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Abstract In this manuscript, we construct generalized
Ellis—Bronnikov wormholes in the context of f(R) modi-
fied theories of gravity. We consider that the matter driving
the wormbhole satisfies the energy conditions so that it is the
effective energy—momentum tensor containing the higher-
order derivatives of curvature terms that violate the null
energy condition. Thus, the gravitational fluid is interpreted
by the higher-order derivatives of curvature terms to repre-
sent the wormhole geometries and is fundamentally different
from its counter representation in general relativity. In par-
ticular, we explore the wormhole geometries by presuming
various well-known forms of Lagrangian f(R). In addition,
for the seek of completeness, we discuss modified Tolman—
Oppenheimer—Volkov, volume integral quantifier, and total
gravitational energy.

1 Introduction

Various independent observational measurements have con-
firmed that the universe is going through the accelerated
expansion phase [1-4]. Several proposals have been pro-
posed in the literature to explain this phenomenon, ranging
from dark energy models to the modified theories of grav-
ity. Moreover, it is well-known that the general theory of
relativity (GR) is quite successful in the fundamental basis.
Also, it is able to describe the accelerated expansion pro-
cess of the universe by introducing cosmological constant
into the Einstein field equation. But, the cosmological con-
stant leads to various misleading issues [5,6]. Furthermore,
the Einstein field equation of GR was derived by Hilbert
using the action principle by considering Ricci scalar, R, in
the Lagrangian gravitational density. However, there are no
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reasons to limit the gravitational Lagrangian to this form a
priori, and numerous generalizations have been proposed. In
particular, a more general modification of the gravitational
Lagrangian was done by introducing a general function of
scalar invariant R, called f (R) gravity [7] and further devel-
oped in [8,9].

In this view, a family of f(R) gravity theories has been
successfully examined in an attempt to describe the uni-
verse’s late-time accelerated expansion [10,11]. The infla-
tionary scenario of the universe was motivated by the early
development of f(R) theories; as a result, some interesting
forms of f(R) were considered to explore the universe [12].
Moreover, the accelerated expansion of the universe can be
explained in the framework of f(R) theory [13]. Further-
more, the coupling between the arbitrary function of R and
matter Lagrangian density has been explored [14—18], and
several viable conditions have been derived from testing the
cosmological models in f(R) gravity [19-25]. In the Solar
System test, most of the proposed cosmological f'(R) models
have been ruled out so far [26-31], although suitable models
do exist [32-36]. In addition, f(R) gravity can explore the
galactic dynamics of the massive test particle without dark
matter [37-39].

This study extends the analysis of static and spherically
symmetric spacetime and explores the traversable wormhole
geometries in a renaissance of f(R) gravity. Wormholes are
hypothetical tunnels connecting different spacetimes or two
different regions of the same spacetime, and possible it helps
the observer to go freely from one region to another. However,
it is worth mentioning here that the wormhole solutions are
primarily used as “Gedanken experiments” and as a theoreti-
cian’s view of the foundation of general relativity. In classical
GR, wormholes are supported by the exotic form of matter
to make it traversable. As a result, the stress-energy tensor of
matter fluid violates the null energy condition (NEC) [40].
Note that NEC is given by 7,,,k"*k” > 0, where k" is any
null vector. Thus it is an important and open challenge in
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wormhole physics to find a viable matter source to support
this exotic spacetime. In this regard, several candidates have
been proposed in the literature, for instance, wormholes in
Einstein—Gauss—Bonnet theory [41], static wormhole solu-
tion for higher-dimensional gravity in vacuum [42], worm-
holes on braneworld [43-46], thin accretion disks in worm-
hole geometries [47], wormhole geometries in f (R)modified
theories of gravity [48-53], wormhole models in f(R, T)
gravity theory [54,55], and some recent studies (see the Refs.
[56-61]).

Furthermore, energy conditions play a significant role in
the matter profiles of spacetime structure. At the same time,
NEC plays a crucial role in wormhole geometry. Recently, F.
Rahaman and his research group studied the energy condi-
tions for various wormhole structures by considering various
shape functions; they have examined the energy conditions
for the wormhole geometry in f(Q) gravity [62]. Also, some
recent studies see, e.g. [63—65], where energy conditions,
especially NEC, are tested to present an alternative expla-
nation of exotic matter through modified theories of gravity.
B. Narzilloev et al. investigated how one can distinguish the
particle motion around a static axially symmetric wormhole
from a black hole [66]. Chakraborty and Kar studied how
NEC violation can avoid a zero proper volume end-state of
a collapsing wormhole [67]. Karakasis et al. discussed the
wormhole geometries by introducing a phantom scalar field
in the gravitational action of f(R) gravity; as a result, it
becomes ghost-free and avoids the tachyonic instability [68].
Farook et al. studied shadows of a particular class of rotating
wormhole, and they compose the null geodesics and study
the effects of the parameters on the photon orbit [69]. Kuh-
fitting addressed two fundamental issues concerning Morris-
Throne wormholes in the five-dimensional spacetime, such
as the origin of exotic matter and frequently inexplicable
enormous radial tension at the throat [70]. Conditions for
safe travel through a thin-shell wormhole throat are analyzed
in [71]. The above literature discussed the static symmet-
ric spacetime, whereas the generalization of such metric has
been explored mainly in general relativity. Therefore, we aim
to explore the generalization of the static spherically symmet-
ric spacetime such as GEB wormbholes in the modified theory
of gravity (in particular, f(R) gravity).

This manuscript is organized in the following manner:
Sect. 2 discusses the construction of generalized Ellis—
Bronnikov (GEB) wormholes in the background of f(R)
modified theories of gravity. Then, we present the energy
conditions for the GEB wormbholes in Sect. 3. We discuss the
three types of wormholes geometries and test their energy
conditions. In addition, we discuss modified TOV equation
(MTOV), volume integral quantifier (VIQ), and total grav-
itational energy in Sects. 4, 5, and 6, respectively. Finally,
gathering all the outcomes from our study, we concluded in
Sect. 7.
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2 construction of generalised Ellis-Bronnikov
wormbhole

The line element of the Ellis—Bronnikov wormbhole is given
by

—1

b2

ds®=—dt*+ (1 - —g> dr’+r2d6*+r’sin®(0)d¢>.
r

ey

The generalized Ellis—Bronnikov (GEB) spacetime can be
written as

ds® = —di® +d* +r*()d6* + r*D)sin®O)dp®,  (2)

where r(l) = (b% + 1myl/m,

The parameter m takes only even values to make r(/)
smooth over the entire domain of the so-called ‘tortoise’ or
‘proper radial distance’ coordinate / (where —oco </ < 00)
and by is the wormhole throat. Metric (2), in terms of usual
radial coordinate r, can be written as

b -1
ds*=—dt*+ (1 — ﬂ) dr’+r2do”+r’sin*(0)d¢>,
r

(3)
where r and [ are related through the shape function b(r) as,
dr?
2 _
dl© = TR )
r
b(r) =r —rG=2m (rm — bg1)272/m . 5)
The action in f(R) gravity reads
1
S=5- f V=gf(Ryd'x + / Lpdx, 6)
K

where k = 87 G, L,, is the matter Lagrangian.
By varying this action with respect to metric we find
1
JR(R)R,y — Eg;wf(R)_(Vuvv _g,uvD)fR(R) =kTyy,
(N

where fr(R) = df(R)/dR and T, is the energy momen-
tum tensor of the matter which is defined by

2 8(V=8Lm)
v—e s

Considering the contraction of Eq. (7), provides the fol-
lowing relationship

Rfr(R) =2f(R) +3Ufr(R) =T, ®)

Ty =—
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Fig. 1 Null and Dominant energy conditions for GEB wormhole. To plot the results, we have considered that wormhole throat is equal to by = 5,
and cosmological constant is set to by unity (for simplicity). Furthermore, m = 2 and @ = 0.5, 8 = 0.1

where R is the Ricci scalar, and T = T,f is the stress of the
energy—momentum tensor.

The trace equation (8) can be used to simplify the field
equations and then can be kept as a constraint equation. Thus,
substituting the trace equation into Eq. (7), and reorganizing
the terms we end up with the following gravitational field
equation

1
G =Ry — ERg;w =T/ 9

A

where the effective stress-energy tensor is given by

TefszT + V.V, fr(R)
T R [T R

1
— 78w (Rfr(R) + L fr(R) + T)}- 10)

We consider the anisotropic energy momentum tensor for the
matter distribution as

(11)

where U* is the four velocity, x* is the unit spacelike vec-
tor in the radial direction. p is the energy density, p, is the
radial pressure measured in the direction of x* and py is the
transverse pressure measured in the orthogonal direction to
x". The stress of energy—momentum tensor for the above

Ty = (0 + pOULUY + prguv + (Pr — P X Xvs

considerations can read the following:

Ty = diag[—p (1), pr (1), p: (D), p:(D].

Also, we can write T = —p + p, + 2p;.
Now, the effective field equation (9) gives the following
relationships

SO+ 2O ]

2 Tr o+ K], (12)
—1+70* 1 ,
0~ 7x [pr () + fr — K], (13)
() 1 r'(1)
r() _E[pt+mfR_K(r)i|7 (14)

where a prime (') denotes derivative with respect to [. The
term K (r) is defines as

1
K@)y = R fr+0fr+1). (15)
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Fig. 2 Null, Dominant and Strong energy conditions for GEB wormhole in the Hu—Sawicki gravity conjucture. To plot the results, we have
considered that wormhole throat is equal to by = 5, and also cosmological constant was set to unity. Furthermore, m = 2 and « = 0.5, 8 = 0.1,

R.=n=1

for the notational simplicity. The curvature scalar R is given
by

e 20— r'(D* = 2r(Dr" (1))

) 16
)2 (16)
and [ fg is given by the following relation
r'(d)
Ofr = fr+2—=fr. 17
fr= Fi+ 2 T a7)

Now, one can use this set up to explore various GEB worm-
holes in the formalism of f (R) modifiesd theories of gravity.

3 GEB wormbhole energy conditions and viable f(R)
gravities

Energy conditions (further — EC’s) violation is the main prob-
lem of cosmological wormholes. Energy conditions usually
could tell us whether the fluid is physically realistic or not.
EC’s origin are temporal Raychaudhuri equations along with
the requirement that gravity is attractive. Raychaudhuri equa-
tion reads [11,72-74]:
do 1

-9 — oo™’ + oot — Ryutu”

=3 a8

@ Springer

Where 1" is the timelike geodesics, 8, 0, and w,,, are expan-
sion, shear and rotation associated with the vector field u*,
Ry, is the regular Ricci tensor. Also, for the null-like vector
field n* Raychaudhuri equation has the following form:
o 1

2
=—=0"—0,00" +wuo" — RunMn”

dt — 2 (19

As we already stated, we assume that gravity nature is attrac-
tive and then 8 < 0. For that case, timelike and null-like
Raychaudhuri equations satisfy:

Ryutu’ >0

Run*n” =0

(20)
@2y

In the current paper we are going to test the different energy
conditions in our f(R) models for GEB traversable worm-
holes. Assuming the anisotropic matter distribution and fol-
lowing the methodology in [48], the energy conditions under
this framework reads:

— Null Energy Condition (NEC): p¢// + pff ! > 0Apff +
eff >0
by =
— Weak Energy Condition (WEC): p¢/f > 0 and p*// +
P =0 p 4 pf 2 0
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Fig. 3 Null, Dominant and Strong energy conditions for GEB wormhole in the y f(R) gravity. To plot the results, we have considered that
wormhole throat is equal to by = 5, cosmological constant is equal to A = 1. Furthermore, m =2 and o« = 0.5, 8 =0.1, R, =n =1

— Strong Energy Condition (SEC): p¢/f + pff ) pff s >
0
— Dominant Energy Condition (DEC): p¢f > | pef s | A

pelT > | peH |
Here,
1
pf = Lo+ KOl (22)
e 1 14
Pl = + [P () + f7 — K], (23)
eff _ 1 r'(1)
=4 [Pt e — fr K(r)] (24)

Now, in the following subsections, we shall discuss various
wormhole models by imposing various well-known forms of

J(R).
3.1 Exponential f(R) gravity

First physically viable model that we will consider in the
current manuscript is namely exponential f(R) gravity with
the cosmological constant A present [75-80]:

f(R)=R — 2A|:1 — exp (—;%)}

(25)

where ¢ is positive free parameter. This kind of modified
gravity could precisely describe the universe evolution with
z < 10*. Thus, exponential MOG covers era of the recom-
bination, matter dominated epoch and late-time accelerated
expansion. To solve the field equations (12)—(14), we firstly
must assume the proper Equation of State. In the present
paper we assume that the fluid is described by the barotropic
EoS:

pr=ap (26)
pr = Bp (27)

where o A B € (0, 1). With that assumption, from field equa-
tions it follows that energy density takes the form below:

/2
|:26Xp (C +2rr 1))

Ao sene 1)

2 (0 e (r’2 4+ 2rr” — 1)
—A (r — 1) X exp ( IV —
s ( 242

+AP <2Ar” (; —exp (— a7y 2 1) )) + {21‘/”’)
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Fig. 4 Forces that are present in the modified TOV equation for the exponential f(R) gravity. As usual, we assume thatbg = Sand A = 1, m = 2,

a=0.5and 8 =0.1

+{2Ar3 <1 _ 3r/2> P + é.2r2rr (r/Q _ 1) (Ar’ _ 4{1‘”/)

+2¢%72 (2 - 1)2 )]/[Az(a +26+ 3)r6]

Then, using the equation above we firstly could derive
effective energy density and anisotropic pressures and probe
the aforementioned GEB wormhole energy conditions. We
depicted EC’s on the Fig. 1 with the varying values of MOG
free parameter ¢ and fixedm =2, = 0.5, =0.1,bg =5,
and finally A = 1. It is obvious that Null and Dominant
Energy Conditions were violated everywhere for any value
of by, @ and B and also SEC ~ O(10~19). Itis also interesting
that NEC and DEC violation holds even for m # 2.

(28)

3.2 Hu-Sawicki f(R) model

Hu-Sawicki is the another type of the viable f(R) gravity,
for which the f(R) function reads [81]:

ARc(R/Rc)™
1+ (R/R)*
Where A, R, and n are dimensionless positive free parame-
ters. This model includes the ACDM as a limit and could be

seen as a late modification of the ACDM model [82]. Then,
by assuming barotropic EoS defined by the Egs. (26) and (27)

f(R)=R (29)

@ Springer

one could derive the energy density for Hu—Sawicki model
of gravitation, but in the current article we will only show
the numerical solutions because of the fact that expressions
for energy density are too big.

On the Fig. 2 we plot the energy conditions for Hu—
Sawicki f (R) model with the varying values of MOG param-
eter A with positive bounds. As one may obviously notice
from the plots, all of the aforementioned energy conditions
except NEC were violated at the GEB wormhole throat
(DEC is very similar to the exponential f(R) gravity, thus
SEC ~ (’)(10’17)). Moreover, situation does not differs even
in that case, if we will vary other MOG parameters, such as
R. and n. Also, even if we will consider more general case
with m # 2, energy conditions will be still violated.

3.3 y gravity

In this subsection we will investigate only one, last case
of f(R) gravity, the one which could provide the viable
description of the universe using the gamma function, namely
gamma gravity [83]:

R. [(R/R"
ﬂm=R—“*/ K Tekar
n 0

y(1/n,(R/Ry)™)

(30)
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Fig. 5 Forces that are present in the modified TOV equation for the Hu—Sawicki f(R) gravity. As usual, we assume that bp = 5 and A = 1,

m=2,a=05and §=0.1,R. =1

where «, n, and R, are free positive MOG parameters. This
kind of f(R) gravity satisfies all of the stability and valid-
ity conditions, such as [84]: (I) frrg > O (no tachyons),
) 1 4+ fr > O (effective gravitational constant Gegr
does not change sign, and thus no ghosts are present), (IIT)
limgp_ 0o f(R)/R = 0 and limg_. fr = 0 (GR is fully
recovered at the early times), (IV) | fr| is relatively small
(solar and galactic scale constraints are satisfied). This form
of modified f'(R) gravity is statistically similar to the concor-
dance ACDM model, but unlike it was for the Hu—Sawicki
[81] and Starobinsky [85] modified gravity theories, y grav-
ity does not include ACDM as a limit.

As usual, we illustrate the null and dominated energy con-
ditions at the Fig. 3. We used by = 5. For that case, Null
Energy Condition as well as the Dominant Energy Condition
was violated for every relatively small and positive value of
o and R, (which is necessary condition judging by the obser-
vational constraints, presented in [86]) if n = 1. In turn, SEC
has very small and positive values (so the situation is the same
as in exponential and Hu—-Sawicki gravities).

4 Probing GEB wormbhole stability through the MTOV

In the present subsection we will probe the stability of
the perfect fluid matter that supports the generalised Ellis—

Bronnikov wormhole interior. For the propose of wormhole
stability analysis one could use the equilibrium condition,
which could be obtained from the well known generalized
Tolman—Oppenheimer—Volkov (TOV) equation. The TOV
equation is given below [87,88]:

’ dpr 2
S (p+p)+——+-(pr—p)+Fe=0. (31)
—  dr r
7 —_— —
¢ Fy Fyu

Where Fj is the gravitational force, Fp is the hydrodynam-
ical one and F4 is the contribution to the TOV of the fluid
anisotropy. Finally, F is the extra force, that arise because of
the stress-energy tensor discontinuity (V#T},,, # 0). Because
we already considered only one case with ZTF GEB worm-
hole, gravitational force vanish. We need to explore the tor-
toise coordinate space, so we will apply the proper transfor-

mation:
) di’.

dr2=<

Keeping that fact in mind and by using the chain rule in the
Leibniz notation, modified TOV equation reads:

(st

b
1= =
’

(32)

b
(b3 + 1m)t/m

dp (1)
dl

@ Springer
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T (PET O = P 0) + FE =0 (33)

" (b +1™)
Where shape function is defined by the Eq. (5), but the shape
function need to be defined in terms of tortoise coordinate
using the expression r (/) = (b% + myl/m,

On the Fig. 4 we show the numerical solution of the
Eq. (33) for exponential f(R) gravity. In turn, we present
the numerical results of MTOV forces evaluation for Hu—
Sawicki f(R) gravity on the Fig. 5. In this kind of modified
gravity, if we will vary the parameter n (which represent
the order of normalized scalar curvature R/R.), as n getting
bigger, MTOV forces will be getting smaller equally. On the
other hand, if we will vary other MOG free parameter R,
as R, — oo, F — 0. Finally, we show TOV forces for the
last modified gravity of our consideration, namely gamma
gravity on the Fig. 6. We plotted this forces for both linear
and quadratic cases.

5 Volume integral quantifier
Volume Integral Quantifier (here and further — just VIQ)

could help us to quantify the total amount of Average Null
Energy Condition (ANEC) violating matter (exotic matter)

@ Springer

at some point of spacetime. Usually, VIQ for the spheri-
cally symmetric spacetime and anisotropic matter distribu-
tion takes the following form [89]:

oo pm p2m
U = / / / lo + prlv/—gdrdode (34)
ly 0 0
One could also rewrite VIQ (34) as the curvilinear integral
over the volume V:

U= f[p + p1dV = 2/ [p + prlamridr (35)
by

0
But obviously we couldn’t deal with the integration over infi-
nite bounds (for the present solution, for a wormhole to be
asymptotically flat, volume integral quantifier, integrated all
over r must have infinite values [90]) and so we want to con-
sider the VIQ with a cut-off of the stress energy tensor at
some radius rq:

"

V=2 [p+pldnridr

bo

(36)

Then, we could finally rewrite Eq. (36) in the terms of tortoise
coordinate:

o (1) + pST () )4m (b3 + 1™)1/™)?
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Fig. 7 Volume integral quantifier for the exponential (first column), Hu—Sawicki (second column) and Gamma (third column) gravities. Free MOG

parameters take values that were assumed for energy conditions previously

b 1/2

We routinely plot Volume Integral Quantifier for each mod-
ified gravity of our consideration on the Fig. 7. It is easy
to notice that Generalised Ellis—Bronnikov wormholes for
m > 1 have exotic matter at the throat, but the total vol-
ume of ANCE violating matter could be minimised if we
will assume that { — o0, A — o0 and « — o0. But, as
we know, contribution of gravity modification could not be
very big, so maximally minimised GEB wormholes are not
physically viable.

6 Total gravitational energy

Total gravitational energy also could show us the behavior of
the matter in the wormhole spacetime. The total gravitational
energy of a structure composed of normal baryonic matter is
negative [91]. For the first time total gravitational energy for
any stationary spacetime (if we consider that black holes are
absent) was discovered by the Lynden-Bell et al. [92]. Total
gravitational energy looked like E, = M — E);, where M
is the total mass and Ey is the gravitational binding energy.
But, it is easily to follow the work of [93], in which the
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Fig. 8 Total gravitational energy E, for the exponential, Hu—-Sawicki and Gamma f(R) gravity. As usual, we assume that A = 1, @ = 0.5 and

B=0.1

explicit form of the £, were derived:

1 [ bo
Eg=M—En = EA (1 - Vgrr],orzd” + 5 (38)
0

Here b /2 could be referred to as the effective gravitational
mass. Then, we could rewrite explicit form of the total grav-
itational energy in terms of tortoise coordinate 7:

1 _
. lf*wlll b "
F 2 g 0+ 1)1/

b v b
0
XﬁwngWO_W+MW)dlz
0

(39)

We plot the total gravitational energy for each gravity kind
of our consideration with varying m on the Fig. 8. As one
could easily notice, the biggest total gravitational energy has
regular Ellis—Bronnikov wormbhole, and if m — oo, then
E, — bo/2. Moreover, gravitational energy does not change
if we will vary such MOG parameters as ¢, A and o, R,
and Ry, so it is invariant under the change of gravitation
formalism.

@ Springer

7 Concluding remarks

Wormholes are fascinating objects in the spacetime structure,
and its existence appears in theoretical physics as a solution
to Einstein field equations. But these are yet to be confirmed
through observations/experiments in the background of uni-
fied field theory. In classical general relativity, violation of
NEC is a basic necessary condition to a static traversable
wormhole. Despite this, NEC and WEC can be avoided for a
time-dependent wormhole solution in specific regions and for
a particular interval of time at the throat [94-97]. Moreover,
in the alternative theories of gravity to GR, by modifying the
Einstein—Hilbert action, one may impose in principle that
the energy—momentum tensor looping the wormhole vali-
dates the NEC. However, later NEC is necessarily violating
in the context of the effective energy—momentum tensor. For
instance, in the case of braneworld wormhole solutions, the
matter contents on the brane satisfy the NEC, whereas effec-
tive energy—momentum tensor violates it later [43—46]. It is
worthy to note here that the WEC can be satisfied depending
on the parameters of the gravitational theory [41].

In this manuscript, we have explored the possibilities of
the wormhole geometries in the framework of f(R) gravity
theory. We considered the GEB spacetime for our study and
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derived the modified motion equations for the test particle.
Further, we examined three wormhole geometries by taking
various well-established f(R) models such as exponential
f(R) gravity, Hu—-Sawicki f(R) model, and y model. These
models are well-known for their successful description of
late-time cosmic acceleration and their concordance with the
ACDM model. Moreover, the energy conditions are tested
for the wormhole models. And, it is observed that NEC is
violated near the throat of the wormhole for all the models.
These results indicates the presence of exotic matter, which
helps the traveler to pass through the wormhole throat freely.

As a matter of completeness, we tested some physical
properties such as stability through MTOV, volume integral
quantifier (VIQ), and total gravitational energy for the worm-
hole models. The stability of the wormhole models is exam-
ined by the hydrodynamical force Fg, an-isotropic force F4,
and extra force Fg. And their combining results satisfied
the equilibrium condition. From VIQ profiles, it is seen that
wormholes have exotic matter at the throat, but the total vol-
ume of ANCE violating matter could be minimised if we
will assume that { — oo, A — o0, and ¢ — o00. But,
as we know, the contribution of gravity modification could
not be enormous, so maximally minimized GEB wormholes
are not physically viable. From the total gravitational energy
profiles, one can easily observe that the biggest total gravita-
tional energy has a regular Ellis—Bronnikov wormhole, and if
m — oo, then E, — bp/2. Moreover, gravitational energy
does not change if we will vary such MOG parameters as ¢,
A and o, R, and R, so it is invariant under the change of
gravitation formalism.

These above-discussed results allowed us to verify differ-
ent wormhole geometries in the context of f(R) gravity the-
ories with the GEB line element, lightening a new possibility
of wormhole geometry. Besides this, it would be interesting
to study GEB wormhole geometries by taking account of
the coupling of f(R) with the inflanton fields. We intend to
explore some of these studies in the near future and hope to
report on them.
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