+1,..., N+ Mand b =1, ..., M is regular. Since the numbers of these
equations and of y, are the same, we can apply the implicit function theorem for y,, and then
yp 1s uniquely expressed in terms of x,, z., and w,.

8For our purpose of proving the invertibility for the two-field case with first-order derivatives given by
Eq. (5), x, corresponds to v/, yp is a component of 3, ¥, and the z. correspond to the other components
of the derivative 9,v, and 9,0, ,.
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Now, the y, are uniquely written as functions of x,, z., and w,. Substituting y,(x,, z., Wy)
into Eq. (75) for N+ 1 < I < N + M, the derivative of Eq. (75) with respect to z, is given by

M
ayb ~
Z Bry(Xas Ybs Zes Wa) <8 + Bbc) =0. (78)
b=1 Ze
Since By, is assumed to be regular, this equation implies that
d ~
2 B =0. (79)
0z,

This equation fixes the z. dependence of y,(x,, z., ws). Now the remaining equations can be
written purely in terms of x,, z., and wy as

F[(Xa, yb(xm Ze, Wd)v Zes Wd) =0, (80)

where 7 runs from 1 to N. Their variation is given by

OF; OF;
8F7(xa yo(Xas Zes Wa), Ze3 Wa) = {E(xa, Vbs Ze; Wa)dXq + —8W{(xa, Vbs Ze; Wa )dWa

a a

- ay yp
b

+ E Bry(Xa, yb, Zes Wa) (—8xa + _5Wd>j| (1)
0Xx, oWy
b=1 yb=yb(Xa,Zqu)

The §z. term is canceled here because of Eq. (79). This implies that the F; for /=1, ..., N are
independent of z,, i.e. they are functions of only x, and w,. Since the number of equations is
the same as that of x,, we can use the implicit function theorem; if

Vb

M
IF
det[ L (Xan Voo 26 Wa) + O Bip(Xas Yo 265 Wa) } £0 (82)
“ ybzyb(xmztswd)

0x P 0x,

is satisfied, x, has a unique solution locally and it is written in terms of only w,.

In the next section we will see that the transformation in Eq. (5) in the two-field case behaves
as Eq. (77) once the invertibility conditions in Egs. (50), (68), and (73) are imposed, and then
¥, is fixed in terms of ¢, uniquely as a consequence.

3.2 Sufficient conditions for the invertibility of our transformation
The transformation in Eq. (5) can be rewritten in terms of a function of v, 9,¥,, and ¢; as
F(Wa, 0,%4; éi; xt) = &i(‘pas uVa x") — ¢ = 0. (83)

We analyze this equation in the two-field case imposing the necessary conditions for invertibil-
ity, Egs. (50), (68), and (73). Operating n;0,, on Eq. (83), we have

G,u(wa: a;ﬂ/fa; ¢iv ap,(bi; x,u) = niap,E' = niBibUbUaauv/a - niCiu - niaud)i = O, (84)
where By, n;, and U, are defined in Sect. 2.3 and C;,, := d¢;/dx*. The variation of F; becomes

niéF; = (n;BipyUp) U8, (85)

Vi, = (ViBipUp)Usb%ry + (ViBipmy)mdr, + a* Ua5(3;ﬂﬁa), (86)

where we omit the variation with respect to ¢; because it is irrelevant to the condition for the
implicit function theorem.
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Now let us evaluate the variation of a* G, which is given as
8§ (a"G,) = d"n;is (0, F) = nid (0,.)
i

R 0§ 0k
_a“nla(a(a %)8 10 Wy + alﬁa Miﬂa"f— )

27 27 25,
8 R 0 P
) ¥s)

3 (0a¥a) 3 (35V5) 3,0 (9 axrd (dg
3% 3% 3%
(T e e¥e gagahet gy oot 58 (000
= auni(auBib)UbUa(Svfa + auni(auBib)mbmuSVfa
+ nz'(au auVi + BibUb)av Uaa(avwa)» (87)

where we used 9, F; = 0 at the first equality, and some formulae from Sect. 2.3.3 such as the de-
generacy condltlons Nise (3451}, = n; A%, = 0 and n;B;,m, = 0 at the fourth equality. The key point
is that, in Egs. (85), (86), and (87), 8(9,,¥4) appears only in a linear combination a* U,8(9 .1/ o).
The last term proportional to a* U,6(9,,v¥,) in Eq. (87) corresponds to the last line of Eq. (77)
for M = 1. This allows us to use the result of Sect. 3.1 by regarding v, 3,¥4, and 9,0,V as
independent variables and also identifying x,, y», and z. as ¥,, a component of 9, ,, and the

other components of (3,¥ 4, 9,,0,¥,), respectively. Then, the condition for invertibility is

oF; oF
Vg le Viggme | Vg >
aFf'U D 190
ni—Uy, ni——my
0 # det a%a 3%1 3(3(;%)
9 (a™ 9 (a* M
(a u) U, (a M)ma (a ) U,
Yq Y, 0 (0,¥a)
ViBiaUa ViBiama a’
= det n;Bi,U, 0 0
a*n; (8,Big) Uy a"n; (0,Bia) m| n; (a*9,V: + Bi,U,) @
= —a"(n:BiaUa)*(V; B}, — a3, Uy)my, (88)

where the components of the matrix are expressed with respect to the bases (V;, n;) and (U, m,),
and also the degenerate row and column whose components are completely zero are removed.
Equation (88) is satisfied if n;B;,U, # 0 and (V;Bj, — a9, Uy)my, # 0. Therefore, the necessary
conditions for invertibility, Egs. (50), (68), and (73), are also sufficient conditions.

4. Examples of invertible transformations

Invertibility conditions for transformations ¢; = ¢(y,, 91,) have been established in the pre-
vious sections. In this section we propose some non-trivial examples of field transformations
that satisfy the invertibility conditions. In principle, the most general invertible transformation
could be constructed by finding the general solution of the invertibility conditions. Unfortu-
nately this is not an easy task,’ so we proceed by introducing the following field transformation
ansatze:

(1) ¢i=D> (Waa ) Vi(¥a) + V(Wa) (Yu = Ua(wa)auWa);

9See Ref. [1] for a previous attempt at constructing examples of invertible transformations.
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(i) ¢ =b(Wa, Yo) Vi(¥a) + I;vl(ll’a) (Yu = 67“(%)3“%);
(111) i = ¢ (Wa’ Y) (Y = 67”(%)%(%)%%)-

These ansatze are chosen so that the first degeneracy condition, Eq. (50), among the invert-
ibility conditions is automatically satisfied. The second degeneracy condition, Eq. (68), and the
non-degeneracy conditions, Eq. (73), are then used to constrain the form of the transforma-
tions. Although these transformations may not span the most general transformation satisfying
the invertibility conditions, they give a good starting point for investigating the most general
invertible field transformation.

In the derivation below, we use the fact that the vector U, can be set to a constant vector (0,1)
if it depends only on ¥,. We explain this method in Appendix F.

4.1 Ansatz 1: ¢ = b (Yo, Ua(Wa)du¥a) Vi) + Via)
We first consider the following ansatz for a field transformation:

¢ =b (Ve Y) Vitwa) + Vi¥a)  (Yu = Ua(Wa)Bua) (89)
where V;is normalized as V;V; = 1. In this transformation, U, can be set to U, = (0, 1) without
loss of generality. It then follows that

Ua = (0, 1), m,; = (1, 0), n; = eijVj- (90)
For Eq. (89), the first degeneracy condition, Eq. (50), is given by
3o, ab
"

Al = = U,V = a"U,V,. 1)
3 (0uva) Yy

The second degeneracy condition, Eq. (68), is evaluated as follows:

ap; b v, v,
By, = = Vi+b , 92
I T A ) ©2)

av; av;
nBigm, =b (Y, Y, ) ni— +n,—. 93
W ) mig + g 09

In Eq. (93), only b depends on Y, while the other terms depend only on v,. Because Eq. (93)
should be satisfied identically for any ¥, and Y, it implies that

av;

bni— =0, (94)
oY
av;

n—- =0 95
3, 95)

Equation (94) implies either nl% =0orb=0. ni% = 0 implies V; = V;(¥») thanks to the
normalization V;V; = 1, while b = 0 gives a transformation without derivatives, ¢; = ¢;(V¥,).
Below, we focus on the case n,(f;’—l;l = 0, in which the transformation depends on derivatives ¢;
= ¢:(Yra, 3V ,). In this case, Eq. (95) implies that 87;/9vy is parallel to V7, i.e.

S =SV = T Vi) + FiC) 96)
for some functions é(v,), c(y¥1) = [ &(y,)dyn, and Vi(y). The ¢ V; term can be absorbed
into the b ¥; term in the ansatz of Eq. (89), and the remainder V() depends only on v».
This implies that, once Eq. (90) is imposed, we may set ¥/; = V;(y») in the ansatz of Eq. (89)
without loss of generality by absorbing the ¢ V; term. Below we continue the derivation under
this assumption.
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The non-degeneracy conditions, Eq. (73), are given by

v, i
0 # n;Bj,U, = bn—- + nj——, 97
# v 39 o7
db  db AU, v b
0 # (ViBiy — a*0,U,) m, = 0 Vi —a*a,U, —, (98
# Vil = e, L) m (awﬁan Voag, g, T )m e Y
which can be regarded as constraints on b, V;, and V.
To summarize, a transformation given by
¢ = b (Va, Y,.) Viya) + Vi(y2) (Y, = 0,9n) (99)

is invertible if Egs. (97) and (98) are satisfied. One may further apply an invertible transfor-
mation ¥, = ¥,(1;) such that det(dv,/8v,) # 0 on Eq. (99) to reintroduce non-trivial U,(v/,)
and construct a transformation of the form of Eq. (89).

42 Ansatz 2: ¢y = b (Var @ (V)3 Va) Via) + Vi(a)

The next ansatz is given by

b = b (Yar Ya) Vi(¥a) + Vi(a) (Yo = a"(Ya)dura) - (100)
The first degeneracy condition, Eq. (50), is automatically satisfied for this ansatz:
., db
Ai’fz = aﬂaY Vi=ad" (Y, YO)Us(Way Yo)Vi(ira). (101)

The second degeneracy condition, Eq. (68), is given as

ab v, vV
Bi,=—Vi+b —, 102
ov. o, T av, (102)
v, v v, v ab
iBia a = 1 b a i b g_=0- 103
e "(awﬁam)’" o‘”(wﬁm) 7 (109
Equation (103) is equivalent to
p 4 v b
oy oY P
% = G = —¢(Yu, o) (104)
<b3'¢2 + 3_1//2> 3Y2
v, av; v, v
—n|b— + +cWy,, Y)n | b—+ —1=0,
( v 31/’1) W ) ( Y 31#2)
ab ab
— > =0. 105
aY, +ey )aY (105)

Equation (105) may be solved for ¥;(v,) and b(,, Y,) once Vi(¥,) and (., Y,) are freely
specified, and each solution gives an invertible transformation as long as it satisfies the non-
degeneracy conditions of Eq. (73).

In a special case where the function ¢(vr,, Y,) depends only on v, but not on Y,, one can
construct invertible transformations more explicitly as follows. When ¢ = ¢(y,), we may apply
an invertible transformation v, = ¥,(1,) on Eq. (105) to eliminate ¢(v,); that is, Eq. (105)
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transforms under ¥, = ¥,(1/,) as

0y (L 0Vi 3V oV;
T (bamﬁa+az/7a> (‘/’“)”’ (w"’ ”)(awa a%)

Y GIVa v V; 3y GRS av; v,
a b ~ ~ a b_~ —~
(aw et )31/f2) ( o1 awl) * (aw1 e )awz) ( 90, aw)

(106)
and then the function v/, = v/,(1,) may be chosen (at least locally) so that
09 d 1//2
b )— =0, 107
AR (107)
with which Eq. (106) reduces to
v Vi
oY1 Y

This is equivalent to setting ¢(v,) = 0 in Eq. (105) by means of a transformation in ¥, space.
When c(yr,) = 0, Eq. (104) implies that

3V(1ﬂa) Vi) ab

i\VYa b as Y, = 0, “~

n(w)((w D 7

The second equation implies that b = b(l//a, Y>), which gives U, = (0, 1) and m, = (1, 0). In

the first equation, the first term involving b(vyr,, Y>) depends on Y, while the second term is
independent of Y,; it then follows that

—0. (109)

Vi(Ya)

b(Yra, Y2)ni(Va) By, =0, (110)
WViWa)
ni(Ya) 3y, = 0. (111)

Equation (110) implies either V; = Vi(y¥») or b = 0, for the latter of which the transformation
in Eq. (100) does not involve dv,. Below, we focus on the former case, which gives a trans-
formation with derivatives. In this case we can show that V; = f(¥,)Vi(¥») + Vi(y) for some
function f(¥,) and Vj(y») using Eq. (111) as we did around Eq. (96) for the previous ansatz.
Then, setting U, = (0, 1), by absorbing the ¢ V; term into the b V; term we may set V; = V()
without loss of generality.

To summarize the results above, a transformation

¢i = b(Ya, H2)Vi(Y2) + 171(1#2) (Ya = 67“(%)3“%) (112)
may be invertible if Eq. (111) is satisfied. Adding to that, the non-degeneracy conditions in
Eq. (73) must be satisfied for invertibility, and also an invertible transformation v, = ¥,(v3)
may be applied to construct a transformation with non-trivial U,(v,). Actually, this transfor-
mation is a special case of the transformation in Eq. (99) examined in the previous section,
although we have started from a different ansatz. This result follows from the assumption ¢ =
c(yr,) imposed at Eq. (106), and more general transformations are obtained if we solve Eq. (105)
for c = c(¥y4, Ya).

4.3 Ansatz 3: ¢; = ¢i (Va, @" (V) Us(¥a) 0, V)

The third ansatz we consider is

¢i = ¢i (Yo, Y) (Y = 67“(%)%(%)3#%) ) (113)
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for which the first degeneracy condition Eq. (50), is satisfied automatically as

=d" (YU, (%) (Iﬁa, Y)=d"(Yu, V)Us(Y)Vi(¥a, ¥). (114)
In this expression, V; is normahzed as Vl Vi=1,1e.
1 0¢; _ . —_—
= ey e V) AW )= DE W, Wi=1 (119

where v(v,, Y) is a normalization factor. For simplicity, we assume v # 0 in the following.

Following the procedure explained in Appendix F, we set U, = (0, 1) and m, = (1, 0) without
loss of generality. Then, using n; = v~le ;j0¢;/0Y, the second degeneracy condition, Eq. (68), is
evaluated as

i 0¢; dat a aat
Bu= 20 B0 = 2O 2, (116)
By, Y 3y, B WV
d¢; d
niBum, = v~'e;; 99i 90; _ . (117)
3y 9Y
Equation (117) implies that, provided v # 0,
I 3
Wi _ 0.
T e (118)

)
that is, the gradient vectors (g%l %) and (M 92) are parallel to each other in the (1, Y)
space. It then follows that

¢ =F (Y2, 51(¥0, ), (119)

where F(,, ¢1) is an arbitrary function of ¢ and y,.!°
Let us examine the non-degeneracy conditions of Eq. (73). One of them is given by
091 0 _ <%@ d¢by a¢1>

U dY W dY Y aY

|:8¢1 IF 3¢ <£+£%>%]__ _ OF 3¢y

0 % n;Bi,U, = niBp = v 'e

— — (120)
Y ¢ Y Y2 0y 0 A1 Y

This equation implies that v, dF/d¢, and d¢;/0 Y must not vanish. The other non-degeneracy
condition is given by

0 # (ViBiy — a*d,U) m, = V; (aaz + v Vid 0, ) = l;’;’;; +vi50, . (121)
To summarize, a transformation as in Eq. (113) is invertible if ¢, is given by Eq. (119) and

Eqgs. (120) and (121) are satisfied.

5. No-go for disformal transformation of the metric with higher derivatives
Here we apply our approach to disformal metric transformation. The disformal transforma-
tions involving only one derivative of the scalar field yx,

& = C(x, X)guv + D(x, X)VuxVux, (122)
where X =9, x 9" x, are invertible, provided that C(C — j—gX — 3—?)(2) #+ 0; see, e.g., Refs. [7,8].
This follows from the fact that from the above expression one can straightforwardly express the
metric g, in terms of g,,, x, and V, x. Thus, the transformation in Eq. (122) is a one-to-one

10When the (v, Y) space is separated into connected sets by borders on which the gradient vector
( ng‘ , g";} ) vanishes, the function form of F(v5, ¢1(¥,, Y)) may be different on each connected set on the
(Y1, Y) space. The non-degeneracy conditions, however, imply that d¢/d Y # 0, and this guarantees that

F(yr2, ¢1) is given uniquely on the entire (¢, Y) space.
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change of variables (x, g.v) <> (x, &.v) as long as the above condition is satisfied. It is useful
to check that the transformation in Eq. (122) is invertible by applying our method. Although
the method we developed above does not apply to metric transformations in general because a
metric is a tensor and has more than two components (except in a one-dimensional spacetime),
we can use it when applied to particular ansatze that contain scalar functions only. Indeed, let
us restrict ourselves to the case of the homogeneous cosmology,

gudx"dx’ = —n(t)dt* + a(t)dx?, x = x(0), (123)
where a(7) is the square of the scale factor and n(z) is the square of the lapse function. Note that

we keep n(z) in the ansatz of Eq. (123), since it changes under the transformation in Eq. (122).
For Eq. (123) we obtain, under the disformal transformation in Eq. (122),

fi=Cn— Dyx>, i = Ca, (124)
where a dot denotes a ¢ derivative, and
<2 <2
C=ci.x)=C(x0.- LD p=p(xm LYY, (125)
n(t) n(t)

Note that the above transformation can be considered as the change of variables {n, a — 1, a}
(with the time-dependent external function x (7)), which does not involve derivatives. Therefore,
by virtue of the standard theorem on invertibility, the transformation in Eq. (124) is invertible
if det B;, # 0, where Bj, is given by

C—XCy—X?Dy O
B, = , 126
( —%XCX C) ( )

so that we obtain C (C — j—}C(X — Z—QX 2) # 0, which reproduces the result we cited above.

On the other hand, one can consider a more general disformal transformation by including

two derivatives of the scalar as follows:

guv = C(X’ X)g;w + D(X» X)VMXVUX + E(X, X)V,U.VUX' (127)
For the above transformation one cannot directly express g, in terms of g, since the last term
of the right-hand side of Eq. (127) also contains the metric g,,,. Therefore, it has been conjec-
tured that the inverse transformation of Eq. (127) does not exist [9]. However, to the best of
our knowledge, this has not yet been proven. Indeed, although the simple inverse of Eq. (127)
does not exist, this does not necessarily mean that there is no more complicated inverse trans-
formation. Using our method, however, we are able to demonstrate that the transformation in
Eq. (127) with non-zero E is indeed not invertible.

To do this, let us assume that the transformation in Eq. (127) is invertible, and we will see that
this assumption leads to a contradiction. The Friedmann—Robertson—Walker (FRW) homoge-
neous ansatz in Eq. (G3) expresses a subspace of functional space described with g, and x.
Invertibility limited to this subspace gives the necessary condition of invertibility for the full
functional space. Here, we will show the violation of this necessary condition, which leads to a
contradiction. From Egs. (127) and (123) we have

ﬁ=Cn—Dx2—E<;z—X—"), i=Ca—EX2 (128)
2n 2n
which is a generalization of Eq. (124) for the case of non-zero E.

As in the case considered above, we treat Eq. (128) as a transformation relating a set of two
variables (n(¢), a(r)) with (fi(r), (¢)) with the time-dependent external function x (7). Contrary
to standard disformal transformation, in this case the transformation involves first derivatives
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of the variables n(z) and a(¢), and therefore we should apply our method to check whether the
conditions for this transformation to be invertible are satisfied. We have

Ex {1 0
A,-a_$<0 _1>. (129)

According to our discussion above, the leading-order condition for the transformation given
by Eq. (127) to be invertible is the vanishing of the determinant of Eq. (129). As we can see,
this condition is clearly violated for non-zero E, and therefore we arrive at the conclusion that
the transformation in Eq. (127) is not invertible unless £ = 0.

Once we generalize the structure of the higher-derivative term as [10,11]

g,uu = ng;w + —FlX;LXv + ]:2Xuv + f3X(u Xv) + f4XuXv + fSXgXuav (130)
where F; = Fi(¢, X, B, Y, Z, W) and
B=V,Vty, Y=V, xV'X, Z=V,XV'X, W=V‘V'yV,V,x., (131)

the structure of A4,, is changed and the no-go result obtained above for the transformation in
Eq. (127) could be avoided. We examine such a possibility in Appendix G.

6. Discussions

In this work we have focused on field transformations that involve up to the first-order derivative
of fields, ¢; = ¢i(Ya, 0 Va, X*), between two fields ¥, and another two fields ¢;, and shown
conditions for this transformation to be invertible. A field transformation of this type changes
the number of derivatives acting on the fields, and hence in general it changes the number of
degrees of freedom. When the transformation function satisfies certain conditions, however,
the appearance of additional degrees of freedom is hindered and the transformation can then
be invertible.

We emphasize that the degeneracy conditions and the procedure to derive the complete set of
invertibility conditions given in Sect. 2.1 apply to field transformations that involve arbitrary
numbers of fields and arbitrary-order derivatives, though we have presented expressions only
for transformations with first derivatives just for simplicity. We then, for simplicity, limited our
scope to the simplest case where the transformation maps two fields ¢; (i = 1, 2) to other two
fields v, (¢ = 1, 2), and then derived the conditions for this transformation to be invertible.
This is because, as we have shown, there is no invertible transformation with derivatives for the
one-field case and hence the two-field case is the simplest. To derive the necessary conditions
for invertibility, we employed the method of characteristics for partial differential equations
in Sect. 2. If a transformation is invertible, the number of characteristic surfaces, which cor-
responds to the number of physical degrees of freedom, must be invariant. The derivatives
contained in the transformation generate extra characteristic surfaces in general, and then the
necessary conditions are obtained by demanding that the extra characteristic surfaces are re-
moved so that the total number of characteristic surfaces is invariant. After deriving the neces-
sary conditions, in Sect. 3 we confirmed that they are actually sufficient. It turned out that the
invertibility conditions are composed of two degeneracy conditions, Egs. (50) and (68), and the
two non-degeneracy conditions given in Eq. (73).

As an application of the thus derived invertibility conditions, in Sect. 4 we showed some
examples of invertible transformations satisfying the invertibility conditions. The invertibility
conditions can be regarded as equations for a function of the field transformation, and if we
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could construct their general solution we could obtain the most general invertible transforma-
tion. Instead of finding the general solution, we proposed some ansatze for the transformation
for which part of the invertibility conditions are automatically satisfied, and as a result we ob-
tained three kinds of invertible transformations as non-trivial examples. Although they may not
be the most general, they span a broad class of invertible transformations and would provide
a basis for the construction and classification of various invertible transformations.

As another application, in Sect. 5 we considered a higher-derivative extension of the disformal
transformation in gravity and examined its invertibility. Using our invertibility conditions, just
by simple calculations we showed explicitly that a disformal-type transformation associated
with the second derivative of the scalar field cannot be invertible, which is the first rigorous
proof as far as we are aware.

Several directions of future research are indicated. In this work we considered the simplest
case that the transformation involves only two scalar fields up to their first derivatives. Pro-
vided that our method can be generalized to transformations involving both a scalar field and
a metric, we will be able to apply our results to studies on scalar—tensor theories and various
modified gravity theories. For example, invertible disformal transformations were utilized to
generate and classify the so-called degenerate higher-order scalar—tensor theories from a sim-
pler theory, the Horndeski theory. This scheme may be generalized to incorporate higher-order
derivatives if we could generalize the disformal transformation by introducing higher deriva-
tives. Such an application to modified gravity theory will be an ultimate goal of this study.
As a first step toward such a goal, it would be useful to consider a generalization to involve
more than two scalar fields and more than first-order derivatives. Such generalizations within
transformations of scalar fields, and also further generalizations including more fields such as
metric, will be discussed in future work.

Acknowledgments

K. L. is supported by JSPS Grants-in-Aid for Scientific Research (A) (No. JP17H01091) and Scientific
Research (B) (No. JP20H01902). N. T. is supported in part by JSPS Grant-in-Aid for Scientific Research
No. JP18K03623. M. Y. is supported in part by JSPS Grant-in-Aid for Scientific Research Numbers
JP18K 18764, JP21H01080, JP21H000609.

Funding
Open Access funding: SCOAP.

Appendix A. Non-invertibility of field-number-changing transformations

Let us consider a transformation ¢; = ¢;(¥, 9¢;) (i = 1, 2) for which the number of fields
decreases but the number of derivatives increases. Naively, this transformation should preserve
the degrees of freedom because the product of the number of fields and the order of derivatives
is invariant under the transformation. To examine this expectation, let us evaluate the invert-
ibility conditions. For simplicity we work in the one-dimensional case where the fields depend
on only one variable, i.e. we work in a point-particle system. The first degeneracy condition,
Eq. (50), is given by

091
0 i o 0 1 0 i
Aia = i = %gl = aI/ans I/1 = _iv Uﬁ = (1’ O)’ (Al)
ﬁ 0 a oy
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where a is chosen to normalize V; as V;V; = 1. Then, using n; = €;V; and m, = €, Uy, = (0,
—1), the second degeneracy condition, Eq. (68), and the non-degeneracy conditions, Eq. (73),
are given by

A 0 . . gy
Bu =29 _ (% T (A2)
oV, F 0 Y
niBiama = O, niBiaUa = nif/ia (ViBia - aUa)ma =0. (A3)

While n;B,,U, = n;V; may not hold, (V;Bi, — aU,)m, vanishes identically and hence the non-
degeneracy condition among the invertibility conditions is violated. Then, we can judge that
the transformation ¢; = ¢;(vr1, 9¢1) (i = 1, 2) is not invertible. This result can be understood as
follows. If the transformation were invertible, then an inverse transformation | = f1(¢1, ¢2),

= f2(¢1, ¢2) would exist. This implies that there exists a constraint fl = f> between ¢ and
¢». This is in contradiction with the fact that ¢; and ¢, are independent variables, implying
that the transformation cannot be invertible.

Appendix B. Derivation of Eq. (6)
In this section we sketch the derivation of the formula in Eq. (6), based on which the necessary
conditions for invertibility are derived. Acting 9, on ¢; = (Va4 du VY, X*) gives
a:/]ja a5 (gd)x/fa) e a_d) B
where the third term is the partial derivative with respect to the exphclt x* dependence of ¢;.
Then, the highest-derivative term of v, contained in 9,,,.,,¢; is generated when all the deriva-
tives other than 9, act on 9,9V, in Eq. (Bl), i.e.

Do i D 0, Yo = A% " (B2)

wre P2y (9 V) i ppa Va i e Vas

This term is the origin of the leading 3"+ 'y, term of Eq. (6). The subleading 8"y, term is
composed of the following two contributions. The first one is generated when 9,,,...,, , acts on
9., ¥, in Eq. (B1):

au,,qbl(wa’ 0 Va, xﬂ) =

i
Opuroopn®i 2 2= Oy, Va = Biapuyo, V- (B3)
Y
The second one is generated when n — 1 derivatives among d,,..,, are consumed to generate
AL 9"y, and the other one derivative acts directly on ¢;, i.e.

n

9’
Oty Pi 2 l Vo = Z O A Opr s i - uue V- (B4)

8)(”’"8(8 w) Nl Hke—1 Kke+17 M —

Contracting with a totally symmetric coefficient Klgl‘.‘ i) the expression appearing in Eq. (6)
is obtained as

K(wmun)am---u,,d)i

> K(M " Z O A O uirssicr e Va = "195?”""””’1)%/152”%1~~-u,ﬂﬁa- (BS)
k=1

The 3" ~ %4, term of Eq. (6) is obtained in a similar manner. The 9*B;, term is obtained by
using n — k derivatives to generate 3" ~ X/, and by acting the other derivatives on ¢; directly.
The 3%+ 4% term is obtained by using n — k — 1 derivatives to generate 3" ~*v,, and by acting
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the other derivatives on ¢; directly. The coefficients of each term, (}) and ( o ), correspond to

the number of combinations of the derivatives among 3" that are used to generate 9%v,.

Appendix C. Derivation of Eq. (40)

We give the derivation of Eq. (40) based on Eq. (6) and using the degeneracy conditions in the
two-field case, Eqgs. (32) and (37). We also use results given in Sect. 2.2.
We start the derivation from

K(M“‘M’X)‘Zl};im"alﬂmmﬂ Oty tnss i
| Rima) gt i
|:K ! AZ,}:;' Aci "
_ (l’l Iz(au,wu,ﬁ])/_12,/1”#”“ 42 ]}(“"”“”)/_12’“"““) aa;lzl;ﬂ] aﬂ]"'un+z¢is (Cl)

which is given by the 3” * 2y and lower-order terms once rewritten in terms of ¥ using Eq. (6),
as explained in Sect. 2.2.
Using Eq. (6), the first term of Eq. (C1) is expressed in terms of i as

Tt ttn) F et 32 2t .
K n Ablrl A n+. n+. 8/}.1~~/L,,+3¢)1

= [0y term]

+ H:n(n;l) z'(alfxﬂlfl'“l‘-n—l)/-lgiﬂflAZ,IJ«MMHH +n E’(alﬂl"'ﬂn—])/_lzillazvﬂmﬂ-nﬂ

4 2n Iz(alﬂl"'l‘-n—l)/_1;;;!1:12~#u+1‘12+ I}(Ml“‘#n) (2/1211 /‘12,;1,,“052 + A,‘j;’“&l‘”l”)]aszﬁg’“

@ t) JHn § 20 B s
+ [n K Ay A

4 f((ltl“'ltn) (Azi/_lzvl’»m»l/irﬁ»l + 2/_12?7“ Aluwza)] aaBia}am...u,,” Yy
+0 (0" y), (C2)

where the terms appearing on the right-hand side are classified according to the positions of
the indices «, a1, a3. Likewise, the second term of Eq. (C1) is expressed as

[IN((“""””)AIZI_';?I AZ_M _ (n I}(am-~-unq);12,unun+1 +2 I}(M]~-Mn)AZ.MH]a)aa;lZl;HZ]am»__Mmqbl_

= [0y term)|
bi

+ {[;(u.mun)A;/;}AZm _ (n ;((a,t,mu,,,,)jaz,u,,,tw 12 ;(M,..AM)/—IZ‘MHW) 80(/_1””“] B,

%(oc 1) AMn Y Mntl %(M cepty) Ao Fiarr)
+ {” Kt DAY A+ 2 KA AT
_ n[(n -1 E(mmzmvlz}t,,fz)lazvuﬂfm,, 3(1];1;:;#1
4 K(alﬂl"‘/lufl) (2;12@3#” 30“;15;“ + A% sttt 3’1];12_2)]
ia

_ 2<n [}(dzltl"'un—l)jzyltudl aal;llbiinﬂ 42 [}(ﬂl"'#n)gzvm(dz 3411 AZ:H)) }aazAsz }8/11“#”“ Va

+ 00" y,), (C3)
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where the 3" T 3y term on the right-hand side is the same as that in Eq. (C2). Then, in Eq. (C1)
the 3”34 terms cancel out, and the remaining terms are given by the difference between
Egs. (C2) and (C3). Reorganizing the terms according to their tensor structures, it can be ex-
pressed as

K(Ml-..un)AZinHAZ,Mn+2Mn+3ammﬂn+3¢i _ [K(ul-AAMII)AZ;;’IAZHz _ (l’l K(C{Nl“'ﬂn—l)Alﬂnl‘«nJrl
(1) G2t i
+ 2 K(Ml M, )A 129 +10t> aOtAbi +2] au1~-~un+2¢i

nn—1) = - - -
— { ( 2 ) K(alazlu'l'“ﬂn—Z)Azqﬂn—lﬂn [Ag£1+laa1a2A§21+z + 2 (atX]AZ}"H) aazAZanrz]

i [}(alul-"ﬂn—l) { _AZ’;)C-AZ'I+I aalAﬁianJrz

+ 21212,Mn(12 [Izljljlﬂlaal(szf'Z"H + (aal"a;)lin“) aazAlez + (8a2;1zin+l) aa]AZHZ]

n /_12#"“’7*1 [;lll;«inﬂ aalBl.a —+ (aal‘;lll:inﬂ) Bia + /_1(1)7[12 aaloleﬁZHZ + (aml:lziz) aazAﬁ.ZHZ]}
2,bc* i 2,bc

+ g'(l/«]“'lln)l:/_l‘;il1212,#11+1Un+28a1Bw _ 2A(‘¥2 /]Mn-%—l)aazAZI/&Z _ AM/:H&ZM—ZBW

+ 222,/1“10!1 (aal/_IZinBia + Aginﬂaa]Bia + Agl'zamazAi'Zlﬂ + 3alfaz,~23azA;ZM)
+ 22,041012 (’aginﬂaaldzAg;nH + 230511&2?“80,214;2”2)] } all«l---ll«;z+2 wa

+ 0 (3" y,)

_ {_n(n -1

(@@t 2) 20t b AMn+1)  gHnt2
2 K AR (a“I“ZAbi )Aia

C

+n I}(alﬂl..ﬂnfl)[_AlzL’r;) ‘A?iwrl 80!1A51n+2 o 2/_12,;1.,,012 (8011012/_12?“) Aﬁlnu + AlununﬂaalAz«;ﬁ]
+ I}(Ml-"ﬂn)[IZIZ,MnHMHz;lZl[aaBm _ 2A;(jlbclzll:in+1)aaA$Zn+z _ Agfgcl;lznﬁBia

+ 2212#”““3“./45’"1;2 _ /_12,0510:2 (8alo¢2/_1g,~"+l) A;ﬁl’l+2]}aﬂl“‘ﬂn+2wa

+ 0 (0" y,). (C4)

At the final equality we used Eq. (28) and the identity that follows from the second derivative
of Eq. (12) in the two-field case, which is given by

8,0,(A48)) = (8,0,4)AL) + (8,4)8,4) + (3,4)9,4L) + A4(9,8,45) = 0. (C5)

As argued in Sect. 2.2, to find the last condition for invertibility we should focus on the co-
efficient of the highest-derivative term in the ¥+ space, and this coefficient is obtained by re-
placing 9,,.....,.., ¥a by /_IZ; and symmetrizing over u;, (o, i3 in Eq. (C4). Below, we evaluate

each term in Eq. (C4) after this replacement. First, the K (@2 1i-2) term vanishes because it

contains Al(.c’f””/_lt’f;) = 0, which is enforced by Eq. (28). Next, the K @ #1-#-1) term also vanishes
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as follows:

(n M Ha 2. " e Ha 12 (tnftn Hat2 | AM3)
I:_Az,bcAciHa"‘lAia =24 ek (80‘10‘2Abi +1) Aia - +4 (et 8"‘1"4ba+7 Aa;

— (_Aglfll; /]H;m aOlIAﬁ-ZHz + AL(IHI#M—I 8&1AZJ+2> AZ;)

el

_ (Mn Tt g Mnt2 _2,([L,Z/L,, 1 Mn+2 _M3)
- (A Al gllre — J2 Gkt gl 5, 10

2,bc* " ci
= [ AL AL Al — AQ (Al Al 4 Al agy) |, 41 = 0. (C6)

The first equality follows from Eq. (28). The second equality follows from Eq. (14) and the first
derivative of Eq. (37), i.e.

0uy A ALY = — A2, A1, (C7)
At the third equality we replaced A%##+ using Eq. (30). Then, this equation can be shown to

vanish using Eq. (37). Lastly, in the [? (11) term of Eq. (C4), the last part with A"+ vanishes
thanks to Eq. (12). The remaining term gives Eq. (41), once 9 Bis rewritten into 5 using Eq. (28).

Appendix D. Absence of invertible field transformation with derivatives for the one-field
case

We show here that there is no invertible field transformation of one field involving up to the
first derivative by using the conditions obtained for the two-field case. We consider the trans-
formation

¢1 = p1(Y1, A1, X)), ¢ = Va2, (D1)

which essentially represents a one-field transformation with derivatives. Then, the first degen-
eracy condition, Eq. (50), is satisfied as follows:

) 091 0
an= 2 _ (TG )= gy (D2)
9 (8, %) 0 0o a(B.w)
0p1  : _
where TER is assumed to be non-zero and
U,=(1,0)=1; m, = (0, —=1) = n,. (D3)
On the other hand, the second degeneracy condition, Eq. (68), is never satisfied, because
o [ 0
B, = 00 =" , niBigm, =1 # 0. (D4)
AV, 0 1

Note that one can also easily check that the third conditions, Eq. (73), are also violated be-
cause n;B;,U, = 0 and (V;Bj, — ald g Up)my = 0 1n this case. Thus, there is no invertible field
transformation of one field involving first derivatives. A similar argument also applies to a case
with more derivatives, ¢; = ¢1 (W1, 3,1, Oa g1, ...; x*), and we can show that it can never be
invertible.

Appendix E. Inverse function theorem applied directly to the functional space, and
implicit function theorem to finite-dimensional subspaces

In our proof in Sects. 2 and 3, we do not apply the inverse function theorem to the mapping
from v¥r(x) to ¢(x), but instead use the implicit function theorem for the mapping from (v, 9,
...)to (¢, 9¢, ...). This is because the former indeed does not work in cases with derivatives. In
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this appendix we explain why it is not applicable in Sect. E.1, and show the idea of our proof
in Sect. E.2.

E. I Inapplicability of the inverse function theorem to the functional space

The inverse function theorem can be applied to the mapping from a Banach space X to another
Banach space Y. Functional spaces that are discussed in physics are mainly Hilbert spaces, and
thus one might naively think that the inverse function theorem is directly applicable to a field
redefinition with derivatives from v (x) to ¢(x) by analyzing all spacetime points simultane-
ously. However, if derivatives of fields are involved in the field redefinition, the inverse function
theorem cannot be applied to the functional space. This means that linearized analysis in the
functional space does not give correct statements. Let us see that the inverse function theorem
in functional spaces does not work in cases with derivatives.

We have the condition for degeneracy of the coefficients of the highest-order derivative,

det(44§,) = 0. (E1)
In the (wrong) linear analysis, this is obtained as an equation which has to be satisfied for a
fixed value of v,. However, we know from the analysis of the necessary condition discussed
in Sect. 2 that Eq. (E1) should be interpreted as an identity, i.e. the equality has to be satisfied
for any v,. Since the sufficient condition, which can be obtained from the inverse function
theorem, should be stronger than the necessary condition, Eq. (E1) should be obtained as an
identity (or replaced by a stronger condition).

We shall see in detail why the inverse function theorem is not directly applicable to the field re-
definition with derivatives. For this purpose, let us carefully inspect the statement of the inverse
function theorem for a mapping between Banach spaces [12]:

Let X and Y be Banach spaces. Let U be an open neighborhood of a point xy € X and F be
a continuously differentiable mapping from U to Y, F: U — Y. Suppose that there exists the
Fréchet derivative dFy at xy € U which gives a bounded linear isomorphism that maps U onto
an open neighborhood of F(xo) € Y. Then, there exists an open neighborhood U of xy € X and
IV of F(xo) € Y, and a continuously differentiable map G from Vto U, G: V — U, satisfying
HG(y) = .

The important point is that, in the application of the theorem, a mapping is required to be
continuously differentiable. To see the argument clearly, we consider an example given by

¢1 = Y1y + Y1, ¢2 = Y1 + V. (E2)
We denote this mapping as ®: ¥ ,(x) — ¢i(x). Let us apply the linear analysis to ® (although
it gives an incorrect result). We linearize Eq. (E2) as

81 =Sy + Y18Ua +8Y1, 8¢ = Y1 + S, (E3)
If we consider 1/1(x) = ¥2(x) = 0 for any x, a point in the phase space, the above equations
become

81 =8y, 8y =Sy + 8y, (E4)
and they can be solved uniquely for §v; and 8y, as
81 =841, Sy =3¢ —S¢1. (ES)

Since the linearized equation is uniquely solved, one might think the inverse function theorem
is applicable, but this is not true. This is because, if the inverse function theorem is applicable,
the mapping ® must also be invertible for ¥r1(x) = €( # 0) and ¥»(x) = 0, which is in the
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neighborhood of v (x) = ¥»(x) = 0 for sufficiently small €. However, this is not the case because
the linearized equations for ¥/1(x) = €, ¥>(x) = 0 become

81 = €Y1 + 8Yn1, 8¢y = 8Yr1 + Y. (E6)
These equations cannot be solved uniquely for ¢ and v, and hence the transformation ®
is not invertible.

What was wrong in this example? Actually, the derivative of the mapping CD(wa(x)) (that is,
the field redefinition in Eq. (E2)) cannot be obtained in the linearized analysis. The Fréchet
derivative of ® is defined as follows.

If there exists a bounded linear operator A satisfying

IICD(%(X) + 5%(96)) - cD(Wa(x)) -4 Swa(x)HM _

lim 0, E7
183a(¥)] 1370 18va ()l (=7
the Fréchet derivative is defined as
DO (Y, (x)) = A. (E8)
Otherwise, the Fréchet derivative does not exist. Here, M is an open region in spacetime that
we consider, and || - ||, 1s a norm for the phase space covered by ¢;(x) or ¥ ,(x).

For the existence of the Fréchet derivative that is necessary to establish the invertibility, the
linear part of

D(Yu(x) + 8Ya(x)) = @(Va(x)) = (8v1v2 + Y18V + 8Y18Y2 + 8y, 891 +8v2)  (E9)
must be close to A8y ,(x), where A4 is a bounded linear operator. One may expect that the linear
part of Eq. (E9) can be approximated by 48y ,(x). However, Eq. (E9) includes derivatives of
81, which may not be bounded. Hence, the inverse function theorem is not applicable.

The inverse functional theorem roughly means that, if it is applicable, the linear analysis
works well. However, in the application to an infinite-dimensional space, such as a functional
space, the existence of the Fréchet derivative is required. Without confirmation of this, the result
of invertibility by linear analysis cannot be trusted, and, in the case of the field redefinition with
derivative, it generically does not work.

E.2 Our idea: Application of the implicit function theorem to finite-dimensional
subspaces

To avoid complication due to the derivatives involved in the mapping, we take a different ap-
proach by working in the function space spanned by ¢(xy), 9,¢:(x¢), 9,,0,¢i(x0), ... as follows.
The field redefinition in Eq. (5) from v, to ¢; is obviously unique; Eq. (5) shows that i, is
uniquely obtained from a fixed ¢;. Hence, if the mapping from ¢, to v, is also unique, the field
redefinition becomes invertible.

Let us give ¢; in an open region of spacetime; then, its derivatives 9,¢;, 3,0,¢;, ... are
uniquely obtained. Thus, if we can show that v, is uniquely fixed for given ¢; along with its
derivatives d,,¢;, 3,,0,¢;, ..., we can say the inverse mapping is unique. To show this, we use the
implicit function theorem.

The problem appearing in the direct application of the inverse function theorem in Sect. E.1
stems from the dimension of the space being infinite. Even if we use the implicit function the-
orem, we have a similar problem. However, if we use the equations shown in Sect. 3, we can
consider the implicit function theorem at each point of spacetime separately, i.e. for ¥ ,(xo) with
fixed ¢;(xp) and its derivatives (9 ,¢i(xo), 9,9,¢i(xo), ...) at each spacetime point x,. Note that
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now we (are trying to) apply the implicit function theorem to (¢,(x¢); ¢i(x0)d . Pi(x0), 3,0, Pi(x0),
...) with fixed x¢, and thus the dimension of the space is finite. (Here, we consider the case where
the number of derivatives of ¢ is finite.)

Since the dimension of the space is finite, we are not concerned with infinite dimensions and
the implicit function theorem can be easily applied. Note that the neighborhood in the implicit
function theorem here means for the values of ¢(xy), 9,¢i(xo), 3,,0,¢:(xo), ..., not the space-
time point. Hence, the neighborhood or “locality” in our argument means a local region of
functional space, where the deviations of ¢;(x), 9,¢(x), 9,,0,¢,(x), ... from a reference value
should be small. This should be acceptable in physics, which usually has the ultraviolet cutoff
scale.

Note that the “neighborhood” in the implicit (or inverse) function theorem is not necessarily
small. Let us take a simple example, f(x) = x>. The inverse function theorem is applicable except
at x = 0. At x = 3, one might take an open neighborhood 2 < x < 4. Then, we take the inverse
function theorem again near x = 2 and the “neighborhood” can be extended to 0 < x. This
extension of the “neighborhood” is general and it is done just before the condition is violated.

Appendix F. Setting Ua = (Oa 1) in ¢i = ¢i('/fa’ Ua('ﬁa)au'/fa)

In this appendix we consider a transformation in which a derivative of v, appears only in a
combination U,(¥,)0, ¥4, 1.€.

i = @i (‘paa Ua(Wa)auwa) ) (F1)

and show that U,(/,) can be set to a constant vector U, = (0, 1) without loss of generality by
a field transformation v, = ¥,(¥,). This technique is used in Sect. 4 to simplify examples of
invertible transformations.

F.1 Field transformation to set U, = (0, 1)
As a first step to setting U,(v/,) to a constant vector, we rewrite this transformation as

¢ = $i(Var Ua(Wa)du¥ra) (F2)
where
Ua = c(wa)Ua(Wa) (F3)
is a local rescaling of U, such that U, is an irrotational vector in the ¥, space, i.c.
a0, a0
b _ 3% _ (F4)
0Yr Y

This U, can be obtained by choosing the rescaling factor ¢(i,) appropriately. We show the
construction method of ¢(y,) and U,(,) in the next section.

When Eq. (F4) is satisfied, due to the Poincaré lemma there exists a scalar function W ()
satisfying
0, =%

Va

Let us also introduce another scalar function W () that is functionally independent of W ()
(i.e. det(dW,/dv,) # 0). Then, there exists a one-to-one mapping between v, and W, and the
transformation in Eq. (F2) may be expressed in terms of W, as

¢i = ¢i(Va, 0, 2). (F6)

(F3)
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This is equivalent to setting U, = (0, 1) in the transformation in Eq. (F1). Hence, we may impose
U; = (0, 1) without loss of generality in the transformation in Eq. (F1), as long as there exists
a rescaling c¢(;) satisfying the condition in Eq. (F4).

F.2 Finding irrotational U,

In the argument above, it is crucial that a rescaling such as Eq. (F3) exists to make U, an irro-

tational vector satisfying Eq. (F4). We show how to find such a rescaling in this section.
Using Eq. (F3), the condition in Eq. (F4) can be rewritten as

5 3 U, AU
¢ ¢ (1 2):0. (F7)

U— —U— +c| — — —2
Yo, oy M, v

This equation is a first-order partial differential equation for log ¢(y/1, ¥»), and it can be solved
a least locally once an appropriate boundary condition for ¢ is given. For example, when U,
# 0 we may solve Eq. (F7) as an evolution equation in the “time” direction ¥, for an initial
condition given by ¢ = 1 on a ¥, = constant line in the ¥, space, regarding ¥/ as the “spatial”
coordinate.

Appendix G. Disformal transformation with higher derivatives for the FRW ansatz

In Sect. 5 we examined a generalization of the disformal transformation to introduce the second
derivative of the scalar field VV x, and found it non-invertible unless such a second-derivative
term is absent. In this appendix we consider a further generalization of this transformation,
and find that there may be an invertible disformal transformation with higher derivatives if the
metric is limited to the FRW type. Note that the investigation of the FRW type gives a necessary
condition. While the violation of invertibility in the FRW subspace shows the same in the full
space of the metric, establishing it in the subspace does not result in that in the full space.

G.1 Generalized disformal transformation with second derivatives
Let us consider the following generalization of the disformal transformation [10,11]:

gp.v = nguv +F1XMXU + ]:2Xpw +‘F3X(MXU) + f4XuXv + ]:5)(3)(1105» (Gl)

where F; depends on X, B, YV, Z, and W, which are scalar quantities involving up to the square
of the second derivative of the scalar field VV x, i.e.

X = x"xu, B =0y, Y= x"X,, Z=X,X", W= x""xuw. (G2)

The subscripts denote covariant derivatives (e.2. x,. = VX, X0 = V. Vo x).
Let us take the FRW homogeneous ansatz for the metric g,,,,

gudxtdx’ = —n(d? +a()dx,  x = x(t). (G3)
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For this ansatz we have

=, (G4)

. ) . 2
X .on .. ) X .n ..
Z=""|—x"—=+4 ——4 = - - =2 = —,
w3 ( X n2 + XXn X ) 3 <X‘ﬂ X) Y

1 )'(21'12 3X2d2 i 5 Yy 2 1 RY% 2
_ 2 (xr >xa L. n . _ (2 il A
W n2<4n2+ 4 a2 XXn+X (2X> +3(2X )

Hence, for the FRW ansatz, Z and W are expressed by X, BB, and ) and are not independent.
Also evaluating the terms appearing in Eq. (G1), we find that the metric after the transforma-
tion g is expressed by the FRW ansatz

S0 = W()dE* + at)dx?, (G5)
and 1 and @ are given by
i=n Fo+f1X+f22+f3y+F4y—2+fs AN =nh(X,B,Y), (G6)
2X X 2X R
. (Y LY Ay
a-a(fo—f2§ <§—8)+.F5§ (ﬁ—8> ) .—ClFa(X,B,y).

This result implies that the generalized disformal transformation in Eq. (G1) is completely
governed by the functions F, (X, B, V) and F,(X, BB, )) for the FRW ansatz.

G.2 The general disformal transformation reduced on the FRW spacetime
The transformation in Eq. (G6) involves only n, a, and their first derivatives, and hence its
invertibility can be analyzed within the framework explained in Sect. 2. Based on this, we derive
the invertibility conditions for the transformation in Eq. (G6) below.

Since the transformation in Eq. (G6) involves n and a, 4;, must be degenerate for invertibility:

i/0n  9fi/d¢ 1 |-X( F,5+2XF, SERLY N
Ay = (Do onfoa) 2 JZA (0 Fes 2 X by =) (G7)
da/on  da/oa 2V n \s(Fup+2XF,y) —3Fs5
3x?
detA4 = Ere (FasFny — Faslay) = 0. (GY)

Below we assume that the rank of the matrix 4;, is 1. When the rank of A;, is zero, all the
components of A4;, vanish and then the transformation in Eq. (G6) does not involve 1 and a.
In this case, the invertibility condition is simply given by det B;, # 0.

When the degeneracy condition in Eq. (G8) is satisfied, there exist zero eigenvectors n;, m,
and their dual vectors V;, U, satisfying

nidia =0 = A,  nmi=1=mgma,  m=¢;V;,  mg=epU. (G9)
They are given explicitly as

ni=N"(Fp —2Fp), mq=M"(2F52XFy+Fp),
-

a G10
Vo= N (2R ~Fag). U= M7 (XEy+ Fos~2Fg). O
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where M and N are normalization coefficients given by

M = \/(Fn,g +2XFy ) + GnFyp/a), N = /F2g+ nF,5/0). (G11)

We assume M, N # 0 below, and discuss the case where either M or N vanishes separately.

Using these expressions, the second degeneracy condition in Eq. (68) in the invertibility con-
ditions is evaluated as

0= niB,-ama
o 1 nFn,B
~ MN
where we eliminated F y using the first degeneracy condition in Eq. (G8).

The non-degeneracy conditions in Eq. (73) in the invertibility conditions are given as follows:
MF,
3N
where we used the first and second degeneracy conditions in Egs. (G8) and (G12) to simplify
the expression. The other non-degeneracy condition can be derived after some calculations as

0 75 (ViBia - aUa) mg

3N FyY
=— [_ (-X)?F, (F"Z) —F+XF, x+BFE g+ yFn,y}, (G14)

where a prime () denotes a derivative with respect to the proper time, i.e. /' =n""27. To
simplify this equation we used the degeneracy conditions in Egs. (G8) and (G12) and their
t derivatives; that is, we assumed the degeneracy conditions in Egs. (G8) and (G12) are satisfied
identically at any ¢.

To summarize, the transformation in Eq. (G6) becomes invertible when the conditions in
Egs. (G8), (G12), (G13), and (G14) are satisfied. These conditions should be regarded as nec-
essary conditions for the invertibility of the generalized disformal transformation in Eq. (G1)
for a general metric, because the above results are derived only for the FRW ansatz in Eq. (G3),
in which the degrees of freedom of the metric are reduced to two functions n(z), a(z) depending
only on ¢. The invertibility conditions for a general metric should encompass the conditions in
Egs. (G8), (G12), (G13), and (G14), while they may contain more stringent conditions in gen-
eral. An obvious next step is to derive the invertibility conditions for a more general metric,
and also it would be interesting to construct examples of invertible transformations based on
the invertibility conditions obtained above. We reserve those issues for future work.

Let us briefly mention the case that either M or N given by Eq. (G11) vanishes. In this case,
it turns out that the degeneracy conditions imply that F, s = F,y = F, 3 =0, 1.e. F, = Fy(X)
and F, = F,(X, )). For these functions, it follows that

oy \ 32
Am=—(—) (0 0>, (G15)
n afqy O

and V; = (0, 1), U, = (1, 0). It can be shown that the first and second degeneracy conditions
are automatically satisfied, and the non-degeneracy conditions are given by

[3FnFa,B - Fa (Fn,B + 2XFn,y) +3X (Fa,XFn,B - Fa,BFn,X)] ’ (G12)

0 #* n;Bi,U, = (G13)

F,—XF x #0, F, #0. (G16)
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