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Abstract

The measurement of the anomalous magnetic dipole moment of the muon (a,) has long stood

as an excellent precision test of the Standard Model (SM).

The Fermilab Muon g-2 experiment has recently finished data-taking and in July 2023 published
its latest determination of a, with a world-leading precision of 0.2 ppm. In this publication,
it surpassed the systematic uncertainty goal defined in the TDR. The analyses of a dataset

approximately four times larger than this recent publication is now underway.

The principle measurement of the Muon g-2 experiment measures a, by taking the ratio of two
frequencies; the anomalous precession frequency (w,) and the muon-weighted magnetic field of
the experiment’s storage ring measured from the precession frequency of protons in water using

nuclear magnetic resonance (NMR) probes.

In all publications to date, w, has been determined using energy deposits in the 24 calorimeters.
However, the Fermilab experiment has two straw tracker detectors measuring the time and
momentum of charged particles which can in principle also be used to to measure w, and such
a measurement can provide an invaluable cross-check of the calorimeter result with different,

and reduced, systematic uncertainties.

This thesis presents the first (blinded) determination of w, using just charged tracks from
the straw tracking detectors as opposed to calorimeter energy deposits. This analysis was
undertaken using the Run-2/3 dataset which represents approximately 25% of the final dataset.
A total uncertainty of 2.19 ppm on w, was obtained which is dominated by the statistical

uncertainty of 2.16 ppm.

Additionally two new methodologies important to the analysis of the straw tracking data have
been developed: one to better determine the track arrival time (¢y) and one to determine the
level of pileup in the tracking detectors. The new t; algorithm which incorporates angular
information improves the resolution on the determination of the ty; by a factor of two and

results in 19% more tracks being successfully reconstructed.

The data from the trackers is also used to determine the beam profile that weights the magnetic
field in the determination of a, and in determining several of the systematic uncertainties in
the calorimeter-based w, analysis. A detailed study of the impact of the internal alignment of
the tracker, the ¢ty and pileup on the determination of the beam position was undertaken and
propagated through to an uncertainty in the w, determination. These uncertainties were used

in the Fermilab Muon g-2 experiment’s recent publication in Phys. Rev. Lett.

vi



Declaration

No portion of the work referred to in this thesis has been submitted in support of an application

for another degree or qualification of this or any other university or other institute of learning.

George M Sweetmore

vii



Copyright

i

ii

iii

iv

The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the "Copyright") and they have given the Uni-
versity of Manchester certain rights to use such Copyright, including for administrative

purposes.

Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form

part of any such copies made.

The ownership of certain Copyright, patents, designs, trademarks and other intellectual
property (the Intellectual Property) and any reproductions of copyright works in the
thesis, for example graphs and tables (Reproductions), which may be described in this
thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

Further information on the conditions under which disclosure, publication and commer-
cialisation of this thesis, the Copyright and any Intellectual Property and/or Repro-
ductions described in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/ Doculnfo.aspx?DocID=24420), in any rele-
vant Thesis restriction declarations deposited in the University Library, the University Li-
brarys regulations (see http://www.library.manchester.ac.uk/about/regulations/

) and in the Universitys policy on Presentation of Theses.

viil



Acknowledgements

I would like to thank my supervisor, Mark Lancaster, for his immeasurable support throughout
my PhD. I would like to thank Alex Keshavarzi, Joe Price and James Mott for their support

and help throughout my time working on the Muon g-2 experiment.

I am grateful to the Muon g-2 collaboration as a whole and the tracker team, especially for

how welcoming and supportive they have been during my experience.

I would like to thank my family and close friends for putting up with me during my PhD and
supporting me every step of the way. Especially my parents, sister, niece and friends at home

and in York and Leeds for keeping me sane.

Finally, I would like to thank my boxing coach, Samuel Fields, for instilling a new sense of

confidence and sharpening my mind and health during my PhD.

ix



Chapter 1

Introduction

The Standard Model (SM) is currently the prevailing theory of particle physics and has had
a tremendous level of success in predicting and explaining many fundamental properties of
particles, interactions, and phenomena to great precision. This model, however, fails to explain
many phenomena that we know about the observable universe. For example, it does not predict
or explain the nature of the baryon asymmetry of the universe, the existence of dark matter,
the source of dark energy, and the neutrino mass. To explain these phenomena it is clear that
revisions and extensions to the SM need to be made and therefore experiments need to be

devised to probe possible new physics.

The anomalous contribution to the magnetic moment of leptons a; = (g —2),/2 is currently the
most precisely determined quantity within the phenomenological framework of the SM as well

as experimentally and therefore stands as an excellent area to probe for beyond the Standard

Model (BSM) physics.

The Brookhaven National Laboratory (BNL) experiment published its final results in 2006 [1].
This measurement of the anomalous magnetic moment of the muon had a ~ 3.60 discrepancy
with respect to the SM prediction. As the experimental measurement includes contributions
from all possible effects whether they be SM effects or from new BSM physics, this discrepancy

was potentially an indication of new physics.

To investigate this, The Fermilab Muon g-2 Experiment, situated in Batavia, Illinois was built
in 2013-2018 and announced its first results in 2021 and determined the value of a, to a
precision of 0.46 ppm [2] using the Run-1 data and was in agreement with the results of the
BNL measurement. Following this result in 2023 the Muon g-2 experiment announced the

latest determination of a, using the Run-2 and Run-3 data achieving a remarkable precision



of 0.2 ppm.

A comparison of this result with the 2020 SM prediction [3] yields a discrepancy of 5.00.
However recent SM determinations from lattice QCD and dispersive ete™ data are significantly
different from the 2020 SM prediction and an intensive campaign is underway to provide a new

SM prediction.

The principle measurement of the Muon g-2 experiment utilises the experiment’s calorimeter
detectors. In this thesis a measurement of the spin precession frequency of the muon utilis-
ing the experiment’s two straw-tracking detectors is presented. Although the straw-tracking
measurement uses a much lower number of reconstructed muon decays than the calorimeter
detectors, a measurement across the full Muon g-2 dataset can achieve a statistical precision
comparable to the BNL and Run-1 Fermilab Muon g-2 measurements. But, importantly the
measurement, provides an invaluable cross-check of the calorimeter result with different, and

reduced, systematic uncertainties.

Chapter 2 discusses the history of the experimental approach, the phenomenology of the deter-
mination of a, in the framework of the SM, and the latest theory results. Chapter 3 introduces
the experimental technique of determining a,, Chapter 4 discusses the experiment principle
and design of the Muon g-2 experiment, Chapter 4.7 focuses on the hardware design of the
calorimeter, Chapter 5 describes the design principle and hardware of the straw tracker detec-
tors. Chapter 6 details a new algorithm for determining the track arrival time, ¢y. Chapter 7
demonstrates both an analytical and empirical approach to correcting for pileup in the straw
tracker detectors which is when multiple tracks arrive close in time and cannot be distinguished
from one another. Chapter 8 describes the first evaluation of the anomalous spin precession
frequency using the straw tracking detectors. Chapter 9 describes the evaluation of the sys-
tematic uncertainties on the w, measurement. Finally, Chapter 10 provides conclusions with

an outlook on the future of the w, measurement.



Chapter 2

Phenomenology

The Standard Model of particle physics is the benchmark for all of particle physics. It describes
particles and their interactions and has successfully predicted and led to the discovery of parti-
cles and their fundamental properties. The Standard Model particles comprises primarily two
distinct groups. Firstly, there are the fundamental (point-like) fermions. These particles are
spin 1/2 particles and consist of leptons (electron, muon, tau, and their counterpart neutrinos)

and also quarks (up, down, top, bottom, charm, and strange).

The interactions of these fermions are facilitated by gauge bosons for each respective force. The
electromagnetic interaction is facilitated by photons (), the weak interaction by three gauge
bosons (W+, W=, Z°%), and the strong interaction by the gluon (g). Point-like fermions have
four fundamental properties: charge, mass, spin, and a magnetic dipole moment. This chapter
will define the magnetic dipole moment within quantum mechanics and the framework of the
Standard Model, we then discuss more specifically the contributions to the magnetic dipole

moment of the muon within and beyond the Standard Model.

2.1 Magnetic dipole moments
The magnetic dipole moment (f) of a fundamental fermion is related to its spin (§)through
q .
2.1
ot (2.1)

where g is the gyromagnetic ratio of the particle, ¢ is the charge, and m is the mass of the

particle.



Within the framework of relativistic quantum mechanics, Dirac came to the result that for a
charged point-like fermion, g = 2 [4, 5]. This result was shown to hold at tree-level (contains
no closed loop interactions). However in relativistic quantum field theories (RQFT), one must
consider higher order loop contributions, commonly known as radiative corrections. In 1948,
Schwinger, motivated by measured anomalies in the hyperfine structure of hydrogen, calculated

the first order loop correction to the g-factor in the framework of quantum electrodynamics
(QED) [6].

Due to the addition of these corrections, the magnetic dipole moment can be written in the

form

- q -
M= <2+2al)%8, (22)

where the factor 2 represents the tree-level Dirac contribution (¢ = 2) and a; represents the

anomalous correction given by the equation

(9—2)‘

5 (2.3)

a; =

Analogously, Dirac determined, via his relativistic theory, the possibility of an electric dipole
moment (EDM) with the relation

7 q .

with 7 representing a dimensionless constant analogous to g. Including both these dipole
moments results in the following Hamiltonian for a charged lepton in the presence of both an
electric and magnetic field:

H=j-B—d-E (2.5)
with B and E representing the magnetic field and electric field strengths respectively. From this
Hamiltonian and the respective transformation properties, it can be seen that the term /i - B
is even under all CPT symmetries and the term d-E is odd under P and T [7]. This property
shows that the EDM is a CP-odd quantity and thus that the existence of a non-zero charged
lepton EDM would imply a previously undiscovered source of CP violation. New sources of
CPviolation are necessary to explain the apparent baryon asymmetry of the universe, which
cannot be explained, in full, by the CP-violation of the quark sector described by the CKM

matrix.

Schwinger calculated the first-order loop contributions to the magnetic dipole moment. This

calculation was the first demonstration of the power of RQFTs and renormalization. The tree-



level vertex and one loop function of the electromagnetic interaction between the charged lepton

and the photon is shown in Figure 2.1. This function takes the form

kq k> kq k>

(a) (b)

Figure 2.1: Tree-level and One-loop Feynman diagrams for the electromagnetic interaction
between a charged lepton and a photon

FH

tree—level

(k’l, k’g) = —2'67", (26)

where p denotes a Lorentz index, k; denotes the fermion momenta, e is the fundamental QED
charge and y* denotes the Dirac matrices. In QED, the anomalous magnetic moment contri-
bution to g comes from the sum of contributions of all one-particle irreducible diagrams to all
orders. The general form of the QED vertex can be written as

1ot q,
2m

* (ky, ko) = —ie |YMFy (q2) + F (q2) , (2.7)

where o = % [y*,~4"], and Fi(¢*) and Fy(¢?) are form factors. Here Fy(¢?) describes the
radiative corrections to a fermion’s electric charge, we find that in the limit ks — k1 = q¢ — 0
that the factors F;(0) = 1 and F5(0) describes the anomalous magnetic moment. The first-order

loop correction to F5(0) as shown in [8] is

1 2
2 1—
Fy (0) = g/ dedydz(z+y+ 2 — 1)M
2 0 m (1 - 2)2
1 1-2 (2.8)
= g/ dz/ dy SR
™ Jo 0 1— z 27'["
which allows us to arrive at the one-loop correction to the g-factor
a=9"2_ % 00011614, (2.9)
2 2m

5



This value was consistent with the observed 50 ppm hyperfine splitting in hydrogen measured
by Kusch and Foley [9] and vindicated QED. The gyromagnetic ratio of the muon, g,,, was then
measured in a series of experiments using stopped muons at Columbia’s Nevis Laboratory [10],

with values again consistent with Schwinger’s evaluation.

From 1962 to 1979, CERN utilized the muon’s spin vector kinematics in the presence of a
magnetic field to measure the anomaly directly [11, 12, 13]. This exploited the fact that the
frequency with which the muon’s spin vector precesses in a magnetic field is proportional to
g — 2, setting the groundwork for future experiments. CERN-3 achieved a precision of 7.3 ppm

and was consistent with the Standard Model.

Using the same method with several improvements to the technique, e.g. muon injection
rather than pion injection, a more intense beam, and a more stable uniform magnetic field, the
Brookhaven National Laboratory [1] g-2 experiment improved the precision of the measurement

by a factor of 13.5. The final BNL result was
a " = 116592089(63) x 107" (2.10)

This result was measured at a precision of 0.55ppm and disagreed by 3¢ with the Standard
Model value at the time. In 2021, the Fermilab Muon g-2 experiment announced its first
measurement of a, to a precision of 0.46 ppm [2] using the Run-1 data, in agreement with
the results of the BNL measurement. Following this result in 2023, the Muon g-2 experiment
announced the latest evaluation of a, using the Run-2 and Run-3 data to achieve a precision
of 0.2ppm. The value for this result was

a, A = 116592055(24) x 107 (2.11)

With this latest result combined with the value from the Run-1 dataset and the BNL result,

the new world average for the experimental determination of a,, is
as™® = 116592059(22) x 10711, (2.12)

with a precision of 0.19 ppm. The experimental values from the BNL and Fermilab Muon

g-2 experiments can be seen in Figure 2.2.



4 BNL
{1 } FNAL Run-1
+— 1+ FNAL Run-2/3
+——+ FNAL Run-1 + Run-2/3
— Exp. Average
20.0 20.5 21.0 215 22.0 225

a,x 10" - 1165900

Figure 2.2: Experimental values of a, from the BNL experiment and Fermilab Muon
g-2 experiment, and the experimental average [14].

2.2 Contributions to a, within the Standard Model

In the Standard Model, there are three contributions to the magnetic dipole moment of leptons.
The first pertains to EM interactions via leptons and photons. The second from interactions

via the electroweak (EW) bosons (W#, Z% H). The third from interactions via hadrons, which

SM as

interact via the strong force. This allows us to recompose a,;

SM _ _QED , EW , _Hadron
a,” =a;"" +a," +a, ", (2.13)

2.3 QED and electroweak contribution

The electromagnetic contribution, a3, is the dominant contribution to a}™ with over 99% of
the value coming from this sector. These contributions stem from virtual leptons and photons
and have been calculated to a five-loop level via numerical and analytical methods [15]. The

sum of these contributions can be expressed as a perturbation expansion of the form

0
QED _ a\”
ay, _ZC" <W>
n=1

= (11658471.8971 4 0.0007) x 10717,

(2.14)

with C), representing the coefficient to be calculated, « is the fine structure constant, and n is
the loop level. Although this is the dominant contribution, it leads to the smallest systematic
uncertainties in evaluating a2". The EW contributions, 3", arise from Feynman diagrams

containing one of the electroweak bosons (W, Z° and Higgs). Due to this, the process is heavily

7



suppressed by the mass scaling of (m} /Mg, ,, ;;) making this a sub-leading contribution. The
current result for the EW contribution is [16]

a; =153.6(1.0) x 107" (2.15)

2.4 Hadronic contributions

2.4.1 Hadronic vacuum polarisation

M comes from, at first order, the one-loop correction to

The leading hadronic correction to ai
the photon propagator via the hadronic vacuum polarisation (HVP). Due to the strong coupling
constant being large in the low energy region leading to quark confinement, this contribution
cannot be calculated perturbatively. By utilizing the optical theorem of the scattering matrix

and experimental ete™ data, Bouchet and Michel [17] determined that the leading order HVP

could be calculated via dispersion integrals of the form

gtvrio _ 1 /4 T dsK ()0 O (s) = 2 /4 " dsK(s)R(s). (2.16)

H 471'3 mgr 37’(’2 m?,

Here, K (s) is a calculable kernel function, and R(s) is:

o (ete” — hadrons )

Bls)==; (efe” — ptu)

(2.17)

The numerator represents the “bare” cross-section where vacuum polarisation effects are ne-
glected, and the denominator is the point like muon-pair cross-section. Differences in the
measured ete” — 27 cross section between the KLOE [18] and BaBar [19] experiments are
responsible for over 70% of the total systematic uncertainty on the HVP estimate. This is
accounted for in the collective theory uncertainty; however, this will need to be minimized with

further data-driven analysis. A full breakdown of the dispersive results is available in Ref. [3].

The HVP contribution can also be determined using Lattice QCD, but until 2021 these calcula-
tions had large uncertainties. In 2021, a determination with a significantly reduced uncertainty
was released by the BMW group [20]. This result has a discrepancy with respect to the dis-
persive relation of 2.1 standard deviations(o) [21]. This tension between the two approaches is
being scrutinised and further Lattice QCD determinations of a, are being undertaken by other

groups. The value for the HVP contribution, pending a consensus update from the theoretical

8



community, is:

VP = 6845(40) x 107 (2.18)

2.4.2 Hadronic light-by-light scattering

The second contribution to the hadronic correction is the hadronic light-by-light (HLBL) scat-
tering contribution. This contribution derives from interactions such as the one shown in
Figure 2.3. This interaction contains a four-point function instead of the simpler two-point
function of the HVP, and therefore, the calculations for this contribution have significant model
dependencies. The current accepted, model-dependent, determination is the so-called “Glasgow
consensus” [22] and has a value of:

ap ™t = (10.5 £ 2.6) x 10717 (2.19)

.

Figure 2.3: Feynman diagram (left) representing the three-photon HLBL contribution to a,.
They can be approximated by a pseudo-scalar pole contribution (right) [23].

2.5 Beyond the Standard Model

Currently, the magnetic dipole moment of the electron is the most precisely measured quantity
in the Standard Model [24], so it begs the question, why are we focused on the muon? Beyond
the Standard Model (BSM), contributions to the anomalous magnetic dipole moment from a
BSM particle with mass M scale as (m}/M?) where M >> m;, and m; is the mass of the charged

lepton. From this, we can express the ratio from the contribution to the electron and muon

anomaly as

9



As the muon mass is & 207 greater than the electron mass, then the BSM contribution to the
muon anomaly is a factor of ~ 4 x 10* larger, which outweighs the better precision from the
electron measurement. This mass-squared relationship comes implicitly from the requirement
that the anomaly is gauge invariant, which forces the corresponding operator to be of at least

dimension six [25].

The tau lepton has a mass of ~ 1780 MeV resulting in a factor of ~79 times larger BSM
contribution compared with the muon. However, the tau lepton has a lifetime of ~290 fs, and
predominantly decays hadronically, making the measurement of a, very challenging. Presently

there is only a limit [26, 27] on its value of:

0.052 < a < 0.013 (2.21)

at the 95% CL.

Interactions contributing to a, have to be chirality flipping, flavour conserving, CP conserving
and loop induced. This puts stringent constraints on the BSM interactions that can contribute

to a, which is generally parameterised as:

2

where Cggy is a model-dependent coefficient. BSM interactions also contribute to the muon
mass. To avoid significant changes to the muon mass the BSM mass needs to be Mpgy) <
2.1 TeV for Cpgm ~ O(1). Null-results from LHC searches for BSM phenomena also further
restrict the possible BSM contributions. BSM extensions able to provide an increased value
of a, are not excluded by LHC data include dark photon models, two-Higgs doublet models
(2HDM), SUSY models, leptoquarks, and new light vector boson Z’ models. These different
models cover a large range of coupling and mass parameter space, e.g., the light Z’ boson can

have masses below 1 GeV, whereas scalar leptoquark masses are constrained to be above 1 TeV.

A summary of these models is presented in [28].

10



Chapter 3

Experimental measurement

In order to measure the anomalous magnetic dipole moment of the muon, we must first under-
stand how a charged particle with a dipole moment behaves in a magnetic field. The torque,

that acts on a dipole in a magnetic field can be described by the expression
F=jixB+dxE, (3.1)

where i is the magnetic dipole moment, B is the magnetic field, d is a potential non-zero
electric dipole moment and E is the electric field. This torque causes the spin of the particle
to turn with a spin-precession frequency wg, which can be expressed as [29]
- q9 5 4 =
wg=—9g—B—(1—~)—B, 3.2
b= B - (1-9) L (32)
where g is the gyromagnetic ratio factor, m is the particle mass, ¢ is the particle charge, and ~

is the relativisitic Lorentz factor. If the momentum is perpendicular to the magnetic field, the

particle’s momentum will also orbit at the cyclotron frequency described by
G.= LB (3.3)

The difference between wg and w, is defined as the anomalous precession frequency w,, and is

proportional to the anomalous magnetic dipole moment. This is expressed as

— 2 — —
Go=@—@.=-2"“95- 415 (3.4)
2 m m

11



The muon beam has a small transverse momentum component coupled with inhomogeneities
in the magnetic field causes the muon beam to diverge vertically. Vertical focusing is required
to maintain the beam within the storage ring aperture for a sufficient time to measure w,.
Electrostatic quadrupoles provide this vertical focusing, which introduces an electric field term

in the expression for w,:

g=-L [aé_ (a_vzl_l) <gxﬁ>], (3.5)

However, if muons whose momentum satisfies the conditions:

(a—721_1> ~0 (3.6)

are selected, this second term vanishes. For the muon, the so-called "magic-momentum” that

causes this term to vanish is defined by:

1
Yo =] —+1=293. (3.7)
au

This boost factor corresponds to a momentum py = 3.094 GeV. This momentum sets the con-
straints of the experiment, and in a perfect scenario, all muons would move with this momentum.
However, this is not the case, and the effect of deviations away from the magic-momentum need

to be accommodated in the measurement of w,.

To achieve the measurement of a,,, it is also essential to measure the magnetic field to a high
precision. This is done through a measurement of the Larmor frequency of a free proton, w,

which is defined as

€
Wp = _QP%Ba (38)
P

where g, is the gyromagnetic ratio of the proton, and m, is the proton mass. The magnetic

field is thus defined by the relationship:
B (3.9)
24

where 1, is the magnetic dipole moment of the proton. The electric charge can also be expressed

in terms of electron quantities, i.e.,

dmefie
= 3.10
T The. (3.10)

where m, is the electron mass, p. is the magnetic dipole moment of the electron, and g, is the

12



gyromagnetic ratio of the electron. With these expressions, we can now express a, in terms of

measurable quantities as
Wa Ge Hp 1Ty,
a, = —=———. 3.11
@y 2 peme (3.1)

The quantity @, is the field measurement convoluted and averaged with the position of the

muon distribution in the storage ring M, (z,y, ¢).

CJP = <wp(x,y, ¢> X MM(I,y, ¢)> (312)

with ¢, the azimuthal position in the storage ring. The ratio w,/w,, is determined by the Muon
g-2 experiment, and the target systematic uncertainty of this measurement is 140 ppb. The
other quantities in Equation 3.11 are known to a much higher precision from other experiments.
The gyromagnetic ratio factor of the electron, g., is known from one-electron quantum cyclotron
experiments to a precision of 0.13 ppt [30]. The ratio between the proton and electron magnetic
dipole moments, fi,/ ., is known from hydrogen spectroscopy to a precision of 3.0 ppb [31].
Finally, the ratio between the muon and electron mass is determined by bound state QED [31]

and the hyperfine splitting in muonium [32]. This is known to a precision of 22 ppb.

The determination of a, thus rests on separately measuring w, and w, in the experiment.

3.1 Determining w, and w,

The ratio w, /w, (quivR;,) can be expressed in terms of the quantities the experiment measures

as:
R/ o uﬁ — fCIOCk wzrzneas (1 + Ce + Op + Opa + le) (3 13)
a Wp fcalib <(ZJ;(£C,Z/,¢) X M(:Cay7¢)> (1+Bk+Bq)’
where,
o w is the measured spin-difference precession frequency determined from the positron

time distribution

. @;(x, y, ®) is the precession frequency of a proton calibrated to an equivalent precession
frequency of a proton shielded in a sphere of water at a calibration reference tempera-
ture of 34.7°C, measured as a function of the azimuthal position and the muon spatial

distribution as measured by the tracking detectors, M (z,y, ¢).

e The two B, terms are time-dependent transient effects that affect the magnetic field.
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o The C, terms are corrections arising from the spatial and temporal motion of the beam.
e fuock is a relative unblinding conversion factor from the clock used to measure w,

e feaip is an unblinding conversion factor from NMR probes used to measure the magnetic

field.

Each of these terms will be defined and discussed in more detail in the following sections.

3.2 The w, measurement

In order to measure w, , the decay kinematics of the muon must be considered. The main decay
mode of the positive muon is to a positron, an electron neutrino, and a muon anti-neutrino.
Due to the parity-violating nature of the weak interaction, the positron will preferentially be
emitted with right-handed chirality and with spin vector in the direction of its momentum.
Due to the conservation of angular momentum, positrons emitted with maximal energy in the
muon rest frame will travel in the opposite direction to the neutrinos, both traveling in the
same direction. The spin of the positron is parallel to the spin of the muon at the time of decay.
However, positrons emitted with minimal energy, where the neutrino and anti-neutrino travel
in opposite directions, will have spin anti-parallel to that of the muon at the time of decay.
Thus by measuring the energy of the emitted positrons, the direction of the muon spin can be

obtained.

Muons within the storage ring will orbit at the cyclotron frequency and will precess with the
anomalous precession frequency, w,. For a polarized muon beam, the probability of a positron

having an energy fraction y = E/E,,,, emitted at an angle 6 with respect to the muon spin is:
dP(y,0) < N(y)[1 4+ A(y) cos(#)]dy d2 (3.14)

where N (y), is the number-distribution of the decay positrons, A(y) referred to as the “asym-
metry” is an energy-dependent factor encoding the correlation between the muon spin and
positron direction. As the high-energy positrons are emitted parallel to the muon-spin at the
time of decay, 6 is also defined by 6 = w,t 4+ ¢, where ¢ is the phase of the muon ensemble at
the point of injection. In the rest-frame of the muon, N(y) and A(y) are defined as

N(y) = 24°(3 - 2y), (3.15)
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2y—1

Aly) = 3= 5

(3.16)

Their form is changed by the Lorentz boost to the laboratory frame, and assuming a unity

polarisation, they become:

No(E) o (y — 1) (4y® — 5y — 5) (3.17)
A(E) = % (3.18)

Finally the number of positrons above a certain energy threshold, Ej, is given by the following
expression

N (t, Ep) = Ny (Ep) - =77 - [1 + A (Ep) cos (wat + ¢ (Ew))] . (3.19)

The straw tracking detectors measure momentum and not energy and an analogous function
based on a momentum threshold, py, is defined for positrons measured in the straw tracking

detectors:

N (t,pn) = No (pen) - €7 - [1 + A (pw) cos (wat + ¢ (pun))] - (3.20)

Introducing v, = pin/Pmaz, then we have the following expressions for Ny (py,) and A (py,):

No (pen) o< (Yen — 1)2 (_thh + Yh + 3) ; (3.21)

Yen (2yen + 1)
_yfh + Yy + 3

A(pu) = (3.22)

With these expressions, we can thus determine w, by a fit to the number of positrons above

this momentum threshold.

A scan must be performed to find the optimal threshold for the measurement. The statistical

uncertainty on the w, measurement is defined by [33]

O V2
Wa V Ntotal A/VTwa

(3.23)
The statistical precision of w, is minimised when the quantity NA? is at its maximum. Fig-
ure 3.1 shows that 1.8 GeV is the optimal momentum threshold.

3.3 The w, measurement

To achieve the experimental goals of the experiment, it is imperative to measure the magnetic

field around the storage ring to a high precision. The experiment aims to measure the magnetic
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Figure 3.1: (a) NA? and (b) oy as a function of the momentum threshold.

field to an uncertainty of 70 ppb and to ensure the magnetic field is a uniform 1.45 T around the
azimuth of the ring. The cross-section of the g — 2 magnet, including the measurement system,

can be seen in Figure 3.2. The magnet consists of 36 upper and lower pole pieces to control
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correction coil
—

S ] Centre of the ring

Figure 3.2: Schematic cross-section representation of the g — 2 magnet system [34].

the magnet’s field strength, with their pitch controlling the linear field gradients, and 24 yoke
pieces. To ensure the magnetic field is uniform around the ring, a two-fold approach, known

s “shimming”, is used. The first part of the shimming allows the control of field gradients
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in the transverse direction to the beam motion, as well as allowing fine-tuning control of the
field as a function of the azimuth. This introduced additional iron pieces to the pole pieces,
between the pole pieces and the yoke pieces, as well as above and below the yoke pieces. The
second part of the shimming utilizes a system of 100 individually powered, concentric coils on
the surfaces of the pole pieces. These surface correction coils (SCC) distribute specific currents
across the magnets, with the currents updated periodically to track drifts in the magnetic field.
This allowed the field variations over the storage ring aperture to be minimised to less than

1 ppm when averaged over the entire azimuth.

With both of these respective parts, the experiment achieved an RMS field homogeneity over
the azimuth of 14 ppm [34]. The effect on the uniformity of the magnetic field provided by the

shimming system can be seen in Figure 3.3. Another important facet of measuring the magnetic

1600
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el ST T T T T
< |7 N W
] 100 150 200 TR R

Figure 3.3: Normalised distribution of the difference between the magnetic field at a point
around the ring B and the average field ((B)) as a function of the azimuth around the storage
ring (¢). The red and blue lines show the field before and after the shimming, respectively,
and the purple line represents the experimental goal of 25 ppm [35]

field is the use of nuclear magnetic resonance (NMR) probes. NMR involves the injection of
a sample of protons into the magnetic field, usually in the form of petroleum jelly or water,
where they are subject to a /2 pulse. The protons will begin to spin at the Larmor frequency
(~ 61.79 MHz), from which they will begin to return to equilibrium with the external magnetic
field after interacting with the inhomogeneities and local field gradients. This allows the field to
be measured around the ring. Approximately once every three days, a trolley system consisting
of 17 NMR probes completes a full revolution around the azimuth of the storage ring. At each
point in the ring, the probes measure the free inductance decay (FID) of the protons, as shown
in Figure 3.4. As the trolley cannot perform measurements when muons are stored in the ring,
a second system of 378 fixed NMR probes is placed around the ring to monitor the field between

trolley runs, allowing the measurement of the field to be interpolated.

This two-fold system allows the magnetic field to be mapped spatially over time for the full
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Figure 3.4: Example of a trolley probe measured free-inductance decay (FID). The inset
region highlights the periodic oscillation used to measure the frequency [34].

azimuth of the ring. A map of the azimuthally averaged field can be seen in Figure 3.5. The
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Figure 3.5: An example of an azimuthally averaged field map showing the deviations in ppm
compared with the central probe. The 17 trolley NMR probes are highlighted by ‘X’ [34].
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frequency of the FID signal, however, will be different to the free proton precession frequency
of interest due to the materials of the probe and also the molecular properties of the proton

sample. The measured frequency can be expressed in the form

Wy, probe = Wp, free (1 — 0 (HyO,T) 4 6y + 0, + 05) (3.24)

where (HyO, T) is a diamagnetic shielding effect of a proton in a sphere of water at a calibration
reference temperature of 34.7°C', §, is an applied correction due to the bulk susceptibility of
the water sample, 9, is an applied correction due to the paramagnetic impurities in the water

sample and d; is an applied correction to account for the magnetic effects of the probe itself [7].
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3.4 Corrections to w,

3.4.1 Electric field correction

The electrostatic quadrupoles provide a vertically focusing electric field which also makes a
contribution to a,. However as demonstrated in Equation (3.7) by selecting a Lorentz boost
factor of 29.3, most of the effect of this electric-field contribution to a, can be cancelled. As the
stored muon momentum distribution has a variance, some of the muons that traverse the storage
ring are not at the magic-momentum, see Section 3 and this necessitates the introduction of
an electric field correction factor C,. With the assumption that the muons traverse the storage

ring at a defined equilibrium radius, z., the electric field correction can be defined as [36]

C, ~ 2n(1 — n)B2 <§>, (3.25)

where n, is the field index of the quadrupole field responsible for the vertical weak focusing
of the beam which depends on the voltage of the electrostatic quadrupoles. The term 32 =

p2/ [m?c® + p?] depends on the magic-momentum, py. The term Ry is the magic radius and

2

2}, is the mean of the square of the radial beam position that depends on both the

finally, (x

width of the beam and the mean average of the beam position i.e. (z?) = o2 + (2)°.

To determine the value of C,, a “fast-rotation” analysis is performed. Due to the muons at
injection having a time-spread of 120 ns, the ring will not be wholly filled since the cyclotron
period is 149.2ns. Each muon has a momentum-dependent cyclotron period that dictates
the radius at which it will orbit. High-momentum muons will have a larger radius, and low-
momentum muons will have a smaller radius. Due to this effect, low-momentum muons in the
head of the bunch will catch up to the high-momentum muons in the tail of the bunch, thus
reducing the gap between each subsequent passing of the bunch. This gap will continue to
reduce, and after &~ 30 us, the beam will have reduced to a more stable, near-uniform intensity.

This intensity variation is referred to as the “fast-rotation”.

Analysis of the “fast-rotation” requires a fast-Fourier transform (FFT) of the instilled betatron
oscillation (stable oscillation about the equilibrium orbit) caused by this effect, allowing for an

extraction of the radial distribution of the beam.

In Run-1 the determination of C, had a significant systematic uncertainty due to the kicker pulse

instilling a time dependence in the beam’s momentum [37]. For Runs 2 and 3, a detector was
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developed to measure this time-momentum correlation. The minimally intrusive scintillating
fiber detector (MiniSciFi) was designed to measure the spatial distribution of the beam in
narrow slices of time without perturbing the beam significantly. A full overview of the design
and principle of this detector can be found in [38]. In Runs-2/3, C. was determined to be
451 + 32 ppb [14].

3.4.2 Pitch correction

The stored muons have a small vertical component of momentum. This means that 5 . B # 0
and, therefore, a “pitch” correction, C), is necessary. This pitch correction is measured by the
straw tracking detectors and is of the form

(A7)
R}’

%%g (3.26)
where A is the amplitude of the vertical oscillation. As this correction is measured by the
straw-tracking detectors, the dominant uncertainty in the measurement comes from both the
alignment of these detectors and the track reconstruction. In Run-1, this correction was mea-
sured as +180 ppb with an uncertainty of less than 15 ppb [37]. In Runs-2/3, C}, was determined
to be 170 £+ 10 ppb [14].

3.4.3 Muon loss correction

As muons traverse the storage ring outside of the central beam orbit, there is a possibility that
they will collide with the collimators that define the optimal beam aperture. When the muons
collide with these collimators, they subsequently lose energy and deter from their stable orbit,
causing them to spiral outside of the storage region before they are able to decay into positrons.
As muons are minimally ionizing particles (MIPS), they will be registered as high momentum
tracks close to the 3.094 GeV in the tracking detectors, whilst in the calorimeters, they will

deposit a small amount of energy.

Some of these lost muons can be identified by matching high momentum tracks in the straw-
tracker detectors to low energy clusters in the downstream calorimeter. As there are only
two straw-tracking detectors in the storage ring, a more optimal way of determining the rate
of these muons for the full azimuth of the storage ring can be determined from coincidences

where the low energy signal is measured in multiple calorimeters. As the distance between the
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calorimeters is known, the time between the muon energy deposits in adjacent calorimeters is

~ 6.2ns as shown in Figure 3.6. If the lost muons have the same phase as those in the average

dN/dat [a.u]
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Figure 3.6: A pictorial representation of the characteristic signals of the ‘lost” muons. The left
shows the time difference (&;), between the energy deposits in two adjacent calorimeters, and
the right shows the signature energy spectrum of the minimally ionising muons in the
calorimeter [37].

stored muon population, this effect will be seen as merely a loss in the number of total stored
particles and will not have any effect on the average phase. However, if these lost muons have
a phase that is different from the average stored muon population, then a time-dependent,
coherent effect will be present. This is the case if the momentum of the lost muons has a time

dependence i.e.

d{p)

- #0, (3.27)

and also, if the phase and momentum are correlated i.e.

di9) 40, (3.28)

d{p)

The correlation between phase and momentum has been measured and is shown in Figure 3.7.
This correlation means that the phase is also time-dependent. This effect will lead to a bias in
w, that will scale with the correlation between the phase and momentum, the absolute rate of

the lost muons, and the momentum dependence of the muon losses as

d(¢) d(p) _ d(¢) _
o) d - = Aw, # 0. (3.29)

In Run-1, two resistors in one of the electrostatic quadrupoles were broken, leading to a large
drift in the vertical position of the beam, and consequently, there was a larger rate of muon

losses, leading to a significant contribution from this effect. In Runs 2 and 3, which this thesis

22



E :J T T T I T T T T I T T T T I T T T T I T T T T l T T T I:
o C =
E 15— —
© - =
@ 10— -
- - -
o = -
g o E
s o —
o - -
-5 -
- —+— Data .
B S Data Fit E
-15— [ Simulation [68% CL] =
:'I 1 1 1 I 1 1 1 1 I 1 1 L 1 I 1 L 1 L I L L 1 L [ 1 1 1 I:

-1.5 -1 -0.5 0 0.5 1 1.5
Aplp, (%]

Figure 3.7: The phase-momentum correlation of the injected muon beam determined by a
data-driven approach and simulation. Due to this correlation momentum-dependent effects
such as muon losses can bias w, [39].

details, the correction factor C),; and its associated uncertainty is determined to be negligible.
A detailed explanation of this can be found in Ref. [37]. In Runs-2/3, C,,; was determined to
be 0 &+ 3ppb [14].

3.4.4 Phase acceptance correction

Since the calorimeters having a non-uniform acceptance, there is a dependence on the position
in the azimuth of the storage ring where the muon decayed to the probability of the subsequent
decay positron being measured. Thus, this position dependence is correlated with the phase
of the beam. The beam is subject to variations in the field, temperature variations, etc and it
needs to be corrected with the term, C,,. This effect can be seen in Figure 3.8 and Figure 3.9.

In Run-1, there is a large non-uniformity in the beam position due to broken resistors in the
electrostatic quadrupoles, leading to a large systematic uncertainty. The result for C},, in Run-1
is 158 ppb with an uncertainty of 75 ppb [36]. For Runs 2 and 3, these resistors were replaced,
and the value and uncertainty are reduced by approximately a factor of 3 [37]. In Runs-2/3,

Cpq is determined to be —27 £ 13 ppb.
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Figure 3.8: The detected phase of the beam as a function of the beam position averaged over
the azimuth of the storage ring [36].
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Figure 3.9: (a) The phase as a function of the vertical position (black). The red (early time)
and blue (late time) lines show how the vertical width changes over time and demonstrates
how a changing width leads to a different detected phase. (b) The phase as a function of the
radial position black) shows how the width effect is largely cancelled. Now the detected phase
is dependent on the mean radial position [36].
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3.4.5 Differential decay correction

As the lifetime of the muon is dependent on its momentum, this leads to an effect that couples to
the phase-momentum relationship as mentioned in Section 3.4.3. Lower momentum muons will
decay faster than higher momentum muons, skewing the phase-momentum distribution shown
in Figure 3.7 to the left, leading to a shift in phase. This effect was not corrected for in Run-1.
A correction factor for this momentum-dependent differential decay effect, Cyy, will be included

in the analysis for Runs 2 and 3. In Runs-2/3, Cy4 is determined to be —15 £ 17 ppb [14].

3.4.6 Blinding

The Muon g-2 experiment is a “blinded” experiment to ensure no biases are introduced in the
analysis. This “blinding” is performed at both the hardware and the software level. To ensure
no biases are introduced in the procedure, w, is taken as a parameter R, which is a ppm shift

to a reference value according to the expression
wa = 27wyes - (14 (R £ ARsw £ ARpw) x 107°) (3.30)

where w,.¢ is the reference value of 0.2291 MHz and is the same as that used by the E821 BNL
experiment [40]. The returned value of R is blinded in both software and hardware as ARgw

and A Rpw respectively.

At the hardware level, there is a factor f... applied to the master clock for the experiment.
The 40 MHz clock is de-tuned by Fermilab employees external to the experiment to a frequency
between 39.997 MHz and 39.999 MHz. The value of this de-tuned frequency is only revealed
when the collaboration has decreed the analysis is complete and ready to be unblinded. At the

software level, each analysis is blinded independently as
wrep (1+ (R%0g) x 107°) (3.31)

where the offset, dg, is selected from a random number generator based on a seed set by a

“blinding string” independent to each analysis.
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3.5 Corrections to w,

3.5.1 Kicker transient correction

When a pulse is generated by the kickers, subsequent eddy currents are induced in the sur-
rounding material. These eddy currents perturb the field, leading to a transient effect, Bj.
To measure this transient effect two fibre Faraday magnetometers were inserted between the
kicker plates. The data extracted from the magnetometers is then fitted with a single decaying
exponential from 30-700 us after the initial kick, which matches the start time used for the

w, analysis of the calorimeter data. This can be seen in Figure 3.10. The sources of systematic
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Figure 3.10: The vibration background subtracted signal measured by the fiber
magnetometer. The exponential fit to the data is shown in black, and the gray shaded band
represents the associated £0.6 ¢T uncertainty on the background subtraction [34].

uncertainty on this measurement come from a 0.6 x'T uncertainty on the vibration background
subtraction, the fit function, and the calibration of the magnetometers themselves [34]. For

Run-1 By was determined to be —27 ppb [34].

3.5.2 Electro-static quadrupole transient correction

Similar to the Kicker transient effect, a transient effect is also induced from the mechanical
vibrations of the charged plates of the electrostatic quadrupoles when they are pulsed. The
NMR trolley probes used to measure the magnetic field are used to measure the delay time

between the NMR signal and the time of the initial pulse, which is corrected for with the term

26



B,. This measurement can be seen in Figure 3.11 where the grey regions correspond to the time
intervals at which the electrostatic quadrupole was pulsed, and the muons that are used in the

w, analysis. In Run-1, this effect had a large systematic uncertainty as it was only measured
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Figure 3.11: The structure of the electrostatic quadrupole transient determined by a scan over
the delay time between the time of the pulse trigger and the NMR measurement. The bands
shown in grey represent the time intervals where the muons are stored and are used for the
precession frequency measurement [34].

in one of the twelve electrostatic quadrupole regions. For Run-1 B, was determined to be
—17ppb with a systematic uncertainty of 92 ppb. This systematic uncertainty is expected to
be significantly reduced for Runs 2 and 3 due to a dedicated field mapping of the entire azimuth

of the storage ring.

3.5.3 Field calibration factor

As shown in (3.24), three effects need to be corrected to extract the frequency of the FID
and measure the magnetic field. In order to minimise these effects a calibration procedure
is performed. This procedure uses a “plunging” probe specifically designed to reduce these
effects. The design of the plunging probe can be seen in Figure 3.12. This probe is rapidly
swapped into each of the locations of the trolley probes and is then cross-calibrated both with
the spherical water sample and with a *He magnetometer probe [34]. A detailed breakdown
of this calibration procedure can be found in Ref. [34]. Similarly to the w, measurement, the

calibration measurement is also blinded with a factor feap.
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Figure 3.12: Schematic of the plunging probe used to calibrate the magnetic field

measurement [34].
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Chapter 4

Experimental overview

The production of the muons can be broken down into several stages. The first stage involves
H- ions that are accelerated in a linear accelerator and stripped down to protons. The protons
are then injected into a 75m radius “booster” ring where they are accelerated up to 8 GeV
and separated into batches consisting of 4 x 10'2 protons with four batches created by the

accelerator every supercycle, which lasts 1.4s.

These batches are then injected into a “recycler” ring, where they are separated again into
four bunches consisting of 1 x 102 protons to reduce the instantaneous rates observed by the
experiment’s detectors. These bunches are then injected into a hall where they are directed onto
a nickel-iron production target, which is optimized for the production of a high number of pions
with a small momentum spread. The momentum spread is approximately |Ap/p| < 2% [41].
The pions are then focused with a lithium lens cylinder that has a radius of 1 cm and is 15 cm in
length. A pulsed magnet is then used to select particles centred at an energy of 3.11+0.15 GeV.
The pions then decay to muons via:

™ = pty,.

The high and low-energy muons will be forward and backward-polarised, respectively. The
muons and any remaining pions are then injected into a “delivery” ring where the beam is
allowed to circulate four times. During the first three rotations, almost all of the remaining
pions will decay to muons, and any remaining slower proton contamination will be separated
from the muon beam, where it is subsequently removed by a kicker. Forward emitted polarised
muons with a momentum of 3.094 GeV are then selected, and the remaining muon beam is sent
to the Muon g-2 building where it is focused by four quadrupole magnets before being injected

into the Muon g-2 storage ring shown in Figure 4.1.
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The requirement for the muons beam to be polarised (the muons spins all point in approximately
the same direction) arises due to the fact that without this polarisation, the phase of each
oscillation would interfere with each other rather than adding coherently effectively washing
out the spin-precession signal when integrated over the beam ensemble. During each accelerator
supercycle, the Muon g-2 experiment receives sixteen bunches in two groups of eight, where each
bunch in the individual group is separated by a gap of 10ms. This is known as a muon fill.

The time structure of this can be seen in Figure 4.2.

Tracker

Fiber harp

Storage region

N

(b)

Figure 4.1: The Muon g-2 experiment where (a) shows the constructed apparatus and (b) is a
schematic representation of the storage ring showing the locations of the inflector,
electrostatic quadrupoles, kicker magnets, tracking stations and fiber harps. The ideal central
orbit is also shown.

10 ms 197 ms 1063 ms

111 ]
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Figure 4.2: The time structure of a muon fill that is delivered to the Muon g-2 storage-ring
per accelerator supercycle [7].

4.1 Injection of the muon beam

Due to the high precision demands of the Muon g — 2 experiment, the storage ring is required
to be a single continuous magnet designed to eliminate any edge effects that are present in
lumped magnets. This constraint means that the muons must be injected into the storage ring

yoke. To minimise the loss of muons that are deflected into the magnet itself on injection, a

30



superconducting inflector magnet shown in Figure 4.3 is used to eliminate the magnetic field

in the injection tunnel.

This inflector is 1.7m in length with an aperture that is 18 mm in width and 56 mm in height.
The design of the inflector is an aluminium mandrel that is wrapped in superconducting coils in
a truncated double cosine theta design [7]. The inflector is stored in a superconducting shield to
contain the fringe field from the inflector so that the storage ring’s magnetic field is unaffected.
Windings at either end of the inflector, as shown in Figure 4.3, do cause a non-negligible loss

of muons before injection.
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Figure 4.3: The superconducting inflector magnet where (a) shows the cross-sectional
schematic and (b) shows the windings at the end that cause muon losses.

The inflector cannot enter the storage ring as it would cause muon losses on collision on subse-
quent rotations of the storage ring and thus muons emerging from the inflector are not at the
centre of the storage-region. To mitigate this, a so-called kicker magnet is employed to move

the beam from the injection point orbit to a stable central orbit.

4.2 Kicker

For the kicker to move the orbit of the beam without causing any impact on the precision
magnetic field of the storage magnet, it cannot contain any magnetic elements. Therefore,
the kicker consists of two aluminium plates that are 1.27 cm in length with a separation of
10cm. To not significantly perturb the magnetic field seen by the stored muons during the
w, measurement period, the kicker has to switch off and lose all residual eddy currents within
the 149.2ns cyclotron period which also means that the muons aren’t affected on subsequent

rotations of the ring.
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The deflection of the beam is designed to be approximately 10 mrad. This is achieved by
using a vertical pulsed field of around 300 Gauss (which corresponds to kicker plate voltages of
~ 160kV), with a pulse length of ~ 120 ns. The kicker consists of three separate kicker magnets

located 90° from the inflector.

4.3 Muon beam dynamics

To precisely determine w,, the spatial and temporal distribution of the beam, referred to as the
beam dynamics, needs to be fully understood. Due to the restoring forces provided by the B
and F field from the electrostatic quadrupoles, the muons will undergo betatron motion both
vertically and horizontally as they travel around the storage ring. The equations describing the

vertical (y) and horizontal (z) motion are:

y = A,(s)cos (VyRio + quy) , (4.1)

r =z, + Az(s) cos (yxi + gbx) , (4.2)
Ry

respectively. Here z. is the equilibrium orbit radially relative to Ry, A,(s) and A,(s) are the
amplitudes of the betatron motion and contain the discreteness from the quadrupoles where s
is the trajectory arc length. The terms v, and v, are the ratios of the betatron frequencies,

fBO. compared with the cyclotron frequency, f.. These are defined as

Vy:ffo/fc: vn, (4.3)

V:c:ffo/fcz Vl_nv (44)

where n is the field index, which defines the strength of the electrostatic focusing in relation to

By, which is the magnetic field strength of 1.45T. This field-index is defined by the relation

/ﬂ?RO
n=—-2 4.5
5B, (4.5)

where k is the electric field gradient, Ry is the stable orbit radius and [ is the beam velocity.
Lastly, the terms ¢, and ¢, contain the angular acceptance of the storage ring and are defined

by the relations

o Ymax \/ﬁ

= 4.6
¢ymax RU ( )
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xmax\/l —n

¢xmax = Ro

: (4.7)

where Tnax = Ymax = 4bmm. The v; factors are chosen to ensure that the muons do not
experience any resonances caused by perturbations around the ring as they pass through field
gradients, as these resonances could cause the beam to expand significantly radially and/or
vertically and cause a large loss of muons from the storage-ring. The condition to minimize

these resonances is defined by the condition

avy + by, = ¢ (4.8)
where a, b, and ¢ are integers. These terms are also constrained by the relation

v+l =1 (4.9)

Figure 4.4 shows the intersections of the resonances for certain values of n.
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Figure 4.4: A schematic representation of the tune plane. The circle in red represents the
constraint of 12 + 1/5 = 1, and the intersections with the black lines represent potential
resonances [42].

The radial position of the beam dictates the fraction of events that result in a positron being
detected. Due to the restoring forces of the magnetic field a simple harmonic motion effect is
imposed on the beam, causing it to oscillate in and out radially. This betatron oscillation is

dependent on the strength and phase of the kicker pulse as well as the spatial effects imposed by
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the injection [42]. The detectors then measure the beam as a series of discrete pieces over time
that depend on the azimuthal acceptances of the detector. This series of discrete pieces leads
to each detector effectively sampling the beam at the cyclotron frequency (f, = 6.71 MHz);
anything above the Nyquist frequency (f./2) will experience an aliasing effect (appearance of

a false lower frequency signal). The radial betatron motion is defined by
f20=Vi-af., (4.10)

and has a frequency of 6.31 MHz and, therefore, undergoes this aliasing and is seen by the
detectors as a slow-moving oscillation. The measurable signal of this oscillation is referred to

as the coherent betatron oscillation (CBO), which is defined by

fCBO:fc_ffO:fc(l_ Vl_n)' (4'11)

A schematic representation of this phenomenon can be seen in Figure 4.5.
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Figure 4.5: A schematic representation of the coherent betatron oscillation phenomenon. The
black vertical lines are placed at the cyclotron wavelength; the blue line represents the radial
betatron oscillation for three successive wavelengths. As the wavelength of the radial
oscillation is larger than the cyclotron wavelength, the bunched beam can be seen to move

closer to the detector (shown as a black box) and then further away. This CBO frequency is
highlighted by the red line [7].

As well as a radial oscillation, the beam will also undergo an aliasing effect in the vertical
dimension, referred to as the “vertical waist” (VW), which oscillates at twice the vertical
betatron frequency. The reason the VW oscillates at twice the vertical betatron frequency is

due to its dependence on the squared deviation of the muon beam. The VW is defined by

fow = fe=2£,° = fo(1—=V/n). (4.12)
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4.4 Auxillary detectors

4.4.1 Inflector Beam Monitoring System

Essential to the Muon g-2 experiment is the Inflector Beam Monitoring System (IBMS). Due
to the inflector aperture being extremely tight the incoming beam parameters are highly con-
strained. This means that a system is necessary to establish the beam’s position as it passes
through the inflector. The IBMS system is therefore essential to provide direct diagnostic infor-
mation over the phase-space matching on the beam in the region between the last accelerator
components and the inflection into the storage ring. This diagnostic control ensures the op-
timal number of stored muons per storage ring fill. This system is composed of two grids of

scintillating fibre detectors.

The first detector is placed outside the storage magnet yoke before the injection point. The
second detector is placed immediately downstream of the inflector. A third detector consisting
of a single-plane of cylindrical scintillating fibres is placed downstream of the inflector. The

detectors can be seen in Figure 4.6. These detectors provide both radial and vertical positions

Figure 4.6: The positions of IBMS 1, 2, and 3 shown with respect to the vacuum chamber and
inflector [7].

of the beam and are used to alert the accelerator operators when unexpected movements of
the beam with respect to the optimal position are occurring. A full description of the IBMS
system can be found in Ref. [43].

4.4.2 TO start time detector

As well as the knowledge of the spatial distribution of the beam being necessary to the ex-
periment, another essential property is the temporal distribution of the incoming beam. A

TO detector is used to measure this by setting a reference time for the beam bunch, which
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allows the subsequent upstream detectors to be aligned and synchronised in time. This device
consists of a central scintillator that is coupled to two photo-multiplier tubes (PMTs). The
first PMT, known as PMT-A, acts primarily as the timing measurement of the beam and has a
1% neutral density filter, resulting in a low photo-electron statistics measurement. The second
PMT, known as PMT-B, acts as a reflection of the intensity of the muon fill and has a 10%

neutral density filter, resulting in a higher statistics measurement.
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Figure 4.7: An example of the time profiles for the two PMTs in the T0 detector for one of
the eight bunches. The z-axis is in clock ticks (ct), where 1ct = 1.25ns. These profiles are
taken as an average of 100 separate time profiles [42].

4.4.3 Fiber harps

The final auxiliary detectors in the Muon g-2 experiment are the Fiber Harps. These detectors
measure the beam profile as a function of time and azimuthal position within the storage
ring. They primarily act as a diagnostic tool sensitive to beam effects as these detectors are
destructive to the beam. They are only used for occasional dedicated studies when physics
data is not being recorded. They consist of two pairs of detectors where one pair measures the
horizontal beam properties, and the other pair measures the vertical beam properties. They
are placed at 180°and 270°in the storage ring azimuth with respect to the upstream end of the

inflector.
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4.5 Electrostatic quadrupoles

As seen in Figure 4.1, there are four electrostatic quadrupoles that are designed to provide
vertical focusing of the muon beam. These are chosen to be electrostatic rather than magnetic
so as not to cause magnetic field gradients that would impact the precision of the measured
magnetic field. The quadrupoles do however have defocusing in the horizontal plane and the
net horizontal focusing comes from the main magnetic field. The quadrupoles consist of two
segments. A short segment of 13° is 1.61 m in length, and a long segment of 26° is 2.62m in
length. Each of these segments consists of four plates and must be operated within a vacuum.
The four-fold design is chosen to minimize the radial and vertical oscillations of the beam
discussed in Section 4.3 and to improve the stability of the beam orbit. The electrostatic

quadrupoles cover 43% of the total circumference of the storage ring.

4.6 Beam collimators and Scraping

To constrain muons to orbits within a region where the magnetic field is most uniform, collima-
tors with a 45 mm radius are placed around the ring. Sometimes, muons will collide with these
collimators and lose energy. This causes the muons to spiral inwards and, enter the detectors,
and bias the measurement. To reduce such muon losses, the beam is scraped to create a 2mm
buffer region between the beam orbit and the collimators. This is performed by pulsing the
quadrupole voltages in an asymmetric way to shift the beam vertically and horizontally to
intersect the collimators. This scraping is performed early in the muon fill, so it is completed

after 8 us, and the beam is stable after 30 yus.

4.7 Calorimeter detectors

As the primary analysis of the Muon g-2 experiment is to measure the properties of the decay
positrons from the muon beam, it is essential to use calorimeter detectors around the full
azimuth of the storage ring. To achieve the high precision goal of the experiment, very stringent

requirements for the calorimeter detectors must be met [44].

o The detectors must have an energy resolution of better than 5% at 2 GeV.

o The gain of the calorimeter must recover by 30 s after the initial injection, thus recovering

37



from the beam flash.
e During the 30-700 us measurement period the gain must remain stable.

e During the measurement period, the laser calibration system must be able to correct for

residual gain instabilities to better than 4 x 107

» For positrons with an energy greater than 1.8 GeV, the time resolution should be better

than 100 ps.

o To ensure less than a 10 ppb shift to w,, the system must maintain a time stability of less

than 7 ps throughout any muon fill.

o If there are two electromagnetic showers with impact time separations greater than 5 ns,

the system must be able to resolve them with 100% efficiency.

The gain of the calorimeter detector is dependent on the rate of incident hits and the stability
of the temperature. It can be broken down into two components. The first component is
the short-time double pulse effect (STDP). This effect occurs due to the detector pixels being
unable to fire consecutively within a O(ns) window. The second component is known as the
in-fill gain effect. It occurs at O(us) and is due to the high number of particles at the initial
injection and the subsequent secondary particles within the detector recovery window. In the

w, analysis for the calorimeter detector, both of these effects are corrected for.

To ensure the high precision goals of the experiment are met, 24 calorimeters are placed flush
with the vacuum chamber wall of the storage ring. The calorimeters are placed on boards
extending outwards to allow any magnetic powering and readout components to be placed
away from the magnetic field region in order to not cause any perturbations. Each of the
calorimeter detectors consists of 54 channels in a six high by nine wide array of PbFy crystals
resulting in a total of 1296 crystals. Each crystal is wrapped in a black Teflar foil and has
dimensions of 2.5 x 2.5 x 14.0cm?. The design of the calorimeter detectors can be seen in

Figure 4.8.

PbF, is chosen as the material for the calorimeter detectors due to its high density (7.77 g/cm?),
which results in a short radiation length of 9.3 mm. This short radiation length allows for ~ 100
energy depositions over the length of the crystal from the incident positrons. The second reason
this material is chosen is due to its refractive index of 1.8, which allows it to emit Cherenkov

light from incident positrons above an energy of 100keV [7]. The Teflar foil improves the
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Figure 4.8: Schematic rendering of a calorimeter detector placed on the exterior of the storage
ring [45].

spatial and temporal resolution as well as reducing internal reflections by ensuring minimal
light interference between the crystals. Each crystal is connected to its own individual large-
area silicon photomultiplier (SiPM), which allows the Cherenkov radiation emitted to be read
out at high speeds. SiPMs are chosen because they are operable in regions with a high magnetic
field; they have a high photo-detection efficiency, have a high degree of stability, and at MHz
rates, they have a very linear response [7]. In order to preserve the fast pulse shape, the SiPMs
are mounted on printed circuit boards (PCBs) that are devoid of any magnetic materials. This

design can be seen in Figure 4.9. With this design, the detector achieves an energy resolution

Figure 4.9: Design of the calorimeter detector highlighting the connection between the
calorimeter crystal (clear bar) and the mounted SiPM [42].

at 2GeV of 3.1%, and a timing resolution in a single channel for a 3 GeV positron of ~ 40 ps.
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Further details of the calorimeter characterisation are given in [44]. Waveform digitizers are
then used to read out the information from the SiPMs at a rate of 800 GB/s and are transferred

to a bank of GPUs for online-data processing.
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Chapter 5

The straw tracker detectors

In the Muon g-2 experiment, the straw tracker detectors allow the muon beam distribution to
be determined by measuring the positron trajectory and extrapolating back to the storage ring.
The trackers are also used to determine the momentum distribution of the muon beam and
perform a direct measurement of the pitch correction. An important, significant systematic
effect in the calorimeter is the “pileup”. Positron trajectories reconstructed in the straw tracker
detectors can be extrapolated forward to the calorimeter to resolve this pileup. Pileup in the
calorimeter occurs when two low-energy energy particles that are very close in time impact the
same crystal and, therefore, are registered as a single £ > 1.8 GeV cluster in the calorimeter.
The tracker identifies these as two separate low-momentum tracks and, therefore, can be used
to resolve this effect. An independent determination of the magnitude of the pileup effect is an

important aspect of the w, analysis.

5.1 Tracker geometry

The Muon g-2 tracker system consists of two separate stations placed at 180° and 270° around
the storage ring and are referred to as Station 12 and 18, respectively. Each station consists
of eight modules placed in a staircase orientation to follow the curvature of the ring as shown
in Figure 5.1. Each module consists of two planes rotated at £7.5° to allow for the tracker

to be viewed in two separate orientations referred to as U and V. This can be seen in Figure 5.2.

Each plane consists of two layers of straws separated by an offset of 1 mm, with each layer

consisting of 32 straws. Each straw has a fiducial length of ~ 8.5cm and a radius of ~ 2.5mm
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Figure 5.1: Diagram showing the module orientation within a tracker station. The coloured
band represents the varying magnetic field, with the detector positioned in both the uniform
and fringe regions of the field [46].
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Figure 5.2: Diagram showing the U and V orientations of the planes within a straw tracker
station module [42].
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constructed from aluminized Mylar and filled with 50:50 Argon:Ethane gas.
The geometry in the software is defined in a 3D Euclidean geometry with six degrees of freedom

based on the position and the Euler angles. This is shown in Figure 5.3.

Figure 5.3: The coordinate system for the tracking detector in the software relative to a single
tracking detector module [47].

5.2 Digitisation

At the centre of each straw is a 25 um gold-plated tungsten sense wire on which a current can
be induced. This current is caused when fast-moving charged particles, e.g., positrons ionize
the gas as they pass through the straw. The liberated electrons are then drawn to the wire and
the ions to the straw surfaces. As the electrons approach close to the wire they are subject to
a large E-field and accelerated which produces significant further ionisations (avalanche effect)

and a large amplification in the signal making it measurable.

The time of this signal relative to when the primary charged particle passed through the straw is
defined as the drift time of the particle and is used to determine the position the charged particle
traversed the straw. This signal is referred to as a “hit”. By combining this information for each
straw, the particle trajectory can be reconstructed as a “track”. The angular information of the
trajectory of the particle within the straws also allows for a determination of the momentum

of the particle, and it allows extrapolation back to the point of decay of the muon.
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5.2.1 Readout electronics

To allow the signals from the positron trajectories, the clock signals and control signals to the
straw tracker detector to be recorded, a hierarchical system of front-end boards and back-end
boards is used. An overview of the path of the signals through the read-out system can be seen

in Figure 5.4. The hierarchical structure of the read-out system can be seen in Figure 5.5

Clock, Commands (C5)

Data (8b/10b)

PC || AMC13 ~ FC7 ' |Logicboard - Straw

Figure 5.4: The signal path of the clock signals and straw hit data to the PC for the read-out
electronics system with the physical location represented [48].

3072 channels in total

FC7 FC7 FC7

Tracker 1 Tracker 2 Tracker 3

Figure 5.5: The hierarchical structure of the electronics read-out system with the number of
each specific board used [48].
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Front-end electronics

The front-end system is the first level in the hierarchical system. It refers to the boards that are
used to measure the signal from the sense wires in each straw and then record these signals as
hits. This sub-system consists of two distinct boards. The first board is the Amplifier Shaper
Discriminator with charge (Q) encoding (ASDQ) board, which is the closest to the straws, and
the second board is the Time to Digital Converter (TDC) board.

The ASDQs are mounted directly onto the end of the straw sense wires and are used to record
when a charged particle has traversed the straw, and it is triggered when the induced signal
on the sense wire crosses a set threshold. These signals are known as straw hits. The ASDQ

boards also provide the sense wires with High Voltage (HV) power.

The processing of the signal within the ASDQ is split into separate steps that are optimised
for efficiency, timing resolution and the ratio of signal-to-noise. In the first step, the signal
from the sense-wire is amplified and then shaped to remove short time-scale features such as
spikes in the signal. This allows the short signals from all of the primary ionisation events to
be integrated into a single pulse. As the drift of the ions is slower than that of the positrons,

this gives the signal a characteristic long tail.

Baseline restoration is used in the shaping of the signal to correct for this tail to mitigate
overlapping of the ion and the positron signals, thus allowing the primary ionisation event to
be read out at much higher rates. A discriminator with a configurable threshold is then used to
register when the pulse crosses said threshold. This threshold defines the leading and trailing
edges of the recorded pulse and is then output as a digitised signal. Only the transitions at the

leading and trailing edges are output in the digitised signal.

This signal is then transported to a custom rack outside the tracker module and storage ring
vacuum region known as the Front-end Low-voltage Optical Box to BackEnd Read-out (FLOB-
BER), which houses the TDC as shown in Figure 5.6.

Each tracker module is mounted with a separate FLOBBER. The TDC is connected to the
40 MHz experiment clock and is used to time stamp each transition at an accuracy of 625 ps.
Each transition is output to the data stream as a ‘hit-word’, which encodes the transition time,
the hit channel, and whether the edge of the transition is leading or trailing. The leading-edge
hit-words are considered as the hit time in a straw. The TDCs are paired one-to-one with
the ASDQ boards with 16 channels, each connected to a single straw. As each straw tracker

module contains 128 straws, and each module requires 8 TDC-ASDQ pairs.
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Figure 5.6: Four FLOBBER boxes outside of the vacuum region that house the TDCs, HV
boards and Logic Boards.

Back-end electronics

The back-end electronics comprises a system of Logic Boards (LBs), FC7s and a single micro-
TCA crate (u-TCA). For the module, there are two LBs that are each used to interface with
four ASDQ-TDC pairs. The LBs have two functions; the first is to provide the TDCs with the
clock and control signals, and the second is to collect the data into a single block where it is
processed downstream. For each straw tracker station, there is one FC7 advanced mezzanine
card (AMC), which is connected to sixteen LBs. The FC7 collects the data from all of the LBs

into a single block.

The most downstream component of the back-end electronics is the AMC13, which collects the
data from the FC7 boards into a single block and also sends control and clock signals to the
FC7s which distribute these signals to the LBs. The FC7 and AMC13 are housed within the
mu-TCA crate. A more detailed overview of the full Muon g-2 read-out system can be found

in [48].

5.2.2 Hit determination

The digitisation of the analog signal on the sense-wire results in a drift-time being assigned
which is a proxy for the distance from the sense-wire that the original charged particle passed.
However it is not known a priori which side of the sense-wire the particle passed and instead a
drift-circle is assigned. The radius of this drift circle is the distance of closest approach (DCA)

of the charged particle to the wire. A schematic representation of this drift circle and DCA can
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be seen in Figure 5.7.

Particle trajectory

z (beam)

lonisation electron

Net drifting motion of electron

X tradtial) > y (vertical) Distance of closest approach

Straw wall

Drift cylinder (cross-section)

Central wire

Figure 5.7: Schematic representation of an ionising particles passing through a straw with the
the drift circle and DCA highlighted [47].

The conversion between drift-time and DCA comes from an iterative procedure of assigning a
time-to-distance calibration (informed by simulation) to the data and minimising the hit 2

with respect to the track trajectory. This time-distance relationship is shown in Figure 5.8.
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Figure 5.8: The time-distance calibration that converts a measured drift-time to a DCA [49].

5.3 Track reconstruction

For reconstructing the charged particle’s trajectory, known as track reconstruction, there are
several routines and algorithms. The full tracking reconstruction algorithm can be seen in

Figure 5.9.
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Figure 5.9: Schematic representation of the full track reconstruction routine [46].

Once the hits have been grouped into track candidates, there are several constraints before they
are passed on to the track fitting. If multiple candidates contain the same seeds, clusters, or hits,
they are removed. If the tracks contain less than six hits or they only contain seeds of one UV
orientation, they are also removed. The Geometry and Error propagation (GEANE) routine [50]
for error propagation within a GEANT4 [51] framework (for the geometry and physics processes)
is used for track fitting. GEANE is used to accommodate the large magnetic-field gradients
over the straw tracker detectors. The more accurate the reconstruction is, the smaller the
residuals between the fitted track and the DCA in each wire are. The design goal for the track
reconstruction was to achieve a resolution on the DCA of 240 um. The developed framework

achieved a resolution of 120-150 pm [52].

5.3.1 Left-Right ambiguity

When a track is reconstructed it is important to determine which side of the straw the particle’s
trajectory was relative to the central sense wire. This allows for a better determination of the
angle of incidence of the particle as well as the time it entered the tracking detector, 5. On
track reconstruction, each hit is assigned an LR-index, 'L’ being if the hit was on the left side of
the sense wire and 'R’ if the hit was on the right side of the sense wire. Hits that are registered
too close to the centre of the wire can smear the LR distribution. If the LR~index is incorrect
for even one hit in the track then the fit will likely fail. Algorithms have been implemented to
deal with this ambiguity in the LR assignment [53].
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5.3.2 Track extrapolation

Once the tracks are formed and fitted, they can also be extrapolated back to the most likely
point of decay of the muon, or they can be extrapolated forwards to energy deposits in the
calorimeter crystal, allowing for particle identification, as well as a measure of the efficiency
of the straw tracker detectors. The extrapolation algorithm utilizes a Runge-Kutta Nystrom
algorithm of the fourth order [54]. This algorithm performs a propagation through the varying
magnetic field in the full GEANT4 simulation to reach a point of tangency where the radial
momentum is zero and then applies a small O(1 mm) radial correction so that the muon decay

point is reliably determined. This can be seen in Figure 5.10. This backward extrapolation
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Figure 5.10: Schematic representation of the backward extrapolation of the track to the muon
decay point. Due to the higher momentum tracks travelling further to reach radial tangency
compared with the lower momentum tracks, a O(1 mm) offset is applied.

allows an accurate determination of the beam profile. The extrapolated beam distribution can

be seen in Figure 5.11.

5.3.3 Quality requirements

To reduce uncertainties in the measurements with the tracking detector, data quality require-
ments have to be applied to remove any poorly fitted tracks or tracks that failed to fit. The full
list of the conservative requirements that are applied is broken down into three levels: require-
ments on the candidate level, requirements on the track level, and requirements on the forward
extrapolated vertices. Each subsequent level maintains the requirements from the previous

levels. These requirements [55, 56] are defined in Table 5.1

49



E 3000
5
2 2500
2]
o
[l
= 2000
Q
2 1500
-10 .
-20 —— 1000
-30
500

0

)

-40-30-20-10 0 10 20 30 40 50
Radial Position [mm]

Figure 5.11: The extrapolated beam profile from reconstructed tracks [54].

Candidates

Number of straw hits > 12
Number of |U — V| hits < 4
Fraction of missed layers < 30%
Drift time: 0 < t; < 70

Tracks

Track fit p-value > 5%
Track residuals <500 pm
Track entrance point: 60 < z < 150mm —40 < y < 40 mm

Vertices

No external volumes hit
Vertex vertical and radial uncertainties: 1.0 < o, < 6.0mm and 1.0 < o, < 6.0 mm

Table 5.1: Data quality requirements for each level of track reconstruction.

20



5.4 Internal alignment

Essential for high-precision studies using the Muon g-2 straw tracker detectors is the mini-
mization of the uncertainty on the extrapolated beam position. This requires a high-precision
alignment of the detectors. The importance of this can be seen in Figure 5.12, which highlights

the effect on the extrapolated beam position by differing degrees of internal misalignment.
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Figure 5.12: The change in the extrapolated radial beam position relative to a randomized
internal misalignment for four tracking detector modules at varying degrees of
misalignment [47].

A large internal misalignment will produce significant residuals between hit positions and the
fitted track. If alignment corrections are applied to the tracking algorithm before the tracks
are fitted, then these residuals can be diminished. To perform the internal alignment for the
Muon g-2 experiment straw tracker detectors, the Millepede-II framework [57], commonly
used in particle physics, was used. An in-depth study of the alignment using this framework

was performed for the Run-1 dataset in [47].

The Millepede-II framework performs a least-squared regression (LGR) based on two groups
of parameters. The first group is the global parameters that affect all the tracks, for example,
the geometry parameters and established alignment parameters. The second group is local
parameters that are specific to each of the fitted tracks. The framework uses both these groups
to minimize a linear function based on the sum of the residuals. These residuals can be defined

by the difference between a measured hit position and a predicted hit position. This function
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can be defined based on a x? minimization as

2
arz 87‘1
8X2( b) frace (7127] a07 b07]> s 5 bl 5b >

F(a,b):W: Z Z a(a,b) =0, (5.1)

(0 7]

where a are the global parameters, b; the local parameters, r(a, b;) is the defined residual hit,
ag and by ; are the initial parameters, o(; ;) is the estimated uncertainty on the measurement,
summed over the tracks and the measured hits. The correction factor to the global parameters,
0q, is then added to the tracking algorithm, and the alignment is then performed iteratively
until the results converge. This correction factor is defined by six degrees of freedom based on
the rotations and positional translations of the tracking detector in a 3D Euclidean geometry

and is defined as
ox

oy
0z

da ) (5.2)
00

09
01

where 6, ¢ and 1) are the Euler angles. These degrees of freedom relative to the tracking module

are shown in Figure 5.3.

Figure 5.12 shows that a small misalignment can affect the beam position to a large degree.
Therefore, the systematic uncertainty on the beam position due to misalignment needs to be
evaluated. Constants were derived and checked for each run period and when changes were
made to the straw tracker detectors. These constants are stored in a SQL database. Each
straw tracker station has eight modules, and each module has a constant for both the radial
and vertical positions. To estimate the systematic uncertainty on the beam position from the
internal alignment, a random, uniformly distributed offset for each constant within +10 ym is
applied, and the data is re-tracked with the newly derived constants and the beam positions

are re-evaluated.

This was repeated ten times and the variance from these ten evaluations for both the mean
and RMS of the beam positions was taken for the systematic uncertainty. The results can be

seen in Figures 5.13 and 5.14.

The systematic uncertainties were calculated for two runs in Run-2 (24577 and 25896) and one

run in Run-3 (34750), and the final values can be seen in Table 5.2. Runs 24577 and 25896
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were before and after a tracker module was replaced, respectively, and the alignment constants

were re-derived.

Tracker Station — ApR[pum] AoR|[pm] ApY [pm] AcY [pm]

24577

Station-12 1.36 099 —-3.01+£1.17 —-099£0.66 —1.51=+1.15

Station-18 —-3.83+£155 1.77x£0.78 —-237+£1.02 1.12+1.24
25895

Station-12 513179 —-383£142 -113+049 -1.16=£0.63

Station-18 —091+£0.76 —-122+£0.79 0.28+£048 —3.86+t1.51
34750

Station-12 —6.23+£212 —-114+£0.62 2.05+£0.8 —1.17+0.79

Station-18 —6.12+£2.15 —-3.72+x1.13 027%£0.62 —5134+1.90

Table 5.2: Shifts in the mean radial (AuR), vertical (AxY) beam position and RMS (AcR,
AcY) in Run-2 and Run-3 for the two straw tracker stations due to tracker misalignment.
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Chapter 6

t0 algorithm improvements

In track reconstruction, the tq of the track is defined as the time at which the particle first enters
the tracking station. A better resolution of the ty, improves the resolution on the DCA of the
signal in each straw hit. The increase in resolution allows a better track fit and, therefore, allows
more tracks to be reconstructed. As the straw tracker data is statistically limited compared
to the calorimeter and is necessary for studies of the beam position and an independent w,
analysis, improving the track reconstruction efficiency is paramount. Each reconstructed track
can be broken down into hits, which are then grouped into time-islands as previously shown in

Figure 5.9.

From these time islands, hits are then clustered into clusters of two types: singlets and doublets.
Singlets are instances in which only one hit is measured per plane, and doublets are instances

in which two hits are measured per plane. This can be seen in Figure 6.1. Before the new

Singlet cluster
Doublet cluster

Figure 6.1: Schematic representation of the two spatial cluster types: a singlet (one hit per
plane) and doublet (two hits per plane) [46].

algorithm defined in this chapter was developed, the algorithm to calculate the ¢, for the track
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was expressed in the form

it

tyg = —k 6.1
0 N MT, ( )

where Yt. is the sum of the hit times in the reconstructed track, N is the number of hits per
track, and kj;r is a constant mean-time offset correction found from the difference between the
average difference in time between the tagged calorimeter hits and the track hits corrected for
the time of flight. This is a simple approximation that weights all hits in the track equally by

their time and does not account for any spatial information.

In this chapter, a new algorithm will be described that allows for a better determination of the
track ty using the angular information of the hits. The approach will be iterative and will first
define the relationship between the LR-ambiguity of doublets in each track and will then define
a linear relationship between the tangent angle of each hit in a circle fit to the track and then

will derive a further correction in the non-linear region.

6.1 New t; algorithm

The spatial information of the doublet clusters shown in Figure 6.1 can be used to define the
relationship between the angle of incidence of the track and the drift time. The drift time can

be seen in Figure 6.2.

~Primary ionisation
/ electron

Particle trajectory

_ Net drifting motion
~ of electron

_ Drift cylinder
(cross-section)

— Straw wall

Figure 6.2: Schematic representation of a charged particle trajectory through a straw showing
the drift time ¢; and the DCA (distance of closest approach).

The angle of incidence with respect to the horizontal plane is given by

0 = arctan (&) , (6.2)

D=
where p, and p, represent the components of momentum for the particle in the z and z plane
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respectively. This angle can be used to resolve the left-right ambiguity (defined in Section 5.3.1).
Each doublet of hits is assigned a combined LR-index e.g. LL is when the first and second hit

of the doublet are on the left side of both wires as in the lower two hits in Figure 6.3.

particle frajectory

V Cluster

wire

U Cluster

Figure 6.3: Schematic representation of a tracked trajectory showing hits that pass both to
the left and right of the wire [46].

In the region 55 < t < 105ns there is a linear relationship between 6 and the sum of the drift
times in the doublet, t45 (see Figure 6.5). The drift time sum can then be evaluated using the

linear fit parameters (P, P;) and the angular incidence as

(- P)
tdse - P() ) (63)

where t4s. represents the new estimate. Using this and the times of the hits, an estimate for

the o of the track can be made using:

Yted — tase
to = %' (6.4)

where Yt.4 is the sum of the hit times in the doublet.

The new algorithm was then compared against the old algorithm using tracks that had passed
quality requirements (see Table 5.1) and which were matched to calorimeter clusters. The
difference, At, between the time measured by the calorimeter and the time measured by the
tracker with a time of flight correction was then determined. The results of this algorithm can
be seen in Figure 6.6. It was found that the standard deviation in At across a single run for
the old algorithm is ¢ = 1.760 = 0.005ns and for the new algorithm is ¢ = 0.880 £ 0.004 ns.
With a ~ 50um /ns drift velocity this reduces the contribution to the DCA resolution from the
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hit doublet.
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Figure 6.5: Profile plot of angle of incidence versus sum of drift times for (a) LR and (b) RL
cases. The region 55 <t < 105 ns is reasonably described by a straight line.
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Figure 6.6: A comparison of the ¢y, determined from tracks with ((a): the old algorithm and
(b): the new algorithm that uses the angular dependence and LR ambiguity from the fitted
track referenced with respect to the time of the extrapolated track in the calorimeter after
removing a fixed time-of-flight offset.
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to from 88.2 um to 44.2 pym, which is a significant improvement.

This determination of the t; relies on knowing the momentum vector of the fitted track. There-
fore, it cannot be used prior to the track fit and hence a method to determine @ prior to the full
track fit is required. A simple circle-fit, as illustrated in Figure 6.7, has instead been developed
to determine . With some algebraic manipulation, and by taking the tangent to the circle, it

is possible to find the angle of incidence from

0. = arctan (—L) ) (6.5)

my
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where m,. is the tangent of the radius from the centre of the circle fit to a point (z,y) on the
circle. Using this, we can then perform the calculation as before with this value for 6 instead

of the one that relies on the momentum from the track fit.
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Figure 6.7: Example of a circle-fit to real tracker data where the red line represents the circle
fit to the U-plane and, the blue line represents the circle fit to the V-plane, and the black
points are the positions of the hits.

An issue arises when the determination of the LR-index assignment fails. From a simulation
study [58], it is determined that when |f| < 0.1rad, the LR-ambiguity is correct 99.8% of the
time and ~ 64% of all doublets have |f| < 0.1rad. For larger ||, the difference between the
LL and LR cases, and the difference between the RR and RL cases cannot be established, and

therefore, the algorithm reverts back to the old approach but with one additional change.

Due to the shortcomings of the old ty algorithm, a new method of improving the ty for the
cases where |f] > 0.1 is required. By defining three regions for all LL/LR and RR/RL tracks:
high angle (# > 0.1rad), low angle ( < —0.1rad) and ‘good’ (|f| < 0.1rad). In the ‘good’
case the ty is determined from the fit to the data. In the two extreme angle cases, for both
‘left’ (LL/LR) and ‘right’ (RR/RL) tracks, offsets can be deduced from the mean (p) of the At

distribution as shown in Figure 6.8.
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Figure 6.8: At distributions used to determine the offsets for the ¢y outside of the
(10| < 0.1rad) region where (a) LL/LR for (|#] < —0.1rad), (b) LL/LR for (|f| > 0.1rad), (c)
RR/RL for (|| < —0.1rad), (d) RR/RL for (|¢| > 0.1rad).

These values can be used to correct the average ty for all tracks and thus improve the old

approach irrespective of angular dependence. The offsets are given in Table 6.1.

LR-ambiguity | u (# > 0.1)[ns] | p (6 < —0.1)[ns]
LL/LR 0.5382 14.0314
RR/RL 13.4087 -0.4785

Table 6.1: Mean of At distribution for high and low angle regions where the cut on 6 fails.

This new algorithm was then compared against the old algorithm. The results can be seen in
Figure 6.9, which shows the number of fitted tracks increases by 17% and that the p-values of

the track fit is now improved across all tracks.

The straw-tracking detectors are used for the extraction of the spatial profile of the muon

beam, including projections of the radial and vertical profiles. The extracted beam profile is
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Figure 6.9: The p-value distribution of the fitted tracks for both the new and old ¢, algorithm.

necessary for the determination of the field convolution, the phase acceptance correction, the
pitch correction, and tuning simulations. Therefore, a complete determination of the systematic
uncertainties to the beam position from each area of the track extrapolation is needed, including

the to determination.

6.2 Systematic uncertainty on beam position from the

to determination

To estimate the systematic uncertainty on the beam position arising from the determination of
the track ty, an offset to the ty in the range £2ns is applied. The data is then re-tracked with
the new ty, and the radial and vertical beam profile is extracted. The number of fitted tracks
in a specific run against the offset is shown in Figure 6.10 which as expected peaks at an offset

of ~ 0.
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The change in the mean and RMS of the extrapolated beam position both radially and vertically

as the ¢y offset is changed is shown in Figures 6.11 and 6.12 respectively.
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Figure 6.11: (a): mean (b): RMS radial beam positions as a function of the ¢, offset. The red
lines show a deviation of 0.88ns (RMS of the new t, algorithm) and the blue lines show a
deviation of 1.76ns (RMS of the old ¢, algorithm).

The systematic uncertainty in the mean and RMS of the beam positions is taken as the largest
deviation from the nominal value for a deviation of £0.88ns i.e. the RMS of the new t;
algorithm (Figure 6.6). The final systematic uncertainties were calculated for two runs in Run-
2 (25896 and 25897) and two runs in Run-3 (34750 and 34751), and the final values can be seen
in Table 6.2.
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Figure 6.12: (a): mean and (b): RMS vertical beam positions as a function of the ¢, offset.
The red lines show a deviation of 0.88ns (RMS of the new ¢, algorithm) and the blue lines
show a deviation of 1.76 ns (RMS of the old ¢, algorithm).

Tracker Station ApR[pm] AcR[pm] ApY[pum] AcY[um]

Run-2
Station-12 —4.14 30.29 —9.75 —13.65
Station-18 24.13 33.85 —0.36 —11.80
Run-3
Station-12 68.17 18.35 —10.67 2.68
Station-18 75.74 10.77 —2.75 —2.46

Table 6.2: Shifts in the mean radial (AuR), vertical (ApY) position and RMS (AoR, AcY)
in Run-2 and Run-3 for the two straw tracker stations due to changes in ;.
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The results of this systematic uncertainty determination further highlight the importance of
the newly developed ¢ty algorithm. Small shifts in the ¢, lead to large shifts in the measured
beam position. For example, using the RMS in the old ¢y algorithm of Aty = 1.76 ns results
in shifts in the mean radial position of ~ 200 ym whereas with the new algorithm they are

~ 30 pm.

The new t, algorithm thus improves the track fits (better p-values), reduces the DCA resolution,
leads to more tracks being reconstructed and significantly improves the determination of the

beam position.
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Chapter 7

Determining pileup in the tracking

detector

In the Muon g-2 experiment, one of the largest systematic uncertainties in the straw tracking
detectors comes from an effect known as “pileup”, which dominates at early times in the fill,
i.e., t < 50 pus. Pileup is when multiple positrons enter the detector close in time such that the

detector cannot distinguish them from each other.

In the calorimeter detectors, pileup is when two or more positrons enter close in time (within
O(101s)) in the same crystal and are measured as the sum of the independent positron energies.
This is difficult to distinguish from a single positron of the same energy. In the straw tracking
detectors, the pileup effect is slightly different. The pileup is, by definition, the same, but as the
detectors only measure hit signals in the straws, the problem arises in the track reconstruction

itself.

If two or more positrons enter the straw tracking detector within a small window of time, the
reconstruction algorithm cannot always distinguish the independent trajectories and, therefore,

can misassign hits from separate positrons to a single trajectory as shown in Figure 7.1.

This effect not only biases the number of reconstructed tracks but also biases the momentum
distribution as the extracted momentum from the trajectory is not the real momentum of a
positron. Rather, it is a skewed momentum from multiple positrons. These effects are more
pronounced at early times in the fill since the rate of muon decays is highest, and hence, so is
the number of hits at this time. This leads to the measured precession frequency being offset
from the true frequency. The effect on the track reconstruction efficiency in the presence of

pileup can be seen in Figure 7.2.
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Figure 7.1: A schematic depiction of the pileup effect in track reconstruction.
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of tracks reconstructed as a function of time, N(t). (b) The track reconstruction efficiency
compared to an ideal scenario where we expect to reconstruct 100% of tracks.
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The leading contribution to pileup arises when two positrons arrive close in time and space.
Since the time of the two positrons is independent, then the time dependence of this ‘double’
pileup is determined by the square of the underlying positron hit rate [59]. At a simple level,
this will, therefore, modulate the number distribution of the positrons (Equation 3.20) with a
contribution:

N(t) = Nyjtewp - € 2™ - [1+ Ag - c0s (wWa(R) - t + Ppitenp )], (7.1)

where Npjjenp and @pilep reflect the magnitude and the phase of the pileup contamination.

In this chapter, two different iterative methods for estimating the rate of pileup in the straw
tracking detectors are presented. The first method combines the data on a muon fill level by
factors of 2, 3, or 5 and uses this to tune an analytical model that allows for an estimate of the
pileup rate. The second uses a model based on a Poisson probability and the method shifts the
data in time and combines it with the nominal data at the hit level to reconstruct the pileup
spectrum, which can then be used to correct the data. Finally, an evaluation of the systematic

uncertainty of the rate of pileup will be presented based on the two methods.

7.1 Combination and analytical model hybrid method

To understand the effect of pileup in the straw tracking detectors, an algorithm was developed to
artificially inflate the rate of pileup to test the track reconstruction algorithm [60]. A new step
is placed in the reconstruction before the individual hit signals are extracted. The muon fills in
the storage ring are buffered and combined by an integer parameter. The selected parameters
inflate the pileup by a factor of 1 (nominal data-set), 2, 3, or 5 such that PUN denotes a dataset
with pileup enhanced by a factor N. A limit is placed on this step of 90 fills to ensure that each
level of inflation has the same number of hits as the nominal reconstruction. The fills in which

there are no hits are ignored. This combination effect is illustrated in Figure 7.3.

Using this method, we can see from Figure 7.4 which shows the extracted positron time dis-
tribution that the effect is indeed stronger at early times for each level of inflation where the
rate of positrons is higher, and then it decays until it reaches equilibrium with the nominal

spectrum.

We can also see from the momentum distributions in Figure 7.5 that the momentum is bi-
ased and proportional to the level of pileup inflation applied. The largest reduction in track

reconstruction efficiency is at higher momentum.
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Figure 7.5: The positron momentum spectrum for each level of inflated pileup showing the
momentum is increasingly biased as the level of pileup is increased. The bias is more apparent
at higher momenta (p > 2.7GeV).

To estimate the rate of 'true’ pileup from the aforementioned method, an analytical model is

developed. The number of detected tracks in the absence of pileup can be taken from
D(t) = e N () (7.2)

where D(t) is the detected number of reconstructed tracks, e, is the efficiency of the track
reconstruction itself and N(t) is the total number of expected tracks. The total expected
number of reconstructed tracks in a bin whose width is the cyclotron period (149.2ns) can be

determined from
N(1)

- 7.3
NFill : Atcyc ( )

r(t)

where Ny is the total number of muon fills in the total dataset, and At is the width of the
bin. This choice of bin width reduces impact of the fast rotation effect (Section 3.4.1). The

total rate of expected ‘double’ pileup, where two tracks are reconstructed as a single track, is
rq =1(t) tpr (7.4)

where tpr is the deadtime, i.e., the duration for which tracks cannot be reconstructed, which

is expected to be < 100ns. This leads to the number of ‘double’ pileup in the data being

Nd<t) = NFill . tcyc . 7’2(t) . tDT (75)
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and with some rearranging, this leads to
Ng(t) = N(t) - r(t) - tpr. (7.6)
Similarly, the expected rate of ‘triple’ pileup is
e =12(t) -ty (7.7)
and subsequently, the total number of ‘triple’ pileup is expected to be
Ni(t) = N(t) - (r(t) - tor)®. (7.8)

At each subsequent order of pileup, a factor of r(t) - tpr is introduced. If we take this only
as far as the ‘triple’ pileup, we can then define ranges for the number of possible tracks that
can be reconstructed for each order of pileup. If we have a single track (singlet) then we can
reconstruct one or zero tracks i.e. the range in the possible number of tracks reconstructed, nq,
is 0 < n; < 1. For two tracks, the range is 0 < ny < 2 where we can reconstruct no tracks, one

track or both tracks, etc. Thus, D(t) corrected for pileup can be defined as
D(t) = &1 N,(t) + 262Ny (t) + 3e3N,(t) (7.9)

where ¢; are efficiencies (g7 is the efficiency for reconstructing a singlet etc.) and 0 < ¢; < 1. If

we take the total number of tracks to be
N(t) = Ns(t) + 2Ng(t) + 3Ny(t) (7.10)

and we do some algebraic manipulation then we obtain a term for the number of singlets, N,

in the form of an arithmetico-geometric series as

N, = N(t) (2 -~ (Té)tm)y) . (7.11)

Finally, we express D(t) in terms of the sum of singlets and pileup as

1
D(t) = Nt 2 — 2e5(r(t)t 3e3(r(t)tpr)*| - 7.12
0 =N0 |21 (2 = ) + 22000 + 300G (112
For the aforementioned pileup inflation method, we know for the PU2 case, the fills have been
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combined, leading to an increase of a factor of two in the rate, which means the total number

of detected tracks in this dataset can be determined by

Dy(t) = N(t) {51 (2 s 2rtt)tDT)2) + des(r(t)tpr) + 12e3(r(t)tpr) | - (7.13)

By taking the ratios of each subsequent PUN to the original case e.g. PU2/PUl, we can
construct a model to then determine the original distribution with no pileup, PU0O. As most of

the factors cancel in the ratio, we obtain the form:

_ a1+ 2(e2 — &) furtpr + 3 (53 — &) (fur (H)tpr)?
Nr(t) N €1 —|-2(€2 —El)T(t)tDT+3(€3 —51) (T(t)tDT)2 (714)

where N, refers to the ratio between the inflated and nominal distributions and f,,, represents

the inflated pileup factor i.e. 1, 2, 3, or 5.

By fitting the case with the largest signal (PU5/PU1) iteratively, one can determine €1 53. We

then correct the original distribution in our dataset, D(t), by correcting each bin as follows

_ Din(1)
Nowlt) = o — e ot (7.15)

allowing us to estimate the total without pileup

J Noine) (7.16)
[ Duingyy
Using a small subset of data, this analytical model approach was tested, and the results can be
seen in Figure 7.6 where the estimated true pileup (PUO) is shown from the ratio compared to
the nominal distribution. A cut was made at 30 us in accordance with the w, analysis. From
this result, we can deduce that the model is not perfect and is skewed in the fit for the lower
levels of inflation, and so, at best, this only gives an approximate estimate of the true rate of

pileup in the detector. The total estimated rate of pileup using this method is approximately
(5.29 £ 0.02)%.

7.2 Shifted window algorithm method

The simple method defined in Section 7.1 is not optimal when trying to deduce the rate of

pileup in the straw tracking detector data, and a more robust method is required. A new
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Figure 7.6: The results of the iterative fitting procedure of the analytical model model
compared with the PUN method. As the fit quality reduces at the lower order of pileup, i.e.,
PU2/PU1, the model is not optimal.

algorithm method (PUA) was developed to give a more accurate estimate of the rate of pileup

This new method takes place at the time-island level. Time-islands are defined in Chapter 5.

The positron hits are reconstructed up to the time-island level as normal. At this point, a
window approach is taken where the original hits in each island are denoted by p;. These hits
are then duplicated and shifted back in time by 298 ns (two times the cyclotron period). This
shift is chosen due to the pileup positrons being able to fall on either side of the initial positron
in time. If they were only shifted by one cyclotron period, then it could lead a later positron
to overlap and thus be still indistinguishable, whereas, with this shift in time, this issue does
not arise. This shifted set of hits is denoted by p,. Finally, a third set of hits is created, which
contains the combination of the nominal and shifted tracks, and this is denoted by ps. Each set
of hits is passed once again through the entire track reconstruction algorithm to obtain three

distinct sets of tracks.

To build the pileup spectrum from the three sets of reconstructed tracks, it is necessary to
derive the form of the pileup corrected spectrum. This derivation follows from [61]. The average
number of hits in each time-island can be denoted by «(t) defined by a(t)= 7(t) - Atigana, Where
r(t) is the hit rate and Atigang is the time width of each island. Going forward, the time
dependence of «a(t) will be suppressed for clarity and will be denoted by «.
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The hit times of the positrons are Poisson distributed. Taking the probability of having k

hits in a time island, given an average number of hits «, as p(a, k), we can define this as a

probability
k, —a
plock) = = (7.17)
From this, we can write the PDF explicitly for the £k = 0, 1, 2 cases, giving us
p(a,0) = e 7, (7.18)
pla, 1) = ae™, (7.19)
1 2 —«a
pla,2) = —a“e . (7.20)

2

If the hit rate is sufficiently low, such that @ < 1, then the exponential terms can be expanded

as a power series in terms up to O(a?) to get

1
pla,0) =1—a+ 5042, (7.21)
pla,1) = a —a?, (7.22)
1
pla,2) = 5042. (7.23)

k = 1 represents an island with a single hit, which we will denote by the subscript s and k = 2
an island with two hits with a subscript d then, Equations 7.21-7.23 can be expressed as a
single equation:

Puc = (o — ag)s + <%a2>d, (7.24)
where p,. is our uncorrected positron time spectrum. As the pileup subtraction aims to have

single reconstructed tracks with no pileup requiring no overlapping islands, then it is clear that

the final corrected spectrum would be:
Pec = U, (725)

therefore the difference between the uncorrected (Equation 7.24) and corrected spectra (Equa-

tion 7.25) would give us the pileup spectrum itself, Ap,,, defined as

Appu = — (0?) + <%o¢2>d. (7.26)
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To obtain the first-order empirical pileup spectrum, which will correct the measured spectrum
to O(a?), the single shifted window is required as used in the algorithm. Though the hit rates
are time-dependent due to the exponential decay and temporal and spatial motion of the beam,
the chosen shifted window will reduce these rate changes. As the hit rates are independent to
each island, the probability can, therefore, be computed by multiplying the probability of k;
hits in the non-shifted island and ks hits in the shifted island as:

pla, k1, ko) = pla, ki)p(e ko). (7.27)

Continuing with the previous notation, the combined islands can be denoted by k; + ks hits in

the two separate islands. We can, therefore, write the combined island spectrum in the form

Pl1+2 = Z p(Oé, kl)p(aa k?)a (728)
k14-k2

summed over all k;’s. Similarly, we can obtain the rate for the trigger island as

/)1 - Zp(a7 kl)p<a7 k?)? (729)
k1
and the shifted islands as
P2 = ZP(OG ki)p(a, k2). (7.30)
k2

Expanding up to terms of O(a?) we get:
Pris = 0, (7.31)

p1=py =’ (7.32)

s

Where p; = po comes from the fact that the number of hits within these two islands are the
same, they are just shifted in time. The combined island can be seen as ‘what happened’ in
the presence of pileup and the individual islands to be ‘what should have happened’ such that
the difference between the combined rate and the two individual rates should be proportional

to the pileup and, therefore can be defined as:

Appu = praa — pa — p1 = (—20%)5 + (a?)a. (7.33)

From Equation 7.33 we can see that there is now a factor of (—2a?), and (a?)y compared to
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Equation 7.26 where there is a factor of (—a?), and (3a?)4 therefore multiplying by 3 returns
us to the actual correction. Using this expression and the three sets of reconstructed tracks,

we can estimate the rate of pileup using:

Since we are allowing the second group of hits to fall at an offset §t on either side of the first hit,
we are essentially doubling the ‘dead-time,” and therefore, this leads to an over-counting. This
is an intentional over-counting effect due to it allowing us to increase the statistical precision

by sampling more data.

A caveat to this implicit definition is that it assumes that the rate at both times ¢ and (¢ + dt)
are equal. However, even if we neglect the dead-time of the reconstruction, we still know that
the actual sampling rate is the product of the two separate rates, which we can take to be of

the form

p(t) - p(t+t) = p(t') - p(t') (7.35)

and when we assume that the effective time ¢’ is the same as ¢, we can obtain an estimate for
the rate of pileup. However, a much better approximation can be made by using the form of
the absolute rate, p(t), to solve Equation 7.35 for ¢'. From Equation 3.20, we can see that the
rate depends on two components. The exponential-decay component where the rate depends on

e~*/T and the muon spin precession component where the rate depends on 14 Ag cos(wq t + ).

In the case of the first component, there is an exact solution where t' = t + 6t/2. However,
with the inclusion of the second component, there is now a direct dependence between ¢ and
t that is bounded by 0 and 6t. This means that if the muon spin precession rises more than
the exponential falls, there is an offset between the two rates in Equation 7.35, which causes
p(t) = p(t + dt) [59]. Thus, the pileup rate will oscillate with w, , and it will be delayed by

0t/2, which has to be accounted for when measuring w, .

Once the three sets of tracks are obtained, they are used to calculate the rate of pileup described
in Equation 7.34 at a bin-by-bin level and placed into a histogram as shown in Figure 7.7. This
histogram is then subtracted bin-by-bin from the nominal positron time distribution to obtain
a ‘pileup-corrected’ distribution. As with the PUN method, this can then be denoted by the

ratio to the nominal distribution to find our estimated level of pileup.

The estimated level of pileup was found to be (5.25 + 0.02)% which is within 2 standard
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Figure 7.7: An example of the extracted pileup distribution as a function of time, which is
then subtracted from the nominal distribution.

deviations of the analytical model. As the analytical model was only a loose approximation,
they would not be expected to agree perfectly. The full comparison of the PUA method to the
PUN method is shown in Figure 7.8.

7.3 Crosschecks and final evaluation

The final test to ensure the new PUA method works as expected is to form a cross-check
hybrid method (PUHybrid). This method works by using the PUN method to combine the
fills, and then in the same algorithm, we take the newly buffered time islands, perform the
PUA method, and retrack again. As the PUN method is a rough combination of all of the fills,
the ratio between each subsequent level of inflation should be the same to ensure the new PUA

method is not artificially inflating the pileup.

In the PUHybrid method, PUH2/PUH1 should be the same as PUH3/PUH2. If the correction
has been applied correctly from the algorithm, the ratios should be ~1.0. The results for this

crosscheck can be seen in Figure 7.9.

In order to evaluate the systematic uncertainty on the obtained result for the pileup, we can
use a combination of both methods to provide a conservative estimate. The analytical model
can be trained on both the PU3 and PUS5 cases to give a range of the total level of the pileup.
This can then be averaged and subtracted from the rate of pileup obtained by the algorithm
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to give the systematic uncertainty.

The pileup is not necessarily the same in each tracker station, and therefore, this is evaluated for
each station separately. Also, as we are tuning on two different sets of data, then the difference
in the results between the two fits must be accounted for in the systematic uncertainty. The

results for the total systematic uncertainty for the two tracker stations are shown in Table 7.1.

Tracker Station %pU(PU(a) %PU<PU5) %PU(PU?)) %PU’an(PUN) A%PU(PUA—PUN)

Station-12 5.03£0.02 4.744+0.02 4.834+0.02 4.79 0.24
Station-18 0.47+£0.02 5.84£0.02 5.91+0.02 2.88 0.41

Table 7.1: Systematic uncertainty evaluation for the level of pileup in each of the tracker
stations. %py(PU(a) is the value from the PUA method, %py(PU5) and %py(PU3) are from
the PUN method tuning on the PU5/PU1 and PU3/PU1 cases respectively, %pu avg(PUN) is
the average and finally A%py(PUA-PUN) is the difference between the PUA method and the
average of the PUN methods.

The final results for the rate of pileup in each tracker station accounting for both the statistical
and systematic uncertainties are shown in Table 7.2 in which they can be seen to agree between

stations within the systematic uncertainty.

Tracker Station %py(PU(a)  0pysyst(%)  0pustat (%)

Station-12 5.03 0.24 0.02
Station-18 5.47 0.41 0.02

Table 7.2: Evaluated rate of pileup for each tracker station with the associated systematic
and statistical uncertainties.

The straw tracking detectors are used to provide precise measurements of the stored muon
beam for the evaluation of the phase acceptance and pitch corrections to the w, measurement
as mentioned in Section 3.4. It is essential to understand how the pileup in the data affects the
measured beam position. To calculate the systematic effect this has on the radial and vertical
beam position, the pileup corrected data can be compared with the nominal data, and the
change in the extrapolated beam position can be calculated for each station. This comparison

is shown in Figures 7.10.

The systematic uncertainty was calculated using ten runs from Run-2 (25896-25905) and ten
runs from Run-3 (34750-34759). A time cut was placed on the data at 30us to match the w,

measurement from the calorimeters.

The full systematic uncertainties can be seen in Table 7.3. The systematic effect on the extrap-

olated beam position is small (< 10 um). However, it has a non-negligible effect on the straw
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Figure 7.10: Comparison of nominal and pileup corrected beam-extrapolation for (a) radial
position and (b) vertical position

tracker based precession frequency analysis which is discussed in Section 9.2.

Tracker Station ~ AuR[pm] AcR[pm)] ApY[pm)] AcY[pm)]

Run-2
Station-12  4.84 +£0.30 —2.2140.22 —3.60+022 —2.7940.15
Station-18  5.84+0.32 —3.1940.22 —253+023 —0.8440.16

Run-3

Station-12 3.50£029 —-050+£020 —-1.72+£0.23 —-1.52%0.16
Station-18 2.76 £0.30 —254+£021 —-1314+0.23 0.17+£0.16

Table 7.3: Shifts in the mean radial (AuR), vertical (ApY) position and RMS (AoR, AcY)
in Run-2 and Run-3 for the two straw tracker stations due to pileup.
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Chapter 8

Track-based anomalous spin precession

frequency measurement

The work detailed in this thesis presents a measurement of the anomalous muon spin precession
frequency using the straw tracking detectors for the data taken in Run-2 and Run-3. At the time
of this thesis, the calorimeter measurements have now been fully combined and unblinded in
both software and hardware, meaning the hardware unblinding is now known for this analysis.
However, the analysis presented in this thesis remains blinded in software. This chapter will
present the procedure and measurement of the anomalous spin precession frequency. Chapter 9

will discuss the systematic uncertainties relevant to this measurement.

8.1 Datasets

For the Run-1 dataset that was taken in 2018, the sub-datasets were decided based on different
kicker and electrostatic quadrupole conditions. However, in Run-2 and most of Run-3, these
conditions remained relatively consistent across the running period. It was discovered in the
Run-1 dataset that there were damaged quadrupole resistors, which increased the muon losses
and the beam motion. For these reasons, it was decided that the Run-1 dataset would not be
used for this analysis. During Run-2, there were significant fluctuations in the hall temperature,
which caused changes to the magnetic field across the run period. The hall temperature was
stabilised between Run-2 and Run-3, and the conditions remained stable throughout most of
Run-3 until near the end of the run period, when hardware improvements were introduced to

increase the kicker voltage which placed the beam much closer to a central orbit than was
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Dataset Number of Tracks % of Run-2+3a-+3b

2B 2.6x107 2.6
2C 11.3x107 111
2D 9.8x107 9.6
2E 4.2x107 4.1
2F 4.0x107 3.9
2G 0.8x107 0.8
2H 1.2x107 1.1
3B 5.3x107 5.2
3C 1.7x107 1.7
3D 11.1x107 10.9
3E 4.8x107 4.7
3F 2.1x107 2.1
3G 5.4x107 5.3
31 5.2x107 5.1
3J 3.8x107 3.7
3K 2.3x107 2.3
3L 1.7x107 1.7
3M 5.4x107 5.3
3N 10.8x107 10.6
30 8.2x107 8.1

Table 8.1: Number of reconstructed tracks (with p > 1.8 GeV and ¢ > 30 us) used for the w,
analysis for each sub-dataset.

the case previously. Due to these reasons, the data will be analysed in three distinct groups:
Run-2, Run-3a, and Run-3b. Run-2 was split into seven sub-datasets that were defined by the
offline team for the data production. These ran from Run-2B through to Run-2H, which were
segmented by cycles of the storage magnet and trolley runs. Run-3a, defining the period before
the kicker upgrade, contained eleven sub-datasets that ran from Run-3B through to Run-3M
(with the exclusion of Run-3H). Finally, the last dataset defining the period after the kicker
upgrade contained just two sub-datasets, Run-3N and Run-30.

8.2 Preparing the analysis histograms

For the analysis outlined in this thesis, tracks that passed the quality requirements defined in
Section 5 were selected. To mitigate the effect of any fast-rotation effects the time bin chosen

for the analysis was that of the cyclotron period (149.2ns).

For this analysis, a so-called threshold method (T-method) is used to extract the frequency. As

shown in Section 3.2 for the straw tracker data, the statistical precision of the blinded frequency
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R is minimised when the quantity NA? is at its maximum at a momentum of 1800 MeV: only

tracks above this momentum are used in the analysis.

As well as a selection of optimal requirements on the quality of the tracks and momentum, an
optimal start time for the w, fit must be selected. There are multiple things to consider when
selecting this start time. As the muons decay exponentially with time, the statistical precision
is reduced the later in the fill the fit is started. However, as shown in previous chapters, there
are effects that have significant systematic uncertainties and are dominant at early times, e.g.,
muon losses, pileup, and beam dynamics effects. Therefore, the selection has to balance the
statistical and systematic uncertainties. As with the calorimeter analysis, and to ensure the
start time for the w, fit is aligned with one of the cyclotron-period bins, the start time was set

to 30.2876 us.

8.3 The fitting procedure

In this section, the procedure for the fit to the data will be presented in steps and the associated

systematic uncertainties will be presented for the final fit.

8.3.1 The five-parameter fit

The first stage of the fitting procedure was to fit the data to a five-parameter model given
by the expected modulation to the number of tracks as a function of time due to the simple
harmonic motion of the beam with an exponential dependence on the muon lifetime. Although
this fit is missing a lot of the crucial information required and the quality of the fit is expected
to be poor, this step is necessary to elucidate and inform the later steps of the procedure. This

function takes the form

N(t) = Noe ™ [1 + Acos (Rt + )], (8.1)

where Ny is the normalisation factor, 7 is the time-dilated lifetime, A is the asymmetry and ¢ is
the phase and R is the blinded spin precession frequency. The fitting procedure uses the ROOT
fit method combining both the MINUIT and MINOS methods [63] to calculate a x* minimisation

with the data to determine the optimal parameters for the initial model.

The quality of the fit as expected has a reduced x? of 27.84, and the fit pulls (residuals between

the fit function and the data in a given time bin) deviate significantly from the expected mean
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of 0.0 and o = 1.0 as shown in Figure 8.1 which has non-Gaussian residuals and is skewed.
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Figure 8.1: The pulls from the five-parameter fit to the data.

6
Fit pulls

The quality of the fit can then be further probed by performing a fast-Fourier transform (FFT)

from the time domain to the frequency domain as shown in Figure 8.2. If the fit describes the

data well, the FFT should be flat with no prominent peaks. As we can see from the FFT, there

is a substantial peak at 0 MHz as well as other substantial peaks at various frequencies. These

frequencies match with known frequencies of various beam dynamics effects as mentioned in

Section 4.3. The major contributing frequencies are listed in Table 8.2. The frequencies marked

specifically in the FFT range with the associated beat frequencies

are listed in Table 8.3.

Muon beam frequencies

Name Symbol  Expression  Frequency [MHz] Period [ns]
g—2 fo a.Bej2mme 0.229 4365
cyclotron fe v/m Ry 6.702 149.2
horizontal betatron  fipo V1—nf, 6.330 158.0
vertical betatron fyBO Vnfe 2.203 453.8
coherent betatron ficBo fe — fxBO 0.373 2684
vertical waist fvw fe—2fyBo 2.295 436.6

Table 8.2: The beam frequencies and the respective period for the Run-2 dataset. f, is the
expected signal frequency. The rest of the frequencies are due to the spatial and temporal

motion of the beam.
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Figure 8.2: The FFT of the residuals of the five-parameter fit to the data.

Muon beam and beat frequencies

Symbol Frequency [MHz|

JicBo — fa 0.144
7, 0.229
fico 0.373
ficso + fa 0.602
facBo 0.746
Jvw-ficBo 1.922
fu50 2.203
Fow 2.295

Table 8.3: The major frequencies and respective beat frequencies shown in the FFT of the
residuals from the fit to the data.
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8.4 Randomisation of the data

The analysis presented in this thesis uses a randomisation approach to correct for beam motion
effects prior to fitting. This randomisation process samples and applies random offsets to the
data to filter out two distinct effects. The first effect is the so-called vertical waist (VW) effect
with a period of 436.6ns. This describes the width of the vertical harmonic motion of the
beam as it cycles the azimuth of the storage ring. Randomising out this effect also removes
other vertical beam motion effects, namely, the residual beat frequency between both the VW
frequency itself and the CBO frequency, as well as the frequency of the vertical betatron motion.
The second effect is the imparted oscillations in the beam motion due to the fast-rotation. This
oscillation is referred to as ‘fast’ due to the fact its period is 149.2ns and the period of the
frequency is 4.37 us. The methodology and application of this randomisation procedure will be

described in the following section.

8.4.1 Vertical waist

Due to the relatively low statistics of the data from the straw tracker detector, it is difficult
to get stable fits with a function with too many free parameters. The effect of the vertical
waist can be suppressed such that it does not have to be included in the final fit by applying
a random offset dtyw to each positron time. With the range of dtyvw defined by the vertical

waist period i.e.

Otyw € [—TVW/Q,TVW/Q] . (82)

Due to this effect being a ‘fast’ oscillation similar to the fast-rotation, the inclusion of the
randomisation procedure only has a small effect on the precision of the w, determination. The
statistical uncertainty on w, is only increased by 1-2% [64]. Randomising, at the vertical waist
period, also suppresses the beat frequency between the VW and the CBO [65], as well as the
effect of the vertical betatron motion of the beam [66]. This means that both of these effects

are also no longer required to be accounted for in the fit function.

8.4.2 Fast-rotation

As with the vertical waist, the effects from the fast-rotation should ideally also be included in
the fit function. However the binning at the cyclotron period significantly reduces its effect and

a similar randomisation to above can essentially eliminate its impact. Even the calorimeter
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analysis with far higher statistics has had to employ this mitigation strategy to achieve stable
fits. As in the vertical waist case, the positron hit times are randomly offset but in this case in

a range defined by the cyclotron period:

(StFR € [—TC/Q, TC/Q] . (83)

This randomisation also reduces the effect of the so-called R-wave. As the beam traverses the
azimuth of the storage ring, it induces a fast-rotation signal in each of the 24 calorimeters,
which, for each adjacent calorimeter, has a ~ 2w/24 phase difference. This effect, therefore,
induces an azimuthal bias in the extracted frequency, R, as shown in Figure 8.3 where it is also

shown that the randomisation significantly reduces the amplitude of the bias.

-60

—&— with randomization

#— without randomization

0 5 10 15 20 25
calo num

Figure 8.3: The extracted value of R (in ppm), per-calorimeter, in Run-2C. Points with and
without the randomisation at the cyclotron period are shown. The randomisation reduces the
amplitude of the sinusoidal oscillation by a factor of ~ 2.5 [37].

The application of the randomisation procedure for both the vertical waist and fast-rotation
removes the respective signals. However, the value of R extracted from the fits will, of course,
depend on the seed used for the randomisation. Although each seed will produce a reasonable
value for R, the procedure must be repeated over many random seeds, and the final value for R
is then taken as the average value. For the analysis presented in this thesis, the chosen number

of seeds is 100.
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8.5 Beam dynamics corrections

As mentioned in Section 4.3 there are systematic effects introduced from the motion of the
beam. Although in the previous section, it can be seen that via randomisation, the vertical
beam motion and fast-rotation effects can be removed prior to fitting; however, as shown in
Figure 8.2, the most substantial peak except for the one at 0 MHz is at the CBO frequency.
Due to this, without the inclusion of the horizontal CBO effects being accounted for within
the model, the fit will be poor and unlikely to converge, as well as masking other possible

contributions.

8.5.1 The nine-parameter fit

The first step in understanding the impact of the CBO on the analysis is to form a nine-
parameter fit. Since the CBO decoheres over time, we can model, to first order, the CBO with

an exponential envelop of the form

Nego(t) = 1+ Aiepo ne” 77050 cos (wepot + dreso.N) (8.4)

where the newly added terms for the asymmetry, lifetime, frequency and phase associated
with the CBO are taken as free parameters in the fit function. This then simply modifies the

five-parameter fit as follows:
N(t) = NgNggoe "™ [1 4 Acos (Rt + ¢)]. (8.5)

By once again checking the FFT of this new fit, we can see the impact of including the CBO
within the fit function, if only in a naive sense. The FF'T for this fit can be seen in Figure 8.4.
As shown in Figure 8.4, the peak centred around the CBO frequency at 0.373 MHz has been
removed; however, some peaks still remain. The reduced x? for this fit is 18.52 which is an

improvement from the five-parameter fit, but it is still poor.

8.5.2 Full CBO correction

As shown in the previous section, even with a naive, basic model, we can remove the peak

at the CBO frequency very well. From this, we will then extend our model to include the
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Figure 8.4: The residual FFT of the nine-parameter fit to the data showing the reduction in
the CBO peak.

contributions from the second harmonic of the CBO. For the full model, we get the fit function

N(t) = Ny - Nicgo - Nacpo(e ™ [1+ (A - Acpo) cos (Rt + ¢+ ¢cpo)] s (8.6)

where we now have four separate contributions. Njcpo is the same as defined in the nine-
parameter fit; however we now have the inclusion of Nocpo, which is a term that modulates

the normalisation term Ny in the fit function at twice the CBO frequency

Nacpo(t) = 1+ Ascpoe 27080 cos (2wepot + dacno) (8.7)

where we have the addition of two new fit parameters Ascgo and ¢ocpo and the lifetime is now
halved. This term is included to correct for acceptance effects arising from the radial width
of the beam. As the oscillation term of the radial width is squared, this facilitates the need
for an exponential decaying at half the lifetime and an oscillation term of twice the base CBO

frequency.

We also must include a modulation to the asymmetry and phase, Acpo and ¢cpo respectively,
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which are defined as

Acpo(t) =1+ Aicpo,ae 7050 cos (wepot + ¢1cBo,4) | 8.5)
depo(t) =1+ Aiepoge ™50 cos (wepot + drcB0.)
which once again depend on the lifetime and frequency of the first-order CBO but with two new

fit parameters for the asymmetry and phase of both contributions. The FFT for the fit with

the inclusion of the full CBO parameterisation can be seen in Figure 8.5. The incorporation of
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Figure 8.5: The FFT of the fit residuals with the full CBO parameterisation to the data.

the full CBO correction improves the reduced y? from 18.52 to 18.28.

8.6 Slow systematic effects

At this point in the analysis, it is clear that the remaining dominant peak in the FFT of the
fit residuals is the large peak at 0 MHz. These effects are known as slow effects and are most
prominent at early times. Without accounting for these systematic effects it is not possible to
achieve a good fit to the data. The known slow effects are from muon losses and the time-

dependent efficiency of the straw tracker. In the following section, both of these contributions

will be discussed.
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8.6.1 Straw tracker efficiency

In the straw tracker data, the reconstruction efficiency of the positrons is much worse at early
times and then decoheres with time until it stabilises late in the fill. This efficiency was deter-
mined by matching calorimeter deposits with straw tracker hits and evaluating the efficiency

with which a track was matched with the cluster.

This effect is caused by a build up of space-charge after the intense beam flash at the point
of injection, reducing the efficiency and it takes time for this charge to dissipate before the
straw trackers perform at optimal efficiency again. The effect is much more dominant in the
straw tracker Station 12 than it is in Station-18 due to Station-12 being closer to the point of
injection. As the w, measurement is dependent on the number of reconstructed positrons, this

time-dependent effect can significantly bias the measurement if it is not corrected for.

To try to resolve this effect, the first attempt was to fit the efficiency data. The model chosen
was a single exponential envelope, as the detector will recover with some lifetime throughout
the fill:

Neg(t) =1 —ee V™, (8.9)

where ¢ is the amplitude of the efficiency and 7. is the lifetime, or the time taken to recover

after the beam flash. The fit to this data is shown in Figure 8.6
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Figure 8.6: Fits to the tracking efficiency data where tracks have been matched to calorimeter
energy clusters for (a) Station-12 and (b) Station-18. The uncertainties are large at later time
due to the reduced number of tracks and the chosen bin width.

As the efficiency data that was fitted contained only the tracks that could be matched to the

calorimeter data, this means that the fitted parameters obtained would not translate directly
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to the full track-based w, analysis. However, the parameters can be used as initial starting
parameters for the full fit function and then can be allowed to float to accommodate the full
tracking dataset. Incorporating this efficiency reduces the peak at 0 MHz substantially in the
FFT and the reduced x? is decreased from 18.23 to 1.17.

However, as the tracker efficiency is understood to be from an early time space-charge effect,
it is dependent on not just the time in fill but also the momentum of the detected positron
and the momentum dependence of € was subsequently determined with the muon lifetime, and

CBO lifetime fixed in the fit. The efficiency as a function of momentum is shown in Figure 8.7
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Figure 8.7: The value of the efficiency amplitude, €, as a function of momentum. The red
points show the fit in Station-12, the blue points show the fit in Station-18, and the black
points are the average of the two stations.

As can be seen in Figure 8.7, the efficiency parameters are stable at lower momentum but vary
significantly for momenta larger than 2.4 GeV. This is likely due to lost muons in the data, which
will be discussed in Section 3.4.3. Due to this instability, a cut is applied on the data at 2.4 GeV

such that subsequent fits only used tracker data in the momentum range: 1.8 < p < 2.4 GeV.

Incorporating this momentum-dependent tracking efficiency improves the reduced y? of the w,
fit from 1.17 to 1.08 and one can see from Figure 8.8(b) that the 0 MHz peak in the FFT is

reduced.
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Figure 8.8: Fast Fourier transforms (FFTSs) of the residuals between the fitted function and
the data for (a) when the tracking efficiency has no momentum dependence and (b) when it is
has a momentum dependence. A clear reduction is seen in the ‘slow’ frequencies at 0 MHz as
well as a reduction in the residual g—2 frequency.

8.6.2 Lost muons

As mentioned in Section 3.4.3, when muons collide with material within the storage ring, they
lose energy and, therefore, spiral into the detectors. This effect is seen both in the calorimeters
and the straw trackers and is more prominent at early times. This adds a low frequency in the
FFT since the muon population is being depleted faster than the muon lifetime due to these
losses. The momentum distribution of tracks for 5 time intervals is shown in Figure 8.9 where

the lost muons are clearly visible as a peak at p ~ 2700 MeV for times less than 30 us.

Based on the tracking data alone there is no way to determine whether a track is a muon or
a positron and so the estimate of the lost-muon rate is taken by using the triple coincidence
method from the calorimeter data (see Section 3.4.3). The time distribution of lost muons,

normalised to Ny, identified by this method for Runs 2 and 3 is shown in Figure 8.10.

The lost muons are then incorporated into the fit function using the triple coincidence spectrums
in Figure 8.10. As it is unknown what the efficiency of measuring a lost muon is then a correction

factor, Ko, is defined to account for this and is defined as

1

0ss — a7 8.10
1 — (8.10)

where ¢, is the efficiency of detecting a lost muon. The full form of the muon loss contribution
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Figure 8.10: Time distribution for lost muons with a triple coincidence (present in three
adjacent calorimeters) for Run-2 and Run-3.
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is defined by

A(t) = 1 — K /t Lp(t)e " (1), (8.11)

where Ly is the triple coincidence spectrum shown in Figure 8.10 and 7 is the muon lifetime [69].
Noy(t) is thus modified by a multiplicative A(¢) factor in the w, fits. Since the muon losses reduce
No(t) Koss must be positive. A negative Kjos would imply that muons are being gained over

time, which is impossible.

However in the calorimeter w, analysis, convergent fits could not always be obtained with a
positive Kj,g value [37]. Since negative values are unphysical, K, was set to zero for Run-3a

and Run-3b and 0.0011 for Run-2 and these are the values also used in the tracker w, analysis.

8.7 Final fit results

The final fits incorporating all the effects of the previous sections: muon lifetime, CBO, 2x CBO,
tracking efficiency and muon losses have reduced x? values of 1.10, 1.07 and 1.04 in Run-2, Run-
3a and Run-3b respectively. A representative fitted ‘wiggle’ time distribution plot for a single
respective random seed for Run-3a and the pulls between the fitted function and the data can

be seen in Figure 8.11. The FFTs of the residuals between the data and the fit are shown in
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Figure 8.11: A representative fit to Run-3a data for a single respective random seed where (a)
shows the fit to the data and the extracted value of R and (b) shows the pulls between the
fitted function and the data which are Gaussian and centred at 0.

Figure 8.12 and it is clear that the majority of the discussed effects have now been removed, as

shown by the removal of the peaks at the corresponding frequencies.
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Figure 8.12: Fast Fourier transforms (FFTs) of the residuals between the fitted function and
the data for each dataset.
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Fit Parameter Definition

Ny Number of positrons at t=0
T Boosted muon lifetime
A Precession frequency asymmetry
R Blinded precession frequency
[0} Precession frequency phase
AicBo.N CBO decoherence amplitude
TCBO CBO decoherence lifetime
WeBO CBO decoherence frequency
P10BON CBO decoherence phase
AicBo.s A modulation from CBO phase
$1CBO,¢ ¢ modulation from CBO phase
AicBo.a A modulation from CBO asymmetry
®10BO.A ¢ modulation from CBO phase
Ascpo,n Amplitude from 2 x CBO
¢QCBO7N Phase from 2 x CBO
€ Residual reconstruction efficiency
Te Residual reconstruction efficiency lifetime
Kioss Muon loss normalisation

Table 8.4: Table of fit parameters used for the Run-2/3 analysis, including descriptions of
their meaning.

However, there are still residual effects at low frequencies particularly in Run-2 and Run-3a.
This is due to the less than perfect modelling of the lost-muons that is not quite compensated
by the momentum cut and the use of the calorimeter triple-coincidence functions. More studies
will need to be performed to develop an improved method of determining the lost muon effect
in the tracker data. Studies which are best performed with the full g-2 dataset that has more
than 4 times the data of the Run-2/3 data analysed in this thesis. This full dataset has only

recently become available.

Table 8.4 shows the naming convention for the fit parameters used in the final fitting procedure,

and the final results can be seen in Table 8.5.

The final statistical uncertainty on the extracted precession frequency for each dataset can be
seen in Table 8.6. The combined statistical uncertainty for the entire Run-2, Run-3 datasets
is 2.16 ppm assuming a Gaussian distribution of the errors and also that the separate datasets

are not correlated.

The correlation matrix of the fitted parameters for the largest dataset, Run-3a, can be seen in
Figure 8.13. The correlation matrix shows that the precession frequency is largely uncorrelated
with most of the fit parameters. The largest correlation is due to a correlation with the time-

dependent phase, as discussed in Section 3.4.3. The next largest correlated parameters are the
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Fit Parameter Run-2 Run-3a Run-3b
X2/NDF* 1.10 1.07 1.04
Ny 7.99 x 10° +6.38 x 10> 1.23 x 10° £ 2.80 x 10> 4.37 x 10° 4+ 1.97 x 10?
T 64.32 +0.01 64.37 +0.01 64.35 £ 0.01
A 0.2775 £ 0.0001 0.2938 + 0.0001 0.2780 % 0.0000
R*[ppm] —61.12 £ 3.85 —59.22 + 3.10 —52.59 + 4.86
[0) 2.145 4+ 0.001 2.143 + 0.000 2.153 £+ 0.001
Aicon 0.0161 + 0.0003 0.0150 + 0.0002 0.0071 + 0.0004
TCBO 303.1 +£16.1 284.9 +12.8 2159+ 31.5
WCeBO 2.341 + 0.000 2.330 £ 0.000 2.331 £0.001
$1CcBON 0.1048 4+ 0.0157 6.162 £0.014 0.0653 &+ 0.0533
AicBo.s 0.0024 + 0.0006 0.0016 = 0.0005 0.0028 & 0.0010
®10BO.¢ 1.488 +0.271 0.527 £ 0.305 —5.314 £ 0.343
AicBo.a 0.0028 4 0.0006 0.0022 £ 0.0004 0.0019 4 0.0010
$10BO,A 0.0987 £ 0.2231 5.958 £ 0.221 —6.141 £ 0.497
Ascpo.N 0.0002 = 0.0001 0.0002 = 0.0001 0.0005 % 0.0003
bacBON ~2.961 4+ 0.657 ~34+406 11.64 4+ 0.47
5 0.0258 + 0.0008 0.0363 + 0.0047 0.0452 + 0.0057
T, 50.09 + 3.39 18.16 +1.33 21.06 +=1.85
Kloss 0.0011 % 0.00 0 0

Table 8.5: Final fit results for each dataset. The parameters marked * are taken from the
average of 100 random seeds. The other parameters are taken from a single seed.

Fit Parameter Run-2 Run-3a Run-3b
OR stat [PPI] 3.85 3.10 4.86

Table 8.6: Statistical uncertainty on the extracted precession frequency for each dataset in
Run-2 and Run-3.
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CBO parameters, which is expected as the CBO effect lasts late into the muon fill and causes a
significant modulation of the positron rate. The rest of the parameters have a small correlation

with R.

Correlation Matrix 3A 10°

Te 0.0136 0.0190 0.0260 0.0592 0.0014 0.0214 0.0123 0.0078

£ 0.0302 0.0162 0.0106
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Ng 0.0092 0.0019 0.0023 0.0051

Figure 8.13: Correlation matrix of the extracted fit parameters for the largest dataset,
Run-3a. The values displayed are the absolute correlation.

In the next chapter the systematic uncertainties and particularly the impact of the effects

arising early in the fill: muon losses, pileup and tracker efficiency will be evaluated.
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Chapter 9

Evaluation of the systematic effects in

the tracker w, analysis

This chapter discusses and evaluates the sources of systematic uncertainties in the Run-2/3
measurement of w, using the straw tracking detectors. The systematic uncertainties are esti-
mated for the straw tracker pileup, lost muons, the efficiency of the straw trackers, and the

modelling of the CBO decay envelope.

The total systematic uncertainty is smaller than the statistical uncertainty, but there are sig-
nificant effects that need to be better understood and mitigated before the full g-2 dataset is

analysed. The ongoing work to achieve this is also briefly described.

9.1 Randomisation

As mentioned in Section 8.4, the effects of the vertical waist and fast rotation are removed from
the fit by randomising the time binning. This is done for a choice of 100 random seeds resulting
in 100 R values. The systematic uncertainty from this procedure is taken from the error on the
mean of a Gaussian fit to the 100 R values. An example for Run-3a is shown in Figure 9.1 and

the values are listed in Table 9.1.

Value Run-2 Run-3a Run-3b Combined
AR[ppm| 0.09 0.09 0.19 0.06

Table 9.1: Uncertainties in the extracted precession frequency, R, due to the randomisation
procedure.
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Figure 9.1: Distribution (for the Run-3a dataset) of the extracted frequency, R, from the
randomisation procedure that removes the vertical waist and fast-rotation.

9.2 Pileup in the tracker

As described in Section 7.2, the pileup in the straw tracker data was determined to be
5.25 + 0.33% (a 0.063 fractional uncertainty) where the uncertainty accounts for the differ-
ence between the predictions of the two algorithms. In addition, for each of the two algorithms,
the determination of the algorithm parameters has an uncertainty arising from the statistics of
the data in the fit determining these parameters. The model dependency is far more significant,
but the impact of both on the R-fit is evaluated by adding a “pileup multiplier”, Kpy, of the
form
_ Kpu(ps(t) — p2(t) — pat))

Appu(t) = 9 ) (9.1)

where, Kpy is varied between 1.00+0.07 and R is re-evaluated. The change in R in Run-3a for

this variation can be seen in Figure 9.2 and the systematic uncertainty from the tracker pileup

in Table 9.2.

- Run-2 Run-3a Run-3b Combined
AR[ppm] 0.17 0.17 0.17 0.17

Table 9.2: Systematic uncertainty from the tracker pileup.

The effect of the pileup is much larger in Station-12 than Station-18 (see Figure 8.6). The
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Figure 9.2: Change in R in ppm versus the pileup multiplier for Run-3a. The change in R
from the algorithm dependence and the statistics determining the parameters of either
algorithm are shown.

systematic uncertainty from Station-12 is used as the overall systematic uncertainty. 40.02 of
the uncertainty arises from the statistics determining the algorithm parameters but is negligible
compared to the systematic uncertainty arising from the algorithm choice. Since the uncertainty
from the choice of algorithm is common across all datasets, it is assumed to be 100% correlated

across the three datasets in determining the combined uncertainty.

9.3 Straw tracker efficiency

The correction for the reduction in straw tracker efficiency at early times is a time-dependent

exponential with an amplitude with a momentum dependence (see Section 8.6.1)

falt)y=1- 8(p)e’t/75., (9.2)

where 7 and ¢ are determined from fitting calorimeter-matched tracking data and the fit covari-
ance matrix is used to generate pairs of 7 and ¢ values. This fit and its variance from sampling
the fit covariance matrix are shown in Figure 9.3 for Station-12 where the effect is largest and

thus sets the most conservative systematic uncertainty.
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Figure 9.3: The fit to the calorimeter-matched tracking data determining 7 and e and the
range of efficiencies used to determine the systematic uncertainty for Station-12 data.

The generated values of 7 and ¢ from sampling the covariance matrix were then fixed in the R-
fit to each dataset and the extracted values of R were fitted with a Gaussian and the systematic

uncertainty is taken as the standard deviation of this Gaussian as shown in Figure 9.4.

The uncertainties are shown in Table 9.3. The range in 7 and ¢ values for each dataset are
driven by the statistics of the fit to the efficiency data and thus the uncertainties are considered

not to be correlated between the datasets.

Run-2 Run-3a Run-3b Combined
AR[ppm]| 0.05 0.04 0.04 0.03

Table 9.3: Shifts in the extracted precession frequency, R, from the variation in tracking
efficiency for each dataset and the combined value across all datasets.

9.4 CBO modelling

The effect of the CBO lasts for ~ 250 us into the fit period and thus has a significant impact
on R. The default CBO amplitude is simply a decaying exponential of the form: Ae~*/" (see

Equation 8.5). However, in the calorimeter analysis, owing to its higher statistics, it was

103



Entries

20
18 c = 0.04
16
14
12

10

N A~ o

\
-59.16 -59.1 -59.05 -59 -58.95 589 -58.85 -58.8
R

|
[0 =]
OrrTT

i\)‘

Figure 9.4: Distribution of the extracted frequency, R, from the efficiency covariance matrix
sampling for the Run-3a dataset for Station-12.

possible to show that two other alternate forms provided a reasonable description of the data
and these two forms have been used in this analysis to estimate the systematic uncertainty
due to CBO modelling. The first model, Model-A, is the same as the nominal model with an

additional constant offset in the amplitude i.e.
facpo(t) = Ae7t/™cEo 4 C (9.3)

whereas the second, Model-B, is a steeply falling quadratic function i.e.

1

faceo(t) = Am +C (9.4)

which has a new parameter «, and again, a constant offset.
The result of the fits using these functional forms to the Run-3a data is shown in Figure 9.5.

The shift in R from the two alternative forms for the CBO amplitude are shown in Table 9.4 and
range from 0.2-0.8 ppm. The largest shift in R across both models is taken as the systematic for
a given dataset and they are combined across datasets assuming the uncertainties are correlated
since the fits that determine the exact form of the CBO envelopes for each data are driven by

the statistics of the dataset.
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Figure 9.5: The CBO amplitude from the nominal model and two alternative models from a
fit to the Run-3a data.

Envelope - Run-2 Run-3a Run-3b  Combined
Model A, B AR[ppm]| 0.42,0.20 0.20,0.54 0.83,0.26
Systematic ~ AR[ppm] 0.42 0.54 0.83 0.31

Table 9.4: Shifts in the extracted precession frequency, R, for each CBO envelope and dataset.
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9.5 Lost muon modelling

As described in Section 8.7, there remain small residual unaccounted for effects leading to an
imperfect description of the data at low frequencies in the FFT and at early times in the w, fit.
This is believed to be a mismodeling in the lost muons where for example non-physical values of
the K)o parameter (Equation 8.10) are obtained in the calorimeter fits to the Run-3 data. This
is further supported by an analysis of the tracker data when the start-time of the fit is offset
by multiples of the cyclotron frequency from the chosen start-time of 30.2876 us. The chosen
form for the fit is the nine-parameter fit as described in Section 8.5.1 with a non-momentum
dependent tracking efficiency. The change in the fitted value of R as the start-time of the fit
is increased (and hence the statistics decrease) are shown in Figure 9.6 for both the Run-2 and
Run-3 datasets. The green and purple bands show the allowed 10 and 2 o deviations based on
the fact that subsequent fits beyond 30.2876 us are correlated with those at earlier time since
they contain a subset of the same data and thus the allowed deviation increases with start-time.

The blue line shows the uncorrelated 1o uncertainty of each fit.
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Figure 9.6: The fitted value of R for the (a) Run-2 and (b) Run-3 datasets as the start-time of
the fit is increased. The blue line represents the 1 ¢ uncertainty on each point, and the green
and purple lines represent the accepted 10 and 2 ¢ variations from the initial value.

As can be seen from Figure 9.6, the Run-3 data is described well with more than 68% of the
points within the expected 10 deviation. For Run-2 the deviations are larger, particularly
for fits starting in the 40 < ¢ < 100 us region. This is due to an enhancement in the lost-
muon rate for a subset of the Run-2 data. Figure 9.7 shows the lost-muon spectrum identified
from the triple-coincidences (see Section 3.4.3) in the calorimeter where there is a significant
enhancement in the rate in the 40 < t < 100 us region for a subset of the Run-2 data. This lost

muon enhancement has been tracked to a O(1 mm) radial shift in the average beam position
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which was present for a subset of the Run-2 data. The effect is more acute in the tracking data
compared to the calorimeter data since there are only two trackers and owing to its azimuthal

location Station-12 is more sensitive to muon-losses.

run 24582, 2019-04-09 00:50:53, triples spectrum run 26368, 2019-05-10 19:16:03, triples spectrum
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Figure 9.7: The triple-coincidence, lost-muon, spectrum in two different runs in Run-2
highlighting the appearance of a ‘muon bump’ that biases the w, analysis.

The larger prevalence of lost muons in Station-12 and that they are not perfectly modelled, leads
to poorer fits in Station-12 versus Station-18. This is highlighted in the high statistics Run-3
data where it is possible to do the start-time scans separately for each station. In Figure 9.8
it’s clear that the majority of points in Station-12 lie outside the 1o deviation with a small
number extending beyond 2 0. The data in Station-18 is better described, albeit not perfectly.
This mismodeling is largely constrained to the ¢ < 100 us region. This is demonstrated when
we vary the stop-time of the fit where instabilities are present, as expected at earlier times, but

which stabilise when the later-time data is included.
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Figure 9.8: The fitted value of R in Run-3 for the (a) Station-12 and (b) Station-18 tracker
data as the start-time of the fit is increased.
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Figure 9.9: The fitted value of R in Run-2 when the stop-time of the fit is changed from 50 us

to 450 us.

A systematic uncertainty is assigned to the Run-2 dataset for the effect of the enhanced muon
losses in the 40 < ¢ < 100 us region, which aren’t explicitly modelled, although on average the
muon-loss rate is. The most conservative estimate can be obtained using Equation 3.4.3 that
defines the shift in w, arising from lost muons whose phase is different from the average, as is
the case here since the muons losses are enhanced in a subset of the time window. The shift is
momentum-dependent but we take the shift from the lowest momentum value, which gives the

largest shift, to be conservative. This results in a systematic uncertainty of 0.15ppm for the

Run-2 dataset.

9.6 Final systematic uncertainty

The systematic uncertainties evaluated in this chapter are listed in Table 9.5.

100 150 200

250 300

350

450

Fit stop time [us]

Uncertainty Run-2 Run-3a

Run-3b Combined

Statistical 3.85
Randomisation 0.09
Pileup 0.17
Efficiency 0.05
CBO envelope 0.42
Lost muon 0.15

Total systematic  0.49

3.10
0.09
0.17
0.04
0.54

0.57

4.86
0.19
0.17
0.04
0.83

0.87

2.16
0.06
0.17
0.03
0.31
0.05
0.36

Table 9.5: Overview of the uncertainties for the w, analysis.
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The systematic uncertainties have been combined under the assumption that they are uncorre-
lated. In reality, there is some correlation, for example, the tracker pileup and tracker efficiency
are both effects that dominate at early times and are both independently determined from
fits to similar data. In the subsequent Run-4/5/6 higher statistics data-samples it should be

possible to do a more sophisticated evaluation of the correlations.

The total systematic uncertainty of 0.36 ppm is significantly below the statistical uncertainty
of 2.16 ppm. Additionally, a large fraction of the systematic uncertainty is statistics-driven
since the model uncertainties are determined from fits to data whose uncertainties depend on
the statistics of the fitted sample. The exception is presently the determination of the tracker
pileup where further work is required to determine the most appropriate model which again

will be more tractable using the larger Run-4/5/6 datasets.

With the addition of the Run-4/5/6 data, the statistical uncertainty in the tracker w, analysis
is expected to be 1.05ppm and the total uncertainty on w, will still be dominated by the
statistical uncertainty. Recently work has begun to substantially improve the fraction of the
tracks that are successfully reconstructed by scaling the uncertainty on the drift time calculation
as a function of the time since the start of the fill [70]. As highlighted in the next Chapter it
is then hoped that a tracked-based determination of w, should be able to match the precision

of the BNL or Run-1 analyses using calorimeter data.
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9.7 Outlook

To match the precision of the BNL (or Run-1 analyses) that used calorimeter data requires a
precision of 0.54 ppm. Or conversely to demonstrate an agreement with the BNL calorimeter-
based determination of a, at better than 5% confidence-level requires a precision of 1.2 ppm.
This will be possible with the addition of the Run-4/5/6 datasets and improvements in the

fraction of tracks that are successfully reconstructed.

Figure 9.10 shows the total number of positrons, before data quality and analysis requirements,
recorded by the Fermilab Muon g-2 experiment as a multiple of the BNL raw dataset size
(8.6 x 10% e™) for Run-1 to Run-6, showing that approximately a fourfold increase in statistics

is expected when the full dataset is analysed compared to the analyses to date.
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Figure 9.10: Total number of positrons, before data quality and analysis requirements,
recorded by the Fermilab Muon g-2 experiment as a multiple of the BNL raw dataset size.

Recent improvements [71] in the straw tracker reconstruction algorithms, particularly at early
times in the fill have resulted in a factor of 2.86 more reconstructed tracks than was the case
with the software used to reconstruct the Run-2/3 data used in this thesis. Together the
increase in statistics provided by the Run-4/5/6 data and the tracking improvements will allow
a statistical precision of 0.6 ppm to be achieved. It is hoped that ultimately a factor of four
improvement in tracking efficiency can be achieved which should enable the precision of the

BNL determination to be matched. This is shown in Figure 9.11.

The Muon g-2 experiment has now finished data taking and the analysis of the Run-4/5/6 data
is underway. The experiment has already surpassed the systematic uncertainty goal defined in
the TDR in the publication of the Run-2/3 data and further improvements in the systematic

uncertainty are expected. The statistics goal for the experiment was achieved on February
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Figure 9.11: A prediction of the final statistical uncertainty of the straw tracker independent
w, analysis as more datasets are added to the analysis, based on the Run-2/3 result from this
thesis. The blue line is the BNL precision and the red-line 2.3 times that i.e. the precision
required to confirm the BNL result at more than a 5% confidence level.

27, 2023, reaching 21 times the statistics of the BNL experiment and the TDR goal of a
statistical uncertainty of 100 ppb is thus also expected to be surpassed. The significance of
the final Fermilab Muon g-2 publication with an expected uncertainty of less than 140 ppb in
the context of new physics interpretations now largely rests with the theoretical community.
However, there is an important experimental measurement that can be made to independently

predict the SM value that to date has not been exploited.

This is the MUonE [72] experiment that will measure the running coupling of the fine structure
constant via electron-muon elastic scattering which will allow a direct determination of the
hadronic vacuum polarisation contribution to a,. This will be crucial in elucidating the current
tensions in the SM prediction of a,, between the dispersive data-driven method, the lattice QCD
method and the latest CMD-IIT results.
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Chapter 10

Conclusions

This thesis describes a detailed study of the data taken by the Fermilab Muon g-2 straw
tracking detectors. Two new methodologies have been developed: the first is a method to
better determine the track arrival time (¢y) and the second is a method to quantify the level of
pileup in the tracking detectors. The new ¢, algorithm, which incorporates angular information,
improves the resolution on the determination of the ¢y by a factor of two and results in 19%

more tracks being successfully reconstructed compared with the previous method.

The data from the trackers is used to determine the beam profile that weights the magnetic
field in the determination of a, and in determining several of the systematic uncertainties in
the calorimeter-based w, analysis e.g. that due to the radial position and vertical oscillation
of the beam. A detailed study of the impact of the internal alignment of the tracker, the
to and pileup on the determination of the beam position was undertaken and propagated to
determine an uncertainty in the w, determination. These uncertainties were used in the recent

2023 publication [14] in the calculation of the magnetic field correction.

This thesis also presented the first (blinded) determination of w, using just tracks from the
straw tracking detectors as opposed to calorimeter energy deposits. This analysis has sources
of systematic uncertainty that are different from the much higher-statistics calorimeter analysis
and will ultimately allow an important cross check of the calorimeter analysis. This analysis
was undertaken using the Run-2/3 dataset which represents approximately 25% of the final
Muon g-2 dataset. A total uncertainty of 2.19 ppm on w, was obtained which is dominated by
the statistical uncertainty of 2.16 ppm.
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