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Abstract. The High Performance Computing (HPC) domain aims to optimize
code to use the latest multicore and parallel technologies including specific pro-
cessor instructions. In this computing framework, portability and reproducibil-
ity are key concepts. A way to handle these requirements is to use Linux con-
tainers. These "light virtual machines" allow users to encapsulate applications
within its environment in processes. Containers have been recently highlighted
because they provide multi-infrastructure environnement for both developers
and system administrators. Furthermore, they offer reproducibility due to im-
age building files. Two container solutions are emerging: Docker for micro-
services and Singularity for computing applications. We present here the Com-
puteOps project which investigates the container benefits for HPC applications.

1 Introduction

The ComputeOps1 project, started in 2018, targets container technologies for the High Per-
formance Computing (HPC) domain. The project will study and provide:

• container technology interoperability;

• portability on various architectures and infrastructures;

• repeatability/reproducibility of computing;

• good practices for writing recipes.

∗e-mail: ccavet@apc.in2p3.fr
1ComputeOps Wiki page on the CNRS/IN2P3 GitLab:

https://gitlab.in2p3.fr/CodeursIntensifs/DecaLog/wikis/ComputeOps
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The first year of the project has been dedicated to selection of container technology allowing
to run container applications on HPC infrastructures. The project members have also selected
several use cases as pilot applications. These pilot applications will demonstrate the interest
of encapsulating environment in containers in the HPC domain. Furthermore, the project
has started to provide tools for the research community: a private Singularity Hub has been
settled and connected to the GitLab platform.

1.1 Partners

Several institutes or research laboratory groups are partners of the ComputeOps project.
These partners are providing skills and/or R&D infrastructures as described in this section.

Aristote Virtual

Aristote2 is a french learned society which includes both academic and industrial players
in digital technologies. The Aristote Virtual working group was created in January 2018.
The group deals with usability and performance of containers on HPC machines, and aims to
embark new research communities on HPC. The four French national data centers and several
regional ones are active members of the working group.

Ecole Centrale de Nantes, Institut de Calcul Intensif

The Institut de Calcul Intensif 3 (ICI) is a HPC research institute which was established at
Centrale Nantes in January 2015, following its successful application in the Pays de la Loire
Connect Talent call for projects. The institute associates a HPC research laboratory and super-
computing facilities. The project objectives are related to the democratization of numerical
tools for massively parallel computing for a wide range of applications and challenges.
Since 2016, the Centrale Nantes SuperComputing Centre (CNSC), fully operated by ICI,
hosts LIGER4 supercomputer. This regional machine based on x86 superscalar instruction
currently is ranked in top 5 in French Tier2-class. It is devoted to provide computational re-
sources and expertise from the basic scientific research to unprecedented levels of precision,
releasing new potential for innovation. LIGER is a BULL/Atos DLC720 x86 supercomputer
with the following characteristic features:

• 281 TFlop/s Rpeak;

• 252 compute nodes and 14 GPU Nvidia K80 nodes;

• 6384 cores Intel Xeon E5v3;

• FDR Infiniband interconnect;

• 900 TB GPFS IO Fast Storage.

Some of the research topics run on LIGER are innovative and will explore massively parallel
numerical techniques for multiphase computational fluid dynamics: anisotropic mesh adapta-
tion and its coupling with immersed volume methods, imaging with automatic reconstruction
of numerical models from 3D images, offline and online computations.

2Aristote: http://www.association-aristote.fr/doku.php/public:aristote:contact
3ICI: https://ici.ec-nantes.fr/
4LIGER supercomputer: https://ici.ec-nantes.fr/centrale-nantes-supercomputing/
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P2IO ACP

Accelerated Computing for Physics (ACP), funded by the French P2IO consortium5, is an
R&D projet about AI computing on accelerated hardware (GPUs, manycore, FPGA). It fo-
cuses in particular on the adaptability of applications to different hardware via code genera-
tion and the definition of customizable environments via containers. It also provides Com-
puteOps a platform for the R&D activity, currently consisting of one machine with the fol-
lowing hardware:

• 2 Nvidia Tesla V100 GPU cards, 16 GB memory.

• 2 Intel(R) Xeon(R) Gold 6138 CPU @ 2.00 GHz, 20 physical cores each.

• 196 GB RAM.

A second machine equipped with FPGA and AMD processors is in the process of purchasing.
Standard GPU and machine learning development tools and framework (CUDA libraries,
PGI with OpenACC libraries, TensorFlow framework, etc.) are available on the platform in
different OS environments (Scientific Linux 6, CentOS 7, Debian 9, etc.) via Singularity
containers.

ACP also contributes ComputeOps some pilot applications (SMILEI, MEM, HAhRD,
Supernovae electron cross-section application) detailed in the next Section 1.2.

CBGP

The Biology Center for Population Management6 (CBGP) carries out research in the fields
of systematics, genetics and ecology relevant to the management of populations and commu-
nities of organisms for the purposes of agriculture, public health and biodiversity. CBGP has
been hosting its own HPC facilities since 2000. All of its IT services such as HPC computing,
databases or storage have been containerized since 2009.

1.2 Pilot applications

The pilot applications have been chosen to tackle research in particle physics and gravita-
tion. They have been selected in order to use the specific characteristics of the underlying
hardware:

• SMILEI7: the code is an open-source, particle-in-cell code. As a multi-purpose code, it is
designed for and applied to a wide range of plasma physics-related studies: from relativistic
laser-plasma interaction to astrophysical plasmas. It is co-developed by both physicists and
HPC experts, supported by GENCI8 and Intel.

• CMS MEM9: this code uses the Matrix Element Method (MEM) for the analysis of the
Higgs boson production with two top quarks (ttH channel) in the CMS experiment. The
code, based on OpenCL and CUDA, is adapted for MPI as well as multi-GPU (>20 GPUs)
execution.

• HAhRD10: HPC Algorithms for high Resolution Detectors (HAhRD) is a code developed
in the context of 2018 Google Summer of Code (GSOC’18). It is a machine-learning appli-
cation based on TensorFlow libraries for image reconstruction in the CMS High Granularity
Calorimeter (HGCAL) optimized for running on extensible processor and GPU platforms.
5P2IO: http://www.labex-p2io.fr/
6CBGP: https://www6.montpellier.inra.fr/cbgp/
7SMILEI: http://www.maisondelasimulation.fr/smilei/
8GENCI: www.genci.fr/
9CMS MEM: https://indico.cern.ch/event/587955/contributions/2937584/

10HAhRD: https://github.com/grasseau/HAhRD/wiki
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• electron_capture: this is a code computing electron capture rates, based on finite tem-
perature Hartree-Fock and finite temperature random-phase approximation (RPA) using
Skyrme interactions, used for astrophysics computation [2]. The application is coded in
Fortran90 with OpenACC directives for running on GPU.

• TensorFlow: machine learning applications using the TensorFlow library.

• LDC: simulation pipeline for scientific challenges of the LISA gravitational wave de-
tector11. The application is parallelized with MPI and used the PyMultiNest library for
Bayesian analysis.

• Geant4: simulation for direct Dark-Matter detection experiments (Xenon & DarkSide).

The pilot applications have been containerized in the Singularity container solution (see Sec-
tion. 2.1.1). We will explain this choice in the next Section. The containerized applications
are ready to be executed on R&D and production infrastructures.

2 Containers for computing

2.1 Solution description

Since 200512, several container solutions are emerging: Docker, Rkt, Singularity, etc. Among
these solutions, Docker13 has driven the community by providing a complete ecosystem:
Docker daemon, client, Hub/private Registry, Compose, Swarm, Machine, etc. The Docker
solution is evolving rapidly and it offers a user friendly environment for deploying micro-
services. The micro-service concept has been quickly adopted by the industry and the web
community due to the simple description of the system architecture. Furthermore, Docker
containers can be run on multi-infrastructures such as bare metal system, local and cloud
computing virtual machines (VMs) and on container clusters managed by an orchestrator.
Processes in container can be accessed as root.

In the context of the ComputeOps project, we have studied the Docker solution for
research in the HPC domain (see also [1]). The Docker’s paradigm is based on the
representation of a container as a lightweight VM that should host a single service. But this
idea of containers as miniature VMs is a wrong approach for the HPC community. Indeed,
micro-services can not be used on computing clusters due to security constraints or working
methods different from the typical Docker use case. For example, on computing clusters and
particularly on supercomputers, the container permission has to be set in the unprivileged
mode similar to the user’s home on the computing infrastructure. Moreover, software
solutions should be ready to deploy on existing infrastructure or should be deployed easily
without interfering with existing systems. The software solutions must take advantage of
the hardware characteristics. Finally, the Docker container format is not easily transportable
and shareable: scientists are looking for simple solutions to share, publish and ensure the
reproducibility of codes and calculations. For all these reasons, Docker is not the optimal
solution for executing scientific applications in an HPC environment. Fortunately, there are
other solutions at this time that take advantage of the benefits of containerization, while
adapting to the scientific environment. The ComputeOps team has chosen to focus on four
container solutions that are restricting user permissions, fully open source and free. We are
presenting them in the next Sections.

11LISA: https://www.elisascience.org/
12The Docker company has started to provide an innovative container solution in 2005.
13Docker: https://www.docker.com/
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2.1.1 Singularity

Singularity14 is an emerging container solution with an active community. The advantages of
this solution are:

• Compatibility with Docker: a Docker image can be used to create a Singularity image or
can be directly used from the Docker Hub to be run by Singularity;

• Security: unprivileged mode;

• I/O: transparency allowing a compatibility with MPI processes and X11 graphical export;

• Scheduler: native integration with schedulers. Singularity images can be submitted and
executed as a job on a computing cluster;

• GPU: easy GPU integration in containers;

• Mobility of computing: ability to define, create and maintain a workflow and be confident
that the workflow can be executed on different hosts, operating systems (as long as it is
Linux) and service providers;

• Single filesystem: Singularity containers use a single file which is the complete repre-
sentation of all the files within the container. This feature which facilitates mobility also
facilitates the reproducibility of computing;

• User freedom: Singularity gives to users the freedom they need to install the applications,
versions, and dependencies for their specific workflows without impacting the system.

Figure 1. Singularity workflow: build step in privileged mode and execution step in unprivileged mode
c©Sylabs.io.

The Singularity workflow, shown in figure 1, is divided in two steps. First, the user builds
an image in a privileged mode (on a local system or a VM) with a specific bootstrap method
(a Singularity file, a Singularity Hub or a Docker Hub). Second, the Singularity container
is executed in an unprivileged mode on a computing cluster within a batch scheduler. This
workflow is valid for the other container solutions that we are presenting in this Section.

2.1.2 Shifter

Shifter15 is a prototype implementation that the NERSC is developing and experimenting
as a scalable way of deploying containers in an HPC environment. The solution works by

14Singularity: http://singularity.lbl.gov/
15Shifter: https://docs.nersc.gov/development/shifter/how-to-use/

5

EPJ Web of Conferences 214, 07004 (2019)	 https://doi.org/10.1051/epjconf/201921407004
CHEP 2018



converting user or staff generated images in Docker, VMs, or CHOS (another method for
delivering flexible environments) to a common format. This common format then provides
a tunable point to allow images to be scalably distributed on Cray supercomputers at the
NERSC. The Shifter user interface enables a user to select an image from their Docker Hub
account and then submit jobs which run entirely within the container.
Shifter is different from Singularity because it tries to keep Docker’s paradigm: containers
are represented as small VMs. In reality, Shifter is complicated to install and to setup in an
existing environment, and the documentation is not yet complete. At this time, the Shifter
solution is installed mainly on Cray supercomputers at the NERSC.

2.1.3 uDocker

uDocker16 is a basic user tool to execute simple Docker containers in user space without
requiring root privileges. The solution enables to pull and run Docker containers by non-
privileged users in Linux systems where Docker is not available. It can be used in Linux
batch systems and interactive clusters that are managed by other entities such as grid in-
frastructures or externally managed batch or interactive systems. uDocker "executes" the
containers by simply providing a chroot like environment over the extracted container. The
current implementation supports different methods to mimic chroot enabling execution of
containers without requiring privileges under a chroot like environment.
uDocker is a simple tool written in Python. The solution has a minimal set of dependencies
so it can be executed in a wide range of Linux systems. It has less features than Singularity.

2.1.4 CharlieCloud

One of the advantages of CharlieCloud17 is that it allows users to create user space containers
from Docker images but also from any tool that can generate a standard filesystem. It is an
interesting solution for the ComputeOps applications but it is a slightly more complicated
than Singularity to install and use for containerization. Moreover, it is not as flexible in the
management of GPU libraries. The documentation is currently quite brief. This solution is
not largely used in computer research laboratories.

3 Achievements

The ComputeOps project has started to deliver tools for the research community. The team
has provided a Singularity Hub in order to host the images of the pilot applications deployed
by the GitLab continuous integration/continuous deployment (CI/CD) plateform. Further-
more, tutorials have been realized since the beginning of the project in order to push the
container adoption in the the research environment.

3.1 Singularity Hub

The Singularity private Hub for research18 allows to manage Singularity images as shown in
figure 2. This marketplace for Singularity images is working with (see also Sect. 2.1.1):

• an authentification mechanism based on a GitLab/GitHub account;

• collections of images for specific projects;
16uDocker: https://www.indigo-datacloud.eu/userspace-container-support
17CharlieCloud: https://hpc.github.io/charliecloud/
18ComputeOps Singularity Hub: https://sregistry.in2p3.fr
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• manageable workflows;

• the ability for users to rate available containers and view recipe sources.

Figure 2. A Singularity private Hub for Research

3.1.1 The ComputeOps image collection

The ComputeOps image collection has several goals:

• share images of pilot applications;

• reviewer team experimentation for image validation;

• label processing and container maintenance.

The collection is still in the building process and has just been started its adoption by the
research community.

3.1.2 A Comprehensive Software Archive Network

In the continuity of the ComputeOps collection, another initiative has been started. Based
on the model of the Comprehensive Archive Network like CRAN for R, CPAN for Perl or
CTAN for Tex, a Comprehensive Software Archive Network (CSAN) based on container
solutions has been initiated. This network of experts will provide pre-packaged versions of
scientific tools that are simple to install and simple to use validated by a peer-review process.
The pre-packaged tools will be compliant with best practices in terms of security and HPC
compliancy (CPU, RAM, and network optimized). Therefore, CSAN should be considered
as a trusted third party which allows scientists to focus on their science and not on the tricky
software installation process on their laptop or an exascale HPC cluster.

3.2 CI with Singularity

In order to deliver continuously Singularity images on distributed infrastructures, the team has
provided a CI/CD workflow based on GitLab-CI and Singularity components. The workflow,
schematized in Figure 3, has three stages:

• Commit: the code hosted on the GitLab-CI starts a pipeline on commit. The pipeline
running in containers can build a Docker image (Docker-in-Docker) and pushes it on the
GitLab registry (Docker private Registry);
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Figure 3. CI/CD with Singularity: a new commit triggers the build of a Singularity image that will be
pushed on a Singularity Hub

• Singularity-in-Docker: the next pipeline step automatically builds Singularity images and
publishes/updates images on hubs. By using a pre-packaged Docker image with Singularity
and SRegistry client, the pipeline builds an image and stores it in GitLab as an artifact. In
order to authenticate on the Singularity Hub, the user token is stored in the environment
variable settings;

• Deploy in production: on computing clusters, the Singularity solution is often available.
Automatically build images can be pulled from the Singularity Hub and executed within
the scheduler.

3.3 Tutorials

We have realized several tutorials and trainings for beginners and advanced users:

• Deep dive in container technologies: MaitresNageurs/EnBarque19;

• Containers in production: IN2P3 IT school 2018 20;

• How to create an OpenMPI container: SBAC-PAD Symposium 21.

The tutorials are based on Docker and Singularity solutions in order to cover both micro-
services and scientific applications.
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