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Abstract: Quantum computers have the capacity to solve certain complex problems more efficiently
than classical computers. To fully leverage these quantum advantages, adapting classical arithmetic
for quantum systems in a circuit level is essential. In this paper, we introduce a depth-optimized
quantum circuit of Gauss—Jordan elimination for matrices in binary. This quantum circuit is a
crucial module for accelerating Information Set Decoding (ISD) using Grover’s algorithm. ISD is a
cryptographic technique used in analyzing code-based cryptographic algorithms. When combined
with Grover’s search, it achieves a square root reduction in complexity. The proposed method
emphasizes the potential for parallelization in the quantum circuit implementation of Gauss—Jordan
elimination. We allocate additional ancilla qubits to enable parallel operations within the target matrix
and further reuse these ancilla qubits to minimize overhead from our additional allocation. The
proposed quantum circuit for Gauss—Jordan elimination achieves the lowest Toffoli depth compared
to the-state-of-art previous works.

Keywords: quantum computers; information set decoding; Gauss—Jordan elimination; Grover’s search

1. Introduction

Shor [1] presented a quantum algorithm for attacking the ECC and RSA cryptosystems,
which are based on the discrete logarithm and factoring problems. In Shor’s paper [1], he
demonstrated the potential to solve these problems faster (exponentially) than traditional
classical algorithms. As a result, there is a necessity for cryptographic algorithms that can
withstand both quantum and classical computing attacks. To address this, the National
Institute of Standards and Technology (NIST) hosted the Post-Quantum Cryptography
(PQC) standardization (https://csrc.nist.gov/projects/post-quantum-cryptography
(accessed on 19 September 2024.)) in 2016.

Error-correcting codes, originally conceived as a method for identifying and correcting
corrupted information in communication channels, were formalized by Shannon [2]. There
is growing interest in using them at the core of asymmetric cryptosystems. NIST considered
code-based cryptographic algorithms as a potential alternative, advancing all code-based
cryptographic methods to the fourth round of its competition (https:/ /csrc.nist.gov/News
/2022 /pqc-candidates-to-be-standardized-and-round-4 (accessed on 19 September 2024.)).
NIST specifically announced that one or more of the three code-based candidates—Classic
McEliece [3], BIKE [4], and HQC [5]—are likely to be standardized as an alternative to
lattice-based cryptographic techniques.

As such, accurately assessing the computational complexity of potential quantum
computer attacks on code-based cryptographic algorithms is essential for optimizing their
parameters. The security of these algorithms fundamentally depends on the difficulty of
solving the Syndrome Decoding Problem (SDP), which involves finding a solution to a
system of linear equations with a predetermined number of non-zero components.

The most well-known classical algorithm for solving the SDP, Information Set De-
coding (ISD), still runs in exponential time. One of the prominent studies theorizing the
potential speedup of ISD attacks using quantum computers was [6], which demonstrated a
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significant reduction in computational requirements when Grover’s algorithm [7] is applied.
However, the work did not provide specific quantum circuits for ISD. As far as we know,
the first quantum circuit implementation for ISD was presented in [8]. Very recently, the
authors of [8] extended and improved their work in [9].

Various modules are needed to construct a complete quantum circuit for ISD, includ-
ing input preparation, Hamming-weight checking, and Gaussian elimination. Among
these, Gaussian elimination is particularly crucial because it requires significant quantum
resources but can be optimized through various designs and implementations. In this
context, this work present a depth-optimized quantum circuit of Gauss—Jordan elimination
in ISD.

Contributions

In summary, our work involves the following;:

1.  Quantum Circuit of Gauss—Jordan Elimination in ISD. We present the implemen-
tation of quantum circuit of Gauss—Jordan elimination, which is one of the crucial
modules in ISD.

2. Depth-Optimized Quantum Circuit Implementation. Our focus is on minimizing
both the Toffoli depth and the overall depth in our implementation of the quantum
circuit for Gauss—Jordan elimination. To achieve this while keeping the number of
qubits reasonable, we employ several methods, including duplicating pivot elements,
designing parallel swap and elimination steps in Gauss—Jordan elimination, and using
reverse operations to initialize qubits (i.e., set to |0)), in order to reuse and reduce the
qubit count.

3. Concrete Estimates of Required Quantum Cost. Using the quantum programming
tool ProjectQ [10] (https://github.com/ProjectQ-Framework /ProjectQ (accessed
on 19 September 2024.)), we verify our quantum circuit implementation and analyze
the needed quantum resources in detail. By decomposing high-level quantum gates
(specifically Toffoli gates in this work), we estimate the number of Clifford and T
gates needed.

2. Preliminaries
2.1. Syndrome Decoding Problem (SDP)

Code-based cryptographic algorithms derive their security from the difficulty of the
Syndrome Decoding Problem (SDP), which is known to be NP-hard.

In SDP, a secret vector e € F5 is challenging to recover from the syndrome (ciphertext)
¢ = He, even when the parity-check matrix H € IF;Xk (which is public) is known. It is
essential to recognize that the vector e has a specific low Hamming-weight ¢ in SDP.

2.2. Information Set Decoding (ISD)

Information Set Decoding (ISD) is a well-known algorithm for tackling the Syndrome
Decoding Problem. Essentially, ISD utilizes a brute-force strategy that systematically nar-
rows the search space. The process is as follows: An information set S is chosen (randomly)
from a matrix H. If S is invertible, the Hamming-weight is assessed by multiplying the
inverse of S (i.e., S™1) by the syndrome c. If the Hamming-weight of the resulting vector
equals ¢, the secret vector e can be recovered. If not, the process is repeated from the start.
Prange first proposed the basic ISD algorithm [11], and subsequently, various variants of
the ISD algorithm have been introduced [12-14].

In ISD, Gauss—Jordan elimination is employed to find the inverse of an information
set S; thus, it can compute -1 (if S is invertible). This process involves transforming the
matrix into an identity matrix through a series of row operations. What we aim to compute
using Gaussian elimination is S~! - ¢!, which can be achieved without explicitly calculating
S~1. By applying the row operations used in Gauss-Jordan elimination to ¢, we compute a
vector that corresponds to S~! - ¢T. Thus, instead of constructing S~! explicitly, we apply
the same operations to ¢ to compute the desired result.


https://github.com/ProjectQ-Framework/ProjectQ
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2.3. Gauss—Jordan Elimination

Gauss—Jordan elimination is a technique in linear algebra used for solving linear
equation systems, determining the rank of a matrix, and calculating the inverse of an
invertible matrix. It involves transforming a given matrix into its reduced row echelon form
using a sequence of row operations. Algorithm 1 describes the process of Gauss—Jordan
elimination. Note that the operations performed between rows are also applied to the
vector c.

The process begins with forward elimination, transforming the matrix into an upper
triangular form by ensuring that all elements below the main diagonal are zero. This
transformation is achieved through row operations, including swapping rows, multiplying
a row by a non-zero scalar, and adding or subtracting multiples of one row to another. The
key step is to identify pivot elements, which are the leading non-zero entries in each row,
and use these to eliminate the entries below them.

Algorithm 1: Gauss—Jordan Elimination

Input: A matrix H of size n X n, a vector c of size n

Output: Transformed matrix H and updated vector ¢
1: fori =0ton —1do

2 Find the pivot in column i (value 1 in H[i : 1, i])

3 Swap rows to move pivot to H[i, i

4 forj=0ton—1do

5: if j # i then

6 Eliminate row j by using row i

7

return H, ¢

2.4. Grover’s Algorithm

The Grover algorithm is a quantum search algorithm that reduces complexity com-
pared to classical computers by a square root. Exhaustive search on quantum computers
has a complexity of O(2"). On the other hand, quantum search using the Grover algorithm
reduces the complexity to v/2". The process of Grover’s search is summarized as follows:

At first, the database of search targets is prepared in a quantum superposition state
using Hadamard (H) gates. Applying n Hadamard gates to n qubits yields the following
superposition state:

2" 1
Ho0) ™ () = () = 202 T o 0

The primary element, the Grover oracle, includes the quantum circuit used for query-
ing. The Grover oracle answers the solution by inverting the sign of the solution state of
the query as follows:

[ 1if Query(ip) = Solution
flx)= {0 if Query(¢) # Solution (2)
1 2"—1
Ur([9)1=)) = 5a7 ;)(_1)f(x>|x>|_> o

The amplitude of the solution provided by the Grover oracle is enhanced using the
diffusion operator. The Grover algorithm repeatedly applies the oracle and the diffusion
operator 1/2" times to sufficiently increase the amplitude of the solution. Finally, it recovers
the solution with a high amplitude (probability) by measuring the qubits.

2.5. Parallelization of Grover’s Algorithm

Exhaustive search using Grover’s algorithm is significantly ahead of the current capa-
bilities in quantum computing. While Grover’s algorithm theoretically reduces complexity
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by the square root, executing the attack requires managing an extremely high circuit depth.
In practical attack scenarios, Grover’s algorithm may be operated in parallel by dividing
it into smaller instances to mitigate the lengthy sequential computations (as discussed on
page 46 of [15]).

For this limitation, NIST has introduced a parameter called MAXDEPTH (<2%), which
sets a maximum on the required circuit depth for quantum algorithms. Thus, if Grover’s
algorithm exceeds the MAXDEPTH limit, a parallel strategy for Grover’s algorithm should
be considered. Parallelization of Grover’s algorithm can be designed into inner and outer
methods (for details, see [16]).

However, the performance of Grover’s algorithm parallelization is poor. To reduce
the depth D of Grover’s algorithm by a factor of S (to satisfy the MAXDEPTH, where
S = D/MAXDEPTH), S? instances must be operated in parallel [16-18]. Typically, the
product of the depth D and the qubit count M is adopted as a primary metric for deter-
mining the efficiency of a quantum circuit. For Grover’s parallelization, this metric D — M

is redefined as % due to the poor parallelization performance (D/S — M - §?).
Consequently, reducing the depth becomes more effective in minimizing the depth?-qubit
count product D> — M when the parallelization of Grover’s algorithm is considered.

2.6. Quantum Gates

In quantum computing, quantum gates in Figure Al are frequently employed to
perform arithmetic operations in quantum circuits. These include the NOT (X), CNOT,
Toffoli, and controlled-swap (CSWAP) gates. The X gate changes the state of a qubit, serving
as a quantum equivalent of the NOT operation (i.e., X (a) = a @ 1). The CNOT gate operates
on a pair of qubits, where the sate of target qubit is altered based on the state of control
qubit. If the control qubit is set to 1, the state of target qubit is inverted; if the control qubit is
0, there are no changes in the target qubit (i.e., CNOT (g, b) = (2,2 ® b)). This gate effectively
performs an XOR operation between the control and target qubits. The Toffoli gate operates
with three qubits: two serving as control qubits and one as the target qubit. The target
qubit’s state is flipped only if both control qubits are 1 (i.e., Toffoli (a,b,¢) = (a,b,c @ a - b)).
This gate XOR is the result of the AND operation of the control qubit to the target qubit.
Thus, Toffoli gates can be used for AND operations in quantum circuits. The controlled-
swap (CSWAP) gate exchanges the states of two qubits depending on a control qubit, acting
as the quantum equivalent of a conditional swap operation (i.e., CSWAP (a,b,c) = (a,b,c)
ifa=0and = (a,c,b) ifa =1).

These quantum gates allow cryptographic algorithms to be implemented in quantum
computing by replacing classical NOT, XOR, AND, and swap (including branch) operations.
To optimize quantum circuits, minimizing the number of Toffoli gates is essential. The
Toffoli gate has a high cost to implement because it requires a combination of a T gate
(which affects the depth of T) and a Clifford gate. Several decomposition methods for the
Toffoli gate are available, and the total depth represents the depth after the Toffoli gate
is decomposed. In this work, following one of the methods presented in [19], we use a
decomposition method involving seven T gates and eight Clifford gates with a T depth of
four and a total depth of eight for a single Toffoli gate.

3. Parallel Implementation for Quantum Circuit of Gauss—Jordan Elimination

This section presents the quantum circuit implementation of Gauss—Jordan elimina-
tion. In our implementation, we focus on the fact that there are many opportunities for
parallelization in Gauss—Jordan elimination. It is important to note that our method is
specialized for ISD and not intended for generic use. Recall that the matrix of the informa-
tion set is the input for Gauss—Jordan elimination in ISD, and the operations performed to
transform the matrix into the identity matrix are applied to the syndrome vector. Simply
put, our goal is to obtain the final syndrome vector depending on the input matrix of
the input matrix. Thanks to this specialization, several operations can be omitted in our
Gauss—Jordan elimination for ISD compared to the generic approach.
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Further, our quantum circuit is designed to minimize the depth by exploring possible
parallelization points in Gauss—Jordan elimination for ISD. To achieve parallelization, we
allocate a sufficient number of ancilla qubits. However, as discussed earlier (in Section 2.5),
reducing the depth rather than the number of qubits is recommended for optimizing
Grover’s algorithm due to its poor parallelization performance.

3.1. Obstacles to the Parallelization of Gauss—Jordan Elimination

In this section, we analyze the obstacles to the parallelization of the Gauss—Jordan
elimination quantum circuit. In the swap stage in Gauss—Jordan elimination, swap opera-
tions between rows are performed depending on the pivot (in quantum implementation,
these conditional operations must be designed to be reversible). If the pivot is |0) and the
element in the target row is |1), an actual swap operation between the rows (one containing
the pivot and the other being the target row) is executed. In Gauss—Jordan elimination,
the pivot is checked repeatedly many times. However, this implies a sequential flow that
increases the circuit depth by iteratively checking pivots and elements. Figure 1 shows
the case of sequential flow in the swap operation. For a comprehensive understanding,
throughout Section 3, we represent a matrix H (size 4 x 4) and a syndrome c (size 4) as
follows, and our method is described based on the following arrangement:

Hoo Hio Hyo Hzo Hap(co)

Hlc — Hoq Hin Hpi Hsn Haaler) )
Hop Hip Hyp Hsp Hyp(co)
Hos Hi3 Hyz Hzz Hyz(cs)

Depending on the pivot Hy o, swap gates between the rows are performed (the pivot Hy g
is copied to the ancilla qubit ancy). However, subsequent swap gates for the remaining
elements of the rows (i.e., CSWAP (ancy, Hy o, H1,1), CSWAP (ancy, Hy o, Hy 1), and CSWAP
(anco, Hz 0, H3 1)) must wait until the current pivot operation (CSWAP (ancy, Hoo, Ho1)) is
completed. This sequential flow also occurs in the elimination stage (not only in the swap stage).

lanco)
lancy)
lancs) P
[Ho,0) ] [H5,0)
‘HU l> }H6,1>
[Ho,2) [Hp2)
[Ho,3) [Hs)
[H1,0) [Hi o)
[H1,1) [H1 1)
|H1 ) [#12)
|Hy 3) |Hi3)
[Hz,0) |H50)
|H2,1) [H31)
|Ha.) |13 )
|H>3) [H5,5)
|H3.0) [Hj0)
[H3,1) [75,)
|H32) }H§,2>
|Hs3) |Hj5)
|eo) |co)
le1) |c1)
[e2) |c2)
|es) |c)

Figure 1. Sequential quantum circuit implementation of the swap stage (where |Hy ) is the pivot).

3.2. Parallel Implementation of Swap: Copying Pivot

To achieve the parallelism, we copy the pivot, which acts as a control qubit, to avoid
the sequential flow where subsequent operations wait for the pivot. Figure 2 shows our
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parallel quantum circuit implementation of the swap stage in Gauss—Jordan elimination.
We recommend that readers cross-check our implementation details with Figures 2—4, as
well as the matrix representation and arrangement in Equation (4).

|Hoo) —o—o0—P—Oo0—o0—P |Hp o)
[Ho,1) |Ho,1)
|Ho,2) |Ho,2)
|Ho,3) |Ho,3)
lanco o)
|anco,1)
lancg 2)
|H1,0) |H] )
[H1,1) |H1,1)
|H12) |Hy2)
|H1.3) |Hy,3)
|(ZTLCL()> ‘O)
|Ha,0) |Ho)
[Ha,1) |Ha2,1)
[Ha,2) |H2,2)
|Haz,3) |Ha 3)
lanca,o) 0)
|Hs.0) |H3)
|Hs,1) |Hs1)
|Hs,2) |Hs,2)
|Hs.3) |Hs,3)
lancs o) |0)
|co) )]
le1) le1)
le2) |e2)
les) |es)
lance,o) e |0)

Figure 2. Quantum circuit implementation of the swap stage (where |Hp ) is the pivot).

Firstly, we copy the pivot to perform controlled-swap operations (between the row con-
taining the pivot and the target row) simultaneously. Specifically, for the pivot H;; (where i
denotes the step of Gaussian elimination, 0 < i < n — 1), we copy the pivot n + 1 — i times.
As illustrated in Figure 2, using the copied pivots (i.e., ancy, ancy o, ancy g, ancs g, ance),
controlled-swap gates (in red) between the first and second rows (where Hy  is the pivot)
are performed in parallel.

3.2.1. Replacing Controlled-Swap Gates with Toffoli Gates

We use Toffoli gates instead of controlled-swap gates. As far as we know, this opti-
mization method was first presented in [9]. We briefly review this method. Let the ancg g
(pivot of Hyg) be |0). If controlled-swap gates are used, the swap between the first row
Hy.~.40 and the second row Hy..41 is performed as follows (where ancy is anc.):

. ! / /
CSWAP(””CON4,0, H0N4,1, H0~4/(]) : ancO~4,0 — anco~4,0, HO~4,1 — H0N4/0, H0~4,0 — H0~4,1.

In contrast, if Toffoli gates are used, the first row changes to |1) through the following
linear operation (where ancy g is anc.):

. ) /
Toffolz(anc0N4,0, H0N4,1,H0N4’0) : anC0N4,0 — anco~4,0, H0N4’1 — H0N4’1,
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!/
Hyq0 — Ho~s0 @ (ancomsp - Homs1)-

Both methods successfully change the pivot (Hpp) to |1) (assuming H is invertible).
However, as described in [9] (see Section 3.2), replacing controlled-swap gates with Toffoli
gates is more efficient in terms of quantum resources (controlled swap gate can imple-
mented using one Toffoli gate and two CNOT gates). Further, using Toffoli gates between
rows has the advantage of parallelization compared to using controlled-swap gates. The
controlled-swap gates in Figure 1 cannot be performed in parallel (i.e., subsequent oper-
ations must wait for previous operations to complete). However, if the controlled-swap
gates in Figure 1 are replaced with Toffoli gates, many of these Toffoli gates can be executed
simultaneously.

3.2.2. Exponential Copy

For copying the pivot, we use the previous copies for the next stage, as shown in
Figure 3. As implied by the name of the method, each cycle exponentially increases the
number of copies. The method of exponential copying is efficient not only in classical
implementation but also in quantum implementation; so, we adopt it. As a result, the
depth of CNOT gates required for copying is reduced.

After Third Cycle: 8 Copies (.)

After Second Cycle: 4 Copies (.)

_______________ —_

After First Cycle: 2 Copies (I:l)

—_—_———— T —

Start Copy: 1 COPY(D)

Figure 3. Exponential copy.

3.2.3. Reuse Technique

In the copy task, additional ancilla qubits were allocated to store the copies of the
pivot, which increases the total number of qubits. To address this overhead, we initialize
and reuse the ancilla qubits after the execution of Toffoli gates. By performing the reverse
operation (reversing the previous operation is often adopted in quantum implementations
to reduce qubit count) of exponential copy (shown in blue in Figure 2), the ancilla qubits are
initialized to a clean state (i.e., |0)), except for the first copies (ancg g, ancg 1, ancg», shown
in gray in Figure 3). In subsequent copy tasks, we can efficiently reuse these initialized
ancilla qubits.

3.3. Parallel Implementation of Elimination

The methods presented earlier (Copying Pivot, Section 3.2; Exponential Copy,
Section 3.2.2; Reuse Technique, Section 3.2.3) are also applied to the parallel implemen-
tation of the elimination stage. Compared to the parallel implementation of the swap
stage, more ancilla qubits for copying are allocated in the parallel implementation of the
elimination stage. Figure 4 shows the parallel implementation of the elimination stage in
Gauss—Jordan elimination.

Recall that in the swap stage, to perform Toffoli gates between the Hy.40 and Hy.4
rows, the previous Toffoli gates between the Hy..4 g and Hy..41 rows must be completed. In
contrast, in the elimination stage, there is no dependency between all of the rows since the
targets of the change are the elements, not the pivot. Thus, in the elimination stage, we do
not need to change the pivot as in the swap stage.
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[Ho,0) |Ho,0)
[Ho,1) |Ho,1)
|Ho,2) |Ho,2)
|Ho,3) |Ho.3)
lancy 1) /3 D |0)
lanco ) +—4 0)
|lanco ) + > |0)
[H10) [H10)
|H1,1) [H1 1)
[H12) |H1 )
[H13) |Hi3)
lancy o) 2 |0)
|Ha,0) |Ha,0)
|Ha,1) |Hj,
|Ha 2) |Hj )
|Ha2,3) | Hj 5)
lanca o) +2 |0)
[H3.0) |H3,0)
[H3,1) |Hj 1)
|H3 2) |Hj 5)
[H33) |Hj 5)
lancs o) 2 |0)
|co) |co)
le1) |ch)
|c2) |c2)
|cs) |c5)
|lance0) 0 |0)

Figure 4. Quantum circuit implementation of the elimination stage (where |Hy ) is the pivot); red
and blue lines have no dependency.

If we sufficiently copy elements used for the Toffoli gates, high parallelism can be
achieved. In the elimination stage, elimination operations (i.e., changing |1) to |0)) are
performed between rows based on the elements (Hy 1, Hy», Ho3 for i = 0, except for the
pivot) in the column containing the pivot. As we performed in the swap stage, we copy
each element with reduced repetitions. In Figure 4, each of |ancg 1), |[ancyp), and |ancy3)
contains three qubits but is illustrated as a single line for simplicity. In the same context,
each of |ancy o), |ancyp), |ancs ), and |anc. o) contains two qubits (1 —1 —i,n = 4,i = 0).
Unlike in the swap stage, we can omit the actual operations on the i-th column (i.e., Hy 1~.3)
in Gaussian elimination, reducing the number of copies by 1. In [9] (Section 3.2), the authors
proposed this optimization method, called Avoid Clearing Pivot Column. Additionally, we
can utilize the elements of the i-th column as control qubits, further reducing the number
of copies by 1.

As mentioned before, we can achieve more parallelism in the elimination stage com-
pared to the swap stage. Recall that in the swap stage, swap operations are only possible
between two rows, but in the elimination stage, elimination operations can be performed
on all of the rows. To achieve high parallelism, we also copy the elements of the row con-
taining the pivot (i.e., H 9, H20, H3,0, Ha (co)). Conceptually, the matrix is copied at once
(although, strictly speaking, not all elements in the matrix) in the elimination stage, whereas
in the swap stage, only the pivot is copied. Finally, using the copied elements, all of the
Toffoli gates in the elimination stage (shown in red in Figure 4) is executed simultaneously
(i.e., Toffoli depth one). After the Toffoli gate operations, the reuse technique (described
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in Section 3.2.3) is used to initialize ancilla qubits (shown in blue in Figure 4) and to reuse
them in the subsequent elimination stages (i.e., the i-th stage where i > 0). In contrast to the
swap stage, all of the ancilla qubits are initialized to |0). Finally, Algorithm 2 summarizes
our parallel implementation of the Gauss—Jordan elimination quantum circuit.

Algorithm 2: Quantum Implementation of Gauss—Jordan Elimination

Input: A matrix H of size n X n, a vector c of size n (the n-th column of H)
Output: Updated vector ¢
1: fori=0to (n —2) do
//Swap stage
2 forj=0to (n—2—1i)do
3 Copy H;; @ 1 to ancillas using exponential copy //Size of ancillas is (1 + 1 — i)
4 Toffoli (ancillas, (i + 1 + j)-th row of H, i-th row of H)
5 Initialize ancillas using reuse technique //(n — i) ancillas can be initialized
//Elimination stage
forj=0to(n—1—1i)do
Copy i-th column (except for H; ;) of H to ancillasy using exponential copy
forj=0to (n—2)do
Copy i-th row (except for H; ;) of H to ancillas; using exponential copy
10 forj=0to(n—2—1i)do
11: Toffoli (i-th column of H, i-th row of H, H(; 1) (i+j+1))

o »® N

12: Toffoli (ancillasy + i-th column of H, ancillas; + i-th row of H, H((j1)~n),0~((n—1)£i))
13: Initialize ancillas using reuse technique // ancillas ; are initialized

14: return the n-th column of H (i.e., ¢)

4. Performance and Evaluation

This section evaluates the performance of our parallel implementation of the quantum
circuit for Gauss—Jordan elimination. We used the quantum programming tool ProjectQ to
verify and evaluate the required quantum resources for our implementation. Table 1 shows
the estimated quantum resources based on the matrix size n. As mentioned in Section 2.6,
for the decomposition of Toffoli gates, we use one of the methods presented in [19], which
involves seven T gates and eight Clifford gates with a T depth of four and a total depth of
eight for each Toffoli gate.

In Table 1, we could not report specific quantum resources of the quantum circuit
presented in [9] because they did not provide details on decomposed resources (such as
Clifford and T gates, or full depth). However, it is intuitively clear that our method uses
significantly more qubits compared to [9], but provides a much lower Toffoli depth. We
report conservative estimates of Toffoli depth. It appears that unexpected, non-trivial
parallelization of Toffoli gates occurs in the quantum circuit. Thus, the actual Toffoli depth
is likely lower than the reported result in Table 1.

Table 1. Quantum resources required for quantum Gauss—Jordan elimination; # indicates the number

of circuits.
. Toffoli .
Matrix — yoNOT  #1qClif 4T Depth  T-Depth* "oubit Ful  rpxmM  FDxM
Size (M) Depth
(TD)
n==4 455 78 392 9 36 53 112 477 5936
n=38 3861 492 3136 35 140 247 407 8645 100,529
n=16 31,329 3352 24,640 135 540 1067 1880 144,045 2,005,960
n =232 251,321 24,368 194,432 527 2108 4435 12,260 2,337,245 54,373,100
n =48 848,401 79,432 652,736 1175 4700 10,107 39,488 11,875,725 399,105,216

x: Toffoli depth one has a T-depth of four.
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Our quantum circuit for Gauss—Jordan elimination is designed for quantum Infor-
mation Set Decoding using Grover’s algorithm. Since the parallelization performance of
Grover’s algorithm is poor (see Section 2.5), minimizing depth is more effective than reduc-
ing qubit count. In this context, our depth-optimized quantum circuit for Gauss—Jordan
elimination proves to be effective for quantum Information Set Decoding.

5. Conclusions

This paper introduced a parallel implementation of the quantum circuit for Gauss—
Jordan elimination, a crucial component in quantum Information Set Decoding (ISD). To
improve the efficiency of Grover’s search through enhanced parallelization, our implemen-
tation reduces circuit depth, but keeps the number of qubits manageable. We achieved
this by employing several optimization techniques, including pivot and element copying,
exponential copying, and the reuse of ancilla qubits. Nevertheless, we believe that there
is still room for optimizing the required quantum resources (such as gate count, qubit
count, and depth) for Gauss—Jordan elimination using additional techniques based on our
architecture.

We also estimated the quantum resources required for Gauss-Jordan elimination based
on matrix sizes using our method. Although making strict comparisons with previous
works is challenging, our results suggest that our implementation achieves the lowest
Toffoli depth to date.

Given the potential threats posed by quantum computers, analyzing the post-quantum
security of cryptographic systems is essential for ensuring security. In this context, our
future work will focus on evaluating the post-quantum security of code-based ciphers by
developing a complete quantum circuit for ISD. Optimizing other components of quantum
ISD to reduce their depth will be important for developing a more effective quantum circuit
for ISD.

Additionally, the quantum circuits presented in this work are still significantly large
for successful operation on real hardware in the Noisy Intermediate-Scale Quantum (NISQ)
era. In this limitation, exploring solutions such as quantum circuit recompilation and error
correction [20-23] would be valuable for future work.
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Appendix A
|a) x| la®©1) |a) |a)
(b) CNOT gate
|a) |a) |a) |a)
D) D) |b) b’
|c) D [c@a-b) | Ic')
(c) Toffoli gate (d) Controlled-swap (CSWAP) gate

Figure A1l. Common Quantum gates.
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