On the Renormalization Group
Flow of Gravity

PhD Thesis

Pedro F. Machado



Machado, Pedro Farias

On the Renormalization Group Flow of Gravity
PhD thesis

Institute for Theoretical Physics

Utrecht University

ISBN: 978-90-393-6267-9

Printed by Ipskamp Drukkers, The Netherlands



On the Renormalization Group
Flow of Gravity

Over de Renormalisatie Groep Stroming van de
Zwaartekracht

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het
besluit van het college voor promoties in het openbaar te verdedigen
op vrijdag 8 januari 2010 des middags te 12.45 uur

door

Pedro Farias Machado

geboren op 3 augustus 1982 te Belo Horizonte, Brazilié



Promotor: Prof.dr. R. Loll

Dit proefschrift werd mogelijk gemaakt met financiele steun van de Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO).



To my parents






(I TIntroduction

Contents

B The Fanctiona] T =

b1 The FRGE and its approximationd . . . . . .
2.1.1 The FRGE formalismd . . . . ... ..

[2.1.3  Approximation schemed . . ... ...

22 The FRGEingravitd . .. ... ... .. ..

2.2.1 Diffeomorphism-invariance and flow equationd . . . . . . . .

[4 The RG flow of f(R) gravity
4.1 An improved FRGE for gravitvl ........

[4.1.1 The geometric gauge;ﬁ_xingmdiﬁgd .
Lio T - - Joss d ol

13
13
13
17
18
20
21
22
23

29
29
31
32
35
35
38
43
50



4.1.3 The FRGE in terms of component fieldd . . . . . . ... .. 59

[4.2 Constructing the flow equation of f(I2) oravitd . . .. ... ... 62
421 The truncationansatd . . . . . . . . ... ... 62

[4.2.2  Computing the Hessian T30 . . . . . . . . o oottt 64

4.3.2 RG flow and singularity structurd. . . .. ... 74
MhﬁﬂmﬂalwiamUng the RG flow of fi(RY . . . . . .. 75
.41 Deriving the non-perturbative flow equatiod . . . . . . . . . 75

[5Non-local truncations in the f(R) secton 85
[5.1  General RG properties of non-local f(R)-gravityd . . . . .. .. .. 85

[5.1.1 The perturbative decoupling of non-local interactiond . .. 87
E_U_Bﬁmdngmﬁsm%rities of Ag > ( trajectoried . ... 88
5.2 The In(R) and R~ truncationd . . . « « « v v v v v v 91
(521 The In(R) truncatiod . . . . . . . o oo 91
|5.2,2 he R—™ Lr]]ngaLiQd ...................... 99

5.3 Constraining the asymptotically safe theory spacd. . . . . . .. .. 106
B4 Concusiond . . ... ... ... 108

6 The RG A f hicher-derivati T 111
[6.1 Four-derivative truncations in pure gravitd. . . . . ... ... ... 111
[6.1.1 The truncation ansatd . . . .. ... ............. 112

[6.1.2 (‘onstructing_th_e_ﬂmm;]_aﬂgd ................ 116

[6.1.3 Evaluating the traced. . . . . ... .............. 119
[61.4 Thebetafunctiond . . . ... ........... ... ... 122

[6.2 Perturbation theory and asvmptotic freedom . . . . . . ... ... 125
[6.3 Taming perturbative divergences in gravitd . . . . ... ... ... 127
[6.3.1 Perturbative non-renormalizability and countertermd . . . . 128

[6.3.2  Matter coupling and beta functiond . . . . . . .. ... ... 129

[6.3.3 Fixed points of matter-coupled gravitgd . . . . . . . ... .. 130

|ﬁ,_4 Conc ]]sjgmﬁl ............................... 131
[7__Conclusiond 135

[A_Notations and curvature conventiond 141




[C _Trace evaluation for type III cutoffd 147

ID_Heat Kernel coefficients 149
[D1 Heat-kernel expansion on the d-sphered . . . . . . o v oo oo .. 149
[D.1.1 Heat-kernel gQgﬂﬁQ]enjts for unconstrained ﬁeldcl ....... 149

[Bibliography 161
[Publicationd 167

amenvatting 169
[Acknowledgementd 173

[Curriculum Vitad 175



iv



Introduction

Lutar com palavras
€ a luta mais va
- Carlos Drummond de Andrade

(Brazilian poet, 1902 - 1987). [

It is a well appreciated fact that the behavior of physical systems depends upon
the length scales at which they are probed. Quarks, for example, are confined to
bound states at the hadronic level and yet behave as freely interacting particles
at vanishing length scales. As the microscopic interactions between the putative
degrees of freedom of a system combine to generate a particular leading dynamics
at each length scale, understanding a system’s behavior implies understanding
how these effective dynamics and, as a result, physical quantities behave across
different length regimes. One of the greatest insights of modern theoretical physics
[TH3] was the realization that we could encode and study this scale dependence
in the measurable, microscopic parameters specifying the system, namely, the
coupling constants of the theory. The development of these ideas culminated in
Wilson’s formulation of the renormalization group in the early 70’s [4HG].

The renormalization group framework [7] has proven to be an extremely power-
ful tool in theoretical physics, and its application has led to important results and
crucial insights into a variety of systems, from classical [§] to quantum [9], from
solid state [10] to high energy physics [11], from phase transitions in magnets [12]
to the behavior of fundamental particles in the atomic nucleus [I3]. The tech-
niques within this framework all share a common procedure, which characterizes
the approach. For convenience, we will exemplify this procedure for the case of
a field theory described by the action S[¢”, g;], where ¢ are the fields in the

L “Fighting with words / is the vainest of fights”



Chapter 1. Introduction

theory and g; the coupling constants. For a given momentum scale k, a renormal-
ization group algorithm allows us to eliminate all field fluctuations with momenta
larger than k£ from the theory, and reencode the contribution of these excluded
modes to the theory’s dynamics by readjusting, or renormalizing, the couplings
g;- The result is an effective description of the system at the scale k. As we pro-
gressively vary k, the resulting group of renormalization transformations induces
a flow of the renormalized g; in the theory’s parameter space. This is the theory’s
renormalization group flow.

By following a theory’s renormalization group flow from high energies in the
ultraviolet (UV) to low energies in the infrared (IR), we can counsistently treat
processes which extend across different scales but which are governed by the
same underlying microscopic physics. In this sense, understanding the behavior
of a system implies understanding its renormalization group flow. In the present
work, we will investigate the renormalization group flow of quantum gravity.

Reconciling quantum physics with general relativity is one of the major open
challenges facing theoretical physics today. On the one hand, general relativity
is an extremely successful theory of gravitational phenomena, significantly well-
tested over a wide range of length scales, from the microscopic (¢ ~ 1072 cm)
to the cosmological (¢ ~ 10%® cm). Furthermore, for typical interaction ener-
gies between subatomic particles (k ~ 100 GeV), the gravitational force between
them is so weak when compared to the other forces present, that the former
may be essentially neglected in our quantum description of the system. On the
other hand, as we start probing progressively higher energy scales and approach
the Planck regime of kp; = 1/v/G ~ 10°GeV, where G is Newton’s constant,
quantum corrections to gravitational processes become increasingly non-negligible
and the gravitational force becomes comparable with the other subatomic forces.
When attempting to accommodate such issues by promoting general relativity
to a quantum theory using the well-established methods of perturbative quant-
ization, however, one encounters a significant problem, as gravity is notoriously
non-renormalizable at the perturbative level [14].

The root of this problem can be traced to the fact that Newton’s constant
G, in terms of which we define the perturbative theory, has dimensions of in-
verse energy squared in natural units. This has two consequences. First, as
the strength of the gravitational coupling scales as G = Gk2, physical quantit-
ies constructed from this dimensionless parameter may be likewise expected to
grow without bound with k. Secondly, to render the theory finite in the pres-
ence of non-renormalizable divergences appearing already at one-loop order for
matter-coupled gravity [I5HI8] and two-loop order for pure gravity [19,120], new
counterterms must be introduced at each order in the perturbative expansion,
each of which parametrized by new coupling constants which must be determined
experimentally. When the interaction energies reach k = kp;, the perturbative
series in Gk? diverges, as all loop orders contribute equally to the expansion, and
an infinite number of couplings has to be fixed.

If one is interested in scales k < kpy, it is possible to avoid these issues. Fol-



lowing an effective field theory approach [21], we may cut off the loop momenta at
a given scale, organize the action in an energy expansion in curvature invariants
and truncate this expansion to the desired order of accuracy for computations of
a given physical process. This allows us to make unambiguous quantum gravity
predictions, such as, e.g., computing quantum corrections to the Newtonian po-
tential [22], irrespective of the Planckian behavior of the theory. Still, for physics
at the Planck regime, as the number of relevant terms in the expansion becomes
infinite, the non-renormalizability of perturbatively quantized general relativity
entails a complete loss of predictive power.

Since the partial failure of this perturbative quantization program, a number of
approaches have been developed and advanced as candidate theories of quantum
gravity (see [23l24] for reviews). Due to the considerable difficulties these theor-
ies face in generating predictions that may be tested experimentally and, to some
extent, in even defining observables in a quantum gravitational context [25], the
question of their physical validity remains unsettled. From a theoretical perspect-
ive, however, these theories offer possible solutions to the problem of the renor-
malizability of gravity. These solutions predominantly follow two (occasionally
complementary) strategies. The first strategy entails modifying the theory at the
fundamental level. Examples include redefining the fundamental field degrees of
freedom in terms of which quantization is effected, so that the metric and matter
fields emerge only as low energy aproximations and renormalizability is restored at
the level of the fundamental theory (viz. string theory [26]), or enlarging or redu-
cing the symmetries of the theory at the Planck-regime (viz. supergravity [27128]
and anisotropic scaling models [29], respectively), which then act to render the
theory free from uncontrollable divergences. The second strategy consists in fol-
lowing a non-perturbative approach to quantum gravity, by, e.g., employing a
path integral quantization procedure (viz. causal dynamical triangulations [30]
or causal set theory [3I]) or canonically quantizing space-time on the basis of a
loop algebra (viz. loop quantum gravity [32]). This strategy is based on the idea
that the problem with perturbatively quantized gravity might lie in the use of
perturbative quantization itself, and that non-perturbative effects might render a
quantum theory of general relativity well-defined at the Planck scale despite its
non-renormalizability at the perturbative level.

A concrete realization of this idea from a renormalization group perspective
is Weinberg’s asymptotic safety scenario [33,[34]. The asymptotic safety scenario
envisages the existence of a non-trivial fixed point of the renormalization group
flow of gravity, with a finite number of UV-attractive directions, controlling the
behavior of the theory in the UV. As we will see in more detail shortly, the fact
that the theory flows towards the fixed point in the UV implies that G will tend
to a finite value G = G* as k — oo, while the fact that the fixed point has a
finite number of UV-attractive directions implies that only a finite number of
couplings have to be fixed experimentally to fully determine the behavior of the
theory at all scales. The end result is a theory that is both predictive and free
from uncontrollable divergences at and beyond the Planck scale.
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Notably, the asymptotic safety conjecture can be seen as a statement about the
behavior of an effective field theory description of quantum gravity as we follow
its renormalization group flow in the high energy limit. Provided an appropriate
renormalization group algorithm is available, this conjecture may be to a large
extent probed irrespective of the details of the theory at its fundamental level.
Over recent years, functional renormalization group methods have been developed
[35] with which we can accomplish that, and which for the first time allow us
to directly investigate the renormalization group behavior of four-dimensional
quantum gravity in a non-perturbative setting [35H41].

Employing these methods, we can start mapping the gravitational renormal-
ization group flow. This thesis contributes a step in this direction.

Effective field theories and the Wilsonian renormalization group

In the present work, we will approach the renormalization group flow of gravity
from a Wilsonian perspective on the renormalization group [7] and following the
spirit of effective field theories. To this effect, let us start by considering the
following action functional for pure gravity,

Lo (k) = /d4x\/—_g [90(k) + g2(k)R + ga(k)R® + gaa(k) R R*™ +...] , (1.1)

containing all diffeomorphism invariant terms constructed from the metric and
its derivatives. Here, the running couplings g;(k) have canonical mass dimension
d; = 4—1i, and we may conveniently re-express them in terms of their dimensionless
counterparts, §; = k~%g;(k). In addition, we have defined go = —A/87G and g, =
1/167G, where A and G are the cosmological and Newton’s constant, respectively.
The two lowest order terms in the expression above are exactly the terms present
in the Einstein-Hilbert action, which encodes classical gravity and serves as the
starting point for perturbative quantization. Lastly, we should note that this
action may also contain non-local operators.

The functional () provides an effective description of gravitational physics
at the scale k and may be seen as the result of an unspecified coarse-graining
procedure whereby all field fluctuations with momenta greater than k& have been
integrated out. The coupling constants g; are subject to a renormalization group
flow, which is defined in the infinite-dimensional ‘theory space’ parametrized by
the dimensionless couplings g; and is given by the beta functions

Bi(Gi) = k% : (1.2)

A fixed point {g}} of the flow is given by the vanishing of these beta equations,
e, {8:({3}) = 0}.

A renormalization group trajectory in theory space thereby connects a family
of coarse grained actions e (k), each of which describes the physics at different
momentum scales. We define the set of trajectories attracted to a fixed point



RG trajectory

Critical surface

Figure 1.1: The UV critical surface Syy associated with the NGFP. The renormalized tra-
jectories emanating from the NGFP and spanning this surface are shown in red and the arrows
point in the direction of decreasing k. Trajectories not lying on the surface are attracted towards
it as k decreases.

as k — oo as the UV critical surface Syy associated with the latter (see Figure
[CT). Around the fixed point, the linearized renormalization group flow k0yg; =
Bi;(g; — g;) is governed by the stability matrix

Bi; = 8Jﬂi|{g;} . (1.3)

The attractivity properties of the fixed point are determined by the stability coeffi-
cients 0;, defined as minus the eigenvalues of the stability matrix. Eigendirections
associated with stability coefficients with positive real part are UV attractive, or
UV-relevant, while eigendirections related to stability coefficients with negative
real part are UV repulsive, or UV-irrelevant. The dimensionality of the UV crit-
ical surface is given by the number of UV-relevant directions associated with the
fixed point and corresponds to the number of independent parameters in the the-
ory - i.e., with the essential couplings that must be determined by experiments. If
these couplings are found to lie on the UV critical surface, the theory will possess
a well-defined UV limit.

From the definition of the beta function, (L2), we can see that {g; = 0} is a
fixed point of the flow. This is the Gaussian fixed point (GFP), corresponding to
the free theory and in the neighborhood of which we apply the standard perturb-
ative approach. The stability coefficients associated with this fixed point are given
by the canonical dimensions of the (dimensionful) couplings. In the case of (1),



Chapter 1. Introduction

restricting ourselves to the subspace spanned by the Einstein-Hilbert terms, the
stability coefficients of the GFP are 6; = 2 and 6, = —2, as given by the canonical
dimensions of A and G, respectively. Owing to the negative mass dimension of
Newton’s constant, the only relevant direction is at G = 0, amounting to a trivial
theory with just the cosmological term, and, as soon as we turn on Newton’s
constant, the flow is then carried away from the GFP in the UV. Thus, already at
the level of the Einstein-Hilbert terms only, the theory will not lie on the critical
surface of the GFP, and we can expect its couplings to diverge as we follow the
flow to higher energy scales, signaling its perturbative non-renormalizability from
the Wilsonian viewpoint.

In the case {gf # 0}, we call the fixed point a non-Gaussian fixed point
(NGFP). It is on the existence of this kind of fixed point that the asymptotic
safety scenario for gravity hinges.

The Asymptotic Safety scenario

Asymptotic safety may be thought of as a non-perturbative, generalized notion of
renormalizability. A theory is said to be asymptotically safe if two conditions are
met with respect to its renormalization group flow, namely, that there exists a
fixed point to which the renormalization group trajectory of the theory is attracted
in the UV, and that the UV critical surface Syy associated with this fixed point is
finite-dimensional. The first condition entails the theory has a sensible UV limit,
as all its dimensionless (essential) couplings will tend to finite values as k — oo.
The second condition entails that only finitely many experiments are required
to fix all of its independent parameters. Therefore, the theory is predictive and
well-behaved in the UV.

In the special situation in which this fixed point is the GFP, the theory is
said to be asymptotically free, and the UV critical surface is spanned by the
eigendirections associated with the couplings which are renormalizable from the
perturbative perspective. This is the case for quantum chromodynamics. We can
hence consider asymptotic freedom to be a particular realization of asymptotic
safety.

In a more general situation, we can expect this fixed point, if existing, to
be a NGFP. An example of a perturbatively non-renormalizable model which is
governed by such a fixed point is the two-dimensional Gross-Neveu model with
a —p2T¢ propagator, which has been rigorously proven to be non-perturbatively
renormalizable at its NGFP [42].

The asymptotic safety scenario for gravity is the conjecture that the UV be-
havior of the theory is controlled by a NGFP with the properties just described.
If realized, this scenario would ensure that quantized gravity is predictive and
well defined at all energy scales. For convenience, we will drop the qualifier grav-
ity’ when discussing asymptotic safety in what follows, with the understanding
that all our remarks on this conjecture, unless otherwise noted, will concern the
gravitational case.



A generic consequence of asymptotic safety is the phenomenon of dimensional
reduction in the UV limit [43]. We will present this argument for the case of the
graviton propagator, but we note that this effect generalizes to the propagation of
arbitrary fields [44]. The beta function for the dimensionless Newton’s constant
in d-dimensional gravity is given by

koG = (d =2 +n6(3:)) G, (1.4)

where 7 is the anomalous dimension of Newton’s constant and is a function of
all the couplings. The vanishing of this beta function at a NGFP then implies
ng = 2 — d. The propagator of a field with anomalous dimension 7 behaves like
p~2+1 and therefore, in the vicinity of the NGFP and for d = 4 the graviton
propagator will behave like p~*, which depends logarithmically on distance in
terms of position space. This logarithmic dependence is characteristic of two-
dimensional fields. In the UV limit, spacetime is then effectively two-dimensional.
This spontaneous dimensional reduction of gravity was first observed within the
framework of Causal Dynamical Triangulations in the context of the spectral
dimension [46], but this feature has now been found to be present in a variety
of other quantum gravity approaches [47], offering encouraging prospects for the
asymptotic safety scenario.

Support for this conjecture has also been found by calculations in 2 4 € space-
time dimensions [48,49], large N expansions [b0] (where N is the number of
matter fields considered), as well as studies of the symmetry reduced Euclidean
path integral [51L52]. Furthermore, Monte Carlo simulations of quantum gravity
at energy scales slightly smaller than the Planck scale have found no disagreements
with asymptotic safety yet [53] and may be able to test this scenario in the future
by probing scales in which the NGFP becomes dominant. Most of the recent
progress on this issue, however, has been made via the application of functional
renormalization group methods [54] to four-dimensional gravity [35], by means of
which growing evidence for the existence of a candidate NGFP realizing the AS
scenario has been established. It is these methods that we will employ in this
thesis.

The asymptotic safety conjecture is a first and main issue concerning the
renormalization group flow of gravity that we wish to tackle in the present work.
A second issue we wish to address concerns the gravitational physics of the deep
infrared.

Cosmological RG effects and non-local operators

While quantum gravitational effects are widely expected to dominate at the
Planck scale, it has been suggested that these effects might also play an import-
ant role at the extremely large, cosmological length scales [55,[56]. In particular,
it has been argued that cosmological phenomena such as the current accelerated
expansion of the universe might have their origin in infrared modifications to our
effective low-energy theory of gravity, as induced by quantum contributions [57].
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From a renormalization group perspective, we can heuristically motivate this
argument in the following way. We know the universe is quantum at its funda-
mental level. Hence, whichever gravitational action may capture the dynamics of
some observed large scale phenomenon, it will be the result of the integrating out
of quantum degrees of freedom down to the appropriate scale. Assuming it were
possible to correctly implement this coarse graining procedure, it is conceivable
that the resulting effective action might not exactly reduce to the Einstein-Hilbert
in the low-energy regime, while still being consistent with the current, very strin-
gent tests of general relativity. In particular, this action might contain terms
with inverse powers of derivatives of the metric, i.e., non-local operators, which
become relevant in the deep IR, driving the effective dynamics at that scale. A
physically motivated example of this is the non-local effective action induced by
the quantum trace anomaly of the stress-energy tensor, the ‘conformal anomaly’,
as the result of integrating out the matter degrees of freedom in matter-coupled
gravity.

Furthermore, already at the classical level non-local modifications to general
relativity have been advanced as an explanation of low energy, cosmological phe-
nomena and an alternative to dark energy [58]. These modifications, which are of
f(R) form, where R is the curvature scalar, can be argued to generate physically
reasonable dynamics [59] while still satisfying observational constraints [60].

From the point of view of our Wilsonian renormalization group, the effect of
such non-local terms in the renormalization group flow of gravity must then be
considered, and the presence of these terms might have a significant impact on
the IR features of the flow. This is the second issue we wish to investigate in the
present work.

The flow equation

The main tool we will use in our study of the gravitational renormalization group
flow is the functional renormalization group equation (FRGE) [54],

_ 52T, -t
0T, [®, ®] = LSTr < +Rk> R |, (1.5)

dPASDB

which describes the dependence of the effective average action I'y, on the renor-
malization group scale k and implements a continuous version of the Wilsonian
renormalization group. Here, ® and ® respectively denote the physical fields and
their background value, ¢ = log(k/ko), and the supertrace STr is a generalized
functional trace which includes a minus sign for ghosts and fermions, and a factor
two for complex fields.

The effective average action I'y defines an effective field theory valid near the
scale k and can be thought of as the result of integrating out all quantum fluctu-
ations with momenta p? > k2. This coarse graining is implemented by means of
the cutoff Ry, which provides a k-dependent massive term for fluctuations with



p? < k? so that, at the level of the path integral, the contributions of these low-
momenta fluctuations are suppressed and only the high momentum modes are
integrated out. As k — 0, the effective average action then reduces to the ordin-
ary effective action I', and all the Green’s functions of the theory are recovered.
Owing to its cutoff structure, the FRGE has the remarkable property of being
finite and locally well-defined in momentum space at all energy scales. In partic-
ular, while a theory might require a UV regulator at the level of its path integral,
at the FRGE level this regularization is not needed.

The FRGE formalism differs from the continuous formulation of Wilson’s
renormalization group in terms of the Polchinski equation [I1] in that here the
coarse graining is implemented by means of an IR cutoff and at the level of the
effective average action I'y, rather than a UV cutoff at the level of a Wilsonian
(bare) action Si. However, these two formalisms are related via a Legendre trans-
form and momentum-dependent field rescalings [6162]. At the formal level, they
thus represent two realizations of the same exact renormalization group and we
can expect the physics they carry to be identical @

The FRGE framework provides a powerful setup for studying the renormaliz-
ation group flow of field theories [65L[G6]. However, as it is defined in the infinite-
dimensional theory space of all action functionals compatible with the symmetries
of the theory, it cannot be solved exactly and in order to extract physics from it
we must resort to approximations. Beyond perturbation theory, a standard non-
perturbative approximation scheme is the truncation of the theory space, whereby
the flow of the full theory is projected onto a subspace spanned by a finite number
of the interaction monomials in the theory. The availability of different approx-
imation schemes is a useful feature of the FRGE method, lending it versatility
and allowing for internal consistency checks. At the same time, estimating the
reliability of results within a given approximation is then a central issue within
this approach. This issue is particularly acute in the cases in which we do not
know the fundamental theory underlying the flow or do not have much external
data against which FRGE results may be compared, as happens in quantum grav-
ity. In a non-perturbative setting, an important test for the quality of truncation
approximations consists in gradually enlarging the truncation subspace and in-
vestigating the stability of previous findings under this extension. The latter is
the general strategy we shall follow in the present work.

An outline

This thesis is organized as follows. In Chapter2 we review the FRGE and effective
average action formalism in detail and focus on issues arising in its application
to gravity. We discuss its relation to the one-loop effective action and to UV
regularized actions, and expand on the approximation schemes used within this

2 At the practical level, this equivalence is generally broken once approximations to the exact
flows are introduced. A notable exception is the case of the Local Potential Approximation

[631[64].
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approach. Lastly, we discuss the inclusion of matter fields within the gravitational
setting and illustrate the different ways in which a cutoff Ry may be constructed
within the theory and the way the beta functions are usually extracted.

In Chapter [l we begin our investigations by studying the renormalization
group flow of matter-coupled gravity in a conformally reduced setting [67], in
which quantum fluctuations are restricted to the conformal part of the metric only,
and considering truncations of the form of the non-local effective action induced
by the conformal anomaly, which occurs as a result of integrating out the matter
degrees of freedom. This reduced setup provides a first testing ground in which
to investigate the effect of non-local operators on the flow, as well as the issue
of the non-perturbative renormalizability of gravity. Within this simplification,
we find there are two ways to implement the cutoff, which respectively break
or preserve the Weyl invariance, i.e., the invariance of the theory under local
scale transformations. In the Weyl-invariance preserving case, which we may
trace to background independence in the full diffeomorphism invariant theory,
we establish the existence of a NGFP in accordance with the asymptotic safety
scenario. In the Weyl-breaking case, we recover under a particular approximation
the beta functions which have been previously obtained within this setting via
perturbative calculations [68], and which have been argued to provide the theory
with a non-zero fixed point driving its IR dynamics. Partially foreshadowing the
case of the complete theory, the results in these two disparate settings provide
tentative support for the asymptotic safety scenario and suggest that non-local
terms might play a non-trivial renormalization group role in the IR.

Motivated by our findings in the conformal sector, we move to full diffeo-
morphism invariant gravity in Chapter l], and construct a flow equation in which
to study truncations of the f(R) form in d spacetime dimensions, where f(R)
is any function of the Ricci scalar R. This setting allows us to generalize the
FRGE to a very large class of truncations, of which the Einstein-Hilbert action
is an example, and serves as a basis for the analysis in the subsequent chapter.
Restricting f(R) to the Einstein-Hilbert case, we briefly review the gravitational
renormalization group flow arising from that truncation, in which evidence for
a NGFP was first established [36H39]. For d = 4 and a particularly convenient
realization of the cutoff function, we derive an autonomous partial differential
equation governing the renormalization group flow of f(R) gravity and describing
the fixed functionals of the flow. Using this partial differential equation, we in-
dependently recover the results of [41[69], which successively reveal the existence
of a NGFP with a three-dimensional UV critical surface in truncations including
polynomials of the scalar curvature up to order six.

Armed with the generic flow equation above, in Chapter [ we investigate non-
local truncations of f(R) form, that is, truncations which contain inverse powers
or non-polynomial functions of the curvature scalar, motivated by models of IR
modified gravity. Remarkably, we find that these non-local interactions can be
consistently decoupled from the renormalization group flow and hence, if set to
zero at a particular scale, will not be generated dynamically by quantum effects.

10



We investigate in detail the non-perturbative renormalization group flow of non-
local extensions of the Einstein-Hilbert truncation including [ d‘ix\/ﬁln(R) and
/ d‘ix\/ﬁR_” interactions, respectively. The fixed point structure of the former
truncation exhibits an infrared attractive fixed point which dynamically drives a
positive cosmological constant to zero, hinting that renormalization group effects
in the IR might be responsible for the observed tiny value of A. Analyzing the
resulting beta functions, however, we find that truncations of this form are gen-
erally insufficient to capture the renormalization group flow of gravity in the UV
and cannot be refined by the addition of other terms to the truncation subspace.
This finding leads us to use our decoupling result to consistently exclude such
interactions from the renormalization group flow. We can therefore constrain the
space of putative asymptotically safe gravity theories to effective average actions
not containing these non-local terms.

In Chapter [ importantly, we move beyond the f(R) setting. While all studies
of truncated renormalization group flows so far considered have provided consist-
ent support for the non-perturbative renormalizability of gravity, one caveat of
those truncations is that, by considering powers of the curvature scalar only, they
omit tensorial interactions which could in principle have a major impact on the
UV behavior of gravity and the asymptotic safety conjecture, such as the four-
derivative propagator for the helicity two states. It is precisely terms of the latter
form that feature as non-renormalizable counterterms in the perturbative quant-
ization of general relativity [I5L[I9,[20]. Driven by these considerations, we go
beyond the f(R) setting by studying a four-derivative truncation containing a
Weyl-squared term. In addition, we extend this truncation to include a minim-
ally coupled free scalar field, noting that this setup then provides the prototype
of a gravitational theory which is perturbatively non-renormalizable at one-loop
level [I5]. Most notably, in both of these truncations, we establish the existence
of a NGFP with three UV-attractive directions.

From these results, a coherent picture of the renormalization group flow of
gravity is beginning to emerge. Crucial to this picture is a non-perturbative
treatment of the gravitational flow, which may disclose features that are not
captured at the level of the perturbative approach. Our studies provide strong
evidence for the asymptotic safety scenario. This suggests that the metric field
in our low energy theory of gravity may continue to be an appropriate degree
of freedom for describing gravitational processes at the Planck scale, and that
quantized gravity may remain predictive in the high energy limit without the
need to introduce new fields or symmetries to the theory. In Chapter[d we collect
the results and insights gathered in our analysis, discuss the main open issues
within our approach and delineate the avenues for future research.
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The functional renormalization group equation

In this chapter, we present and review the functional renormalization group equa-
tion (FRGE) formalism, which is the framework under which our investigations of
the non-perturbative renormalization group flow of gravity have been conducted.
We will first introduce the formalism for the case of a scalar field theory, noting
that all of its relevant features are already present at this level and carry through,
mutatis mutandis, to the more involved case of gauge theories. In the second half
of the chapter, we move to the case of gravity, constructing a generic flow equation
for gravitational theories and discussing some issues that arise specifically in that
setting. Lastly, we consider the inclusion of matter fields within the gravitational
FRGE and use that to illustrate the technique by which the functional traces in
this equation are commonly evaluated and the beta functions extracted.

2.1 The FRGE and its approximations

2.1.1 The FRGE formalism

The two central components in the FRGE formalism [65,66L70] are the effective
average action 'y, a coarse-grained action which defines an effective field theory
describing physical processes near the scale k, and the FRGE itself, which controls
the k-dependence of the effective average action as we vary this scale.

The effective average action

We may think of the effective average action I'y, as a scale-dependent version of
the ordinary effective action which arises from integrating out all field fluctuations
with momenta larger than k. This continuous-space coarse graining procedure is
similar in spirit to a discrete Kadanoff-Wilson-type coarse graining [7], but with
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Chapter 2. The functional renormalization group equation

the crucial differences that is it effected by means of an IR cutoff and implemented
at the level of the effective, rather than bare action.

To illustrate, consider the case of a scalar field theory defined by the otherwise
unspecified action S[¢], describing physics at the scale kq. In order to coarse grain
over the field modes with momenta larger than some k < ko, we modify this action
to include the IR cutoff term

Asawzi/&x¢wn%¢u» (2.1)

the kernel of which, Ry, we will call the IR cutoff. The IR cutoff may be built
out of any appropriate differential operator O whose eigenfunctions Ox; = A\;x;
can be taken as a suitable basis in which to expand the fields[] The particular
form of Ry(z) is arbitrary, apart from the requirement that it monotonically
interpolate between Ry (z) = 0 as z/k? — oo and Ry(2) o< k? as 2/k? — 0. As
a result, fluctuation modes with \; < k2, or ‘low momentum modes’, acquire a
k-dependent mass term, while modes with A; > k2, or ‘high momentum modes’,
are not affected.

From this modified action, we can define the k-dependent generating functional
of connected Green’s functions, Wy [.J], via

e WelJl = / D¢ exp (—5[¢] — AS[¢] + / d4xJ¢>) : (2.2)

Formally evaluating the path integral, we can see that, by virtue of the cutoff

term, all high momentum modes are integrated out, while all low momentum

modes, being suppressed by the mass term, remain unaffected. That is to say,

field modes with momenta larger than k have been coarse grained over.
Denoting the ‘classical fields’ by

= (P = (m;—’}m , (2.3)
and the Legendre transform of W[J] with respect to J by
el = Wils] - [ dtese. (2.4
the effective average action is then defined by
Tili] = Trle] — ASkle]. (2.5)

The effective average action thus interpolates between the standard effective ac-
tion I' = Ty, as k — 0 and our original action S[¢] as k — ko, and, evaluated at

IFor the purposes of this exposition we have assumed O to be a second-order operator and
employed a notation consistent with a discrete spectrum, but a similar reasoning would apply
to operators of higher order or with continuous spectra.
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2.1. The FRGE and its approximations

tree level, it accurately describes physical processes occurring at momentum scales
of order k, incorporating all quantum effects originating from the high-momentum
modes . Note that, in the former limiting case, all quantities like classical fields,
Green’s functions, S matrices, as standardly defined, are recovered.

The flow equation

As we will explicitly see in the case of gravity later, the k-dependence of T’y is
exactly governed by the functional renormalization group equation,

kO[] = %Tf F(]z(?’fi_:i’; (2.6)
k k

where the trace here is taken over the eigenvalues of the operator O, for simplicity,
and where we have defined the Hessian, or inverse propagator, l",(f) = 82T /5pdp.
In the general case, O may be any operator in terms of which we can express the
inverse propagator, and its eigenbasis need not be the basis in terms of which we
evaluate the trace. In addition, it is generally convenient to split the IR cutoff
into a matrix part and a scalar function encoding the scale-dependent mass term,
Ri(O)|gs = ZpyRi(O). We call the latter the cutoff profile, or ‘shape’, function.
The FRGE can be seen as a renormalization group improved one-loop equation
encoding the beta functions of our effective theories. Letting

wl=>> gV kPP (p), (2.7)

n=0 1
where g,(f) are the coupling constants and Pr(f) are all the operators of order n
in the field and its derivatives compatible with the symmetries of the theory, the
left-hand side of this equation reads

kO] ZZQ“ k)YPY (), (2.8)

n=0 1

where 8" (k) = kO g,(f) (k) are the beta functions of the (dimensionful) couplings,
and we may thus think of the right-hand side of the FRGE as a ‘beta functional’.
When analyzing the properties of the renormalization group ﬂow on the other
hand, it is convenient to switch to dlmensmnless couplings g = k=dn and
associated beta functions 6n) = kO gn , which may be readily constructed from
their dimensionful counterparts. Recall that it is at the level of the dimension-
less couplings that a fixed point g* of the renormalization group is defined, i.e.,
(Z)( *)=0Vi,n.

The FRGE has two remarkable properties. First, due to its IR regulator

structure (see Figure Bl the contributions to the flow equation are localized
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Figure 2.1: A typical non-singular cutoff profile function Ry (blue) and its scale derivative
kOk Ry, (red).

on modes with momenta near k2, so that the trace remains divergence-free and
locally well-defined in momentum space at all scales. As a consequence, while a
theory might require a UV regulator at the level of its path integral, at the level
of the FRGE this regularization is not needed. We can understand this point
from a more heuristic perspective by noting that evolving I';, from an initial scale
where it is well-defined to I';_ 5, at a higher scale by means of the FRGE implies
integrating over the field modes with momentum range restricted to dk, so the
integration always remains convergent.

Secondly, while the FRGE is commonly derived and motivated via the use of
a regularized path integral (however surreptitiously introduced, as above), and
consequently of a UV bare action, in its usual presentation, its solutions are
independent of Share[¢]. The bare action will enter only as an initial condition
of the flow at the formal level via S[¢] at k = ko, but knowledge of it is not
required to compute the beta functions of the theory and, hence, to follow the
renormalization group flow of I'y. As the physics of a theory is carried by the
renormalized, rather than bare, action, if we have a I'; correctly capturing the
physics of the system at a particular scale k, it is legitimate to use the FRGE to
evolve this action to other scales to capture the new physics. In particular, owing
to the convergence properties of the FRGE, it is legitimate to study I'y, as k — oo
and the resulting limit (if existing) need not, and typically will not, coincide
with the presumed Spare. The issue of the relation between the effective average
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2.1. The FRGE and its approximations

action and the bare action in a path integral formalism has been addressed in a
gravitational context in [71], where it was explicitly shown that, if one specifies
a measure and a regularization scheme, it is in principle possible to recover a
regularized path integral and a bare action from the renormalized trajectories of
'k, provided the limit I'y_ o is well-defined. This issue was there christened the
‘reconstruction problem’.

2.1.2 Renormalization and the UV regularized FRGE

The fact that the FRGE remains always locally well defined in momentum space
and that the beta functions therein obtained encode the behavior of our effective
field theory I'y at all energy scales does not, of course, imply that our theory
will remain well defined at all energy scales. As we have discussed, a sufficient
condition that a theory possess a well-defined UV limit is that it be attracted to
a fixed point of its renormalization group flow as k — oo, i.e., that ['y_ o = I,
where I'* is the fixed point action. Recalling that the set of all renormalization
group trajectories in theory space which flow towards the fixed point as k — oo
define the UV critical surface Syy, we can equivalently state this condition as the
requirement that the theory lie on this UV critical surface.

To ensure that the theory be predictive, recall that we need to impose a second
condition, namely, that the dimensionality of the UV critical surface be finite. As
mentioned, the dimensionality of Syvy is given by the number of relevant essential
parameters in the theory. If the number of such parameters is finite, we only need
to perform a finite number of experiments at some scale k£ to completely determine
our position in theory space. The end result is a theory that in principle allows
us to unambiguously compute observable quantities free from divergences at all
energy scales - in other words, a theory that is asymptotically safe.

The property of the asymptotic safety of field theories has already been in-
troduced previously. We have repeated it here to highlight two points. First,
inasmuch as the asymptotic safety question is a question about the predictiveness
of our physical theories, and hence something that is ultimately decided at the
level of effective actions, the FRGE is a very good tool for tackling this question.
Secondly, finding a complete renormalization group trajectory from I'y_o =T to
I'k— o by means of the FRGE is equivalent to solving our theory for all energy
scales, without the need to employ any UV regularization.

One might wonder how I'y, relates to an UV-regularized analogue. This ques-
tion has been considered in detail in [71], and here we outline the argument therein
presented. Introducing a UV cutoff A, in the theory and appropriately regular-
izing the path integral in (22]), we can define a UV-regularized effective average
action I'y o, by essentially following the same steps as in [23)-(ZX). This action
will satisfy the UV-regularized FRGE

1
§TI'AC

kO Rk

kOl [¢] = o
l“,(f}x + Ry

; (2.9)
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Chapter 2. The functional renormalization group equation

where the trace is restricted to the subspace of O spanned by eigenfunctions with
eigenvalues \; < A%, To remove the regulator from this equation, it is sufficient to
assume that a profile function for the cutoff Ry is chosen such that the numerator
in the regularized trace falls sufficiently fast to make the trace well-defined as
A, o< 00. The result is just the ordinary, regulator-free FRGE.

In addition, in the case of a generic cutoff profile function, the difference
between the FRGE ([Z0) and its UV-regulated analogue ([Z3)) is negligible for all
k < A.. This is due to the fact that for any & < A, the IR cutoff structure
ensures that contributions from modes with \; > A. entering 28] decay very
quickly - i.e., the contributions are still localized around k. As we can in principle
make the cutoff A, as large as we want, the two equations will virtually yield
the same solutions for any finite k. In addition, for the particular case that the
profile function is that of the optimized cutoff, Ry (z) = (k? — 2)0(k? — 2) [72], this
difference vanishes and the solutions {T'; o, 0 < k < A.} for the regularized FRGE
become simply the restriction of the solutions {T';,0 < k < oo} of the regulator-
free FRGE in the interval & < A.. As all physically observable quantities are
independent of Ry, this argument will hold generally for any observable we may
compute. Therefore, removing the UV regulator is a trivial procedure under the
FRGE and the regulator-free I'y, does indeed capture all the relevant physics.

2.1.3 Approximation schemes

In most cases, applications of the FRGE formalism in the study of the renormal-
ization group properties of a theory rely on approximations of the full, exact flow.
The reason for that can already be seen from the definition of the effective av-
erage action, namely, it is a functional defined in the infinite-dimensional theory
space spanned by all the interaction monomials consistent with the symmetries
of a theory and parametrized by all the couplings associated to these operators.
Even if we started from a I'; at a particular scale containing only a finite number
of non-zero couplings, there is no way of a priori knowing that other couplings
will not be turned on by the flow as we move away from this initial condition. As
it is generally impossible to follow the renormalization group flow of this infin-
ite number of couplings, approximation schemes are required within the FRGE
approach.

Perturbation theory

One possibility is the use of perturbation theory. In the one-loop approximation
of the FRGE, all the couplings appearing on its right-hand side, including any
couplings that may appear in the definition of the cutoff Ry, are kept fixed to
some k-independent value, so that the effective average action I'y, appearing under
the trace is effectively replaced by a fixed ‘bare’ action S. In this case, the FRGE
describes the running of the one-loop effective action in dependence of the cutoff
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2.1. The FRGE and its approximations

1
ko T[] = 5T

k@kRk
S 4+ Ry,

Recalling that, given a bare action .S, the one-loop effective action is given by

. (2.10)

1 528
1 — -
r S+ 2Trln [&p&p} , (2.11)

and introducing the cutoff term (), we can see that the resulting one-loop
effective average action,

oS } , (2.12)

1
I =S4 —Trln |—— +R
k + 2 dpdp R
exactly satisfies the one-loop FRGE (ZI0). When applied to familiar quantum
field theories in this approximation, all well known beta functions are recovered
[411[65,[66]. Going beyond one-loop order, explicit sample computations showing
that the FRGE correctly reproduces perturbation theory were considered in [73]

[74].

Truncations

If, however, one is interested in the non-perturbative properties of the flow, no
information will be gained by employing the perturbative scheme described above
that may not be in principle recovered via other perturbation theory techniques.
A common non-perturbative approximation scheme is the truncation of the renor-
malization group flow [6IL62L[65170], which is the procedure we will follow in this
work. In this scheme, we make an ansatz for 'y, which only retains a subset of
all the interaction monomials in the theory, substitute this ansatz into the exact
FRGE and thereby project the full renormalization group flow onto the subspace
spanned by the truncation. Evaluating the right-hand side of the flow equation,
discarding all the terms which are not in this truncated subspace and equating the
coefficients of the remaining operators on both sides of the equation, we can then
construct the beta function for the couplings parametrizing our space. In par-
ticular, these beta functions will contain genuine non-perturbative information.
Depending on the number of couplings included in the ansatz, this procedure
leads either to a coupled system of ordinary differential equations (finite number
of couplings) or to a partial differential equation (infinite number of couplings)
governing the scale-dependence of the truncated I'.

A difficulty with this non-perturbative scheme is that of estimating the reliab-
ility of the truncation, since the truncations are not guided by an obvious small
expansion parameter. In addition, in most cases the renormalization group flow
will not close on the truncation subspace, so we are discarding terms that may
potentially affect the running of the couplings we are retaining. Finding good
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Chapter 2. The functional renormalization group equation

truncation subspaces thus generally requires some physics insight about the in-
teraction terms which are relevant for describing the problem at hand and usually
involves some educated guesswork.

In particular, with regards to the existence of fixed points, it is known that
truncated flows can give rise to spurious fixed point solutions. The physical fixed
points of the flow are those solutions that persist upon extending the truncated
flow to the full theory space. This is well understood in the case of scalar field
theory in the local potential approximation [6IL[75], where it can be shown how
physical solutions are recovered among all the apparent fixed points of the flow.

In more involved theories, however, where such general procedures are absent,
the most important way of assessing the reliability of results established in a given
truncation is checking their stability under the gradual extension of the trunca-
tion subspace. Results are considered to be reliable if all the relevant quantities
computed in previous truncations, such as the values of fixed points and the di-
mensionless quantities in the theory, are not greatly affected by the presence of
the new terms in the enlarged truncation and are seen to converge to given val-
ues. In this respect, when discussing the evidence for a non-trivial fixed point of
gravity in the subsequent chapters, we should stress that the encouraging results
are not only that such fixed point solutions have been found in all truncations
studied, but also that these solutions share similar properties across those trun-
cations. Hence, they constitute plausible candidates for the physical fixed point
of the flow.

A second, indirect way of estimating the quality of the truncation is investig-
ating the cutoff dependence of the results. While the choice of the cutoff profile
function and of the differential operator entering the cutoff introduces a scheme
dependence on the results, physical quantities computed within the formalism
should be independent of these choices. Truncations, on the other hand, generally
introduce spurious cutoff dependences, which can thus serve as further estimat-
ors of the quality of the approximation. Notably, this can also be used to one’s
advantage, so as to define an optimization criterion for the cutoff profile [72,[76]
with respect to which such dependence is minimized and the truncated flow is
rendered most stable

2.2 The FRGE in gravity

After reviewing the FRGE formalism, we can now start moving towards its applic-
ation to the renormalization group flow of gravity. Since we will consider explicit
forms of the gravitational FRGE and its truncations from the next chapter on-
wards, we will here focus rather on some general issues arising in the gravitational
setting.

2For explicit examples of this optimization analysis, see [Z0,[T5L7T7LTS].
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2.2. The FRGE in gravity

2.2.1 Diffeomorphism-invariance and flow equations

Following [35], our starting point for the effective average action in gravity is
the diffeomorphism invariant action for d-dimensional Fuclidean quantum grav-
ity, S[vuv]. In contrast with the relatively simple case of scalar field theory from
the previous section, a first possible complication arising here is the issue of gauge
invariance. In order to assure that the IR cutoff does not interfere with diffeo-
morphism invariance and that our FRGE respects this symmetry, we employ the
background field method, decomposing the metric 7, into an arbitrary but fixed
background field g,v and a (not necessarily small) fluctuation field h,, via

'Y,uz/ - gw + hluy 5 (213)

and, crucially, construct the IR cutoff in terms of the background metric only,
ie.,, Ri(O), where O[g].
Taking the gauge to have been fixed with gauge fixing term

Sefh; g = /d /G F,[h; g) g"" Fuh; g), (2.14)

for some F, ~ fl‘j‘ﬁhag, and resulting ghost fields C,,, Cu B and denoting the
classical counterparts of the latter and of the metric fluctuations by ¢, ¢, and
hyw, respectively, the effective average action for gravity is the functional

L[k, ¢, q]. (2.15)
Letting g, = guv + fLW and defining the more convenient

Fk[gagacaé]Erk[g_gacaag]v (216)

one can show this functional is invariant under the general coordinate transform-
ations
TL[® + L8] = T[®], = {gu Guvs C» G} (2.17)

where £, denotes the Lie derivative with respect to the vector field v*.
This functional obeys the FRGE

kOWTalh e, d] =ime | KRk | Lyt KORiee
2 F,(f)JrRk - 2 (P,(f)thk) ]
« (2.18)
1 kOk Ry cc

cc

3For simplicity, we are assuming there are only two ghosts present, but the argument naturally
generalizes to more of such fields.

21



Chapter 2. The functional renormalization group equation

where the cutoff has been imposed also on the ghost fluctuations and where we
have defined

v 1 6 1 Iy
Ty =—= " 2.19
|:( k )Ecj|p, \/E(SC'U' \/5661/ ’ ( )

n B 1 6 1 or
@) |-k 2.20
[( k )MLV VG 09" \/G 8gap (2.20)

The ordinary effective action is obtained in the limit

I'lg] = lim T's[g, 9,0,0]. (2.21)

Note that, unlike the case of perturbatively quantized gravity, the background
metric g,, is not a concretely fixed classical spacetime here, but rather an arbit-
rarily chosen metric that we introduce only at intermediate steps of the quantiz-
ation. The quantity in which we are ultimately interested is T'x[g] = T'x[g, g, 0, 0],
which is what we would use to calculate all physical observables and which is a
gauge invariant functional of one gauge field only. Following the renormalization
group flow of this functional, however, requires us to retain the dependence on
both the ghosts and background metric.

Lastly, note that, being constructed from the background field only, the IR
cutoff Ry induces an extra background field dependence on the flow which, at the
level of diffeomorphism invariance, leads to a modified Ward identity for ', [35]
[79,8T]. This modified Ward identity commutes with the flow and reduces to the
standard Ward identity for & — 0, since Ry vanishes in that limit by construction.
Thus, exact solutions to the FRGE will preserve the gauge invariance of the full
theory. For approximated solutions, however, this will not necessarily be the case.
Deviations from these identities in truncated flows thus in principle serve as good
estimators for the reliability of a truncation.

The issue of gauge invariance and background field dependence in the FRGE
formalism has been reviewed in detail in [TOJ8T] for the general case of non-Abelian
gauge theories and an explicit analysis for Yang-Mills theories in the axial gauge
can be found in [12§]. A detailed analysis for the case of gravity, however, remains
a challenging task.

2.2.2 Truncation ansatz and background field dependence

The last points above motivate the following remark [79]. As we have discussed,
when performing calculations within the FRGE framework, we must employ ap-
proximation schemes, the most common non-perturbative one of which is the
truncation of the theory space. In all but one [80] investigations of the gravita-
tional renormalization group conducted within this framework, the flow has been
projected onto a truncated subspace captured by the ansatz A

Tklg, g, c,¢] = Tilg] + Tilg, 9] + Setlg — ;3] + Senlg — 3. ¢, 9] - (2.22)

4The calculations in consider the renormalization group running also in the ghost sector.
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2.3. Matter fields and cutoff schemes

In this ansatz, the running of the ghosts has been neglected, Sy1, being the classical
ghost term, and the classical gauge-fixing term Sgr has been pulled out from I'y.
In addition, the term T';, depends on the physical fields only and I, encodes the
deviations from [y[g] for ¢ # g, vanishing for ¢ = g, and includes, e.g., the
quantum corrections to the gauge-fixing sector. Noting that the classical terms
are k-independent by definition, substituting (Z22) into (ZI8) yields

_ . 1
korTx[g] + kOkT'k[g, 9] =§Tr

)

kO RE™Y ] . [ kO RE
oy | PO R
g, g) + RE™ ~Mlg, 3]+ R§"

(2.23)

with M being the Faddeev-Popov kinetic operator associated with [ZI4) and
where F,(f) is a second functional derivative at fixed g,, with respect to g, .

Nearly every truncation so far considered in the literature has additionally set
[, = 0, in which case the FRGE above reduces to a flow equation for the single
metric g,,. The reasoning for the latter simplification is threefold. First, it has
been suggested [35] that, at least at the level of the modified Ward identities of
the theory, neglecting I'y is a good first approximation. Secondly, it has been
argued that this is consistent with treating the theory at a fixed point of the
gauge coupling [37L[81], which should be present in the flow. Lastly, and perhaps
most importantly, treating bimetric truncations is a technically very challenging
task. Also in the present work, the truncations analyzed will be of the form (Z22))
with T’y = 0. However, we should bear in mind that by neglecting this term we
are throwing away all the g-background dependence of the theory [79].

Over and above the arguments motivating these approximations, there is no
a priori way of judging with certainty what the effect of these approximations
may turn out to be. The outcome of recent studies that do not employ these
simplifications is relatively encouraging. Results in initial investigations of the
running of the ghost sector [80] exhibit little quantitative difference with the
results previously otherwise obtained and suggest that the running of the ghost
sector will largely decouple from the rest of the gravitational renormalization
group flow. A study of bimetric I'; # 0 truncations in a simplified setting [,
on the other hand, indicates that, while going beyond the '), = 0 approximation
will not alter the qualitative picture that has been so far obtained, it will lead to
quantitative differences with respect to the numerical values of the fixed points
and critical coeflicients and thus warrants further investigation.

2.3 Matter fields and cutoff schemes

Although we have so far considered flow equations for the case of pure gravity only,
it is a relatively straightforward procedure to couple matter to the gravitational
flow [82H84]. Wrapping up our introduction to the FRGE formalism in the present
chapter, this will serve as a useful setting in which to illustrate how the cutoff is

23



Chapter 2. The functional renormalization group equation

implemented at the level of the flow equation, as well as the techniques commonly
used for the evaluation of the functional traces it contains. The procedure outlined
is essentially the same as for the pure gravity flow, but technically less involved.
To this effect, let us consider the case of 4d gravity minimally coupled to ng
massless scalars fields ¢, np massless Dirac fields ¢, and ny; massless Maxwell
fields A, and given by the ansatz

Fk[gaga ¢, 1/1, AN] :I‘%r + mat
=7+ /d4x\/§Z {%v#¢vu¢+d—]l)¢ 20
+ (%FWFW 4 %(vuAﬂ)z B EDC)} '

Here, I'S" contains the pure gravity terms, which we will leave unspecified, D =
7%eq"V,, is the Dirac operator with e, being the vierbein of g,,, and we have
fixed the Lorenz gauge for the Maxwell fields, leading to the last term above as
the action for the ghost fields ¢, c.

We wish to compute the contribution of this matter action to the gravitational
beta functions up to the curvature-squared terms. The first step is to compute
the second variations. Owing to the structure of the FRGE and the background
field formalism, we are free to choose whichever background field configuration
is most convenient to perform our calculations. The results thus obtained will
be genuinely background independent, with the proviso that we might not be
able to distinguish all the operators entering our truncation subspace in some
backgrounds, rendering them unsuitable for our calculation - e.g., a flat metric
background will not be able to distinguish any of the curvature monomials higher
than zeroth order in a gravitational truncation, to take an extreme example. In
the case of ([@24), we exploit this freedom to set 1) = v 4 dyp with ¢ = 0, and
similarly for the other matter fields, so that the second variations of the matter
part of the ansatz are quadratic in the matter field fluctuations only and contain
no cross terms, i.e.,

§2rmat :/d4x\/§Z [— %(5¢D(5¢ + 6 DS — %51411 (g#”[} - RW) 0Au

(2.25)
+ 5E|:|50} ,
from which we may directly read off the Hessians for the individual fields.
Once the inverse propagators are computed, the cutoff must be implemented.
At a general level, for a given field x whose inverse propagator Fgf,z is a function
of the differential operator O, the cutoff R}* must be chosen such that it leads
to the replacement

O = P(O) = O+ Ry(0O). (2.26)

Looking at the operator structure of [Z23]), we can see we have a slight freedom
in how to realize this prescription, depending on what we take to be (0. This is
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2.3. Matter fields and cutoff schemes

our freedom to implement different cutoff schemes. Following the classification
of [41], let us generally write O = —V? + E, where D is a covariant derivative
with respect to both the metric and possible gauge connections associated with
the degrees of freedom of the field and E is a linear map acting on the field. Let
us further split E = Q+ Ej, where E; depends on the couplings of the theory and
Q is coupling independent. We then call a “type I cutoff” the cutoff constructed
from —V?2 only, i.e., Ri(—V?); “type II cutoff”, the cutoff built via Ry (—V2+Q),
and lastly, “type III cutoff”, or spectrally adjusted cutoff, the cutoff built from
Ri(-V2 + E).

In the case of our matter Hessians, we implement a type II cutoff with the
potentials

R .
Qs=0, Qp=, Qu=Ric, Qu=0, (2.27)
where Ric maps vectors onto vectors via Ric(B), = RYB,. Letting Oy = —=V? +

Q; for the field species I and inverting the modified propagators I'®(O;) +
Ri(Or), we arrive at the FRGE

raur, = 2o [ARAO0) oy, [KOR(OD)
2 P (Os) 2 P.(Op)
oty [FOROM)] [T O (22
R AR B A R

where we have omitted the pure gravity traces on the right-hand side.

The crucial step is now the evaluation of the traces. At a general level, the
truncations we may consider when investigating the renormalization group flow
of gravity are limited only by our ability to evaluate the traces. While in some
particular situations traces may be performed by explicitly carrying out the spec-
tral sum (e.g. [67,[80L85]), a common computational technique is the asymptotic
expansion of the heat kernel, which we will briefly review.

Let TrW(O) be the functional trace we are interested in evaluating for d-
dimensional spacetime and, for simplicity, let us assume O is a minimal operator of
order 2 which commutes with all the other quantities inside the trace. Introducing
W (s) as the Laplace anti-transform of W (z), we can write

TTW(0) = /:0 ds Tre *OW (s). (2.29)

Recalling that the trace of the heat kernel of O has the known asymptotic expan-
sion for s — 0,

Tre 9 =

/ddxﬂ{trbo((’))s_% + trby(0)s™ 2t 4

(4m) (2.30)

+ trbg(O) + trbg2(O)s + . ..
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Chapter 2. The functional renormalization group equation

where the heat kernel coefficients b,, are linear combinations of curvature tensors
and their derivatives of order 2n in the derivatives of the metric, and defining

QuliV] = /OOO ds s~ (s) (2.31)

and B, = [ dd:z:\/gtrbn, we arrive at

TV (O) = ﬁ [Q4(W)Bo(0) + Qu_y (W) B2(0) + ...

+ Qo(W)Ba(O) + Q-1(W)Ba+2(0) + .. } .

(2.32)

Making use of the Mellin transform, the functional @,,[W] can be reexpressed in
terms of the original function W (z),

(-1’ / * i dWE) |

W] = —/———— dz -t 22 —n, N. 2.33

Qn[W] Tt /, 22 o i>-n, i€ (2.33)
Forn > 0 and n < 0 € Z, it is convenient to choose ¢ = 0 and i = —n +

1, respectively. Then, assuming that lim,_.., W(z) = 0 sufficiently fast, (Z33)
simplifies to

—L - 22" z n
QW =57 | (W), 0> s
Q_#[W]=(-1)" d ;;EZ) L fi=-neN,.

This includes the special case Qo[W] = W[0]. For the techniques for calculating
the heat kernel coefficients of a differential operator, as well as their expressions
for the cases of particular operators we have considered in this work, we refer to

Appendix
Applying the algorithm just outlined to (22])), we find
L [ kR,
kORI, =3 (@) /d :E\/g{(ns dnp + 2np) Q2 < o) >
1= kO Ry,
+—R7’Ls+2np—4TLMQ1< >
6 ) P, (2.35)

1
+ 5 [(?ms +18np + 36n/)C2 — (ns + 1lnp + 62na) E

+5ns R + 12(ng + np — 3na) V2R] + O(V)}

where C? is the square of Weyl’s tensor, E is the integrand of Euler’s topological
invariant in four dimensions and O(V®) represents curvature invariants of order
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2.3. Matter fields and cutoff schemes

six in the derivatives of the metric. Finally, the contribution of the matter fields to
the running of the couplings can be read off from the coefficients of the associated
operators on the right-hand side.

Before ending this chapter, let us briefly comment on the issue of scheme-
dependence. As we have mentioned, the cutoff function will introduce some
scheme dependence into I'y, in a manner not dissimilar to the scheme dependence
of the renormalized effective action in perturbative QFT. However, we do expect
some quantities to be scheme independent, as is also the case in perturbation
theory. In particular, the beta-functions of the dimensionless couplings should be
universal quantities and not depend on our cutoff choice. And indeed, considering
[238), we can see that the coefficients in front of the four-derivative terms, which
will enter the beta-functions of the dimensionless couplings, do not depend on Ry.

Having covered most of the essential groundwork, we can now start exploring
the non-perturbative renormalization group flow behavior of gravity in explicit
settings.
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Gravitational truncations in the conformal sector

Based on P. F. Machado and R. Percacci, Conformally reduced quantum gravity revisited,
Phys. Rev. D 80, 024020 (2009), arXiv:0904.2510 [hep-th].

In this chapter, we apply the functional renormalization group equation to
the study of matter-coupled four-dimensional gravity, in the approximation where
only the conformal factor is dynamical. We consider truncations of the effective
average action containing local terms up to second order in curvature as well as
non-local terms responsible for the conformal anomaly of massless matter fields.
We describe two ways of defining the renormalization group flow of gravity within
this approximation, which respectively break or preserve Weyl invariance, and
discuss the existence of fixed points of the resulting flows.

3.1 Conformally reduced gravity

Although the conformal factor is not dynamical in classical general relativity, in
quantum gravity its fluctuations could be as important, or even more important,
than those of the spin two components of the metric. It may thus be instructive
to study a toy version of quantum gravity where only the conformal part of the
metric is allowed to fluctuate. We will refer to this theory as conformally reduced
quantum gravity.

As we have discussed in Chapter 2 the renormalization group running of the
gravitational couplings can be fruitfully investigated by means of the functional
renormalization group equation (FRGE) framework. While the main focus of
studies within this approach has been on the UV behavior of gravity, with the
aim of establishing the existence of a non-trivial fixed point in accordance with the
asymptotic safety scenario, this type of analysis can also be applied to IR physics,
and there have been works suggesting that the renormalization group running
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Chapter 3. Gravitational truncations in the conformal sector

is responsible for astrophysical [86H89] and cosmological [90,[0T] effects. Most
calculations within this approach have been carried out by taking into account all
the degrees of freedom of the metric, but, recently, this method has been applied
also to conformally reduced gravity [67,85].

In the present chapter, we will use the FRGE to study the renormalization
group flow of matter-coupled conformally reduced gravity. From a physical point
of view, it is not clear that this severe restriction to the conformal sector still
captures the essential features of gravity. On the one hand, this sector has been
argued to drive gravitational dynamics in the extreme infrared [68/[92HO6] and, in
the study of certain conformally reduced truncations within the FRGE approach
[67.[85], it was also shown to yield a UV fixed point with the same qualitative
features as those obtained in the case of full gravity. On the other hand, by
disregarding the effect of the transverse gravitons, sidestepping the issue of gauge
fixing and essentially reducing the dynamics of gravity to that of a scalar field, we
can expect that due to this simplification important physics is neglected. From
a theoretical point of view, however, the conformal reduction serves at least as a
good theoretical laboratory in which to test various ideas and, from the FRGE
perspective, first investigate the gravitational renormalization group running in
the presence of interaction terms which may not be technically treatable at present
in the case of full gravity. The non-local truncations we will shortly analyze
provides an example of such technically cumbersome terms.

While gravity at the classical level is captured by the Einstein-Hilbert action,
and while the latter serves as the starting point for perturbative quantization,
at the quantum level other terms may also play a significant role. At very high
energies, higher derivative terms become important and must be included in an
effective field theory treatment of (quantum) gravitational interactions. At very
low energies, on the other hand, non-local terms are expected to become relev-
ant. Among the latter, particularly interesting are those coming from the Riegert
action [97], which reproduces the trace anomaly of the stress-energy tensor, or
conformal anomaly, induced by the quantum matter fields. It is non-local terms
of this form that will be included in the conformally reduced truncations studied
in this chapter.

The dynamics of conformally reduced gravity including such terms has been
previously studied in a series of papers by Antoniadis, Mazur and Mottola [68]
[92H9619]]. Following the logic of two-dimensional conformal field theories, it was
argued in these papers that the theory possesses an infrared (IR) fixed point in
its renormalization group flow, which could lead to screening of the cosmological
constant and simulate dark energy [57,99HT0T].

Establishing a relation between the beta functions computed by Antoniadis
and Mottola [68] and the FRGE beta functions is one of the goals of the work
presented here. Anticipating our results, we shall see that Antoniadis and Mot-
tola’s beta functions can be obtained from the FRGE within certain approxima-
tions, but applying a procedure that breaks scale invariance. We will explain and
comment on this statement in detail in the following sections.
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3.1. Conformally reduced gravity

3.1.1 The dynamics of the conformal factor

We will now describe our approach to the dynamics of the conformal factor,
emphasizing possible alternatives. We will use the background field method (viz.
Section Z2T)) and, following the procedure used both by Antoniadis et al. and
in [67,85], we will first fix a fiducial metric g, and consider only metrics which
are conformally related to §,.,

Juv = ¢2guv . (31)

The function ¢ is the conformal factor whose dynamics we wish to study. Because
it cannot vanish, we can choose it to be positive, and in the following we will find it
convenient to write ¢ = e”. The role of g, is to identify a conformal equivalence
class of metrics and to provide a reference point in this equivalence class. When
restricted to the chosen conformal equivalence class, the action, which originally
is a functional of g,,, becomes a functional of g,, and ¢, or equivalently of g,
and o, which we will denote

S(guua U) = S(e2a§uu) = S(gm/) . (32)

No approximation is involved in this step. Note that by construction S is invariant
under the transformation

(Guv,0) — (62“’57”,,,0 —w), (3.3)

for any function w. We will refer to this as a Weyl transformation of g,,. A
priori, there is a slight risk of confusion between these transformations and Weyl
transformations of g,,,,, which are transformations g,,, — €**g,,, [, We will always
try to make this difference clear.

We then apply the background field method to the conformal factor only. In
principle, there are different ways of doing this. In [67.85] the conformal factor is
expanded as

d=0¢+d¢, (3.4)

where ¢ is the background. Alternatively, one could write ¢ = e?, ¢ = e’ and
expand
o=0+d0 . (3.5)

Although these two procedures lead to similar results, they are not strictly speak-
ing equivalent within the truncation approximation we will subsequently employ.
In this paper we will follow the latter procedure, as it is better adapted to the
action of Weyl transformations.

When o is decomposed as in (B3, the transformation [B3]) can be attrib-
uted either to the fluctuation do or to the background . In the first case, we

1N9te that if the original action is Weyl invariant, in the sense that S(e**g..) = S(gu),
then S is independent of o.
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Chapter 3. Gravitational truncations in the conformal sector

speak of “quantum Weyl transformations”, in the second, of “background Weyl
transformations”. It is the latter transformations

(Guw,0,00) — (eQ“’QW, 7 —w,00) (3.6)

that one can preserve when using the background field method, as we shall discuss
in Section B2 We should also note that this group does not play the role of a
gauge group, since it acts nontrivially on g,,, while in the conformal reduction
we only treat o as a quantum field.

3.1.2 A non-local conformal truncation

In this section we specify the class of gravitational actions we will study via the
FRGE. We emphasize again that these functionals will not be used as bare actions
in the definition of a functional integral, but rather as approximate forms for a
coarse-grained quantum effective action - i.e., they constitute the terms entering
our truncation of the conformally reduced gravitational renormalization group
flow. With this proviso in mind, we will simply call these functionals “actions”.
They will consist of one part which is local in the metric g,, and another part
which can be seen as coming from the quantum loops of matter fields, and which
is non-local when written as a functional of g,,. Restricting ourselves to terms
with at most four derivatives, the local part is

S(gpw) =/d:v\/§[go+ggR+g4R2} , (3.7)

where g; are coupling constants of mass dimension 4—i. There are other terms one
can write with four derivatives, but they are either total derivatives (the Euler
term, OR), or invariant under Weyl transformations of g,, (the Weyl tensor
squared), and therefore independent of o. Using B in B7) and defining O =
@2, we have

S(Guv,0) = / dx \/5[9064‘7 + 2627 (R — 6000 — 6(Vo)?)
(3.8)
+ g4(R — 600 — 6(@0)2)2} )

In the following, we will need the linearized form of this expression. Decomposing
o as in ([B3), and expanding to second order in do,

5@ — / dx \/550'{890646 +2e%7 gy [R — 606 — 6%(Va)? — 6@“5’@# - 30]
+ 94[~14406VH5V,, — 144VH(V5)?V,, + 12VF RV,
+ 144R"'V .5V, — 72(Va)?0 — 144060 + 12RO
+144(VIVYG — VGV 5)V .V, + 3607] }50 .



3.1. Conformally reduced gravity

In addition, we will also consider the effect of minimally coupled massless
matter. Introducing ng scalar fields ¢, np Dirac fields ¥ and njy; Maxwell fields
A, the (gauge fixed) matter part of the action reads

Smat :/d‘*x\/EZ{ [2F F™ + L(VFA,)? —e0c] + 1V, 0VF e + 1/7D¢} ,
(3.10)

where the sums extend over all particle species. Here, D = %"V, is the Dirac
operator (e,* is the vierbein of g,,) and the third term above is the action for
the ghost fields ¢, ¢, which arise when fixing the Lorenz gauge for the Maxwell
fields. Performing the conformal reduction BI]) and applying the background
field method with the matter background fields set to zero, the second variation
of the matter and ghost parts of the action is then given by

Si =/d4ff\/§Z { - %5Au[§“”(ﬂ +2VAGVy + 05 +2(Va)?)
— (R 2V1V"5 + 2V40V"5) |4,

(3.11)
+e*5e (D - 2@“5@0 sc— $e*76¢ (D + 2?”5%&) 5o

+ 750 (D + 5 eat b, ) 50}

where (i)u = 2éwéb”8,,02“b and X is the connection. As we have seen in Section
for the case of full gravity, these matter fields will contribute to the beta
functions of the gravitational couplings gg, g2, g4. This is a purely local effect,
which is related to the appearance of UV divergences when the cutoff goes to
infinity. On the other hand, the presence of matter fields also gives rise to non-local
terms, among which there are those responsible for the conformal anomaly [102],

2 oT
2,
VI g,

where T}, is the stress-energy tensor. Here, E = R, ,, R**7 — 4R, R*" + R?
is the integrand of the Euler invariant, C? = C,,,,,C"*? is the square of the
Weyl tensor, and the coefficients b and b’ are related to the number and species
of matter fields and read

2
(T",) = —bC*+VE + (b” + §b> OR, (3.12)

b ng + 6np + 12ny),

-1
120(47)? (3.13)

= ns + 1lnp + 62nyy) .

1
~360(47)2 (

Since the last term in ([BI2) can be obtained from the variation of a local
counterterm proportional to [ dz,/gR?, the coefficient b” is arbitrary. This term
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Chapter 3. Gravitational truncations in the conformal sector

is already accounted for in the local action (BZ), and for convenience we will
assume that g4 has been redefined in such a way that b” 4+ 2b = —2b/.

The remaining two terms in the conformal anomaly ([BI2) cannot be obtained
as the variation of a local functional. Following [68], those non-local counterterms
responsible for generating this remaining part of the anomaly will also be taken
into account. They constitute the Riegert action [97] and are given by

1 2 2
W(guw) = 3 /dx\/ﬁ (E - §DR> ALt [21)02 +b (E — §DR> . (3.14)
where A, is the conformally covariant fourth-order operator
2 1
Ay =0%+2R"V,V, — gRD + gV“RVU . (3.15)

We should note that the non-local operators resulting from this action cannot
currently be treated by FRGE methods in the full gravity case. This motivates
their study in a conformally reduced setting.

The defining property of this functional is that its variation under an infinites-
imal conformal transformation reproduces BI2]). At the expense of introducing
an additional auxiliary field, one can also define a local functional having the same
property. This so called Wess—Zumino action is (minus) the change of the Riegert
action under a finite conformal transformation,

FWZ(g;u/a U) = _W(eQUguV) + W(g;u/) . (316)

It is explicitly given by

Twz(guw,0) = —/dx\/g{bCQU—i—b’ [(E— §DR> 0+20A40]} . (3.17)

and, by construction, it satisfies the “cocycle” condition (also called the Wess-
Zumino consistency condition),

Twz(e* gy, 0 —w) —Twz(guw,0) + Twz(gu,w) =0 . (3.18)

Although o plays the role of a conformal transformation in (BI6), we can think
of it as a new scalar field, transforming under Weyl transformations as in (B3)).
Then, by equation ([BIF]), the Wess—Zumino action has the same transformation
as the non-local Riegert action (this property motivates the sign in the definition
of sz).

Let us now treat the functional W in the same way as the local action B).
As in @2, we first define W (§,,,0) = W(€*?§,,), and from equation (FI8) we
then see that

W (G, o) = W(guw) = W(guw) — Twz(guw,0) - (3.19)
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3.2. Conformally reduced quantum gravity revisited

Using equations ([EI0) and [BI8), one can check that this functional is indeed
invariant under the Weyl transformations [B3]). Of course, if one is only interested
in the dynamics of the conformal factor for a fixed fiducial metric, the first term
on the right-hand side can be ignored, but one should remember that it is essential
for Weyl invariance.

Next, we introduce the background field decomposition [BH) for o. Defining
the background metric g, = €%7§,, and again using [FI8) and (EIG), we can

write (BIJ) as

W(g,uuv o) = W(guv) - FWZ(gw/a do) . (3.20)

Note that only the second term depends on the quantum field do. From BI1),
we thus see that the expansion of W to second order in the fluctuation is

w® = 2b’/dx VidoAsbo = 2b’/dx VG doAséo (3.21)

where A, and A, are the operators [BIH) constructed with the metrics gy, and
Juv Tespectively.

3.2 Conformally reduced quantum gravity revis-
ited

3.2.1 The FRGE and the conformal anomaly

In order to extract the beta functions of the theory, we make use of the Functional
Renormalization Group Equation (FRGE)

2 —1
(5 L +Rk> 8t7zk] : (3.22)

1
Ok = 35T || 5350

which, as discussed in Chapter Bl describes the dependence of a coarse-grained
effective action I'y, [®] on a momentum scale k. Recall that, here, ¢t := log k/ko, ®
are all the fields present in the theory, STr is a functional (super)trace and Ry, is
an infrared cutoff suppressing the contributions to the trace of eigenmodes with
momenta below k. The coarse-grained effective action reduces to the ordinary
effective action in the limit k¥ — 0.

In the sequel, we will apply the FRGE to compute the beta functions of
conformally reduced gravity, in the spirit of the previous section. This means
that (in addition to the matter fields) the only quantum field that we allow to
fluctuate is the conformal factor o (or equivalently ¢) and the truncated running
effective action is assumed to have the form

T (g;wa a, 111) = g(gul/a U) + W(guw U) + S’mat (Quu, g, dJ)

o ! A (3.23)
EFk (g#l/,U) +Smat(g,u1/ao'7 dj)
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Chapter 3. Gravitational truncations in the conformal sector

where S, Spae and W are given by equations BX), @ID), BI), and ¢ col-
lectively denotes all matter fields. However, not all terms will run. S'mat does
not change because the fields have no self-interactions and W does not change
because its coefficients b and o’ are fixed functions of the number of matter fields.
Thus, only the renormalization group flow of the couplings gg, go and g4 will be
calculated, while W and S'mat will be kept fixed.

Although only v and o fluctuate, the action still depends parametrically upon
the fiducial metric g, and, as long as the Weyl invariance B3]) is preserved, the
running effective action I';, can be regarded as a functional of a single metric g,
When quantizing and regularizing the theory of the conformal factor described by
some action S (g,0), one faces a choice. The cutoff can be either constructed with
the fiducial metric § or with the background metric g, [103]. The former choice
breaks the invariance [B3]), because it introduces a dependence on § which is
not accompanied by a corresponding dependence on o. The latter choice instead
respects the invariance. We shall therefore call these two procedures the “Weyl-
breaking” and the “Weyl-invariant” procedure respectively (and we emphasize
here that we refer to the Weyl transformations of the metric §,,, not of the
metric g, ).

These considerations apply both to UV and IR cutoffs. A UV cutoff can be
regarded as part of the definition of the functional integral. In this context, the
“Weyl-breaking” procedure corresponds to using a translation invariant measure,
(formally [(do)) while the “Weyl-invariant” procedure corresponds to using a
Weyl-invariant measure (formally [(d¢) = [(e”do)) B, and similar considera-
tions also apply to the integration measures over the matter fields. Within the
FRGE approach, however, since the beta functions encode the dependence of the
renormalized, rather than bare, couplings on the coarse graining scale k, these UV
issues are immaterial. As we have discussed, even though the FRGE is commonly
formally derived from a functional integral requiring a UV regulator in order to be
defined, the trace on the right-hand side of ([B22]) is automatically UV-convergent
due to the properties of the IR cutoff Ry. Therefore, there is no need to specify
any UV regulator. In the following sections, when we talk about Weyl-invariant
and Weyl-breaking procedures, we refer to the construction of the IR cutoff Ry,
which is used to define the coarse graining of the effective action.

Still, to avoid possible misunderstandings, it is useful to comment here on the
significance of the anomaly in the context of the FRGE. The conformal anomaly
arises when the “classical” bare action is Weyl invariant but the measure is not,
and hence neither is the quantum effective action. This is true also for the coarse-
grained affective action I'y, for any value of the coarse graining (IR cutoff) scale k.
In an “anomalous” theory, the running effective action will thus be noninvariant
even in the limit £ — oo, if the limit exists. Now, one could take the point of view
that the functional integral and the bare action are merely formal constructions
devoid of physical content, and that all the physics is contained in the running

2See 105] for a discussion of these integration measures.
g
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3.2. Conformally reduced quantum gravity revisited

effective action I',. One would then never see an “anomaly”, but rather one would
simply have a quantum theory where Weyl invariance is broken at all scales. The
“anomaly” would only be seen if one tried to reconstruct the “classical” (bare)
action to which the given effective action corresponds, following [71] (for a specific
discussion of functional measures in the context of a FRGE-based treatment of
two dimensional Liouville theory, see [106]). While undertaking this reconstruc-
tion task may be instructive and useful for some purposes, we would not learn
anything new about the renormalization group running of the gravitational coup-
lings we consider here by doing this, and therefore we will not concern ourselves
with this issue.

This discussion allows us to preemptively answer a question that may arise
in this context. The term W is usually regarded as (part of) the effective action
obtained by integrating out the matter fields, and one may wonder why we keep
Sias and W simultaneously in the action. The reason for this is that we apply
the same coarse graining scale to the gravitational degree of freedom ¢ and to
the matter fields ¢. Thus, as we do not first completely integrate out the matter
fields, S’mat must still be present in the actiorE. On the other hand, as the term
W describes the effect of the conformal anomaly, it is also present for any finite
value of the coarse graining scale. In any case, one can easily remove from the
beta functions the contributions coming from the terms S’mat and/or W if one so
wishes.

From here on, let us assume that the functional measure of the matter fields
in the functional integral is not Weyl invariant, so that I'j; contains the term
W. The invariance, or lack thereof, of the functional measure of o only affects
the numerical value of the coefficients in W [68,[106], and we do not need to
commit ourselves to a particular choice for our calculations in the next sections.
The possibility of recovering Weyl invariance in that limit has been discussed in
the two-dimensional Liouville field theory case in [106], where it was shown that
renormalization group trajectories of I'y terminate at a conformally invariant
field theory as kK — 0 provided the initial conditions I'y_ ., satisfy constraints
imposed by the Ward identity of the theory. We will not discuss these matters
here. Instead, we will focus on the form of the beta functions, which, as we have
stressed, are independent of such considerations.

In [67], it has been explained in detail that choosing the IR cutoff in a
Weyl-invariant way corresponds to implementing background independence in
the quantum theory. In full gravity, the requirement of diffeomorphism invari-
ance implies that the effective average actions resulting from our renormalization
procedure should depend on no preferred reference metric, and that our coarse
graining should thus be implemented in terms of a physical, ‘proper’ momentum
scale k. This is the procedure that is always followed in the FRGE approach to
asymptotic safety. The procedure for achieving this, using the background field

30f course, at a given energy scale k the degrees of freedom with masses m > k will decouple
and therefore in practice we need to consider only the degrees of freedom with masses m < k.
In the IR limit, only massless fields matter.
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Chapter 3. Gravitational truncations in the conformal sector

method, has been outlined in Section 21l In the conformally reduced case, in
which diffeomorphism invariance becomes Weyl-invariance, this translates into
the requirement that we impose the cutoff not on the fiducial metric g,,,,, which
should play no distinguished physical role, but on the background metric g,
which is inert under the Weyl transformations (B6). In the next two sections,
we will compare the results of using the Weyl-invariant and the Weyl-breaking
implementations of the IR cutoff.

3.2.2 The Weyl-invariant procedure

In [67], the beta functions of the conformal reduction of gravity with the Hilbert
action were computed using a “background independent” IR cutoff, constructed
from the background metric g,,,. In this section, we follow a similar procedure, but
rather than applying the background field method to ¢, viz. B4, we apply it to o,
viz. B3), as we find that the behavior of the theory under Weyl transformations
is easier to understand in this way. We also extend the results by including
the effect of the R? term and of the Riegert action, which will be needed when
comparing with the beta functions of [68], as well as the effect of the local matter
contribution.

The FRGE ([B22) requires the second variation §°T'¢"™ /§odo, which can be
immediately read off equations (B) and (BZI). Those variations are written in
terms of operators constructed with the fiducial metric g,,, and the background
field &, but, in order to guarantee that (background) Weyl invariance is preserved,
it is convenient to rewrite them in terms of the metric g,,. For the Riegert action,
this has already been done in (B2I)). For the rest, we observe that, since ([B.8]) is
invariant under Weyl transformations and do is invariant under background Weyl
transformations [B6]), the operator appearing in square brackets in (33 must
also be invariant under background Weyl transformations. Indeed, this can be
verified by a straightforward if somewhat tedious calculation. We can then apply
a transformation [B0) with parameter w = ¢ to the second variation, leading to
the substitutions ., — g, and ¢ — 0 in @J), so that

2 grav
52T

e V3 |16g0 + 4g2(R — 30) + g4(720% + 24RO + 24VF RV ) + 46/ A4 | .
go0o0

(3.24)

For our purposes, it will be enough to consider the case when §,, is a space of
constant curvature, for which
2 grav
0°Iy
dodo

= \/5[16g0 +4g2R + ((2494 — 30") R — 12g2) O + (7294 + 4b) mﬂ .
(3.25)

A similar reasoning applies to the second variation of the local matter contribu-
tion.
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3.2. Conformally reduced quantum gravity revisited

As we have seen in Section B3] there is a relatively large freedom in defining
the IR cutoff Ri. A convenient choice, which we will employ here, is that of an
operator whose eigenfunctions are taken as a basis in the functional space that
one is integrating over. The cutoff is then imposed on the eigenvalues of this
operator [1.

We begin by choosing this operator to be —O, as done in [67]. As per our cutoff
scheme classification in Section 23] we will call this a “type I cutoff”. Following
the prescription [226), we then construct the cutoff operator Ry, such that it leads
to the replacement of —O by Py (—0) = —O+ Ry (—0) in the inverse propagator,
where Ry, is a suitable profile function suppressing the propagation of field modes
below the scale k. In our subsequent calculations, we will choose as this profile
function the so-called optimized cutoff [72] Ry(z) = (kP — 2)0(kP — z), where 6 is
the step function and p is the order of the operator z. This prescription leads to

Ry = \/5[(7294 +4b") (P2 — O0%) — ((2494 — 2V') R — 12g5) Rk] ; (3.26)

and we thus arrive at

P P (692 — (1294 — 3b') R+ 4(18g4 4 V') Py, 8, Ry,
T2 890 + 290 — (1294 — 3V) B — 6ga] Py, + (3694 + 20') P2
632 Ry, + 364 (P,f . §Rk)
I ~ (3.27)
890 + 292 — [ (1294 — V') R — 6g2] Py + (3694 + 2b') P?
+ ETratRk — n—DTr atka + n—MTr 8tka —nMTratRk ,
2 Py 2 P, + % 2 P, + % Py,

where we have defined 3; = 0:g;, and the right-hand side terms containing (; come
from deriving the couplings that are contained in Ry. Note that all dependence
on R and o is through the background metric g,,, which is inert under the
background Weyl transformations ([B.0]), as mentioned. Since the quantum field is
also inert, background Weyl invariance is respected. Consequently, the flow will
preserve the form of the action [BX]), and to extract the beta functions of go and
g4 we can isolate the coefficient of any one of the operators that they multiply.
We evaluate the functional trace on the right-hand side of the FRGE using the
heat kernel expansion of the operator —O, using the method explained in Section
and the formulas collected in the Appendices, and then equate the coefficient

4To avoid possible misunderstandings, let us stress that the functional trace in (E22) is
obviously independent of any choice of functional basis. What we are saying here is that putting
a cutoff on the eigenvalues of different operators leads effectively to different cutoff procedures.
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of R* with ;. This gives

(69 + (7294 + 4V k2 + Bo + 964 k?) kS
6472 (490 + 3g2k? + (1894 + V' )k*) 7

(12 (290(g2 + 694k°) + 9ga (g2 + 18gak?)k*) k* + 36" k™0

o = cok* +

1
= cok?
P2 =ck” + 1953

+2(10g0 + 3gak” + 81k )'kC] [ (4g0 + 3g2k> + (1894 + b )k*)*] ™
\ 5, 1290 + 3g2k* + (90g4 + 20')k*
38472 (4go + 3gak? + (18g4 + ' )k4)?
(16g0 — 6g2k? + (18094 + b')k*)k?
19872 (490 + 3gok? + (1894 + U)K
Ba=ca+ {3[93(46492 — 5952g4k2)k? — 2490 (3192 + 198gagak? + T292k™)k*
+9(29g5 — T44g594k> — 120609295 k* + 6436893k°)k°]
+ 4[47295 — 198g0(g2 — 3294k*)k* + 9(14g5 — 465g294k”
+ 3186g3k") k' |b'k* + (34490 + T5gak® + 1512g4k™) b2 k®

+ 28b’3k12}{345607r2 (490 + 392k + (1894 + b )k*)’ }_1

+ ﬂgk2{464g§ + 24g0(g2 — 35494k2)k? + 27(3g2 — 44gogak?
+ 154892kY) k" + 8(14go + 3(g2 + 3694k k2D K + 9b’2k8}
{23040772 (490 + 392k + (1894 + b )k*)° }_1

— 54k4{49693 + 7290(17g2 + 22g4k%)k? + 99g3k* + 98289294k°
— 2235602k5 + 2(164g0 + 9392k + 91894k )b k* + 36b’2k8}

{3840772 (4g0 + g2k + (1894 + b)EH) 31 |

(3.28)
where the constants ¢; are the local contribution of matter:
1
Co :m (ns — 4TLD + 2TLM) y
€2 =ge3 (ns +2np —4ny) (3.29)
= (29ng — 11lnp — 62 .
4 =3 156052 (20 — Hnp — 62nar)

The above formulae should be looked upon as a system of linear equations for the
beta functions §;. The beta functions themselves are obtained by solving these
equations and are somewhat complicated rational functions of the couplings.
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3.2. Conformally reduced quantum gravity revisited

It is instructive to rederive the beta functions using a different cutoff proced-
ure. Instead of using the operator —O as defining the basis in function space, we
can use the fourth-order operator

1 S2EY o2 4
V(72944 +4b) d0d0 e

where the dots stand for the other terms appearing in [B258). We then define

the cutoff Ry, = /§(72g44 + 4b")Ri(O), where Ry, is the optimized cutoff profile
function given above, such that it leads to the replacement
52F%rav
dodo

This is an example of a “type III cutoff”. In this case, the FRGE simply reduces
to

@

(3.30)

— VG(72g44 + 40" ) Pp(O) = /(72944 + 40") (O + R (O0)).  (3.31)

1 0Rp(O OR O¢R O¢R
oy = iy 2B ©) s Ol o O b Dy Tk
2 P(O) 2 Py 2 P+ & 2 P+ & (3.32)
—-n TratRk
M P

where the argument of the functions Ry and Py in the matter traces is still the
operator —0O.

Restricting ourselves to the one-loop approximation, whereby the renormal-
ization group running of the couplings in the right-hand side of the FRGE is
neglected (viz. Section [ZT3]), we arrive at the beta functions

1 [9g2 —8go(b + 18g4) 6gok?
= cok* 2 ~ 4k*
fo=cok™ + 355 [ (/ + 1894)2 TESTTR
1 [—20gs — 909294 + 306 g4k? + 43297k
=cok? 1 3.33
fr=ck”+ 555 { (' + 1894)° ’ (3:33)
s L[ b2 + 36 g4 — 259292
LT 3202 540 36(0' + 18g4)2

We can compare these beta functions with the corresponding type I counter-
parts in the one-loop approximation by dropping the terms that contain 8y or (4
on the right-hand side of [B28]). The differences that one observes are a mani-
festation of the scheme dependence of the results. We expect only the one-loop
part of 34, in the limit k2 > go, k* > go, to be scheme-independent. To this
effect, we should expand the denominators of the type I beta functions in powers
of go and go and compare term by term. We then see that the leading term of
the expansion of 34 is equal to

Tb'? + 252940 + 24138g7
864072 (b’ 4 18g4)”

(3.34)
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Chapter 3. Gravitational truncations in the conformal sector

with both cutoff types, as expected. Higher order terms of 3, and all the terms
in By and (o are scheme—dependent. This does not make them physically unim-
portant, although extracting physical predictions from them requires more work
and more care.

One result from the scheme-dependent terms that should be scheme—
independent is the existence of a fixed point. A fixed point is a simultaneous zero
for the beta functions of the dimensionless variables §; = k~%g; (with dy = 4,
dy = 2 and dy = 0), which are given by

Ohgi = —diGi + k™" B; . (3.35)

It is noteworthy that when the beta functions are written out in terms of the
variables g;, the cutoff scale k& does not appear explicitly anymore, in accordance
with the general expectation that the flow equations are autonomous.

We will now briefly discuss the fixed points of (328)). To make contact with
[67], we begin by considering the case when matter is absent. Further reducing
ourselves to the Einstein-Hilbert truncation, where g4 = 0, the above equations
admit a non-Gaussian fixed point (NGFP) at go = 0.00404 and g, = —0.007296,
which corresponds to

NGFP {]\ — 0277, G= 2.727} ,

in addition to the Gaussian fixed point (GFP) at {A =0, G = 0}. These values
are numerically very close to the result of [67]; the residual discrepancy can be
attributed to the fact that we take o as the quantum field whereas [67] uses ¢, and
that imposing a cutoff on fluctuations of ¢ is different from imposing a cutoff on
fluctuations of ¢. As discussed in Chapter[d] the properties of the renormalization
group flow around a fixed point {g;} are determined by the stability matrix

Bij = 6jﬁi|{§;‘} . (3.36)

In particular, defining the stability coefficients 0; as minus the eigenvalues of B;;,
the number of UV attractive directions of the flow around a fixed point is given by
the number of stability coefficients with positive real part. At the NGFP above,
the stability coefficients are a complex conjugate pair 6y = ¢’ £ 6" whose real
and imaginary parts read

0’ =1.97022, 0" =6.86891, (3.37)

indicating this fixed point is UV attractive in both directions of the (A, G) plane.
In addition, the non-zero imaginary part implies that the renormalization group
trajectories in the vicinity of the fixed point are spirals. As we will see in the
next chapter, this is the same qualitative behavior as that found for the Einstein-
Hilbert truncation in the case of full gravity [38].
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3.2. Conformally reduced quantum gravity revisited

Let us now extend the truncation to include the R? term. If we set jo = g2 = 0,
B4 reduces to the expression [B34), and in the absence of matter b’ = 0 this leads
to
149

1= Trog0n2

(3.38)
It is not conceivable that higher-order terms exactly cancel this term, so this
indicates that 1/g4 is asymptotically free, and there is no fixed point for gy =
g2 = g4 = b = 0. Solving the equations [B28) numerically in the matter-free
case, we find that these beta functions do not admit any non-trivial fixed point
with positive G. B This is in contrast with the full gravity studies of curvature-
squared truncations [A0,4TL107], in which a UV-attractive NGFP with physically
acceptable values of the couplings has been found. In our conformally reduced
case, the fixed point may reappear when higher powers of curvature are allowed.

In any case, the fixed point does reappear when one takes matter field
contributions into account. In the case of, e.g., one massless Maxwell
field and no massless Dirac and scalar fields, we find a fixed point at
go = 0.00135, go = —0.00168, g4 = 0.00036, corresponding to

NGFP e : {ix — 0401, G = 11.83} ,
and with stability coefficients 0y 1 = 6’ = 60" and 05 given by

0’ =5.21697, 0" =1.67494, 0y = 1.85428. (3.39)

Hence, this NGFP is UV-attractive in all eigendirections and the critical surface
Suv associated with it is three-dimensional, in qualitative agreement with results

in matter-coupled gravity [83[10§].

3.2.3 The Weyl-breaking procedure

We now want to calculate the beta functions of conformally reduced gravity when
the cutoff is defined by means of the fiducial metric g, , instead of the background
Guv-

We will first use a type I cutoff. To this effect, we follow the same steps as
in the previous section, with the crucial difference that the IR cutoff is imposed
on the spectrum of —0O, rather than —O. This introduces a dependence on O
which is not compensated by the presence of e? factors, and therefore breaks
Weyl invariance. As a consequence, the special form of the action [B.8) will no
longer be preserved by the flow. To see this, it is instructive to consider the

5This is also the case when one uses the parametrization (E4).
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Chapter 3. Gravitational truncations in the conformal sector

slightly more general class of actions

S(Guv»0) =/ d*z \/5{906404- e [921R — 6g2200 — 6923(@0)2}
+ g41f32 — 12g42RDO' — 12943]%(@0')2 + 36944030’)2 (340)
+ 36945((@0)2)2 + 7294650(@0)2} ,

which are invariant under (global) scale transformations. These actions become
invariant under (local) Weyl transformations when the couplings go; (i = 1,2, 3)
and gs; (j = 1,...,6) are separately equal. If the flow preserved local Weyl-
invariance, the beta functions of the go; and g4; should also be the same. We will
shortly show that this is not the case.

For the sake of comparison with the preceding section, we begin by analyzing
the situation when the background & is constant, which allows us to extract the
beta equations for the couplings go, g21 and g41. In this case,

52Firav
dodo

= \/57{1690646 + 4921626R + (72944 + 40") 02
(3.41)

2 ~
+ [(24g13 — SR — 12(292 — g23)e™] m} :

Choosing the cutoff Ry such that —O is replaced by Py (—0) = —0 + Ry (—0) in
the inverse propagator then leads to

Ri = V/a{ = [(24955 = 3V) R~ 12(2922 — g25)e™ | R

(3.42)
+ (T2g0 +4¥) (P2 - D7)} .

The cutoff for the matter fields follows the same logic. For example, the inverse
propagator of the scalar field is —e?? [ and we choose the cutoff €27 Ry (—01), such
that the modified inverse propagator is €2 P,(—0). Note that, in this way, the
exponentials cancel between numerator and denominator in the FRGE, and the
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3.2. Conformally reduced quantum gravity revisited

matter contribution is 6-independent. The FRGE thus reads
1 _ _
8tFk = §TI‘ { [6(2922 — 923)620 — (1294 - %b/) R + 4(18944 + b/)Pk:| 3,5Rk
|:8g()84a+ 2921825R + (6626(2922 — 923)— (12943 — %b/)é) Pk

1 B
+ (36944 + 2b/)P,f} + {6(2522 — 323)€%° Ry, + 368344(P? — O?)

— 12543RR]€:| [8906464— 29218251% + (6825(2922 - 923)

. -1
— (12943 — 30" ) R)Py + (36944 + 2b’)P,§} }

ETratRk — n—DTr 8tRkA + n—MTr a&RkA — nMTratRk .
2 P 2 P+ % 2 P+ % Py

(3.43)

_|_

Evaluating the trace via a heat kernel expansion of —0 and reading off the coef-
ficients of €7, €2 R and R2, we arrive at the beta functions

9 [(g23 — 2922)? — 16g0g44] — 8b'go 3(g23 — 2922)

ﬂg = 32#2(189444-[)/)2 3277'2(189444-[)/)2522
3 (2922 — g2s) Bos — 9 [4b'g0 — 9((g23 — 2922)* — 890gaa)] 3
6472 (18944 + V)2 23 6472(18g44 + /)3 44 5

By = 9[(g23 — 2922)(ga4 + 2943) — 2g21944] — ' g1
1672 (18gas 1 )2
~ 3(V' (3921 + 2922 — go3) + 18(3921944 + 2(2922 — 923) (2944 + 3943)))ﬂ
6472(18g4s + V)3 "
3(2922 — go3 b+ 27g44 + 18g43
3%(2(?8944"1 13')2543 * 1927r2(ing44 + 5/)2 (2822 = Bza)
02 4 2520 gag + 162(29¢2, + 60gasgas + 60g25)
864072(18g44 + b')?
n b2 + gbl(gg44 + 10943) + 81(29924 + 80944943 + 60923)544
96072(18¢g44 + b')3
b+ 27944 + 18943
 9672(18gus + /)2 bz

541 =C4

(3.44)

To compare with the beta functions of the previous section, which were also
read off as the coefficients of powers of R, we should identify all the go;’s and all
the g4;’s above. We see that these results are clearly very different from the ones
obtained in the Weyl-invariant procedure. In particular, we observe that k never
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Chapter 3. Gravitational truncations in the conformal sector

appears explicitly, and only the beta function of g4; gets a direct contribution
from the matter, via the coefficient c4.

In order to evaluate the beta functions of the couplings go2, g23, g42----Gu6,
we must now consider the case when & is not constant. The second variation of

B40) is then
52Firav
dodo

= \/5[169064& + 4% (921]:2 — 6920000 — 6923(@6)2)
— 24g93€27 V1G5V, + 24943VH RV, + 288946 R*'V .5V,
— 288945 (05VH 5V, + VH(V5)2V,.) + 12(gos — 2g22)e* 0 (3.45)
— 144g,5 ((@6)% + 2@“&@”5%%) + 24g43 R0
+ 288046(VAVY GV, V,, — O501) + 729440 + 4b’A4} .

Note that this expression is equal to (B3] with the couplings g; appropriately
split into g;;. Since this is no longer a function of —O alone, we cannot apply a
type I cutoff here, as we have done for the constant & case. Rather, we shall use
a type III procedure, imposing the cutoff on the eigenvalues of the fourth-order
operator

1 erEe
NIRRT O +..., (3.46)

0=

where, again, the dots indicate the remaining terms in [3Z3]). Similarly, given
the second variation [B.IT]), for the local matter contribution we shall impose the
cutoff on the eigenvalues of the following operators

Os =0+ 2VH5V, ,
. A 1/ .
Op=0+2V45V, - 5 (R — 6005 — 6(V6)2) :
Orw = (0 4+ 2925V + 05+ 2(V0)?) v — B +2V,uV,5 = 2V,0V,5
Limiting ourselves again to a one-loop approximation, the FRGE reads

ol = lTrLRk (AO) + E'I‘riatRk(AOS) - n—DTrLRk(AOD)
2 P(0) 2 Py(Os) 2 Pr(Op)
n_MTratRk(A@M) _nMTratRk(A@S) '
2 P(Own) Pi(Og)

(3.47)
+

The heat kernel coefficients that are necessary for the evaluation of these traces
to the desired order are known in the literature [I09-112]. We have collected the
relevant expressions in Appendix [D] and refer to Appendix [( for further details
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3.2. Conformally reduced quantum gravity revisited

on the trace evaluation. We then obtain the following beta functions,

By = L [ 890 9(g23 — 2g22)°
073272\ 18gua + 0 (18gaa+ V)% )
By = 1 g23 — 2921 — 2922 | (923 — 2922) (36943 — V')
2T 32n2 18g4s + V/ (18944 + V)2 ’
By = L ([ 2g2» 54916(923 — 2922)
22732702 \ 18gus + U/ (18gas + )2 )
By = 1 [ 2gs3  54ga5(g23 — 2922)
273272 U 18gus + U/ (18gas + )2 )’
1 29 36943 — b’ (36943 — b')?
Bun=ci+ 555 | == ,
3272 \ 540 ' 9(36gas + 20/) ' 9(36gas + 2b')2 58)
By =y 1+ L 3946 6946(36943 — b') '
2T 3002 \ 36944 + 200 | (36gaa + 20)2 )
1 3 6945 (36943 — b') — 3692
Buz =l + 945 4 9a5(36943 ) 946 ’
3272 \ 36ga4 + 20/ (36944 + 20')2
1 90g2
" 46
fu=cit s (1894 + 1/)2’
1 9092
o 45
fis =it 555 (18gas + V)2’
1 90945946
o
frs =cit 553 (1894 + 1/)2’
where ¢4 is defined in (329) and
, Mg —np —Np ,_ns+2ny —np
== — = — 3.49
“ 230472 ° 230472 (3.49)

We first note that the couplings g41 and g42 do not appear in these equations,
since the corresponding operators contain less than two powers of 0. Next, we
observe that the beta functions of gg, g21 and g41 are exactly the same as ([B.44)
at one-loop (i.e., neglecting the terms with the 3;; on the r.h.s.). As discussed in
the previous section, this was fully expected in the case of g41. It is not generally
true for the dimensionful couplings such as go and go1, but in the present case it
is 8o, as all the terms in the beta functions derive from the heat kernel coefficient
By. As we have seen in Section 23] the contributions from this coefficient are
scheme independent. We also note that the second term in (34 is equal to the
scheme—-independent part of the Weyl invariant (4, given in (B34).

We can also explicitly see that the beta functions of the various go; and g4;
are generally not equal, and thus Weyl invariance is broken. Even if we started
from an initial point where these couplings were the same, the flow would lead
us away from that situation. It is remarkable, however, that if we neglect the
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matter contributions and set gos = go3 = gg and g44 = gas = ga¢ = Ja, we find
that B = Bog = (2 and fag = a5 = Pas = Pu.

In [68], the beta functions for conformally reduced gravity in the presence of
the conformal anomaly were calculated via dimensional regularization techniques
in flat space perturbation theory. If we did the FRGE calculation above only in flat
space, we would not be able to compute the beta functions of the couplings which
multiply operators containing R, namely g21, ga1, ga2 and g43, and the remaining
beta functions would be exactly the §; above, upon equating the couplings. The
question then naturally arises, whether we can relate the beta functions we have
derived here to those obtained by flat space perturbation theory techniques.

The beta functions in [68] read

8« S 402 60
kak)\:(Zl 4o+ Q2>x\— Q4 ’y <1—|—§—|—@)’
2
kOgy = (2 —2a+ 2Q2 ) (3.50)
80
k¢ = g ‘o

In those calculations, the field o is assumed to scale as ¢ — 0 — aw under (B3),
and « is thus the anomalous scaling dimension of ¢. The couplings A, 7 and (,
Q? respectively multiply the (Lorentzian) operators of order zero, two and four
in the conformally reduced effective action. Lastly, the first two beta functions
are given for the case ( = 0. We could also assume this anomalous scaling in
our calculations, in which case our beta functions would also come with an a—
dependence, but we shall not pursue this here.
In order to compare these with our results, we make the identifications

go = A ) gQ = _%7 ’ g4 = %C ) QQ = (47T)2(2b/ + C) . (351)

The first three definitions are chosen to agree with the Euclidean version of [68],
which involves a change of sign. Since the anomaly should be the same inde-
pendently of the signature, we do not change the sign of the Riegert action under
Euclidean continuation.

With these definitions, the equations for the couplings go, g2, g4 for the flat
space case become

2.2
ﬂ)\__z_é+87222 ;
2 2
ﬁwz_w7 (3.52)
8022
542574(-
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The equation for ¢ exactly agrees with (BE0) in the special case a = 1, as does
the equation for v when we set ¢ = 0, modulo an overall sign. We find agreement
also in the equation for A up to scheme-dependent terms, again in the case a = 1
and modulo an overall sign. As we can see, it is the beta functions in the Weyl-
breaking procedure that reproduce the results of [68].

However, as it turns out, this procedure breaks not only Weyl invariance, but
also global scale invariance. That is to say, in addition to the ratios between the
coefficients of the operators in ([B.8]) being different, as we have seen from the full
set of beta functions above, new terms not originally present in the action are also
generated, and hence not even the form B40) is preserved. These new terms will
contribute to the beta functions [B48) and will themselves have non-zero beta
functions. For example, expanding the trace in [B43), the matter contributions
proportional to ¢ and ¢y multiply the operators [ dzy/g and [ dzy/gR, and we
will also have operators such as [ dz\/ge??, fdxﬁe“]%, etc. The flow thus
takes place in a much larger class of actions, where the dependence on g, and o
is not restricted by the demand of invariance under (B3).

Nonetheless, we do not expect these new terms to contribute to the beta
functions of the g4; above, as the new terms will come with powers of ¢° which
do not correspond to those of the operators multiplying the couplings g4; . .. ga6
in 340). For the same reason, we do not expect the couplings in (340) to be
present in the new beta functions B4; (j > 6), apart from g4 contributions in
the denominator. Thus, we can already say something on the existence of fixed
points by considering the (y; that we have written.

From X)), we note that the beta function for ¢ vanishes in the case ( = 0,
in accordance with [68]. It is this fixed point of the coupling ¢ that has been
argued to constitute an IR stable fixed point of the theory, driving its low energy
dynamics. In terms of the couplings g4, g45 and g4 the vanishing of ¢ is equivalent
to the vanishing of those beta functions for g45 = g46 = 0, neglecting the local
matter contribution. Remarkably, the beta functions for g4o and g43 also vanish
in this situation. The remaining beta function for g41, on the other hand, is
non-vanishing for any real value of the couplings, and one might be tempted to
conclude that there is then no fixed point solution. But g4; is not a coupling for
conformally reduced gravity in this Weyl breaking setting, since the corresponding
operator does not contain the dynamical field ¢ and, unlike in the Weyl invariant
case, g41 is independent of the other fourth-order couplings. Therefore, there is no
reason to require that its beta function vanish. If we do not impose the vanishing
of B41, we find agreement with the results of [68], at least within the restricted
set of beta functions (B52).

In order to draw more general conclusions, we would have to study the flow of
the other couplings that have not been included in the action [B40)), but which
will be generated by quantum effects. Lastly, we note that, within our restricted
set of beta functions, once we take into account the local matter contribution, no
fixed point solution for real value of the couplings is admissible.
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3.3 Conclusions

We have here calculated the beta functions of gravity in a conformally reduced
setting by means of the functional renormalization group equation. In this con-
text, the dynamics of gravity has been essentially reduced to that of a scalar field.
While it is not clear that this significant simplification can adequately capture
the main features of the gravitational flow, we have seen that in the case of the
Einstein-Hilbert truncation it yields a fixed point in the UV with properties that
are quite close to those obtained in the presence of transverse gravitons, as was
first shown in [67,85]. From a theoretical point of view, it has the advantage of
sidestepping several issues, such as gauge fixing, which do arise in the complete
formulation of gravity, and it serves as a testing ground in which to explore various
ideas.

In this chapter, we have have considered, in addition to local terms up to
second order in curvature, truncations containing the non-local terms respons-
ible for the conformal anomaly of massless matter fields. This non-local action
depends only on the number of massless fields and is thus not itself subject to
renormalization group flow. It does, however, affect the running of the other
couplings.

Following the general discussion in [67,[103], we have seen that the IR cutoff
can be implemented in two inequivalent ways, which either maintain or break the
Weyl invariance B3)) of the flow. In the case of the Weyl invariant procedure,
we have extended the results of [67] by including the contributions of matter, and
the curvature squared term. A physically acceptable fixed point is not present in
this truncation in pure gravity, but it reappears in the presence of suitable matter
fields. As an example, we have considered the case of one massless Maxwell field
and no scalar or Dirac fields, and found a non-Gaussian fixed point with three
UV-relevant associated directions. This is in qualitative agreement with results
in the case of full gravity, as we will see in subsequent chapters. The fixed point
may or may not reappear in pure conformally reduced gravity when higher-order
terms are included. We should also mention that a fixed point with the correct
properties does not appear if we restrict ourselves to conformal fluctuations after
having expanded the action. This is somehow to be expected, since scalar fields
tend to generate a fixed point with negative G.

We have shown that the Weyl breaking procedure leads to beta functions which
are very different from the invariant ones, but which generally agree with those
given in [68], at least as far as the case of a flat space background is concerned.
The set of beta functions that we have derived following this procedure and in the
case of flat space seem to admit the IR stable fixed point found in [68], provided we
neglect the local matter contribution. This renormalization group flow, however,
will break not only Weyl invariance, but also global scale invariance, and it will
hence generate new couplings that are not present in the class of actions that
we have considered. As these new couplings will have non-zero beta functions, a
proper discussion of the fixed points in this theory would require an extension of
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our current analysis. The physical relevance of such an extension to the study of
the gravitational renormalization group, however, is not clear.

From a mathematical perspective, both of these are consistent procedures.
As we have observed in Section BTl the Weyl transformations (83) should not
be regarded as a gauge invariance in conformally reduced gravity, and therefore
it is not mandatory to preserve them in the quantum theory. From a physical
standpoint, however, one could interpret this choice as that between treating the
cutoff scale k as internal to the theory (when g, is used to define the cutoff), or
as an absolute external scale (when §,,, is used to define the cutoff), and we may
therefore expect that the correct procedure for describing the renormalization
group flow of quantum gravity is the first one.

A particular feature of gravity is that the metric itself defines the proper
length and mass scale of all dimensionful physical quantities [67,103]. When im-
plementing our coarse graining in a quantum gravity context, the requirement
of diffeomorphism invariance implies that our scale k should be set not by some
rigid external metric, but rather result from the intrinsic dynamics of the theory.
This is the procedure followed in the full gravity case. On the other hand, one
could argue that at least at low energies there are various sets of phenomena that
define dynamical mass scales which are to a large extent unaffected by gravity,
such as electroweak physics determining the mass of the electron or strong inter-
action physics determining the mass of the nucleons. In principle one could use
electroweak or strong mass units to define the fiducial metric ¢ that is employed
in the second type of cutoff. However, when one considers the very high energy
regime of Planck-scale physics, neither atoms nor nuclei, nor even the vacuum ex-
pectation value of the Higgs field, are there to provide an absolute reference scale,
and gravity is then so strong that its influence cannot be neglected. Inasmuch as
we want to be able to freely evolve our effective theories of gravity between these
energy regimes by following their renormalization group flow, it seems that only
the former cutoff implementation procedure is meaningful.

The results in this chapter thus provide tentative support for the asymptotic
safety scenario, as seen in the case of the Weyl-invariant cutoff procedure, and
partially indicate that non-local operators might play a role in the renormaliz-
ation group behavior of gravity in the IR, at least as seen in the case of the
Weyl-breaking procedure for the flat space background. In order to verify both
these suggested features, we would of course like to explore the gravitational
renormalization group flow in its full setting. This is what we will proceed to do
in the remainder of this work.
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The RG flow of f(R) gravity

Based on P. F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity,
Phys. Rev. D 77, 124045 (2008), arXiv:0712.0445 [hep-th].

In this chapter, we construct an improved functional renormalization group
equation (FRGE) for gravity in d-dimensions and for a generic cutoff profile
function. Using this FRGE, we derive a flow equation for truncation subspaces
spanned by arbitrary functions f(R) of the curvature scalar. This setup allows
us to consider a very large class of truncations, of which the Einstein-Hilbert is
an example. We first illustrate the use of this flow equation in the case of the
Einstein-Hilbert truncation and discuss its main features. Then, specializing to
d = 4 and for a particular choice of the cutoff function, we derive an autonom-
ous partial differential equation governing the renormalization group flow of f(R)
gravity. From this differential equation, we independently recover the results
of [69], which indicate the existence of a non-Gaussian fixed point with a three-
dimensional UV critical surface in polynomial truncations of R of up to order
Six.

4.1 An improved FRGE for gravity

Although the FRGE formalism is a powerful tool for the non-perturbative ana-
lysis of the renormalization group behavior of field theories, in order to perform
computations within this setting we must resort to approximation schemes, as
previously discussed. The most commonly employed of these schemes is the trun-
cation approximation, whereby the full renormalization group flow is projected
into a subspace parametrized by only a subset of the infinitely many couplings
present in the effective average action. Studying the behavior of the theory within
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Chapter 4. The RG flow of f(R) gravity

this subspace then implies calculating only a subset of its beta functions, asso-
ciated with the couplings that have been retained in the truncation. Since the
renormalization group flow will generally not close on the truncation subspace,
couplings which are disregarded for lying outside the truncation will potentially
influence the running of the couplings that have instead been retained. Assessing
the reliability of results obtained within a given truncation, and hence ensuring
that any features that have been observed are not truncation artifacts, is a central
concern within the FRGE approach. The most relevant strategy for addressing
this concern is that of progressively enlarging the truncation considered. If our
results are largely unaffected under the extension of the subspace and the addition
of new running couplings, we have further inductive evidence for their reliability.

Motivated by these considerations, we will here construct a flow equation for
f(R) gravity, thus allowing us to treat truncations consisting of arbitrary functions
of the curvature scalar R. In this construction, we will perform a transverse-
traceless decomposition [IT3] of the gravitational and ghost fields entering our
effective average action, introduce auxiliary fields to treat the Jacobians result-
ing from this decomposition and implement a type I cutoff on each of these field
components. In addition, we will make use of a distinguished, geometrically mo-
tivated gauge-fixing condition which will lead to considerable simplifications in
our calculations. A flow equation employing the transverse-traceless decomposi-
tion and type I cutoffs for the field components was first derived in [37,[82], where
it was used to study the Einstein-Hilbert truncation, and subsequently applied in
the case of the Einstein-Hilbert+R? truncation in [40]. Our improvements on this
flow equation are the exponentiation of the Jacobians and the use of the “geo-
metrical” gauge-fixing condition, as first suggested in [69]. We will now comment
on these improvements in detail.

4.1.1 The geometric gauge-fixing condition

Our starting point is a scale-dependent Euclidean functional integral Zj, for grav-
itational actions. As before, and following [35], diffeomorphism invariance is as-
sured by means of the background field method, whereby the quantum metric
Yuv 18 decomposed into an arbitrary but fixed background metric g, and a (not
necessarily small) fluctuation field h,,,

Yuv = fhw + huu . (41)

The formal expression for the generating functional Zj then includes integrations

over the quantum fluctuations h,, and the Faddeev-Popov ghosts C*, C,,,

Zj;[sources| :/DhWDC“DC_'M exp [—S’[h + g] — Sgtlh; g
(4.2)
- gh[ha Ov Ca g] - AkS[h, Ca Oa g] - Ssourcc}
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4.1. An improved FRGE for gravity

Here, S[vy] = S[h + g] is a diffeomorphism invariant action functional which, for
the time being, we assume to be positive definite. In addition, Sg¢[h;g] denotes
the gauge-fixing term,

Syrlhig) = / d427/G " F, h: g) Folhs g] (4.3)

which depends on the gauge-fixing parameter « and implements the gauge-fixing
condition F,[h,g] = 0. For the construction of the FRGE, it is particularly
convenient to choose a F),[h; g] which is linear in h,,. Explicitly, we take

Fulhig) = V2 (V" by — lgpv B, (4.4)

with k = (327G)~1/2. Here and in the following, barred and unbarred quantities
are constructed with respect to the background metric and the full quantum
metric, respectively. In particular, ?u denotes the covariant derivative based on
Juv, while V, is covariant with respect to 7,,. The constant p parameterizes the
freedom of implementing different gauge choices, with the harmonic gauge, which
was employed in [37J40,82], being obtained by setting p = 2 — 1. In the following,
however, it will be more convenient to set p = 0, as this will result in significant
simplifications. We shall call this gauge the “geometric gauge”.

The ghost action arising from the gauge fixing ([@4) is constructed in the stand-
ard way, by varying the gauge condition under infinitesimal gauge transformations
and exponentiating the resulting determinant, and reads

Senlh, C, C; g = V2 / d?z/gC,, M*, C” (4.5)
with the Faddeev-Popov operator
MHE = P A <o " L+p
v = YV + Vv,V —2Tvug Yo Vo . (4.6)

The remaining terms in [@E2), ArS[h,C,C;g] and Ssource, respectively contain
the scale-dependent IR cutoff and the source terms for the metric fluctuations
and ghosts, and will be discussed in Section Note that, here and in the
following, we omit the tensor indices in the arguments of our functionals for ease
of notation, but it is understood these arguments do carry the appropriate indices,
e.g., S[h+3]=Shuw+ guwl

4.1.2 The transverse-traceless decomposition

A common technical difficulty in practical applications of the FRGE for gauge
theories and gravity is the construction of the IR cutoff AgS[h,C,C;g] and the
inversion of F,(f) + R, which requires the (partial) diagonalization of these operat-

ors. To facilitate this in our case, we perform a transverse-traceless decomposition
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Chapter 4. The RG flow of f(R) gravity

of the metric fluctuations and the ghost fields and impose the cutoff on each of
the resulting component fields. Following [37.4T], we will call this cutoff a “type
Ib cutoft”. We then decompose the metric fluctuations h,, into a trace part
hff,, = é Juvh, encoded in the scalar h, a longitudinal part, encoded by the trans-
verse vector {, and the scalar o, and a transverse traceless part hEl, according
to

_ _ I 1 _ 1
huw = hy, + Vo + Vi€ + Vi Vo — EQWVQU + ngh, (4.7)
with the component fields subject to the constraints
g"ht, =0, VFRL, =0, V', =0, h=g.h". (4.8)

Similarly, the ghost fields C*, Cu are decomposed into their transverse and lon-
gitudinal parts CT#,CT and n, 1] as

Co=Cr+Vuj, Cu=Ci+Vuy, VFC;=0, VFC;=0. (4.9

From eqs. (1) and @3], it is clear that not all modes of the component
fields contribute to the metric and ghost fields. In the metric decomposition,
the constant mode of the o-vectors, C, = @Mo satisfying the conformal Killing
equation

2
V,.Co +V.Cp gu,,V cH (4.10)
and transversal vectors solving the Kllhng equation
vugu + vu&u =0 (411)

do not contribute to h,,. Analogously, the ghost fields C,, C* are independent
of the constant modes of 7, 7. These modes are unphysical and must be excluded
from the spectrum. In fact, this is also a necessary requirement for the invertibility
of the Jacobians arising from the coordinate transformations (1) and (£3J), as
we will see below.

A virtue of the TT-decomposition is that the component fields (almost)
provide an orthogonal basis for the quantum fluctuations. Evaluating the scalar
product in the ghost sector gives

(C,C) = / a5 C, O = / d12/G{CT OV — ) (4.12)

establishing that this decomposition is orthogonal. In the metric sector, on the
other hand, the inner product becomes

(hD, @y = /ddx\/_h D g g0 b2
:/ddx\/?{hgyﬁ R Ty _ 25}(}) [guuﬁ2 +R””] 51(,2)

—26VRV, 0 — 2P RV, 0V

(4.13)
md= 2 & B 1,2 4 L@
+ oM [—— p (V) + VRV, o +Eh h },
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4.1. An improved FRGE for gravity

which is orthogonal up to the ,-o-mixed terms. We note that these crossterms
vanish, however, for the Einstein backgrounds (satisfying R, = Cg,, ) considered
in the next section, i.e.,

/ddx\/ﬁﬁﬂﬁ‘“’@ya = —C/ddx goVHe, = 0.

Thus, in that case, the component fields do provide an orthogonal basis for the
quantum fluctuations.

The inner products [@I3) and (I2) can be used to compute the Jacobians of
the coordinate transformations (7)) and [@3)). For this purpose, we follow [104]
and consider the Gaussian integral over h,, and C,,C*. In the metric sector,
this yields

/ Dhyy exp [~ (h,h)] = Jgay / Dh\, D, DoDh
(4.14)

X exp {— %/ddx\/ﬁ{hEVhT“” +Ih? + (¢, 0] M#v) [fl,,cr]TH )

where M (#*) is a (d4-1) x (d+1)-matrix differential operator whose first d columns
act on transverse spin-one fields £, and whose last column acts on the spin zero
fields o. The corresponding matrix can be read off from (@I3)),

(4.15)

M) — [ ~2[g"V? + R S2RVV, } .

WARY (T2 4V, BT,

The Jacobian Jgray is found by performing the Gaussian integrals in (@I4)) and, up
to an infinite normalization constant which can be absorbed into the normalization
of the measure, reads

1/2
. (4.16)

Jgrav = (detl(lT.,O) [M(N)V)} )
Here, the subscript (1T,0) refers to the matrix structure explained above and
the prime indicates that the unphysical modes are left out. The Jacobian intro-
duced by the change of coordinates in the ghost sector [3) can be determined
analogously. Setting

/ DO DE, exp|—(C, C)] =

(4.17)
Jeh /DC’T“ DC’E Dn Dijexp {— / dlz\/g {C’E crt —7v2n}
and performing the Grassmann functional integrals results in
Jgh = (detg[—vQ])_l . (418)
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Chapter 4. The RG flow of f(R) gravity

In order to include the contribution from the Jacobians in the partition func-
tion {2), we follow the Faddeev-Popov trick and introduce a set of auxili-
ary fields to exponentiate the determinants. This leads to an additional term
Saux|aux. fields; g] in Zy. Let us first consider Jgray, arising from the metric sec-
tor. Introducing the transverse ghost EE, cT*, a “longitudinal” Grassmann scalar
b, b, a transverse vector field CE and a real auxiliary scalar w, we can use standard
results on Gaussian integration to write (ZI0) as

Jaray = / Dc, D™ Db Db D, Dw exp l — / ddx\/g{ [¢F, w [M W] [¢T W)™

I [MW’[cE,b]T}] .
(4.19)

Lastly, the Jacobian from the ghost sector [ZIJ)) is exponentiated by introducing
a new complex scalar field s, 3,

Jogh = /DEDS exp [—/ da gs[—@Q]’s] . (4.20)
By combining the results (ZI9) and (£20), we then find
Saux[CT, 5,5,w,¢%, ¢, b,b; 9] = / ddx\/f]{[ﬁg,w] [M(”’”)]/[Cg,w]T s
(LB M) (BT 4 5[0 s} '

Here, the primes are placed as a reminder that the unphysical modes have been
excluded from the auxiliary fields.

In [B7,82], instead of working with the fields &, 0, and 7,7, non-local field
redefinitions were introduced,

g — & =V -Rice", 0 —6=1/(V22+ 4 V,RV, 0, w2
T]_>7A]: _627]) T_]_>7_A]: _6277)

where Ric(B), = R} B,. The Jacobians arising from these transformations elim-
inate the Jacobians from the TT-decomposition in the case of the background
Einstein spaces ¥,,, employed in those calculations, and hence no auxiliary fields
needed to be introduced. However, while these redefinitions are adequate for
truncations including up to two powers of curvature, they pose a problem in
higher-order truncations, causing poles to appear in the evaluation of the traces,
due to the fact that the heat kernel expansion will involve derivatives of the trace
arguments. Overcoming this limitation by exponentiating the TT Jacobians and
sidestepping the field redefinition, we can treat truncations including arbitrarily
high powers of curvature in our FRGE.
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4.1. An improved FRGE for gravity

4.1.3 The FRGE in terms of component fields

After discussing the new ingredients for the improved FRGE with a type Ib cutoff,
we are now in the position to construct the corresponding flow equation. To
lighten our notation, let us first introduce the index sets

L = {hT7§707 h} NEES {éTacaﬁﬂ?} ,

_ 4.23
13 = {<T7w7§7S7ET7CT7b’b}7 ( )

and a shorthand notation for the quantum fields,
X = {hT7 57 g, h7 CTa w, ga S, 07 , CT7 ba CTa ﬁa éTa B} . (424)

The two remaining ingredients in the scale-dependent partition function ([2])
which have not yet been specified are the IR cutoff A;S and the source terms.
As previously discussed, the IR cutoff is constructed in such a way that, for all
fields (including the auxiliaries), the integration over the p? = —V?2-eigenmodes
with large eigenvalues p? > k? is unaffected while the contributions of the modes
with small eigenvalues p? < k? are suppressed. To this end, AS provides a
momentum-dependent mass term which is quadratic in the fields (£24) ,

AS =1 3 (G (RE™)aaG) +5 D (W (RE ) pruatbe)

C1,62€l1 P1,02€12
+ % Z <<17 (Rzux)§1§2§2> .

S1,52€13

(4.25)

The operators R§ ™, R%h, and Ry"™ depend on the background metric only. In or-
der to implement the desired suppression behavior, they must vanish for p?/k? —
oo (and in particular for k2 — 0) while, for p?/k? — 0, they must behave as
Ry — Zik?, where Zj, is a possibly matrix-valued k-dependent function. In addi-
tion, hermiticity requires that (R )c,c, = (Rk)z1<2 and (R )y, = _(R’f)jlnw for
bosonic and Grassmann-valued fields, respectively. Furthermore, (R )y, = 0 if
both 1,19 € {CT,n,cT,b} or {CT,7,ET,b}. In the sequel, we will denote the
three terms in (20 by AgSgrav, Ak Sgh and AgSaux, respectively.

Finally, we specify Ssource; Which introduces source terms for all component
fields, again including the auxiliaries. Denoting the sources for the bosonic field
and ghost fields by J and K, we set

Ssource = - Z<JCaC> - <JCT7<T> - <Jwaw> - <j§7§> - <JS7S>

ceh

- Z <Kwa¢> - Z <Kwa¢>~

pe{CT,n,cT,b} pe{CT,7,eT,b}

(4.26)

In the following, we denote the sources collectively by 7, which allows us to write
[@20) schematically as
Ssourcc[j;g] = _<j7X> . (427)
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Chapter 4. The RG flow of f(R) gravity

The relations between the component sources and the standard sources for the
metric fluctuations A, éw C* have been worked out in detail in [37], where it
was shown that the standard sources can be reconstructed from the 7.

With these results at hand, we can write the scale-dependent partition function
[#2) in terms of the component fields,

Zk[j§ g] :/DX exp [_S[h + g] - ng[h§ g] - Sgh — ApS — Saux — SsourCC] .
(4.28)
Note that the k-dependence on the right-hand side of this equation arises solely
through the IR cutoff AgS.
We now explicitly derive our improved FRGE from this partition function,

in an analogous manner to [37]. From (28], the scale-dependent generating
functional for the connected Green’s functions is given by

WilT: 9] = nZi[T: 3], (4.29)
and the classical component fields are obtained as

Pi = (Xi _\/E(Sjl’

where we have collectively denoted the classical counterparts of the quantum fields

E@24) by

(4.30)

Y= {BTaga o, Ba ETa‘Dat_a t,’UT, 0, uTa T, ’DTa 0, ﬂTa 77_} . (431)

The classical counterparts of the fundamental fields h,,,,, C* and C), can be recon-
structed by substituting the corresponding component fields into the formulas for
the TT-decomposition. For later purposes, we also define the classical analogue
of the quantum metric [II)

Juv = <'7u1/> = guu + BMV . (432)

We then construct the scale-dependent effective action as the Legendre-transform
on Wy, with respect to the component sources 7, taking the latter as functions of
the classical ﬁeld&ﬂ y

Ty [p;9] = (T, ) — Wi [T;4] - (4.33)

The effective average action 'y is defined as the difference between Iy and the
cutoff action with the classical fields inserted,

Tilp: 9] = Tile; 9] — AxS[e; g .- (4.34)

LAs was shown in [37], taking the Legendre transform with respect to the sources for the
(physical) component fields is equivalent to taking the Legendre transform with respect to the
sources for the fundamental fields.
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4.1. An improved FRGE for gravity

The derivation of the FRGE governing the k-dependence of T'x[p; g| proceeds
in several steps. First, we differentiate (£29) with respect to ¢ = In(k),

—kO Wy = 3T | Y (G ® G)kO(Ri)ec
KSHS IS

H3T | Y (1 @) kOk (Ri )y (4.35)
| Y1.92€l2

+%Tr/ Z (1 ® x2)k0k(Rk)xix2 |

L X1,x2€ 13

where we have expressed the right-hand side in a matrix notation. We then
introduce the Hessian of the effective action,

= (2)\ " 52Tk
F<2>) (z,y) = (4.36)
( y \/ y) 0pi()dp;(y
with [j] = 0,1 for commuting fields ¢; and Grassmann fields ¢;, respectively.

This Hessian is the inverse of the connected two-point function
1 52W,

Ja@)a) T @)T(y)’

(Gr)ij (,9) = (ixg) — @i(@)p;(y) = (4.37)

in the sense that

P . = (2)) ! = 10(z —2)
[5G, o) (52 (0.2) v oa

Using these relations, we can express the expectation values (x;(z)x;(y)) in eq.
E39) through
N
(B7), @e2) + 6i@)s ).

Finally, performing the Legendre transform (£33) and subtracting AyS[e;g]
yields the desired FRGE for I';[y; 7]

—1
kO (Rk)clcz}

C12

koWTulpig) =4[ > (1P +Re)
GGen

- —1
i) Y (Fﬁf’) + Rk)w . kak(Rk)wlwz] (4.39)
1, aels e

il S (PR

= X1X2
X1,X2€13

kak(Rk)xw@} :
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Chapter 4. The RG flow of f(R) gravity

Here, we have again used a matrix notation on the right-hand side, and the barred
index sets run over the classical fields,

I_l = {BT75757 h} ’ IQ = {T}TJ’UTa @7 Q} ) j3 = {ET,(D,t_,t,’aT,UT,’F,T} . (440)

The first, second and third term in (£39]) thus encode the contributions from the
gravitational, ghost and auxiliary fields, respectively.

Eq. @39) is the desired exact FRGE for the effective average action employing
the improved TT-cutoff. Compared to [37L[82], the new feature is the appearance
of the third trace term, capturing the contribution of the auxiliary fields, which
replaces the momentum dependent field redefinitions in the metric and ghost
sector. As it will turn out in the next section, this form of the FRGE is very
convenient when studying truncations involving a general function f(R).

4.2 Constructing the flow equation of f(R) grav-
ity

After deriving the exact FRGE (€39) in the last section, we now proceed by pro-
jecting the resulting renormalization group flow on truncation subspaces spanned
by arbitrary functions of the curvature scalar. In view of recent applications
of renormalization group methods to gravity theories including extra dimen-
sions [T7[IT4], we do not fix the space-time dimension d. In addition, we keep the
shape of the IR cutoff generic.

4.2.1 The truncation ansatz

Let us start by specifying our truncation ansatz for T'k[p; ], which we take to be
of the form

Tile; 9] = Trlgl + Setlg — 5: 9] + Senlg — 3, CT,CT, 0,03 9] + Saux,  (4.41)

with

Tulg) = 1o [ 4oV AR, (1.42)

This ansatz captures the renormalization group flow of f(R) gravity by promoting
the classical function f(R) to be scale-dependent. Note that, modulo the presence
of the auxiliary fields term S,ux, this truncation is exactly of the type (222,
introduced in Section The features and limitations of this truncation have
been discussed in detail in that section. For convenience, we summarize that
discussion here. In our truncation, the renormalization group effects in the gauge-
fixing, ghost and auxiliary sector are neglected by treating Sgr, Sen and Saux
as classical and not containing any scale-dependent couplings. In effect, this
implies neglecting a term I';[g, g] in our effective average action, which encodes the
deviations from I';[g] for g # §. The main reason for this is technical simplicity,
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4.2. Constructing the flow equation of f(R) gravity

as evaluating the functional traces otherwise becomes a formidable and sometimes
impossible task. The motivation behind this simplification is twofold. First, it was
argued in [35] that neglecting the renormalization group running in Ser and Sen
is, to leading order, compatible with the modified Ward identities of the theory.
Secondly, even when treating Sy¢ as classical, renormalization group effects in
this sector can be included by taking v = 0, which corresponds to a fixed point of
the renormalization group flow [37.[8T]. Recent studies which have gone beyond
this ansatz suggest that implementing the running of the ghost sector [80] will
not have a large effect on results otherwise obtained. Similarly, generally setting
I'klg, ] # 0 will lead to quantitative differences in the results but is not expected
to alter the qualitative picture.

When substituting the truncation ansatz (@Z1]) into the FRGE ([@39) we find
that the gravitational trace only receives contributions from

8™ [g; g] = Tklg] + Seelg — 55 9], (4.43)

while the ghost and auxiliary traces are evaluated based on the classical actions
Sgh and SauX7

ROWTilprg) = 3T Y0 (T8 4+ Ry
Ci1,¢2€h

i Y (s Rk);lw KO (R )i | (4.44)
P1,p2€ly

[ Y (SR KR

X1,X2€13

. KOy, (Rk)clcz}

1

The index sets here are given by ([@Z0).

Our main task now is to evaluate the traces appearing on the right-hand
side of [@44). This is done as follows. First, in Section 222 we first compute
the Hessians of the various terms appearing in ([@ZI]). This computation can be
simplified by choosing the background metric g, as the one-parameter family of
metrics on the d-sphere S? (parameterized by the radius r or, equivalently, the
curvature scalar of the sphere), as this suffices to distinguish different functions
of the curvature scalar.

For these backgrounds, the unphysical modes discussed in Section cor-
respond to the lowest —V2-eigenmode (I = 1) of the transverse vector &, and the
two lowest eigenmodes (I = 0,1) for o in the gravitational sector. In the ghost
sector, strictly speaking only the lowest mode (I = 0) of the scalar 7,77 must be
excluded, as can be seen from ([@3). Using Table [D1lin Appendix [D] one can
explicitly check that these modes are annihilated by the operators appearing in
the Jacobians [@I6) and [EIR) restricted to S¢. However, as in [41L[69], we here
take the viewpoint that, since the ghost contribution is supposed to cancel out the
contributions of the gauge degrees of freedom, and since our gauge choice p = 0

63



Chapter 4. The RG flow of f(R) gravity

aligns the gauge orbits with the directions 55, o in the a — 0 limit, as we will see
shortly, these cancellations should here occur mode by mode. For this reason, we
also exclude the lowest mode (I = 1) of the transverse ghost field C*, Cl" as well
as the second lowest mode (I = 1) for the scalar ghost 1, 7. This implies that all
analogous modes in the auxiliary sector are also excluded.

In Section 23] we use these results to construct the IR cutoff operators ASy
explicitly. Lastly, we substitute those results back into (£44]), finding cancellations
between several terms appearing on the right-hand side, so that the final result
[T takes a surprisingly simple form.

4.2.2 Computing the Hessian F,(f)

We start by deriving the term quadratic in the metric fluctuations h, arising
from T'x[g = g + h; g|, viz. EZ2). For this purpose, we expand I'y[g + h;g] in a
Taylor series in h,,

Ti[g+ hig] = Tklg; gl + O(h) + T + hy g] + O(h%). (4.45)

Here, f‘zuad [ + h; g] is found by taking the second variation of I'y[g + h; g] with
respect to hy, and setting g, = g, afterwards. Applying the chain rule, we
obtain

OT = 167TG /dd R)3*\/g + fi(R) (2(0y/9)(OR) + \/9(3*R))

(4.46)
+ VAl (R)OR)).

where, here and in the following, the prime denotes a derivative with respect to R,
ie., fi(R) = 6'f5}(%R) , etc. We then substitute in the above expression the variations
of the metric and Ricci scalar, which we have collected in Table [B.1lin Appendix
Note that the result simplifies considerably once we set g,, = g. with a
spherically symmetric background metric. Performing the TT decomposition of

hy according to (A1), a lengthy but straightforward computation yields

e [p; g) = e / NI (4.47)
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4.2. Constructing the flow equation of f(R) gravity

Co=3 00, (V2 = fu+ HEBRA T 4 L (dfi - 2R fE) € [V2+ L R] ¢
gt b [4d =12V = 2(d = 1) (A= 2)ff - 4R fY) V2
+(d=2)(d f— AR )+ 4R ]
+ ok 0 [20d = 12T - (d— 1)((d - 2)ff — AR f)T®
— (d(d — 1) fr — R(dfg, + 2R f})) V* — R(dfy — 2R f;)V? |0
— & h[2d = V2V — (d = 1)((d = 2)ff — ARF)V

~ R((d -2} — 2Rf)V?] o
(4.48)

Here, the barred quantities are constructed from the background metric g,,, and
we have suppressed the argument of fi.(R).

Following the procedure outlined above, we also extract the quadratic terms
arising from Sgr, Sen and Saux. Applying the T'T decomposition in the first two
cases yields

st == [atei{e [0+ 3R] e~ do[(@- 1092+ R 9o

(4.49)

and

st ==V [ate 5 { CF [V + 4 R) €™~ 2 [(d-1- ) ¥+ RYY) 0},
(4.50)

while substituting the spherical symmetric background metric simplifies S,ux to

st = [t g {¢™ [ 92— BR) G4 M [~ 92 - LR <
+ 5[V s+ B[V + RV b+ w [V 4 RV w )

(4.51)

Here, the primes on the operators indicate that the corresponding number of low-
est eigenmodes are excluded from the physical fields. Note that, for the special
case d = 4, eqs. [@41), @49) and [@I0) are in precise agreement with earlier
findings [115]. We also remark that, while in the harmonic gauge used in [37]
performing the TT-decomposition in the ghost sector is optional, working in the
gauge (L)) requires this decomposition in order to diagonalize the quadratic fluc-
tuations.
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Chapter 4. The RG flow of f(R) gravity

4.2.3 Adapting the cutoff operators

Our next task is to explicitly construct the IR cutoff operators ([23]). For this, it
is useful to split Ry (p?) into its matrix part and a scalar function Ry, encoding
the momentum-dependent mass term,
2 _ 2 _ 2p(0) (&2 /1.2
[Ri0)],,,, = [2k] ., Be@®) = [2k] , , K RO (=V?/k?). (4.52)

p1p2

The dimensionless profile functions R(?) (—V?/k?) interpolate between RV (0) = 1
and R()(00) = 0 and otherwise allow one to adjust the “shape” of the momentum-
dependent mass-squared term. The specific form of these profile functions are
given in Appendix [E] for the more commonly employed choices. As per the usual
cutoff implementation prescription (viz. Section 23]), the aim of the IR cutoff is
the regularization of Hessians
(2) _ =2
T®] = [Tk
in such a way that, in the type I scheme, all covariant Laplacians appear in the
form

(4.53)

P1rp2

P, =~V + Ri(p?) . (4.54)
Thus, as a result of the IR regularization,
5 _
TP+ R = [F(-V2+ Rk, )], (4.55)

depends on the covariant Laplacian —V? through the combination (5] only.

With these prerequisites, we can now explicitly construct AgS for the trun-
cation (4I)). In order to simplify the resulting expressions, we use the gauge-
freedom retained in (£3)) to set

p=0, a—0. (4.56)

As eq. (£E9) below will illustrate, this gauge choice leads to a factorization of
the physical and gauge degrees of freedom contained in Ay, in such a way that
the physical degrees of freedom are parameterized by h};l, and h, while the gauge
degrees of freedom are confined to f;f and its longitudinal component, o. Thus,
from a geometrical point of view, ([L20) aligns the gauge orbits with the directions
E, o, motivating the name “geometric gauge”. This feature will later lead to a
considerable simplification of the flow equation. In particular, we will find that
the matrix structure of the operator F,(f) + Ry diagonalizes, so that the latter can
be easily inverted.
Let us start by constructing the IR cutoff for the auxiliary fields. Considering
XD, it is straightforward to establish that the prescription (@50 is implemented

by
AkSaux = /ddx\/§ {<THR]9<E + ETMR]CCE + ngS

(4.57)
+b [P~ 75 RRx — V' bt w P2 - L RRy - V4w
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4.2. Constructing the flow equation of f(R) gravity

Analogously, starting from ([@30), we find the IR cutoff in the ghost sector,
ApSgh = ﬁ/ddx\/ﬁ{éERkOT“ + 2Dy [P,S — L RRy - (—62)2} n} .
(4.58)

The construction of Ay Sgray is slightly more involved. Here, we first observe that,
for p =0, eq. @49)) diagonalizes and contains the fields &, and o only. Combining

D) and [E9) gives

Fgrav quad o G/ddﬂfx/_ i lul/ |:fk VQ fk"’ d(d Rfk:| h,ul/T

e b [4d = D2V —2d = 1) (A= 2)ff —4R f) V2

+(@=2)(dfu— 4R f)+ AR ] R} (4.59)
o Jai{o e ae
1

-0 [((d_ 1)V2 + R)® vﬂ a+(9(a)}.
Compared to the terms appearing in Sef, the £, 00 and ho-contributions from

f‘zuad are suppressed by one power of @ and are indicated by O(«) in the formula
above. In the limit a — 0, these terms do not contribute to the flow equation
and will thus be neglected in the following discussion. Again following the rule
@E3), we find the IR cutoff in the metric sector,

MiSam= s [Aov/a{nT, [~ fi R 1T 4 ot -

bt~
+2(d—1) ((d—2)fr — 4RfY) } }
+%2/ddx\/§{§u [P;?—W_gng]gurd_lzg[((d—l)Pk—R)zpk

—([@= D)=V = RB)* (=930 + 0(a) }.
(4.60)

This result completes the adaptation of the IR cutoff to the truncation (ZZI]).
From the results [@51), (I5]) and [@60), it is straightforward to read off the
entries of the cutoff operator Ry and construct F,(f) + Ry, which indeed assumes
a diagonal form in field space. For convenience, these entries are summarized in
Tables [Tl and

We can now explicitly write the traces in [Z4) for the truncation EZI]).

Substituting the operators Ry and (F,(f) +Ry) ! listed in Tables 1] and and
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Chapter 4. The RG flow of f(R) gravity

Index | Cutoff operator Ry
WTRT | — o5 fr Re
hh 64=7r1Gal2 ﬁzh
&8 Tora [PI? -V %RRk}
— 2 — — e — — —
o0 | {5 (P — 25 R) P+ (V2 + 75 R)°V?]
CTCT | V2R,
mo | 2V2eE [PE- V- L RRy|
¢ 2Ry,
eleT Ry
Ss Ry,
bb P2 - V'~ L RRy
wo | 2|PE-Vt - 24 RR]

Table 4.1: Matrix entries of the operator R to leading order in «. The first column
indicates the indices of the matrix element in field space, while the second column
contains the corresponding matrix element of Ry. The elements are symmetric under
the exchange of bosonic indices, while they acquire a minus sign when Grassmann-valued
indices are swapped. RI" is defined in eq. [EB2).

recalling that unphysical modes are to be excluded, we find

— k@kRk kakRk
koD, = — Lty | 2252 % | _1my/ [f]
CETTRTI R  LR| 2B IR
kOw(Znif! KOy (Z e RIM
+ %TrzT 7k( Nkfkf(:zm — +%Tl"o —k( fé)h]; Y| )
ZNk (f,’~C Pe + fr — Ga=n) Rf,’c) Iyl
(4.61)

where I'y, and fi(R) were introduced in eq. (A2). Here, Zy captures the scale-
dependence of Newton’s constant via G = Z;chchv with G} denoting its value at
some reference scale <. The subscripts 0,1T,2T on the operator-traces indicate
that their arguments act on fields with spin s = 0, 1, 2, while the primes imply
that the corresponding number of lowest —V?-eigenvalues are excluded from the
trace. In addition, we have introduced

R =4(d—1)2f (P~ (-V*)?) +2(d—1)((d—2) f —ARf) Ry, (4.62)
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4.2. Constructing the flow equation of f(R) gravity

Index | Matrix element of I‘,(f) + R
AT ﬁ{ Ji P = fi+ ) 1)Rfk}
hh 6471'Gd2 F(Q)hh
2
& | e |- 3R]
oo | {525 (P — 75 R)° P
CTet | V2P - 4 R|
mn 2\/5%[_1@—%11?} Pr
cc P [Pk - gR}
et | [P- 4R
Ss P;.C
Bb [P~ 7 B) P
wo | 2[Pi- 25R] Py

Table 4.2: Matrix entries of the operator F,(f) + Rk to leading order in a. The first
column indicates the indices of the matrix element in field space, while the second column
contains the corresponding matrix element of F,(f) + Ri. The elements are symmetric
under the exchange of bosonic indices, while they acquire a minus sign when Grassmann-
valued indices are swapped. F(Q)hh is defined in eq. (LG3).

and

FEM = a(d =121 (P~ 75 R) +2(d—1)(d—2) ff (P~ 7R
+d(d_2)fk7

) (4.63)

in order to write the last scalar trace in compact form. After carrying out the
variations 1",(62) l9,...:g], we can identify g,, = g in (G, and we drop the
bar on the metric in the sequel. For later reference, we denote the four terms
appearing on the right-hand side of {@EI)) by S}, i = 1,...,4, respectively.

Note that the first two terms on the right-hand side of our flow equation (L£G1])
contain the contribution from all vector fields and all but the h scalar fields,
respectively. If we had not imposed the same mode exclusion for those fields
in their respective sectors, combining their contribution under a single primed
(or, in the scalar sector, double primed) trace would have to be compensated
by the presence of “single mode” terms on the right-hand side of our equation,
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Chapter 4. The RG flow of f(R) gravity

corresponding to those modes which are not present in the primed traces but which
should not be excluded in our computation. For d > 2 and spherical backgrounds,
these terms do not contribute to truncation subspaces which contain terms linear
in R as the highest power of the curvature scalar. This is due to the fact that
the trace terms are always proportional to the volume of the background sphere
and, therefore, inherit extra inverse powers of the curvature scalar V oc R~%/2,
Thus, contributions coming from discrete eigenvalues are effectively suppressed by
a factor R%/? and hence, for d > 2, only start to affect the running of couplings
multiplying [ d‘ix\/gR”,n > 1. For the case of higher-order truncations, and
particularly when recovering the fixed point results of [41L[69] in Section [L4.2]
we have also verified that the presence of those terms leads only to a very small
change in the numerical results.

Let us close this subsection with the following observation. An interesting
feature of the RG equation ([EI) is that it consists of a ‘universal’, fi(R)-
independent part, and a truncation-dependent part. The former encompasses
the terms S} and S? in the first line and captures the contribution of the scalars
1,0, s,b,w and the auxiliary vector fields ¢, ¢,,. The second part, which consists of
the traces Sp and ), stems from the gravitational degrees of freedom h [, and h,
and encodes all information about the particular form of f;(R). Retrospectively,
the appearance of this structure is not surprising: it is a direct consequence of
the geometrical gauge-choice [hG]), which ensures that the gravitational degrees
of freedom are carried by k., and h only.

4.2.4 Heat-kernel techniques for trace evaluation

In order to construct non-perturbative beta functions from the flow equation
([5T)), the final step is the evaluation of the operators traces in terms of curvature
invariants of the background manifold. As we have discussed in Chapter ] and
explicitly seen in the case of conformally reduced gravity in Chapter [ this can
be done by standard heat-kernel techniques. In this section, we briefly illustrate
this method for the traces in our flow equation ([GT]).

In order to be able to apply heat-kernel methods in the current setting, we
first have to complete the traces by adding and subtracting the missing modes
according to

T W (=V2)] = Te,[W(=V?)] = Y Di(d,s)W(Ay(d, s)). (4.64)
1e{ly,..lm}

Here, W is an arbitrary, smooth, operator-valued function and s denotes the
spin of the fields on which the covariant Laplacian acts. The discrete sum in
(52 can be evaluated using the multiplicities D;(d, s) and eigenvalues A;(d, s)
for —V? acting on a spin s field, given in Table [D1] of Appendix[Dl. To evaluate
the complete traces, we make use of the asymptotic heat kernel expansion for the
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4.2. Constructing the flow equation of f(R) gravity

trace of the operator —V? (cf. Chapter B) to arrive at

Tr [W(-V?)] = (47T)—d/2/dda:\/§ {Qa2W]trbg + Quja_1[W]trby
+Qd/2_2[W] trbs 4 .. } ,

where the functionals @, [W] have been defined in ([2Z34]) and the tr b,, are the heat
kernel coefficients of the Laplacian operator, which we have collected in Appendix
D1

It is convenient to reexpress the functionals @,[W] for n > 0 in terms of
dimensionless threshold functions @, ®, Y, T, encoding the dependence of our
evaluated traces on the choice of the cutoff shape function. These functions are
defined in Appendix [E] where their relation to the functionals @, [W] appearing
in our traces is also given. In particular, the evaluated traces S, S? and S} may
be written in terms of the standard threshold functions (E) via (EIQ), while
the @, in the last trace in ([@LGI) is given by the generalized threshold functions
(E2) by means of (EIQ).

Typically, the coupling constants g; will enter the right-hand side of the flow
equation also by means of their k-derivatives. In this respect, it is convenient to
define their anomalous dimension 7, (k) = kO In(g;). The anomalous dimension
of Newton’s constant is then given by

(4.65)

ne (k) = —k0 In(Zyk) = kOy In(G) . (4.66)

With these tools, we have now all the ingredients to derive the beta functions
for most choices of fi(R). To conclude this section, we illustrate the techniques
just introduced by expanding the “universal terms” in the first line of (L&) up
to linear order in the curvature scalar. These results will be very useful when
deriving the beta functions of the Einstein-Hilbert truncation in the next section
and the In(R) and R~" truncations in Chapter[El Following the steps just outlined
and using the expressions for the heat kernel coefficients given in Appendix [D.1]
we find for the first two traces in our flow equation

Sl _ kd (I)l dd k_2 1 (I)2 1 (I)l dd R

k__W{ d/2/ a\/g+ k(5 P52 + 5 d/2—1)/ /g }a

St = K d—1)®}, [d

k——w{( -1) d/2/ /9

R (e, ¢ S ), ) [t )

(4.67)
where we have defined
L = 0P (0), L =dP(0),
©) (N) - (4.68)
.= Tﬁ;m(l, 0,0), Tﬁ,m,l = Tﬁym_’l(l, 0,0),



Chapter 4. The RG flow of f(R) gravity

in order to lighten our notation. Here and in the following, ®2, ~p 10

Ti mil without argument will denote the cutoff-shape dependent threshold con-
stants defined above, while, for the related threshold functions, the argument will
always be given explicitly.

We close this subsection with the following remark. In order to evaluate the
contributions of the traces to our truncation, we use the early time expansion of
the heat-kernel,

1

) d/2 d d
Tr [e_sv } = (E> /ddfc\/ﬁ [‘Drbo sT2 4trbys 2T 4] (4.69)

expanding for small values of s. Based on perturbation theory, one would at first
sight expect that, while this is adequate for investigations of the gravitational
renormalization group flow in the UV, in the IR this should be based on the late-
time expansion of the heat-kernel [T16,117], expanding the traces for large values
s. Analyzing the Laplace-transformed functions W(s) arising from (EGI]), one
however finds that, thanks to the IR cutoff, lim,_, W(s) =0 for k£ > 0. Thus,
even for small values of k, the main contribution to the integral in [234]) (or, more
precisely, (231])) arises from small values s, so that the early time expansion of
the heat kernel can also be used to investigate the gravitational renormalization
group flow in the IR.

4.3 The Einstein-Hilbert truncation

As a first application of our flow equation, we consider the Einstein-Hilbert trun-
cation, which consists in setting

fr = —R+2A, (4.70)

where A is the running cosmological constant. The Einstein-Hilbert truncation
has been extensively analyzed in a number of studies [35H39L[69.[82], and we there-
fore refrain from perfoming a detailed investigation of its properties here. Rather,
we will calculate its beta functions in d = 4 and for the case of the optimized
cutoff (EI2) so as to establish its most prominent feature, the existence of a UV-
attractive non-trivial fixed point for G > 0,A > 0, where G = kG and A = Ak2
are the dimensionless Newton’s and cosmological constant respectively.

4.3.1 Deriving the beta functions

In order to derive the beta functions of the Einstein-Hilbert truncation, we must
evaluate the ‘non-universal’ traces S; and St in the right-hand side of the flow
equation ([LGTI]). Substituting the ansatz ([LT0) into the traces, following the steps
outlined in the previous section and using the heat kernel coefficient formulas in
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4.3. The Einstein-Hilbert truncation

Appendix [D.1] we find

kO, (G_le)
G~ (P. —2A+ 2R)

kOy, (G_le) 2 ko (G_le)

3EH 1
Sk =3 TI'QT

1

=T | G T oA) T 3G (P — 2A)2R+ O(R?)
- 5(—24) — Lned}(—2A (4.71)
" (4m)2 {5 [¢2(_2A) - §HG@2(—2A)} /d4x\/§
— k2 [13_0 (@3(—2[&) - %nGég(_g/}))
+ % (‘I’i(—2A) - %776‘&)}(_2[\))} /d4x\/§R+ (’)(RQ)} ,
and
O (G
S~y | f((Pk —P%kA))
et - i
~ (472 {[@5(_51‘) - 5ncd>%(—§A)] /d4x\/§ (4.72)

while the left-hand side of the flow equation reads

_ k4 — AkOLG  4A k0,G 2\ R
ko, = ~/d4 2| koA — /2 4+ =) + D)=
ST Wg[ < SR G) < G G) 2
(4.73)

expressed in terms of the dimensionless couplings. Setting d = 4 in ({01, adding
all contributions S;, and comparing the coefficients on both sides of the flow
equation for the case of the optimized cutoff, we arrive at the beta functions

B — 2k 3(108 — 819A + 1860]\? — 239?]\3 + 259g&4 — 1472]\f)é
2(4A — 3)[(42A2 — 97A + 48)G + 36w (4A — 3)(1 — 2A)?]
N (1557 — 6267A + 8394A% — 3736A%)G?
8m(4A — 3)[(42A2 — 9TA + 48)G + 367 (4A — 3)(1 — 2A)2)’
6. —2G— 3(108 — 819& + 18~6O]\2 —~23961~\3 +g592A4 — 14~72]\5)é2
¢ 2[(42A2 — 97A + 48)G + 36m(4A — 3)(1 — 2A)?]

(4.74)

)

from which we can read off the anomalous dimension of Newton’s constant,

_ 3(108 — 819A + 1860A2 — 2396A° + 25924 — 1472A°)G (4.75)
e 2[(42A% — 97A + 48)G + 36m(4A — 3)(1 — 24)?] '
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The vanishing of these beta functions implies the fixed point solutions
GrP: {A=0, G=0},

and
NGFP : {ix —0129,, G = 0.984} .

The stability coefficients associated with the NGFP are given by
0o,1 = 2.382+2.168i . (4.76)

Hence, the NGFP is UV-attractive in both directions of the (i&, G’)-plane. This
fixed point constitutes the first FRGE evidence for the asymptotic safety of grav-
ity, and its stability with respect to the choice of gauge fixing, cutoff schemes
and cutoff profile functions has been confirmed in a series of works [35H39,[691[82].
The crucial question is then whether or not such a fixed point will persist under
extensions of the truncation subspace. A non-Gaussian fixed point with similar
characteristics to the ones above was first found to exist in the case of R? trunca-
tions [OTT8]. In Section A2l recovering the results of [69], we will see that this
fixed point persists also when including higher-order f(R) terms in the truncation,
as was verified for polynomials in R up to order eight [41].

4.3.2 RG flow and singularity structure

The beta functions (Z74) may also be integrated numerically, yielding a renormal-
ization group flow diagram for the Einstein-Hilbert truncation. This flow diagram
is given in Figure LIl We note the presence of a unique trajectory connecting the
NGFP to the GFP, called the “separatrix’. Particularly interesting are the tra-
jectories with positive cosmological constant to the right of the separatrix. These
have been shown in [88] to lead to an extended semiclassical regime in which
Newton’s constant and the cosmological constant essentially do not run, and have
been argued to be the type of trajectory that is realized by nature. Note however,
that these trajectories cannot be extended arbitrarily deep into the IR. This is
due to the presence of singularities in the beta functions ([@T4]). For the case
G = 0, this singularity occurs at A=1 /2. It is clear the renormalization group
flow exists beyond these singularities, but the trajectories beyond them cannot
be connected to those emanating from the NGFP. Such singularities are found for
the Einstein-Hilbert truncation in all cutoff scheme implementations apart from
the case of type III cutoffs [41], and is usually taken as an indication that the
Einstein-Hilbert truncation is insufficient to adequately capture the renormaliza-
tion group in the IR. In the next chapter, we shall see how this singularity can be
avoided via non-local f(R) truncations.
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Figure 4.1: The renormalization group flow of 4-dimensional quantum gravity in the Einstein-
Hilbert truncation. The arrows point in the direction of decreasing k and the border of the
shaded area is given by the singularities of the beta functions, beyond which the flow cannot be
numerically integrated.

4.4 A differential equation capturing the RG flow
of f1(R)

In this section, we specialize our generic flow equation to d = 4 and the case of the
optimized cutoff (EIH). Using the heat-kernel results collected in Appendix [D.]
then allows us to explicitly evaluate the traces in (LG for an arbitrary function
fx(R), resulting in an autonomous partial differential equation governing the RG
flow of f(R) gravity.

4.4.1 Deriving the non-perturbative flow equation

We start with the following observation. When the operator traces appearing in
([E5T)) are evaluated via the heat-kernel expansion, their arguments W (z) enter the
series expansion via the functionals @, [W]. In d = 4, the coefficients multiplying
the heat-kernel coefficients tr[ag] for I > 2 are thereby proportional to Qo ;[W],
which are essentially the Ith derivatives of W(z) evaluated at z = 0 (Z34). The
virtue of working with the optimized cutoff appears when (E.IH) is substituted
into W(z) and the derivatives are computed explicitly, as one then finds that,
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Chapter 4. The RG flow of f(R) gravity

starting from a finite value lepm, all derivatives vanish at z = OE Thus, working
with the optimized cutoff has the significant advantage that the knowledge of only
a finite number of heat-kernel coefficients suffices to evaluate the traces (EGI).
We stress that we do not expect this feature to persist once a different cutoff
profile is used, such as, e.g., the exponential cutoff (EI3]).

For the purpose of this section, it is useful to redefine fi(R) by absorbing
the wave function renormalization Zy, working with fk(R) = Znkfr(R) and
dropping the tilde in the following. Furthermore, V here denotes the volume of
S,

Let us now proceed with the explicit evaluation of the right-hand side of (ZG1).
In contrast to the procedure just employed in the Einstein-Hilbert truncation, we
do not perform a series expansion of the trace arguments with respect to R here.
Evaluating the terms in the first line of the flow equation gives

v [ 1
E= 2 2\7 352/ Y0lg 1I\T3g2) 200 T Y4lo
S E*®3(— =) bol, + K27 (— =) bol, + ba|
-1
+[1+500 - g5)] [L- 5] (4.77)
Vv 1
Si = — =5 |F'®3(—5%) bolyp + k@1 (— %) balyp + — balip

+ 100 (1 - &) — 0 (1+ g&)] [1- ]

Here, the terms proportional to V' arise from the evaluation of the complete traces,
and the heat-kernel coefficients boy|s are given in (D.I0) and (DII). Further-
more, the ® (w) denote the threshold functions for the optimized cutoff (EIT).
The V-independent terms capture the contribution of the finite number of —V?2-
eigenmodes required to complete the traces (cf. Section EL2.7]).

The evaluation of the fj(R)-dependent traces S¢ and S}l is slightly more in-
volved. For the 2T trace, we find

V - - —2
SP = k4] b k2ol b baloT — b
E= ( ) [ 5(wa) bolar + 1(wa) balor + T alo 1+ ws 6loT
\%
+ ) [k4<1>1(w4) b0|2T +/€ ol (w4) b2|2T + T b4|2T:|
f(1+3?)+2 R (1+6k2) R
3t g2, ny Ut Y2,
1+ wy (14 g5) + 1+ wy L+ 5),

(4.78)

where the heat kernel coefficients boy|oT are listed in (D.I1]). The argument of the

2Strictly speaking, this “derivative expansion” truncates for the traces Sl and 82 only. The
traces 83 and S]‘Cl give rise to an infinite series of terms which, starting at lmrm, are proportlonal
to 6(k’2) and its derivatives. In the following we will neglect the contributions of such terms to
the flow equation.
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threshold functions is given by the dimensionless quantity

Tk R
= - — 4.
W4 k2 f]/c 3k’ ( 79)

and, in analogy to ([@GQ), we have defined the “anomalous dimension” of f} (R)
as

ny(k) = koe In(fi(R)) - (4.80)

Finally, we evaluate the scalar trace S. Setting d = 4 and comparing its argu-
ment W5(z) with the schematic notation used in (E.T1)) motivates the definition

12 4
uy, = 36 £, vkzﬁ(f,g—zRf,;’), wkzﬁ(2fk—2Rf,Q+R2 7). (4.81)

In terms of these, the derivatives of W5(z)|,—0 become

3k fl + 121 + k=2 (kO f, — 2RkOL ] + 2f, — ARf!")
Ug + Vg + wg
4 kO f], — 2REOL f}!
U + Vg + Wi
kOw f}!
U + v + wg '

W;5(0) =12

)

WL (0) =12k~ (4.82)

W§(0) = —72k~*

As mentioned above, the higher-order derivatives W{/(0) are proportional to
5(k?) or derivatives thereof and will not be included in the following. Using the
generalized threshold functions (E2)), we can explicitly evaluate S7,

1%
st zm{%k"‘[wkf T4 o1 (ab,¢) +AF YL (a,b,0)]
+ 1262 (kO ff, — 2RKOL 1) Y3 0 0(a,b,c) + 2(ff — 2Rf{) Y3 (a, b, c)]
+ 36k2[kOR £ TL o1 (a,b,¢) + AFLTL (a,b,¢)] balo
+ 12[(kO ff, — 2REOLF1) Y1 o 0(a,b,c) + 2(ft — 2Rf) Y1 o(a, b, )] balo
+ W5 (0) balo + W(0) bilo + W(0) bslo }
(4.83)
where the heat-kernel coefficients boy|o are given by (D.I0).
We see that, thanks to the optimized cutoff, the right-hand side of eq. (ZGI)

can indeed be explicitly computed for general function f;(R). Substituting the
fx(R)-ansatz into the left-hand side, on the other hand, yields

kakfk[g] = 2/4:2‘/ k&kfk(R) . (4.84)

The flow equation governing the scale-dependence of fi(R) is obtained by sub-
stituting (£77), (ET8) and X3)) into the right-hand side of (@G and equating
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Chapter 4. The RG flow of f(R) gravity

this to [@E34). Explicitly substituting the threshold functions from Appendix [El
leads to the following partial differential equation for fi(R),

—1
262V Kok fi(R) = [1+50(1 — ) — 5 (1+ 3 & + 2520 [ [1 - 2]

-1
4 2
+ 1001 — ) = 01+ ) — Y& (3 + 5 — 25 2] [1 - 2]
7 2

4 5 _ 5 R _211R? | 7249 R® 5 _5R _ 2711R
Vk 77f(12 21%% ~ 864 %% T 103364 k5)+(2 6 k2 32k)

+

(47)? L+ e — 5%
L5 Gnr (L4 5) + 100+ g) + (nr (L + g) +2)0(1 + o)

L+ o — ot
+ LVE 1ph f//(g_ﬂfﬁ_ﬁﬁi_ 181 R_4)+f~(72_&R_2_@R_3)
8 (4m)2 kJk 60 k1 90 k6 10080 k¥ k 15 k% 45 k6

+EROSL 2+ B+ B+ 25 ) R (124 4 + B )]

-1
x [2h+ BE2AL(L - 3+ 9K (1 - b))

(4.85)

In order to discuss its properties, it is useful to rewrite eq. (£3H) in terms
of dimensionless quantities. This is done by first noting that the volume and
curvature scalar of the background 4-spheres are related by V = 384 72 R~2. Using
this relation to eliminate V, eq. [L3H) becomes a partial differential equation in
k and R. The dimensionful quantities R and f;(R) are then traded for their
dimensionless counterparts,

1

R=k"2R and fi(R)= E~* fr(R/E). (4.86)
167‘1’Gic
In terms of these,
K fr = 167G, kK (kﬁkfk Af, — QRf,g) : (4.87)
while the anomalous dimension [X0) becomes
1 £ £ ¥
n=% (kakfk yofl - 2Rfk) , (4.88)
k

and similar relations hold for the other derivatives of fi(R). Reexpressing the
dimensionful quantities in (@388 through the dimensionless ones leads to the
following autonomous partial differential equation governing the renormalization
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group flow of fi(R),

3M#%M%ﬂ+4ﬂ—ﬂéh) 532( g)_(m+4é—ggﬁ)

10R20(1— &)~ R2o(1+ &) — (36+6R 651%2)

+

N3]} >J>|<:U‘

1
r (10— 58— 2R + 7%933)4-(&3—20R 22

1536
+ -

R
L+ & -4

502 Nf ((1 + 401 + g) + 2+ 5001+
2 fe
1+ﬁ

))+2ﬂ1+§%wwu+%)

w|z| ol

+[ﬂnfO&+M?+%R?+gﬁéﬂ—hﬁ(m6—%R2—%Rﬂ
+ (koS — 2RFY)(27 - SR - B R — i BY) 41y (36 +12R + B2

x [2+ 30 - 3R) +ofra - B2]
(4.89)

This equation constitutes the desired autonomous partial differential equation
for the renormalization group flow of f(R) gravity.

A peculiar feature of [RJ) is the appearance of discontinuities on its right-
hand side, induced by the #-function terms. The origin of these contributions can
be traced back to the use of the optimized cutoff, for which the finite sums of
the type ([@G4]) gives rise to step functions. The observed discontinuities probably
reflect the price to be paid for being able to truncate the heat-kernel expansion at
a finite order. Repeating the construction above using a different cutoff-scheme
will eventually remove these stepfunctions but requires one to carry out the heat-
kernel expansion to all orders in R. We also note that similar discontinuities have
already been observed when constructing the 3-functions of the R2-truncation
using the exponential cutoff-scheme [40]. In that case, the discontinuities were
not in the parameter R but in the space-time dimension d. Evaluating the finite
sums for the exponential cutoff induced contributions to the flow equation which
were proportional to d2,4 and d4,4, so that the flow equations could change dis-
continuously with the space-time dimension. While it is clearly desirable to get a
better understanding of such discontinuities, we will nevertheless leave this topic
for the time being, and rather elucidate some other properties of the flow equation
@X9) in the next subsection.
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Chapter 4. The RG flow of f(R) gravity

4.4.2 Fixed points of the RG equation

From the dimensionless flow equation (83, it is now straightforward to obtain an
ordinary differential equation describing the fixed functionals f,(R) of the renor-
malization group flow of f(R) gravity. By definition, these satisfy ko fx (]:2) =0
and consequently are solutions of the non-linear ordinary differential equation

7687° (2f* —~ Rﬁi) = [51?29 (1 - %) — 12— 4R+ 8 R [1 - g] o

K

N}

+ 1020 (1- &) - R0 (1+ %) 36 -6 R+ & B2 [1-

X (80— 807~ 2LLR2 + 2O RS) — 2R% (10— 50— 2R + 2 RY)
L+ fu/fi = R/3
\ 5 (1- R-Z HA+E00+E)+ @2+ Do+ 8) +00+ &) +2001+ &)

D £ 91 P2 29 p3 181 p4 ry 5 29 P2 37 3
—[2Rfr (27— BR2 - BR - LR T (48418 R+ B2+ 2L R

£ D 121 p2 29 p3 37 p4
— (216 - 12k - 2R - B - LR |

]

(S]]

x [2f; +3f1(1—2R) + 97/ (1 —
(4.90)

Due to its non-linearity, finding exact analytic solutions to this equation is rather
involved, and a detailed analysis of the renormalization group flows following
from the partial differential equations ([89) and 90) is beyond the scope of
the present work. Nonetheless, let us end our discussion by pointing out some of
their properties.

We first investigate the possibility of a Gaussian fixed point arising from the
flow equation ([@I90). In this course, we reinstall the dimensionless Newton’s

constant by setting
~ . 1 M
(R) = —— f.(R), 4.91
R(R) = —=F.(R) (4.91)
where G* indicates that G is taken at the fixed point, k9G = 0. Substituting
@2T) into (@OQ), we see that, due to its homogeneity properties, the right-hand
side of the flow equation is independent of G*. Schematically, ([L90Q) takes the
form

7687 (2f. — Rf.) = 167C"[..] (4.92)

with the terms inside the bracket being independent of G*. At the GFP, we have
G* =0, so that the “quantum corrections” on the right-hand side decouple, and

E92) reduces to ) .
2fSFP _ RFIGEP — ¢ (4.93)

*
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~ % ~ % ~ % ~ % ~ %

96 g1 92 g3 94 s e
0.00523 | -0.0202

0.00329 | -0.0127 | 0.00151
0.00518 | -0.0196 | 0.00070 | -0.0097
0.00506 | -0.0206 | 0.00024 | -0.0110 | -0.0091
0.00507 | -0.0206 | 0.00023 | -0.0098 | -0.0085 | -0.00357
0.00504 | -0.0208 | 0.0001 | -0.0104 | -0.0102 | -0.0038 | 0.00272

D U W NS

Table 4.3: Logatlon of the NGFP obtained from the fixed functional equation ([Z90]) by

expanding fr(R) in a power series in R up to order R", including k-dependent coupling
constants g;(k), i = 0,.

This equation has the solution f*GFP = B.R?, with B* an arbitrary integration
constant. The corresponding fixed functional is given by

RGFP _ 4 2
I TonC /d a:\/_ﬁ*R (4.94)
We note that, with respect to classical power counting, this is just the marginal op-
erator of f(R ) gravity. Furthermore, for 3, finite, the coupling £, = (167G*)~1,
gets shifted to infinity as G* — 0, which is in agreement with the vanishing of
the GFP observed in [40].

The flow equation @8J) and @A) can be used to investigate the UV prop-
erties of the renormalization group flow. Once we specify a fi representing a
particular truncation subspace, we can straightforwardly use these equations to
derive the resulting (optimized cutoff dependent) fixed point structure of the flow.
In particular, it allows us to progressively probe the existence and stability proper-
ties of the candidate NGFP in truncation spaces incorporating successively higher
powers of the scalar curvature, and hence help us assess whether the feature of
asymptotic safety found in the Einstein-Hilbert and R? truncations are repres-
entative of the gravitational flow or artifacts of our approximation. In [69], the
fixed point structure of polynomial truncations up to sixth order in the curvature
scalar was investigated. This study revealed the existence of a NGFP with a
three-dimensional UV critical surface in all truncations considered, constituting
non-trivial evidence for the asymptotic safety scenario. We here use our flow
equation to recover those results.

In this light, let us consider the UV limit of [@89). For fixed background
curvature, this corresponds to expanding EXJ) for R = R/k* < 1. Note that
all f-functions have positive arguments in this limit and contribute to the flow
equation. ~

We now make a polynomial ansatz for fi,(R), setting

= ng(k) R', n>1€eN. (4.95)
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0’ 0" 02 03 04 05 O
2.38 | -2.17
1.38 | -2.32 | 26.9
2.71 | -2.27 | 2.07 | -4.24
2.87 | -2.44 | 1.54 | -3.86 | -5.25
2.56 | -2.69 | 1.76 | -4.37 | -3.86 + 4.621 | -3.86 - 4.62i
239 | -2.38 | 1.51 | -4.16 | -4.67 + 6.081 | -4.67 - 6.08i | -8.67

D U W NS

Table 4.4: Stability coefficients for the NGFP with increasing dimension of the trun-
cation space. The first two critical exponents are a complex pair 6 = §’ + 6"

Here, §o(k) = —(16mG) ™", so that a negative go (k) corresponds to a positive New-
ton’s constant. Substituting this ansatz into [.89), expanding its right-hand side
in powers of R, and matching the coefficients up to R™ yields the non-perturbative
beta functions for the dimensionless couplings goi(t),

kOkG2i = B (Gos -1 Gon), 1=0,...,n. (4.96)

Numerically solving for the vanishing of the resulting equations, we find that
these beta functions indeed give rise to a NGFP with G. > 0,A, > 0, whose n-
dependent position is shown in Table 3l Linearizing the flow around the NGFP
and computing the eigenvalues of the corresponding stability matrix, we obtain
the stability coefficients associated with this fixed point. These are summarized
in Table 4 We see that only three eigendirections are UV-attractive at the
NGFP, implying that the corresponding UV critical surface is three-dimensional.
Furthermore, note that the stability coefficients and fixed point values are con-
siderably stable under extension of the truncation subspace. Our findings are in
agreement with the analysis carried out in [69] and provide an independent con-
firmation of their results. In a subsequent study by the same authors [41], this
analysis was extended to f(R) polynomial truncations of up to order eight. Also
there a non-trivial fixed point with three UV-relevant directions and similar nu-
merical values was found. This provides encouraging prospects for the asymptotic
safety of gravity.

4.5 Summary

We have constructed a functional renormalization group equation (FRGE) for
d dimensional gravity in detail, by means of which we can study truncations of
the f(R) form. This equation will provide the basis for our analysis of non-local
truncations in the subsequent chapter. Using this equation, we have rederived
the main features of the Einstein-Hilbert truncation, where the non-perturbative
renormalization group behavior of four-dimensional gravity was first investigated
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4.5. Summary

and where evidence for a UV-attractive non-Gaussian fixed point of the gravita-
tional flow was first established in the FRGE context.

For a particular choice of the cutoff function in d = 4 and the case of de
Sitter background metrics, our FRGE was evaluated analytically to yield a partial
differential equation capturing the renormalization group flow of f(R) gravity.
Specifying f(R) to be a polynomial function, we have recovered the results of [69],
which has indicated the existence and stability of a non-Gaussian fixed point
with three UV-relevant directions under successive extensions of the truncation
subspace to polynomials of up to order six. These results suggest that the non-
Gaussian fixed point found in the Einstein-Hilbert case is not a truncation artifact
and provide non-trivial evidence for the asymptotic safety scenario.
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Non-local truncations in the f(R) sector

Based on P. F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity,
Phys. Rev. D 77, 124045 (2008), arXiv:0712.0445 [hep-th].

In this chapter, we study the renormalization group behavior of non-local
truncations of the f(R) form. The non-local terms in these truncations serve
as prototypes for interactions which become dominant for small values of the
curvature scalar, and which have been suggested to drive the gravitational physics
of the deep IR. Using the flow equation ([LGI) derived in the previous chapter,
we first discuss two general features of f(R) truncations containing non-local
terms, the decoupling of a large class of such non-local interactions from the
renormalization group flow, and the resolution of the infrared singularities in the
renormalization group trajectories with positive cosmological constant found in
the Einstein-Hilbert truncation. The non-perturbative flow of particular non-local
extensions of the Einstein-Hilbert truncation including including [ ddx\/gln(R)
and [ ddx\/gR_" interactions is then investigated in detail. Lastly, we discuss the
impact of non-local f(R) truncations on the asymptotic safety conjecture.

5.1 General RG properties of non-local f(R)-
gravity

Theories of f(R)-gravity, in which the gravitational Lagrangian is based on an
arbitrary function of the curvature scalar, have recently attracted considerable
attention within the cosmology literature. One of the prime reasons for this ori-
ginates from the observation [I19] that non-local terms which become dominant as
R decreases can provide a natural explanation for the observed late-time acceler-
ation of our universe, without the need of introducing dark energy (see, e.g., [58]
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Chapter 5. Non-local truncations in the f(R) sector

for a review and more references). By combining these non-local interactions
with higher-derivative curvature terms, f(R)-gravity can furthermore generate
an inflationary phase in the early universe while at the same time satisfying the
experimental bounds of gravity tests at solar system scales [120].

Since we may think of these non-local f(R) theories as the effective low-energy
limit of a quantum theory of gravity, their phenomenological successes make it
interesting to investigate them also from a renormalization group perspective.
With respect to the FRGE approach, the motivations for this are two-fold. First,
this type of analysis is a step towards addressing the suggestions that the renor-
malization group running induced by non-local operators in the IR is responsible
for cosmological effects, such as the observed small but non-zero value of the cos-
mological constant [55L68,96]. At the level of the gravitational renormalization
group flow, this would most likely be reflected by the existence of an IR fixed
point which attracts the renormalization group flow for £k — 0. In Chapter [3, we
explored this suggestion for truncations of the type of the non-local Riegert action
BI4) in the case of conformally reduced gravity. While truncations of this form
cannot be investigated in the case of full diffeomorphism-invariant gravity due
to limitations in our current calculational techniques, the more tractable f(R)
truncations studied in this chapter give us a first qualitative understanding of the
renormalization group flow in the presence of non-local interactions. Secondly,
inasmuch as we are interested in the behavior of the effective average action for
gravity at all energy scales k, if interactions of this type are present in some low
energy regime, they must in principle also be included in our theory space for I'.
It is therefore important to understand if and how such non-local terms affect the
renormalization group behavior of gravity.

Lastly, we note that non-local f(R) monomials explicitly containing inverse
powers of the derivatives of the metric, such as the [d%z,/gRIn(—V?)R and
[ dix\/gR(—V?)"'R interactions proposed in [68] and [I21], will not be con-
sidered here. Although these interactions are probably more physical than the
ones which we will shortly treat, the evaluation of the resulting traces in the flow
equation in the presence of the former is beyond current techniques. When dis-
cussing non-local truncations and their features in the following, we therefore do
not refer to truncations of that type.

The starting point of our investigations is the flow equation (@LGI). A re-
markable property of this equation is the fact that it is valid for any space-time
dimension d, cutoff profile function Ry, and arbitrary function fj(R). This makes
it worthwhile to pause and highlight some general features of the resulting renor-
malization group flow before analyzing concrete models specifying some of these
quantities. We begin by formulating a decoupling theorem for non-local interac-
tions and then move to consider sufficient properties of f;(R) required for resolv-
ing IR singularities of renormalization group trajectories in truncated flow spaces,
such as the A = 1/2 line observed in the Einstein-Hilbert truncation and reviewed
in the previous chapter.

86



5.1. General RG properties of non-local f(R)-gravity

5.1.1 The perturbative decoupling of non-local interactions

We here discuss a general feature of the beta functions for interaction monomials
which are built from non-local curvature terms. It is useful to distinguish two
classes of monomials in this context, interactions which blow up as the curvature
scalar becomes small, such as R~"- or In(R)-terms, and non-local interactions
which remain finite as R — 0, such as RIn(R)-terms. Based on the flow equation
(&SI, one can argue that the beta functions for the scale-dependent couplings
multiplying interactions of the first kind are always trivial, while, in the second
case, they are always proportional to a coupling constant multiplying an interac-
tion monomial containing (some power of) In(R), so that both types of interactions
can be consistently decoupled from the renormalization group flow.

Let us start by investigating the beta functions for non-local couplings of the
first kind. For this purpose, we will consider I'y[g] as a Laurent series in R,

f‘k[g]:/ddx\/g Z pn R", ng >0, (5.1)

n>—no

corresponding to fx(R) = 167G Zn> no Pn R, where p is a k-dependent coup-
hngl Substituting this ansatz into (L&) and dividing by the volume V| we see
that the left-hand side of the flow equation is a Laurent series whose highest order
pole is given by R™™. The coefficients in this expansion are proportional to the
In k-derivatives of the non-local couplings.

In order to extract the beta functions for these couplings, we now have to
perform a Laurent series expansion of the right-hand side of the flow equation. As
in Section[.2.4] this is done by first series expanding the arguments of the traces in
R and then using the heat-kernel expansion ([83) to evaluate the —V?2-dependent
traces. The first step reveals striking feature of the flow equation. Due to the
homogeneity property of its right-hand side with respect to the function fj(R),
expanding the arguments of the traces does not give rise to terms containing
inverse powers of R. Thus, even though f;(R) contains poles as R — 0, the
expansion of the trace arguments only yields terms which are regular as R — 0.
Taking into account that the heat-kernel expansion ([@G9) also contains positive
powers of R only, we find that the right-hand side of the flow equation is regular at
R = 0. Comparing the pole structure on both sides of the flow equation, we then
conclude that the beta functions of the non-local couplings appearing in (&) are
trivial,

kOkpn =0, —ng <n <0, (5.2)

confirming our first claim. Eq. (&2) implies that non-local couplings of the first
kind are scale-independent constants along an arbitrary renormalization group
trajectory. In particular, once we start with un(k) = 0 at an initial scale k the

1 As illustrated in the next section, this argument also applies to In(R)-terms, which are not
explicitly included in the ansatz ([&1).
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renormalization group flow does not dynamically generate non-local couplings of
the form R™™.

The situation becomes slightly more complicated for non-local couplings of
the second kind. In this case, expanding the arguments of the traces and using
the heat-kernel expansion, one finds that such interactions also appear on the
right-hand side of the flow equation. Thus, the beta functions for this type of non-
local couplings are non-trivial. However, since the heat-kernel expansion ([ZGJ)
does not contain (In(R))"-terms, the only source for the logarithmic factors in
the non-local interactions is the expansion of the traces. This implies that the
corresponding non-local terms on the right-hand side of the flow equation are
necessarily proportional to a non-local coupling constant multiplying In(R)-terms
in fr(R). While it is difficult to construct the resulting beta functions explicitly,
we can still conclude that the resulting flow equation permits us to consistently
set the corresponding non-local couplings to zero. In other words, if there are
no interaction terms containing (powers of) In(R) present at the initial scale k,
they will not be generated by the renormalization group flow. Note that the same
argument also applies to fractional powers of the curvature tensor, which do not
arise from the heat-kernel expansion ([GI) either, so that it is also possible to
consistently decouple such interaction monomials.

This situation is reminiscent of the observations made in [86L[122], where the
renormalization group flow of non-local functions fi (V') of the space-time volume
V were studied. There, the beta functions for the non-local couplings V? and
VIn(V) were explicitly derived, and it was found that, even though the beta
functions of the non-local couplings were non-trivial, they could be consistently
decoupled from the renormalization group equations by setting these couplings to
zero. Noting that such interaction monomials are also excluded in the heat-kernel
expansion, it is tempting to speculate that all coupling constants whose interaction
monomials do not appear in the heat-kernel expansion can be consistently set to
zero in the flow equation.

5.1.2 Resolving the IR singularities of A, > 0 trajectories

In this subsection, we discuss a feature of the renormalization group trajectories
found in the Einstein-Hilbert truncation (cf. Figure [4]), namely, the termination
of trajectories with positive values of the cosmological and extended semiclassical
regime at Ay, = 1/2 for a finite value kierm > 0. In principle, this class of
trajectories would give rise to a positive cosmological constant in the IR, and it was
argued in [88] that the renormalization group trajectory realized by nature is of
this type. In this light, it is an important question whether or not the termination
of these trajectories is due to using an insufficient truncation to describe this part
of the gravitational renormalization group flow. In [41], it was shown that the
use of a type III cutoff scheme could resolve those singularities. Here, we follow a
different approach, and ask whether there are extensions of the Einstein-Hilbert
truncation which allow the continuation of these trajectories down to k = 0. In
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5.1. General RG properties of non-local f(R)-gravity

the remainder of this section, we will use the renormalization group equation for
f(R)-gravity to show that such extensions indeed exist.
Let us begin by sketching the origin of the IR singularity in the Einstein-
Hilbert truncation,
fe(R)=—R+2A. (5.3)

From the renormalization group equation (LGI]), we observe that its universal
part is independent of A and therefore cannot be responsible for the singularity.
Consequently, the singularity must arise from the fj(R)-dependent part. For con-
ciseness, we illustrate its origin in S7, noting that the analysis for S} is completely
analogous.

Substituting the ansatz (53)) into Sy, we find

SEEH =1Tray ko (Zn Br) _ 1T [ KO (INRW) oy
ZN (Pk—2A+ dd(_d?’_df343) Zn (Py — 2A)
(d=2)(d+1) 47y L i )
~ aum " [(I)d/2(—2A) - 5nc<1>d/2(—2/\)} d*z\/g+ O(R).
(5.4)

Here, we have carried out a Taylor expansion of the argument with respect to R in
the first step and then used the heat-kernel expansion ([LGH), together with (E.I0I),
to obtain the last line, where we have expressed the cosmological constant through
its dimensionless counterpart A = A /k?. Substituting the threshold functions for
the optimized cutoff ([EIG), this becomed?

1
AEH d—2)(d+1 d d
Sk = (2(47)r§d/2) [F(d/12+1) - 2r(d}2+2)77G} k 1_92A /d z/g+O(R). (5.5)

From this expression, we see that the right-hand side of the flow equation, and
therefore also the beta functions for G, A, have a pole at A = 1 /2. This leads
to the termination of the Einstein-Hilbert truncation trajectories with positive
cosmological constant at a finite value kiern > 0, as can be seen in Figure [4.]
Our aim now is to characterize sufficient properties of fi(R) which can remove
the poles at A = 1/2 from the right-hand side of the flow equation. Again, we
will focus on S}, noting that the same mechanism applies to S.

The main idea behind the resolution of the A = 1 /2 singularity is to exploit
the homogeneity of the trace-argument in f; and its derivatives in such a way
that the A-terms arising in the denominators are multiplied by some power of
R. The A-terms are then dressed up as AR and expanded in the Taylor series.
In that case, the right-hand side of the flow equation has no poles of the form
(1 —2A)~7,p > 0, and the singularity is resolved. This can be achieved if f}(R)

2For explicitness, we use the optimized cutoff from Appendix [E22 Other cutoff profile func-
tions like, e.g., the exponential cutoff lead to qualitatively similar results.
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contains a term which diverges in the limit R — 0,
}%imof,;(R)zuR_E+... , €>0, (5.6)

where p is a scale-dependent coupling constant. The relation (G.0) is easily integ-
rated to yield the corresponding condition on fi(R),

lim fy(R)=—— R +..., e>0e#l
fi=0 I—e (5.7)
}l%imofk(R):uln(R)—i—..., e=1.

Let us illustrate the workings of this mechanism in detail by adding a term of
the form (57) to the Einstein-Hilbert truncationd

fr(R) = —R+2A + 167G R . (5.8)

Here, 1 has been rescaled for later convenience. Substituting this ansatz into S,‘C",
we find

| Z3'koh (Zn (FEL — ) Ry)
S =<-Tr
k=5 2T | " TenGp . 2(d—2) 1te T e
(FE = R)(Py, — g=n B) — RM*< + 2AR° + 167G u R
1 kO (pu Rr) ¢ (5.9)
—2TrzT [ 0P + O(R, R)
(d—2)(d+1)

= umaz " [@4/2(0) + $ 0, B35(0)] /ddx\/ﬁ +O(RSR).

Using the threshold functions for the optimized cutoff, we observe that the poles
at A = 1/2 have been removed. Thus, the singularities at A = 1/2 vanish with the
inclusion of interaction terms of the form (&7)). This will be further illustrated
in the following section, where it will be shown explicitly that the truncations
including [ ddx\/gln(R) and [ ddx\/gR_" interactions contain renormalization
group trajectories with positive cosmological constant in the IR extending to
k — 0.

One cautious remark is now in order. Once terms of the form (7)) are included
in the truncation subspace, one has to be very careful about taking the limit in
which their corresponding couplings are sent to zero. The reason is that taking
this limit does not commute with the Taylor expansion of the trace arguments.
This can be easily seen from the following simplified example. Setting g(z) =
g1~ + go, h(z) = hqz™! + ho, with g1, g2, h1, ho constant, and considering the
expansion of the quotient

g(x) g 49 gitgr g1 <g_2 gihs

- - = - O(2? 5.10
h(d?) h1$_1 + hQ hl —+ hQ{E hl hl h% > x + (il' ) ) ( )

3For € = 1, one should replace R'~¢ by In(R), which is easily done in the formulas below.
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we see that taking the “non-local couplings” ¢i,h; to zero after the expansion
leads to a quite different result than doing so before the Taylor series is construc-
ted. From this example, it is clear that considering the renormalization group
equation on a truncation subspace which involves couplings of the form ([E7]) and
setting the new coupling to zero does not automatically yield the beta functions
obtained in the Einstein-Hilbert case. This suggests that, in order to correctly
decouple this type of non-local interactions from the flow, we should set the non-
local couplings to zero already at the level of our ansatz for I'y,. We will return
to this at the end of this chapter.

5.2 The In(R) and R™" truncations

We will now use the flow equation [GI) to study the renormalization group flow
of the specific non-local extensions of the Einstein-Hilbert action

Tilg] = ﬁ/d%\/@{—R+2A+ 167G v In(R)}, (5.11)

1
Tilg] = m/dd:ﬂ\/ﬁ{—R—i—QA—i— 167G R}, n>1eZ. (512)

The non-local terms included in these truncations serve as prototypes for in-
teractions which become dominant for small values of the curvature scalar, and
constitute simple models which allow us to investigate how the flow is affected
by the class of non-local interactions we are considering here. In this respect, the
primary goal of this analysis is the qualitative understanding of the renormaliza-
tion group flow for the non-local couplings v, u.

In [R6,122], the renormalization group flow of truncations including non-local
functions of the spacetime volume V' was analyzed. The study of the non-local
functions of R considered here can be seen as a natural next step in the program of
investigating the renormalization group features of non-local interactions, laying
the qualitative groundwork for considering truncations including more physically
motivated terms, such as those coming from the conformal anomaly.

5.2.1 The In(R) truncation

Let us start by analyzing the non-perturbative beta functions arising from the
In(R)-truncation (EITI), for which

fe(R) = —R+2A + 167G v In(R). (5.13)

We begin by deriving the beta functions governing the scale-dependence of the
couplings GG, A and v, and subsequently investigate their properties analytically
and numerically.
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Chapter 5. Non-local truncations in the f(R) sector

The beta functions of the In(R)-truncation

Our first task in the construction of the beta functions of the In(R)-truncation is
the evaluation of the truncation-dependent traces Sp and Sj! in [@BI) up to linear
order in R. Substituting the ansatz (EI3]) and using the heat-kernel techniques
reviewed in Section .24 this yields

kd ~
8¢ = gy 8" {cb}l/ﬁén,,@;ﬂ}/d%\/g

k2 d—2 A ° i1
+ (dm)i/2 {CO [(d(d—l) — 1oa) (0 @G0 +2@7)2) + 397Gy (I)d/2}

+C3" [‘Pé/z_l +37 (i)111/2—1} } /dda:\/gR,

k4 _
4 1 1 1 ;
5t = g (2T + i Thaon} [a'evs
k42 d+2 . o 3
" (4m)e/2 { 2(d—-1) (QT’W 2= Yapz00+ 3t (Y11~ Td/270,0))

+C5 (2T5/2—1,1 + %TIVT;/2—1,071) }/dd?ﬁ\/ERv
(5.14)

for the 2T and scalar trace, respectively. Here, g (k) and 7, (k) are the anomalous
dimensions of Newton’s constant and of the non-local coupling, viz. (@66 and
the Cs, are defined in (D.I12). Inserting the truncation ansatz into the left-hand
side of the flow equation ([@GI) in turn gives

_ 1
kOWTklol = 165
k

x\/ﬁ[ — RN +2 kak(zNA)] + / d?2\/gIn(R) kdyv
(5.15)

where, here and in the following, g; denotes the value of the coupling g(k) at
a particular scale k. Taking into account the contributions from the universal
traces ([IBT) and equating the coefficients of the invariants [ d‘ix\/g, i ddx\/ﬁR
and [d?z,/gIn(R) spanning our truncation space leads to the following system of
coupled differential equations

kakV =0 y
167G k12 s
k‘a N = k _ (d_Q)(dJ"l) A _ d°—4d°4+d-3 q)
k4N (dm)d/2 = Ld =1 3} QO(%T {( 6rG v a(d—1) ) /2
2_
(0 OOy — 42 (00, — 3T — 3T ]

Gl%kd 2 1 1

k'ak(ZNA) = W [(d — 3d — 2) (I)d/2 + 4Td/271} .

(5.16)
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5.2. The In(R) and R~ truncations

The beta functions resulting from these equations are most conveniently expressed
in terms of the dimensionless couplings

G=k"Zy' G, =k2G, A=K\, b =k". (5.17)

In terms of these, the egs. (I0) imply the following set of autonomous first order
differential equations

koG = Ba(G, A, D), koA = B3(G, A, D), kdpin = B:(G, A, D), (5.18)

where

(47T)1_d/2 é ((d2 — 3d — 2) @3/2 + 4T(11/2_’1) 5

(5.19)
Here, the anomalous dimension of Newton’s constant is given by
_ 32nG (d=2)(d+1) A _ d*—4d>+d—3
e = — 2 (4m)4/2 — 7 1(1,;/2 c2T [( 160G Uk d(d—1) ) q)d/2
2_
+ (L7t — C8T)@hyamy — $2 (Y320 — $Thj2n) — $Thyam1n) -
(5.20)

Note that, unlike the case of the Einstein-Hilbert truncation, in which ng con-
tained contributions from all orders in G (cf. [ETH)), the anomalous dimension of
Newton’s constant obtained here is linear in G. This indicates that the In(R) trun-
cation does not capture non-perturbative contributions from an infinite number
of graviton loops and therefore may not appropriately describe quantum gravity
in the UV.

This completes the derivation of the beta functions for the In(R)-truncation.
These beta functions are consistent in the sense that they incorporate all contribu-
tions proportional to the interaction monomials spanning the truncation subspace.
As expected from the general discussion in Section Il the beta function for
the dimensionful non-local coupling v is indeed trivial, kO = 0. Furthermore,
the only poles of ([EI9) occur at the line

Using = % (4m)~ a2 ok (I’d/Qa (5.21)
showing explicitly that the singularity at A =1 /2 has been resolved, in full
agreement with the arguments given in Section [2.11

A second property which can be directly deduced from the beta functions

(ETI9) is the decomposition of the coupling constant space into various sectors
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Chapter 5. Non-local truncations in the f(R) sector

whose trajectories do not mix under the renormalization group flow. Since
ﬁé(é =0, A, 7) = 0 and ﬁg(é,[&,ﬂ = 0) = 0, the G = 0- and 7 = 0-planes
cannot be crossed by the trajectories. In other words, a renormalization group
trajectory starting with positive G i (or ;) will never evolve to G <0 (or i, < 0),
and vice versa.

The fixed points of the renormalization group flow

In order to gain some first insights into the dynamics arising from GIS]), we
analyze the fixed point structure of the beta functions. At the fixed points, all
beta functions vanish simultaneously,

Ba(G* A", 0*) =0, Bi(G*, A", %) =0, B:(G* A" ") =0, (5.22)

and many properties of the renormalization group flow can be captured by linear-
izing the renormalization group equation at such points and studying the flow in
their vicinity. Introducing the generalized couplings § = [G, A, 7] and the Jacobi
matrix

08,
B=(Byj), Bij=— (5.23)
! ’ 99; |pp
the linearized flow equation reads
kOkgi ~ Y Bij(G; — 3;) - (5.24)
J

Using the stability coefficients #7 = —\?, with A\’ the eigenvalue of B associated
with the right eigenvectors V', B;; can be diagonalized, so that eq. (524)) is easily
solved. These analytic solutions provide a good picture of which renormalization
group trajectories are dragged into the fixed point or repelled along an unstable
direction.

Applying this construction to the beta functions (@I9), we first observe that
By = 0 forces all fixed points onto the v = 0 plane. Substituting this condition
into the remaining beta functions, Bz and (3 simplify considerably and their
roots are easily found analytically,

GFP: {G"=0,A"=0,0"=0},

IRFP: {G*=0,A" = Da/a 7T =0},

2@3/2
NGEP: {Gr= - U BT R A% gy,
193, ((d2—3d—2)q>;/2+41r;/211) /2
(5.25)

Here, GFP denotes the Gaussian Fixed Point, while the other fixed points
have been labeled Infrared Fixed Point (IRFP), and Non-Gaussian Fixed Point
(NGFP). Let us discuss the stability properties of these fixed points in turn.
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5.2. The In(R) and R~ truncations

At the GFP, the stability matrix B becomes

d—2 0 0
Barp = | (4m)' " ¥2((d? = 3d = 2)®) ), +47T) ) 2 0 |, (5.26)
0 0 —d

with stability coefficients and associated right eigenvectors

T
br=2—d, V'=[1,3(4m) 2@~ 3d - 29}, + 47 ,,,), 0]
0y =2, v2=10,1,0]",
03 =d, v3=10,0,1]".
(5.27)
This information can be used to solve the renormalization group equation in the
vicinity of the GFP, giving

~ kd_2

G = Md_Q s

- k=2 (47T)1—d/2 fd—2

A=zt y ((d® =3d—2)®} 5y + 4755 ,) L (5.28)
k_d

17 =3 M_d

Here, {a;} denotes the set of integration constants and M is an arbitrary fixed
mass scale. It is natural to define the dimensionful integration constants

2-d 2 d
Go=mp ", Ao=oaamp, 1= azmp, (5.29)

where we have identified M with the Planck mass mp; by setting oy = 1. By
using the relations (1), we then obtain the scale-dependence of the dimensionful
coupling constants in the vicinity of the GFP,

G :GOa

4 1-d/2
A=A+ % Go ((d% —3d = 2)®} 5 + 40} 5 1) K7, (5.30)
vV =rg.

These equations show that G,A and v run towards constant, non-zero values
as k — 0. In particular, A does not vanish in the IR unless we make the special
choice ag = 0. Thus, the GFP does not determine the behavior of the cosmological
constant Ag in the infrared.
Let us now turn to the IRFP (B20). Here, the matrix B becomes
d 0 0
_ 1-d/2(( 2 1 1 4(4m)?/?
Birrp = (47‘1’) / ((d —3d—2)<1>d/2+4Td/2)1) 2 m ,
0 0 —d
(5.31)
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and the eigensystem of Bigpp is
T
01 = —d, V'=[1, 752 ((d - 3d - 2)® , +47Y 5 ) 0]
0, =-2, V2=10,1,0]"

T
3 _ 4(4m)/?
d, V°= {07 (@ tde—4d— 122 s

03

(5.32)
Note that the stability coefficient 65 has now changed sign compared to the ei-
gensystem of the GFP (E21), making the eigendirection V2 IR-attractive (hence
the name IRFP). Solving the linearized flow equation results in

- ke

C=mgm

B 2 (47‘r)1_d/2 kd

A =tapm ton ((d* —3d— 2)‘1)31/2 + 4T¢11/2.,1) 7l

. 4(4m)/? k=t 8, (5:33)
B+ —4d—4)2 , M~ " 293 "
k_d

Vg —QBW )

where we have again denoted the integration constants by «;. Using the relations
EID), we obtain the scale-dependence of the dimensionful coupling constants,

k2
G:GO 9
Pl
k4 (47T)1_d/2 Jd+2
A=Ag— + ——— ((d* = 3d — 2)®} ,, + 4T, ) Go——
Om4P1 d—2 (( Va2 + d/2’1) 0 me, (5.34)
4(47)4/2 ol
— 5 2( 7T) - k2_d+ d2/2 k2
(d +d 4d — 4)<I>d/2 2<I>d/2
vV =rg.

Thus, for d > 2, the IRFP has an unstable direction in v, driving the renormal-
ization group trajectories with vy # 0 away from the fixed point. For trajectories
in the plane vy = 0, however, the IRFP is an infrared attractor for both Newton’s
constant and the cosmological constant. In this case both G and A are dynam-
ically driven to zero as k — 0, independently of their values at the initial scale
k.

Finally, determining the stability coefficients of the NGFP, we find that it is
UV-attractive for all three couplings G, A and ;. However, not only does it lie
in the unphysical region G < 0, but also, due to the fact that the renormalization
group flow in this truncation subspace decomposes into a G>0andaG <0
sector, no trajectories with positive G will ever reach this fixed point.
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5.2. The In(R) and R~ truncations

Numerical solutions of the flow equations

After discussing their fixed point structure, we now proceed by integrating the
flow equations (BIJ]) numerically. This requires fixing the space-time dimension
and the cutoff-scheme explicitly, so we will restrict ourselves to d = 4 and to the
optimized cutoff (EZTH) in the following. Given the decomposition of the coupling
constant space, we will furthermore limit our focus on trajectories with G > 0,
as these are the physically relevant ones. For d = 4 and the optimized cutoff, the
fixed points (E25)) are located at

GFP: {G"=0,A"=0
IRFP: {G*=0,A"=1}
NGFP: {G*= -8

Q
*
I
ja]
—

(5.35)

We note that the NGFP is indeed situated in the region G < 0 and hence will
not play a role in the subsequent discussion. Moreover, the singular line [21]) is
located at

Using = 0.00263 . (5.36)

Due to the existence of the IRFP, the most interesting region of the parameter
space is the one comprising the renormalization group flow of G, A on the fixed
plane 7 = 0, which is shown in Figure B.J}  This diagram clearly illustrates
the separation between trajectories with positive and negative values G. The
renormalization group flow in the upper half plane is thereby dominated by the
GFP and the IRFP. The renormalization group trajectories in this region fall
into three distinct classes, which, in analogy to the classification of the Einstein-
Hilbert truncation trajectories performed in [38], are labelled Type Ia, 114, and
IITa, respectively. The class IIa consists of the single trajectory (“separatrix”)
hitting the GFP as k — 0. The trajectories of Type Ia run to the left of the
separatrix and lead to a negative cosmological constant Ao in the infrared. The
trajectories of Type I11a, to the right of the separatrix, are captured by the IRFP
as k — 0, which implies that the corresponding dimensionful couplings G, A go
to zero as k — 0.

The IR behavior of these classes can also be understood at the level of the
linearized solutions (B30) and [E34)), as follows. The classes Ia and IIa correspond
to linearized solutions ao < 0 and ae = 0, respectively. The solutions with as > 0
are driven away from the GFP regime and captured by the IRFP (&34), giving
Go = 0,Ag = 0 independently of any integration constants. The latter feature is
also illustrated in Figure (a). Note that, due to the absence of an UV fixed
point in the In(R)-truncation, we do not expect that the classes of renormalization
group trajectories discussed here give rise to a well-defined behavior as k — oc.
This is possibly owed to the fact that our truncation subspace is insufficient for
a proper description of quantum gravity in the UV, as we will shortly discuss.
Going away from the 7 = 0 plane, we have to distinguish the two cases v < 0 and
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G
1.0

>

Figure 5.1: Renormalization group flow of the In(R)-truncation in the fixed plane » = 0.
The flow is dominated by the GFP at G* = 0,A* = 0 and the IRFP at G* = 0, A* = 1/6. All
renormalization group trajectories running to the left of the “separatrix” are captured by the
IRFP as k — 0.

v > 0. To illustrate the behavior in these regions, some examples for trajectories
starting with A(k = 1) > 0 are shown in Figures and For the trajectories
with v < 0 we find that both G, A decrease with decreasing values k. Comparing
the series of diagrams (a), (b), (¢), in which the modulus of the non-local coupling
is continuously increased, we observe that this “quenching” works more efficiently
for small non-local coupling |v|, the case of v = 0, corresponding to the IRFP,
being the most efficient.

Finally, for the trajectories with v > 0, we distinguish two different behaviors.
Trajectories starting with Ui, < Using Tun into the singularity and terminate at
finite kierm = (ﬂ,;/ﬂsing)l/"‘fc, whereas trajectories in the region ; > Pgng are
non-singular and can lead to increasing values of GG, A as k decreases. An example
of the latter behavior is shown in Figure (d).
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Figure 5.2: Numerical solutions to the In(R)-truncation flow equations in terms of the di-

mensionful couplings, for (a) v; =0 and (b) v; = —5 X 1075 imposed at k = 1. Here, we have
taken Gi = 0.25, while A; assumes various values. We see that, for v < 0, the cosmological
constant is quenched in the IR limit, going to zero (a), or small but non-zero (b) values.

5.2.2 The R™™ truncation

We now turn towards our second class of non-local truncations, the R™" trunca-
tions (512, for which

fr(R) = —R+2A+ 167G puR™". (5.37)

Deriving the renormalization group equations

Following the calculation of the previous section, we first compute the contribution
from the truncation-dependent traces S§ and Si. Substituting the ansatz ([E31)
into (£EI) and evaluating the resulting expressions up to linear order in R, we
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Figure 5.3: Numerical solutions to the In(R)-truncation flow equations in terms of the di-
mensionful couplings, for (a) v; =0, (b) v; = —5x107%, (¢) vy = =5 X 10~2 and (d) v, =0.01
imposed at kE=1. Here, we have taken Gi; = 0.25, while A; assumes various values. We see

that, for v}, < 0, the cosmological constant is quenched in the IR limit, going to zero (a), or

small but non-zero (b) values.

find

St =

S =

k4 -
e gt {‘1’5/2 + 30, Py } /ddﬂ?\@

k42 or [d((2n—1)+d)—4n /_4 L
(4m)dr2 {CO { nd(d—1) (‘I’d/z +3 0 %z)}

+C37 [(1)111/2—1 + 5 &’5/2—1} } /ddx\/gR,

ke -
s o ) [

+

kd—Q . B ~
+ (47T)d/2 { 2(7%—#—{—)2(—5%1) {2T§/2,2 - T111/2,0 + %nﬂ(rﬁ/Zl,l - T111/2,0,O)

+C5 [2T5/2—1,1 + %nufil/2—1,o,1} }/ddx\/ER.
(5.38)
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Here, 1, (k) is the anomalous dimension ([G@), and all threshold functions are
evaluated at zero argument (viz. ([GH))). The left-hand side of (LG now reads

kowTklg] =

/ ddxf — REOZy +2 kak(zNA)} / ddx\/_— k.

(5.39)
Comparing the coefficients multiplying the interaction monomials in the trun-
cation ansatz again leads to three coupled differential equations encoding the
scale-dependence of Zy, A and p. Rewriting these equations in terms of the di-
mensionless coupling constants

16G

G=k"2G, A=K2N, [p=k U2, (5.40)
we arrive at the renormalization group equations of the R™™ truncation,
kOLG = Ba(G, A i), kokA = Bi(G, A i), kopit = Ba(G, A, i),  (5.41)

with

(4m)- Y2 G ((d2 —3d-2) ), + 4T}1/2)1) ,

(5.42)
The anomalous dimension of Newton’s constant is given by
ne = —HnaG, (5.43)
where
H,q= (47T)3/2_1 { (nQISJ{ffl) [2T3/272 - Té/mo} +4C3 T¢11/2—1,1
- 70[2_6;2(1 i (blli/Q—l +2 [% Gyt + d(d 1) O dz(EdT)l} ‘bd/z}
(5.44)

and the d-dependent constants C§, are given in (D.12)). Observe that H, 4 is a
(truncation-dependent) constant, independent of any coupling constants, so that
ne is again linear in G, as was found in the In(R) truncation.

Furthermore, again confirming the results of Section B we note that the
beta function for the non-local coupling p is trivial, so that u is a k-independent
constant along a renormalization group trajectory. Not only that, but the
non-local coupling /i also decouples from the flow of G, A, in the sense that
Bé (G.A, u),ﬁG(G, A, i) are independent of . Thus, the renormalization group
flow for G, A is not altered by the value of the constant p and can be studied
independently from the flow of f.
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Finally, we observe that the beta functions have no poles in the coupling space,
being well-defined for any value G, A, fi. In a similar manner to the case of the
In(R)-truncation, the coupling constant space decomposes into various regions
whose renormalization group trajectories do not mix under the renormalization
group flow. These regions are separated by the fixed planes G =0 and =0, as
well as the fixed plane at G* = ( —2)/H,, 4. The latter is due to the hnearlty of
NG, which implies that BG(G* A ,it) = 0 for any value A, i, so that the G*-plane
cannot be crossed by the renormalization group flow either.

Fixed points of the renormalization group flow

In order to better understand the renormalization group flow encoded by (.42,
we follow the strategy of Section (.21l and analyze the fixed points of the beta
functions. The conditions BN(G* A*, £*) = 0 implies that all fixed points must
be located on the y = O-plane. Solving (5 (G*, A*, i*) = 0, 85 (G*,A*, i*) = 0
analytically, we find that there are two roots, yleldlng a GFP and a NGFP

GFP: {G*=0,A"=0,a"=0},
) S d—2 T d_g (am)1 742 [(d®—3d—2) B}, +4 Y] 5 4 ]
NGFP: {G :—ﬁ,A = Hn‘i STzl o (5.45)
=0},

Focusing on the NGFP for the moment, we see that its position crucially depends
on the sign of H,, 4 which, for fixed d, in turn depends on the exponent n of the
R~"-term in our ansatz. Noting that G* < 0 (G* > 0) for H, 4 > 0, (H,.4 < 0),
respectively, we define ni as the (possibly non-integer) positive real root of
the quadratic equation H,, 4 = 0, assuming it exists. The existence and actual
value of the transition point n., are thereby cutoff-scheme dependent and hence
non-universal features of our flow equations.

Let us proceed by discussing the stability properties of the GFP and NGFP in
turn. Linearizing the renormalization group flow at the GFP, the stability matrix

([E23) becomes

d—2 0 0
Bapp = | (4m)' "4 ((d* — 3d — 2)(1’;/2 + 4T;/2,1) —2 0 , (5.46)
0 0 —d—2n

with corresponding stability coefficients and respective right eigenvectors

~ T
b =2—-d, V1:[17é(4w)1—d/2((d 3d—2)@}1/2+4rd/21) O] ,
0y =2, v2=10,1,0]"
O3 =2n+d, V3=[0,0,1]"
(5.47)
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5.2. The In(R) and R~ truncations

With this information at hand, it is then straightforward to solve the linearized
flow equations close to the GFP. The result is here very similar to our findings in
the In(R)-truncation, indicating that G, A and p approach «;-dependent constants
as k — 0. In particular, the IR value of A vanishes only if the corresponding
integration constant as = 0.

Turning to the NGFP, we find that the stability matrix becomes

2—-d 0 0
Buarp = | (4m)' Y2 ((d* — 3d - 2)@ ), + 47}, ,) —d 0 , (5:48)
0 0 —d—2n

with eigensystem

- T
br=d—2, V'=[1,5am) (@ - 3d—2)}, + 47} ,,), 0]
0y =d, v2=10,1,0]"
05 =2n+d, V¥=1[0,0,1]"
(5.49)
Looking at the stability coefficients 6;, we note that, for d > 2, the NGFP is UV

attractive along all eigendirections V?. Solving the linearized flow equation, we
then find

- k24 d—2

S VR A T

. k=4 (4m)imdz L L [ )

A =9 M_d + d2 ((d —3d — 2)@11/2 + 4Td/2,l) (651 M2_d — Hnyd s
~ k—d—2n

K :a4m )

(5.50)

where M again denotes a fixed mass scale. This result indicates that the NGFP is
indeed a UV attractor for the renormalization group flow, i.e., for £ — oo, all the
dimensionless coupling constants G,A , i approach their ﬁxed point values (G.45)
independently of the integration constants a;. One might be tempted to suggest
that, for the case of H,, 4 < 0, for which G* > 0,]\* > 0 this fixed point is the
generalization of the NGFP found in the Einstein-Hilbert truncation. We shall
argue to the contrary shortly.

Numerical solutions of the flow equations

After discussing the general fixed point structure of the beta functions (22), we
now restrict ourselves to d = 4 and the optimized cutoff (E213) and proceed with
the numerical investigation of the renormalization group flow. In this case, the
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Figure 5.4: Coordinates of the NGFP on the ji = O-plane for different values of n, using
d = 4 and the optimized cutoff. The transition from G;IGFP < 0 to éItIGFP > 0 occurs for
Nerit 2~ 9.09.

fixed points (5.45]) are located at

GFP: {G*=0,A"=0,p" =0},

. . 5.51
NGFP: {G"= g2 A" = gqr— . 1" =0}, (5:51)

with the function ([&Z4]), which determines the position of the NGFP, given by

—Tn? 4+ 57n + 60
Hn 4 =
’ 24mn(n+1)

(5.52)

We observe that H,, 4 has a zero at positive values ng it ~ 9.09. At this value the
NGFP passes from G, < O,]\* < 0at n < neit to G, > 0,]\* > 0 for n > nepit.
This n-dependence of the NGFP is illustrated in Figure .4 We will now discuss
the renormalization group flow for truncations with n < nei and n > neg in
turn.

Let us first consider the case n < net. Choosing n = 1, the typical renormal-
ization group flow in the p = 0-plane is exemplified in Figure This diagram
nicely illustrates the separation between trajectories with negative and positive
G. The renormalization group flow on the upper half plane, G >0, is completely
dominated by the GFP. In analogy with the previous section, we can again classify
the renormalization group trajectories in this region as type Ia or II1a, according
to whether they lie to the left or to the right of the “separatrix”, i.e., the renor-
malization group trajectory of type Ila hitting the GFP as k — 0. We note that
the trajectories of all three classes can be continued to the IR, k — 0, where they
give rise to a negative, positive or vanishing value of A, respectively. Due to the
absence of a UV fixed point, it is unclear, however, whether these trajectories give
rise to a well-defined theory in the UV as k — oo.
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Figure 5.5: Typical renormalization group flow of the R~™ truncations for n < n¢.i¢ on the

N
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fixed plane fi = 0, choosing n = 1 as an example.

For n > n;i the renormalization group flow in the upper half plane is governed
by the interplay of the NGFP and the GFP. Using the example n = 100, this is
illustrated in Figure Here, we see that all renormalization group trajectories
with G > 0 emanate from the NGFP in the UV. We can classify them into type-
A and type-B trajectories, depending on whether they run below or above the
C;'I*\IGFP-plane. According to their behavior in the IR, these trajectories can be
further divided into type Ia, Ila and IIla, depending on whether they give rise to a
negative, zero (“separatrix”) or positive cosmological constant Ap. A remarkable
feature of this phase diagram is that all trajectories with G > 0 have a well
defined IR limit £ = 0. Taking into account the p-independence of the flow, all
renormalization group trajectories on the upper half plane are complete, in the
sense that they give rise to a well-defined T'[g] on the entire interval 0 < k < co.

The typical renormalization group flow of the dimensionful couplings G, A
along trajectories of type IIIa (n < neit) and type A-Illa (n > neit) is shown
in the diagrams (a) and (b) of Figure B respectively. In both cases, we find
no significant decrease of the cosmological constant as k — 0. Moreover, due to
the sign difference in its beta function, we find that G increases towards the IR
for n < neit, while it decreases in the converse case. The renormalization group
flow of type B trajectories is qualitatively very similar to the one found in the
A-region and therefore not shown explicitly.

105



Chapter 5. Non-local truncations in the f(R) sector

f ‘ ‘ ‘ A

10 20 30
Figure 5.6: Typical renormalization group flow of the R~™ truncations with n > nci,
illustrated by the choice n = 100, in the fixed plane i = 0. The flow is dominated by the

interplay between the NGFP at G* > 0,A* > 0 and the GFP at the origin. All renormalization
group trajectories are well-defined at all scales 0 < k < oo.

5.3 Constraining the asymptotically safe theory
space

In light of our general discussion of the decoupling of non-local f(R) interac-
tions in Section ] and our analysis of the In(R) and R™" truncations, which
we may take as representative of the class of interactions we have considered, we
must now comment on the relation between our results and the asymptotic safety
conjecture. Notably, all our truncations give rise to a fixed point which is UV
attractive for both Newton’s constant and the cosmological constant. However,
for some truncations this fixed point is located at negative values of G, and we
have furthermore seen how the renormalization group flow in all specific cases
considered decomposes into two regions, comprising trajectories with G > 0 and
G <0, respectively. These particular fixed points are thus unphysical and can-
not provide a sensible UV limit to trajectories starting with positive values of
Newton’s constant in the IR.

One might be tempted to suggest that this shift in the NGFP to an unphysical
region is an artifact of our truncation, in the sense that more refined truncations
could lead to a fixed point at G* > 0. As an example, we have seen that in the
R™" truncations a NGFP with positive G does exist for n > nee. This suggestion
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Figure 5.7: Numerical solutions to the flow equations of the R~" truncations for (a) n < ncyit
and (b) A-type trajectories with m > meyi¢, in terms of the dimensionful couplings. Imposing
the initial conditions at k = 1 we have set G}, = 0.25 with A} taking various values. Due to its
decoupling these results are valid for any value .

is not tenable for two reasons. First, it is not clear how our truncation could be
refined to generate a reasonable candidate NGFP. One can explicitly verify that
adding higher-derivative terms such as R™ will not shift the fixed point solutions
for G,A. The reason for this is that the coefficients multiplying the operators
[ diz\/g and [ d%z,/gR in the right-hand side of the flow equation, which yield
the beta functions of G and A, are determined by the contributions of the non-
local operators in the series expansion in R. Adding more non-local terms of the
type considered here, on the other hand, would not improve the situation either,
since this would still only result in unphysical or most likely spurious fixed points.

Secondly, truncations of this type cannot adequately capture the renormaliz-
ation group of gravity in the UV. This can be seen by comparing the anomalous
dimensions of Newton’s constant ng obtained in the In(R) and R~ truncation
with the one obtained in the Einstein-Hilbert truncation (viz. (E20) and (543)
vs. (@A), respectively). While 5 in the Einstein-Hilbert case receives contri-
butions from arbitrary powers of G, the n¢ arising in our non-local truncations
are ony linear in G. Since no refinement of these truncations is likely to improve
the situation, for the same reasons as those presented in the previous paragraph,
our findings indicate that effective average actions containing non-zero values of
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Chapter 5. Non-local truncations in the f(R) sector

such non-local couplings cannot describe gravitational physics in the high energy
regime.

As a consequence, we can constrain the theory space of asymptotically safe
effective average actions to a theory space which does not contain such interac-
tion monomials. Since the latter can be consistently decoupled from the renor-
malization group flow, as we have seen from the triviality or linearity of their
corresponding beta functions, this constraint is warranted and well-defined. And
indeed, decoupling such contributions, we can explicitly verify the existence of a
candidate NGFP in support of the asymptotic safety scenario in higher-derivative
f(R), as we have done in the previous chapter.

5.4 Conclusions

In this chapter, we used the functional renormalization group equation for f(R)-
gravity ([LGI) derived in Chapter Ml to study truncations including interaction
monomials which are built from non-local curvature terms, such as In(R) and
R™™. Based on the feature that the operator traces in this flow equation are
homogeneous with respect to the function fi(R), we have deduced on general
grounds that such non-local interaction terms can be consistently decoupled from
the gravitational renormalization group flow. This implies that, if the couplings
multiplying these terms are set to zero at a particular scale, the flow will not
generate non-zero values for these couplings dynamically.

Combined with the results of [86,[122] in which non-local f(V') truncations
were studied, where V is the spacetime volume, these observations suggest that
all gravitational interactions which do not occur in the heat-kernel expansion can
be consistently decoupled from the gravitational renormalization group flow. This
does not imply, however, that the effective average action 'y, is local at all scales
k. In fact, more complicated non-local interactions built from the curvature scalar
and the (inverse) Laplace operator V2, of the type [ ddx\/ﬁR(VQ)_lR or, possibly,
I dd:z:\/gR In(—V?)R, which for instance appear in the late-time expansion of the
heat kernel [IT06L[I17], are likely to be dynamically generated. Including such
interactions in a truncation ansatz for I'y is, however, beyond the scope of the
formalism employed in this work. Nevertheless, it would be very interesting to
extend the present formalism in such a way as to allow for the inclusion of such
terms in the truncation ansatz, both from a phenomenological perspective (see,
e.g., [123]), and from a more fundamental point of view, with respect to curing
the conformal factor instability [I21L[124] or finding a dynamical solution to the
cosmological constant problem.

We have investigated in detail the non-perturbative renormalization group
flows arising from non-local extensions of the Einstein-Hilbert truncation contain-
ing [ d?x/gIn(R) (In(R) truncation) or [ d?x/gR™" (R™" truncation) terms in
the ansatz for I'y,. These investigations were motivated by recent attempts to
explain the origin of dark matter from a modified theory of gravity which in-
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cludes interactions that become dominant as the curvature scalar becomes small.
In addition, the flow behavior of these specific examples may be seen as qual-
itatively representative of the class of non-local truncations considered in this
chapter. Including such non-local interactions in the truncation ansatz signific-
antly changes the structure of the non-perturbative beta functions obtained in
the Einstein-Hilbert and higher-derivative truncations.

On the one hand, we find that IR singularities of renormalization group traject-
ories with positive cosmological constant found in the Einstein-Hilbert truncation
(and including the “RG-trajectory realized by nature” [8§]) are resolved. In ad-
dition, in the case of the In(R) truncation, we find an infrared fixed point (IRFP)
which, for renormalization group trajectories sitting on the plane of vanishing
non-local coupling, dynamically drives both Newton’s constant and a positive
cosmological constant to zero as k — 0, abolishing the need of fine-tuning these
couplings at the initial scale. This constitutes a first explicit, non-perturbative ex-
ample illustrating suggestions that A could be dynamically driven to zero through
strong quantum gravity renormalization group effects in the infrared.

On the other hand, neither truncation can adequately describe gravitational
physics in the UV. This may be seen already at the level of the anomalous di-
mension ng of Newton’s constant found here, which, unlike in the case of the
Einstein-Hilbert or polynomial f(R) truncations, are only linear in G, and thus
are not expected to encode the contribution of an infinite number of graviton
loops. Refining these truncations to include other interaction monomials does not
alter this situation. From a renormalization group perspective, truncations of this
type thus do not seem to lead to a class of viable UV gravity theories.

Our results therefore pose another warning to modified models of IR gravity,
in addition to the other issues that have been raised in the literature in that
respect (see, e.g., [125] for a review). Inasmuch as our IR theory of gravity is
the low-energy limit of a quantum theory, one should be careful about modifying
it. Even if the suggested modifications might satisfy experimental constraints
and lead to stable dynamics at the classical level, it will not necessarily lead to a
feasible quantum theory in the UV, even at the effective level.

With regard to the asymptotic safety scenario, our findings allow us to con-
strain the space of asymptotically safe theories to a subspace that does not contain
the non-local interaction monomials here considered. Together with the results of
the higher-derivative studies [411[69], which have established the existence of a UV
non-trivial fixed point of the gravitational flow in polynomial f(R) truncations of
up to order eight, the prospects for the asymptotic safety of gravity in the f(R)
sector are thus encouraging.

In light of this, there are two natural next steps for exploring asymptotic safety
within our non-perturbative framework. The first would be to extend the map-
ping of the renormalization group behavior of gravity in this sector by considering
truncations built from functions of the curvature scalar and the Laplace operator
V2, such as the non-local interactions mentioned above. Unfortunately, this class
of truncations cannot yet be studied within the FRGE formalism. The second
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Chapter 5. Non-local truncations in the f(R) sector

would be to go beyond the f(R) sector, studying truncations which include in-
variants built from the other curvature quantities, such as the Riemann tensor.
This is what we will proceed to do in the following chapter.
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Based on D. Benedetti, P. F. Machado and F. Saueressig, Taming perturbative divergences in
asymptotically safe gravity, Nucl. Phys. B 824, 168-191 (2010), arXiv:0902.4630 [hep-th]

and

D. Benedetti, P. F. Machado and F. Saueressig, Asymptotic safety in
higher-derivative gravity, Mod. Phys. Lett. A 24, 2233-2241 (2009),

arXiv:0901.2984 [hep-th].

In this chapter, we extend previous FRGE computations by including a Weyl-
squared term in the ansatz for the effective action, thus taking us beyond trunca-
tions in the f(R) sector. We start by considering the pure gravity beta function
in this higher-derivative setting, computing the corresponding beta functions and
deriving the fixed point structure, and comment on the relation of our results to
perturbative computations in the literature. We then add a minimally coupled
scalar field to our truncation, noting that this setup provides the prototype of a
gravitational theory which is perturbatively non-renormalizable at one-loop level,
and study the resulting renormalization group flow. We will work with d = 4.

6.1 Four-derivative truncations in pure gravity

As we have seen in the course of this thesis, the non-perturbative renormalization
group behavior of gravity has been intensively investigated by use of the func-
tional renormalization group equation formalism within the truncation approx-
imation [35]. These studies have gathered substantial evidence for the asymptotic
safety scenario [35H4TL[107]. A non-Gaussian fixed point with strikingly stable
characteristic features and in agreement with this scenario has been found in the
pure gravity case from the original Einstein-Hilbert truncation [35] to truncations
including terms with up to the eighth power of the Ricci scalar [41]. Furthermore,
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Chapter 6. The RG flow of higher-derivative gravity

this fixed point has also been found to persist in Einstein-Hilbert truncation stud-
ies of matter-coupled gravity [41],82183],T08,126].

The main caveat of these f(R)-type truncations, however, is that they neglect
the contribution of interaction terms built from the other curvature operators
and omit the four-derivative propagator for the helicity-two states, which could,
in principle, have a major impact on the asymptotic safety scenario. An a pri-
ori argument suggesting the importance of these terms is that they feature as
non-renormalizable counterterms in the perturbative quantization of General Re-
lativity [I5H20J127]. In this chapter, we move towards closing this gap by explicitly
including such four-derivative terms in our truncation subspace.

6.1.1 The truncation ansatz

We begin by specifying the class of truncated effective average actions to be
studied. In keeping with our discussion in Section 2.2.2] our starting point is the
ansatz

Tilg,9) = Tilg] + S%[g, g] + 5*"[g, g, ghosts] + 5™, (6.1)

which restricts the ghost S8"[g, g, ghosts] and gauge S& actions to the classical
ones, and where S*** collects the contribution of auxiliary fields introduced to
exponentiate the Jacobi determinants arising from eventual field decompositions.
For the gravitational part of the effective average action, Iy, we will now include
all interaction terms up to fourth order in the derivative expansion,

- rav 1 w 1 0

where C? = ClvpeCHP? is the square of the Weyl tensor, £ = Ry, e R*77 —
4R, R" + R? is the integrand of the Gauss-Bonnet topological invariant, and
where we have neglected a surface term.

Capturing the C? interaction

Before discussing the other terms in (G1), we will first comment on the key im-
plementation that will allow us to study the renormalization group flow of gravity
in our higher-derivative truncation. When extracting the beta functions of the
gravitational couplings by means of the FRGE, the main step is the evaluation
of the functional traces appearing in the right-hand side of that equation. The
main limitation to extracting the beta functions in any given truncation is pre-
cisely our ability to evaluate these traces. In this respect, we may employ to our
advantage the freedom ensured by the background field formalism and choose a
class of background metrics that simplifies this evaluation when we set g = g by,
e.g., making the resulting operator expressions amenable to current heat-kernel
techniques. This class should be general enough to distinguish the interaction
monomials contained in 'y and, most importantly, simple enough to allow for
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6.1. Four-derivative truncations in pure gravity

the evaluation of the traces. In the f(R) truncations previously studied, the back-
grounds chosen were the maximally symmetric spaces S*, which are insufficient
in the former respect for the evaluation of (GIJ). Instead, we will consider here
the class of generic compact Einstein backgrounds & satisfying

Ru=%25.. (6.3)

Utilizing these backgrounds, all differential operators within our particular traces
organize themselves into Lichnerowicz form

A2L¢uu = _v2¢uu - 2Ruayﬂ¢aﬁ ’

Aid, = [-V?—1R] ¢, (6.4)
Aorp = —V?¢,
i.e., minimal second-order differential operators Ay, = —V? 4+ Q,, with spin-

dependent matrix potentials Qs acting on transverse-traceless matrices (s = 2),
transverse vectors (s = 1) and scalars (s = 0). Following a type II cutoff scheme
procedure (viz. Section[Z3]), we can choose to impose the cutoff Ry, on the spectra
of these operators. This feature is crucial for the non-perturbative evaluation of
the traces, as it makes them amenable to standard heat kernel techniques without
having to resort to non-minimal (or k-dependent) differential operators. The
generalization of the background metrics from maximally symmetric to Einstein
thus provides the crucial ingredient for investigating the non-perturbative features
of the gravitational RG flow including higher-derivative tensorial operators. We
should note, however, that these backgrounds allow us to distinguish only two of
the three higher-derivative couplings, and hence determine the non-perturbative
[O-functions only of the linear combinations

Wi Hk 1 9k

J4a = — 5 y  G4b =

6.5
3Uk 6CTk ( )

2CTk Ok '
Distinguishing also the third four-derivative coupling would require abandoning
the Einstein condition in our background metrics, which remains beyond current
trace evaluation techniques. In any case, finding a non-Gaussian fixed point for
the linear combinations (G.3) implies that, barring miraculous cancellations, none
of the couplings w, 8 go to infinity, and A and either w or § must be non-zero.

Gauge-fixing and ghost terms

Let us now return to the other terms in ([GI). The gauge-fixing term is of the
form

Sef = % / d*z\/gF,Y"F,, (6.6)
with 14
F =Y hu, — Tp?“h, Y* = [a+ BV2]g". 6.7)
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Chapter 6. The RG flow of higher-derivative gravity

Setting 5 = 0 in this equation, we recover the gauge-fixing term that was used in
Chapters @l and Bl The de Donder gauge corresponds to setting p = 1, while the
geometric gauge corresponds to p = 0. In the presence of four-derivative oper-
ators, however, it is natural to consider a gauge-fixing term which also contains
four derivatives. Thus, in the present case, we take a = 0 and keep the term
proportional to 5 in ([G7). We will also set p = 0, analogous to the f(R) case.

As we have previously discussed, in principle also the gauge fixing parameter
[ should be treated as running, i.e., § = ((k). However, it may be generally
argued [37[128] that 8 has an RG fixed point at 1/6* = 0, which implies that,
if we set 1/6(k) = 0 for some scale k, this condition will remain so for all scales
k<k. Thus, we will here set § — oo and implement the gauge-fixing as a delta
function, rather than a Gaussian. Not only does this allow us to sidestep the
running of the gauge-fixing term, it will also lead to considerable simplifications
in our subsequent calculations.

In the sequel, we will employ a transverse-traceless (TT) decomposition of the
metric fluctuations and ghosts, via

_ _ _ 1 _ 1
by = hy, + V& + Vi€ + Vi Vo — EQWVQU + ngh, (6.8)
and -
Ay =AL +V,a, (6.9)

where A, stands for the ghost fields.
With our choice for p, the TT-decomposition of S8 yields

g5 = 0 / oy {&u(Ban + 2)ATJe" + o[(3a0n — £)*(Aor — H)Ai] o}

2
(6.10)
The ghost sector now contains, in addition to the usual (complex) C,C-ghost
fields, a third ghost [129] due to the two-derivative contribution (det #V?)Y/2.
Introducing the complex-valued Grassmann fields B,, B* and the real field b,

for the latter term, and TT-decomposing the ghost sector of the resulting action
leads to

S st = — / d%ﬁ{éﬁ A C™ + L7[3A0r — R] Aom} ,
B st = — /d4x\/§{BE (A + B]B™ 4+ B [Agp — B]Ag, B (6.11)
+ 307 (A + B8 + 46 [Aor - £] A0 b}

Note that, in the literature on higher-derivative gravity, the contribution of the
B, B-ghost field is usually absorbed into the usual C, C-ghost, hence the need of
only a third (real) ghost. We prefer here to introduce a fourth ghost to clearly
separate the higher-derivative contribution from the usual second-order term. The
two choices are of course equivalent.
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6.1. Four-derivative truncations in pure gravity

The auxiliary fields

Finally, there are additional contributions to the flow equation arising from the
Jacobi determinants introduced via the TT-decomposition,

1/2
Jgrav = (detl(lT,O) [M(MW)} ) ’
Jo—gh = JB_gn = (detl[AOL])_l ;
Jb—gh = (det/[AOL])1/2 .

Here, the primes indicate that the unphysical modes are left out from the de-
terminants. We will return to those shortly. M#¥) is a (d + 1) x (d + 1)-matrix
differential operator whose first d columns act on the transverse spin one fields £,
and whose last column acts on the spin zero fields ¢ and which reads

29" A1 —Z&pr

. 6.12
Bpe 3N, HAg (042

M) — [

In order to account for these contributions, we follow [411[69] and introduce appro-
priate auxiliary fields so as to exponentiate these determinants via the Faddeev-
Popov trick. The resulting “auxiliary action” then becomes

Sawx — [ gty T W[ M) ' E,wT—I— E};,E M#v) /CE,CT
[ @2 va (iG] G + A ) [ o o

FEAL s HEA,t +>2A6Lx+%¢A{)L¢}.

Here, the gravitational sector contains the transverse ghost EE, cT#, a “longitud-
inal” Grassmann scalar ¢, ¢, a transverse vector CE and a real scalar w, while the
ghost determinants are captured by the contribution of the complex scalar fields
s, 5, t, t, the complex Grassmann fields ¥, x, and the real scalar field ¢.

Now, under the TT-decomposition of the metric and ghost fields, we must en-
sure that the unphysical modes are excluded from the spectrum of the component
fields. In the following, we impose a “mode by mode” cancellation between the
gauge-degrees of freedom in the metric and the ghost sector [69], as was done
in Chapter M which results in a precise cancellation of all the unphysical mode
contributions from the traces in the flow equation. For a generic Einstein space
these modes are the lowest Aj-eigenmode of the transverse vector ,, corres-
ponding to the nky Killing vectors, and the lowest Agz, mode of the scalar o.
Accordingly, the lowest mode of the transverse ghost fields C_'E, CE and of the
scalar ghosts {7,1, B, B,b} are also excluded. Lastly, from the auxiliary fields we
must remove the contributions from the lowest mode of the vectors {EE, cth, CE}
and the scalars {¢, c,w,,t,5,5, %X, X, ®}.

In the particular case of an S* background, we must additionally exclude
the second-lowest eigenmodes of the {o,7,7,¢,c,w} fields, corresponding to the
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Chapter 6. The RG flow of higher-derivative gravity

ncky = 5 conformal Killing vectors. In the sequel, however, we will for conveni-
ence take our Einstein space to have nxy = ncxy = 0. We have verified that
adding the contribution from these single modes does not alter our numerical
results at any relevant level.

6.1.2 Constructing the flow equation

Taking into account all the field contributions above, the flow equation schemat-
ically reads

8tRhT nT 8{7?{5

T, =3Tror + $Trir

ng%th + Ryrpr

2
Fé 5) + Rgg

—1
Ll ngh) + Run l—‘gi) + Rheo O Run Ot Rho
210 I 4 Ron T 4+ Roo ORoh OHRoo

O Run(Aj)
1 tIVhh \Aj
2 Z (2)

2

i=oa Din (Aj) + Ran(X;)

8tRC~TcT 8157?,7777
- Tnr ~Tro—my
FC‘TCT + Rerer me + R»f]n
0:R 5 0:R 5
— Tryr & t’VBT BT o (Q)t BB
I'grpr + Rprpr I'tp +Ris (6.14)
atRbTbT 8tRbb
At PRIy O
b T + Ryryr be + Rp
R 9 R
+ 3T 3Ty
CTCT + RCTCT Fu.)u.) wa
T atRETCT 8tREc
T w) ©)
FETCT + Rerer 'z, + Rae
8 Rgs 3 R’
+ TI'O (2)t o (2)75 tt
ss + F{t + R
Oy R+ 1 Ot Rypo
~Tro—gy—— + 3T
e + R F¢¢ +Ros

where the subscripts “2T”, “1T” and “0” respectively indicate traces taken on the
space of symmetric transverse-traceless matrices, transverse vectors and scalars
and where ¢t = In(k). The next steps in the derivation of this equation are the
computation of the Hessians I‘SIi)I, and the construction of the cutoff operators
Raa. To this effect, it is useful to note that, in the limit § — oo, the contributions
to the second variation of £ and oo are dominated by the gauge fixing term and
the o-h cross term vanishes. Thus, the combined contribution from o and h splits
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6.1. Four-derivative truncations in pure gravity

into the sum of the hh-trace and the contribution of the co-part, and we need
only take into account the second variations coming from Sg¢ for the  and o
terms.

Computing the Hessians

We now compute the Hessians arising from our ansatz (6.1 with (62). Since the
gauge fixing, ghost and auxiliary fields are already quadratic in the fields, we can
just read off their contributions from the expressions above. For the gravitational
sector, we first organize I'f ™" into the five interaction monomials

IQ = fd4$\/§, Il = fd4x\/§R,
I = [d*x/gR*, I= [d*z\/gR.R", L = [d'z\/gE,

noting that we can reexpress R, ,o R***? in terms of R, R*", R? and FE by means
of the four-dimensional topological invariant | d4x\/§E = 3272y, where Y is the
Euler character. Computing the second variation of these invariants and referring
to Appendix [Bl for the intermediate formulas, we arrive at

521y = / A /G {Lh — INTRT, €0 A6, — Lo [3Ar — R Agro)
&

(6.15)

521 = / d'ov/G{ hioh — 30T [Agr + LRI, — SR AE,  (6:16)
£
+ 1h[3801, — R]Aoro + fo Ao — B] [380 — B Aoro ),
while the variations of the four-derivative terms yield

521, =/ d4x\/§{ 3h[3M0r — R] Ao h — Rh*PT Ay hEﬁ
£ (6.17)
+ 30 [38Aor — R] Ajp o+ 3h [3M0r, — R] Af, U} )
and
R R e L R T T
+ 20 [3A0r — R| Ajpo + 0 [3AoL — R] AgLU} .

Reinstating the corresponding coupling constants and combining these contri-
butions with those coming from the gauge-fixing sector, we arrive at the final
expressions for the Hessians of the metric fluctuation components. These are col-
lected in Table Gl together with the expressions for the ghost and auxiliary field
sectors. Here and in the sequel, we have defined for convenience

_ M _ 1
9 =316 P T TenGy

while the four-derivative couplings g4q, ga» are given by ([G3).

(6.19)
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(2)

Index ‘ Hessian I},
hTRT 291003, — 2910 R — 29a R + g2]Aor, — 592R — go
£ —BlA1L + %]A%L — [g2R + 2g0] A1
hh £ [1894a A7 + 3(92 — 2940 R) Ao, + 290]
oo —%[3A0L—R]2[AOL—§]AOL
+3 [694aAF L, + 92801 — g2R — 2g0] [3A0L — R] Aor
ho $[92 + 6940 AoL] [3A0L — R]Aor
CECT“ Aqp,
m $[3A0L — R]AqL
BTBTH | —[Ayp + 4]
BB —[Aor — H]AoL
bEpTr | — AL+ 4
bb —[Aoz — A0z
Gr¢Tr | 4AnL
ww $[3A0L — R]AqL
EECT“ 2Aq1,
cc 1183A0L — R]AqL
5s Ao,
ol Aor

Table 6.1: Matrix entries of the operator F;f) in the gravitational, ghost and auxiliary
sector (separated by the horizontal lines), respectively. The elements are symmetric
under the change of bosonic indices, while they acquire a minus sign when Grassmann-
valued indices are swapped.

Adapting the cutoff operators
We now construct the cutoff operators, using the general prescription
Apr, — Po=Anrp + Ri(Anr) . (6.20)
As a result, the Lichnerowicz Laplacian operators in the Hessian are replaced by
0 (Pai)]orgs = [0 (Anr) + Ri(Anr)]gu s (6.21)

where [Ri], ¢, is a function of A, 1, and Ry. Following this prescription for each
of the fields in (EI4]), we arrive at the expressions for Ree, which are collected
in Table
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6.1. Four-derivative truncations in pure gravity

Index | Adapted cutoff operator Ry,

hTRT (4021 4 2Rp)gap — (2940 — %2R — g2 R
£ " [—B(3ATL 4+ (BRi + 3R)A1L + R} + 1 RRy) — Rgs — 2g0] Ry,
hh 3[(12A0L + 6Ry, — 2R)gaq + g2] R
oo £ [(38A0r — R)*(Aor — 1R)AgL
—(3A0L + 3Ry, — R)*(Aor + Ri)(Aor + Ry — 1R)]
Crcte | Ry,
i 1[6AoL + 3Ry, — R Ry
BIBTH | —Ry
BB —%[8AOL + 4Ry, — R|Ry,
bIvTH | —Ry
bb —1[8Aor + 4Ry, — R] Rk
o™ | 4Ry,
ww %[GAOL + 3Ry — R|Ry
et | 2Ry
éc 1[6A0r, + 3R, — R]Ry,
5s R
(o) Ry,

Table 6.2: Matrix entries of the operator Rf)in the gravitational, ghost, and auxiliary
sector, respectively. Here, only the leading-order contributions in the limit  — oo are
considered. As in Table B} the elements are symmetric under the change of bosonic
indices, while they acquire a minus sign when Grassmann-valued indices are swapped.

6.1.3 Evaluating the traces

Using the results in Tables and [62] we can combine the operator traces ap-
pearing in the right-hand side of ([GI4) to yield

kokTk[g, 9] = Sa + Shn + Sit + So- (6.22)

The first two terms in this expression represent the contributions from the hAThT
and hh sectors respectively, and read

s 1Tr O {294b(P22,k —A3) — (92 + gbR)RZk}
o1 = 5 Tror
2 291 P3 ), — (92 + 9 R) Pa — 392R — go
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Chapter 6. The RG flow of higher-derivative gravity

o 1 [ {691a(P3, — 831) + (92 — 2010 ) Ror |
hh = 5 16
27" 694055 . + (92 — 291aR) Po i + 390

(6.23)

where we have defined g, = 240 — 1 gap.
The last two terms represent the combined contributions of the transverse
vectors and of all the other scalar fields, respectively, giving rise to

1 OcR1
SlT = —§TI‘1T |: Pl)k :| (624)
and 3 o
= STy |k 2
S() 2 I'o |:3P0)k — R:| (6 5)

Note that, owing to the special gauge choice ([GI0) with p = 0 and to the 8 — oo
limit, S;r and Sy are again independent of I'f"™ and take a particularly simple
form.

We can now proceed with the evaluation of the right-hand side of the flow
equation ([GH0G). To this effect, it is convenient to introduce the dimensionless
counterparts of the couplings go;,

do=g0k™, Go=02k"?, G1a =940, Jab= Gav, (6.26)

while we recall that the dimensionless Newton’s and cosmological constants are
given by G = Gk2 and A = A k2.

The key observation for the evaluation of the traces appearing in (650 is that
their arguments contain only minimal second-order differential operators which
commute with all other elements (such as the curvature scalars) inside the trace.
In order to evaluate the traces, we can essentially follow the same steps as in
the truncations previously studied, by first expanding the trace arguments in a
Taylor series in R around R = 0, keeping only terms up to B2, and computing the
operator traces appearing as “expansion coefficients” via heat-kernel techniques.
These techniques have been introduced in Sections and 24 and we have
collected all relevant expressions in the appendices. The main formula here is

TI‘[W(AZL)] = @ /d4$\/5 {QQ[W]tri b() + Ql[W]tI‘i b2 + QO[W]tI‘i b4 +.. } y
(6.27)

where W(z) is a smooth function representing the operator trace we are interested
in evaluating, and where the bg; are the heat kernel coefficients of the Lichnerow-
icz Laplacian, which are given in (D23)) to four-derivative order. The functionals
Qn[W] are defined in Z34). As in the f(R) case, it is useful to express these
functionals in terms of the dimensionless threshold functions ®2 (w), ®2 (w) and

Y u, v, w) defined in Appendix [EJ] which encode the depend-

17 (s v,w), Y0 (
ence of our quantities on the choice of cutoff profile function. In particular, the
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6.1. Four-derivative truncations in pure gravity

traces arising from Sit and Sy are of the form (E.I0), whereas the Sor and Spy,
traces can be reexpressed via (EIT).

Following the strategy just outlined, the expansion of the 1T and 0 traces
results in

Sit = — oy / d'z\/g [3k*®) + ®1E°R + 25pR* — £ Ryupoe R

So =~y / diay/g [k L+ L(@] + 203k R (6.28)
+(155 + 1597 + §P3) R + 355 Ryuwpo M7

Here, all the @ are evaluated at zero argument, and ¢ = kO In(Rg)|.—0 is a
cutoff profile independent constant which, for our choice R(®)(0) = 1, evaluates
to ¢ = 2.

The evaluation of the truncation-dependent traces Sy, and Sor, on the other
hand, is slightly more involved. Applying (EII)), the expansion of Sy on the
truncation subspace takes the form

_ # 4 4 2 L afuv 2
Spn = 2(4#)2 /d x\/ﬁ{k C1 + Cok"R + 18003R065HVR +CyR

(6.29)
where the dimensionless coefficients C; can be written in terms of the generalized
threshold functions (E2)) with arguments

Y2 =8 (671a,2,2/350), YV, =T (6§ F2.2/350)
and read

C1 =24 G405, + 25205 o + 68,@4&?%)071 + (292 + 8t§2)T%70,0 )

O =4gua (1292035 — Ta0+ Y1 +9273,) + 30271
— Otg4a (21},0 0 1294aT2 1.1 T},O,l) + (292 + at92)(294ar2 10T % Tl 0,0) 5

(12§40 + §2) + 60tGaq + 2G2 + 01 G
6Jaa + 2 + 330

Cy =

Cy —94a{9694a 2,3 894,1(T T%,Q - §2T§,2) % 1 1= T} 0)}

(92
+ 6tg4a{24g4aT2,271 - 294,1(2?%71)0 - T%,l 1) — % 0.0}

+ Gaa (292 + 0:92) (4§4aTg72,0 + %Til,o) + 5505
(6.30)

Here, we have applied R(?)(0) = 1 to simplify C3 and expressed the resulting
coefficients in terms of the dimensionless coupling constants ([620).
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Chapter 6. The RG flow of higher-derivative gravity

The projection of Sor proceeds in a similar fashion. In this case, all threshold
functions appear with arguments

Tg,m = Tﬁ,m(2g4ba _§23 _go)a T;Z)mJ = Tfl)m7[(2g4ba _§23 _QO) .

Letting

1 ~ ~ 10 ~ ~
S2T — )2 /d4$\/§ {k401 + Czk2R + §C3Raﬁuy RQBNV + C4R2} P

2(4m
(6.31)
the coefficients C; appearing in the trace expansion are

C1 =40g2Y3 1 — 10§23 o + 108,345 T3 o 1 — 5(2G2 + 9:g2) T3 0.0 5

Cy =109, (4Gas Y35 — Yoo — §2031) + 532 (493, + 2T — 52T3)
- %.@lb’r%,l + 58t§4b(29bT§,1,1 + §2T§,0,1 - %T%,O,l)

—5(2G2 + 0:32)(9: Y310 — 3 100 + 35213 0.0) — 50195 T3 0.0

Gy — (4Gap — G2)p + 20:gap, — (292 + OrG2)
2g4b — g2 — Jo

)

~ - ~ - 10 N
Cy =59,92 {894ng,2 - T;o - 292T§71 + %T%,l} + ggb {Tio - 4g4bT%,2}

- %Qﬁux%,l +5g; {8§4ng73 - 2T§71 - 2§2T§72}

+ 535 {205 1 + 3T 0 — 25205 0} + 5 (202 + 0:32)

x o (372 10— 22800 — 9 Th00) + 2321300 — 3387800}
+ 50 gap {gb(QQbT%,m + 2§2Tg71,1 - %Til,l) - %§2T%,071 + %ggT%,OJ}
— 5019y {%Tg,m + %§2T§70,0 - %Tio,O} - RCs.
(6.32)

Note that the generalized threshold functions entering into C; and C; depend on
different arguments.

6.1.4 The beta functions

Parametrizing the truncation ([G2]) in terms of the go; couplings and specifying
the background to be an Einstein space, the left-hand side of the flow equation
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6.1. Four-derivative truncations in pure gravity

EE0) reads

(9151:‘%1“ :/d4x\/§[atgo + 0tgo R + (61594(1 — %atgzlb) R? + 6tg4bRNVpURNVpg] '
(6.33)

Combining the S; contributions on the right-hand side, expressing all couplings
constants in terms of their dimensionless counterparts and equating the coeffi-
cients of the curvature polynomials on both sides of (G50 then yields

~ ~ 1 ~ 1
kakg()— _490+W {Cl—I—Cl —8@2} ,

- . 1 ~
kOpge = — 2 G2 + TESE {02 +Cy — 307 — %‘bg} )

. B (6.34)
kOkGaab = W {ﬁCB + 803 + %@} )

. . 1 ~
kOkgaa — %k@kg% = W {%CAL + %04 - 11—8(1)% - %@% - %‘P} :

Note that these beta functions are given in a rather implicit form, as the deriv-
atives of kOrg; appear on both the left- and right-hand side of the equation. By
solving these equations for k0 g;, we obtain the beta functions

kOkGi = Bi(gi) (6.35)

This can be straightforwardly done using algebraic manipulation software. How-
ever, the resulting expressions are very lengthy and not very illuminating, so that
we give here the implicit form of the beta functions only.

Fixed point solutions

Owing to their intricate structure, the beta functions (634 can only be analyzed
numerically. Furthermore, their explicit evaluation requires specifying the par-
ticular profile of the IR cutoff function. In the following, all results are given
for the optimized cutoff (EI2) with shape parameter b = 1, but we have also
verified that using the exponential cutoff (EL13]) or varying the shape parameter
b confirms the picture reported below.

The fixed point structure of our beta functions exhibits, first, the two Gaussian
fixed points (GFP) familiar from perturbation theoryEI,

G'=0, A=0, o=0, w,=-2& (451 \/3927) . (6.36)

n a slight abuse of notation, we neglect the topological term here, setting 6 = 0,9:0 = 0.
Also note that the existence of this GFP is actually compatible with the analysis [40], which
did not consider the case of the inverse coupling 1/0 — oo.
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Chapter 6. The RG flow of higher-derivative gravity

with stability properties given by the following eigensystem

91:27 V1:{1707070}Ta 92:_23 %:{évlaovo}Tv

93 = 07 ‘/3 = {0,0, 170}T’ 94 — 07 V4 _ {O,O,O,O}T ] (637)

These GFPs correspond to the free theory, and their stability coefficients are given
by the canonical mass dimension of the corresponding (dimensionful) couplings. In
particular, the eigendirection associated with Newton’s constant is UV repulsive,
while the directions associated with the new couplings o, w are marginal. Going
beyond the linear approximation, the marginal directions are found to be UV-
attractive, in accordance with the one-loop calculations [130].

More interestingly, the beta functions (E34) also admit a non-trivial fixed
point solution with positive Newton’s and cosmological constant. Its position is
given by

g5 =0.00442, g3 =-0.0101,  §i, =0.008,  §i, =—0.0050, (6.38)

which corresponds to G = 1.96, A = 0.218. The dimensionless, gauge-independent
[131] combination GA then takes the fixed point value

(GA)* = 0.427

which, together with the value of gj,, is in good agreement with previous compu-
tations. Note also that the finite values for g3, and g}, imply a finite value of o*,
to be compared with the one-loop result ¢* = 0. Thus, the non-perturbative cor-
rections captured by the FRGE shift the fixed point underlying the asymptotic
freedom obtained within perturbation theory to the non-Gaussian fixed point
[637])) featuring in the asymptotic safety program.

Linearizing the flow around this NGFP, we find the stability coefficients

0y = 2.51, 01 =1.69, 0 = 8.40, 03 = —2.11, (6.39)
and associated normalized eigenvectors

Vo ={0.12,0.10, —0.06, 0.99} T, Vi={-020,0.74, —0.10, 0.63} T,

Vo ={0.74, —0.46, 0.48, —0.11}*, V3= {0.07, —0.21, 0.97, —0.09}*.
(6.40)

We observe that the NGEP stability coefficients reported here are real. This is in
contrast with the complex stability coefficients and the corresponding spiraling ap-
proach of the renormalization group flow characteristic for f(R)-type truncations,
and reflects rather the behavior found within the perturbative one-loop compu-
tation [130]. One might be tempted to speculate that this difference originates
from the contribution of the C2? term. Performing a stability analysis of these
numerical results by varying the cutoff profile and associated shape parameter,
however, suggests that this is not the case. Indeed, particular choices of the shape
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6.2. Perturbation theory and asymptotic freedom

parameter can again lead to complex stability coefficients both when employing
the exponential (EZ13)) and the optimized (EI2) cutoffs. In order to minimize the
scheme dependence of our numerical results and obtain more stable critical expo-
nents, an optimization analysis in the spirit of [75[114] should be perfomed. While
we will not undertake such an analysis in the present work, it should constitute
an important component in future studies within higher-derivative truncations.
In any case, we stress again that, for all cutoff profiles and the range of shape
parameters we have considered, a NGFP with three UV-relevant directions and
similar values of (GA)* was found.

Note that the transition from asymptotic freedom to asymptotic safety lifts
the degeneracy of the marginal couplings. Crucially, increasing the dimension of
the truncation subspace with respect to the Einstein-Hilbert case adds one UV-
attractive and one UV-repulsive eigendirection to the stability matrix, so that the
UV critical hypersurface in the truncation subspace is now three-dimensional. We
should note that the same number of UV-attractive eigendirections has been found
within the f(R) studies of [4I] and reproduced in Chapter @ which, however,
did not include the power-counting marginal coupling g4,. The condition that a
trajectory be asymptotically safe, i.e., that it approach the fixed point as k — oo
implies a relation between the couplings go; which, in the neighborhood of the
NGEFP, defines the UV critical surface via

Gap = —0.116 + 0.745§0 — 2.441G5 + 11.0644,, . (6.41)

We then have a three-dimensional subspace of renormalization group trajectories
which are attracted to the NGFP in the UV and are therefore “asymptotically
safe”.

6.2 Perturbation theory and asymptotic freedom

Gravity theories in which the action takes the form of our ansatz ([G2]) have been
the focus of various perturbative studies in the literature (see [132] for a review).
The initial motivation behind many of these studies was the observation [133] that
the presence of higher-derivative propagators softens the divergences encountered
in the perturbative quantization, rendering the higher-derivative theory perturb-
atively renormalizable and asymptotically free at the one-loop level [T3T134H137].
On the other hand, when seen as a fundamental theory, the extra terms respons-
ible for the improved UV behavior also induce massive negative-norm states [138],
the so-called “poltergeists”, which are believed to spoil the unitarity of the the-
ory and thus pose a significant obstacle to its feasibility as a candidate theory
of quantum gravity. While some arguments have suggested that this shortcom-
ing can be cured by quantum effects [I34,[139], no such claims have yet been
successfully verified.

Over and above the status of higher-derivative gravity as a fundamental theory,
however, it is instructive to consider the relation between our FRGE calculations
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Chapter 6. The RG flow of higher-derivative gravity

and the perturbative results within that setting. We should stress again that
we treat our four-derivative ansatz at the level of a truncated effective (average)
action only, and hence bare action considerations are not relevant to our discussion
here.

We start by showing that the known one-loop beta functions for the marginal
couplings o, w [I3TL137] can be recovered from our non-perturbative renormaliz-
ation group equations (634). In contrast to their G’, A counterparts, the former
are universal, i.e., they are independent of the choice of gauge-fixing or regulariz-
ation scheme employed. Since their usual derivation employs a very special choice
of gauge-fixing, dimensional regularization, and heat-kernel methods for minimal
fourth-order differential operators, which is manifestly different from the route
taken in this paper, this comparison provides a consistency check for the validity
of our approach.

The one-loop counter-term for higher-derivative gravity obtained via dimen-

sional regularisation is [I31}[137]

d—4
1 ; 133 _, 196 0,5 . 5)p
AS=—L - ZE4 Wt =
S (47T)2(d_4)/dx g[ C* - Gw Wt o | R
(6.42)

Here, p is a dimensional parameter and we have neglected lower-derivative and
surface terms, which do not play a role in the following. Denoting the coupling
constant in front of E by 6/c, the one-loop beta functions for the dimensionless

couplings become [130,131}137]

1133
ﬂa = (47‘() 10 -~ 0,
1 25+ 1098w + 200w?
w e 9 .4
A (47)2 60 7 (6.43)
1 7(56 - 1710)
bo=tmEr— o0 °

Due to our use of the Einstein backgrounds, we cannot disentangle the running
of f from o, w in our projected equations. In this case, the E term in (GZ42]) shifts
the coefficients of the C?, and R? terms. Using (A7), the Einstein-space limit of
[E22) relevant for our computation is readily obtained as

413 10 5,5 317
AS=—H [ q P+ 2w 2V (644
5= (47r /d 9 {180 ( g« T3v 540) i } (6.44)

The resulting projected beta functions are then given by

1 413 2 1 317—1726w—600w20

fa =~ @m2 907 > ﬂ”:(zm)? 180

(6.45)

We now establish that these -functions indeed arise as the one-loop limit of
©34). In this limit, we first “switch off” the renormalization group improvement
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6.3. Taming perturbative divergences in gravity

of [E34), by setting all the In(k)-derivatives appearing on its right-hand side to
zero. At the level of the flow equation, (6I4) this corresponds to neglecting the
running of the couplings in its right-hand side. We then expand Cj, Cs and Cy, Cy
to leading order in o. The resulting expressions can be expressed completely in

terms of ®2(0) and ¢ (viz. eqs. () and ([ET)),
C3 = 2¢p, Cy = (2(1)3 —I—(I)%)—i— %C}},

1
A - - (6.46)
Cs=2p, Ci= 5w+ 10} + f(dw + 1205 - RCs.

Since the quantities ®71(0) and ¢ are independent of the choice of profile function
R,(CO), we find that our one-loop beta functions are independent of the regulariza-
tion scheme, as expected. Lastly, recasting the resulting equations in terms of o
and w, we precisely reproduce the projected beta functions (6.45]). This provides
a non-trivial cross-check between the FRGE techniques employed here and results
obtained previously using, e.g., a dimensional regularization scheme.

In the one-loop approximation, our results recover the asymptotic freedom of
the higher-derivative couplings found in previous calculations within the perturb-
ative setting [130,131L134HI37[140]. Taking into account contributions from all
loop orders to arrive at our non-perturbative beta functions ([634)), this asymptotic
freedom is shifted to “asymptotic safety”. With respect to the lower-derivative
couplings G and A, on the other hand, non-trivial fixed point solutions are present
already at the level of perturbation theory. This was first established in [130] in
a one-loop FRGE computation, and more recently also found by means of co-
variant operator regularization in perturbation theory [I40]. The origin of the
discrepancy between these and the earlier works can be traced to the fact that all
of the latter computed the beta functions of higher-derivative gravity by means
of dimensional regularization, which is sensitive to logarithmic divergences only.
Once the contribution of power-like divergences in the one-loop effective action
are also taken into account, the non-trivial fixed points appear.

6.3 Taming perturbative divergences in gravity

The renormalization group analysis of R? + C? truncation in the first half of this
chapter lends further support to the asymptotic safety scenario and indicates the
persistence of the NGFP under inclusion of the C? direction in the truncation
subspace. Indeed, all truncations studied so far, from the Einstein-Hilbert, to
the R? and general (local) f(R), up to the tensorial truncation we have just
considered, give rise to a coherent picture pointing to the existence of a NGFP
dominating the UV behavior of gravity. A possible criticism of these results,
however, is that they are based on truncations which only contain interactions that
are also unproblematic for the on-shell perturbative renormalizability of gravity.
It is therefore a fundamental test for asymptotic safety to include potentially
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Chapter 6. The RG flow of higher-derivative gravity

dangerous terms in the truncation ansatz and study their effect on the fixed point
structure of the theory.

In pure gravity, the first non-trivial counterterm would be the Riemann-cube
term of [I920]. Including this term in the truncation ansatz is, however, technic-
ally very involved and beyond current FRGE techniques.

A technically less demanding but equally illuminating alternative is to study
truncations for matter-coupled gravity. In this case, the non-renormalizable coun-
terterms already appear at one-loop and the occurrence of divergences propor-
tional to R? and Cluvpe C*7P?  which do not vanish on-shell, signal the break down
of perturbative renormalizability. To date, investigations of matter-coupled trun-
cations, while also corroborating the asymptotic safety scenario, have remained
restricted to the Einstein-Hilbert case [411[82[83L[T08[126]. In this section we go
beyond this restriction, and study the non-perturbative renormalization group
flow of gravitational higher-derivative terms in the presence of a free, massless,
minimally coupled scalar field.

6.3.1 Perturbative non-renormalizability and counterterms

Let us begin by reviewing the perturbative quantization of the Einstein-Hilbert
action minimally coupled to a free scalar field. This provides the prototypical
example of a gravitational theory which is perturbatively non-renormalizable at
one-loop order [15], as may be seen by computing its one-loop counterterms AT,
In general, the one-loop effective action for a gauge theory takes the form

52Stot :|

S3ASTD (6.47)

ri-leor[p) = S[@] + %STr In [

where ®4 is the full set of fields (including auxiliary fields and ghosts), S*t[®] =
S[®] + S&[®] + S8 (@] is the total action of the theory, including the gauge-fixing
and ghost terms S&f and S&", and STr is a generalized functional trace carrying
a minus sign for fermionic fields and a factor 2 for complex fields. Typically, this
trace contains divergences which require regularization.

In the case of gravity, our starting point is the action

Slg, ¢] = /d4x\/§ |:/€_2(—R—|— 2A) + %g’“’ 00| (6.48)

supplemented by the gauge-fixing term

1

gef — _—_
22

d4x\/§guyFlva 9 Fp, = vahua - vuh, (649)

[NIEg

and the corresponding ghost action. Here, k2 = 167G, G and A are the dimension-
ful Newton’s and cosmological constant, respectively, g,,, denotes the Euclidean
space-time metric, and ¢ is a real scalar field. The gauge-fixing is carried out via
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6.3. Taming perturbative divergences in gravity

the background field method, splitting the metric and scalar fluctuations into a
background part, g,., ¢, and fluctuations around this background, hyuw, f, accord-
ing to g = Guv + hy and ¢ = ¢ + f. Adapting the results [T41[142] obtained
via the Schwinger-DeWitt technique, the one-loop divergences arising from (6.48)
are readily found to b

1

AFdiv _
(4)2e

[ el s e oot
— K2(LR — 20)(8,00"¢) — AR + 20A2} ,

where € = (d —4) and E = C,,,,,,C"?? —2R,,, R" + %RQ is the integrand of the
Gauss-Bonnet term in four dimensions, with C),,,c being the Weyl tensor.

In order to get information on the renormalizability, the divergences (G.50])
have to be considered on-shell. The equations of motion resulting from ([G48) are

V.VFp=0, R=4A+1r*(0,0)>, Ru =Agu+3r*[0,00,0]. (6.51)
Substituting these, eq. [C50) can be suggestively written afl

. 1 213 203 463 463
AP = o5 /d4x\/§ [%E + %RQ — 5 BA+ 1—OA2 . (6.52)
As the R? and E-terms are not of the form of the terms contained in the initial
action, they cannot be absorbed by a renormalization of the coupling constants,
indicating that the action (G48]) is indeed perturbatively non-renormalizable. The
non-renormalizable on-shell counterterms are thus of fourth order in the gravita-
tional sector and can be rewritten as

1
(4m)2e

There is a common prejudice that these interactions have a devastating effect
also on the possible non-perturbative renormalizability (i.e., asymptotic safety) of
the theory. Extending the calculations presented in the first half of this chapter
to include the contribution of a minimally coupled, massless scalar field, we will
now show that this is not the case.

31 213
/ d'z\/g {E R? + T35 Cree "7 - (6.53)

AFNR _

6.3.2 Matter coupling and beta functions
We now take the term [y in our ansatz (@) to be of the form

Ti[®] = T3 [g] + T g, 0], (6.54)

2There is a typo in the coefficient of the squared potential in [I42], the correct formula is
given in [141].

3Note that this expression agrees both with the one-loop counterterm found by ’t Hooft
and Veltman [15] for A = E = 0, and with the one of Christensen and Duff [143| once the
contribution of the scalar field is subtracted.
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where I'¥"™" is the four-derivative gravitational truncation ([E2) and I'P**¢" is the
(k-independent) action for a minimally coupled massless scalar field,

Fmatter[g’ Q/)] _ % /d4$\/§ gl“’ 8ﬂ¢ 81/¢ (655)

Note that this truncation is exactly of the form of a matter-coupled Einstein-
Hilbert action plus perturbative counterterms. Applying the background field
method also for the matter part of our ansatz (setting ¢ = 0, for convenience)
and computing the second variation, we find that the matter traces decouple
from the gravitational traces in the right-hand side of the flow equation, as we
have already seen in Chapter 2] also for the case of minimally-coupled Dirac and
Maxwell fields. In addition, since T™?a%¢" contains no running couplings, it will
not contribute to the left-hand side of the FRGE. Our flow equation is thus given
by

kORTk[®] = 0;Tk[g]5"™" = Sar + Sun + St + So + Smat (6.56)
where ) oR
_ 4 t10,k
Smatter = 2Tr0 |:—P0,k } . (6.57)

is the scalar field contribution to the traces and the gravitational traces are given
by [@23)-(@27). The latter have been evaluated in Section 1.3l while following
the same evaluation procedure for the matter trace straightforwardly yields

1 1 p, 1 o1
Smattcr = W/d%\@ |:I€4‘I)% + ng(I)%R—F —( R,ul/po'R'u po 4 %RQ):| )

2180
(6.58)
At the level of the beta functions, the matter coupling results in a shift by a
constant with respect to the pure gravity expressions ([G34]), leading to

~ ~ 1 -~ 1
kakg() = —4g()+ W {Cl +Cl + (27’LS —8)‘1)2} s

. - 1 o ona
kOyg2 = _292+W {C2+C2+ 3 TP _éq);} )

(6.59)

~ 1 1 5 114n,
kOkgap = —(471')2 {mcg + 503 + =60 <,O} ,

_ - 1 ~
K10 = §00910 = (1 {5Ci+4C, - L3 — o+ (25 - Lo} |
where we have explicitly indicated the matter contribution by the ng = 1.

6.3.3 Fixed points of matter-coupled gravity

Solving ([E59), we arrive at the fixed points of our truncation. Remarkably, the
fixed point structure originating from the matter-coupled case is very similar to
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the pure gravity results of the previous section. First, we recover the matter-
coupled analogues of the pure gravity GFPs

g- =0, =0, o =0, wi 5 = — 15 (90 + V15708 — 101n,) ,
(6.60)
existing for 0 < ng < 155 and with stability properties given by the following
eigensystem

91 :27 ‘/1 :{1707070}T7 92:_27 %:{2$25717070}T7 (661)
6;=0, V3=1{0,0,1,017, 0.=0, Vi=1{0.0,0,07T. :

Most importantly, we also find a generalization of the NGFP in the matter-
coupled higher-derivative truncation. Its position and stability coefficients are
given by

G5 =0.00438 , g = —0.0087 , g5, = 0.010, G5, = —0.0043, (6.62)

and
0p =267, 60,=139, 6,=786, 0O3=—1.50, (6.63)

corresponding to

G*=2279, A*=0.251, (GA)*=0.571. (6.64)

We have collected this data, together with that from the pure gravity case, in
Tables and [6.4] where we have also included the results from previous FRGE
four-derivative computations for comparison.

As we can see from the stability coefficients ([E63)), our truncated flow is still
characterized by three UV-attractive and one UV-repulsive eigendirections. We
still have a three-dimensional subspace of renormalization group trajectories which
are attracted to the NGFP in the UV and which are hence “asymptotically safe”.
Therefore, non-perturbative renormalizability persists also in the presence of the
one-loop perturbative counterterms in the truncation ansatz.

6.4 Conclusions

In this chapter, we have studied the non-perturbative renormalization group flow
of gravity in a higher-derivative truncation, moving beyond f(R) truncations to
include tensorial interactions in the truncated flow space. Using a new projection
procedure for the truncated flow equation, we were able to distinguish two linear
combinations of the three higher-derivative couplings and account for the presence
of the helicity-two states propagator in our truncation ansatz. The resulting beta
functions give rise, in addition to a trivial fixed point linked to the perturbat-
ive quantization, to a non-Gaussian fixed point with positive values of Newton’s
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Truncation G* A* Tt o (GA)*
R* +C? 1.960 0.218 0.008 —0.0050 0.427
LR II 0.292 0.330 0.005 - 0.096
CP 1.389 0.221 * * 0.307

R2+C%+ ¢ || 2.279 | 0.251 | 0.010 | —0.0043 || 0.571
Table 6.3: Position of the NGFP obtained from the non-perturbative beta functions
of the R? 4+ C*-truncation, eq. (©34). For comparison, we also give the data of the R2-
truncation [40] (LR II), and the perturbative one-loop result [130] (CP). In the latter
line, the * indicates that w* = —0.0228,0" = 0.327 approach finite values in the UV,
while ¢ runs logarithmically to zero, realizing the asymptotic freedom of the one-loop
result. The last line gives the position of the NGFP upon including a minimally coupled
scalar field. Note that CP employed a type III cutoff scheme with the optimized cutoff,
whereas LR II employed a type I scheme with the exponential cutoff.

Truncation 01 ) 03 04
R? + C? 2.51 1.69 8.40 —2.11
LR II 2.15 + 3.79i 2.15 — 3.79i 28.8 -

CP 4 2 * *
RP+C*+9¢ | 2.67 | 1.39 786 | —1.50

Table 6.4: Stability coefficients of the NGFP obtained from the non-perturbative beta
functions of the R? + C%-truncation, eq. ©34)). For comparison, we also give the data of
the R*-truncation [40] (LR II), and the perturbative one-loop result [I30] (CP). In the
latter line, the x indicates the logarithmic running of the marginal coupling constants
towards asymptotic freedom. The last line gives the stability coefficients of the NGFP
upon including a minimally coupled scalar field.

constant and the cosmological constant and with similar properties to the ones ob-
served within previous f(R) type truncations. Despite the four-dimensional trun-
cation space, the number of relevant interactions within the “R?+4 C?” truncation
is found to be three. These results provide further evidence for the asymptotic
safety scenario.

We then supplemented our higher-derivative truncation with a minimally
coupled free scalar field. From the viewpoint of perturbative quantization, this
setup provides a prototypical example of a quantum theory of gravity which is per-
turbatively non-renormalizable at the one-loop level [I5]. There, higher-derivative
interactions arise as perturbative counterterms, signaling the presence of diver-
gences which cannot be absorbed by a renormalization of the coupling constants.
However, despite the breakdown of the perturbative quantization scheme, there
is the possibility that this gravity-scalar theory constitutes a well-defined and
predictive quantum theory within the realm of asymptotic safety.

We have shown that the non-Gaussian fixed point found in the pure gravity
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case and supporting the asymptotic safety conjecture persists under the addition
of the scalar field to our truncation. This result explicitly shows that, contrary to
a common concern, the inclusion of perturbative counterterms in the truncation
subspace of a gravity-matter theory has no qualitative effect on its fixed point
structure. In particular, we find no indication that these interactions are fatal to
the non-perturbative renormalizability of the theory.

An interesting point surfaces when comparing the fixed point structure ob-
tained for pure gravity (ns = 0) and gravity coupled to one free scalar (ng = 1)
given in the top and bottom lines of Tables and [6.4] respectively. Including
the scalar field shifts the fixed point values obtained for pure gravity only very
mildly, so that the resulting fixed point patterns are very similar. In a sense,
this indicates that (at least for the present truncations) the UV behavior of the
gravity-matter theory is still dominated by its gravitational sector, so that it still
behaves “essentially gravitational” at high energies. Following [83l[144], it would
be very interesting to determine which matter sectors lead to asymptotically safe
gravity-matter theories, taking the higher-derivative terms into account.

Completing the four-derivative truncation so as to be able to decouple the
running of all three higher-derivative couplings would be a natural continuation
of our exploration of the truncated renormalization group flow of gravity. In addi-
tion, while our results on the interplay between the perturbative counterterms and
asymptotic safety in the gravity-matter case are already trend-setting, it would
also be desirable to carry out an analogous computation for pure gravity, where
non-renormalizable divergences set in at two-loop level [19,20]. Both of these
studies, however, are still beyond the current technical scope of the functional
renormalization group techniques employed in the case of gravity. Developing
new computational methods in this setting thus seems to be a necessary next
step.
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Conclusions

Understanding gravity as a fundamental theory poses a challenge. While gen-
eral relativity is an extremely successful theory at the classical level, attempts
to reconcile it with quantum mechanics by means of perturbative quantization
indicate a breakdown of the quantized theory when one reaches energy regimes
of the order of the Planck scale (10*° GeV).

The predominant response to this problem, as exemplified by the string theory
approach [26], has been to consider quantized general relativity simply as an
effective low-energy limit of a (more) fundamental theory of gravity, which involves
enlarged or modified field contents and symmetries when compared with those
present at the classical level. This effective theory is appropriate for describing
physics so long as we are considering phenomena below the cutoff set by the
Planck scale. Once we reach the cutoff scale, however, we should abandon this
theory altogether.

An alternative response, however, is based on the idea that these issues can
be solved when approached from a non-perturbative perspective (see, e.g, [23] for
reviews). From this viewpoint, the ultimate source of the problem above does
not lie in the structure of general relativity, but in the use of perturbation theory
in this setting. One possible non-perturbative resolution of this kind is Wein-
berg’s asymptotic safety scenario [33]. This scenario posits the existence of a
non-Gaussian fixed point of the renormalization group flow of gravity, with a fi-
nite number of ultraviolet-attractive directions, which controls the behavior of the
theory in the ultraviolet (UV) and provides it with a predictive and well-defined
high-energy limit. In this sense, understanding the non-perturbative renormaliz-
ation group properties of quantized gravity could thus be central to establishing
its validity in the Planck regime.

While the greatest challenge to the quantum gravity program is capturing the
quantum behavior of gravity in the UV, its behavior in the deep infrared (IR) also
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poses interesting questions. It has been suggested that quantum gravity gives rise
to strong renormalization group effects in the IR which could be at the origin of
observed cosmological phenomena [55]. One conjectured origin for such effects is
the presence of non-local operators in the effective low-energy theory, such as the
ones responsible for the conformal anomaly of the stress-energy tensor [57].

Although these two issues pertain to very different energy regimes and may be
to a large extent decoupled from each other, they may also be treated under the
same framework, from the point of view of the evolution of the effective dynamics
of quantum gravity from IR to UV energy scales. The concept that can tie these
effective descriptions together is precisely the renormalization group.

Motivated by these considerations, in this thesis we have investigated the
non-perturbative renormalization group flow of gravity. The central tool in our
investigation was a continuous Wilsonian renormalization group technique, the
functional renormalization group equation (FRGE) [35L[65]. It encodes the scale-
dependence of a coarse-grained effective action, taken to describe physics at a
particular scale k, and allows us to construct the non-perturbative beta functions
of the theory. Computations within this approach rely on a truncation approxim-
ation, whereby the full renormalization group flow is projected onto a subspace
parametrized only by a subset of the renormalized couplings of the theory. The
reliability of the results obtained in a given truncation is assessed by verifying
their stability under the gradual extension of the truncation subspace.

The simplest, non-trivial gravity truncation one may consider is the Einstein-
Hilbert truncation, parametrized by Newton’s constant and the cosmological con-
stant, and in which evidence for a non-trivial fixed point of gravity was first
found [35]. The crucial questions in light of the asymptotic safety scenario are
whether or not this fixed point persists under the enlargement of the truncation
subspaces, and what are its resulting attractivity properties.

In this respect, there are three strategies we can aim to implement in order
to answer these questions. The first is to apply further simplifications to the flow
when extending the truncation, so as to include interactions which are otherwise
intractable from the technical level and thus obtain a rough picture of what the
effect of those terms might be. The second is to construct renormalization group
equations that allow us to consider general classes of truncations subspaces, which
might then allow us to make statements about large sectors of the full renormal-
ization group flow space. The third is to include terms in the truncation which
are known to be particularly problematic at the perturbative level, such as the
perturbative counterterms, and check whether they also spoil any possible renor-
malizability results at the non-perturbative level. These are the strategies we
have followed in this thesis.

In Chapter Bl we started our investigation within a conformally reduced sim-
plification, and considered non-local truncations of the form of the effective ac-
tion induced by the conformal anomaly. When implementing our coarse-graining
operator in a Weyl-invariant way, which is related to preserving background-
independence in the full theory, we found tentative evidence for a non-Gaussian
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fixed point, in accordance with asymptotic safety. When implementing the coarse-
graining in a Weyl-breaking way, on the other hand, we recovered the perturbative
beta functions derived in [68], which admit a non-trivial IR fixed point solution
that was in that work argued to drive the low-energy dynamics of the theory.
Both implementations are consistent from a mathematical perspective, but from
a physical perspective the former implementation is more justified. Indeed, this
has been the procedure followed in previous conformally reduced FRGE stud-
ies [67], where a non-Gaussian fixed point was also found. It would of course be
ideal to study a truncation of this form in the case of the full theory, where such
coarse graining ambiguities do not arise. Considering such a truncation, however,
is currently beyond the technical scope of the FRGE framework in gravity.

In Chapter @l we returned to the case of full gravity, and constructed a func-
tional renormalization group equation that allowed us to study general truncations
of the f(R) form, where f(R) are arbitrary functions of the curvature scalar. By
first taking f(R) to be a polynomial of up to order six, we reproduced the res-
ults of [69], which established the existence of a non-Gaussian fixed point with
three UV-attractive directions and remarkably stable numerical properties in all
these truncation subspaces. Then, in Chapter [l we considered non-local trun-
cations built from non-polynomial functions of R. We established on general
grounds that terms of this type can be consistently decoupled from the rest of
the renormalization group flow. By explicitly studying two non-local extensions
of this form to the Einstein-Hilbert truncation, the In(R) and R~ truncations,
we showed that, although these truncations lead to non-trivial modifications of
the IR properties of the flow — in particular, the beta functions in the In(R)
case admit a non-trivial fixed point which dynamically drives the cosmological
constant to zero in the IR — they are unable to describe physics in the UV. The
latter feature is characteristic of the class of non-local operators considered in
that chapter and persists under the inclusion of other terms in the truncation.
Using our decoupling result, we can therefore consistently remove all such terms
from the gravitational flow to arrive at the region of the renormalization group
space compatible with UV physics. The polynomial f(R) results of [69] recovered
in Chapter @ then suggest that this region is dominated by a non-Gaussian fixed
point in the UV. The prospects for asymptotic safety are thus encouraging, at
least as far as the f(R)-sector is concerned.

On the other hand, a caveat of these truncations is that by considering only
powers of the curvature scalar they omit tensorial terms which could have a major
impact on the asymptotic safety scenario. It is precisely terms of the latter form
which feature as non-renormalizable counterterms in the perturbative quantiza-
tion of general relativity. In Chapter [6 we therefore moved beyond the f(R)-case
by explicitly including such terms at four-derivative order in our truncation. Re-
markably, we found that a non-Gaussian fixed point with a three-dimensional UV
critical surface still persists in this setting. We then added a minimally coupled,
massless scalar field to our truncation, noting that this setup provides the pro-
totype of a gravitational theory which is perturbatively non-renormalizable at
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one-loop level. The resulting fixed point structure was strikingly similar to the
pure gravity case. Thus, contrary to a commonly raised objection with respect to
the f(R) results, we found that the inclusion of perturbative counterterms of this
type in our truncation subspace has no qualitative effect on the non-perturbative
renormalizability of the theory.

The coherent picture that arises from these studies, together with the other
results in the literature cited throughout this thesis, provides significant evidence
in favor of the asymptotic safety scenario, and suggests that non-perturbative
effects might indeed provide a solution to the Planck-scale troubles of quantum
gravity. While the evidence we have gathered here is inductive and cannot guaran-
tee that a non-trivial fixed point will exist in the full flow space, it is nevertheless
remarkable that such a fixed point persists in all truncations studied so far.

From the perspective of the FRGE approach to gravity, the limitations we have
encountered in further extending the truncation subspaces that can be treated
make a compelling argument for the development of new tools for the evaluation
of the flow equation. These would enable one to tackle the notorious two-loop
counterterm of perturbative gravity, so as to lend further evidence to the asymp-
totic safety scenario, or the conformal anomaly effective action in the full theory,
so as to gain a better understanding of the renormalization group behavior of
gravity in the IR, or to go beyond some of the restrictions of the truncation
ansatz we have considered here.

From a more general perspective, there are of course several issues related to
the quantum behavior of gravity that we have not touched upon in the present
work. Particularly relevant examples concern the properties of our UV theory of
gravity from the perspective of spacetime geometry, or how to construct quantum
observables within a gravitational setting [25l[145]. While such issues have be-
gun to be treated within the FRGE framework [43][88/[146], they are also the
primary focus of research within other non-perturbative approaches to gravity
(e.g., [147,148]). Tt would therefore be interesting to explore the connection
between the FRGE and these frameworks. This may be pursued both at the
level of reconstructing quantities such as the bare action and regularized path
integrals from FRGE renormalization group trajectories, following [71], and of
relating resulting theoretical predictions between such different approaches. In
the latter context, a possible point of contact is the phenomenon of spontaneous
dimensional reduction that has been reported across these works and which also
features as an immediate consequence of asymptotic safety, though whether or not
this is more than a coincidence remains to be established. While exploring this
connection is no straightforward task, non-perturbative approaches to quantum
gravity are few and far between, and understanding to which extent these ap-
proaches might be related can provide crucial insights into gravitational physics
in the UV.

Ultimately, however, we would like to arrive at testable quantum gravity pre-
dictions. In the context of asymptotic safety, this requires understanding what are
the observable consequences of our putative asymptotically safe theory of grav-
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ity. Over and above the theoretical evidence we may gather for the asymptotic
safety conjecture, or the merits and flaws of the different approaches we have here
mentioned, the question of the ultimate nature of quantum gravity is something
that must be determined by experimental data. It is perhaps overtly optimistic to
expect any direct experimental or observable tests of quantum gravity in the near
future, but one can aim to establish indirect tests for such theories in light of, e.g.,
astrophysical and cosmological observations [149]. Mapping the renormalization
group flow of gravity could be an important step in that direction.
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Notations and curvature conventions

In this section, we collect the notations and conventions used in this thesis.
Throughout the work, (anti-)symmetrization is with unit strength,

ABy) = 5(AuBy + AyBy), ABy = 5(AuBy — AyBy).

Our Euclidean space-time metric is positive definite, sig(g,.) = {+,+, +,+}.
Covariant expressions constructed from the classical metric g, are denoted as
usual, while tensors covariant with respect to the background metric g, are
distinguished by a bar. Our definition of the curvature invariants follows [I50],

Ry = 0,173 +..., Ru=R'», R=g"R,, (A1)

and V,, denotes the covariant derivative with respect to g,.,. The latter satisfies
2V, V) Ax = R,u2% As. The contraction of the Bianchi-identity furthermore
implies

VR =V,Rys — VR0 . (A.2)

The Weyl tensor is the traceless part of the Riemann tensor,

2 2
Chuwvps = Buvps — 75 (9utoBRoly = guipRotu) + ngu[pga]v , (A3)

and the square of the Weyl tensor is related to the other curvature invariants by

2

mR2 : (A.4)

4
Crvpe C*P7 = Ry po RMP7 — meRW +

For four-dimensional space-times, it is useful to introduce the Euler density

E:=R*— 4R, R" + R p0 R . (A.5)
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Appendix A. Notations and curvature conventions

The integral [ d4x\/§E = 3272y is a topological invariant and proportional to
the Euler character x of the space-time. In particular, it is independent of g, .
Thus, its variation with respect to the space-time metric vanishes identically.
Throughout this thesis, we work with background metrics g,,,, which are four-
dimensional Einstein metrics unless otherwise noted. They satisfy the condition

_ R
RP«V = Zgu,, . (AG)
These spaces have the advantage that the transverse traceless decomposition of

the metric, ghost and auxiliary fields is orthogonal. Furthermore, the relations

(A3) and [(A4) then simplify to

172
-R A.
SR (A7)

. DY PO 2 AUV PO D DY PO
E = R,uz/pa RM P , O,uz/poc'u po — R,uupoR'u PO __

while the contracted Bianchi-identity (A2]) implies that the Riemann-tensor is
covariantly constant o
V*Raouw = 0. (A.8)

The maximally symmetric background metrics S¢ used in the first five chapters
of this thesis are a subset of the Einstein spaces defined above.
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Second variations

B.1 Basic variations of curvature invariants

We here collect the second variations of the curvature invariants, which we have
used to construct the flow equation in Chapter ({l). These expressions are found

in Table B

B.2 The Hessian F](f) for higher-derivative gravity

In this section, we present some of the intermediate steps in the derivation of the
Hessians in Chapter @ In four dimensions, the derivative expansion of I'{' ™ |g]
up to fourth order can be organized into the five interaction monomials,

IO = fd4$\/§, Il = fd4$\/§R,
L = [d'z/gR*, ;= [d'z/gR.R", I = [d'z/gE

where E = R? —4R,,, R™ + R,,,,,o R"*? is the integrand of the Euler topological
invariant, [ d4x\/§E = 3272y. Constructing the argument of the traces entering
into the FRGE requires the second variation of these invariants. In this context,
we first note that I is a topological quantity, so that its variation with respect
to the metric vanishes. To obtain the hessians of the other invariants, we split
Juv = Guv + hyw, where g, denotes a fixed background metric and h,, is an
arbitrary fluctuation. The general expressions for these variations, valid for an
arbitrary background g, can be found in [129] (see also [49L134,137151]). For
our purposes however, it suffices to consider these variations on backgrounds
Juv gw’ where the index £ indicates that the background metric is a generic

(B.1)
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Basic variations of curvature invariants

Y = hw

dghv = _pM

T = 30 (Vuhuo + Vihye = Vohu)

09 = 3vgh

SR = ViVl + Vi Vijhe = V[,V ),

6R%A,, = hRA*,, —2vVlnd,

SRy = 3 (2Ro(uh)” 4 2R5un b 4+ 2V (,Vhyy, — V, Vi h
~VoVhu)

6R = —RMhy, + Vo Vh® — Vo Voh

PVe = a3 = )

T = =k (Vihwe + Vihuo — Vohu)

§2R%P,, = —2hy, kN R, —dpyle (v, VAR -V, VAR
—(Viuh®? + VR, = VIhey,)
(VPhyjo + Vi he? = Voh,)?)

Ry = h (V. Vihas + VaVhu —2VaV,hy)5)
+(3VPh = Vah?) (2V (uhu)s = Vil )
5 (Vihas) (Voh®?) + (Vahys) (VOO — 91e,)

§°R = Raph®" hy® — Ropu h" W1 — 309V gV R,

+2hBY ,V gh + 2hPV2h o5 — h¥PV\V gho
—(Vah) (V5hos) + 5 (Vahap) (VA00F)
—2(Vah®g) (VAhM) + 2(Voh?) (Vh)
—3(Vah)(VR)

Table B.1: First and second variations of the curvature quantities used in the main

text.

Einstein metric. At the two-derivative level, we then obtain
6%y = / d*z/g (0% — Lh, 0]

8’1 = / d*z\/g [ hP [V? — 3R] hag + Rappuh™’ W™ (B.2)

— 1hV2h + h( vzyﬁhaﬁ + (VPhua) (VR )|



B.2. The Hessian F,(f) for higher-derivative gravity

while the variations of the four-derivative terms yield
51, = /g A ay/G{ 20 [T~ LB bt B9 hogs + 2R Rays, hO R
+2(VaVh®)2 4 (Vo Vho?) [-492 + R h+ zémmﬁ)(wm} ,
(B.3)
and
6215 :/gd‘*x \/E{ghaﬁ [V + LRV?] hap + 20 [V* = LRV? — LR%] 1
~ (VaVah?) [ = £ bt (Vah?) [V + 2] (Thy9)

+ (VaVho?)? = 2o RO [92 4+ LR] by + 2hag RV Ryio b |
(B.4)

respectively. We have defined here h = g*"h,,.

A remarkable feature of these variations is that they can naturally be written in
terms of second order minimal operators of Lichnerowicz form ([@4]). In particular,
the four-derivative operators appearing in (B.4]) and (B3)) factorize into squares
of these (modified) Laplacians.
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Trace evaluation for type |1l cutoffs

In this Appendix, we collect some of the formulas necessary for the evaluation of
the traces of the fourth-order operators appearing in Chapter Bl As we have seen,
the traces of the functions W (A) appearing on the right-hand side of the FRGE
may be evaluated via the asymptotic keat kernel expansion

1
(4m)?

TrW(A) = 5| Qs (W)Bo(A) + Q2 (W)Bs(A) + Qo(W)Ba(d) +...| , (C.1)

where A is an elliptic operator of order p and the functionals Q,[W] are given
by (Z34). For the specific cases of the operators O; appearing in ([341), the heat
kernel coefficients may be computed using the formulas in, e.g., [T09HIT2], and
read

R 9 _
Binatz/d4x\/§{32ﬂ'264R2+nS+ n nD(Da_)Q

2
ns + 2nzM —np (V5)2)? — ns — ng D s
2 — . N
- ”S+”+”DR(V&)2 + (ns + 2nar — np)0o(V9)?

By =/d4x \/5{3277%21? + (ns +8ny — 10np)B5

Byat :/d4x V§32r3cy,
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for the local matter contributions and

Bo(O) = / 4z /3,

/dx { [i , 36913 — b’} by 3923 — 292) 5

27 129
27045 27
_ 545 (Vo) — 21240 ma} :

/da: { [_@ n 9(g23 6522922)2] e

2Q

e“’R

] R(Va)?

[ 923 — 2922 — 2921 n (923 — 2922) (36943 — b')} 2% A
i 2Q )2
[ 29 36943 — b (36g43 — V')?] -
n 943 - +( 943 - b') p2
12160 36Q 3602
(6 324 -2 _
i g~22 - 946(933 922)} 2005
L Q Q?
(6 324 -2 N
+ 923 945(92?; 922)} 27 (V)2
L @ Q
e 20 =)
L Q Q?
B (9945 N 18945(36943 — b') + 10893,
L Q Q?
6480 N 3240¢%.
I 945946 (Vo ) G4 ~2g45((V6

QQ

where we have defined Q = (36g4442V'). The case of the Weyl-invariant operators
appearing in (832]) in Section 4 may be readily obtained from the above by letting

Juv — Gu and & — 0.

Using the generalized optimized cutoff Ry(z) = (kP — z)O(kP — z) for the pth-

order operators, the functions Q); (atp—}:")

QQ

may also be straightforwardly evaluated.

Imposing the cutoff on the @; from Sections 4 and 5, we find

2p
Q=p, Qy=7=F"  Q=pk,

Nl

148

Q2 = Sk

)2)2 + 3240946(D )2}7



Heat Kernel coefficients

This appendix collects the relevant formulas for the heat kernel expansion of the
operator traces appearing in our flow equations.

D.1 Heat-kernel expansion on the d-spheres

D.1.1 Heat-kernel coefficients for unconstrained fields

The key formula for evaluating operator traces built from the covariant Laplacian
—V? is the early-time expansion of the heat-kernel

1

] /2
e () [ e

+t2 trba(z;Q) + ...} .

Here, Q denotes a matrix potential, which we take to be proportional to the
unit matrix in field space, and the bog are the heat-kernel or Seeley coefficients.
Furthermore, “tr” denotes a matrix trace in field space running over the tensor
indices of the fields on which —V? acts. The derivation of the partial differential
equation governing the renormalization group flow of f(R) gravity in Chapter Hl
requires the knowledge of (some of) the by up to k = 4.

The first two coefficients in the expansion (D.]) are universal, in the sense
that they do not depend on whether —V? acts on unconstrained scalar, vector,
or symmetric tensor fields:

bo=1, by(2:Q) =P, P::Q+éR1. (D.2)

Here, 1 denotes the unit matrix in the corresponding field space, i.e., 1(gy := 1,
(L)) pw = g, and [1(2)]ywpo 1= Gupguo- Starting from by (x; Q), the heat-kernel
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coefficients include the commutator of two covariant derivatives on field space,
Ruw :=1[V,,V,]=V,V, -V, V,. (D.3)

The corresponding terms then give different contributions to the by, depending
on whether —V? acts on scalars, vectors, or tensor fields. For bs(Q)) we have

2_
bi(Q) = | BT8R + LQR + 10| 10),

bu(Ql = | Moty @B + §QR + 307 [10)] .
Ba(Qype = | LG 2R + QR + 307 10

nvpo
R2
+ m {guugpa - guogup} )

for spin 0,1, and 2, respectively. In order to find the contributions from bg(z; Q),
we start from the general formulas in [I52] and restrict to spherically symmetric
backgroundeﬂ . Taking into account the different normalizations, this yields

3 d— 2 2(d+2)(d—3) p3
b6 (Q) :% [P - 30d(d3—1) PR — 94(15d2z¢(i—1)gR } J

2 3 _ 2 _
bs(Q),, =4 [P* — s pre - 2ot [1,)]
_ d d—
[bs(Q)] :% [PB 30 g(d3—1) PR® - 34(1523251—12 RB} {1(2)} (D-5)

pvpo

+ 3d2(d1—1)2 PR® {gwgm - gupgug}

+ T {(3d — 2)guwGpo — 4(d — 1)gupgvo:| :

For k = 4 we need the scalar coefficient bg(Q) only. Using the general formulas
in [I52] this becomes

_ 4 d-3 p2p2  8(d—3)(d+2) p3
b8(Q)—_[P ~ i@V~ ase @y L P

(d—3)(7d®—32d> —59d—60) 154 (D-6)
+ 18900 d° (d—1)3 R } :

Consulting the expansion of the traces ([11), (@18, and [@83), we then see that
the knowledge of these heat-kernel coefficients suffices to evaluate the right-hand

side of ([@EGI) in Chapter [

D.1.2 Heat-kernel coefficients for fields with differential
constraints

The fields h};l, and &" are subject to the constraints given by the TT decom-
position and thus, to compute their heat kernel coefficients, we must modify the

INote that the Heat-Kernel coefficients defined in [152] differ from the ones in (1) by a
factor (k/2)!.
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[ T, [s[ A{ds) | Vi(d; 5) | |
Tﬁ?}(m) 9 z(z;r(i:l))—zR (d+1)(d—2)(l—;—zid)gll—)!l()l(ill—;—!d—l)(l+d—3)! 1>9
Tf]”(x) 1 l(lji-(alli—_ll))—lR l(l+d—1()d(zl2-§ﬁl—_:i§!l+d—3)! 1>1
Tlm(x) 0 l%l(—zd_—li)R (2l+ﬁ;)—(i;d_2) 1>0

Table D.1: Eigenvalues and degeneracies of —V? on the d-sphere. Here T'™ (z), T\ ()
and Tf],? form a complete orthonormal basis for the —V?2-eigenfunctions for scalars,
transverse vectors and transverse traceless symmetric tensors. Their eigenvalues in d
dimensions are given by Lambda;(d,s) with degeneracy V;(d,s). We refer to [37] for
more details.

formulas for spin 1 and 2 fields accordingly. To do so, we first note that the TT de-
compositions ([£7) and @) imply the following relations between the heat-kernel
traces over the constrained and unconstrained fields

dg+1 dg+1
TI‘(l) {et(V2+qR):| :TrlT |:et(V2+qR)} —|—TI‘0 [et(v2+ qd R):| — et qd R7

_d+1l
Tugy [of774 00 =Trgy (7240 4 Tory [et(v” (@ +) R)]

D.7
+ TI‘() |:et(V2+ <%+q) R):| + TI‘() |:et(V2+qR)} ( )

_et (%+q)R o (d+ 1) et(ﬁ—!—q)R

-~ @ et (ﬁ—!—q) R .
Here we set Q = qR1. There are two types of terms appearing on the right-hand
side of these equations, complete traces with respect to the constrained fields and
contributions from a discrete set of eigenvalues, which are required to complete the
traces. The relations (D7) then allow us to compute the heat-kernel coefficients
for the constrained fields from their unconstrained counterparts given in the last
subsection. Defining bay|s := tr [bog|,] with s = 0, 1T, 2T denoting the spin of the
constrained field and performing the trace over vector indices explicitly we find

bolyp =d—1,

1
bolyp = o (d+2)(d = 3) R,

5d* —12d3 — 47d2 — 186d + 180 _,
360d2 (d —1) ’

(D.8)

b4|1T =
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and
1
bolyr = §(d -2)(d+1),
R (RS IR
2laT 12(d—1) ’
(d+ 1)(5d* — 22d° — 83d2 — 392d — 228)
b4|2T = 2 R~
720d(d—1)
bol, (A V(4 (35 287" — 93" — 7G5 + 1966d —14016) g
Olar = 90720 d2 (d — 1)3 ’
(D.9)
for the heat-kernel coefficients of Tryp[elV’] and Trar[el'V’], respectively. Since

the traces (D7) are evaluated under a Fourier integral (cfg. eq. (Z31))) it is also
straightforward to deal with the discrete mode terms. Carrying out their (inverse)
Fourier transform, these become proportional to d-functions, which allow for an
easy evaluation of the subsequent s-integral.

For the computations in Chapters @ and [l it is also convenient to give the
numerical value of the heat-kernel coefficients for the special case d = 4. In the
scalar sector, setting Q = 0, we have

1 29
b()|0:1, b2|0:6R, b4|O:mR2,
37 149 (D-10)
boly = —ooz R°, bl = ——— R’
07 54332 07 6531840’
while (O.8]) and ([O.3) yield
1 67
tr[bolyp] =3, tr[balyg) = 7 R, tr[b4|1T]:—mR2,
5 271
tr[bolyp] =5, tr[balyyp] = 5 R, trlbalyy] = T 132 R?, (D.11)
7249
tr[b6|2T] = — mRB

Lastly, when writing down the flow equations in Chapters @l and B we used the
following shorthand notation for the d-dependent factors of the heat-kernel coef-
ficients, obtained by setting R = 1 in the formulas above

C5.(d) :=baplo(R=1), C3F(d) :=barfir(R=1),

ng(d) = boglor(R=1). (D.12)
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D.2 Heat-kernel coefficients for Lichnerowicz Lapla-
cians

When evaluating the operator traces appearing in Chapter Bl we require the
heat-kernel expansion for the Lichnerowicz operators ([6.4), evaluated at a gen-
eric Einstein manifold, up to fourth order in the derivative expansion. In this
appendix, we derive the corresponding coefficients starting from the early time
heat-kernel expansion of a generic two-derivative differential operator [152] (see
also [41] for a nice exposition in the context of the FRG).

D.2.1 Heat-kernel coefficients for unconstrained fields

As we have seen when discussing the case of Laplacian operators the previous
section, the early time heat-kernel expansion of a generic second order differential
operator A = —V? + Q takes the form (D)) with

bo=1, by=P,

1 1 1
by (RuvapR"™ P — R, R + V?R) 1 + 5P2 + R R + EVQP,

(D.13)

_1
" 180

and where the other quantities are defined in the section above. For our com-
putations, we have to evaluate trs by for scalars (s = 0), vectors (s = 1), and
symmetric tensors (s = 2). In the latter two cases, the trg are defined as

tribog = g’“’[bgk](#,,) , trobog = gH g7 [bgk](uy)(pg) , (D.14)

respectively. The matrices R, R"” are trivial for the scalar case, whereas for
vectors and tensors they respectively read

[RapR],, = = RapuR*7,

[RaﬁRaﬁ] - RanRaﬁvp o — RaﬁvvRamU Gup + 2RaﬁupRaﬁW .
(D.15)

nvpo =

The differential operators appearing in the traces of our higher derivative
truncation are the Lichnerowicz operators (64]), i.e., second order differential
operators with matrix-potentials

1
QO = 07 [Ql],uu = Zg,uuRv [QQ]uvaﬁ = 2R,uaz/ﬂ- (D16)

Their heat-kernel coefficients on a generic four-dimensional Einstein manifold
without boundary can be obtained by substituting these potentials into the ex-
pressions for the generic heat-kernel expansion. Evaluating the spin-traces, we
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obtain

trobg =1, troby = $R, troby = 15 RuvapR* P + 55 R?,

tribg =4, triby=3R, tribs=—15RuapR"P + ALR?, (D.17)
trobg =10, troby = 2R, troby = {2 RupapR** — LR?.

This result completes the heat-kernel expansion for unconstrained fields.

D.2.2 Heat-kernel coefficients for fields with differential
constraints

In order to apply the early-time heat-kernel expansion to our operator traces,
the heat-kernel coefficients for the unconstrained fields given in the last subsec-
tion must be converted into the expansion coefficients for the transverse vec-
tors (1T) and transverse-traceless symmetric matrices (2T) entering into the TT-
decomposition.

In the decomposition of a vector field into its transverse and longitudinal parts,

A=Ay +V,®,  VFAI =0, (D.18)
the spectra of V,,® and ® are related by
ALV, ® =V, (Ao — %R)CI), (D.19)

and the constant mode in ® does not contribute to A,. Thus, the decomposition
of the s = 1-trace takes the form

Tryp [eimu] = Tr, [eimm] — Trg {eit(AgL—R/Q):| 1 emitR/2 (D.20)

where the last term removes the constant ®-mode from the s = O-trace. A similar
argument applies to the TT-decomposition of the symmetric tensor,

1 1
huw = hy, + 2V 60y + Vu Vo + 19 BoLo + g, (D.21)

where the components appearing on the RHS of this decomposition are subject
to the constraints

g" ht, =0, VFhL, =0, VF, =0, h=gu,h". (D.22)
In this case, one can use

Ao V& = VAiréy,
Aor [VuVy + 2gwBor] 0 = [VuVe + 2gw0] [Aor — £ o, (D.23)
A2Lg,u‘l/h = Guv [AOL - %] ha
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to relate the spectrum of Asy to the ones of the vector and scalar fields. Fur-
thermore, (D2]]) indicates that the constant mode in o, scalars subject to
VWV + 29 AoL] o = 0, and transverse vectors satisfying V(,&,) = 0 do not
contribute to hy,, so that the corresponding modes have to be removed from
the decomposed spectrum. By contracting the last two equations with V¥, one
can show that these are eigenmodes of Agy, and A;; with eigenvalues Agy, = 0,
Aor = %, and Ay, =0, respectivelyE The multiplicity of the latter two is given
by the number of Killing vectors nky and conformal Killing vectors ncky of
the background. Taking into account (D20), the operator trace for transverse-

traceless tensors field can then be expressed in terms of traces over unconstrained
fields

Tror [e425] =Try [e428] — Try [eit::] — Tro [ei%AOL—Rﬂ)} (D24)
—it

+ nkv + nckve

In Chapter [G, we have assumed that our background is generic, in the sense that
its metric does not admit Killing or conformal Killing vectors.

From eqs. (D.20) and (D:24)) it is then straightforward to compute the heat-
kernel coefficients for Lichnerowicz Laplacians acting on transverse vectors and
transverse traceless symmetric matrices. For a generic Einstein background, these
read

trobp =1,  trgbs = %R, troby = ﬁ RuvapRres + % R?,
trypbg =3, trirbs = R, tripby = —%5 R#,,agRﬂyaﬁ + % R?, (D.25)
tl”gTbQ = 5, tl”gTbg = —gR, tl”gTb4 = % RuyaﬁRuVaﬁ — % R2 .

These coefficients are the key ingredient for evaluating the operator traces in the
higher derivative truncation.

2For a spherical background, these coincide with the two lowest eigenmodes of —V?2 acting
on scalars and the lowest eigenmode of —V? acting on vector fields [40,4T].
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Threshold functions and cutoff profiles

This appendix collects the details about the standardized dimensionless threshold
functions @2 (w), % (w) and Y4, (v, v, w), T} - (u,v,w), which were used to en-
capsulate the cutoff-scheme dependence of our flow equations in the main part
of this paper. We start by giving their general definitions and some of their
properties in Appendix [EJ] before specializing to particular profile functions in

Appendix

E.1 General definitions

In order to construct the g-functions for the dimensionless couplings, it is useful
to convert the @, [W] into standardized dimensionless threshold functions,

b [T RO() RO
(w) : F(n)/o d (z+ RO(2) +w)P’

52 (w) e [ dy e RO(z)

and their generalizations,

1 R R(O)(z))m (RO(2) — 2RO (2))
TP (u,v,w) = —— dz z 7
’ ( ) I'(n) /0. (u (2+R(0)(z))2+v(z+R(0)(2)) +w)

N = [ (4 ROG)" (2 + RO(2) RO
0

- ( . (0) )
nm, B T T (n) (u (z + R(O)(z))2 +v (z + R(O)(z)) + w)p 7
(E.2)
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defined for n > 0. Here, R(’)(2) is a dimensionless profile function determining
the shape of the IR cutoff, while the prime denotes the derivative with respect to
the argument. The profile function satisfies

lim R”)(z) = const, lim R (z) =0, (E.3)

z—0 Z—00

For convenience, we choose R(O)(Olz 1.
We note that both ®2 (w) and ®P(w) satisfy a recursion relation when taking
derivatives with respect to their argument,

Dy ®h (w) = —pPrH(w), 9Pl (w) = —p BT (w). (E.4)
The standard threshold functions (EI) are contained in (E2) as a special case,
Y200, L w) = @8 (w), TP 10(0,1,w) = &P (w). (E.5)

Obviously, the generalized threshold functions are homogeneous of degree —p
under a common rescaling of their arguments

YL o (Au, Ao, dw) = XPXL L (u,0,w),

Y0 O, Ao, dw) = AP YD (0, 0,w). (£:6)
Furthermore, they satisfy recursion relations similar to (E.4]),

Ou Y0 (w0, w) = —p Tﬁﬁrllw(u, v,w),

Oy T4 o (u,v,w) = —p TZT,}LH(U, v,w),

Ow Y4 (u,v,w) = —p Tﬁﬁ}l(u, v,w),

0uTE o) = ~p YL (u,0,), ()

Y (o) = —pTIELy f,0),

Ow Ti,m,z(uv v,w) = —p Tﬁﬁiz(“v v, W) .

The recursion relations ([E4) and (EX) are particularly useful when performing
the series expansions of R-dependent arguments.
Lastly, note that the ®”+1(0) are “universal”, i.e, independent of the choice of

the profile function R,(CO) (z) and can be computed using only the generic properties

E3) [

1 oA )1
27(0) = P(n+1) /0 d dz L + R(O)(z)] CT(n+1) (E-8)

When evaluating the four-derivative truncations it is furthermore convenient to
introduce
¢ := 0 In(Ry)| =0, (E.9)
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which is also universal by virtue of (E.3)).

The functionals @, [W] appearing in the trace expansion of the FRGE may be
expressed in terms of the threshold functions above. For the particular functions
W occurring in this paper, these relations are

Qu [ B | = K2 P (@8 (0 /k%) + 300 n(ge) Bl (e /k2)) >0,

(291) (P +ck)?
(E.10)
and
0 O (ge(P2 — O?) + giRy)
" (ukP,f + v P, + wk)l’
= k2(n—2pt2) {8tgk TZ,OJ (ug, Uk/kQ, wk/k4) + 4ngfZ)1(uk, Uk/kQ, wk/k4)}
=+ k2(n_2p+l) {Btgk sz,mo(ukv Uk/k2, wk/k4) + 2§;€Tfl)0(uk, Uk/k2, wk/k4)} .
(E.11)
In the case of the f(R) truncations, O = —V?, while for the higher derivate
truncations, O = —A?, .

E.2 Profile functions

All numerical evaluations require a particular choice of the dimensionless cutoff
profile function R(Y)(z). In this work, we have employed two one-parameter fam-
ilies of shape functions, the generalized optimized cutoff [72] [72],

RO

opt

(2) =(1=02)6(1 —bz2), (E.12)

and the (smooth) exponential cutoff,

RGL () = 5o (E.13)

Here b is a free shape parameter, essentially encoding how fast the fluctuation
spectrum is cut off. At z = 0, both cutoffs give

R9._o=1, RY,o=0, ¢p=2. (E.14)
In most of our calculations, we have restricted ourselves to the use of the
optimized cutoff with shape parameter b = 1. Unless otherwise noted, we have

referred to this cutoff profile as ‘the’ optimized cutoff,

RO(z) = (1—2)6(1 - 2). (E.15)
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The main virtue of this choice of cutoff is that all the integrals appearing in the
(generalized) threshold functions can be carried out analytically. In particular,

1 1 = 1 1

PP = PP = . E.16

= ey arer Y T Thry G (E-16)

Similarly, the generalized threshold functions (E2]) become
1 1
v -
O NS A (E17)

- )" B(—1,n,l+1 —1 1,1+1 ’
Ti,m;z(u,v,w)Z( ! ALl ) F ALt LIt

I'(n) (u+v+w)P

Here, 5(—1,n,l) denotes the incomplete beta function. For fixed values n,I,
these become constants. This property leads to considerable simplifications in
the analysis of the corresponding beta functions.
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Samenvatting

Het begrijpen van het kwantumgedrag van de zwaartekracht is een openstaand
probleem in ons begrip van de fundamentele natuurkrachten. Op afstanden
variérend van de kosmologische schalen (10%® cm) tot fracties van een millimeter
(102 cm) kunnen we grotendeels de kwantum effecten op zwaartekrachtsinter-
acties verwaarlozen. In dit regime wordt zwaartekracht zeer goed beschreven
door de klassieke algemene relativiteitstheorie. Op de schaal van subatomaire
interacties (1071° cm) kunnen we zwaartekracht geheel verwaarlozen omdat de
andere krachten vele malen sterker zijn. Fchter, wanneer we steeds kleinere
schalen beginnen te onderzoeken worden de kwantumcorrecties steeds groter en de
zwaartekracht steeds sterker, totdat we aankomen bij de Planck schaal (10732 cm),
waar de kwantumzwaartekrachteffecten domineren. Het begrijpen van het kwan-
tumgedrag van de zwaartekracht houdt derhalve in dat we haar gedrag begrijpen
onder verandering van de lengteschaal, van extreem grote tot extreem kleine
schaal.

Een van de krachtigste theoretische raamwerken voor het onderzoeken van
gedrag onder schaling is de renormalisatiegroep, die ons in staat stelt de schaalaf-
hankelijkheid van een fysisch systeem op te slaan in zijn microscopische para-
meters en daarmee de evolutie van de theorie over verschillende lengteschalen te
onderzoeken via de evolutie van zijn parameters. Deze laatste noemen we de
renormalisatiegroepstroming van de theorie. In dit proefschrift hebben we de
renormalisatiegroepstroming van de zwaartekracht onderzocht.

Ons onderzoek concentreerde zich voornamelijk op het gedrag van de
zwaartekracht op de Planck schaal. Precies op deze schaal stort de perturbatieve
kwantumzwaartekracht in, de theorie die men krijgt als men algemene relativ-
iteitstheorie kwantiseert met behulp van storingstheorie, een methode die zeer
succesvol is gebleken in het geval van de andere fundamentele krachten. Deze
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ineenstorting manifesteert zich in het ontstaan van oneindigheden die alleen op-
gevangen kunnen worden met de introductie van oneindig veel nieuwe paramet-
ers. Als gevolg raakt al het voorspellend vermogen van de theorie verloren. De
meest gehoorde reactie op dit probleem is dat op de Planck schaal gekwantiseerde
zwaartekracht vervangen moet worden door een fundamentelere theorie, die
nieuwe concepten introduceert zoals extra dimensies, nieuwe vrijheidsgraden of tot
op heden onontdekte symmetrieén. Een alternatief is dat zwaartekracht asymp-
totisch veilig is.

Het asymptotischeveiligheidsscenario postuleert het bestaan van een niet-
triviaal vast punt van de renormalisatiegroepstroming van de zwaartekracht, die
het schalingsgedrag van de theorie op de kleinste schalen dicteert. Op dit vaste
punt zijn alle behalve een eindig aantal essentiéle parameters van de theorie on-
gelijk nul en hebben bovendien een eindige waarde. Als resultaat hiervan blijft
de theorie vrij van desastreuze oneindigheden en behoudt zij haar voorspellend
vermogen tot op willekeurig kleine lengte schalen. Of zwaartekracht al dan niet
asymptotisch veilig is was de eerste en voornaamste vraag die ten grondslag lag
aan dit proefschrift.

Hoewel de grootste uitdaging binnen het kwantumzwaartekrachtprogramma
het gedrag van zwaartekracht op de kleinste schaal betreft, wordt er ook ge-
suggereerd dat kwantumzwaartekracht aanleiding geeft tot sterke renormalisa-
tiegroepeffecten op de grootst mogelijke schalen, die verantwoordelijk kunnen zijn
voor waargenomen kosmologische fenomenen. Het vermoeden bestaat dat zulke
effecten veroorzaakt worden door niet-lokale kwantuminteracties die voortko-
men uit de renormalisatiegroepevolutie van de effectieve dynamica van de kwan-
tumzwaartekracht. Het op waarde schatten van deze beweringen was een tweede
drijfveer voor het huidige werk.

Het voornaamste gereedschap in ons onderzoek was een continu renormalisa-
tiegroepalgoritme van Wilson, de zogenaamde functionele renormalisatiegroep-
vergelijking (FRGE), die we besproken hebben in hoofdstuk Deze legt de
schaalathankelijkheid vast van een grofmazige effectieve actie, die de natuurkunde
op een bepaalde schaal beschrijft, en ons dus in staat stelt de renormalisatiegroep-
stroming van de theorie te construeren. Berekeningen binnen deze methode
berusten op een afkappingsbenadering, waarbij de volledige renormalisatiegroep-
stroming geprojecteerd wordt op een deelruimte die slechts een aantal van de
parameters en bijbehorende operatoren van de theorie omvat. De betrouwbaar-
heid van de resultaten met een bepaalde afkapping kan beoordeeld worden door
hun stabiliteit te onderzoeken onder geleidelijke uitbreiding van de deelruimte.
Voorgaande FRGE studies in de literatuur hebben het bestaan van een niet-
triviaal vast punt van de renormalisatiegroepstroming aangetoond in afkappingen
opgespannen door polynomen in de scalaire kromming tot op orde zes, hetgeen
gezien kan worden als onderbouwing voor het asymptotischeveiligheidsvermoeden.
De cruciale vraag is dan of het vaste punt behouden blijft onder verdere uitbreiding
van de afkapping. In dit proefschrift hebben we dit vraagstuk aangepakt door drie
verschillende elkaar aanvullende strategieén te volgen.
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Als eerste hebben we, in hoofdstuk Bl de renormalisatiegroepstroming van de
zwaartekracht onderzocht beperkt tot de hoekgetrouwe sector. Deze simplificatie
maakte het mogelijk om afkappingen te beschouwen die termen bevatten die an-
ders om technische redenen onhandelbaar zouden zijn. Hiermee verkrijgen we een
ruw beeld van de effecten van dergelijke termen op het gedrag van de volledige
theorie. In het bijzonder hebben we afkappingen beschouwd met niet-lokale ter-
men waarvan beweerd wordt dat ze de theorie voorzien van niet-triviale dynamica
op grote afstand. We hebben ontdekt dat de resulterende renormalisatiegroep-
stroming op twee niet-equivalente manieren geimplementeerd kan worden, die de
symmetrie van de theorie onder lokale schaalveranderingen breekt ofwel behoudt.
In het eerste geval kwamen onze bevindingen overeen met resultaten in de liter-
atuur die wijzen op niet-triviale dynamica op grote afstand gestuurd door renor-
malisatiegroepeffecten. In het laatste geval hebben we staving gevonden voor het
bestaan van een niet-triviaal vast punt in overeenstemming met asymptotische
veiligheid. Hoewel beide implementaties wiskundig consistent zijn, hebben we
beargumenteerd dat de laatste meer gerechtvaardigd is vanuit een fysisch oog-
punt en representatiever beschouwd moet worden voor de volledige stroming.

De tweede strategie die we gevolgd hebben in hoofdstukken F] en [ waarbij
we zijn teruggekeerd naar de volledige zwaartekracht, was om een FRGE te con-
strueren die ons in staat zou stellen om algemene afkappingen opgespannen door
willekeurige functies f(R) van de scalaire kromming R te bestuderen, en daarmee
grote delen van de volledige renormalisatiegroepstromingsruimte. Gebruikmakend
van deze vergelijking hebben we eerst de resultaten van eerder genoemde FRGE
studies gereproduceerd, die het bestaan van een niet-triviaal vast punt met opval-
lend goede numerieke eigenschappen aantonen met afkappingssubruimtes op-
gespannen door polynomen f(R) tot op orde zes. Vervolgens beschouwden we
niet-lokale afkappingen opgespannen door niet-polynomiale functies van R. We
stelden vast dat in het algemeen de termen van dit type op consistente wijze los-
gekoppeld kunnen worden van de rest van de stroming en we hebben, op basis
van twee expliciete realisaties van deze afkappingen, laten zien dat, hoewel zulke
niet-lokale afkappingen zeker tot grote renormalisatiegroepeffecten leiden op de
grootste schalen, ze niet in staat zijn de natuurkunde op kleine schaal te bes-
chrijven. Aangezien de polynomiale f(R)-resultaten erop duiden dat dit gebied
gedomineerd wordt door een niet-triviaal vast punt die de korteafstandsdynam-
ica beheerst, zijn de vooruitzichten voor asymptotische veiligheid goed, tenminste
voor zover het de f(R)-sector betreft.

Als laatste hebben we in hoofdstuk [0 in onze afkapping termen meegeno-
men waarvan bekend is dat ze bij uitstek problematisch zijn uit het oogpunt van
perturbatieve kwantisatie. Allereerst gingen we een stap verder dan het f(R)-
geval door expliciet tensoroperatoren met vier afgeleiden op te nemen in onze
afkapping. Het zijn precies termen bestaande uit tensoren die verantwoordelijk
zijn voor onabsorbeerbare divergenties in perturbatief gekwantiseerde algemene
relativiteitstheorie, en hun aanwezigheid zou dus een grote impact kunnen hebben
op het asymptotischeveiligheidsscenario. Opvallend genoeg hebben we ontdekt
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dat het niet-triviale vaste punt in overeenstemming met asymptotische veiligheid
nog steeds standhield in deze setting. Vervolgens voegden we een minimaal gekop-
peld, massaloos scalair veld toe aan onze afkapping, hetgeen leidt tot een systeem
dat het prototype is van een perturbatief gekwantiseerde zwaartekrachtstheorie
die al divergeert in eerste orde in de kwantumfluctuaties. Het resulterende vaste
punt leek opvallend veel op dat in het geval van pure zwaartekracht. Dus, in te-
genstelling tot een vaak geopperd bezwaar met betrekking tot de f(R)-resultaten,
hebben we gevonden dat het meenemen van tensortermen in onze afkapping geen
kwalitatieve effecten heeft op het schalingsgedrag van de theorie op de Planck
schaal.

Het samenhangende beeld dat ontstaat uit dit onderzoek levert significant be-
wijs ter ondersteuning van het asymptotischeveiligheidsscenario. Daarmee sugge-
reert het dat gekwantiseerde zwaartekracht zijn voorspellend vermogen behoudt
tot op willekeurig kleine afstandsschaal en de zwaartekrachtsprocessen adequaat
beschrijft zonder de fundamentele eigenschappen van de theorie te hoeven aan-
passen. Hoewel het gevonden bewijs hier inductief van aard is en daarom niet
kan garanderen dat een niet-triviaal vast punt bestaat in de volledige stromings-
ruimte, is het toch opvallend dat een dergelijk vast punt zich manifesteert in alle
afkappingen tot dusver onderzocht. Onze resultaten suggereren dat renormalisa-
tiegroepeffecten een antwoord bieden op de Planckschaalproblemen van de kwan-
tumzwaartekracht. Ook al is het in kaart brengen van de renormalisatiegroep-
stroming van de zwaartekracht zeer zeker nog niet voltooid, dit proefschrift is een
stap in die richting.
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