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Abstract
The measurement of the anomalous magnetic dipole moment of the muon (aµ) has long stood

as an excellent precision test of the Standard Model (SM).

The Fermilab Muon g-2 experiment has recently finished data-taking and in July 2023 published

its latest determination of aµ with a world-leading precision of 0.2 ppm. In this publication,

it surpassed the systematic uncertainty goal defined in the TDR. The analyses of a dataset

approximately four times larger than this recent publication is now underway.

The principle measurement of the Muon g-2 experiment measures aµ by taking the ratio of two

frequencies; the anomalous precession frequency (ωa) and the muon-weighted magnetic field of

the experiment’s storage ring measured from the precession frequency of protons in water using

nuclear magnetic resonance (NMR) probes.

In all publications to date, ωa has been determined using energy deposits in the 24 calorimeters.

However, the Fermilab experiment has two straw tracker detectors measuring the time and

momentum of charged particles which can in principle also be used to to measure ωa and such

a measurement can provide an invaluable cross-check of the calorimeter result with different,

and reduced, systematic uncertainties.

This thesis presents the first (blinded) determination of ωa using just charged tracks from

the straw tracking detectors as opposed to calorimeter energy deposits. This analysis was

undertaken using the Run-2/3 dataset which represents approximately 25% of the final dataset.

A total uncertainty of 2.19 ppm on ωa was obtained which is dominated by the statistical

uncertainty of 2.16 ppm.

Additionally two new methodologies important to the analysis of the straw tracking data have

been developed: one to better determine the track arrival time (t0) and one to determine the

level of pileup in the tracking detectors. The new t0 algorithm which incorporates angular

information improves the resolution on the determination of the t0 by a factor of two and

results in 19% more tracks being successfully reconstructed.

The data from the trackers is also used to determine the beam profile that weights the magnetic

field in the determination of aµ and in determining several of the systematic uncertainties in

the calorimeter-based ωa analysis. A detailed study of the impact of the internal alignment of

the tracker, the t0 and pileup on the determination of the beam position was undertaken and

propagated through to an uncertainty in the ωa determination. These uncertainties were used

in the Fermilab Muon g-2 experiment’s recent publication in Phys. Rev. Lett.
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Chapter 1

Introduction

The Standard Model (SM) is currently the prevailing theory of particle physics and has had

a tremendous level of success in predicting and explaining many fundamental properties of

particles, interactions, and phenomena to great precision. This model, however, fails to explain

many phenomena that we know about the observable universe. For example, it does not predict

or explain the nature of the baryon asymmetry of the universe, the existence of dark matter,

the source of dark energy, and the neutrino mass. To explain these phenomena it is clear that

revisions and extensions to the SM need to be made and therefore experiments need to be

devised to probe possible new physics.

The anomalous contribution to the magnetic moment of leptons al = (g−2)l/2 is currently the

most precisely determined quantity within the phenomenological framework of the SM as well

as experimentally and therefore stands as an excellent area to probe for beyond the Standard

Model (BSM) physics.

The Brookhaven National Laboratory (BNL) experiment published its final results in 2006 [1].

This measurement of the anomalous magnetic moment of the muon had a ∼ 3.6σ discrepancy

with respect to the SM prediction. As the experimental measurement includes contributions

from all possible effects whether they be SM effects or from new BSM physics, this discrepancy

was potentially an indication of new physics.

To investigate this, The Fermilab Muon g-2 Experiment, situated in Batavia, Illinois was built

in 2013–2018 and announced its first results in 2021 and determined the value of aµ to a

precision of 0.46 ppm [2] using the Run-1 data and was in agreement with the results of the

BNL measurement. Following this result in 2023 the Muon g-2 experiment announced the

latest determination of aµ using the Run-2 and Run-3 data achieving a remarkable precision
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of 0.2 ppm.

A comparison of this result with the 2020 SM prediction [3] yields a discrepancy of 5.0σ.

However recent SM determinations from lattice QCD and dispersive e+e− data are significantly

different from the 2020 SM prediction and an intensive campaign is underway to provide a new

SM prediction.

The principle measurement of the Muon g-2 experiment utilises the experiment’s calorimeter

detectors. In this thesis a measurement of the spin precession frequency of the muon utilis-

ing the experiment’s two straw-tracking detectors is presented. Although the straw-tracking

measurement uses a much lower number of reconstructed muon decays than the calorimeter

detectors, a measurement across the full Muon g-2 dataset can achieve a statistical precision

comparable to the BNL and Run-1 Fermilab Muon g-2 measurements. But, importantly the

measurement provides an invaluable cross-check of the calorimeter result with different, and

reduced, systematic uncertainties.

Chapter 2 discusses the history of the experimental approach, the phenomenology of the deter-

mination of aµ in the framework of the SM, and the latest theory results. Chapter 3 introduces

the experimental technique of determining aµ, Chapter 4 discusses the experiment principle

and design of the Muon g-2 experiment, Chapter 4.7 focuses on the hardware design of the

calorimeter, Chapter 5 describes the design principle and hardware of the straw tracker detec-

tors. Chapter 6 details a new algorithm for determining the track arrival time, t0. Chapter 7

demonstrates both an analytical and empirical approach to correcting for pileup in the straw

tracker detectors which is when multiple tracks arrive close in time and cannot be distinguished

from one another. Chapter 8 describes the first evaluation of the anomalous spin precession

frequency using the straw tracking detectors. Chapter 9 describes the evaluation of the sys-

tematic uncertainties on the ωa measurement. Finally, Chapter 10 provides conclusions with

an outlook on the future of the ωa measurement.
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Chapter 2

Phenomenology

The Standard Model of particle physics is the benchmark for all of particle physics. It describes

particles and their interactions and has successfully predicted and led to the discovery of parti-

cles and their fundamental properties. The Standard Model particles comprises primarily two

distinct groups. Firstly, there are the fundamental (point-like) fermions. These particles are

spin 1/2 particles and consist of leptons (electron, muon, tau, and their counterpart neutrinos)

and also quarks (up, down, top, bottom, charm, and strange).

The interactions of these fermions are facilitated by gauge bosons for each respective force. The

electromagnetic interaction is facilitated by photons (γ), the weak interaction by three gauge

bosons (W+,W−, Z0), and the strong interaction by the gluon (g). Point-like fermions have

four fundamental properties: charge, mass, spin, and a magnetic dipole moment. This chapter

will define the magnetic dipole moment within quantum mechanics and the framework of the

Standard Model, we then discuss more specifically the contributions to the magnetic dipole

moment of the muon within and beyond the Standard Model.

2.1 Magnetic dipole moments

The magnetic dipole moment (~µ) of a fundamental fermion is related to its spin (~s)through

~µ = g
q

2m
~s, (2.1)

where g is the gyromagnetic ratio of the particle, q is the charge, and m is the mass of the

particle.
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Within the framework of relativistic quantum mechanics, Dirac came to the result that for a

charged point-like fermion, g = 2 [4, 5]. This result was shown to hold at tree-level (contains

no closed loop interactions). However in relativistic quantum field theories (RQFT), one must

consider higher order loop contributions, commonly known as radiative corrections. In 1948,

Schwinger, motivated by measured anomalies in the hyperfine structure of hydrogen, calculated

the first order loop correction to the g-factor in the framework of quantum electrodynamics

(QED) [6].

Due to the addition of these corrections, the magnetic dipole moment can be written in the

form

~µ = (2 + 2al)
q

2m
~s, (2.2)

where the factor 2 represents the tree-level Dirac contribution (g = 2) and al represents the

anomalous correction given by the equation

al =
(g − 2)

2
. (2.3)

Analogously, Dirac determined, via his relativistic theory, the possibility of an electric dipole

moment (EDM) with the relation
~d = η

q

2m
~s (2.4)

with η representing a dimensionless constant analogous to g. Including both these dipole

moments results in the following Hamiltonian for a charged lepton in the presence of both an

electric and magnetic field:

H = ~µ · ~B − ~d · ~E (2.5)

with ~B and ~E representing the magnetic field and electric field strengths respectively. From this

Hamiltonian and the respective transformation properties, it can be seen that the term ~µ · ~B

is even under all CPT symmetries and the term ~d · ~E is odd under P and T [7]. This property

shows that the EDM is a CP-odd quantity and thus that the existence of a non-zero charged

lepton EDM would imply a previously undiscovered source of CP violation. New sources of

CPviolation are necessary to explain the apparent baryon asymmetry of the universe, which

cannot be explained, in full, by the CP-violation of the quark sector described by the CKM

matrix.

Schwinger calculated the first-order loop contributions to the magnetic dipole moment. This

calculation was the first demonstration of the power of RQFTs and renormalization. The tree-
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level vertex and one loop function of the electromagnetic interaction between the charged lepton

and the photon is shown in Figure 2.1. This function takes the form

(a) (b)

Figure 2.1: Tree-level and One-loop Feynman diagrams for the electromagnetic interaction
between a charged lepton and a photon

Γµ
tree−level(k1, k2) = −ieγµ, (2.6)

where µ denotes a Lorentz index, ki denotes the fermion momenta, e is the fundamental QED

charge and γµ denotes the Dirac matrices. In QED, the anomalous magnetic moment contri-

bution to g comes from the sum of contributions of all one-particle irreducible diagrams to all

orders. The general form of the QED vertex can be written as

Γµ (k1, k2) = −ie
[
γµF1

(
q2
)
+
iσµνqν
2m

F2

(
q2
)]
, (2.7)

where σµν = i
2
[γµ, γν ], and F1(q

2) and F2(q
2) are form factors. Here F1(q

2) describes the

radiative corrections to a fermion’s electric charge, we find that in the limit k2 − k1 = q → 0

that the factors F1(0) = 1 and F2(0) describes the anomalous magnetic moment. The first-order

loop correction to F2(0) as shown in [8] is

F2 (0) =
α

2π

∫ 1

0

dx dy dz δ(x+ y + z − 1)
2m2z(1− z)

m2(1− z)2

=
α

π

∫ 1

0

dz

∫ 1−z

0

dy
z

1− z
=

α

2π
,

(2.8)

which allows us to arrive at the one-loop correction to the g-factor

al ≡
g − 2

2
=

α

2π
≈ 0.0011614. (2.9)
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This value was consistent with the observed 50 ppm hyperfine splitting in hydrogen measured

by Kusch and Foley [9] and vindicated QED. The gyromagnetic ratio of the muon, gµ, was then

measured in a series of experiments using stopped muons at Columbia’s Nevis Laboratory [10],

with values again consistent with Schwinger’s evaluation.

From 1962 to 1979, CERN utilized the muon’s spin vector kinematics in the presence of a

magnetic field to measure the anomaly directly [11, 12, 13]. This exploited the fact that the

frequency with which the muon’s spin vector precesses in a magnetic field is proportional to

g− 2, setting the groundwork for future experiments. CERN-3 achieved a precision of 7.3 ppm

and was consistent with the Standard Model.

Using the same method with several improvements to the technique, e.g. muon injection

rather than pion injection, a more intense beam, and a more stable uniform magnetic field, the

Brookhaven National Laboratory [1] g-2 experiment improved the precision of the measurement

by a factor of 13.5. The final BNL result was

aBNL
µ = 116592089(63)× 10−11. (2.10)

This result was measured at a precision of 0.55 ppm and disagreed by 3σ with the Standard

Model value at the time. In 2021, the Fermilab Muon g-2 experiment announced its first

measurement of aµ to a precision of 0.46 ppm [2] using the Run-1 data, in agreement with

the results of the BNL measurement. Following this result in 2023, the Muon g-2 experiment

announced the latest evaluation of aµ using the Run-2 and Run-3 data to achieve a precision

of 0.2 ppm. The value for this result was

aFNAL
µ = 116592055(24)× 10−11. (2.11)

With this latest result combined with the value from the Run-1 dataset and the BNL result,

the new world average for the experimental determination of aµ is

aexpµ = 116592059(22)× 10−11, (2.12)

with a precision of 0.19 ppm. The experimental values from the BNL and Fermilab Muon

g-2 experiments can be seen in Figure 2.2.
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Figure 2.2: Experimental values of aµ from the BNL experiment and Fermilab Muon
g-2 experiment, and the experimental average [14].

2.2 Contributions to aµ within the Standard Model

In the Standard Model, there are three contributions to the magnetic dipole moment of leptons.

The first pertains to EM interactions via leptons and photons. The second from interactions

via the electroweak (EW) bosons (W±, Z0, H). The third from interactions via hadrons, which

interact via the strong force. This allows us to recompose aSMµ as

aSMµ = aQED
µ + aEWµ + aHadron

µ . (2.13)

2.3 QED and electroweak contribution

The electromagnetic contribution, aQED
µ , is the dominant contribution to aSMµ with over 99% of

the value coming from this sector. These contributions stem from virtual leptons and photons

and have been calculated to a five-loop level via numerical and analytical methods [15]. The

sum of these contributions can be expressed as a perturbation expansion of the form

aQED
µ =

∞∑
n=1

Cn

(α
π

)n

= (11658471.8971± 0.0007)× 10−10,

(2.14)

with Cn representing the coefficient to be calculated, α is the fine structure constant, and n is

the loop level. Although this is the dominant contribution, it leads to the smallest systematic

uncertainties in evaluating aSMµ . The EW contributions, aQED
µ , arise from Feynman diagrams

containing one of the electroweak bosons (W , Z0, and Higgs). Due to this, the process is heavily

7



suppressed by the mass scaling of (m2
l /M

2
W±,Z0,H) making this a sub-leading contribution. The

current result for the EW contribution is [16]

aEWµ = 153.6(1.0)× 10−11. (2.15)

2.4 Hadronic contributions

2.4.1 Hadronic vacuum polarisation

The leading hadronic correction to aSMµ comes from, at first order, the one-loop correction to

the photon propagator via the hadronic vacuum polarisation (HVP). Due to the strong coupling

constant being large in the low energy region leading to quark confinement, this contribution

cannot be calculated perturbatively. By utilizing the optical theorem of the scattering matrix

and experimental e+e− data, Bouchet and Michel [17] determined that the leading order HVP

could be calculated via dispersion integrals of the form

aHV P,LO
µ =

1

4π3

∫ ∞

4m2
π

dsK(s)σ(0)(s) =
α2

3π2

∫ ∞

4m2
π

dsK(s)R(s). (2.16)

Here, K(s) is a calculable kernel function, and R(s) is:

R(s) =
σ (e+e− → hadrons )

σ (e+e− → µ+µ−)
. (2.17)

The numerator represents the “bare” cross-section where vacuum polarisation effects are ne-

glected, and the denominator is the point like muon-pair cross-section. Differences in the

measured e+e− → 2π cross section between the KLOE [18] and BaBar [19] experiments are

responsible for over 70% of the total systematic uncertainty on the HVP estimate. This is

accounted for in the collective theory uncertainty; however, this will need to be minimized with

further data-driven analysis. A full breakdown of the dispersive results is available in Ref. [3].

The HVP contribution can also be determined using Lattice QCD, but until 2021 these calcula-

tions had large uncertainties. In 2021, a determination with a significantly reduced uncertainty

was released by the BMW group [20]. This result has a discrepancy with respect to the dis-

persive relation of 2.1 standard deviations(σ) [21]. This tension between the two approaches is

being scrutinised and further Lattice QCD determinations of aµ are being undertaken by other

groups. The value for the HVP contribution, pending a consensus update from the theoretical
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community, is:

ahad, HVP
µ = 6845(40)× 10−11. (2.18)

2.4.2 Hadronic light-by-light scattering

The second contribution to the hadronic correction is the hadronic light-by-light (HLBL) scat-

tering contribution. This contribution derives from interactions such as the one shown in

Figure 2.3. This interaction contains a four-point function instead of the simpler two-point

function of the HVP, and therefore, the calculations for this contribution have significant model

dependencies. The current accepted, model-dependent, determination is the so-called “Glasgow

consensus” [22] and has a value of:

aHLbL
µ = (10.5± 2.6)× 10−10. (2.19)

Figure 2.3: Feynman diagram (left) representing the three-photon HLBL contribution to aµ.
They can be approximated by a pseudo-scalar pole contribution (right) [23].

2.5 Beyond the Standard Model

Currently, the magnetic dipole moment of the electron is the most precisely measured quantity

in the Standard Model [24], so it begs the question, why are we focused on the muon? Beyond

the Standard Model (BSM), contributions to the anomalous magnetic dipole moment from a

BSM particle with mass M scale as (m2
l /M

2) where M � ml, and ml is the mass of the charged

lepton. From this, we can express the ratio from the contribution to the electron and muon

anomaly as
aµ
ae

≈ (mµ/M)2

(me/M)2
=

(
mµ

me

)2

. (2.20)
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As the muon mass is ≈ 207 greater than the electron mass, then the BSM contribution to the

muon anomaly is a factor of ≈ 4 × 104 larger, which outweighs the better precision from the

electron measurement. This mass-squared relationship comes implicitly from the requirement

that the anomaly is gauge invariant, which forces the corresponding operator to be of at least

dimension six [25].

The tau lepton has a mass of ≈ 1780 MeV resulting in a factor of ≈79 times larger BSM

contribution compared with the muon. However, the tau lepton has a lifetime of ≈290 fs, and

predominantly decays hadronically, making the measurement of aτ very challenging. Presently

there is only a limit [26, 27] on its value of:

0.052 < a < 0.013 (2.21)

at the 95% CL.

Interactions contributing to aµ have to be chirality flipping, flavour conserving, CP conserving

and loop induced. This puts stringent constraints on the BSM interactions that can contribute

to aµ which is generally parameterised as:

∆aBSM
µ = CBSM

(
mµ

MBSM

)2

, (2.22)

where CBSM is a model-dependent coefficient. BSM interactions also contribute to the muon

mass. To avoid significant changes to the muon mass the BSM mass needs to be MBSM) .

2.1TeV for CBSM ∼ O(1). Null-results from LHC searches for BSM phenomena also further

restrict the possible BSM contributions. BSM extensions able to provide an increased value

of aµ are not excluded by LHC data include dark photon models, two-Higgs doublet models

(2HDM), SUSY models, leptoquarks, and new light vector boson Z ′ models. These different

models cover a large range of coupling and mass parameter space, e.g., the light Z ′ boson can

have masses below 1 GeV, whereas scalar leptoquark masses are constrained to be above 1 TeV.

A summary of these models is presented in [28].
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Chapter 3

Experimental measurement

In order to measure the anomalous magnetic dipole moment of the muon, we must first under-

stand how a charged particle with a dipole moment behaves in a magnetic field. The torque,

that acts on a dipole in a magnetic field can be described by the expression

~τ = ~µ× ~B + ~d× ~E, (3.1)

where ~µ is the magnetic dipole moment, ~B is the magnetic field, ~d is a potential non-zero

electric dipole moment and ~E is the electric field. This torque causes the spin of the particle

to turn with a spin-precession frequency ωS, which can be expressed as [29]

~ωS = −g q

2m
~B − (1− γ)

q

γm
~B, (3.2)

where g is the gyromagnetic ratio factor, m is the particle mass, q is the particle charge, and γ

is the relativisitic Lorentz factor. If the momentum is perpendicular to the magnetic field, the

particle’s momentum will also orbit at the cyclotron frequency described by

~ωc = − q

γm
~B. (3.3)

The difference between ~ωS and ~ωc is defined as the anomalous precession frequency ωa, and is

proportional to the anomalous magnetic dipole moment. This is expressed as

~ωa = ~ωs − ~ωc = −g − 2

2

q

m
~B = −a q

m
~B. (3.4)
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The muon beam has a small transverse momentum component coupled with inhomogeneities

in the magnetic field causes the muon beam to diverge vertically. Vertical focusing is required

to maintain the beam within the storage ring aperture for a sufficient time to measure ωa.

Electrostatic quadrupoles provide this vertical focusing, which introduces an electric field term

in the expression for ωa:

~ωa = − q

m

[
a ~B −

(
a− 1

γ2 − 1

)
(~β × ~E)

]
, (3.5)

However, if muons whose momentum satisfies the conditions:

(
a− 1

γ2 − 1

)
= 0 (3.6)

are selected, this second term vanishes. For the muon, the so-called ”magic-momentum” that

causes this term to vanish is defined by:

γ0 =

√
1

aµ
+ 1 = 29.3. (3.7)

This boost factor corresponds to a momentum p0 = 3.094GeV. This momentum sets the con-

straints of the experiment, and in a perfect scenario, all muons would move with this momentum.

However, this is not the case, and the effect of deviations away from the magic-momentum need

to be accommodated in the measurement of ωa.

To achieve the measurement of aµ, it is also essential to measure the magnetic field to a high

precision. This is done through a measurement of the Larmor frequency of a free proton, ωp,

which is defined as

ωp = −gp
e

2mp

B, (3.8)

where gp is the gyromagnetic ratio of the proton, and mp is the proton mass. The magnetic

field is thus defined by the relationship:

~B =
~ωp

2µp

, (3.9)

where µp is the magnetic dipole moment of the proton. The electric charge can also be expressed

in terms of electron quantities, i.e.,

e =
4meµe

~ge
, (3.10)

where me is the electron mass, µe is the magnetic dipole moment of the electron, and ge is the
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gyromagnetic ratio of the electron. With these expressions, we can now express aµ in terms of

measurable quantities as

aµ =
ωa

ω̃p

ge
2

µp

µe

mµ

me

. (3.11)

The quantity ω̃p is the field measurement convoluted and averaged with the position of the

muon distribution in the storage ring Mµ(x, y, φ).

ω̃p ≡ 〈ωp(x, y, φ)×Mµ(x, y, φ)〉 (3.12)

with φ, the azimuthal position in the storage ring. The ratio ωa/ω̃p, is determined by the Muon

g-2 experiment, and the target systematic uncertainty of this measurement is 140 ppb. The

other quantities in Equation 3.11 are known to a much higher precision from other experiments.

The gyromagnetic ratio factor of the electron, ge, is known from one-electron quantum cyclotron

experiments to a precision of 0.13 ppt [30]. The ratio between the proton and electron magnetic

dipole moments, µp/µe, is known from hydrogen spectroscopy to a precision of 3.0 ppb [31].

Finally, the ratio between the muon and electron mass is determined by bound state QED [31]

and the hyperfine splitting in muonium [32]. This is known to a precision of 22 ppb.

The determination of aµ thus rests on separately measuring ωa and ωp in the experiment.

3.1 Determining ωa and ωp

The ratio ωa /ωp (quivR′
µ) can be expressed in terms of the quantities the experiment measures

as:

R′
µ =

ωa

ωp

=
fclock ω

meas
a (1 + Ce + Cp + Cpa + Cml)

fcalib
〈
ω̃′
p(x, y, φ)×M(x, y, φ)

〉
(1 +Bk +Bq)

, (3.13)

where,

• ωmeas
a is the measured spin-difference precession frequency determined from the positron

time distribution

• ω̃′
p(x, y, φ) is the precession frequency of a proton calibrated to an equivalent precession

frequency of a proton shielded in a sphere of water at a calibration reference tempera-

ture of 34.7◦C, measured as a function of the azimuthal position and the muon spatial

distribution as measured by the tracking detectors, M(x, y, φ).

• The two Bx terms are time-dependent transient effects that affect the magnetic field.
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• The Cx terms are corrections arising from the spatial and temporal motion of the beam.

• fclock is a relative unblinding conversion factor from the clock used to measure ωa

• fcalib is an unblinding conversion factor from NMR probes used to measure the magnetic

field.

Each of these terms will be defined and discussed in more detail in the following sections.

3.2 The ωa measurement

In order to measure ωa , the decay kinematics of the muon must be considered. The main decay

mode of the positive muon is to a positron, an electron neutrino, and a muon anti-neutrino.

Due to the parity-violating nature of the weak interaction, the positron will preferentially be

emitted with right-handed chirality and with spin vector in the direction of its momentum.

Due to the conservation of angular momentum, positrons emitted with maximal energy in the

muon rest frame will travel in the opposite direction to the neutrinos, both traveling in the

same direction. The spin of the positron is parallel to the spin of the muon at the time of decay.

However, positrons emitted with minimal energy, where the neutrino and anti-neutrino travel

in opposite directions, will have spin anti-parallel to that of the muon at the time of decay.

Thus by measuring the energy of the emitted positrons, the direction of the muon spin can be

obtained.

Muons within the storage ring will orbit at the cyclotron frequency and will precess with the

anomalous precession frequency, ωa. For a polarized muon beam, the probability of a positron

having an energy fraction y = E/Emax emitted at an angle θ with respect to the muon spin is:

dP (y, θ) ∝ N(y)[1 + A(y) cos(θ)]dy dΩ (3.14)

where N(y), is the number-distribution of the decay positrons, A(y) referred to as the “asym-

metry” is an energy-dependent factor encoding the correlation between the muon spin and

positron direction. As the high-energy positrons are emitted parallel to the muon-spin at the

time of decay, θ is also defined by θ = ωat + φ, where φ is the phase of the muon ensemble at

the point of injection. In the rest-frame of the muon, N(y) and A(y) are defined as

N(y) = 2y2(3− 2y), (3.15)
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A(y) =
2y − 1

3− 2y
. (3.16)

Their form is changed by the Lorentz boost to the laboratory frame, and assuming a unity

polarisation, they become:

N0(E) ∝ (y − 1)
(
4y2 − 5y − 5

)
(3.17)

A(E) =
−8y2 + y + 1

4y2 − 5y − 5
. (3.18)

Finally the number of positrons above a certain energy threshold, Eth, is given by the following

expression

N (t, Eth) = N0 (Eth) · e−t/γτµ · [1 + A (Eth) cos (ωat+ φ (Eth))] . (3.19)

The straw tracking detectors measure momentum and not energy and an analogous function

based on a momentum threshold, pth, is defined for positrons measured in the straw tracking

detectors:

N (t, pth) = N0 (pth) · e−t/γτµ · [1 + A (pth) cos (ωat+ φ (pth))] . (3.20)

Introducing yth = pth/pmax, then we have the following expressions for N0 (pth) and A (pth):

N0 (pth) ∝ (yth − 1)2
(
−y2th + yth + 3

)
, (3.21)

A (pth) =
yth (2yth + 1)

−y2th + yth + 3
. (3.22)

With these expressions, we can thus determine ωa by a fit to the number of positrons above

this momentum threshold.

A scan must be performed to find the optimal threshold for the measurement. The statistical

uncertainty on the ωa measurement is defined by [33]

σωa

ωa

=

√
2√

Ntotal Aγτωa

(3.23)

The statistical precision of ωa is minimised when the quantity NA2 is at its maximum. Fig-

ure 3.1 shows that 1.8 GeV is the optimal momentum threshold.

3.3 The ωp measurement

To achieve the experimental goals of the experiment, it is imperative to measure the magnetic

field around the storage ring to a high precision. The experiment aims to measure the magnetic
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(a) (b)

Figure 3.1: (a) NA2 and (b) σR as a function of the momentum threshold.

field to an uncertainty of 70 ppb and to ensure the magnetic field is a uniform 1.45 T around the

azimuth of the ring. The cross-section of the g− 2 magnet, including the measurement system,

can be seen in Figure 3.2. The magnet consists of 36 upper and lower pole pieces to control

Figure 3.2: Schematic cross-section representation of the g − 2 magnet system [34].

the magnet’s field strength, with their pitch controlling the linear field gradients, and 24 yoke

pieces. To ensure the magnetic field is uniform around the ring, a two-fold approach, known

as “shimming”, is used. The first part of the shimming allows the control of field gradients
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in the transverse direction to the beam motion, as well as allowing fine-tuning control of the

field as a function of the azimuth. This introduced additional iron pieces to the pole pieces,

between the pole pieces and the yoke pieces, as well as above and below the yoke pieces. The

second part of the shimming utilizes a system of 100 individually powered, concentric coils on

the surfaces of the pole pieces. These surface correction coils (SCC) distribute specific currents

across the magnets, with the currents updated periodically to track drifts in the magnetic field.

This allowed the field variations over the storage ring aperture to be minimised to less than

1 ppm when averaged over the entire azimuth.

With both of these respective parts, the experiment achieved an RMS field homogeneity over

the azimuth of 14 ppm [34]. The effect on the uniformity of the magnetic field provided by the

shimming system can be seen in Figure 3.3. Another important facet of measuring the magnetic

Figure 3.3: Normalised distribution of the difference between the magnetic field at a point
around the ring B and the average field (〈B〉) as a function of the azimuth around the storage
ring (φ). The red and blue lines show the field before and after the shimming, respectively,
and the purple line represents the experimental goal of 25 ppm [35]

.

field is the use of nuclear magnetic resonance (NMR) probes. NMR involves the injection of

a sample of protons into the magnetic field, usually in the form of petroleum jelly or water,

where they are subject to a π/2 pulse. The protons will begin to spin at the Larmor frequency

(∼ 61.79 MHz), from which they will begin to return to equilibrium with the external magnetic

field after interacting with the inhomogeneities and local field gradients. This allows the field to

be measured around the ring. Approximately once every three days, a trolley system consisting

of 17 NMR probes completes a full revolution around the azimuth of the storage ring. At each

point in the ring, the probes measure the free inductance decay (FID) of the protons, as shown

in Figure 3.4. As the trolley cannot perform measurements when muons are stored in the ring,

a second system of 378 fixed NMR probes is placed around the ring to monitor the field between

trolley runs, allowing the measurement of the field to be interpolated.

This two-fold system allows the magnetic field to be mapped spatially over time for the full
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Figure 3.4: Example of a trolley probe measured free-inductance decay (FID). The inset
region highlights the periodic oscillation used to measure the frequency [34].

azimuth of the ring. A map of the azimuthally averaged field can be seen in Figure 3.5. The

Figure 3.5: An example of an azimuthally averaged field map showing the deviations in ppm
compared with the central probe. The 17 trolley NMR probes are highlighted by ‘X’ [34].
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frequency of the FID signal, however, will be different to the free proton precession frequency

of interest due to the materials of the probe and also the molecular properties of the proton

sample. The measured frequency can be expressed in the form

ωp, probe = ωp, free (1− σ (H2O,T) + δb + δp + δs) (3.24)

where (H2O,T) is a diamagnetic shielding effect of a proton in a sphere of water at a calibration

reference temperature of 34.7◦C, δb is an applied correction due to the bulk susceptibility of

the water sample, δp is an applied correction due to the paramagnetic impurities in the water

sample and δs is an applied correction to account for the magnetic effects of the probe itself [7].
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3.4 Corrections to ωa

3.4.1 Electric field correction

The electrostatic quadrupoles provide a vertically focusing electric field which also makes a

contribution to aµ. However as demonstrated in Equation (3.7) by selecting a Lorentz boost

factor of 29.3, most of the effect of this electric-field contribution to aµ can be cancelled. As the

stored muon momentum distribution has a variance, some of the muons that traverse the storage

ring are not at the magic-momentum, see Section 3 and this necessitates the introduction of

an electric field correction factor Ce. With the assumption that the muons traverse the storage

ring at a defined equilibrium radius, xe, the electric field correction can be defined as [36]

Ce ≈ 2n(1− n)β2
0

〈x2e〉
R2

0

, (3.25)

where n, is the field index of the quadrupole field responsible for the vertical weak focusing

of the beam which depends on the voltage of the electrostatic quadrupoles. The term β2
0 =

p20/ [m
2c2 + p20] depends on the magic-momentum, p0. The term R0 is the magic radius and

finally, 〈x2e〉, is the mean of the square of the radial beam position that depends on both the

width of the beam and the mean average of the beam position i.e. 〈x2e〉 = σ2
xe
+ 〈xe〉2.

To determine the value of Ce, a “fast-rotation” analysis is performed. Due to the muons at

injection having a time-spread of 120 ns, the ring will not be wholly filled since the cyclotron

period is 149.2 ns. Each muon has a momentum-dependent cyclotron period that dictates

the radius at which it will orbit. High-momentum muons will have a larger radius, and low-

momentum muons will have a smaller radius. Due to this effect, low-momentum muons in the

head of the bunch will catch up to the high-momentum muons in the tail of the bunch, thus

reducing the gap between each subsequent passing of the bunch. This gap will continue to

reduce, and after ≈ 30µs, the beam will have reduced to a more stable, near-uniform intensity.

This intensity variation is referred to as the “fast-rotation”.

Analysis of the “fast-rotation” requires a fast-Fourier transform (FFT) of the instilled betatron

oscillation (stable oscillation about the equilibrium orbit) caused by this effect, allowing for an

extraction of the radial distribution of the beam.

In Run-1 the determination of Ce had a significant systematic uncertainty due to the kicker pulse

instilling a time dependence in the beam’s momentum [37]. For Runs 2 and 3, a detector was
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developed to measure this time-momentum correlation. The minimally intrusive scintillating

fiber detector (MiniSciFi) was designed to measure the spatial distribution of the beam in

narrow slices of time without perturbing the beam significantly. A full overview of the design

and principle of this detector can be found in [38]. In Runs-2/3, Ce was determined to be

451± 32ppb [14].

3.4.2 Pitch correction

The stored muons have a small vertical component of momentum. This means that ~β · ~B 6= 0

and, therefore, a “pitch” correction, Cp, is necessary. This pitch correction is measured by the

straw tracking detectors and is of the form

Cp ≈
n

4

〈A2〉
R2

0

, (3.26)

where A is the amplitude of the vertical oscillation. As this correction is measured by the

straw-tracking detectors, the dominant uncertainty in the measurement comes from both the

alignment of these detectors and the track reconstruction. In Run-1, this correction was mea-

sured as +180 ppb with an uncertainty of less than 15 ppb [37]. In Runs-2/3, Cp was determined

to be 170± 10 ppb [14].

3.4.3 Muon loss correction

As muons traverse the storage ring outside of the central beam orbit, there is a possibility that

they will collide with the collimators that define the optimal beam aperture. When the muons

collide with these collimators, they subsequently lose energy and deter from their stable orbit,

causing them to spiral outside of the storage region before they are able to decay into positrons.

As muons are minimally ionizing particles (MIPS), they will be registered as high momentum

tracks close to the 3.094 GeV in the tracking detectors, whilst in the calorimeters, they will

deposit a small amount of energy.

Some of these lost muons can be identified by matching high momentum tracks in the straw-

tracker detectors to low energy clusters in the downstream calorimeter. As there are only

two straw-tracking detectors in the storage ring, a more optimal way of determining the rate

of these muons for the full azimuth of the storage ring can be determined from coincidences

where the low energy signal is measured in multiple calorimeters. As the distance between the

21



calorimeters is known, the time between the muon energy deposits in adjacent calorimeters is

∼ 6.2ns as shown in Figure 3.6. If the lost muons have the same phase as those in the average

Figure 3.6: A pictorial representation of the characteristic signals of the ‘lost’ muons. The left
shows the time difference (δt), between the energy deposits in two adjacent calorimeters, and
the right shows the signature energy spectrum of the minimally ionising muons in the
calorimeter [37].

stored muon population, this effect will be seen as merely a loss in the number of total stored

particles and will not have any effect on the average phase. However, if these lost muons have

a phase that is different from the average stored muon population, then a time-dependent,

coherent effect will be present. This is the case if the momentum of the lost muons has a time

dependence i.e.
d〈p〉
dt

6= 0, (3.27)

and also, if the phase and momentum are correlated i.e.

d〈φ〉
d〈p〉

6= 0. (3.28)

The correlation between phase and momentum has been measured and is shown in Figure 3.7.

This correlation means that the phase is also time-dependent. This effect will lead to a bias in

ωa that will scale with the correlation between the phase and momentum, the absolute rate of

the lost muons, and the momentum dependence of the muon losses as

d〈φ〉
d〈p〉

· d〈p〉
dt

=
d〈φ〉
dt

= ∆ωa 6= 0. (3.29)

In Run-1, two resistors in one of the electrostatic quadrupoles were broken, leading to a large

drift in the vertical position of the beam, and consequently, there was a larger rate of muon

losses, leading to a significant contribution from this effect. In Runs 2 and 3, which this thesis
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Figure 3.7: The phase-momentum correlation of the injected muon beam determined by a
data-driven approach and simulation. Due to this correlation momentum-dependent effects
such as muon losses can bias ωa [39].

details, the correction factor Cml and its associated uncertainty is determined to be negligible.

A detailed explanation of this can be found in Ref. [37]. In Runs-2/3, Cml was determined to

be 0± 3ppb [14].

3.4.4 Phase acceptance correction

Since the calorimeters having a non-uniform acceptance, there is a dependence on the position

in the azimuth of the storage ring where the muon decayed to the probability of the subsequent

decay positron being measured. Thus, this position dependence is correlated with the phase

of the beam. The beam is subject to variations in the field, temperature variations, etc and it

needs to be corrected with the term, Cpa. This effect can be seen in Figure 3.8 and Figure 3.9.

In Run-1, there is a large non-uniformity in the beam position due to broken resistors in the

electrostatic quadrupoles, leading to a large systematic uncertainty. The result for Cpa in Run-1

is 158ppb with an uncertainty of 75 ppb [36]. For Runs 2 and 3, these resistors were replaced,

and the value and uncertainty are reduced by approximately a factor of 3 [37]. In Runs-2/3,

Cpa is determined to be −27± 13ppb.
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Figure 3.8: The detected phase of the beam as a function of the beam position averaged over
the azimuth of the storage ring [36].

(a) (b)

Figure 3.9: (a) The phase as a function of the vertical position (black). The red (early time)
and blue (late time) lines show how the vertical width changes over time and demonstrates
how a changing width leads to a different detected phase. (b) The phase as a function of the
radial position black) shows how the width effect is largely cancelled. Now the detected phase
is dependent on the mean radial position [36].
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3.4.5 Differential decay correction

As the lifetime of the muon is dependent on its momentum, this leads to an effect that couples to

the phase-momentum relationship as mentioned in Section 3.4.3. Lower momentum muons will

decay faster than higher momentum muons, skewing the phase-momentum distribution shown

in Figure 3.7 to the left, leading to a shift in phase. This effect was not corrected for in Run-1.

A correction factor for this momentum-dependent differential decay effect, Cdd, will be included

in the analysis for Runs 2 and 3. In Runs-2/3, Cdd is determined to be −15± 17ppb [14].

3.4.6 Blinding

The Muon g-2 experiment is a “blinded” experiment to ensure no biases are introduced in the

analysis. This “blinding” is performed at both the hardware and the software level. To ensure

no biases are introduced in the procedure, ωa is taken as a parameter R, which is a ppm shift

to a reference value according to the expression

ωa = 2πωref ·
(
1 + (R±∆RSW ±∆RHW)× 10−6

)
(3.30)

where ωref is the reference value of 0.2291MHz and is the same as that used by the E821 BNL

experiment [40]. The returned value of R is blinded in both software and hardware as ∆RSW

and ∆RHW respectively.

At the hardware level, there is a factor fclock applied to the master clock for the experiment.

The 40 MHz clock is de-tuned by Fermilab employees external to the experiment to a frequency

between 39.997 MHz and 39.999 MHz. The value of this de-tuned frequency is only revealed

when the collaboration has decreed the analysis is complete and ready to be unblinded. At the

software level, each analysis is blinded independently as

ωref

(
1 + (R± δR)× 10−6

)
, (3.31)

where the offset, δR, is selected from a random number generator based on a seed set by a

“blinding string” independent to each analysis.
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3.5 Corrections to ωp

3.5.1 Kicker transient correction

When a pulse is generated by the kickers, subsequent eddy currents are induced in the sur-

rounding material. These eddy currents perturb the field, leading to a transient effect, Bk.

To measure this transient effect two fibre Faraday magnetometers were inserted between the

kicker plates. The data extracted from the magnetometers is then fitted with a single decaying

exponential from 30–700µs after the initial kick, which matches the start time used for the

ωa analysis of the calorimeter data. This can be seen in Figure 3.10. The sources of systematic

Figure 3.10: The vibration background subtracted signal measured by the fiber
magnetometer. The exponential fit to the data is shown in black, and the gray shaded band
represents the associated ±0.6µT uncertainty on the background subtraction [34].

uncertainty on this measurement come from a ±0.6µT uncertainty on the vibration background

subtraction, the fit function, and the calibration of the magnetometers themselves [34]. For

Run-1 Bk was determined to be −27ppb [34].

3.5.2 Electro-static quadrupole transient correction

Similar to the Kicker transient effect, a transient effect is also induced from the mechanical

vibrations of the charged plates of the electrostatic quadrupoles when they are pulsed. The

NMR trolley probes used to measure the magnetic field are used to measure the delay time

between the NMR signal and the time of the initial pulse, which is corrected for with the term
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Bq. This measurement can be seen in Figure 3.11 where the grey regions correspond to the time

intervals at which the electrostatic quadrupole was pulsed, and the muons that are used in the

ωa analysis. In Run-1, this effect had a large systematic uncertainty as it was only measured

Figure 3.11: The structure of the electrostatic quadrupole transient determined by a scan over
the delay time between the time of the pulse trigger and the NMR measurement. The bands
shown in grey represent the time intervals where the muons are stored and are used for the
precession frequency measurement [34].

in one of the twelve electrostatic quadrupole regions. For Run-1 Bq was determined to be

−17 ppb with a systematic uncertainty of 92 ppb. This systematic uncertainty is expected to

be significantly reduced for Runs 2 and 3 due to a dedicated field mapping of the entire azimuth

of the storage ring.

3.5.3 Field calibration factor

As shown in (3.24), three effects need to be corrected to extract the frequency of the FID

and measure the magnetic field. In order to minimise these effects a calibration procedure

is performed. This procedure uses a “plunging” probe specifically designed to reduce these

effects. The design of the plunging probe can be seen in Figure 3.12. This probe is rapidly

swapped into each of the locations of the trolley probes and is then cross-calibrated both with

the spherical water sample and with a 3He magnetometer probe [34]. A detailed breakdown

of this calibration procedure can be found in Ref. [34]. Similarly to the ωa measurement, the

calibration measurement is also blinded with a factor fcalib.
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Figure 3.12: Schematic of the plunging probe used to calibrate the magnetic field
measurement [34].
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Chapter 4

Experimental overview

The production of the muons can be broken down into several stages. The first stage involves

H- ions that are accelerated in a linear accelerator and stripped down to protons. The protons

are then injected into a 75 m radius “booster” ring where they are accelerated up to 8 GeV

and separated into batches consisting of 4 × 1012 protons with four batches created by the

accelerator every supercycle, which lasts 1.4 s.

These batches are then injected into a “recycler” ring, where they are separated again into

four bunches consisting of 1 × 1012 protons to reduce the instantaneous rates observed by the

experiment’s detectors. These bunches are then injected into a hall where they are directed onto

a nickel-iron production target, which is optimized for the production of a high number of pions

with a small momentum spread. The momentum spread is approximately |∆p/p| < 2% [41].

The pions are then focused with a lithium lens cylinder that has a radius of 1 cm and is 15 cm in

length. A pulsed magnet is then used to select particles centred at an energy of 3.11±0.15GeV.

The pions then decay to muons via:

π+ → µ+νµ.

The high and low-energy muons will be forward and backward-polarised, respectively. The

muons and any remaining pions are then injected into a “delivery” ring where the beam is

allowed to circulate four times. During the first three rotations, almost all of the remaining

pions will decay to muons, and any remaining slower proton contamination will be separated

from the muon beam, where it is subsequently removed by a kicker. Forward emitted polarised

muons with a momentum of 3.094 GeV are then selected, and the remaining muon beam is sent

to the Muon g-2 building where it is focused by four quadrupole magnets before being injected

into the Muon g-2 storage ring shown in Figure 4.1.
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The requirement for the muons beam to be polarised (the muons spins all point in approximately

the same direction) arises due to the fact that without this polarisation, the phase of each

oscillation would interfere with each other rather than adding coherently effectively washing

out the spin-precession signal when integrated over the beam ensemble. During each accelerator

supercycle, the Muon g-2 experiment receives sixteen bunches in two groups of eight, where each

bunch in the individual group is separated by a gap of 10 ms. This is known as a muon fill.

The time structure of this can be seen in Figure 4.2.

(a) (b)

Figure 4.1: The Muon g-2 experiment where (a) shows the constructed apparatus and (b) is a
schematic representation of the storage ring showing the locations of the inflector,
electrostatic quadrupoles, kicker magnets, tracking stations and fiber harps. The ideal central
orbit is also shown.

Figure 4.2: The time structure of a muon fill that is delivered to the Muon g-2 storage-ring
per accelerator supercycle [7].

4.1 Injection of the muon beam

Due to the high precision demands of the Muon g − 2 experiment, the storage ring is required

to be a single continuous magnet designed to eliminate any edge effects that are present in

lumped magnets. This constraint means that the muons must be injected into the storage ring

yoke. To minimise the loss of muons that are deflected into the magnet itself on injection, a

30



superconducting inflector magnet shown in Figure 4.3 is used to eliminate the magnetic field

in the injection tunnel.

This inflector is 1.7 m in length with an aperture that is 18 mm in width and 56 mm in height.

The design of the inflector is an aluminium mandrel that is wrapped in superconducting coils in

a truncated double cosine theta design [7]. The inflector is stored in a superconducting shield to

contain the fringe field from the inflector so that the storage ring’s magnetic field is unaffected.

Windings at either end of the inflector, as shown in Figure 4.3, do cause a non-negligible loss

of muons before injection.

(a) (b)

Figure 4.3: The superconducting inflector magnet where (a) shows the cross-sectional
schematic and (b) shows the windings at the end that cause muon losses.

The inflector cannot enter the storage ring as it would cause muon losses on collision on subse-

quent rotations of the storage ring and thus muons emerging from the inflector are not at the

centre of the storage-region. To mitigate this, a so-called kicker magnet is employed to move

the beam from the injection point orbit to a stable central orbit.

4.2 Kicker

For the kicker to move the orbit of the beam without causing any impact on the precision

magnetic field of the storage magnet, it cannot contain any magnetic elements. Therefore,

the kicker consists of two aluminium plates that are 1.27 cm in length with a separation of

10 cm. To not significantly perturb the magnetic field seen by the stored muons during the

ωa measurement period, the kicker has to switch off and lose all residual eddy currents within

the 149.2 ns cyclotron period which also means that the muons aren’t affected on subsequent

rotations of the ring.
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The deflection of the beam is designed to be approximately 10 mrad. This is achieved by

using a vertical pulsed field of around 300 Gauss (which corresponds to kicker plate voltages of

≈ 160 kV), with a pulse length of ≈ 120 ns. The kicker consists of three separate kicker magnets

located 90◦ from the inflector.

4.3 Muon beam dynamics

To precisely determine ωa, the spatial and temporal distribution of the beam, referred to as the

beam dynamics, needs to be fully understood. Due to the restoring forces provided by the B

and E field from the electrostatic quadrupoles, the muons will undergo betatron motion both

vertically and horizontally as they travel around the storage ring. The equations describing the

vertical (y) and horizontal (x) motion are:

y = Ay(s) cos

(
νy

s

R0

+ φy

)
, (4.1)

x = xe + Ax(s) cos

(
νx

s

R0

+ φx

)
, (4.2)

respectively. Here xe is the equilibrium orbit radially relative to R0, Ay(s) and Ax(s) are the

amplitudes of the betatron motion and contain the discreteness from the quadrupoles where s

is the trajectory arc length. The terms νx and νy are the ratios of the betatron frequencies,

fBO, compared with the cyclotron frequency, fc. These are defined as

νy = fBO
y /fc =

√
n, (4.3)

νx = fBO
x /fc =

√
1− n, (4.4)

where n is the field index, which defines the strength of the electrostatic focusing in relation to

B0, which is the magnetic field strength of 1.45 T. This field-index is defined by the relation

n =
κR0

βB0

, (4.5)

where κ is the electric field gradient, R0 is the stable orbit radius and β is the beam velocity.

Lastly, the terms φy and φx contain the angular acceptance of the storage ring and are defined

by the relations

φymax =
ymax

√
n

R0

, (4.6)
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φxmax =
xmax

√
1− n

R0

, (4.7)

where xmax = ymax = 45mm. The νi factors are chosen to ensure that the muons do not

experience any resonances caused by perturbations around the ring as they pass through field

gradients, as these resonances could cause the beam to expand significantly radially and/or

vertically and cause a large loss of muons from the storage-ring. The condition to minimize

these resonances is defined by the condition

aνx + bνy = c (4.8)

where a, b, and c are integers. These terms are also constrained by the relation

ν2x + ν2y = 1. (4.9)

Figure 4.4 shows the intersections of the resonances for certain values of n.

Figure 4.4: A schematic representation of the tune plane. The circle in red represents the
constraint of ν2x + ν2y = 1, and the intersections with the black lines represent potential
resonances [42].

The radial position of the beam dictates the fraction of events that result in a positron being

detected. Due to the restoring forces of the magnetic field a simple harmonic motion effect is

imposed on the beam, causing it to oscillate in and out radially. This betatron oscillation is

dependent on the strength and phase of the kicker pulse as well as the spatial effects imposed by
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the injection [42]. The detectors then measure the beam as a series of discrete pieces over time

that depend on the azimuthal acceptances of the detector. This series of discrete pieces leads

to each detector effectively sampling the beam at the cyclotron frequency (fc = 6.71MHz);

anything above the Nyquist frequency (fc/2) will experience an aliasing effect (appearance of

a false lower frequency signal). The radial betatron motion is defined by

fBO
x =

√
1− nfc, (4.10)

and has a frequency of 6.31 MHz and, therefore, undergoes this aliasing and is seen by the

detectors as a slow-moving oscillation. The measurable signal of this oscillation is referred to

as the coherent betatron oscillation (CBO), which is defined by

fCBO = fc − fBO
x = fc(1−

√
1− n). (4.11)

A schematic representation of this phenomenon can be seen in Figure 4.5.

Figure 4.5: A schematic representation of the coherent betatron oscillation phenomenon. The
black vertical lines are placed at the cyclotron wavelength; the blue line represents the radial
betatron oscillation for three successive wavelengths. As the wavelength of the radial
oscillation is larger than the cyclotron wavelength, the bunched beam can be seen to move
closer to the detector (shown as a black box) and then further away. This CBO frequency is
highlighted by the red line [7].

As well as a radial oscillation, the beam will also undergo an aliasing effect in the vertical

dimension, referred to as the “vertical waist” (VW), which oscillates at twice the vertical

betatron frequency. The reason the VW oscillates at twice the vertical betatron frequency is

due to its dependence on the squared deviation of the muon beam. The VW is defined by

fVW = fc − 2fBO
y = fc(1−

√
n). (4.12)
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4.4 Auxillary detectors

4.4.1 Inflector Beam Monitoring System

Essential to the Muon g-2 experiment is the Inflector Beam Monitoring System (IBMS). Due

to the inflector aperture being extremely tight the incoming beam parameters are highly con-

strained. This means that a system is necessary to establish the beam’s position as it passes

through the inflector. The IBMS system is therefore essential to provide direct diagnostic infor-

mation over the phase-space matching on the beam in the region between the last accelerator

components and the inflection into the storage ring. This diagnostic control ensures the op-

timal number of stored muons per storage ring fill. This system is composed of two grids of

scintillating fibre detectors.

The first detector is placed outside the storage magnet yoke before the injection point. The

second detector is placed immediately downstream of the inflector. A third detector consisting

of a single-plane of cylindrical scintillating fibres is placed downstream of the inflector. The

detectors can be seen in Figure 4.6. These detectors provide both radial and vertical positions

Figure 4.6: The positions of IBMS 1, 2, and 3 shown with respect to the vacuum chamber and
inflector [7].

of the beam and are used to alert the accelerator operators when unexpected movements of

the beam with respect to the optimal position are occurring. A full description of the IBMS

system can be found in Ref. [43].

4.4.2 T0 start time detector

As well as the knowledge of the spatial distribution of the beam being necessary to the ex-

periment, another essential property is the temporal distribution of the incoming beam. A

T0 detector is used to measure this by setting a reference time for the beam bunch, which
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allows the subsequent upstream detectors to be aligned and synchronised in time. This device

consists of a central scintillator that is coupled to two photo-multiplier tubes (PMTs). The

first PMT, known as PMT-A, acts primarily as the timing measurement of the beam and has a

1% neutral density filter, resulting in a low photo-electron statistics measurement. The second

PMT, known as PMT-B, acts as a reflection of the intensity of the muon fill and has a 10%

neutral density filter, resulting in a higher statistics measurement.

Figure 4.7: An example of the time profiles for the two PMTs in the T0 detector for one of
the eight bunches. The x-axis is in clock ticks (ct), where 1 ct = 1.25 ns. These profiles are
taken as an average of 100 separate time profiles [42].

4.4.3 Fiber harps

The final auxiliary detectors in the Muon g-2 experiment are the Fiber Harps. These detectors

measure the beam profile as a function of time and azimuthal position within the storage

ring. They primarily act as a diagnostic tool sensitive to beam effects as these detectors are

destructive to the beam. They are only used for occasional dedicated studies when physics

data is not being recorded. They consist of two pairs of detectors where one pair measures the

horizontal beam properties, and the other pair measures the vertical beam properties. They

are placed at 180◦and 270◦in the storage ring azimuth with respect to the upstream end of the

inflector.
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4.5 Electrostatic quadrupoles

As seen in Figure 4.1, there are four electrostatic quadrupoles that are designed to provide

vertical focusing of the muon beam. These are chosen to be electrostatic rather than magnetic

so as not to cause magnetic field gradients that would impact the precision of the measured

magnetic field. The quadrupoles do however have defocusing in the horizontal plane and the

net horizontal focusing comes from the main magnetic field. The quadrupoles consist of two

segments. A short segment of 13◦ is 1.61 m in length, and a long segment of 26◦ is 2.62 m in

length. Each of these segments consists of four plates and must be operated within a vacuum.

The four-fold design is chosen to minimize the radial and vertical oscillations of the beam

discussed in Section 4.3 and to improve the stability of the beam orbit. The electrostatic

quadrupoles cover 43% of the total circumference of the storage ring.

4.6 Beam collimators and Scraping

To constrain muons to orbits within a region where the magnetic field is most uniform, collima-

tors with a 45 mm radius are placed around the ring. Sometimes, muons will collide with these

collimators and lose energy. This causes the muons to spiral inwards and, enter the detectors,

and bias the measurement. To reduce such muon losses, the beam is scraped to create a 2 mm

buffer region between the beam orbit and the collimators. This is performed by pulsing the

quadrupole voltages in an asymmetric way to shift the beam vertically and horizontally to

intersect the collimators. This scraping is performed early in the muon fill, so it is completed

after 8µs, and the beam is stable after 30µs.

4.7 Calorimeter detectors

As the primary analysis of the Muon g-2 experiment is to measure the properties of the decay

positrons from the muon beam, it is essential to use calorimeter detectors around the full

azimuth of the storage ring. To achieve the high precision goal of the experiment, very stringent

requirements for the calorimeter detectors must be met [44].

• The detectors must have an energy resolution of better than 5% at 2 GeV.

• The gain of the calorimeter must recover by 30µs after the initial injection, thus recovering
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from the beam flash.

• During the 30–700µs measurement period the gain must remain stable.

• During the measurement period, the laser calibration system must be able to correct for

residual gain instabilities to better than 4× 10−4.

• For positrons with an energy greater than 1.8 GeV, the time resolution should be better

than 100 ps.

• To ensure less than a 10 ppb shift to ωa, the system must maintain a time stability of less

than 7 ps throughout any muon fill.

• If there are two electromagnetic showers with impact time separations greater than 5 ns,

the system must be able to resolve them with 100% efficiency.

The gain of the calorimeter detector is dependent on the rate of incident hits and the stability

of the temperature. It can be broken down into two components. The first component is

the short-time double pulse effect (STDP). This effect occurs due to the detector pixels being

unable to fire consecutively within a O(ns) window. The second component is known as the

in-fill gain effect. It occurs at O(µs) and is due to the high number of particles at the initial

injection and the subsequent secondary particles within the detector recovery window. In the

ωa analysis for the calorimeter detector, both of these effects are corrected for.

To ensure the high precision goals of the experiment are met, 24 calorimeters are placed flush

with the vacuum chamber wall of the storage ring. The calorimeters are placed on boards

extending outwards to allow any magnetic powering and readout components to be placed

away from the magnetic field region in order to not cause any perturbations. Each of the

calorimeter detectors consists of 54 channels in a six high by nine wide array of PbF2 crystals

resulting in a total of 1296 crystals. Each crystal is wrapped in a black Teflar foil and has

dimensions of 2.5 × 2.5 × 14.0 cm2. The design of the calorimeter detectors can be seen in

Figure 4.8.

PbF2 is chosen as the material for the calorimeter detectors due to its high density (7.77 g/cm3),

which results in a short radiation length of 9.3 mm. This short radiation length allows for ∼ 100

energy depositions over the length of the crystal from the incident positrons. The second reason

this material is chosen is due to its refractive index of 1.8, which allows it to emit Cherenkov

light from incident positrons above an energy of 100 keV [7]. The Teflar foil improves the
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Figure 4.8: Schematic rendering of a calorimeter detector placed on the exterior of the storage
ring [45].

spatial and temporal resolution as well as reducing internal reflections by ensuring minimal

light interference between the crystals. Each crystal is connected to its own individual large-

area silicon photomultiplier (SiPM), which allows the Cherenkov radiation emitted to be read

out at high speeds. SiPMs are chosen because they are operable in regions with a high magnetic

field; they have a high photo-detection efficiency, have a high degree of stability, and at MHz

rates, they have a very linear response [7]. In order to preserve the fast pulse shape, the SiPMs

are mounted on printed circuit boards (PCBs) that are devoid of any magnetic materials. This

design can be seen in Figure 4.9. With this design, the detector achieves an energy resolution

Figure 4.9: Design of the calorimeter detector highlighting the connection between the
calorimeter crystal (clear bar) and the mounted SiPM [42].

at 2 GeV of 3.1%, and a timing resolution in a single channel for a 3GeV positron of ∼ 40 ps.
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Further details of the calorimeter characterisation are given in [44]. Waveform digitizers are

then used to read out the information from the SiPMs at a rate of 800 GB/s and are transferred

to a bank of GPUs for online-data processing.
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Chapter 5

The straw tracker detectors

In the Muon g-2 experiment, the straw tracker detectors allow the muon beam distribution to

be determined by measuring the positron trajectory and extrapolating back to the storage ring.

The trackers are also used to determine the momentum distribution of the muon beam and

perform a direct measurement of the pitch correction. An important, significant systematic

effect in the calorimeter is the “pileup”. Positron trajectories reconstructed in the straw tracker

detectors can be extrapolated forward to the calorimeter to resolve this pileup. Pileup in the

calorimeter occurs when two low-energy energy particles that are very close in time impact the

same crystal and, therefore, are registered as a single E > 1.8GeV cluster in the calorimeter.

The tracker identifies these as two separate low-momentum tracks and, therefore, can be used

to resolve this effect. An independent determination of the magnitude of the pileup effect is an

important aspect of the ωa analysis.

5.1 Tracker geometry

The Muon g-2 tracker system consists of two separate stations placed at 180◦ and 270◦ around

the storage ring and are referred to as Station 12 and 18, respectively. Each station consists

of eight modules placed in a staircase orientation to follow the curvature of the ring as shown

in Figure 5.1. Each module consists of two planes rotated at ±7.5 ◦ to allow for the tracker

to be viewed in two separate orientations referred to as U and V. This can be seen in Figure 5.2.

Each plane consists of two layers of straws separated by an offset of 1mm, with each layer

consisting of 32 straws. Each straw has a fiducial length of ∼ 8.5 cm and a radius of ∼ 2.5mm
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Figure 5.1: Diagram showing the module orientation within a tracker station. The coloured
band represents the varying magnetic field, with the detector positioned in both the uniform
and fringe regions of the field [46].

Figure 5.2: Diagram showing the U and V orientations of the planes within a straw tracker
station module [42].
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constructed from aluminized Mylar and filled with 50:50 Argon:Ethane gas.

The geometry in the software is defined in a 3D Euclidean geometry with six degrees of freedom

based on the position and the Euler angles. This is shown in Figure 5.3.

Figure 5.3: The coordinate system for the tracking detector in the software relative to a single
tracking detector module [47].

5.2 Digitisation

At the centre of each straw is a 25µm gold-plated tungsten sense wire on which a current can

be induced. This current is caused when fast-moving charged particles, e.g., positrons ionize

the gas as they pass through the straw. The liberated electrons are then drawn to the wire and

the ions to the straw surfaces. As the electrons approach close to the wire they are subject to

a large E-field and accelerated which produces significant further ionisations (avalanche effect)

and a large amplification in the signal making it measurable.

The time of this signal relative to when the primary charged particle passed through the straw is

defined as the drift time of the particle and is used to determine the position the charged particle

traversed the straw. This signal is referred to as a “hit”. By combining this information for each

straw, the particle trajectory can be reconstructed as a “track”. The angular information of the

trajectory of the particle within the straws also allows for a determination of the momentum

of the particle, and it allows extrapolation back to the point of decay of the muon.
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5.2.1 Readout electronics

To allow the signals from the positron trajectories, the clock signals and control signals to the

straw tracker detector to be recorded, a hierarchical system of front-end boards and back-end

boards is used. An overview of the path of the signals through the read-out system can be seen

in Figure 5.4. The hierarchical structure of the read-out system can be seen in Figure 5.5

Figure 5.4: The signal path of the clock signals and straw hit data to the PC for the read-out
electronics system with the physical location represented [48].

Figure 5.5: The hierarchical structure of the electronics read-out system with the number of
each specific board used [48].
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Front-end electronics

The front-end system is the first level in the hierarchical system. It refers to the boards that are

used to measure the signal from the sense wires in each straw and then record these signals as

hits. This sub-system consists of two distinct boards. The first board is the Amplifier Shaper

Discriminator with charge (Q) encoding (ASDQ) board, which is the closest to the straws, and

the second board is the Time to Digital Converter (TDC) board.

The ASDQs are mounted directly onto the end of the straw sense wires and are used to record

when a charged particle has traversed the straw, and it is triggered when the induced signal

on the sense wire crosses a set threshold. These signals are known as straw hits. The ASDQ

boards also provide the sense wires with High Voltage (HV) power.

The processing of the signal within the ASDQ is split into separate steps that are optimised

for efficiency, timing resolution and the ratio of signal-to-noise. In the first step, the signal

from the sense-wire is amplified and then shaped to remove short time-scale features such as

spikes in the signal. This allows the short signals from all of the primary ionisation events to

be integrated into a single pulse. As the drift of the ions is slower than that of the positrons,

this gives the signal a characteristic long tail.

Baseline restoration is used in the shaping of the signal to correct for this tail to mitigate

overlapping of the ion and the positron signals, thus allowing the primary ionisation event to

be read out at much higher rates. A discriminator with a configurable threshold is then used to

register when the pulse crosses said threshold. This threshold defines the leading and trailing

edges of the recorded pulse and is then output as a digitised signal. Only the transitions at the

leading and trailing edges are output in the digitised signal.

This signal is then transported to a custom rack outside the tracker module and storage ring

vacuum region known as the Front-end Low-voltage Optical Box to BackEnd Read-out (FLOB-

BER), which houses the TDC as shown in Figure 5.6.

Each tracker module is mounted with a separate FLOBBER. The TDC is connected to the

40 MHz experiment clock and is used to time stamp each transition at an accuracy of 625 ps.

Each transition is output to the data stream as a ‘hit-word’, which encodes the transition time,

the hit channel, and whether the edge of the transition is leading or trailing. The leading-edge

hit-words are considered as the hit time in a straw. The TDCs are paired one-to-one with

the ASDQ boards with 16 channels, each connected to a single straw. As each straw tracker

module contains 128 straws, and each module requires 8 TDC-ASDQ pairs.
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Figure 5.6: Four FLOBBER boxes outside of the vacuum region that house the TDCs, HV
boards and Logic Boards.

Back-end electronics

The back-end electronics comprises a system of Logic Boards (LBs), FC7s and a single micro-

TCA crate (µ-TCA). For the module, there are two LBs that are each used to interface with

four ASDQ-TDC pairs. The LBs have two functions; the first is to provide the TDCs with the

clock and control signals, and the second is to collect the data into a single block where it is

processed downstream. For each straw tracker station, there is one FC7 advanced mezzanine

card (AMC), which is connected to sixteen LBs. The FC7 collects the data from all of the LBs

into a single block.

The most downstream component of the back-end electronics is the AMC13, which collects the

data from the FC7 boards into a single block and also sends control and clock signals to the

FC7s which distribute these signals to the LBs. The FC7 and AMC13 are housed within the

mu-TCA crate. A more detailed overview of the full Muon g-2 read-out system can be found

in [48].

5.2.2 Hit determination

The digitisation of the analog signal on the sense-wire results in a drift-time being assigned

which is a proxy for the distance from the sense-wire that the original charged particle passed.

However it is not known a priori which side of the sense-wire the particle passed and instead a

drift-circle is assigned. The radius of this drift circle is the distance of closest approach (DCA)

of the charged particle to the wire. A schematic representation of this drift circle and DCA can
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be seen in Figure 5.7.

Figure 5.7: Schematic representation of an ionising particles passing through a straw with the
the drift circle and DCA highlighted [47].

The conversion between drift-time and DCA comes from an iterative procedure of assigning a

time-to-distance calibration (informed by simulation) to the data and minimising the hit χ2

with respect to the track trajectory. This time-distance relationship is shown in Figure 5.8.

Figure 5.8: The time-distance calibration that converts a measured drift-time to a DCA [49].

5.3 Track reconstruction

For reconstructing the charged particle’s trajectory, known as track reconstruction, there are

several routines and algorithms. The full tracking reconstruction algorithm can be seen in

Figure 5.9.
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Figure 5.9: Schematic representation of the full track reconstruction routine [46].

Once the hits have been grouped into track candidates, there are several constraints before they

are passed on to the track fitting. If multiple candidates contain the same seeds, clusters, or hits,

they are removed. If the tracks contain less than six hits or they only contain seeds of one UV

orientation, they are also removed. The Geometry and Error propagation (GEANE) routine [50]

for error propagation within a GEANT4 [51] framework (for the geometry and physics processes)

is used for track fitting. GEANE is used to accommodate the large magnetic-field gradients

over the straw tracker detectors. The more accurate the reconstruction is, the smaller the

residuals between the fitted track and the DCA in each wire are. The design goal for the track

reconstruction was to achieve a resolution on the DCA of 240µm. The developed framework

achieved a resolution of 120–150µm [52].

5.3.1 Left-Right ambiguity

When a track is reconstructed it is important to determine which side of the straw the particle’s

trajectory was relative to the central sense wire. This allows for a better determination of the

angle of incidence of the particle as well as the time it entered the tracking detector, t0. On

track reconstruction, each hit is assigned an LR-index, ’L’ being if the hit was on the left side of

the sense wire and ’R’ if the hit was on the right side of the sense wire. Hits that are registered

too close to the centre of the wire can smear the LR distribution. If the LR-index is incorrect

for even one hit in the track then the fit will likely fail. Algorithms have been implemented to

deal with this ambiguity in the LR assignment [53].
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5.3.2 Track extrapolation

Once the tracks are formed and fitted, they can also be extrapolated back to the most likely

point of decay of the muon, or they can be extrapolated forwards to energy deposits in the

calorimeter crystal, allowing for particle identification, as well as a measure of the efficiency

of the straw tracker detectors. The extrapolation algorithm utilizes a Runge-Kutta Nystrom

algorithm of the fourth order [54]. This algorithm performs a propagation through the varying

magnetic field in the full GEANT4 simulation to reach a point of tangency where the radial

momentum is zero and then applies a small O(1mm) radial correction so that the muon decay

point is reliably determined. This can be seen in Figure 5.10. This backward extrapolation

Figure 5.10: Schematic representation of the backward extrapolation of the track to the muon
decay point. Due to the higher momentum tracks travelling further to reach radial tangency
compared with the lower momentum tracks, a O(1mm) offset is applied.

allows an accurate determination of the beam profile. The extrapolated beam distribution can

be seen in Figure 5.11.

5.3.3 Quality requirements

To reduce uncertainties in the measurements with the tracking detector, data quality require-

ments have to be applied to remove any poorly fitted tracks or tracks that failed to fit. The full

list of the conservative requirements that are applied is broken down into three levels: require-

ments on the candidate level, requirements on the track level, and requirements on the forward

extrapolated vertices. Each subsequent level maintains the requirements from the previous

levels. These requirements [55, 56] are defined in Table 5.1
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Figure 5.11: The extrapolated beam profile from reconstructed tracks [54].

Candidates
Number of straw hits ≥ 12
Number of |U− V| hits ≤ 4

Fraction of missed layers < 30%
Drift time: 0 < td < 70

Tracks
Track fit p-value > 5 %

Track residuals <500µm
Track entrance point: 60 < x < 150mm −40 < y < 40mm

Vertices
No external volumes hit

Vertex vertical and radial uncertainties: 1.0 < σy < 6.0mm and 1.0 < σr < 6.0mm

Table 5.1: Data quality requirements for each level of track reconstruction.
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5.4 Internal alignment

Essential for high-precision studies using the Muon g-2 straw tracker detectors is the mini-

mization of the uncertainty on the extrapolated beam position. This requires a high-precision

alignment of the detectors. The importance of this can be seen in Figure 5.12, which highlights

the effect on the extrapolated beam position by differing degrees of internal misalignment.

Figure 5.12: The change in the extrapolated radial beam position relative to a randomized
internal misalignment for four tracking detector modules at varying degrees of
misalignment [47].

A large internal misalignment will produce significant residuals between hit positions and the

fitted track. If alignment corrections are applied to the tracking algorithm before the tracks

are fitted, then these residuals can be diminished. To perform the internal alignment for the

Muon g-2 experiment straw tracker detectors, the Millepede–II framework [57], commonly

used in particle physics, was used. An in-depth study of the alignment using this framework

was performed for the Run-1 dataset in [47].

The Millepede–II framework performs a least-squared regression (LGR) based on two groups

of parameters. The first group is the global parameters that affect all the tracks, for example,

the geometry parameters and established alignment parameters. The second group is local

parameters that are specific to each of the fitted tracks. The framework uses both these groups

to minimize a linear function based on the sum of the residuals. These residuals can be defined

by the difference between a measured hit position and a predicted hit position. This function
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can be defined based on a χ2 minimization as

F (a, b) =
∂χ2(a, b)

∂(a, b)
=

tracks hits∑
j

∑
i

1

(σi,j)
2

(
ri,j (a0, b0,j) +

∂ri,j
∂a
δa+

∂ri,j
∂bj

δbj

)2

∂(a, b)
= 0, (5.1)

where a are the global parameters, bj the local parameters, r(a, bj) is the defined residual hit,

a0 and b0,j are the initial parameters, σ(i,j) is the estimated uncertainty on the measurement,

summed over the tracks and the measured hits. The correction factor to the global parameters,

δa, is then added to the tracking algorithm, and the alignment is then performed iteratively

until the results converge. This correction factor is defined by six degrees of freedom based on

the rotations and positional translations of the tracking detector in a 3D Euclidean geometry

and is defined as

δa =



δx

δy

δz

δθ

δφ

δψ


, (5.2)

where θ, φ and ψ are the Euler angles. These degrees of freedom relative to the tracking module

are shown in Figure 5.3.

Figure 5.12 shows that a small misalignment can affect the beam position to a large degree.

Therefore, the systematic uncertainty on the beam position due to misalignment needs to be

evaluated. Constants were derived and checked for each run period and when changes were

made to the straw tracker detectors. These constants are stored in a SQL database. Each

straw tracker station has eight modules, and each module has a constant for both the radial

and vertical positions. To estimate the systematic uncertainty on the beam position from the

internal alignment, a random, uniformly distributed offset for each constant within ±10µm is

applied, and the data is re-tracked with the newly derived constants and the beam positions

are re-evaluated.

This was repeated ten times and the variance from these ten evaluations for both the mean

and RMS of the beam positions was taken for the systematic uncertainty. The results can be

seen in Figures 5.13 and 5.14.

The systematic uncertainties were calculated for two runs in Run-2 (24577 and 25896) and one

run in Run-3 (34750), and the final values can be seen in Table 5.2. Runs 24577 and 25896
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(a) (b)

Figure 5.13: The change in the (a) mean and (b) RMS radial extrapolated beam position as
the alignment is changed within its known uncertainty with the associated RMS of each point
shown.

(a) (b)

Figure 5.14: The change in the (a) mean and (b) RMS vertical extrapolated beam position as
the alignment is changed within its known uncertainty with the associated RMS of each point
shown.
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were before and after a tracker module was replaced, respectively, and the alignment constants

were re-derived.

Tracker Station ∆µR[µm] ∆σR[µm] ∆µY[µm] ∆σY[µm]
24577

Station-12 1.36± 0.99 −3.01± 1.17 −0.99± 0.66 −1.51± 1.15
Station-18 −3.83± 1.55 1.77± 0.78 −2.37± 1.02 1.12± 1.24

25895
Station-12 5.13± 1.79 −3.83± 1.42 −1.13± 0.49 −1.16± 0.63
Station-18 −0.91± 0.76 −1.22± 0.79 0.28± 0.48 −3.86± 1.51

34750
Station-12 −6.23± 2.12 −1.14± 0.62 2.05± 0.86 −1.17± 0.79
Station-18 −6.12± 2.15 −3.72± 1.13 0.27± 0.62 −5.13± 1.90

Table 5.2: Shifts in the mean radial (∆µR), vertical (∆µY) beam position and RMS (∆σR,
∆σY) in Run-2 and Run-3 for the two straw tracker stations due to tracker misalignment.
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Chapter 6

t0 algorithm improvements

In track reconstruction, the t0 of the track is defined as the time at which the particle first enters

the tracking station. A better resolution of the t0, improves the resolution on the DCA of the

signal in each straw hit. The increase in resolution allows a better track fit and, therefore, allows

more tracks to be reconstructed. As the straw tracker data is statistically limited compared

to the calorimeter and is necessary for studies of the beam position and an independent ωa

analysis, improving the track reconstruction efficiency is paramount. Each reconstructed track

can be broken down into hits, which are then grouped into time-islands as previously shown in

Figure 5.9.

From these time islands, hits are then clustered into clusters of two types: singlets and doublets.

Singlets are instances in which only one hit is measured per plane, and doublets are instances

in which two hits are measured per plane. This can be seen in Figure 6.1. Before the new

Figure 6.1: Schematic representation of the two spatial cluster types: a singlet (one hit per
plane) and doublet (two hits per plane) [46].

algorithm defined in this chapter was developed, the algorithm to calculate the t0 for the track
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was expressed in the form

t0 =
Σtc
N

− kMT , (6.1)

where Σtc is the sum of the hit times in the reconstructed track, N is the number of hits per

track, and kMT is a constant mean-time offset correction found from the difference between the

average difference in time between the tagged calorimeter hits and the track hits corrected for

the time of flight. This is a simple approximation that weights all hits in the track equally by

their time and does not account for any spatial information.

In this chapter, a new algorithm will be described that allows for a better determination of the

track t0 using the angular information of the hits. The approach will be iterative and will first

define the relationship between the LR-ambiguity of doublets in each track and will then define

a linear relationship between the tangent angle of each hit in a circle fit to the track and then

will derive a further correction in the non-linear region.

6.1 New t0 algorithm

The spatial information of the doublet clusters shown in Figure 6.1 can be used to define the

relationship between the angle of incidence of the track and the drift time. The drift time can

be seen in Figure 6.2.

Figure 6.2: Schematic representation of a charged particle trajectory through a straw showing
the drift time td and the DCA (distance of closest approach).

The angle of incidence with respect to the horizontal plane is given by

θ = arctan

(
px
pz

)
, (6.2)

where px and pz represent the components of momentum for the particle in the x and z plane
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respectively. This angle can be used to resolve the left-right ambiguity (defined in Section 5.3.1).

Each doublet of hits is assigned a combined LR-index e.g. LL is when the first and second hit

of the doublet are on the left side of both wires as in the lower two hits in Figure 6.3.

Figure 6.3: Schematic representation of a tracked trajectory showing hits that pass both to
the left and right of the wire [46].

In the region 55 < t < 105 ns there is a linear relationship between θ and the sum of the drift

times in the doublet, tds (see Figure 6.5). The drift time sum can then be evaluated using the

linear fit parameters (P0, P1) and the angular incidence as

tdse =
(θ − P1)

P0

, (6.3)

where tdse represents the new estimate. Using this and the times of the hits, an estimate for

the t0 of the track can be made using:

t0 =
(Σtcd − tdse)

2
. (6.4)

where Σtcd is the sum of the hit times in the doublet.

The new algorithm was then compared against the old algorithm using tracks that had passed

quality requirements (see Table 5.1) and which were matched to calorimeter clusters. The

difference, ∆t, between the time measured by the calorimeter and the time measured by the

tracker with a time of flight correction was then determined. The results of this algorithm can

be seen in Figure 6.6. It was found that the standard deviation in ∆t across a single run for

the old algorithm is σ = 1.760 ± 0.005ns and for the new algorithm is σ = 0.880 ± 0.004ns.

With a ∼ 50µm/ns drift velocity this reduces the contribution to the DCA resolution from the

57



(a) (b)

(c) (d)

Figure 6.4: Angle of incidence versus the sum of drift times for each possible LR-index of a
hit doublet.
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(a) (b)

Figure 6.5: Profile plot of angle of incidence versus sum of drift times for (a) LR and (b) RL
cases. The region 55 < t < 105 ns is reasonably described by a straight line.

(a) (b)

Figure 6.6: A comparison of the t0 determined from tracks with ((a): the old algorithm and
(b): the new algorithm that uses the angular dependence and LR ambiguity from the fitted
track referenced with respect to the time of the extrapolated track in the calorimeter after
removing a fixed time-of-flight offset.

t0 from 88.2µm to 44.2µm, which is a significant improvement.

This determination of the t0 relies on knowing the momentum vector of the fitted track. There-

fore, it cannot be used prior to the track fit and hence a method to determine θ prior to the full

track fit is required. A simple circle-fit, as illustrated in Figure 6.7, has instead been developed

to determine θ. With some algebraic manipulation, and by taking the tangent to the circle, it

is possible to find the angle of incidence from

θc = arctan

(
− 1

mr

)
, (6.5)
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where mr is the tangent of the radius from the centre of the circle fit to a point (x, y) on the

circle. Using this, we can then perform the calculation as before with this value for θ instead

of the one that relies on the momentum from the track fit.

Figure 6.7: Example of a circle-fit to real tracker data where the red line represents the circle
fit to the U-plane and, the blue line represents the circle fit to the V-plane, and the black
points are the positions of the hits.

An issue arises when the determination of the LR-index assignment fails. From a simulation

study [58], it is determined that when |θ| < 0.1 rad, the LR-ambiguity is correct 99.8% of the

time and ∼ 64% of all doublets have |θ| < 0.1 rad. For larger |θ|, the difference between the

LL and LR cases, and the difference between the RR and RL cases cannot be established, and

therefore, the algorithm reverts back to the old approach but with one additional change.

Due to the shortcomings of the old t0 algorithm, a new method of improving the t0 for the

cases where |θ| > 0.1 is required. By defining three regions for all LL/LR and RR/RL tracks:

high angle (θ > 0.1 rad), low angle (θ < −0.1 rad) and ‘good’ (|θ| < 0.1 rad). In the ‘good’

case the t0 is determined from the fit to the data. In the two extreme angle cases, for both

‘left’ (LL/LR) and ‘right’ (RR/RL) tracks, offsets can be deduced from the mean (µ) of the ∆t

distribution as shown in Figure 6.8.
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Figure 6.8: ∆t distributions used to determine the offsets for the t0 outside of the
(|θ| < 0.1 rad) region where (a) LL/LR for (|θ| < −0.1 rad), (b) LL/LR for (|θ| > 0.1 rad), (c)
RR/RL for (|θ| < −0.1 rad), (d) RR/RL for (|θ| > 0.1 rad).

These values can be used to correct the average t0 for all tracks and thus improve the old

approach irrespective of angular dependence. The offsets are given in Table 6.1.

LR-ambiguity µ (θ > 0.1)[ns] µ (θ < −0.1)[ns]
LL/LR 0.5382 14.0314
RR/RL 13.4087 -0.4785

Table 6.1: Mean of ∆t distribution for high and low angle regions where the cut on θ fails.

This new algorithm was then compared against the old algorithm. The results can be seen in

Figure 6.9, which shows the number of fitted tracks increases by 17% and that the p-values of

the track fit is now improved across all tracks.

The straw-tracking detectors are used for the extraction of the spatial profile of the muon

beam, including projections of the radial and vertical profiles. The extracted beam profile is

61



Figure 6.9: The p-value distribution of the fitted tracks for both the new and old t0 algorithm.

necessary for the determination of the field convolution, the phase acceptance correction, the

pitch correction, and tuning simulations. Therefore, a complete determination of the systematic

uncertainties to the beam position from each area of the track extrapolation is needed, including

the t0 determination.

6.2 Systematic uncertainty on beam position from the

t0 determination

To estimate the systematic uncertainty on the beam position arising from the determination of

the track t0, an offset to the t0 in the range ±2ns is applied. The data is then re-tracked with

the new t0, and the radial and vertical beam profile is extracted. The number of fitted tracks

in a specific run against the offset is shown in Figure 6.10 which as expected peaks at an offset

of ∼ 0.
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Figure 6.10: Number of extrapolated tracks as the t0 is changed between ±2 ns with respect
to the nominal t0.

The change in the mean and RMS of the extrapolated beam position both radially and vertically

as the t0 offset is changed is shown in Figures 6.11 and 6.12 respectively.

(a) (b)

Figure 6.11: (a): mean (b): RMS radial beam positions as a function of the t0 offset. The red
lines show a deviation of 0.88 ns (RMS of the new t0 algorithm) and the blue lines show a
deviation of 1.76 ns (RMS of the old t0 algorithm).

The systematic uncertainty in the mean and RMS of the beam positions is taken as the largest

deviation from the nominal value for a deviation of ±0.88ns i.e. the RMS of the new t0

algorithm (Figure 6.6). The final systematic uncertainties were calculated for two runs in Run-

2 (25896 and 25897) and two runs in Run-3 (34750 and 34751), and the final values can be seen

in Table 6.2.
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(a) (b)

Figure 6.12: (a): mean and (b): RMS vertical beam positions as a function of the t0 offset.
The red lines show a deviation of 0.88 ns (RMS of the new t0 algorithm) and the blue lines
show a deviation of 1.76 ns (RMS of the old t0 algorithm).

Tracker Station ∆µR[µm] ∆σR[µm] ∆µY[µm] ∆σY[µm]
Run-2

Station-12 −4.14 30.29 −9.75 −13.65
Station-18 24.13 33.85 −0.36 −11.80

Run-3
Station-12 68.17 18.35 −10.67 2.68
Station-18 75.74 10.77 −2.75 −2.46

Table 6.2: Shifts in the mean radial (∆µR), vertical (∆µY) position and RMS (∆σR, ∆σY)
in Run-2 and Run-3 for the two straw tracker stations due to changes in t0.

64



The results of this systematic uncertainty determination further highlight the importance of

the newly developed t0 algorithm. Small shifts in the t0 lead to large shifts in the measured

beam position. For example, using the RMS in the old t0 algorithm of ∆t0 = 1.76 ns results

in shifts in the mean radial position of ∼ 200µm whereas with the new algorithm they are

∼ 30µm.

The new t0 algorithm thus improves the track fits (better p-values), reduces the DCA resolution,

leads to more tracks being reconstructed and significantly improves the determination of the

beam position.
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Chapter 7

Determining pileup in the tracking

detector

In the Muon g-2 experiment, one of the largest systematic uncertainties in the straw tracking

detectors comes from an effect known as “pileup”, which dominates at early times in the fill,

i.e., t < 50µs. Pileup is when multiple positrons enter the detector close in time such that the

detector cannot distinguish them from each other.

In the calorimeter detectors, pileup is when two or more positrons enter close in time (within

O(10 ns)) in the same crystal and are measured as the sum of the independent positron energies.

This is difficult to distinguish from a single positron of the same energy. In the straw tracking

detectors, the pileup effect is slightly different. The pileup is, by definition, the same, but as the

detectors only measure hit signals in the straws, the problem arises in the track reconstruction

itself.

If two or more positrons enter the straw tracking detector within a small window of time, the

reconstruction algorithm cannot always distinguish the independent trajectories and, therefore,

can misassign hits from separate positrons to a single trajectory as shown in Figure 7.1.

This effect not only biases the number of reconstructed tracks but also biases the momentum

distribution as the extracted momentum from the trajectory is not the real momentum of a

positron. Rather, it is a skewed momentum from multiple positrons. These effects are more

pronounced at early times in the fill since the rate of muon decays is highest, and hence, so is

the number of hits at this time. This leads to the measured precession frequency being offset

from the true frequency. The effect on the track reconstruction efficiency in the presence of

pileup can be seen in Figure 7.2.
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Figure 7.1: A schematic depiction of the pileup effect in track reconstruction.

(a) (b)

Figure 7.2: A toy Monte-Carlo representation of the effect of pileup (PU) in (a) The number
of tracks reconstructed as a function of time, N(t). (b) The track reconstruction efficiency
compared to an ideal scenario where we expect to reconstruct 100% of tracks.

67



The leading contribution to pileup arises when two positrons arrive close in time and space.

Since the time of the two positrons is independent, then the time dependence of this ‘double’

pileup is determined by the square of the underlying positron hit rate [59]. At a simple level,

this will, therefore, modulate the number distribution of the positrons (Equation 3.20) with a

contribution:

N(t) = Npileup · e−2t/τ · [1 + A0 · cos (ωa(R) · t+ φpileup )]
2 , (7.1)

where Npileup and φpileup reflect the magnitude and the phase of the pileup contamination.

In this chapter, two different iterative methods for estimating the rate of pileup in the straw

tracking detectors are presented. The first method combines the data on a muon fill level by

factors of 2, 3, or 5 and uses this to tune an analytical model that allows for an estimate of the

pileup rate. The second uses a model based on a Poisson probability and the method shifts the

data in time and combines it with the nominal data at the hit level to reconstruct the pileup

spectrum, which can then be used to correct the data. Finally, an evaluation of the systematic

uncertainty of the rate of pileup will be presented based on the two methods.

7.1 Combination and analytical model hybrid method

To understand the effect of pileup in the straw tracking detectors, an algorithm was developed to

artificially inflate the rate of pileup to test the track reconstruction algorithm [60]. A new step

is placed in the reconstruction before the individual hit signals are extracted. The muon fills in

the storage ring are buffered and combined by an integer parameter. The selected parameters

inflate the pileup by a factor of 1 (nominal data-set), 2, 3, or 5 such that PUN denotes a dataset

with pileup enhanced by a factor N. A limit is placed on this step of 90 fills to ensure that each

level of inflation has the same number of hits as the nominal reconstruction. The fills in which

there are no hits are ignored. This combination effect is illustrated in Figure 7.3.

Using this method, we can see from Figure 7.4 which shows the extracted positron time dis-

tribution that the effect is indeed stronger at early times for each level of inflation where the

rate of positrons is higher, and then it decays until it reaches equilibrium with the nominal

spectrum.

We can also see from the momentum distributions in Figure 7.5 that the momentum is bi-

ased and proportional to the level of pileup inflation applied. The largest reduction in track

reconstruction efficiency is at higher momentum.
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Figure 7.3: The combination of fills in the PUN method for each level of pileup with the
y-axis showing the number of fills after the combination with empty fills where no tracks are
present being ignored [60].

(a) (b)

Figure 7.4: The positron time distribution for each level of inflated pileup in the PUN
method. A more significant effect is apparent at earlier times.
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(a) (b)

Figure 7.5: The positron momentum spectrum for each level of inflated pileup showing the
momentum is increasingly biased as the level of pileup is increased. The bias is more apparent
at higher momenta (p > 2.7GeV ).

To estimate the rate of ’true’ pileup from the aforementioned method, an analytical model is

developed. The number of detected tracks in the absence of pileup can be taken from

D(t) = εtrN(t) (7.2)

where D(t) is the detected number of reconstructed tracks, εtr is the efficiency of the track

reconstruction itself and N(t) is the total number of expected tracks. The total expected

number of reconstructed tracks in a bin whose width is the cyclotron period (149.2 ns) can be

determined from

r(t) =
N(t)

NFill ·∆tcyc
, (7.3)

where NFill is the total number of muon fills in the total dataset, and ∆tcyc is the width of the

bin. This choice of bin width reduces impact of the fast rotation effect (Section 3.4.1). The

total rate of expected ‘double’ pileup, where two tracks are reconstructed as a single track, is

rd = r2(t) · tDT (7.4)

where tDT is the deadtime, i.e., the duration for which tracks cannot be reconstructed, which

is expected to be < 100 ns. This leads to the number of ‘double’ pileup in the data being

Nd(t) = NFill · tcyc · r2(t) · tDT (7.5)
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and with some rearranging, this leads to

Nd(t) = N(t) · r(t) · tDT . (7.6)

Similarly, the expected rate of ‘triple’ pileup is

rt = r3(t) · t2DT (7.7)

and subsequently, the total number of ‘triple’ pileup is expected to be

Nt(t) = N(t) · (r(t) · tDT )
2. (7.8)

At each subsequent order of pileup, a factor of r(t) · tDT is introduced. If we take this only

as far as the ‘triple’ pileup, we can then define ranges for the number of possible tracks that

can be reconstructed for each order of pileup. If we have a single track (singlet) then we can

reconstruct one or zero tracks i.e. the range in the possible number of tracks reconstructed, n1,

is 0 < n1 < 1. For two tracks, the range is 0 < n2 < 2 where we can reconstruct no tracks, one

track or both tracks, etc. Thus, D(t) corrected for pileup can be defined as

D(t) = ε1Ns(t) + 2ε2Nd(t) + 3ε3Nt(t) (7.9)

where εi are efficiencies (ε1 is the efficiency for reconstructing a singlet etc.) and 0 < εi < 1. If

we take the total number of tracks to be

N(t) = Ns(t) + 2Nd(t) + 3Nt(t) (7.10)

and we do some algebraic manipulation then we obtain a term for the number of singlets, Ns,

in the form of an arithmetico-geometric series as

Ns = N(t)

(
2− 1

(1− (r(t)tDT ))2

)
. (7.11)

Finally, we express D(t) in terms of the sum of singlets and pileup as

D(t) = N(t)

[
ε1

(
2− 1

(1− (r(t)tDT )2

)
+ 2ε2(r(t)tDT ) + 3ε3(r(t)tDT )

2

]
. (7.12)

For the aforementioned pileup inflation method, we know for the PU2 case, the fills have been
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combined, leading to an increase of a factor of two in the rate, which means the total number

of detected tracks in this dataset can be determined by

D2(t) = N(t)

[
ε1

(
2− 1

(1− 2r(t)tDT )2

)
+ 4ε2(r(t)tDT ) + 12ε3(r(t)tDT )

]
. (7.13)

By taking the ratios of each subsequent PUN to the original case e.g. PU2/PU1, we can

construct a model to then determine the original distribution with no pileup, PU0. As most of

the factors cancel in the ratio, we obtain the form:

Nr(t) =
ε1 + 2 (ε2 − ε1) fpur(t)tDT + 3 (ε3 − ε1) (fpur(t)tDT )

2

ε1 + 2 (ε2 − ε1) r(t)tDT + 3 (ε3 − ε1) (r(t)tDT )2
(7.14)

where Nr refers to the ratio between the inflated and nominal distributions and fpu represents

the inflated pileup factor i.e. 1, 2, 3, or 5.

By fitting the case with the largest signal (PU5/PU1) iteratively, one can determine ε1,2,3. We

then correct the original distribution in our dataset, D(t), by correcting each bin as follows

Nbin(t) =
Dbin(t)

ε1 − ε2r(t)tDT − ε3(r(t)tDT )2
, (7.15)

allowing us to estimate the total without pileup∫
Nbin(t)∫
Dbin(t)

. (7.16)

Using a small subset of data, this analytical model approach was tested, and the results can be

seen in Figure 7.6 where the estimated true pileup (PU0) is shown from the ratio compared to

the nominal distribution. A cut was made at 30µs in accordance with the ωa analysis. From

this result, we can deduce that the model is not perfect and is skewed in the fit for the lower

levels of inflation, and so, at best, this only gives an approximate estimate of the true rate of

pileup in the detector. The total estimated rate of pileup using this method is approximately

(5.29± 0.02)%.

7.2 Shifted window algorithm method

The simple method defined in Section 7.1 is not optimal when trying to deduce the rate of

pileup in the straw tracking detector data, and a more robust method is required. A new
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Figure 7.6: The results of the iterative fitting procedure of the analytical model model
compared with the PUN method. As the fit quality reduces at the lower order of pileup, i.e.,
PU2/PU1, the model is not optimal.

algorithm method (PUA) was developed to give a more accurate estimate of the rate of pileup

This new method takes place at the time-island level. Time-islands are defined in Chapter 5.

The positron hits are reconstructed up to the time-island level as normal. At this point, a

window approach is taken where the original hits in each island are denoted by ρ1. These hits

are then duplicated and shifted back in time by 298 ns (two times the cyclotron period). This

shift is chosen due to the pileup positrons being able to fall on either side of the initial positron

in time. If they were only shifted by one cyclotron period, then it could lead a later positron

to overlap and thus be still indistinguishable, whereas, with this shift in time, this issue does

not arise. This shifted set of hits is denoted by ρ2. Finally, a third set of hits is created, which

contains the combination of the nominal and shifted tracks, and this is denoted by ρ3. Each set

of hits is passed once again through the entire track reconstruction algorithm to obtain three

distinct sets of tracks.

To build the pileup spectrum from the three sets of reconstructed tracks, it is necessary to

derive the form of the pileup corrected spectrum. This derivation follows from [61]. The average

number of hits in each time-island can be denoted by α(t) defined by α(t)= r(t) ·∆tisland, where

r(t) is the hit rate and ∆tisland is the time width of each island. Going forward, the time

dependence of α(t) will be suppressed for clarity and will be denoted by α.
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The hit times of the positrons are Poisson distributed. Taking the probability of having k

hits in a time island, given an average number of hits α, as p(α, k), we can define this as a

probability

p(α, k) =
αke−α

k!
. (7.17)

From this, we can write the PDF explicitly for the k = 0, 1, 2 cases, giving us

p(α, 0) = e−α, (7.18)

p(α, 1) = αe−α, (7.19)

p(α, 2) =
1

2
α2e−α. (7.20)

If the hit rate is sufficiently low, such that α � 1, then the exponential terms can be expanded

as a power series in terms up to O(α2) to get

p(α, 0) = 1− α +
1

2
α2, (7.21)

p(α, 1) = α− α2, (7.22)

p(α, 2) =
1

2
α2. (7.23)

k = 1 represents an island with a single hit, which we will denote by the subscript s and k = 2

an island with two hits with a subscript d then, Equations 7.21–7.23 can be expressed as a

single equation:

ρuc =
(
α− α2

)
s
+

(
1

2
α2

)
d

, (7.24)

where ρuc is our uncorrected positron time spectrum. As the pileup subtraction aims to have

single reconstructed tracks with no pileup requiring no overlapping islands, then it is clear that

the final corrected spectrum would be:

ρc = αs, (7.25)

therefore the difference between the uncorrected (Equation 7.24) and corrected spectra (Equa-

tion 7.25) would give us the pileup spectrum itself, ∆ρpu, defined as

∆ρpu = −
(
α2

)
s
+

(
1

2
α2

)
d

. (7.26)
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To obtain the first-order empirical pileup spectrum, which will correct the measured spectrum

to O(α2), the single shifted window is required as used in the algorithm. Though the hit rates

are time-dependent due to the exponential decay and temporal and spatial motion of the beam,

the chosen shifted window will reduce these rate changes. As the hit rates are independent to

each island, the probability can, therefore, be computed by multiplying the probability of k1
hits in the non-shifted island and k2 hits in the shifted island as:

p(α, k1, k2) = p(α, k1)p(α, k2). (7.27)

Continuing with the previous notation, the combined islands can be denoted by k1 + k2 hits in

the two separate islands. We can, therefore, write the combined island spectrum in the form

ρ1+2 =
∑
k1+k2

p(α, k1)p(α, k2), (7.28)

summed over all ki’s. Similarly, we can obtain the rate for the trigger island as

ρ1 =
∑
k1

p(α, k1)p(α, k2), (7.29)

and the shifted islands as

ρ2 =
∑
k2

p(α, k1)p(α, k2). (7.30)

Expanding up to terms of O(α2) we get:

ρ1+2 = α2
d, (7.31)

ρ1 = ρ2 = α2
s. (7.32)

Where ρ1 = ρ2 comes from the fact that the number of hits within these two islands are the

same, they are just shifted in time. The combined island can be seen as ‘what happened’ in

the presence of pileup and the individual islands to be ‘what should have happened’ such that

the difference between the combined rate and the two individual rates should be proportional

to the pileup and, therefore can be defined as:

∆ρpu = ρ1+2 − ρ2 − ρ1 = (−2α2)s + (α2)d. (7.33)

From Equation 7.33 we can see that there is now a factor of (−2α2)s and (α2)d compared to
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Equation 7.26 where there is a factor of (−α2)s and (1
2
α2)d therefore multiplying by 1

2
returns

us to the actual correction. Using this expression and the three sets of reconstructed tracks,

we can estimate the rate of pileup using:

∆ρpu(t) =
ρ1+2(t)− ρ2(t)− ρ1(t)

2
. (7.34)

Since we are allowing the second group of hits to fall at an offset δt on either side of the first hit,

we are essentially doubling the ‘dead-time,’ and therefore, this leads to an over-counting. This

is an intentional over-counting effect due to it allowing us to increase the statistical precision

by sampling more data.

A caveat to this implicit definition is that it assumes that the rate at both times t and (t+ δt)

are equal. However, even if we neglect the dead-time of the reconstruction, we still know that

the actual sampling rate is the product of the two separate rates, which we can take to be of

the form

ρ(t) · ρ(t+ δt) = ρ (t′) · ρ (t′) , (7.35)

and when we assume that the effective time t′ is the same as t, we can obtain an estimate for

the rate of pileup. However, a much better approximation can be made by using the form of

the absolute rate, ρ(t), to solve Equation 7.35 for t′. From Equation 3.20, we can see that the

rate depends on two components. The exponential-decay component where the rate depends on

e−t/τ and the muon spin precession component where the rate depends on 1+A0 cos(ωa t+φ0).

In the case of the first component, there is an exact solution where t′ = t + δt/2. However,

with the inclusion of the second component, there is now a direct dependence between t′ and

t that is bounded by 0 and δt. This means that if the muon spin precession rises more than

the exponential falls, there is an offset between the two rates in Equation 7.35, which causes

ρ(t) = ρ(t + δt) [59]. Thus, the pileup rate will oscillate with ωa , and it will be delayed by

δt/2, which has to be accounted for when measuring ωa .

Once the three sets of tracks are obtained, they are used to calculate the rate of pileup described

in Equation 7.34 at a bin-by-bin level and placed into a histogram as shown in Figure 7.7. This

histogram is then subtracted bin-by-bin from the nominal positron time distribution to obtain

a ‘pileup-corrected’ distribution. As with the PUN method, this can then be denoted by the

ratio to the nominal distribution to find our estimated level of pileup.

The estimated level of pileup was found to be (5.25 ± 0.02)% which is within 2 standard
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Figure 7.7: An example of the extracted pileup distribution as a function of time, which is
then subtracted from the nominal distribution.

deviations of the analytical model. As the analytical model was only a loose approximation,

they would not be expected to agree perfectly. The full comparison of the PUA method to the

PUN method is shown in Figure 7.8.

7.3 Crosschecks and final evaluation

The final test to ensure the new PUA method works as expected is to form a cross-check

hybrid method (PUHybrid). This method works by using the PUN method to combine the

fills, and then in the same algorithm, we take the newly buffered time islands, perform the

PUA method, and retrack again. As the PUN method is a rough combination of all of the fills,

the ratio between each subsequent level of inflation should be the same to ensure the new PUA

method is not artificially inflating the pileup.

In the PUHybrid method, PUH2/PUH1 should be the same as PUH3/PUH2. If the correction

has been applied correctly from the algorithm, the ratios should be ∼1.0. The results for this

crosscheck can be seen in Figure 7.9.

In order to evaluate the systematic uncertainty on the obtained result for the pileup, we can

use a combination of both methods to provide a conservative estimate. The analytical model

can be trained on both the PU3 and PU5 cases to give a range of the total level of the pileup.

This can then be averaged and subtracted from the rate of pileup obtained by the algorithm
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Figure 7.8: A comparison between the pileup estimated from the PUA method compared with
the analytical model.

(a) (b)

Figure 7.9: The PUHybrid method shows (a) the nominal PUN spectrum with inflated levels
of pileup. (b) The spectrum for each inflated level of pileup corrected by the pileup algorithm.
The ratios after the correction is applied are close to 1.0 with some residual deviations at
early times.
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to give the systematic uncertainty.

The pileup is not necessarily the same in each tracker station, and therefore, this is evaluated for

each station separately. Also, as we are tuning on two different sets of data, then the difference

in the results between the two fits must be accounted for in the systematic uncertainty. The

results for the total systematic uncertainty for the two tracker stations are shown in Table 7.1.

Tracker Station %PU(PU(a) %PU(PU5) %PU(PU3) %PU,avg(PUN) ∆%PU(PUA-PUN)
Station-12 5.03± 0.02 4.74± 0.02 4.83± 0.02 4.79 0.24
Station-18 5.47± 0.02 5.84± 0.02 5.91± 0.02 5.88 0.41

Table 7.1: Systematic uncertainty evaluation for the level of pileup in each of the tracker
stations. %PU(PU(a) is the value from the PUA method, %PU(PU5) and %PU(PU3) are from
the PUN method tuning on the PU5/PU1 and PU3/PU1 cases respectively, %PU,avg(PUN) is
the average and finally ∆%PU(PUA-PUN) is the difference between the PUA method and the
average of the PUN methods.

The final results for the rate of pileup in each tracker station accounting for both the statistical

and systematic uncertainties are shown in Table 7.2 in which they can be seen to agree between

stations within the systematic uncertainty.

Tracker Station %PU(PU(a) σPU,syst(%) σPU,stat(%)
Station-12 5.03 0.24 0.02
Station-18 5.47 0.41 0.02

Table 7.2: Evaluated rate of pileup for each tracker station with the associated systematic
and statistical uncertainties.

The straw tracking detectors are used to provide precise measurements of the stored muon

beam for the evaluation of the phase acceptance and pitch corrections to the ωa measurement

as mentioned in Section 3.4. It is essential to understand how the pileup in the data affects the

measured beam position. To calculate the systematic effect this has on the radial and vertical

beam position, the pileup corrected data can be compared with the nominal data, and the

change in the extrapolated beam position can be calculated for each station. This comparison

is shown in Figures 7.10.

The systematic uncertainty was calculated using ten runs from Run-2 (25896–25905) and ten

runs from Run-3 (34750–34759). A time cut was placed on the data at 30µs to match the ωa

measurement from the calorimeters.

The full systematic uncertainties can be seen in Table 7.3. The systematic effect on the extrap-

olated beam position is small (< 10µm). However, it has a non-negligible effect on the straw
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(a) (b)

Figure 7.10: Comparison of nominal and pileup corrected beam-extrapolation for (a) radial
position and (b) vertical position

tracker based precession frequency analysis which is discussed in Section 9.2.

Tracker Station ∆µR[µm] ∆σR[µm] ∆µY[µm] ∆σY[µm]
Run-2

Station-12 4.84± 0.30 −2.21± 0.22 −3.60± 0.22 −2.79± 0.15
Station-18 5.84± 0.32 −3.19± 0.22 −2.53± 0.23 −0.84± 0.16

Run-3
Station-12 3.55± 0.29 −0.50± 0.20 −1.72± 0.23 −1.52± 0.16
Station-18 5.76± 0.30 −2.54± 0.21 −1.31± 0.23 0.17± 0.16

Table 7.3: Shifts in the mean radial (∆µR), vertical (∆µY) position and RMS (∆σR, ∆σY)
in Run-2 and Run-3 for the two straw tracker stations due to pileup.
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Chapter 8

Track-based anomalous spin precession

frequency measurement

The work detailed in this thesis presents a measurement of the anomalous muon spin precession

frequency using the straw tracking detectors for the data taken in Run-2 and Run-3. At the time

of this thesis, the calorimeter measurements have now been fully combined and unblinded in

both software and hardware, meaning the hardware unblinding is now known for this analysis.

However, the analysis presented in this thesis remains blinded in software. This chapter will

present the procedure and measurement of the anomalous spin precession frequency. Chapter 9

will discuss the systematic uncertainties relevant to this measurement.

8.1 Datasets

For the Run-1 dataset that was taken in 2018, the sub-datasets were decided based on different

kicker and electrostatic quadrupole conditions. However, in Run-2 and most of Run-3, these

conditions remained relatively consistent across the running period. It was discovered in the

Run-1 dataset that there were damaged quadrupole resistors, which increased the muon losses

and the beam motion. For these reasons, it was decided that the Run-1 dataset would not be

used for this analysis. During Run-2, there were significant fluctuations in the hall temperature,

which caused changes to the magnetic field across the run period. The hall temperature was

stabilised between Run-2 and Run-3, and the conditions remained stable throughout most of

Run-3 until near the end of the run period, when hardware improvements were introduced to

increase the kicker voltage which placed the beam much closer to a central orbit than was
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Dataset Number of Tracks % of Run-2+3a+3b
2B 2.6×107 2.6
2C 11.3×107 11.1
2D 9.8×107 9.6
2E 4.2×107 4.1
2F 4.0×107 3.9
2G 0.8×107 0.8
2H 1.2×107 1.1
3B 5.3×107 5.2
3C 1.7×107 1.7
3D 11.1×107 10.9
3E 4.8×107 4.7
3F 2.1×107 2.1
3G 5.4×107 5.3
3I 5.2×107 5.1
3J 3.8×107 3.7
3K 2.3×107 2.3
3L 1.7×107 1.7
3M 5.4×107 5.3
3N 10.8×107 10.6
3O 8.2×107 8.1

Table 8.1: Number of reconstructed tracks (with p > 1.8GeV and t > 30µs) used for the ωa

analysis for each sub-dataset.

the case previously. Due to these reasons, the data will be analysed in three distinct groups:

Run-2, Run-3a, and Run-3b. Run-2 was split into seven sub-datasets that were defined by the

offline team for the data production. These ran from Run-2B through to Run-2H, which were

segmented by cycles of the storage magnet and trolley runs. Run-3a, defining the period before

the kicker upgrade, contained eleven sub-datasets that ran from Run-3B through to Run-3M

(with the exclusion of Run-3H). Finally, the last dataset defining the period after the kicker

upgrade contained just two sub-datasets, Run-3N and Run-3O.

8.2 Preparing the analysis histograms

For the analysis outlined in this thesis, tracks that passed the quality requirements defined in

Section 5 were selected. To mitigate the effect of any fast-rotation effects the time bin chosen

for the analysis was that of the cyclotron period (149.2 ns).

For this analysis, a so-called threshold method (T-method) is used to extract the frequency. As

shown in Section 3.2 for the straw tracker data, the statistical precision of the blinded frequency
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R is minimised when the quantity NA2 is at its maximum at a momentum of 1800 MeV: only

tracks above this momentum are used in the analysis.

As well as a selection of optimal requirements on the quality of the tracks and momentum, an

optimal start time for the ωa fit must be selected. There are multiple things to consider when

selecting this start time. As the muons decay exponentially with time, the statistical precision

is reduced the later in the fill the fit is started. However, as shown in previous chapters, there

are effects that have significant systematic uncertainties and are dominant at early times, e.g.,

muon losses, pileup, and beam dynamics effects. Therefore, the selection has to balance the

statistical and systematic uncertainties. As with the calorimeter analysis, and to ensure the

start time for the ωa fit is aligned with one of the cyclotron-period bins, the start time was set

to 30.2876µs.

8.3 The fitting procedure

In this section, the procedure for the fit to the data will be presented in steps and the associated

systematic uncertainties will be presented for the final fit.

8.3.1 The five-parameter fit

The first stage of the fitting procedure was to fit the data to a five-parameter model given

by the expected modulation to the number of tracks as a function of time due to the simple

harmonic motion of the beam with an exponential dependence on the muon lifetime. Although

this fit is missing a lot of the crucial information required and the quality of the fit is expected

to be poor, this step is necessary to elucidate and inform the later steps of the procedure. This

function takes the form

N(t) = N0e
−t/τ [1 + A cos (R t+ φ)] , (8.1)

where N0 is the normalisation factor, τ is the time-dilated lifetime, A is the asymmetry and φ is

the phase and R is the blinded spin precession frequency. The fitting procedure uses the ROOT

fit method combining both the MINUIT and MINOS methods [63] to calculate a χ2 minimisation

with the data to determine the optimal parameters for the initial model.

The quality of the fit as expected has a reduced χ2 of 27.84, and the fit pulls (residuals between

the fit function and the data in a given time bin) deviate significantly from the expected mean
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of 0.0 and σ = 1.0 as shown in Figure 8.1 which has non-Gaussian residuals and is skewed.

Figure 8.1: The pulls from the five-parameter fit to the data.

The quality of the fit can then be further probed by performing a fast-Fourier transform (FFT)

from the time domain to the frequency domain as shown in Figure 8.2. If the fit describes the

data well, the FFT should be flat with no prominent peaks. As we can see from the FFT, there

is a substantial peak at 0 MHz as well as other substantial peaks at various frequencies. These

frequencies match with known frequencies of various beam dynamics effects as mentioned in

Section 4.3. The major contributing frequencies are listed in Table 8.2. The frequencies marked

specifically in the FFT range with the associated beat frequencies are listed in Table 8.3.

Muon beam frequencies
Name Symbol Expression Frequency [MHz] Period [ns]
g − 2 fa aµBe/2πmc 0.229 4365
cyclotron fc v/πR0 6.702 149.2
horizontal betatron fxBO

√
1− nfc 6.330 158.0

vertical betatron fyBO

√
nfc 2.203 453.8

coherent betatron f1CBO fc − fxBO 0.373 2684
vertical waist fVW fc − 2fyBO 2.295 436.6

Table 8.2: The beam frequencies and the respective period for the Run-2 dataset. fa is the
expected signal frequency. The rest of the frequencies are due to the spatial and temporal
motion of the beam.
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Figure 8.2: The FFT of the residuals of the five-parameter fit to the data.

Muon beam and beat frequencies
Symbol Frequency [MHz]
f1CBO − fa 0.144
fa 0.229
f1CBO 0.373
f1CBO + fa 0.602
f2CBO 0.746
fVW-f1CBO 1.922
fyBO 2.203
fVW 2.295

Table 8.3: The major frequencies and respective beat frequencies shown in the FFT of the
residuals from the fit to the data.

85



8.4 Randomisation of the data

The analysis presented in this thesis uses a randomisation approach to correct for beam motion

effects prior to fitting. This randomisation process samples and applies random offsets to the

data to filter out two distinct effects. The first effect is the so-called vertical waist (VW) effect

with a period of 436.6 ns. This describes the width of the vertical harmonic motion of the

beam as it cycles the azimuth of the storage ring. Randomising out this effect also removes

other vertical beam motion effects, namely, the residual beat frequency between both the VW

frequency itself and the CBO frequency, as well as the frequency of the vertical betatron motion.

The second effect is the imparted oscillations in the beam motion due to the fast-rotation. This

oscillation is referred to as ‘fast’ due to the fact its period is 149.2 ns and the period of the

frequency is 4.37µs. The methodology and application of this randomisation procedure will be

described in the following section.

8.4.1 Vertical waist

Due to the relatively low statistics of the data from the straw tracker detector, it is difficult

to get stable fits with a function with too many free parameters. The effect of the vertical

waist can be suppressed such that it does not have to be included in the final fit by applying

a random offset δtVW to each positron time. With the range of δtVW defined by the vertical

waist period i.e.

δtVW ∈ [−TVw/2, TVw/2] . (8.2)

Due to this effect being a ‘fast’ oscillation similar to the fast-rotation, the inclusion of the

randomisation procedure only has a small effect on the precision of the ωa determination. The

statistical uncertainty on ωa is only increased by 1-2% [64]. Randomising, at the vertical waist

period, also suppresses the beat frequency between the VW and the CBO [65], as well as the

effect of the vertical betatron motion of the beam [66]. This means that both of these effects

are also no longer required to be accounted for in the fit function.

8.4.2 Fast-rotation

As with the vertical waist, the effects from the fast-rotation should ideally also be included in

the fit function. However the binning at the cyclotron period significantly reduces its effect and

a similar randomisation to above can essentially eliminate its impact. Even the calorimeter
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analysis with far higher statistics has had to employ this mitigation strategy to achieve stable

fits. As in the vertical waist case, the positron hit times are randomly offset but in this case in

a range defined by the cyclotron period:

δtFR ∈ [−Tc/2, Tc/2] . (8.3)

This randomisation also reduces the effect of the so-called R-wave. As the beam traverses the

azimuth of the storage ring, it induces a fast-rotation signal in each of the 24 calorimeters,

which, for each adjacent calorimeter, has a ∼ 2π/24 phase difference. This effect, therefore,

induces an azimuthal bias in the extracted frequency, R, as shown in Figure 8.3 where it is also

shown that the randomisation significantly reduces the amplitude of the bias.

Figure 8.3: The extracted value of R (in ppm), per-calorimeter, in Run-2C. Points with and
without the randomisation at the cyclotron period are shown. The randomisation reduces the
amplitude of the sinusoidal oscillation by a factor of ∼ 2.5 [37].

The application of the randomisation procedure for both the vertical waist and fast-rotation

removes the respective signals. However, the value of R extracted from the fits will, of course,

depend on the seed used for the randomisation. Although each seed will produce a reasonable

value for R, the procedure must be repeated over many random seeds, and the final value for R

is then taken as the average value. For the analysis presented in this thesis, the chosen number

of seeds is 100.
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8.5 Beam dynamics corrections

As mentioned in Section 4.3 there are systematic effects introduced from the motion of the

beam. Although in the previous section, it can be seen that via randomisation, the vertical

beam motion and fast-rotation effects can be removed prior to fitting; however, as shown in

Figure 8.2, the most substantial peak except for the one at 0 MHz is at the CBO frequency.

Due to this, without the inclusion of the horizontal CBO effects being accounted for within

the model, the fit will be poor and unlikely to converge, as well as masking other possible

contributions.

8.5.1 The nine-parameter fit

The first step in understanding the impact of the CBO on the analysis is to form a nine-

parameter fit. Since the CBO decoheres over time, we can model, to first order, the CBO with

an exponential envelop of the form

NCBO(t) = 1 + A1CBO,Ne
−t/γτCBO cos (ωCBOt+ φ1CBO,N) (8.4)

where the newly added terms for the asymmetry, lifetime, frequency and phase associated

with the CBO are taken as free parameters in the fit function. This then simply modifies the

five-parameter fit as follows:

N(t) = N0NCBOe
−t/γτ [1 + A cos (R t+ φ)] . (8.5)

By once again checking the FFT of this new fit, we can see the impact of including the CBO

within the fit function, if only in a naive sense. The FFT for this fit can be seen in Figure 8.4.

As shown in Figure 8.4, the peak centred around the CBO frequency at 0.373 MHz has been

removed; however, some peaks still remain. The reduced χ2 for this fit is 18.52 which is an

improvement from the five-parameter fit, but it is still poor.

8.5.2 Full CBO correction

As shown in the previous section, even with a naive, basic model, we can remove the peak

at the CBO frequency very well. From this, we will then extend our model to include the

88



Figure 8.4: The residual FFT of the nine-parameter fit to the data showing the reduction in
the CBO peak.

contributions from the second harmonic of the CBO. For the full model, we get the fit function

N(t) = N0 ·N1CBO ·N2CBO(e
−t/τ [1 + (A · ACBO) cos (R t+ φ+ φCBO)] , (8.6)

where we now have four separate contributions. N1CBO is the same as defined in the nine-

parameter fit; however we now have the inclusion of N2CBO, which is a term that modulates

the normalisation term N0 in the fit function at twice the CBO frequency

N2CBO(t) = 1 + A2CBOe
−2t/τCBO cos (2ωCBOt+ φ2CBO) , (8.7)

where we have the addition of two new fit parameters A2CBO and φ2CBO and the lifetime is now

halved. This term is included to correct for acceptance effects arising from the radial width

of the beam. As the oscillation term of the radial width is squared, this facilitates the need

for an exponential decaying at half the lifetime and an oscillation term of twice the base CBO

frequency.

We also must include a modulation to the asymmetry and phase, ACBO and φCBO respectively,
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which are defined as

ACBO(t) = 1 + A1CBO,Ae
−t/τCBO cos (ωCBOt+ φ1CBO,A) ,

φCBO(t) = 1 + A1CBO,φe
−t/τCBO cos (ωCBOt+ φ1CBO,φ)

(8.8)

which once again depend on the lifetime and frequency of the first-order CBO but with two new

fit parameters for the asymmetry and phase of both contributions. The FFT for the fit with

the inclusion of the full CBO parameterisation can be seen in Figure 8.5. The incorporation of

Figure 8.5: The FFT of the fit residuals with the full CBO parameterisation to the data.

the full CBO correction improves the reduced χ2 from 18.52 to 18.28.

8.6 Slow systematic effects

At this point in the analysis, it is clear that the remaining dominant peak in the FFT of the

fit residuals is the large peak at 0 MHz. These effects are known as slow effects and are most

prominent at early times. Without accounting for these systematic effects it is not possible to

achieve a good fit to the data. The known slow effects are from muon losses and the time-

dependent efficiency of the straw tracker. In the following section, both of these contributions

will be discussed.
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8.6.1 Straw tracker efficiency

In the straw tracker data, the reconstruction efficiency of the positrons is much worse at early

times and then decoheres with time until it stabilises late in the fill. This efficiency was deter-

mined by matching calorimeter deposits with straw tracker hits and evaluating the efficiency

with which a track was matched with the cluster.

This effect is caused by a build up of space-charge after the intense beam flash at the point

of injection, reducing the efficiency and it takes time for this charge to dissipate before the

straw trackers perform at optimal efficiency again. The effect is much more dominant in the

straw tracker Station 12 than it is in Station-18 due to Station-12 being closer to the point of

injection. As the ωa measurement is dependent on the number of reconstructed positrons, this

time-dependent effect can significantly bias the measurement if it is not corrected for.

To try to resolve this effect, the first attempt was to fit the efficiency data. The model chosen

was a single exponential envelope, as the detector will recover with some lifetime throughout

the fill:

Neff(t) = 1− εe−t/τε , (8.9)

where ε is the amplitude of the efficiency and τε is the lifetime, or the time taken to recover

after the beam flash. The fit to this data is shown in Figure 8.6

(a) (b)

Figure 8.6: Fits to the tracking efficiency data where tracks have been matched to calorimeter
energy clusters for (a) Station-12 and (b) Station-18. The uncertainties are large at later time
due to the reduced number of tracks and the chosen bin width.

As the efficiency data that was fitted contained only the tracks that could be matched to the

calorimeter data, this means that the fitted parameters obtained would not translate directly
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to the full track-based ωa analysis. However, the parameters can be used as initial starting

parameters for the full fit function and then can be allowed to float to accommodate the full

tracking dataset. Incorporating this efficiency reduces the peak at 0 MHz substantially in the

FFT and the reduced χ2 is decreased from 18.23 to 1.17.

However, as the tracker efficiency is understood to be from an early time space-charge effect,

it is dependent on not just the time in fill but also the momentum of the detected positron

and the momentum dependence of ε was subsequently determined with the muon lifetime, and

CBO lifetime fixed in the fit. The efficiency as a function of momentum is shown in Figure 8.7

Figure 8.7: The value of the efficiency amplitude, ε, as a function of momentum. The red
points show the fit in Station-12, the blue points show the fit in Station-18, and the black
points are the average of the two stations.

As can be seen in Figure 8.7, the efficiency parameters are stable at lower momentum but vary

significantly for momenta larger than 2.4 GeV. This is likely due to lost muons in the data, which

will be discussed in Section 3.4.3. Due to this instability, a cut is applied on the data at 2.4 GeV

such that subsequent fits only used tracker data in the momentum range: 1.8 < p < 2.4GeV.

Incorporating this momentum-dependent tracking efficiency improves the reduced χ2 of the ωa

fit from 1.17 to 1.08 and one can see from Figure 8.8(b) that the 0 MHz peak in the FFT is

reduced.
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(a) (b)

Figure 8.8: Fast Fourier transforms (FFTs) of the residuals between the fitted function and
the data for (a) when the tracking efficiency has no momentum dependence and (b) when it is
has a momentum dependence. A clear reduction is seen in the ‘slow’ frequencies at 0 MHz as
well as a reduction in the residual g−2 frequency.

8.6.2 Lost muons

As mentioned in Section 3.4.3, when muons collide with material within the storage ring, they

lose energy and, therefore, spiral into the detectors. This effect is seen both in the calorimeters

and the straw trackers and is more prominent at early times. This adds a low frequency in the

FFT since the muon population is being depleted faster than the muon lifetime due to these

losses. The momentum distribution of tracks for 5 time intervals is shown in Figure 8.9 where

the lost muons are clearly visible as a peak at p ∼ 2700MeV for times less than 30µs.

Based on the tracking data alone there is no way to determine whether a track is a muon or

a positron and so the estimate of the lost-muon rate is taken by using the triple coincidence

method from the calorimeter data (see Section 3.4.3). The time distribution of lost muons,

normalised to N0, identified by this method for Runs 2 and 3 is shown in Figure 8.10.

The lost muons are then incorporated into the fit function using the triple coincidence spectrums

in Figure 8.10. As it is unknown what the efficiency of measuring a lost muon is then a correction

factor, Kloss, is defined to account for this and is defined as

Kloss =
1

εµN0

, (8.10)

where εµ is the efficiency of detecting a lost muon. The full form of the muon loss contribution
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Figure 8.9: Momentum distribution of reconstructed tracks in 5 time intervals. At early times
a peak from lost muons is visible at high momentum.

Figure 8.10: Time distribution for lost muons with a triple coincidence (present in three
adjacent calorimeters) for Run-2 and Run-3.
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is defined by

Λ(t) = 1−Kloss

∫ t

0

LT (t
′)e−t/τ (t′), (8.11)

where LT is the triple coincidence spectrum shown in Figure 8.10 and τ is the muon lifetime [69].

N0(t) is thus modified by a multiplicative Λ(t) factor in the ωa fits. Since the muon losses reduce

N0(t) Kloss must be positive. A negative Kloss would imply that muons are being gained over

time, which is impossible.

However in the calorimeter ωa analysis, convergent fits could not always be obtained with a

positive Kloss value [37]. Since negative values are unphysical, Kloss, was set to zero for Run-3a

and Run-3b and 0.0011 for Run-2 and these are the values also used in the tracker ωa analysis.

8.7 Final fit results

The final fits incorporating all the effects of the previous sections: muon lifetime, CBO, 2×CBO,

tracking efficiency and muon losses have reduced χ2 values of 1.10, 1.07 and 1.04 in Run-2, Run-

3a and Run-3b respectively. A representative fitted ‘wiggle’ time distribution plot for a single

respective random seed for Run-3a and the pulls between the fitted function and the data can

be seen in Figure 8.11. The FFTs of the residuals between the data and the fit are shown in

(a) (b)

Figure 8.11: A representative fit to Run-3a data for a single respective random seed where (a)
shows the fit to the data and the extracted value of R and (b) shows the pulls between the
fitted function and the data which are Gaussian and centred at 0.

Figure 8.12 and it is clear that the majority of the discussed effects have now been removed, as

shown by the removal of the peaks at the corresponding frequencies.
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(a) Run-2 (b) Run-3a

(c) Run-3b

Figure 8.12: Fast Fourier transforms (FFTs) of the residuals between the fitted function and
the data for each dataset.
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Fit Parameter Definition
N0 Number of positrons at t=0
τ Boosted muon lifetime
A Precession frequency asymmetry
R∗ Blinded precession frequency
φ Precession frequency phase

A1CBO,N CBO decoherence amplitude
τCBO CBO decoherence lifetime
ωCBO CBO decoherence frequency
φ1CBO,N CBO decoherence phase
A1CBO,φ A modulation from CBO phase
φ1CBO,φ φ modulation from CBO phase
A1CBO,A A modulation from CBO asymmetry
φ1CBO,A φ modulation from CBO phase
A2CBO,N Amplitude from 2× CBO
φ2CBO,N Phase from 2× CBO

ε Residual reconstruction efficiency
τε Residual reconstruction efficiency lifetime
Kloss Muon loss normalisation

Table 8.4: Table of fit parameters used for the Run-2/3 analysis, including descriptions of
their meaning.

However, there are still residual effects at low frequencies particularly in Run-2 and Run-3a.

This is due to the less than perfect modelling of the lost-muons that is not quite compensated

by the momentum cut and the use of the calorimeter triple-coincidence functions. More studies

will need to be performed to develop an improved method of determining the lost muon effect

in the tracker data. Studies which are best performed with the full g-2 dataset that has more

than 4 times the data of the Run-2/3 data analysed in this thesis. This full dataset has only

recently become available.

Table 8.4 shows the naming convention for the fit parameters used in the final fitting procedure,

and the final results can be seen in Table 8.5.

The final statistical uncertainty on the extracted precession frequency for each dataset can be

seen in Table 8.6. The combined statistical uncertainty for the entire Run-2, Run-3 datasets

is 2.16 ppm assuming a Gaussian distribution of the errors and also that the separate datasets

are not correlated.

The correlation matrix of the fitted parameters for the largest dataset, Run-3a, can be seen in

Figure 8.13. The correlation matrix shows that the precession frequency is largely uncorrelated

with most of the fit parameters. The largest correlation is due to a correlation with the time-

dependent phase, as discussed in Section 3.4.3. The next largest correlated parameters are the
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Fit Parameter Run-2 Run-3a Run-3b
χ2/NDF∗ 1.10 1.07 1.04

N0 7.99× 105 ± 6.38× 102 1.23× 106 ± 2.80× 102 4.37× 105 ± 1.97× 102

τ 64.32± 0.01 64.37± 0.01 64.35± 0.01
A 0.2775± 0.0001 0.2938± 0.0001 0.2780± 0.0000

R∗[ppm] −61.12± 3.85 −59.22± 3.10 −52.59± 4.86
φ 2.145± 0.001 2.143± 0.000 2.153± 0.001

A1CBO,N 0.0161± 0.0003 0.0150± 0.0002 0.0071± 0.0004
τCBO 303.1± 16.1 284.9± 12.8 215.9± 31.5
ωCBO 2.341± 0.000 2.330± 0.000 2.331± 0.001
φ1CBO,N 0.1048± 0.0157 6.162± 0.014 0.0653± 0.0533
A1CBO,φ 0.0024± 0.0006 0.0016± 0.0005 0.0028± 0.0010
φ1CBO,φ 1.488± 0.271 0.527± 0.305 −5.314± 0.343
A1CBO,A 0.0028± 0.0006 0.0022± 0.0004 0.0019± 0.0010
φ1CBO,A 0.0987± 0.2231 5.958± 0.221 −6.141± 0.497
A2CBO,N 0.0002± 0.0001 0.0002± 0.0001 0.0005± 0.0003
φ2CBO,N −2.961± 0.657 −3.4± 0.6 11.64± 0.47

ε 0.0258± 0.0008 0.0363± 0.0047 0.0452± 0.0057
τε 50.09± 3.39 18.16± 1.33 21.06± 1.85
Kloss 0.0011± 0.00 0 0

Table 8.5: Final fit results for each dataset. The parameters marked ∗ are taken from the
average of 100 random seeds. The other parameters are taken from a single seed.

Fit Parameter Run-2 Run-3a Run-3b
σR,stat[ppm] 3.85 3.10 4.86

Table 8.6: Statistical uncertainty on the extracted precession frequency for each dataset in
Run-2 and Run-3.
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CBO parameters, which is expected as the CBO effect lasts late into the muon fill and causes a

significant modulation of the positron rate. The rest of the parameters have a small correlation

with R.

Figure 8.13: Correlation matrix of the extracted fit parameters for the largest dataset,
Run-3a. The values displayed are the absolute correlation.

In the next chapter the systematic uncertainties and particularly the impact of the effects

arising early in the fill: muon losses, pileup and tracker efficiency will be evaluated.
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Chapter 9

Evaluation of the systematic effects in

the tracker ωa analysis

This chapter discusses and evaluates the sources of systematic uncertainties in the Run-2/3

measurement of ωa using the straw tracking detectors. The systematic uncertainties are esti-

mated for the straw tracker pileup, lost muons, the efficiency of the straw trackers, and the

modelling of the CBO decay envelope.

The total systematic uncertainty is smaller than the statistical uncertainty, but there are sig-

nificant effects that need to be better understood and mitigated before the full g-2 dataset is

analysed. The ongoing work to achieve this is also briefly described.

9.1 Randomisation

As mentioned in Section 8.4, the effects of the vertical waist and fast rotation are removed from

the fit by randomising the time binning. This is done for a choice of 100 random seeds resulting

in 100 R values. The systematic uncertainty from this procedure is taken from the error on the

mean of a Gaussian fit to the 100 R values. An example for Run-3a is shown in Figure 9.1 and

the values are listed in Table 9.1.

Value Run-2 Run-3a Run-3b Combined
∆R[ppm] 0.09 0.09 0.19 0.06

Table 9.1: Uncertainties in the extracted precession frequency, R, due to the randomisation
procedure.
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Figure 9.1: Distribution (for the Run-3a dataset) of the extracted frequency, R, from the
randomisation procedure that removes the vertical waist and fast-rotation.

9.2 Pileup in the tracker

As described in Section 7.2, the pileup in the straw tracker data was determined to be

5.25 ± 0.33% (a 0.063 fractional uncertainty) where the uncertainty accounts for the differ-

ence between the predictions of the two algorithms. In addition, for each of the two algorithms,

the determination of the algorithm parameters has an uncertainty arising from the statistics of

the data in the fit determining these parameters. The model dependency is far more significant,

but the impact of both on the R-fit is evaluated by adding a “pileup multiplier”, KPU , of the

form

∆ρpu(t) =
KPU(ρ3(t)− ρ2(t)− ρ1(t))

2
, (9.1)

where, KPU is varied between 1.00±0.07 and R is re-evaluated. The change in R in Run-3a for

this variation can be seen in Figure 9.2 and the systematic uncertainty from the tracker pileup

in Table 9.2.

- Run-2 Run-3a Run-3b Combined
∆R [ppm] 0.17 0.17 0.17 0.17

Table 9.2: Systematic uncertainty from the tracker pileup.

The effect of the pileup is much larger in Station-12 than Station-18 (see Figure 8.6). The
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Figure 9.2: Change in R in ppm versus the pileup multiplier for Run-3a. The change in R
from the algorithm dependence and the statistics determining the parameters of either
algorithm are shown.

systematic uncertainty from Station-12 is used as the overall systematic uncertainty. ± 0.02 of

the uncertainty arises from the statistics determining the algorithm parameters but is negligible

compared to the systematic uncertainty arising from the algorithm choice. Since the uncertainty

from the choice of algorithm is common across all datasets, it is assumed to be 100% correlated

across the three datasets in determining the combined uncertainty.

9.3 Straw tracker efficiency

The correction for the reduction in straw tracker efficiency at early times is a time-dependent

exponential with an amplitude with a momentum dependence (see Section 8.6.1)

fA(t) = 1− ε(p)e−t/τε ., (9.2)

where τ and ε are determined from fitting calorimeter-matched tracking data and the fit covari-

ance matrix is used to generate pairs of τ and ε values. This fit and its variance from sampling

the fit covariance matrix are shown in Figure 9.3 for Station-12 where the effect is largest and

thus sets the most conservative systematic uncertainty.
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Figure 9.3: The fit to the calorimeter-matched tracking data determining τ and ε and the
range of efficiencies used to determine the systematic uncertainty for Station-12 data.

The generated values of τ and ε from sampling the covariance matrix were then fixed in the R-

fit to each dataset and the extracted values of R were fitted with a Gaussian and the systematic

uncertainty is taken as the standard deviation of this Gaussian as shown in Figure 9.4.

The uncertainties are shown in Table 9.3. The range in τ and ε values for each dataset are

driven by the statistics of the fit to the efficiency data and thus the uncertainties are considered

not to be correlated between the datasets.

Run-2 Run-3a Run-3b Combined
∆R[ppm] 0.05 0.04 0.04 0.03

Table 9.3: Shifts in the extracted precession frequency, R, from the variation in tracking
efficiency for each dataset and the combined value across all datasets.

9.4 CBO modelling

The effect of the CBO lasts for ∼ 250µs into the fit period and thus has a significant impact

on R. The default CBO amplitude is simply a decaying exponential of the form: Ae−t/τ (see

Equation 8.5). However, in the calorimeter analysis, owing to its higher statistics, it was
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Figure 9.4: Distribution of the extracted frequency, R, from the efficiency covariance matrix
sampling for the Run-3a dataset for Station-12.

possible to show that two other alternate forms provided a reasonable description of the data

and these two forms have been used in this analysis to estimate the systematic uncertainty

due to CBO modelling. The first model, Model-A, is the same as the nominal model with an

additional constant offset in the amplitude i.e.

fA,CBO(t) = Ae−t/τCBO + C (9.3)

whereas the second, Model-B, is a steeply falling quadratic function i.e.

fA,CBO(t) = A
1

1 + αt2
+ C (9.4)

which has a new parameter α, and again, a constant offset.

The result of the fits using these functional forms to the Run-3a data is shown in Figure 9.5.

The shift in R from the two alternative forms for the CBO amplitude are shown in Table 9.4 and

range from 0.2–0.8 ppm. The largest shift in R across both models is taken as the systematic for

a given dataset and they are combined across datasets assuming the uncertainties are correlated

since the fits that determine the exact form of the CBO envelopes for each data are driven by

the statistics of the dataset.
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Figure 9.5: The CBO amplitude from the nominal model and two alternative models from a
fit to the Run-3a data.

Envelope - Run-2 Run-3a Run-3b Combined
Model A, B ∆R[ppm] 0.42, 0.20 0.20, 0.54 0.83, 0.26
Systematic ∆R[ppm] 0.42 0.54 0.83 0.31

Table 9.4: Shifts in the extracted precession frequency, R, for each CBO envelope and dataset.
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9.5 Lost muon modelling

As described in Section 8.7, there remain small residual unaccounted for effects leading to an

imperfect description of the data at low frequencies in the FFT and at early times in the ωa fit.

This is believed to be a mismodeling in the lost muons where for example non-physical values of

the Kloss parameter (Equation 8.10) are obtained in the calorimeter fits to the Run-3 data. This

is further supported by an analysis of the tracker data when the start-time of the fit is offset

by multiples of the cyclotron frequency from the chosen start-time of 30.2876µs. The chosen

form for the fit is the nine-parameter fit as described in Section 8.5.1 with a non-momentum

dependent tracking efficiency. The change in the fitted value of R as the start-time of the fit

is increased (and hence the statistics decrease) are shown in Figure 9.6 for both the Run-2 and

Run-3 datasets. The green and purple bands show the allowed 1σ and 2σ deviations based on

the fact that subsequent fits beyond 30.2876µs are correlated with those at earlier time since

they contain a subset of the same data and thus the allowed deviation increases with start-time.

The blue line shows the uncorrelated 1σ uncertainty of each fit.

Figure 9.6: The fitted value of R for the (a) Run-2 and (b) Run-3 datasets as the start-time of
the fit is increased. The blue line represents the 1σ uncertainty on each point, and the green
and purple lines represent the accepted 1σ and 2σ variations from the initial value.

As can be seen from Figure 9.6, the Run-3 data is described well with more than 68% of the

points within the expected 1σ deviation. For Run-2 the deviations are larger, particularly

for fits starting in the 40 < t < 100µs region. This is due to an enhancement in the lost-

muon rate for a subset of the Run-2 data. Figure 9.7 shows the lost-muon spectrum identified

from the triple-coincidences (see Section 3.4.3) in the calorimeter where there is a significant

enhancement in the rate in the 40 < t < 100µs region for a subset of the Run-2 data. This lost

muon enhancement has been tracked to a O(1 mm) radial shift in the average beam position
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which was present for a subset of the Run-2 data. The effect is more acute in the tracking data

compared to the calorimeter data since there are only two trackers and owing to its azimuthal

location Station-12 is more sensitive to muon-losses.

(a) (b)

Figure 9.7: The triple-coincidence, lost-muon, spectrum in two different runs in Run-2
highlighting the appearance of a ‘muon bump’ that biases the ωa analysis.

The larger prevalence of lost muons in Station-12 and that they are not perfectly modelled, leads

to poorer fits in Station-12 versus Station-18. This is highlighted in the high statistics Run-3

data where it is possible to do the start-time scans separately for each station. In Figure 9.8

it’s clear that the majority of points in Station-12 lie outside the 1σ deviation with a small

number extending beyond 2σ. The data in Station-18 is better described, albeit not perfectly.

This mismodeling is largely constrained to the t < 100µs region. This is demonstrated when

we vary the stop-time of the fit where instabilities are present, as expected at earlier times, but

which stabilise when the later-time data is included.

Figure 9.8: The fitted value of R in Run-3 for the (a) Station-12 and (b) Station-18 tracker
data as the start-time of the fit is increased.
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Figure 9.9: The fitted value of R in Run-2 when the stop-time of the fit is changed from 50µs
to 450µs.

A systematic uncertainty is assigned to the Run-2 dataset for the effect of the enhanced muon

losses in the 40 < t < 100µs region, which aren’t explicitly modelled, although on average the

muon-loss rate is. The most conservative estimate can be obtained using Equation 3.4.3 that

defines the shift in ωa arising from lost muons whose phase is different from the average, as is

the case here since the muons losses are enhanced in a subset of the time window. The shift is

momentum-dependent but we take the shift from the lowest momentum value, which gives the

largest shift, to be conservative. This results in a systematic uncertainty of 0.15 ppm for the

Run-2 dataset.

9.6 Final systematic uncertainty

The systematic uncertainties evaluated in this chapter are listed in Table 9.5.

Uncertainty Run-2 Run-3a Run-3b Combined
Statistical 3.85 3.10 4.86 2.16

Randomisation 0.09 0.09 0.19 0.06
Pileup 0.17 0.17 0.17 0.17

Efficiency 0.05 0.04 0.04 0.03
CBO envelope 0.42 0.54 0.83 0.31

Lost muon 0.15 0.05
Total systematic 0.49 0.57 0.87 0.36

Table 9.5: Overview of the uncertainties for the ωa analysis.
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The systematic uncertainties have been combined under the assumption that they are uncorre-

lated. In reality, there is some correlation, for example, the tracker pileup and tracker efficiency

are both effects that dominate at early times and are both independently determined from

fits to similar data. In the subsequent Run-4/5/6 higher statistics data-samples it should be

possible to do a more sophisticated evaluation of the correlations.

The total systematic uncertainty of 0.36 ppm is significantly below the statistical uncertainty

of 2.16 ppm. Additionally, a large fraction of the systematic uncertainty is statistics-driven

since the model uncertainties are determined from fits to data whose uncertainties depend on

the statistics of the fitted sample. The exception is presently the determination of the tracker

pileup where further work is required to determine the most appropriate model which again

will be more tractable using the larger Run-4/5/6 datasets.

With the addition of the Run-4/5/6 data, the statistical uncertainty in the tracker ωa analysis

is expected to be 1.05 ppm and the total uncertainty on ωa will still be dominated by the

statistical uncertainty. Recently work has begun to substantially improve the fraction of the

tracks that are successfully reconstructed by scaling the uncertainty on the drift time calculation

as a function of the time since the start of the fill [70]. As highlighted in the next Chapter it

is then hoped that a tracked-based determination of ωa should be able to match the precision

of the BNL or Run-1 analyses using calorimeter data.
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9.7 Outlook

To match the precision of the BNL (or Run-1 analyses) that used calorimeter data requires a

precision of 0.54 ppm. Or conversely to demonstrate an agreement with the BNL calorimeter-

based determination of aµ at better than 5% confidence-level requires a precision of 1.2 ppm.

This will be possible with the addition of the Run-4/5/6 datasets and improvements in the

fraction of tracks that are successfully reconstructed.

Figure 9.10 shows the total number of positrons, before data quality and analysis requirements,

recorded by the Fermilab Muon g-2 experiment as a multiple of the BNL raw dataset size

(8.6× 109 e+) for Run-1 to Run-6, showing that approximately a fourfold increase in statistics

is expected when the full dataset is analysed compared to the analyses to date.

Figure 9.10: Total number of positrons, before data quality and analysis requirements,
recorded by the Fermilab Muon g-2 experiment as a multiple of the BNL raw dataset size.

Recent improvements [71] in the straw tracker reconstruction algorithms, particularly at early

times in the fill have resulted in a factor of 2.86 more reconstructed tracks than was the case

with the software used to reconstruct the Run-2/3 data used in this thesis. Together the

increase in statistics provided by the Run-4/5/6 data and the tracking improvements will allow

a statistical precision of 0.6 ppm to be achieved. It is hoped that ultimately a factor of four

improvement in tracking efficiency can be achieved which should enable the precision of the

BNL determination to be matched. This is shown in Figure 9.11.

The Muon g-2 experiment has now finished data taking and the analysis of the Run-4/5/6 data

is underway. The experiment has already surpassed the systematic uncertainty goal defined in

the TDR in the publication of the Run-2/3 data and further improvements in the systematic

uncertainty are expected. The statistics goal for the experiment was achieved on February
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Figure 9.11: A prediction of the final statistical uncertainty of the straw tracker independent
ωa analysis as more datasets are added to the analysis, based on the Run-2/3 result from this
thesis. The blue line is the BNL precision and the red-line 2.3 times that i.e. the precision
required to confirm the BNL result at more than a 5% confidence level.

27, 2023, reaching 21 times the statistics of the BNL experiment and the TDR goal of a

statistical uncertainty of 100 ppb is thus also expected to be surpassed. The significance of

the final Fermilab Muon g-2 publication with an expected uncertainty of less than 140 ppb in

the context of new physics interpretations now largely rests with the theoretical community.

However, there is an important experimental measurement that can be made to independently

predict the SM value that to date has not been exploited.

This is the MUonE [72] experiment that will measure the running coupling of the fine structure

constant via electron-muon elastic scattering which will allow a direct determination of the

hadronic vacuum polarisation contribution to aµ. This will be crucial in elucidating the current

tensions in the SM prediction of aµ between the dispersive data-driven method, the lattice QCD

method and the latest CMD-III results.
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Chapter 10

Conclusions

This thesis describes a detailed study of the data taken by the Fermilab Muon g-2 straw

tracking detectors. Two new methodologies have been developed: the first is a method to

better determine the track arrival time (t0) and the second is a method to quantify the level of

pileup in the tracking detectors. The new t0 algorithm, which incorporates angular information,

improves the resolution on the determination of the t0 by a factor of two and results in 19%

more tracks being successfully reconstructed compared with the previous method.

The data from the trackers is used to determine the beam profile that weights the magnetic

field in the determination of aµ and in determining several of the systematic uncertainties in

the calorimeter-based ωa analysis e.g. that due to the radial position and vertical oscillation

of the beam. A detailed study of the impact of the internal alignment of the tracker, the

t0 and pileup on the determination of the beam position was undertaken and propagated to

determine an uncertainty in the ωa determination. These uncertainties were used in the recent

2023 publication [14] in the calculation of the magnetic field correction.

This thesis also presented the first (blinded) determination of ωa using just tracks from the

straw tracking detectors as opposed to calorimeter energy deposits. This analysis has sources

of systematic uncertainty that are different from the much higher-statistics calorimeter analysis

and will ultimately allow an important cross check of the calorimeter analysis. This analysis

was undertaken using the Run-2/3 dataset which represents approximately 25% of the final

Muon g-2 dataset. A total uncertainty of 2.19 ppm on ωa was obtained which is dominated by

the statistical uncertainty of 2.16 ppm.
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