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ABSTRACT OF THE DISSERTATION

A New GalWeight-Derived SDSS Galaxy Cluster Catalog and Cosmological Constraints
on {2, and og

by
Mohamed H El Hashash

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2020
Prof. Gillian Wilson, Chairperson

The dissertation includes three manuscripts. Firstly, we introduce the GalWeight
technique, a new technique for assigning galaxy cluster membership. GalWeight is designed
to simultaneously maximize the number of bona fide cluster members while minimizing
the number of interlopers. GalWeight can be applied to both massive and poor galaxy
groups and is effective in identifying members in both the virial and infall regions with high
efficiency. We apply GalWeight to MDPL2 & Bolshoi N-body simulations, and find that
it is > 98% accurate in correctly assigning cluster membership. We apply GalWeight to a
sample of twelve Abell clusters using observations from the Sloan Digital Sky Survey.

Secondly, we apply GalWeight to the SDSS-DR13 spectroscopic data set to create
a new publicly-available catalog of 1800 galaxy clusters (GalWCat19) and a corresponding
catalog of 34471 identified member galaxies. The clusters are identified from overdensities in
redshift-phase space. The cluster masses are calculated using the virial theorem and NFW
model. The GalWCat19 clusters range in redshift between 0.01 — 0.2 and in mass between

(0.4—14)x 10"~h~1 M. The cluster catalog provides position, redshift, membership, velocity
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dispersion, and mass at overdensities A = 500, 200, 100, 5.5 for each cluster. The 34471
member galaxies are identified within the radius at overdensity of A = 200. The galaxy
catalog provides the coordinates of each galaxy and the ID of the cluster that the galaxy
belongs to.

Thirdly, we derive cosmological constraints on the matter density, €2,,, and the
amplitude of fluctuations, og, using GalWCat19. We investigate the volume and mass in-
completeness of GalWCat19 to obtain a complete local subsample of 756 clusters (SelFMC)
in a redshift range of 0.045 < z < 0.125 and virial masses of M > 0.8 x 101 pt Mgused
to constrain €2, and og. Utilizing SelFMC, we obtain €2,, = 0.310f8:8%§ +0.041 (systematic)
and og = 0.810f8:8§éi0.035 (systematic). Our constraints on €, and og are consistent and
very competitive with those obtained from other cosmological probes of Cosmic Microwave
Background (CMB), Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The
joint analysis of our cluster data with Planck18+BAO-Pantheon gives Q,, = 0.315700%

_ +0.011
and og = 0.810%(10-
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radius phase-space for the simulated cluster selected from the Bolshoi simula-
tion. Panel (a) shows the dynamical weight Wy, (The product of the weights
shown in Figures 2.2b and 2.3b). Panel (b) presents the phase-space weight
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Chapter 1

Introduction

Large ongoing and future wide and deep-field surveys of galaxies [e.g., DES (Ab-
bott et al., 2018a), DESI (Levi et al., 2019), Euclid (Euclid Collaboration et al., 2019),
eBOSS (Raichoor et al., 2017), eROSITA (Merloni et al., 2012), LSST (LSST Science Col-
laboration et al., 2009), and WFIRST (Akeson et al., 2019)] are our unique tools for studying
galaxy clusters, cosmology, and galaxy formation and evolution. These galaxy surveys are
used to construct galaxy cluster catalogs which provide an exquisite data source for a wide
range of cosmological and astrophysical applications. In particular, the statistical study of
the abundance of galaxy clusters as a function of mass and redshift (Wang & Steinhardt,
1998; Haiman et al., 2001; Reiprich & Bohringer, 2002; Battye & Weller, 2003; Dahle, 2006;
Lima & Hu, 2007; Wen et al., 2010b) is a powerful tool for constraining the cosmological pa-
rameters, specifically the normalization of the power spectrum, og, and the matter density
parameter, £2,,. Catalogs of galaxy clusters are also interesting laboratories to investigate

galaxy evolution under the influence of extreme environments (Butcher & Oemler, 1978;



From a galaxy survey into precise models of
large and small scale structures
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Figure 1.1: The flowchart summarizes the pathway to construct cluster catalogs from galaxy
surveys and their different astrophysical and cosmological applications.

Dressler, 1980; Goto et al., 2003; Leauthaud et al., 2012; Bayliss et al., 2016; Foltz et al.,
2018). Moreover, they can be utilized to study the galaxy-halo connection which correlates
galaxy growth with halo growth (e.g., Wechsler & Tinker, 2018). The connection between
numerical simulations and observations is a key role in guiding the development of accu-
rate theoretical models which will advance our understanding of the hierarchical growth of
structure, cosmology, and galaxy formation and evolution (see the flowchart in Figure 1.1).

Identification of galaxy clusters and estimation of cluster masses are the key chal-
lenges to accurately constructing cluster catalogs. In this dissertation, we introduce an
automated technique for constructing galaxy cluster catalogs, identifying cluster members,
and estimating cluster masses (Abdullah et al., 2018, 2020b), which can be applied to op-

tical spectroscopic galaxy surveys. The cluster locations are identified by searching for the



Finger-of-God effect (FoG, see Jackson, 1972; Kaiser, 1987; Abdullah et al., 2013). This is
the distortion of line-of-sight velocities of galaxies both in viral and infall regions due to the
cluster potential well, i.e. galaxies peculiar motions. The cluster members are identified
by the GalWeight technique introduced in Abdullah et al. (2018). The cluster masses are
calculated from the dynamics of the member galaxies using the virial mass estimaor (e.g.,
Limber & Mathews, 1960; Abdullah et al., 2011) corrected for the surface pressure term
(e.g., The & White, 1986; Carlberg et al., 1997), and the NFW model (Navarro et al., 1996,

1997).

1.1 Galaxy Clusters

Galaxy clusters are the most massive bound systems in the universe and are
uniquely powerful cosmological probes. Cluster dynamical parameters, such as line-of-sight
velocity dispersion, optical richness, and mass are closely tied to the formation and evolu-
tion of large-scale structure (Postman et al., 1992; Carlberg et al., 1996; Sereno & Zitrin,

2012).

1.1.1 Components of Galaxy Clusters

Galaxy clusters consist of three main components listed as follows. I. An aggregate
of 100-1000 galaxies in a region of ~ two Mpec. It contributes about 10% of the baryons in
the clusters. II. Intracluster medium (ICM) of hot ionized gas and dust surrounding galaxies.
It contributes about 90% of the baryons in the clusters. The ICM consists mainly of ionized

hydrogen, heated to extremely high temperatures as it fall into the gravitational potential



well of the cluster (e.g., Sarazin, 1988). III. The dark matter which contributes about 90% of
the total cluster mass. The dark matter does not emit or reflect electromagnetic radiation,

but its presence is inferred by its gravitational effect on luminous matter.

1.1.2 Observations of Galaxy Clusters

Galaxy clusters can be detected based on a number of different properties, such
as: 1) X-ray emission from hot intracluster gas (e.g., Sarazin, 1988; Reichardt et al., 2013);
ii) the Sunyaev-Zeldovich (SZ) effect (distortion of the cosmic microwave background ra-
diation by electrons of hot intracluster gas; Planck Collaboration et al., 2011); iii) optical
(e.g., Abell et al., 1989; den Hartog & Katgert, 1996; Abdullah et al., 2011) and infrared
emissions (e.g., Genzel & Cesarsky, 2000; Muzzin et al., 2009; Wilson et al., 2009; Wylezalek
et al., 2014) from stars in cluster members. Using current capabilities, both X-ray emis-
sion and SZ effect are detectable only for the very deep gravitational potential wells of the
most massive systems. They cannot be used to detect the outskirts of massive clusters, or
intermediate/low-mass clusters. Thus, current optical surveys of galaxies, such as SDSS,
and upcoming surveys such as Euclid (Amendola et al., 2013), and LSST (LSST Science
Collaboration et al., 2009) are required in order to produce the largest and most complete
cluster sample.

Optically, galaxy surveys provides data for position, spectroscopic and/or photo-
metric redshift, magnitudes and other parameters for galaxies. Cluster catalogs constructed
by photometric data introduce a large number of groups of different richness ranging from a
pair of galaxies to very massive clusters with hundreds of galaxies for entire surveys. How-

ever, using photometric redshift to extract cluster catalogs leads to substantial uncertainty



in identifying clusters and their membership in comparison to spectroscopically produced
catalogs. Cluster catalogs constructed by spectroscopic data show high accuracy in deter-
mining cluster membership but it is prohibitively expensive to obtain spectroscopy of large
samples of galaxies. Thus, the expected number of clusters identified spectroscopically is

very small relative to that identified photometrically.

1.1.3 Galaxy Cluster Finding

There are many statistical cluster finding methods which rely on optical surveys.
For instance, the friends-of-friends (FoF) algorithm is the most frequently usable means
for identifying groups and clusters in galaxy redshift data (Turner & Gott, 1976; Press &
Davis, 1982). It uses galaxy distances derived from spectroscopic or photometric redshifts
as the main basis of grouping. Another group of cluster finding methods are halo-based
group finders (Yang et al., 2005, 2007; Duarte & Mamon, 2015). These methods assume
some criteria to identify galaxies which belong to the same dark matter halo. There are
other cluster finding methods which are used in the literature, including density-field based
methods (e.g., Miller et al., 2005), matched filter techniques (e.g., Kepner et al., 1999;
Milkeraitis et al., 2010; Bellagamba et al., 2018), and the Voronoi-Delaunay method (e.g.,
Ramella et al., 2001; Pereira et al., 2017; Soares-Santos et al., 2011). These methods are
capable of identifying clusters and groups of different richness ranging from a pair of galaxies
to very massive clusters with hundreds of galaxies for entire surveys. However, they assume
certain criteria and apply fast-run codes to construct catalogs of entire surveys. This may
lead to inaccurate results for recovering the true cluster members because the proposed

criteria could be suitable for only some individual clusters depending on their masses and/or



dynamical status. Also, most of these methods use photometric redshift to extract cluster
catalogs, leading to substantially more uncertainty in cluster membership in comparison to
spectroscopically produced catalogs.

Moreover, there are some cluster finding techniques that depend on the physi-
cal properties of galaxy clusters, such as, FOG (e.g., Jackson, 1972; Kaiser, 1987; Abdullah
et al., 2013), gravitational lensing (e.g., Metzler et al., 1999; Kubo et al., 2009), red-sequence
(e.g., Gladders & Yee, 2005; Rykoff et al., 2014), and Stellar Bump Sequence (SBS) intro-
duced by Muzzin et al. (2013). We discuss the FOG effect in detail in the next section since

this is the feature that we use in identifying galaxy clusters in our investigation.

1.1.4 Dynamics of Galaxy Clusters

Galaxy clusters can be divided into three regions: The core, the virialized region
and the infall region. The core is the region in which the motion of galaxies is randomly
distributed Binney & Tremaine (1987); Praton & Schneider (1994). The boundary of this
region is the core radius which cannot determine accurately, but it extends to ~ 0.25 — 0.5
Mpc. The virialized region is the region in which the system is in a dynamical equilibrium
or the radial velocity = transverse velocity. The boundary of this region is the viral radius
ry. It is approximately equal to the radius at which the density p = Aoggpe, Where p. is
the critical density of the Universe and Aggy = 200 (e.g., Carlberg et al., 1997). Therefore,
we assume that r, = r999. The infall region in which galaxies radially infall to the center
center. The boundary of this infall reion is the turnaround radius r; at which a galaxy’s
peculiar velocity (vpec) is canceled out by the global Hubble expansion. In other words, it

is the radius at which the infall velocity vanishes (vint = vpec — H r = 0), which can be
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Figure 1.2: Nested spherical shells in the field of a simulated cluster. The left panel shows
the shells in real space and the right panels show the shells in the redshift spaces. The FoG
effect is shown clearly (blue and red shells) in the redshift space.

calculated as the radius at which p = 5.55p. (e.g., Nagamine & Loeb, 2003; Busha et al.,
2005; Diinner et al., 2006).

In Figure 1.2, we introduce a set of nested shells of a spherically symmetric simu-
lated cluster. The shells are shown in both real space (left) and redshift space (right). Shells
drawn with thin lines are outside the cluster’s turnaround shell (bold) and shells drawn with
thick lines are inside. The innermost shell represents the virial radius. The near side of
each shell is dashed and the far side is solid line. Note that the shells inside the turnaround
turn inside-out so that near side and far side reverse, while the turnaround shell collapses so
that its near side and far side coincide to form a circular arc in this cross-section view. The

shells immediately outside the turnaround do not turn inside out, but are crowded together,



so that some material outside the turnaround lies inside the envelope. This illustrates the
triplevalue problem (see Tonry & Davis, 1981), where there are some foreground and back-
ground galaxies that appear to be part of the cluster because of the distortion in redshift
space. In the redshift space, the distortion of line-of-sight velocities of galaxies (shells) both
in viral and infall regions due to the cluster potential well is shown clearly in right panel.
We introduce a simple algorithm, called FG, that identifies locations of clusters by looking
for the FOG effect. Similar algorithms were introduced in the literature to identity FoG
(e.g., Yoon et al., 2008; Tempel et al., 2018). We identify galaxy clusters in the redshift
space using the FG algorithm in the optical band using a high-quality spectroscopic data
set.

The observed velocity of a galaxy, of radial infall speed s,,q and azimuthal angle

¢, on a shell of radius 7’ centered on the cluster is given by

where vp, and vg, are the radial and transverse peculiar velocities of the observer, respec-
tively, and syot is rotational speed about the cluster center (see Abdullah et al., 2013 for
details). Notice that equation 1.1 is a generalized case of equation (23) in Regos & Geller
(1989), which ignores the spatial velocity of the observer with respect to the cluster center

and assumes the flow is purely radial.



1.2 Outline

The dissertation includes three publications which are discussed in the next three
chapters. In chapter two, we discuss the issue of identification of cluster membership and
introduce the GalWeight technique, a new technique for assigning galaxy cluster mem-
bership. This technique is specifically designed to simultaneously maximize the number
of bona fide cluster members while minimizing the number of contaminating interlopers.
The GalWeight technique can be applied to both massive galaxy clusters and poor galaxy
groups. Moreover, it is effective in identifying members in both the virial and infall regions
with high efficiency. We apply the GalWeight technique to MDPL2 & Bolshoi N-body
simulations, and find that it is > 98% accurate in correctly assigning cluster membership.
We show that GalWeight compares very favorably against four well-known existing cluster
membership techniques (shifting gapper; Girardi et al., 1998b, den Hartog; den Hartog &
Katgert, 1996, caustic; Diaferio, 1999, SIM; Yahil, 1985; Regos & Geller, 1989). We also
apply the GalWeight technique to a sample of twelve Abell clusters (including the Coma
cluster) using observations from the Sloan Digital Sky Survey. This chapter is introduced
in the publication Abdullah M. H., Wilson G., Klypin A., 2018, ApJ, 861, 22, Abdullah
et al. (2018).

In chapter three, we apply the GalWeight technique to the SDSS-DR13 spectro-
scopic data set to create a new publicly-available catalog of 1800 galaxy clusters (GalWeight
cluster catalog, GalWCat19) and a corresponding catalog of 34471 identified member galax-
ies. The clusters are identified from overdensities in redshift-phase space by looking for

FOG. The cluster masses are calculated individually using the virial theorem, corrected



for the surface pressure term and NFW model. The completeness of the cluster catalog
(GalWCat19) and the procedure followed to determine cluster mass are tested on the Bol-
shoi N-body simulations. The 1800 GalWCat19 clusters range in redshift between 0.01 — 0.2
and in mass between (0.4 — 14) x 10"h~1 M. The cluster catalog provides a large num-
ber of cluster parameters including sky position, redshift, membership, velocity dispersion,
and mass at overdensities A = 500, 200, 100, 5.5. The 34471 member galaxies are identified
within the radius at which the density is 200 times the critical density of the Universe. The
galaxy catalog provides the coordinates of each galaxy and the ID of the cluster that the
galaxy belongs to. The relationship between In this chapter, we also discuss the comparison
between the GalWCat19 catalog and some previous catalogs and introduce the cluster mass-
velocity dispersion relation. This chapter is introduced in the publication Abdullah M. H.,
Wilson G., Klypin A., Old L., Ali G. B., 2020, ApJS, 246, 2, Abdullah et al. (2020b).

In chapter four, we derive cosmological constraints on the matter density, 2,
and the amplitude of fluctuations, og, using GalWCat19. We investigate the volume and
mass incompleteness of GalWCat19 to obtain a complete local subsample of 756 clusters
(SelFMC) in a redshift range of 0.045 < z < 0.125 and virial masses of M > 0.8 x 10
1 Mg with mean redshift of z = 0.085 used to constrain €2, and og. We compare our
complete sample with theoretical models to constrain the cosmological parameters. By
analyzing the SelFMC sample, we obtain €2, = O.SlOJjg:ggg + 0.041 (systematic) and og =
0.81070:931 4 0.035 (systematic), with a cluster normalization relation of og = 0.43Q;,0-%.
We compare our results with recent results constrained from some cosmological probes. Our

constraints on 2, and og are consistent and very competitive with those obtained from

10



non-cluster abundance cosmological probes such as Cosmic Microwave Background (CMB),
Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The joint analysis of our
cluster data with Planck18+BAO-+Pantheon gives €, = 0.315f8:8}?{ and og = 0.810f8:81(1).
There are several unique aspects to this approach: we use the largest spectroscopic data
set currently available, and we assign membership using the GalWeight technique which we
have shown to be very effective at simultaneously maximizing the number of bona fide cluster
members while minimizing the number of contaminating interlopers. Moreover, rather than
employing scaling relations, we calculate cluster masses individually using the virial mass
estimator. Since GalWCat19 is a low-redshift cluster catalog we do not need to make any
assumptions about evolution either in cosmological parameters or in the properties of the
clusters themselves. This chapter is accepted for publication in the ApJ as Abdullah M.
H., Klypin A., Wilson G., 2020b, Abdullah et al. (2020a) (accepted for publication in the

ApJ in July 2020).
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Chapter 2

GalWeight: A New and Effective
Weighting Technique for
Determining Galaxy Cluster and

Group Membership

We introduce GalWeight, a new technique for assigning galaxy cluster member-
ship. This technique is specifically designed to simultaneously maximize the number of bona
fide cluster members while minimizing the number of contaminating interlopers. The Gal-
Weight technique can be applied to both massive galaxy clusters and poor galaxy groups.
Moreover, it is effective in identifying members in both the virial and infall regions with high
efficiency. We apply the GalWeight technique to MDPL2 & Bolshoi N-body simulations,

and find that it is > 98% accurate in correctly assigning cluster membership. We show that
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GalWeight compares very favorably against four well-known existing cluster membership
techniques (shifting gapper, den Hartog, caustic, SIM). We also apply the GalWeight tech-
nique to a sample of twelve Abell clusters (including the Coma cluster) using observations
from the Sloan Digital Sky Survey. We end by discussing GalWeight’s potential for other

astrophysical applications.

2.1 Introduction

The problem of contamination of kinematic samples of galaxies in clusters by
foreground and background galaxies is longstanding. It arises because of the fact that only
the projected positions and velocities of galaxies are measured in redshift surveys. Due to
the lack of knowledge about the motion perpendicular to the line of sight, it is difficult to
judge a priori which of the galaxies found close to a cluster in projected space are actually
bound to it and a good tracer of the underlying potential. Excluding fiducial members or
including unbound galaxies, or interlopers, may lead to significantly incorrect estimates of
the cluster mass.

Several methods have been suggested in the literature to address this problem.
All these methods aim at cleaning the galaxy sample by removing non-members before
attempting a dynamical analysis of the cluster. Some algorithms utilize only the redshift
information, such as (i) the 3o-clipping method (Yahil & Vidal, 1977) which iteratively
eliminates interlopers with velocities greater than 3c; (ii) the fixed gapper technique (Beers
et al., 1990; Zabludoff et al., 1990) in which any galaxy that is separated by more than

a fixed value (e.g., 1o of the sample or 500-1000 km s~!) from the central body of the
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velocity distribution is rejected as a non-member; or (iii) the jackknife technique (Perea
et al., 1990a) which removes the galaxy whose elimination causes the largest change in the
virial mass estimator. These methods are primarily based on statistical rules and some
selection criteria. Other algorithms utilize both position and redshift information, such
as (i) the shifting gapper technique (Fadda et al., 1996) which applies the fixed gapper
technique to a bin shifting along the distance from the cluster center, or (ii) the den Hartog
& Katgert (1996) technique that estimates the maximum (escape) velocity as a function of
distance from the cluster center calculated either by the virial or projected mass estimator
(e.g., Bahcall & Tremaine, 1981; Heisler et al., 1985).

In addition to the techniques described above, the spherical infall models (hereafter
referred to as SIMs, e.g., Gunn & Gott, 1972; Yahil, 1985; Regos & Geller, 1989; Praton &
Schneider, 1994) can determine the infall velocity as a function of distance from the cluster
center. The SIM in phase-space has the shape of two trumpet horns glued face to face
(Kaiser, 1987) which enclose the cluster members. However, studies shows that clusters
are not well fit by SIMs in projected phase-space diagram, because of the random motion
of galaxies in the cluster outer region caused by the presence of substructure or ongoing
mergers (van Haarlem & van de Weygaert, 1993; Diaferio, 1999). A recent investigation
(Abdullah et al., 2013) showed that SIMs can be applied to a sliced phase-space by taking
into account the distortion of phase-space due to transverse motions of galaxies with respect
to the observer and/or rotational motion of galaxies in the infall region in the cluster-rest

frame. However, that is out of the scope of the current paper.
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Another sophisticated method is the caustic technique described by Diaferio (1999)
which, based on numerical simulations (Serra & Diaferio, 2013), is estimated to be able to
identify cluster membership with ~ 95% completeness within 3r, (r, is the virial radius
defined below). The caustic technique depends on applying the two-dimensional adaptive
kernel method (hereafter, 2DAKM, e.g., Pisani, 1993, 1996) to galaxies in phase-space (R,
v;), with the optimal smoothing length h,y = (6.24/N) (012% +02.)/2, where og, and
oy, are the standard deviations of projected radius and line-of-sight velocity, respectively,
and N is the number of galaxies. og, and o,, should have the same units and therefore the
coordinates (R, v;) should be rescaled such that ¢ = o,/0g,, where g is a constant which
is usually chosen to be 25 or 35 (additional details about the application of this technique
may be found in Serra et al., 2011).

One more technique that should be mentioned here is the halo-based group finder
(Yang et al., 2005, 2007). Yang et al. (2007) were able to recover true members with
~ 95% completeness in the case of poor groups (~ 10'®My). However, they found that
the completeness dropped to ~ 65% for rich massive clusters (~ 10'5Mg). Also, theirs
is an iterative method which needs to be repeated many times to obtain reliable members.
Moreover, its application depends on some assumptions and empirical relations to identify
the group members.

This paper introduces a simple and effective new technique to constrain cluster
membership which avoids some issues of other techniques e.g., selection criteria, statistical
methods, assumption of empirical relations, or need for multiple iterations. The paper is

organized as follows. The simulations used in the paper are described in §2.2. In §2.3 the

15



GalWeight technique is introduced and its efficiency at identifying bona fide members is
tested on MultiDark N-body simulations. In §2.4, we compare GalWeight with four well-
known existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM).
We apply GalWeight to twelve Abell clusters (including the Coma cluster) in §2.5, and
present our conclusions in §4.5.4. Throughout this paper we adopt ACDM with Q,, = 0.3,

Qp =0.7, and Hy =100 h km s~ Mpc™!, h = 1.

2.2 Simulations

In this section we describe the simulated data that we use in this work in order to
test the efficiency of the GalWeight technique to recover the true membership of a galaxy
cluster.

1. MDPL2: The MDPL2 ! simulation is an N-body simulation of 3840° particles
in a box of co-moving length 1 A~! Gpc, mass resolution of 1.51 x 10° h~! Mg, and
gravitational softening length of 5 h™! kpc (physical) at low redshifts from the suite of
MultiDark simulations (see Table 1 in Klypin et al., 2016). It was run using the L-GADGET-
2 code, a version of the publicly available cosmological code GADGET-2 (Springel, 2005). It
assumes a flat ACDM cosmology, with cosmological parameters 24 = 0.692, Q2,,, = 0.307,
= 0.048, n = 0.96, 0g = 0.823, and h = 0.678 (Planck Collaboration et al., 2014). MDPL2
provides a good compromise between numerical resolution and volume (Favole et al., 2016).
It also provides us with a large number of clusters of different masses extended from 0.7x 10

to 37.4 x 101 h=! M (the range used to test the efficiency of GalWeight).

"https:/ /www.cosmosim.org/cms/simulations/mdpl2/
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2. Bolshoi: The Bolshoi simulation is an N-body simulation of 20483 particles
in a box of co-moving length 250 h~! Mpc, mass resolution of 1.35 x 10® h~! My, and
gravitational softening length of 1 h~! kpc (physical) at low redshifts. It was run using the
Adaptive Refinement Tree (ART) code (Kravtsov et al., 1997). It assumes a flat ACDM
cosmology, with cosmological parameters (2 = 0.73, Q,,, = 0.27, Q, = 0.047, n = 0.95,
og = 0.82, and h = 0.70. Bolshoi provides us with clusters of higher mass resolution than
MDPL2. Thus, we use both simulations to test the efficiency of GalWeight to recover the
true membership.

For both simulations halos are identified using the Bound Density Maximum
(BDM) algorithm (Klypin & Holtzman, 1997; Riebe et al., 2013), that was extensively
tested (e.g., Knebe et al., 2011) which identifies local density maxima, determines a spher-
ical cut-off for the halo with overdensity equal to 200 times the critical density of the
Universe (p = 200p.) for MDPL2 and 360 times the background matter density of the
Universe (p = 360ppg), and removes unbound particles from the halo boundary. Among
other parameters, BDM provides a virial masses and radii. The virial mass is defined as
M, = %wQOOpcrg for MDPL2 and M, = %71'360/)1)97“3 for Bolshoi (see Bryan & Norman,
1998; Klypin et al., 2016). The halo catalogs are complete for halos with circular velocity
ve > 150 km s=1 for MDPL2 (Klypin et al., 2016) and v, > 100 km s~* for Bolshoi (e.g.,
Klypin et al., 2011; Busha et al., 2011; Old et al., 2015).

For both MDPL2 and Bolshoi the phase-space (line-of-sight velocity v, versus
projected radius R)) of a distinct halo (cluster) is constructed as follows. We assume the

line-of-sight to be along the z-direction and the projection to be on the x-y plane. We select
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a distinct halo of coordinates (z®,%",2") and velocity components (UQ,UZ,UQ), and then

we calculate the observed line-of-sight velocity of a subhalo, taking the Hubble expansion
into account, as v, = (v — v?) + Ho(29 — 2"), where (29,99, 29) and (v%,v],v?) are the
coordinates and velocity components of the subhalo, respectively. Finally, we select all
subhalos within a projected radius of QRp,m,w = 10 A~! Mpc from the center of distinct
halo and within a line-of-sight velocity interval of |v, maz| = 3500 km s~ These values are
chosen to be sufficiently large to exceed both the turnaround radius and the length of the
Finger-of-God (hereafter, FOG) which are typically ~ 7 — 8 h~! Mpc and ~ 6000 km s*
respectively for massive clusters. The turnaround radius 7, is the radius at which a galaxy’s

peculiar velocity (vpec) is canceled out by the global Hubble expansion. In other words, it

is the radius at which the infall velocity vanishes (vin¢ = vpec — H 7 = 0).

2.3 The Galaxy Weighting Function Technique (GalWeight)

In this section, we describe the GalWeight technique in detail and demonstrate its
use by applying it interactively to a simulated cluster of mass 9.37 x 10 h=! M, selected
from the Bolshoi simulation. Figure 2.1 shows the phase-space distribution of subhalos
(galaxies) near the center of the simulated cluster.

The GalWeight technique works by assigning a weight to each galaxy i according
to its position (Ry;,v,,;) in the phase-space diagram. This weight is the product of two
separate two-dimensional weights which we refer to as the dynamical and phase-space

weights. The dynamical weight (see § 2.3.1 parts A.1 and A.2, and Figure 2.4a which is

2Throughout the paper we utilize small 7 to refer to 3D radius and capital R to refer to projected radius.
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Figure 2.1: Line-of-sight velocity v, as a function of projected radius R, in the extended
region around a simulated cluster of mass 9.37 x 10'* h~! Mg selected from the Bolshoi
simulation. The Finger-of-God is clearly seen in the main body of the cluster within R, <1
Mpc h~'. The effect of the mass concentration in and around the cluster is manifested as
a concentration of galaxies around v, = 0 line well outside the cluster itself. Interlopers are
mostly galaxies at large projected distances and large peculiar velocities. In § 2.3 and in
Figures 2.2, 2.3 & 2.4 we show in detail how GalWeight can be applied to this cluster to

distinguish between interlopers and cluster members (Figure 2.5).
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Figure 2.2: Weighting function along projected radius R, for the simulated cluster of mass
9.37 x 101 h=1 Mg, selected from Bolshoi (see § 2.3.1 A.1). The left panel (a) shows the
function Dp, derived from the data (black points, Equation (2.1)), normalized by Equation
(2.2), and fitted by Wg, (red curve, Equation (2.4)). The right panel (b) presents its
corresponding probability density function in phase-space diagram. As shown in (a & b),
the weighting is greatest at 12, = 0 and decreases outwards.

the product of Figure 2.2b and Figure 2.3b) is calculated from the surface number density
Y(Ry), velocity dispersion oy, (R,), and standard deviation og, (v.) profiles of the cluster.
The phase-space weight (see § 2.3.1 part B and Figure 2.4b) is calculated from the two-
dimensional adaptive kernel method that estimates the probability density underlying the
data and consequently identification of clumps and substructures in the phase-space (Pisani,
1996). The total weight is then calculated as the product of the dynamical and phase-space
weights (see § 2.3.1 part C and Figure 2.4c). The advantage of using the total weight rather

than the dynamical weight or the phase-space weight alone is discussed in § 2.3.3.
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Figure 2.3: Weighting function along line-of-sight velocity v, for the simulated cluster se-
lected from Bolshoi. The left panel (a) shows the function D, calculated from the data
(black points, Equation (2.5)), normalized by Equation (2.6), and fitted by W,,_ (blue curve,
Equation (2.7)). The right panel (b) presents its corresponding probability density function
in phase-space. As shown in (a & b), the applied weight is greatest at v, = 0 and decreases
as the absolute line-of-sight velocity increases.
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2.3.1 Galaxy Weighting Functions

A. Dynamical Weighting Wy, (R, v.)

In calculating the dynamical weighting function, we assume that the weighting we
apply should be larger at the cluster center i.e., at the origin in phase-space (Figure 2.1),
and decay along both the R, and v, phase space axes. This weighting function is, therefore,
a product of two individual weighting functions; one which decays along the R,-axis and
the other along the v,-axis as described below.

A.1. Rj-axis Weighting Function, Wg (R);)

In order to calculate the projected radius weighting function, Wg, (R,), we select
two properties that are strongly correlated with projected radius and with the dynamical
state of a cluster.

The first property is the Surface Number Density Profile ¥(R,), defined
as the number of galaxies per unit area as a function of distance from the cluster center.
It has its maximum value at the cluster center and decreases with radial distance, and
is also strongly correlated with the mass distribution of the cluster. The significance of
introducing X(R,) for calculating Wg,, is that the velocities of member galaxies in the core
of some clusters can be as high as ~ 3000 km s~!. It produces the Kaiser or FOG effect (see
Kaiser, 1987). This FOG distortion is the main reason that many membership techniques
fail to correctly identify galaxies in the core with high line-of-sight velocities as members.
Thus, ¥(R)) is essential to recover the members in the cluster core. In other words, ignoring

Y (R,) means missing some of the cluster members in the core.
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The second property is the Projected Velocity Dispersion Profile, o, (R,).
The significance of introducing o, (R,) for calculating Wpg, is that it characterizes the
dynamical state of a cluster from its core to its infall region. Specifically, there are random
motion of member galaxies in the infall region due to the presence of substructures and
recent mergers (e.g., van Haarlem & van de Weygaert, 1993; Diaferio & Geller, 1997). This
effect of random motion can be taken into account implicitly in o, (Rp). This is the main
reason why the SIM technique fails in the cluster outskirts in the projected phase-space.
Thus, o, (R,) is essential to recover the members in the cluster infall region. In other
words, ignoring o, (R,) means missing some of the cluster members in the infall region.

Thus, the weighting Wg,(R,) in the projected radius direction can be calculated

by introducing the function Dg,(R,) that is given by

with the normalization
Rp,ma:c
N, = / Dr (Ry)dR,, (2.2)
0

where R a2 18 the maximum projected radius in phase-space. The denominator R, where
the slope of the power low v is a free parameter in the range —1 < v < 1, is introduced in
Equation (2.1) to provide flexibility and generalization for the technique. The free parameter
v is selected to adjust the effect of the distortion of FOG in the core and the distortion of

the random motion in the outer region. It is defined as
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- oroc(R < 0.25)
" 0rana(0.25 < R < 4))

—1, (2.3)

where opog is the velocity dispersion of the core galaxies and 0,.4,,4 is the velocity dispersion
of the galaxies outside the core.

The function Dg,(R;), calculated from the data, is contaminated by interlopers
that cause scattering, especially at large projected distances (see black points in the left
panel of Figure 2.2). Therefore, in order to apply a smooth weighting function, we fit
Dr,(Rp) with an analytical function. Any analytical function that is a good fit to D, (R))

could be utilized. In this paper we choose to use the function

r2\"
Wk, (R,) = Ao (1 + a;’) + Apg, (2.4)

which has four parameters: a is a scale radius (0 < a < 1), v is a slope of the power law
(=2 $v<0), and Ag and Ay, are the central and background weights in the R,-direction.
These parameters are determined by applying the chi-squared algorithm using the Curve
Fitting MatLab Toolbox. Note that the analytical function we selected here has the same
form as the generalized King model (King, 1972; Adami et al., 1998).

Thus, the weight Wg (R,;) of each galaxy can be calculated according to its
projected radius R, from the cluster center. The weighting along R, is shown in Figure 2.2a,
where the function Dg,(R,) is normalized using Equation (2.2). The data are smoothed
and approximated using Equation (2.4) (shown as red line). The right panel (b) shows the

projected radius weight function in phase space.
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A.2. v,-axis Weighting Function, W, _(v,)

In phase-space, most members are concentrated near the line v, = 0 and the
number of members decreases with increasing absolute line-of-sight velocity. The weighting
function along wv,-axis can, therefore, be approximated by the histogram of the number
of galaxies per bin, Ny, (v,), or equivalently the standard deviation of projected radius,
oR,(v.), directed along the line-of-sight velocity axis, normalized by the total number of
galaxies Nyt in the cluster field. In other words, the weighting in the line-of-sight velocity

direction can be calculated by introducing the function D, (v,) that is given by

sz(vz) = O'Rp(vz)a (25)
with the normalization
Vz,mazx
Ny, = D, (v,)dv,, (2.6)
—Vz,max

where v, 4,4, is the maximum line-of-sight velocity of phase-space. As above, to obtain a
smooth weighting function in v,, the histogram or equivalently D,, (v,) can be fitted by an

analytical function. In this paper we select an exponential model that is given by

Wy, (v2) = Boexp (b vz) + By, (2.7)

where By is the central weight, By, is the background weight in v, and b is scale parameter

(=0.01 £ b < 0). Again, these parameters are determined by applying the chi-squared
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Figure 2.4: Weights to be applied as a function of position in line-of-sight velocity /projected
radius phase-space for the simulated cluster selected from the Bolshoi simulation. Panel
(a) shows the dynamical weight Wy, (The product of the weights shown in Figures 2.2b
and 2.3b). Panel (b) presents the phase-space weight W, calculated from the 2DAKM.
The total weight Wioy = Way X Wy, is shown in panel (c) with explicitly drawing three
contour weights. The weight Wy, is maximum at the origin (0,0) and decreases along both
the R, and v, axes and W), gives higher weight for galaxy clumping around the center and
substructures as well. Note that the scaling for each panel is independent, with magenta
representing maximum values.

algorithm using the Curve Fitting MatLab Toolbox. The weighting along v,, is shown in
Figure 2.3a, where the function D,, (v,) (black points) is normalized using Equation (2.6).
The data are smoothed and approximated by Equation (2.7) for an exponential model (blue
curve). The right panel (b) shows the resulting exponential-model weight as a function of
location in line-of-sight velocity /projected radius phase-space. As shown in (a & b), the
applied weight is greatest at v, = 0 and decreases as the absolute line-of-sight velocity
increases.

We can now construct a two-dimensional dynamical weight Wy, (R, v.) by mul-

tiplying Wg, (Rp) and W,, (v.) together:

Way(Rp,v:) = WRp(Rp)sz (v2), (2.8)
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Wy (Rp, v,) is shown in the left panel of Figure 2.4, and is the product of the weights shown
in Figure 2.2b and Figure 2.3b. The weight is maximum at the origin, and decreases along
both R, and v,.

To sum up, the dynamical weight is calculated from three properties (surface
number density ¥(R,) and velocity dispersion o, (R,) along R,, and standard deviation of
projected radius og,(v.) along v.) which are correlated strongly with the dynamics of the
cluster. This weight takes into account the effects of the FOG in the cluster core and the
random motion of galaxies in the infall region.

B. Phase-Space Weighting, W, (R, v,)

This weighting is the coarse-grained phase-space density which can be simply calcu-
lated by the 2-dimensional adaptive kernel method (2DAKM, e.g., Silverman, 1986; Pisani,
1996). The kernel density estimator is the estimated probability density function of a ran-
dom variable. For N galaxies with coordinates (x,y) = (Rp,v,) the density estimator is

given by

N

1 1 r— X; y—Y;
/ (x’y)_Nth,ihy,iK< D )K ( s > (2.9)

i=1 z,

where, the kernel K (t) is given by Gaussian distribution

K(t) = exp <—;t2> (2.10)

and h;; = Ah; is the local bandwidth, h; = ajN*1/6 is the fixed bandwidth for 2-

dimensional space and o is the standard deviation for j={x,y}. The term \; = [/ fo(zs, 1:)]”
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Figure 2.5: Identification of the simulated cluster membership from weighted galaxies. Panel
(a) shows the weight of each galaxy in line-of-sight velocity/projected radius phase-space
(magenta color indicates higher weight). Panel (b) shows a histogram or PDF of the weight
applied to each galaxy, Wiot(Rpi,v.;). 1DAKM fitting returns a bimodal PDF in this
example of the simulated cluster. We choose to use the number density method (NDM,
Abdullah et al., 2013) to identify the contour weight value which separates cluster members
from interlopers. This is shown by the solid red vertical line in panel (c¢) and solid red line in
panel (a). 1o confidence intervals are shown by the two red dashed lines. The two vertical
dashed-black lines represent the virial and turnaround radii, where the cluster members are
those enclosed by the best contour line and within the turnaround radius. We impose one
additional cut, shown by the black solid lines in panel (a), cutting the red contour line in
the very inner radius by the maximum v, of the enclosed members.

and logy = ) . log fo(xi,y:)/N, where fo(z;,y;) is given by Equation 2.9 for A; = 1 (see
also, Shimazaki & Shinomoto, 2010).

Consequently, applying 2DAKM for the distribution of galaxies in the phase-space
demonstrates high weights for positions of high-density distribution of galaxies. Therefore,
the main purpose of introducing the phase-space weight is to take into account the effect
of the presence of any clump or substructure in the field that cannot be counted by the dy-
namical weight. Also, the phase-space weight is introduced to reduce the excessive increase
of dynamical weight near the center (see §2.3.3). The phase-space weight W, (Rp,v.) is

shown in Figure 2.4b that gives more weights for galaxies in clumps and substructures, and
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from the distribution of galaxies in the cluster field this weighting function is maximum
around the cluster center.
C. Total Weighting, W;u(R,, v.)

The total weighting function is calculated as

Wtot(Rp,Uz) = Wdy(Rp,Uz)th(Rp,Uz), (2.11)

and shown in Figure 2.4c for the simulated cluster. It shows the probability distribution
function of the total weight Wio (R, v;). The weighting in Figure 2.4c is then applied to
individual galaxies. Figure 2.5a shows Fig 2.1 once again, but now after applying the “total
weighting”. We still need to separate cluster members from interlopers. We explain how to

do that in § 2.3.2.

2.3.2 Membership Determination

Figure 2.5a shows the weight of each galaxy in the simulated cluster phase-space.
The question is now how to utilize the weighted galaxies in phase-space to best identify
cluster members. One would like to identify a single, optimal weight value which separates
cluster members from field galaxies i.e., identify the best contour weight to select in panel
(a). One way is to consider the probability distribution function (PDF), or histogram of
the total weight for all galaxies, which is shown in Figure 2.5b. Fitting the PDF using a
1DAKM reveals two obvious peaks (bimodal PDF). One might imagine simply drawing a
vertical line to separate the members located on the right with higher weights from the

interlopers located on the left. However, not all clusters show this bimodality in the PDF of
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Figure 2.6: Application of dynamical, phase-space, and total weights (green, blue, and black
lines, respectively) to three simulated clusters taken from the Bolshoi simulation (§ 2.2).
The red points show true members within 3r,. Applying the dynamical weight alone (green)
results in the inclusion of many galaxies within R ~ 1 Mpc h~! with very high line-of-sight
velocities. Applying the phase-space weight alone (blue), fails to recover some members in
the core while simultaneously incorrectly including some interlopers at large distances due
to the presence of nearby clusterings and clumps. The total weight (black), the product of
the dynamical and phase-space weights, recovers true members effectively in both the core
and infall regions (see Table 2.1).

Wiot- Another way could be to exclude all galaxies that have weights less than, for example,
3o from the average value of the main peak (i.e., Weut = Whpeak — 30). However, attempting
to do the separation by either of these two ways is subjective.

Therefore, we prefer to select the optimal contour weight by utilizing the Number
Density Method (hereafter, NDM), a technique which was introduced in Abdullah et al.
(2013). The goal in applying the method here, is to find the optimal contour weight (or
line) that returns the maximum number density of galaxies. In other words, we select
a certain contour line (weight) and calculate its enclosed area and number of galaxies,
Nin (which contribute positively), then account for the number of galaxies, Noyt (which

contribute negatively) located outside this contour line. Then, the number density of this
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contour line can be calculated by (Ni, — Nout)/Area (see figure 9 in Abdullah et al., 2013).

In Figure 2.5¢ the PDF of the number density of galaxies calculated by NDM is
plotted for weights (contour lines) in the range —12 < log Wyt < —6. The optimal contour
line corresponds to the maximum number density of galaxies, the value of weight which
should be utilized as the separator of cluster members from interlopers, is shown by the red
vertical solid line with 1o confidence intervals shown by the red two vertical dashed lines.
This optimal contour line with 1o confidence are shown as solid and dashed red lines in
panel (a), respectively.

As shown in Figure 2.5a the optimal contour line extends to large distances (R ~
10 h~! Mpc) and not all galaxies within this boundary are members. Therefore, the last
step of GalWeight is to determine a cutoff radius within which the galaxies are assumed to
be bounded. Thus, the cluster members are defined as the galaxies enclosed by the optimal
contour line and within the cutoff radius. This cutoff radius can be adopted as the virial
radius 7, (which is the boundary of the virialized region) or the turnaround radius r; (which
is the boundary of the cluster infall region). Note that the main goal of this paper is to
introduce and test the efficiency of GalWeight to recover the true members in the virial and
infall regions using simulations. Thus, knowing the virial radius of each simulated cluster
we test the efficiency of GalWeight at r,,, 2r,, and 3r, projected on the phase-space diagram
as described in §2.3.4 and Table 2.1 (see, e.g., Serra & Diaferio, 2013). However, for our
sample of the twelve Abell clusters (observations) 7, and r; are determined from the mass
profile estimated by the virial mass estimator and NFW mass profile (Navarro et al., 1996,

1997) as discussed in §2.5.
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We impose one additional cut, shown by the solid black lines highlighted by black
circles in panel (a), to cut the red contour line in the very inner radius by the maximum v,
of the enclosed members. This is because in some cases the optimal contour line extends
to very high velocities in the innermost region (R < 0.25h~! Mpc) without including any
other members, so it is not necessarily to show this tail of the contour line.

The main steps in applying the GalWeight technique to determine cluster mem-
bership are summarized below:
1. Make an appropriate cut in R, and v,, and plot galaxies in line-of-sight velocity /projected
radius phase-space. In this paper, we use R, ez = 10 h~! Mpc and V2 maz| = 3500 km

Sil.

2. Calculate the function %}Z(R’» and fit it with an analytical model (e.g., Equation 2.4)
to obtain Wg (R,).

3. Calculate the function o, (v,) and fit it with an analytical model (e.g., Equation 2.7) to
obtain W, (v).

4. Determine the dynamical weighting, Way (Rp,v.) = Wg,(Rp) X Wy, (vz).

5. Apply the 2DAKM in phase-space to determine the phase-space weighting, Wy, (R, v>).
6. Calculate the total weight Wyo (R, v2) = Way (Rp, v2) X Wyn(Rp,v).

7. Plot the PDF for all galaxy weights and apply a cut, retaining all galaxies with weight
larger than this cut as members (NDM is used here to determine the optimal value of cut).

8. Determine the cutoff radius (r, or ;) using a dynamical mass estimator and identify

cluster members as those enclosed by the optimal contour line and within the cutoff radius.
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2.3.3 Why do we use total weight rather than dynamical or phase-space

weights?

One may ask why we depend on the total weight to assign a cluster membership
rather than using the dynamical weight or phase-space weight alone. We present Figure 2.6
to help answer this question. It shows the phase-space of three Bolshoi simulated clusters
(see §2.2). Using simulated clusters brings the advantage that true members are known
definitively. Figure 2.6 shows the optimal contour lines determined by applying, separately,
the dynamical weight (green line), the phase-space weight (blue line) and the total weight
(black line). The red points show true members within 3r,.

In Figure 2.6, the dynamical weight Wy, (R,,v.) (green; see also Figure 2.4a)
is seen to be very smooth and idealised. In other words, Wy, (R,,v.) describes well an
isolated galaxy cluster in phase-space. It does not take into account the effects of nearby
clusters, clumps and/or substructures. Also, it shows an excessive increase near the cluster
center (~ 1 h~! Mpc) and incorrectly includes interlopers near the center which have very
high velocities. This effect is due to introducing X(R,) in Wy, (R)p,v.), where the surface
number density is very high near the cluster center. However, ignoring We, (R, v.) leads
to missing some cluster members especially those that close to the center in phase-space.
Thus, Wy, (Rp, v.) cannot be used on its own to assign cluster membership, but it is very
important for correctly identifying members with high line-of-sight velocities.

Figure 2.6 demonstrates that, on its own, phase-space weighting W, (R, v.) also
has some difficulty in recovering true cluster members (blue; see also Figure 2.4b). This

is because it does not take into account the FOG effect in the cluster core, where those
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members that have high velocities do not have high concentration, so they are assigned low
weights in phase-space and not counted as members. Also, the presence of nearby clusterings
and substructures have the effect of widening the “optimal” contour line. Consequently,
it is very difficult to separate true members from galaxies (interlopers) located in nearby
clumps. This results in the inclusion of some interlopers in the infall region. In summary,
using Wy (R, v.) alone, simultaneously excludes some true members near the cluster center
and includes some interlopers in the infall region.

We have shown that both the dynamical weight and phase-space weight have
issues in identifying true members when applied alone. However, as the black solid line in
Figure 2.6 shows, the total weight (the product of the dynamical and phase-space weights),
is very effective. It can simultaneously identify cluster members moving with high velocities
in the core (R, <1 Mpc h™!) as well as members moving with random motions in the infall

regions (R, ~ 3ry).

2.3.4 Testing the Efficiency of GalWeight on MDPL & Bolshoi Simula-

tions

To further demonstrate and quantify the GalWeight technique at assigning mem-
bership, we again utilize the MDPL2 & Bolshoi® simulations from the suite of MultiDark
simulations. The efficiency of GalWeight can be quantified by calculating two fractions
defined as follows. The first is the completeness f., which is the fraction of the number
of fiducial members identified by GalWeight as members in the projected phase-space rel-

ative to the actual number of 3D members projected in the phase-space. The second is

3https://www.cosmosim.org/cms/simulations/mdpl2/
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the contamination f;, which is the fraction of interlopers incorrectly assigned to be mem-
bers, projected in the phase-space (see e.g., Wojtak & Lokas, 2007; Serra & Diaferio, 2013).
Ideally, of course, GalWeight would return fractions of f. =1 and f; = 0.

MDPL2 provides us with 1500 simulated clusters with masses ranging from 0.73 x
10'h=1 My to 37.4 x 10"h~' M to which we can apply GalWeight. We calculate the
fractions f. and f; at three radii — r,, 2r, and 3r,. As shown in Table 2.1, the mean values
of f. and f; within 7, are 0.993 and 0.112 respectively for the 1500 clusters overall. Also,
the fraction f. decreases from 0.993 at r, to 0.981 at 3r,.

For Bolshoi, we have about 500 clusters with masses greater than 0.70x 10" =1 M.
In order to increase the cluster sample of Bolshoi to 1500 clusters, we randomly select
different line-of-sights or ordinations for each distinct halo in additional to the original
line-of-sight along the z-direction (see column 3 in Table 2.1 for Bolshoi). Then, we ap-
ply GalWeight to each cluster. The mass range of the sample is 0.70 x 10"4A~1 M to
10.92 x 10~h~' M, as shown in Table 2.1. The mean values of f. and f; within 7, are 0.995
and 0.126 respectively for the 1500 clusters overall. Also, the fraction f. decreases from
0.995 at r, to 0.971 at 3r,.

The main reason that some interlopers are assigned as members (f; = 0.113 for
MDPL2 and f; = 0.226 for Bolshoi, as maximal value) is because of the triple-value problem
(Tonry & Davis, 1981). That is, there are some foreground and background interlopers that
appear to be part of the cluster body because of the distortion of phase-space. The effect
of the triple-value problem is apparent in Figure 2.7 (discussed below), where most of the

interlopers assigned as members are embedded in the cluster body.
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Figure 2.7: Application of the GalWeight technique (solid black lines) to twelve simulated
clusters selected from the MDPL simulation (§ 2.2). Red points show fiducial members
within 3r,. The virial mass (log M, ht Mg) and number of members within 7, is shown
for each cluster. Clearly, GalWeight does well in effectively identifying members with high
accuracy in both the virialized and infall regions for structures ranging in mass from rich
clusters to poor groups.
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cluster members, identified by applying our new technique (GalWeight). The open blue
circles in panels (a, b, e & f) show members identified by the shifting gapper technique
using Np;, = 10 and Np;,, = 15, respectively. Panel (¢ & g) shows the caustic technique
employing rescale parameters of q=25 (cyan lines), and q=35 (pink lines) and also the Den
Hartog technique (dotted black lines). The Yahil SIM (dark green lines) and Regds SIM
(light green lines) techniques are presented in panel (d & h). GalWeight recovers fiducial
members with high accuracy, improving upon the shifting gapper and den Hartog techniques
simultaneously at small and large projected radii, the caustic techniques at small projected
radius and the SIM technique at large projected radius (~ 3ry)
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In order to demonstrate the ability of GalWeight to assign membership in the case
of both poor and massive clusters we divide the 1500 clusters (for each simulation) into
four mass bins as shown in Table 2.1. The fraction f, varies from 0.998 (0.996) for the poor
clusters of mean mass 1.44 x 101* (1.13 x 10'*) h=1 My to 0.988 (0.997) for the massive
clusters of mean mass 11.34 x 10'* (9.68 x 10'*) h=' M, at r, for MDPL2 (Bolshoi). We
conclude that GalWeight can be applied effectively to a range of clusters masses with high
efficiency.

Figure 2.7 shows examples of GalWeight being applied to twelve simulated Bolshoi
clusters (solid black lines), where red and gray points show fiducial members and interlopers,
respectively, within 3r,. The twelve clusters shown in Figure 2.7 are ranked by virial mass,
with the most massive cluster (10.92 x 10'* A=! M) shown in the upper left corner and
the least massive one (1.06 x 10 h~! M) shown in the lower right corner. The figure
demonstrates that GalWeight can effectively recover cluster membership for rich massive
galaxy clusters as well as small or poor groups of galaxies with the same efficiency.

In summary, applying GalWeight to the suite of MDPL2 and Bolshoi simulations
demonstrates that GalWeight can successfully recover cluster membership with high effi-
ciency. It also further demonstrates that it can simultaneously identify members in both
the virial and infall regions with taking into account the FOG effect and the random motion
of galaxies in the infall region. Furthermore, it can be applied to both rich galaxy clusters

and poor groups of galaxies with the same efficiency (see Table 2.1).
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2.4 A comparison of membership techniques

In this section, we perform a general comparison between GalWeight and four other
well-known techniques (shifting gapper, caustic, den Hartog technique, and SIM)
without doing any quantitative comparison. We defer testing the efficiency of different
membership techniques to recover the 3D true members of clusters and the influence of the
determining their dynamical masses to a future work (see e.g., Wojtak & Lokas, 2007).

We begin by showing how each technique fares when it is applied in turn to two
simulated clusters with mass of 10.92 x 10'* h=! Mg, & 4.24 x 10'* L= M, from the Bolshoi
simulation, shown in Figure 2.8. Making the assumption that the cluster is spherical,
fiducial members are assumed to lie within three virial radii, 3r,, and are shown as 2D
members in the phase-space (red points) in each panel of Figure 2.8. We select this radius
(3r,) in order to examine the ability of each technique to recover true members not only
within the virial radius but also in the infall region i.e., the region of a cluster that extends
from the viral radius r, to the turnaround radius r;, where v, ~ 2 — 4 r,. Shown in
each panel by the solid black line is the optimal choice of demarcation contour separating
members and field galaxies identified by our GalWeight technique. For reasons of space we
do not describe each of the four techniques (shifting gapper, den Hartog, caustic and SIM)
in detail here. However, we summarize them below and refer the reader to the references
for more information.

The shifting gapper technique (Fadda et al., 1996) works by first placing galax-
ies into bins according to their projected radial distance from the cluster center. The user

has the freedom to choose the number of galaxies per bin which they believe is best-suited
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to each application of the technique. Commonly chosen values are Np;,, = 10 or 15. For
each bin, the galaxies are sorted according to their velocities, then any galaxy separated by
more than a fixed value (e.g., 1o of the sample or 500-1000 km s~!) from the previous one
is considered an interloper and removed. Fadda et al. (1996) used a gap of 1000 km s~! and
a bin of 0.4 A~ Mpc or larger, in order to have at least 15 galaxies. The open blue circles
in panels (a, e) & (b, f) of Figure 2.8 represent the members identified by this technique,
where the number of galaxies utilized per bin was Ny;, = 10 and Ny;, = 15, respectively.
The gray points symbolize interlopers. Clearly, membership identification depends heavily
upon the choice of Ny;,, as there are many differences between the galaxies identified as
members in panels (a, e) & (b, f). Additionally, in both cases, some true members of
the two cluster are missed, especially at small projected radius. Furthermore, the shifting
gapper technique depends on the choice of the velocity gap used to remove interlopers in
each bin. A choice of a high-velocity gap results in the identification of large fraction of
interlopers as cluster members, while the choice of a low-velocity gap results in missing true
cluster members (Aguerri et al., 2007).

The application of the caustic technique (e.g., Alpaslan et al., 2012; Serra &
Diaferio, 2013) is shown in panels (c & g) of Figure 2.8 for two rescale parameters, q
= 25 (cyan lines) and q = 35 (pink lines). Although this technique is quite successful
when applied to the cluster outskirts, it misses some of the true members located within
the core, which are the most important galaxies affecting the dynamics of the clusters.
They are missed because the caustic technique does not take into account the effects of

the FOG distortion. Also, the caustic technique cannot be applied to small galaxy groups.
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Furthermore, applying the caustic technique is rather subjective and relies upon how the
caustics can be inferred from the data (Reisenegger et al., 2000; Pearson et al., 2014).
Nonetheless, it is still a powerful technique for estimating cluster masses.

The application of the den Hartog technique (den Hartog & Katgert, 1996) is
also shown by the dotted black lines in Figure 2.8 panels (¢ & g). This technique estimates
the escape velocity as a function of distance from the cluster center by calculating the
virial mass profile (see §2.5), vesc(R) = 1/ QGLR”(R), where G is the gravitational constant,.
The figure demonstrates that this technique is very biased towards including many far
interlopers. In addition, its application relies on assumptions of hydrostatic equilibrium
and spherical symmetry.

Panels (d & h) in Figure 2.8 show the application of two spherical infall models
(SIMs). The Yahil (Yahil, 1985) and Reg6s models (Regos & Geller, 1989) are shown by
dark green and light green lines respectively. Note that, one needs to determine the mass
density profile and the background mass density in order to apply the SIM technique and
determine the infall velocity profile (e.g., van Haarlem & van de Weygaert, 1993). We
determine the mass density profile for the simulated cluster from the NFW model (Navarro
et al., 1996 & 1997, Equations (2.15 & 2.16), knowing its concentration ¢, virial radius r,,
and scale radius rs = r,/C. Also, the background mass density is given by pyg = 2y, pe.

As shown in Figure 2.8 (d & h), SIMs have difficulty identifying true members in
the infall region in projected phase-space. This is due to the fact that the effect of random
motion of galaxies in the infall regions (van Haarlem & van de Weygaert, 1993; Diaferio,

1999) causes some members in the cluster outskirts to be missed. A recent investigation by
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our own team (Abdullah et al., 2013) has shown that SIMs can successfully be applied to
sliced phase-space by taking into account some kinds of distortions such as the transverse
motion of galaxies with respect to the observer and/or rotational motions of galaxies inside

the cluster. However, this is out of the scope of the current paper.

2.5 Observations - Application to a Sample of 12 Abell Clus-

ters

In this section we apply GalWeight to a sample of twelve Abell galaxy clusters,
with galaxy coordinates and redshifts taken from SDSS-DR12* (hereafter, SDSS-DR12 Alam
et al., 2015). In order to demonstrate the technique for both massive and poor clusters,
we selected clusters with Abell richness parameter ranging from 0 to 3 (Abell et al., 1989).
We deliberately selected some clusters which were almost isolated and others which had
clumps or groups of galaxies nearby in order to demonstrate how the technique performs
under these different scenarios. We apply the GalWeight technique only to this pilot sample
of twelve clusters in this paper, deferring application to the entire SDSS-DR13 sample of
~ 800 clusters to a later paper.

The data sample is collected as follows. The NASA /TPAC Extragalactic Database
(NED)? provides us with a first approximation of the angular coordinates and redshift of the
center of our cluster sample (a., O, z.). We then download the coordinates and redshifts
(right ascension «, declination 0, and spectroscopic redshift z) for objects classified as

galaxies near the center of each cluster from SDSS-DR12 (Alam et al., 2015). The next

“https://http://www.sdss.org/dr12
®https://ned.ipac.caltech.edu
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step is to apply the binary tree algorithm (e.g., Serra et al., 2011) to accurately determine
the cluster center (., d¢, z.) and create a line-of-sight velocity (v,) versus projected radius
(Rp) phase-space diagram. R, is the projected radius from the cluster center and v, is the
line-of-sight velocity of a galaxy in the cluster frame, calculated as v, = c¢(z — z.)/(1 + z.),
where z is the observed spectroscopic redshift of the galaxy and z. is the cluster redshift.
The term (1 + z.) is a correction due to the global Hubble expansion (Danese et al., 1980)
and c is the speed of light.

We then apply GalWeight to the twelve Abell clusters as described in detail in
§ 2.3 in order to get the optimal contour line. The final step is to determine the virial
radius, 7, at which p = 200p. and the turnaround radius, 7, at which p = 5.55p. (e.g.,
Nagamine & Loeb, 2003; Busha et al., 2005; Diinner et al., 2006) from all galaxies located
inside optimal contour line of a cluster.

In order to calculate these two radii we should first determine the cluster mass
profile. The cluster mass can be estimated from the virial mass estimator and NFW mass
profile (Navarro et al., 1996, 1997) as follows.

The viral mass estimator is given by

BN Y, (< 1)’
- 1
2G Zi?fj R;j

M(<r) (2.12)

where v, ; is the galaxy line-of-sight velocity and R;; is the projected distance between two
galaxies (e.g., Limber & Mathews, 1960; Binney & Tremaine, 1987; Rines et al., 2003).
If a system extends beyond the virial radius, Equation (2.12) will overestimate the

mass due to external pressure from matter outside the virialized region (The & White, 1986;
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Carlberg et al., 1997; Girardi et al., 1998b). The corrected virial mass can be determined

using the following expression:

My (< 1) = M(< r)[1 — S(r)], (2.13)

where S(r) is a term introduced to correct for surface pressure. For an NFW density
profile and for isotropic orbits (i.e. the projected, o, and angular, oy, velocity dispersion

components of a galaxy in the cluster frame are the same, or equivalently the anisotropy

2
parameter 8 =1 — 74 = 0), S(r) can be calculated by

2
ar

S(r) = <1 f_x>2 [ln(1+x) = f_w]_l [J(I(U<(T2)r’ (2.14)

where x = r/rs, rs is the scale radius, o(< r) is the integrated three-dimensional velocity
dispersion within r, and o,(r) is a projected velocity dispersion (e.g., Koranyi & Geller,
2000; Abdullah et al., 2011).

The mass density within a sphere of radius r introduced by NFW is given by
plr) = —L— (2.15)
and its corresponding mass is given by

M
n(2) - (1/2)

M(<r)= In(1+4x) — , (2.16)

1+=x

where M, = 4mpgr3[In(2) — (1/2)] is the mass within 7y, ps = dsp. is the characteristic
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Figure 2.9: Application of the GalWeight technique to twelve Abell clusters from SDSS-
DRI12 (see also Table 2.2). The solid black lines shows the optimal contour line and the
two dashed vertical lines show the virial and turnaround radii respectively. The red points
show galaxies identified as clusters members - those enclosed by optimal contour line and
r¢. Also shown in each panel is the cluster virial mass (logM, h~! Mg) and number of
galaxies within r,,.
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-1

density within r; and 6; = (A,/3)c? |In(1 +¢) — Tic| -+ and the concentration ¢ = ry /7,

(e.g., Navarro et al., 1997; Rines et al., 2003; Mamon et al., 2013).
The projected number of galaxies within a cylinder of radius R is given by inte-

grating the NFW profile (Equation (2.15)) along the line of sight (e.g., Bartelmann, 1996;

Zenteno et al., 2016)

Ny

N(<R) = Mg(@,

(2.17)

where Ny is the number of galaxies within r4 that has the same formula as My, and g(z) is
given by (e.g., Golse & Kneib, 2002; Mamon & Boué, 2010)

(
In(z/2) + b0/ g, < g

1—x2

9(z) = 41 -1n(2) ifz = 1 (2.18)

ln(x/?)%—% ifx > 1

Thus, we can fit rs for each cluster to get S(r) from Equation 2.14 and calculate the
corrected mass profile M, (r) from Equation 2.13. Also, the NFW mass profile is calculated
from Equation 2.16. Then, r,, at which A = 200p., can be calculated from the viral or
NFW mass profiles. While r¢, at which A = 5.55p,, can be determined from NFW mass
profile only. We cannot determine 7; from the virial mass profile because the assumption
of hydrostatic equilibrium is invalid.

Finally, after we calculate r, and r; (from NFW mass profile) the cluster mem-

bership can be defined as all galaxies enclosed by the optimal contour line and within r,
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as shown by the red points in Figure 2.9. It is worth noting once again that GalWeight is
effective at taking into account the effects of the FOG distortion in the innermost regions
and the random motion of galaxies in the cluster infall region. Moreover, GalWeight is not
affected by the presence of substructures or nearby clusters or groups as demonstrated, for
example, for A2063 & A2065. Furthermore, GalWeight can be applied both to rich clusters
such as A2065 & A1656 and to poor galaxy groups such as A1459 & A2026.

In order to compare our results with the literature, we calculate the radii and their
corresponding masses at three overdensities, Aggg = 500p., A2go = 200p. and A1gg = 100p,
as shown in Table 2.2. The sample is displayed in order of decreasing NF'W Mygy mass. A
complete list of NF'W parameters is also provided in Table 2.2.

In Table 2.3 we list ratios of radii and masses for each of the twelve Abell clusters
using our GalWeight-determined method (assuming an NFW profile) divided by previously-
published values, (rnrw /rref) and (Mypw /M, f) respectively, at overdensities of A = 500,
200 and 100p.. Column 8 of Table 2.3 also lists the ratio of GalWeight-determined masses
relative to those estimated from the caustic technique (Rines et al., 2016), (Mnrw /Mecaus) 200,
at A = 200p.. Table 2.3 clearly shows that the radii and masses estimated for a cluster
are strongly dependent on the technique used to assign membership and remove interlopers
(see Wojtak & Lokas, 2007). The ratio (rnFw /Tref) ranges between 0.63 and 1.55, while
the ratio (Mnpw /M;.f) ranges between 0.58 and 2.18.

The cluster masses from the literature tabulated in Table 2.3 have been calculated
in various ways. Below, we explicitly compare our values to those obtained from applying

the shifting gapper, SIM and caustic methods.
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Figure 2.10: Example of four well-known membership techniques applied to the cluster.
The blue open symbols and solid lines are as in Figure 2.8. Clearly GalWeight (solid black
lines) appears to identify cluster members well both in the virialized and infall regions of
phase-space.

First, comparing to the shifting gapper technique (see (°®) in Table 2.3, Girardi
et al., 2002; Sifén et al., 2015), we find that the ratio (Mypw /M;ey) is larger than unity
in some cases (A2065, A1185) and smaller than unity in others (A2029, A2142). This is
because members assigned by this technique, and consequently the mass calculated, depend
on the selection criteria of number of galaxies and velocity gap per bin. As discussed before,
the choice of a high-velocity gap includes more members and consequently larger mass and
vice versa.

Second, comparing to the SIM method (see (*) in Table 2.3, Abdullah et al., 2011)
we note that the mass ratio (Myrw /M;cs) is less than unity for the three clusters A0117,
A1436 and A1459. This is because SIM includes more galaxy members inside the virial
region even though they are very far from the cluster body. This is due to the assumption
of conservation of mass that influences on the validity of SIM in the innermost region (see

Figure 6 in Abdullah et al., 2011).
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Third, comparing to the caustic technique (see (*) in Table 2.3, Rines et al., 2003;
Rines & Diaferio, 2006; Rines et al., 2016) we specifically calculate the ratio (Mypw /Meaus)200
as listed in Table 2.3, column 8. It demonstrates that this ratio is larger than unity for
7 clusters with the highest ratio is for A2065, for which the estimated mass from NFW is
four times that expected from the caustic technique. As described above, the main reason
for this discrepancy is that the caustic technique does not take into consideration the effect
of FOG. Thus, it misses more members inside the virial region and consequently expects
lower masses.

We compare again GalWeight with the four well-known techniques (shifting gap-
per, caustic, den Hartog, and SIM) for the Coma cluster as shown in Figure 2.10. The Figure
(see also Figure 2.8) demonstrates that the GalWeight performs very favorably against es-
tablished methods, taking into account as it does the effects of the FOG distortion at small
projected radius well as the random motion of galaxies in the infall region. In order to apply
SIM to the Coma cluster the spatial number density profile is calculated from the NFW
model (Navarro et al., 1996, 1997). Also, we assume that the background number density
Prg = 0.0106 h3 Mpc—2 which is calculated using the parameters of Schechter luminosity
function (¢* = 0.0149 h® Mpc=3, M* — 5logh = —20.44 and o = —1.05 for 7 magnitude,
Blanton et al., 2003).

Because of the presence of interlopers, estimates of cluster mass tend to be biased
too high and estimates of cluster concentration tend to be biased too low. Our work suggests
that applying GalWeight rather than another technique to determine cluster membership

before applying a dynamical mass estimator (virial theorem, NF'W model etc.), likely results
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in a more accurate estimate of the true cluster mass and concentration. In a future work we
will compare the efficiency of different membership techniques to assign membership and

their influence on estimating cluster mass using different mass estimators.

2.6 Discussion and Conclusion

In this paper we introduced the Galaxy Weighting Function Technique (Gal-
Weight), a powerful new technique for identifying cluster members. specifically designed
to simultaneously maximize the number of bona fide cluster members while minimizing the
number of contaminating interlopers.

GalWeight takes into account the causes of different distortions in phase-space
diagram and is independent of statistical or selection criteria. It can recover membership
in both the virial and infall regions with high accuracy and is minimally affected by sub-
structure and/or nearby clusters.

We first demonstrated GalWeight’s use by applying it interactively to a simulated

0' h=1 Mg selected from Bolshoi simulation. Next, we tested the

cluster of mass 9.37 x 1
efficiency of the technique on ~ 3000 clusters selected from the MDPL2 and Bolshoi simula-
tions with masses ranging from 0.70 x 1014A=1 M to 37.4 x 10'*h~' M. The completeness
and interloper fractions for MDPL2 are f. = 0.993,0.992 and 0.981 and f; = 0.096,0.098
and 0.118, while for Bolshoi f. = 0.995,0.981 and 0.971 and f; = 0.126,0.217 and 0.226
within r,, 2r, and 3r,, respectively. We then compared its performance to four well-known

existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM). Finally,

we applied GalWeight to a sample of twelve Abell clusters of varying richnesses taken from
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SDSS-DR12. By assuming an NFW model and applying the virial mass estimator we de-
termined the radius and corresponding mass at overdensities of Aggg, Aggp and Ajgg. The
virial mass (at Aggg) of the sample ranged from 0.82 x 10 hA~! My to 12.97 x 10'* p~!
Mg, demonstrating that GalWeight is effective for poor and massive clusters. In the future
we plan to apply GalWeight to a larger SDSS sample of galaxy clusters at low and high
redshifts.

We believe that GalWeight has the potential for astrophysical applications far
beyond the identification of cluster members e.g., identifying stellar members of nearby
dwarf galaxies, or separating star-forming and quiescent galaxies. We also plan to investigate

these applications in a future work.
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Chapter 3

GalWeight Application: A
publicly-available catalog of

dynamical parameters of 1,800

galaxy clusters from SDSS-DR13,

(GalWCat19

Utilizing the SDSS-DR13 spectroscopic dataset, we create a new publicly-available
catalog of 1,800 galaxy clusters (GalWeight cluster catalog, GalWCat19) and a corresponding
catalog of 34,471 identified member galaxies. The clusters are identified from overdensities
in redshift-phase space. The GalWeight technique introduced in Abdullah, Wilson and

Klypin (AWK18) is then applied to identify cluster members. The completeness of the
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cluster catalog (GalWCat19) and the procedure followed to determine cluster mass are tested
on the Bolshoi N-body simulations. The 1,800 GalWCat19 clusters range in redshift between
0.01 — 0.2 and in mass between (0.4 — 14) x 10*A~' M. The cluster catalog provides a
large number of cluster parameters including sky position, redshift, membership, velocity
dispersion, and mass at overdensities A = 500, 200,100,5.5. The 34,471 member galaxies
are identified within the radius at which the density is 200 times the critical density of
the Universe. The galaxy catalog provides the coordinates of each galaxy and the ID of
the cluster that the galaxy belongs to. The cluster velocity dispersion scales with mass as
log(c200) = log(946 £ 52 km s™1) + (0.349 £ 0.142) log [h(2) Mago/10'° M| with scatter of

dlogo = 0.06 £ 0.04. The catalogs are publicly available at the following website!.

3.1 Introduction

Galaxy clusters are the most massive bound systems in the universe and are
uniquely powerful cosmological probes. Cluster dynamical parameters, such as line-of-sight
velocity dispersion, optical richness, and mass are closely tied to the formation and evolution
of large-scale structures (Bahcall, 1988; Postman et al., 1992; Carlberg et al., 1996; Sereno
& Zitrin, 2012). Catalogs of galaxy clusters provide an unlimited data source for a wide
range of astrophysical and cosmological applications. In particular, the statistical study of
the abundance of galaxy clusters as a function of mass and redshift (Wang & Steinhardt,
1998; Haiman et al., 2001; Reiprich & Bohringer, 2002; Battye & Weller, 2003; Dahle, 2006;

Lima & Hu, 2007; Wen et al., 2010b) is a powerful tool for constraining the cosmological

"https://mohamed-elhashash-94.webself .net/galwcat/
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parameters, specifically the normalization of the power spectrum og and the matter density
parameter (),,. Catalogs of galaxy clusters are also interesting laboratories to investigate
galaxy evolution under the influence of extreme environments(Butcher & Oemler, 1978;
Dressler, 1980; Goto et al., 2003; Leauthaud et al., 2012; Bayliss et al., 2016; Foltz et al.,
2018). Moreover, they can be utilized to study the galaxy-halo connection which correlates
galaxy growth with halo growth (e.g., Wechsler & Tinker, 2018).

Galaxy clusters can be detected based on a number of different properties, such
as X-ray emission from hot intracluster gas (e.g., Sarazin, 1988; Reichardt et al., 2013), the
Sunyaev-Zeldovich (SZ) effect (Planck Collaboration et al., 2011), optical (e.g., Abell et al.,
1989; den Hartog & Katgert, 1996; Abdullah et al., 2011) and infrared emissions (e.g., Genzel
& Cesarsky, 2000; Muzzin et al., 2009; Wilson et al., 2009; Wylezalek et al., 2014) from
stars in cluster members, Stellar Bump Sequence (Muzzin et al., 2013), and the gravitational
lensing (e.g., Metzler et al., 1999; Kubo et al., 2009). Using current capabilities, both X-ray
emission and SZ effect are detectable only for the very deep gravitational potential wells of
the most massive systems. They cannot be used to detect the outskirts of massive clusters,
or intermediate/low-mass clusters. Thus, current optical surveys of galaxies, such as SDSS,
and upcoming surveys such as Euclid (Amendola et al., 2013), and LSST (LSST Science
Collaboration et al., 2009) are required in order to produce the largest and most complete
cluster sample.

Among the most popular applications of galaxy cluster catalogs are scaling rela-
tions. Scaling relations of clusters provide insight into the nature of cluster assembly and

how the implementation of baryonic physics in simulations affects such relations. Studying
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these relations for local clusters is also crucial for high-z cluster studies to constrain dark
energy (e.g., Majumdar & Mohr, 2004). Cluster mass is not a directly observable quantity.
It can be calculated in several ways such as, the caustic technique (Diaferio, 1999), the
projected mass estimator (e.g, Bahcall & Tremaine, 1981), the virial mass estimator (e.g.,
Binney & Tremaine, 1987), weak gravitational lensing (Wilson et al., 1996; Holhjem et al.,
2009), and application of Jeans equation for the gas density calculated from the x-ray analy-
sis of galaxy cluster (Sarazin, 1988). However, these methods are observationally expensive
to perform, requiring high quality datasets, and are biased due to the assumptions that
have to be made (e.g. spherical symmetry, hydrostatic equilibrium, and galaxies as tracers
of the underlying mass distribution). Fortunately, the cluster mass can be still indirectly
inferred from other observables, the so-called mass proxies, which scale tightly with cluster
mass. Among these mass proxies are X-ray luminosity, temperature, the product of X-ray
temperature and gas mass (e.g. Vikhlinin et al., 2009b; Pratt et al., 2009; Mantz et al.,
2016), optical luminosity or richness (e.g. Yee & Ellingson, 2003; Simet et al., 2017), and
the velocity dispersion of member galaxies (e.g. Biviano et al., 2006; Bocquet et al., 2015).

There are many cluster finding methods which rely on optical surveys. For in-
stance, the friends-of-friends (FoF) algorithm is the most frequently usable means for iden-
tifying groups and clusters in galaxy redshift data (Turner & Gott, 1976; Press & Davis,
1982). It uses galaxy distances derived from spectroscopic or photometric redshifts as the
main basis of grouping. Another group of cluster finding methods are halo-based group
finders (Yang et al., 2005, 2007; Duarte & Mamon, 2015). These methods assume some cri-

teria to identify galaxies which belong to the same dark matter halo. An additional cluster
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finding method is the red-sequence technique, which relies on galaxy colors (e.g., Gladders
& Yee, 2005; Rykoff et al., 2014). This red-sequence-based technique assumes the existence
of a tight red sequence for clusters, and uses only quiescent galaxies as a proxy of their
host cluster environment. There are other cluster finding methods which are used in the
literature, including density-field based methods (e.g., Miller et al., 2005), matched filter
techniques (e.g., Kepner et al., 1999; Milkeraitis et al., 2010; Bellagamba et al., 2018), and
the Voronoi-Delaunay method (e.g., Ramella et al., 2001; Pereira et al., 2017; Soares-Santos
et al., 2011). These methods are capable of identifying clusters and groups of different rich-
ness ranging from a pair of galaxies to very massive clusters with hundreds of galaxies for
entire surveys. However, they assume certain criteria and apply fast-run codes to construct
catalogs of entire surveys. This may lead to inaccurate results for recovering the true cluster
members because the proposed criteria could be suitable for only some individual clusters
depending on their masses and/or dynamical status. Also, most of these methods use pho-
tometric redshift to extract cluster catalogs, leading to substantially more uncertainty in
cluster membership in comparison to spectroscopically produced catalogs.

It is well-known that galaxy clusters manifest the Finger-of-God effect ( FoG, see
Jackson, 1972; Kaiser, 1987; Abdullah et al., 2013). This is the distortion of line-of-sight
velocities of galaxies both in viral and infall regions due to the cluster potential well, i.e.
galaxies peculiar motions. We introduce a simple algorithm, called FG, that identifies
locations of clusters by looking for the FOG effect. Similar algorithms were introduced in
the literature to identity FOG (e.g., Yoon et al., 2008; Wen et al., 2009; Tempel et al., 2018).

In this paper, we aim to construct a sample of galaxy clusters using the FG identification in
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the optical band using a high-quality spectroscopic dataset. In a previous work (Abdullah
et al. 2018, hereafter AWK18) we introduced a new technique (GalWeight) to assign cluster
membership. Galaxy clusters in this catalog are studied individually after assigning galaxy
members using the GalWeight technique.

The paper introduces a catalog of 1800 galaxy clusters (hereafter, GalWCat19)
identified from the spectroscopic dataset of the Sloan Digital Sky Survey-Data Release 13
(hereafter, SDSS-DR132, Albareti et al., 2017). We also provide a catalog of 34,471 cluster
members. The paper is organized as follows. The data, the FG cluster finding algorithm,
and membership identification using GalWeight are introduced in §3.2. In §3.3 we describe
our procedure for calculating the dynamical parameters of each galaxy cluster. Testing
the completeness of the catalog and the recovery of dynamical mass using simulations are
discussed in §3.4. In §3.5 we describe the GalWCat19 catalog and compare it with some
previous catalogs, and introduce the velocity dispersion-mass relation. We summarize our
conclusions and future work in §3.6. Throughout the paper we adopt ACDM with ,, = 0.3,

Qp =0.7, and Hy = 100 h km s~ Mpc~!.

3.2 Data and clusters identification

3.2.1 SDSS sample

Using photometric and spectroscopic database from SDSS-DR13, we extract data
for 704,200 galaxies. These galaxies fulfill the following set of criteria: spectroscopic detec-

tion, photometric and spectroscopic classification as a galaxy (by the automatic pipeline),

*https://http://www.sdss.org/dr13
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spectroscopic redshift between 0.001 and 0.2 (with a redshift completeness > 0.7, Yang
et al., 2007; Tempel et al., 2014), r-band magnitude (reddening-corrected) < 18, and the
flag SpecObj.zWarning is zero for well-measured redshift. We downloaded the following
parameters for each galaxy: photometric object ID, equatorial coordinates (right ascension
«, declination 0), spectroscopic redshift (z), Petrosian magnitudes in the u, g, r, i and z

bands, uncertainties, and extinction values based on Schlegel et al. (1998).

3.2.2 Identification of a galaxy cluster

Galaxy clusters exhibit overdensity regions of ~2-3 orders of magnitude above
the background density. One key signature of a galaxy cluster is the distortion of the
peculiar velocities of its core members (within ~ 0.5 Mpc from the cluster center) along the
line-of-sight. This distortion of FOG appears clearly in a line-of-sight velocity (v,) versus
projected radius (R,) phase-space diagram. Here R, is the projected radius from the cluster
center. While, v, is the line-of-sight velocity of a galaxy in the cluster frame, calculated
as vy = (Vops — Ve) /(1 + 2¢), where vy is the observed spectroscopic velocity of the galaxy
and z. and v, are the cluster redshift and velocity, respectively. The observed spectroscopic
velocity is calculated as vops = ¢[(z + 1)% — 1]/[(z + 1) + 1] (relativistic correction). The
term (1 + z.) is a correction due to the global Hubble expansion (Danese et al., 1980) and
¢ is the speed of light. Consequently, the procedure that we follow in this investigation

depends on looking for the FOG effect as described below.

1. We calculate the number density p., of all galaxies within a cylinder of radius R., =

0.5h=! Mpc (~ the width of FOG), and height 3000 km s~! (~ the length of FOQ)
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centered on a galaxy i. Note that the radius of the cylinder is equivalent to angular ra-
dius sin(f.y) = Rey/De,g, where the comoving distance of the galaxy D, 4 is calculated

as

dz’'

c z
D. :/
T Ho Jo /(1 +2)3 + Qu((1 4 2)2 + Qa

(3.1)

. We sort all galaxies descending from highest to lowest number density with the condi-
tion that the cylinder has at least eight galaxies. This means we are aiming to detect
all clusters that have at least eight galaxies within a projected distance R, = 0.5h~!
Mpc and velocity range = 1500 km s~! from the cluster center. The completeness

of the catalog is tested on an N-body simulation as described in §3.4.1.

. Starting with the galaxy with highest number density, we apply the binary tree algo-
rithm (e.g., Serra et al., 2011) to accurately determine a cluster center (ae, ., z.) and

a phase-space diagram.

. We apply the GalWeight technique (see §3.2.3) to galaxies in the phase-space diagram
out to maximum projected radius of R, ez = 10 h~! Mpc and a maximum line-of-
sight velocity of |v; mqz| = 3000 km s~! to identify those galaxies within the optimal
contour line (see §3.2.3 and AWK18). These values are chosen to be sufficiently large
to exceed both the turnaround radius (defined in §3.2.3) and the length of the FOG
which is typically ~ 7 — 8 h~! Mpc and ~ 6000 km s~!, respectively, for massive

clusters.
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5. Next, using all galaxies enclosed by the optimal contour line (see §3.2.3), we determine

the dynamical parameters of each cluster in the catalog (see §3.3).

3.2.3 Membership identification: GALWEIGHT

In AWKI18, we introduced GalWeight, a new technique for assigning galaxy cluster
membership. AWK18 showed that GalWeight could be applied both to massive galaxy
clusters and poor galaxy groups. They also showed that it is effective in identifying members
both in the virial and infall regions with high efficiency.

The GalWeight technique works by assigning a weight to a galaxy ¢ according to
its position (Rp;,v;;) in phase-space diagram. This weight is the product of two separate
two-dimensional weights which we refer to as the dynamical and phase-space weights:
1. The dynamical weight is calculated from the surface number density ¥(R,), velocity
dispersion oy, (R,), and standard deviation og,(v.) profiles of the cluster as follows. We

introduce the function

Y(Ry)ow, (Ry)
Dy, (y) = 2000 ), (32)
P
with the normalization
Rp,ma;c
N, = / Dr (Ry)dR,, (3.3)
0

where Rpmae is the maximum projected radius in phase-space and v is a free parameter
in the range —1 < v < 1 which is introduced to adjust the effect of the distortion of FOG

in the core and the distortion of the random motion in the outer region. It is defined as

orog(R<0.25)

v= Orand (025<R§4))

—1, where opog is the velocity dispersion of the core galaxies and 04,4
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is the velocity dispersion of the galaxies outside the core. Then, Equation 3.2 is fitted with

the following analytical function
Rr2\"
Wk, (Rp) = Ao (1 + a;’) + Apg, (3.4)

where a is a scale radius (0 < a < 1), v is a slope of the power law (-2 < v < 0), and Ag
and Ay, are the central and background weights along the R,-direction. Also, we define the

function

D”Uz (UZ) - URp (’Uz), (35)
with the normalization
Vz,mazx
N'Uz = sz (UZ)dUZ7 (36)
—Vz,mazx

where v ymqe 15 the maximum line-of-sight velocity of phase-space. Then, Equation 3.5 is

fitted with the following exponential model

W, (v2) = Boexp (b vz) + By, (3.7)

where By is the central weight, By, is the background weight along v, and b is scale parameter

(—=0.01 £b<0). Then, the two-dimensional dynamical weight is calculated as

Wdy(va UZ) = WRP (Rp)sz (Uz); (3.8)
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2. The phase-space weight is calculated from the two-dimensional adaptive kernel method
that estimates the probability density underlying the data and consequently identifies
clumps and substructures in the phase-space (Silverman, 1986; Pisani, 1996).

The total weight is then calculated as the product of the dynamical and phase-

space weights

Wit (Rp, vz) = Way(Rp, v2)Wpn(Rp, v2), (3.9)

The optimal total weight value (the optimal contour line) is determined by utilizing
the Number Density Method (Abdullah et al., 2013) in order to separate members and
interlopers. Then, we calculate the virial radius r, (which is the boundary of the virialized
region) and the turnaround radius r; (which is the boundary of the cluster infall region)
using the virial mass and NFW mass estimators (§3.3). Finally, the cluster membership
are those enclosed by the optimal contour line and within the turnaround radius. The
viral radius r, is the radius within which the cluster is in hydrostatic equilibrium. It is
approximately equal to the radius at which the density p = Aggope, where p. is the critical
density of the Universe and Agyy = 200 (e.g., Carlberg et al., 1997). Therefore, we assume
here that r, = rogg. The turnaround radius r; is the radius at which a galaxy’s peculiar
velocity (vpec) is canceled out by the global Hubble expansion. In other words, it is the
radius at which the infall velocity vanishes (vi,f = vpec —H 7 = 0), which can be calculated
as the radius at which p = 5.55p, (e.g., Nagamine & Loeb, 2003; Busha et al., 2005; Diinner

et al., 2006).
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3.3 Dynamics of galaxy clusters

For each cluster, we calculate dynamical parameters i.e., mass, virial and turnaround
radii, velocity dispersion, number of spectroscopic members, and concentration as described
below.

The cluster mass is estimated from the virial mass estimator (e.g., Limber & Math-
ews, 1960; Binney & Tremaine, 1987; Rines et al., 2003) and NFW mass profile (Navarro

et al., 1996, 1997) as follows. The viral mass estimator is given by

3TN Y vai(<r)?
2G Yz 7

M(< ) (3.10)

where v, ; is the galaxy line-of-sight velocity and R;; is the projected distance between two
galaxies.

If a system extends beyond the virial radius, Equation (3.10) will overestimate
the mass due to external pressure from matter outside the virialized region (The & White,
1986; Carlberg et al., 1997; Girardi et al., 1998b). The corrected virial mass is determined

using the following expression:

My(<r)=M(<r)1-S8(r), (3.11)

where S(r) is a term introduced to correct for surface pressure. For an NFW density

profile and for isotropic orbits (i.e. the projected, o, and angular, oy, velocity dispersion

components of a galaxy in the cluster frame are the same, or equivalently the anisotropy
%

parameter 5 =1— —% =0), S(r) is calculated by

o2
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1+zx 1+x

S(r) = <x>2 [ln(l—i—x) B ]_1 [ U“(r))r, (3.12)

where x = r/rs, rs is the scale radius, o(< r) is the integrated three-dimensional velocity
dispersion within r, and o,(r) is a projected velocity dispersion (e.g., Koranyi & Geller,
2000; Abdullah et al., 2011).

The mass density within a sphere of radius r introduced by NFW is given by

pr)y = —"L (3.13)

and its corresponding mass is given by

L
In(2) - (1/2)

M(<r)= [ln(l +x)— (3.14)

x
1+z|’
where My = 4mpgrd[ln(2) — (1/2)] is the mass within rg, ps = Jsp. is the characteristic

~1
density within ry and 65 = (A,/3)c? [ln(l +c)— #C} , and the concentration ¢ = r,/rq

(e.g., Navarro et al., 1997; Rines et al., 2003; Mamon et al., 2013).

The projected surface number density of galaxies is given by

N

E(< R) =2p,rsf(x) = ) - (1/2)

fx), (3.15)

where Ny is the number of galaxies within rs that has the same formula as M;, and f(z) is

given by (e.g., Golse & Kneib, 2002; Mamon & Boué, 2010)

67



h—1! .
1 [1—%} fz <1

ifr = 1 (3.16)

W=

S [1— S_le(i/f)] ifr > 1

\
The projected number of galaxies within a cylinder of radius R is given by inte-

grating the NFW profile (Equation (3.13)) along the line of sight (e.g., Bartelmann, 1996;

Zenteno et al., 2016)

N

N<B = umy =i

9(x), (3.17)

where g(x) is given by (e.g., Golse & Kneib, 2002; Mamon & Boué, 2010)

ln(w/Z)%—w ifr < 1

9(2) = {1 - 1n(2) ifz =1 (3.18)

ln(w/2)+% ifx > 1

Given the projected radii of galaxies in each cluster, we fit r5 with a maximum-

likelihood estimation (MLE) by finding the value of 7 that minimizes the probability

(i)
~InL=— zi:l xmwxz( S (3.19)

where Tp4: = Rmaz/Ts and Rpg, is @ maximum projected radius. In practice, we search
for the best value of rg that gives minimum likelihood within Ry,.. < 3Ra200, where Rogg

is initially calculated from the uncorrected virial mass estimator (Equation 3.10). We
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determine the uncertainty of 1o confidence interval by —InL = —In Ly; 4+ 0.5, where
In Ly, is the maximum likelihood (see e.g., Koranyi & Geller, 2000; Mamon & Boué, 2010;
Mamon et al., 2013).

To summarize the procedure described above to calculate the corrected virial mass
and NFW mass profile for each cluster: we first fit r; for each cluster to get S(r) (Equa-
tion 3.12); we then calculate the corrected virial mass M, (< ro00) (Equation 3.11) at the
virial radius 72003, at which p = 200p.; we then calculate the NFW mass profile from Equa-
tion 3.14; finally, we determine the dynamical parameters (radius, number of members,

velocity dispersion and mass) at overdensities of A = 500,200, 100, 5.5.

3.4 Application to Simulations

In §3.4.1 we test the completeness of the FG algorithm (see §3.2.2) using the
Bolshoi N-body simulation (Klypin et al., 2016). In §3.4.2 we test the procedure described
in §3.3 to recover a cluster mass using two mock catalogs recalled from Old et al. (2015).
Note that the efficiency of GalWeight for assigning cluster membership has already been
tested on Bolshoi & MDPL2 N-body simulations, and has been found to be > 98% accurate

in correctly assigning cluster membership (see Table 1 in AWK18).

3.4.1 Catlaog Completeness as a Function of Cluster Mass and Redshift

In this section we investigate the completeness of the FG algorithm to identify

locations of clusters with at least eight spectroscopic galaxies (see §3.2.2). In order to

3Throughout the paper we interchangeably call r,, and rago for the virial radius. In practice, the virial
radius at which the cluster is in hydrostatic equilibrium cannot be determined. We follow convention and
assume that 7, is at p = 200p..
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achieve this investigation we apply the FG algorithm to the Bolshoi* simulation. The
Bolshoi simulation is an N-body simulation of 2048° particles in a box of comoving length
250 h~! Mpec, mass resolution of 1.35 x 10® h~' Mg, and gravitational softening length
of 1 h=! kpc (physical) at low redshifts. It was run using the Adaptive Refinement Tree
(ART) code (Kravtsov et al., 1997). It assumes a flat ACDM cosmology, with cosmological
parameters (25 = 0.73, Q,,, = 0.27, Q, = 0.047, n = 0.95, 0g = 0.82, and h = 0.70. Halos are
identified using the Bound Density Maximum (BDM) algorithm (Klypin & Holtzman, 1997;
Riebe et al., 2013), that was extensively tested (e.g., Knebe et al., 2011) which identifies
local density maxima, determines a spherical cut-off for the halo with overdensity equal to
200 times the critical density of the Universe (p = 200p.), and removes unbound particles
from the halo boundary. Among other parameters, BDM provides a virial masses and radii.
The virial mass is defined as M, = %wQOOpcrfj (see Bryan & Norman, 1998; Klypin et al.,
2016). The halo catalogs are complete for halos with circular velocity v. > 100 km s~! (e.g.,
Klypin et al., 2011; Busha et al., 2011).

In order to investigate the completeness and purity of FG we construct a light-
cone from Bolshoi as follows. We treat all subhalos as galaxies and assume the line-of-sight
to be along the z-direction and the projection to be on the x-y plane. We calculate right

ascension («), declination () and radial distance (D.) in real-space as,

‘https://wuw.cosmosim.org
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)
De = /a2 +y? + 22

a = arctan(yx) (3.20)

0 = arcsin(x/d),

\

where x, y, and z are the co-moving coordinates along the principal axes of the simulation
box.

The cosmological redshift z.os,, of a galaxy is determined by inverting D., using
the distance-redshift relation for the given simulation cosmology (see Equation 3.1). The

line-of-sight peculiar redshift in a cluster-frame is calculated as

X z
Zpec = <D7)x + Divy + DUz) /C, (321)
c C Cc

where v, vy, and v, are the peculiar velocity components and c is the speed of light.

Finally the observed redshift is calculated as

(1 + Zobs) = (1 + Zcosm)(1 + Zpec) (3.22)

For Bolshoi, we have about 791 clusters with masses > 0.40 x 10A~'M,. We
triple the number of clusters by operating the same task on the other two line-of-sights (x-
and y-directions) and the other two projections (x-z, and y-z planes). We apply the FG
algorithm to each light-cone. We then match the detected clusters with the true simulated

ones within a radius of 1.5 h~'Mpc and velocity gap of 1500 km s~! (see §3.5.2).
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The completeness and purity of FG are defined as (e.g., Hao et al., 2010)

(

Npte (z1 <w<as)
Coin(¥) = ™ arZacey X 100

(3.23)

Nmatch >
Coum () = N 2210 100,
L =

Ng?r‘fthh(ac1§:c<a:2)
Prin(z) = Nyet (21 <a<z2) x 100

(3.24)

Nmatch (>
Peum () = “Ri G225 % 100,

where Cp;, and Py, are the completeness and purity between x1 and 9, Ceym and Ceym
represent the cumulative rates, and z is a parameter that represents cluster mass or richness
(number of galaxies). Here, Ny is the total number of clusters detected by FG, Ny, is the
total number of simulated clusters, and N ;?&“h is the number of clusters which are detected
by FG and matched with the simulated clusters.

Figure 3.1.a shows the completeness of FG as a function of cluster mass for at
least eight galaxies in a cylinder of radius R., = 0.5 h~! Mpc and height 3000 km s!
(see §3.2.2). As shown, the cumulative completeness (red line) is ~ 100% for clusters
with masses Mooy > 2 x 104 h=' M, while it drops to ~ 85% for clusters with masses

Mogo > 0.4 x 10" h=1 M. Figure 3.1.b presents the completeness of FG as a function of

richness (number of galaxies in the cylinder), and Figure 3.1.c shows the purity of FG.
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Figure 3.1: Completeness and purity of the FG algorithm. (a): completeness of FG applied
to the Bolshoi clusters as a function of cluster mass for at least eight galaxies in a cylinder
of radius Rey, = 0.5 h~! Mpc and height 3000 km s=! (see §3.2.2). (b): completeness of
FG as a function of richness (number of galaxies in the cylinder). (c): purity of FG as a
function of richness. The blue lines represent the rates per bin, and the red lines represent
the cumulative rates.
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Figure 3.2: Completeness of GalWeight catalog. (a): the abundance of clusters as a function
of mass for GalWCat19 (red area) compared to the abundance of clusters predicted by Tinker
et al. (2008) model (blue area). (b): cluster number density as a function of comoving
distance for GalWCat19. The solid black line shows the number density the sample and
the dashed black horizontal line represents the number density of 5.6 x 1075 h3 Mpc™3
averaged for the overall sample within distance D < 225 h~!. (c): number of clusters as a
function of comoving distance. The dashed black line shows the expectation for a completed
volume-limited sample with a density of 5.6 x 107° k3 Mpc=2 for €, = 0.3 and Q, = 0.7.
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The completeness in mass of the GalWCat19 catalog can be investigated by calcu-
lating the abundance of clusters predicted by a theoretical model and compare it with the
abundance of GalWCat19 clusters. The halo mass function (HMF), defined as the number

of dark matter halos per unit mass per unit comoving volume of the universe, is given by

dlno
din M

dn Po
IS VAREANT,

; (3.25)

here pg is the mean density of the universe, ¢ is the rms mass variance on a scale of radius
R that contains mass M = 4wpgR3/3 , and f(o) represents the functional form that defines
a particular HMF fit.

We adopt the functional form of Tinker et al. (2008) (hereafter Tinker08) to calcu-
late the HMF and consequently the predicted abundance of clusters. For more detail about
the calculation of the HMF we refer the reader to e.g., Press & Schechter (1974); Sheth
et al. (2001); Jenkins et al. (2001); Warren et al. (2006); Tinker & Wetzel (2010); Behroozi
et al. (2013b). The HMF is calculated using the publicly available HMFcalc ° code (Murray
et al., 2013a). We adopt the following cosmological parameters: Q,, = 0.307, Q5 = 0.693,
og = 0.823, CMB temperature T,,;, = 2.725K°, baryonic density €2, = 0.0486, and spectral
index n = 0.967 (Planck Collaboration et al., 2014), at redshift z = 0.089 (the mean redshift
of GalWCat19).

Figure 3.2.a shows the abundance of clusters as a function of mass for GalWCat19
(red) compared to the abundance predicted by Tinker08 (blue). As shown, the GalWCat19

is complete in mass for Mogg > 1 x 101 h=1 M, while it drops off below this mass.

"http://hmf.icrar.org/
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We also investigate the completeness of GalWCat19 as a function of redshift or
comoving distance. The left panel of Figure 3.2.b shows the number density of clusters as
a function of comoving distance. The number density is almost constant within comoving
distance ~ 225~ 'Mpc (z ~ 0.088), except for the nearby regions where the cosmic variance
due to the small volume has a large effect. The number density drops catastrophically
beyond ~ 225h 'Mpc. Figure 3.2.c presents the abundance of clusters as a function of
distance. Comparing the data with the expectation of a constant number density (shown as
the dashed black line, 5.6 x 1075 h3 Mpc ~3) shows that GalWCat19 is incomplete beyond ~
225h " 'Mpc. The dependence of the number density on both the cluster mass and selection
function of GalWCat19 is investigated in detail in Abdullah et al. (2019b, in prep) which

studies the cluster mass function.

3.4.2 Effectiveness of Cluster Mass Estimation

In order to test our procedure to determine cluster masses (see §3.3) we use two
distinct mock catalogs utilized in Old et al. (2015, 2018) to investigate the performance of
a variety of cluster mass estimation techniques. These two mock catalogs are derived from
the Bolshoi DM simulation. The first mock catalog places galaxies onto the Bolshoi DM
simulation by a Halo Occupation Distribution (HOD) model. The specific model in this
case is referred to as HOD2, and is an updated version of the model described in Skibba
et al. (2006); Skibba & Sheth (2009). The second one depends on the Semi-Analytic Galaxy
Evolution (SAGE) galaxy formation model (Croton et al., 2016), which is an updated version
of that described in (Croton et al., 2006). This mock catalog is referred to as SAM2. We

refer the reader to Old et al. (2014, 2015) for details about constructing these catalogs.
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Old et al. (2015) performed an extensive comparison of 25 galaxy-based cluster
mass estimation methods using the HOD2 and SAM2 catalogs. Following Old et al. (2015),
we examine the performance of our procedure to recover cluster mass by calculating the

root-mean-square (rms) difference between the recovered and input log mass, defined as

N
1
rms =\ |+ Z (log M; trye — log M'i,rec)2 (3.26)

i
where M; 4y is the true mass of the cluster and M; ;. is its recovered or estimated mass.

We also test the performance of the procedure by calculating the scatter in the
recovered mass, oyy,.. (delivers a measure of the intrinsic scatter), the scatter about the
true mass, opy,,.,., and the bias at the pivot mass, where the pivot mass is taken as the
median log mass of the input cluster sample (log My, = 14.05). For these three statistics,
we assume a linear relationship between the recovered and true log mass (see section 4.2 in
Old et al., 2015 for a full description of these statistics and, e.g., Hogg et al., 2010; Sereno
& Ettori, 2015; Andreon et al., 2017).

We apply our procedure (see §3.3) on the HOD2 and SAM?2 catalogs to calculate
cluster mass. Figure 3.3 shows the recovered versus true cluster mass applied to the HOD2
(left) and the SAM2 (right) catalogs (see Figures 2 and 4 in Old et al., 2015 for comparison).
We find that the procedure performs very well in comparison to all of the other 25 methods
and results in lower values of the aforementioned statistical quantities than most of these
methods for both the HOD2 and SAM2 models. Quantitatively, rms, ou,.., o0, and
bias are 0.24, 0.23, 0.23, and 0.06 for HOD2 and 0.32, 0.21, 0.23, and 0.24 for SAM2,

respectively. These values are amongst the lowest of all the methods which calculate the
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Figure 3.3: Recovered versus true cluster mass applied to the HOD2 (left) and the SAM2
(right) catalogs. The blue dashed lines represent the one-to-one relation. The solid black
lines show the linear relationship between the recovered and true log mass. NR in the legend
represents the number of missing clusters out of 1000 simulated clusters.

cluster mass from the galaxy velocity dispersion except for the bias calculated for SAM2
which returns a slightly higher value (see Table 2 in Old et al., 2015 for comparison). We
use two different mock catalogs that have been constructed in an inherently different in
the way for the purpose of observing any potential variation in mass estimation technique
assessment due to assumptions made in constructing the mock catalogs.

The scatters and bias calculated above have a number of causes. Specifically, fac-
tors that introduce scatter when using the virial mass estimator include: (i) the assumption
of hydrostatic equilibrium, projection effect, and possible velocity anisotropies in galaxy
orbits, and the assumption that halo mass follows light (or stellar mass); (ii) presence of
substructure and/or nearby structure such as cluster, supercluster, to which the cluster be-
longs, or filament (see e.g., The & White, 1986; Merritt, 1988; den Hartog & Katgert, 1996;

Fadda et al., 1996; Girardi et al., 1998b; Abdullah et al., 2013 for more details about these
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effects); (iii) presence of interlopers in the cluster frame due to the triple-value problem,
for which there are some foreground and background interlopers that appear to be part of
the cluster body because of the distortion of phase-space (Tonry & Davis, 1981; Abdullah
et al., 2013); (iv) identification of cluster center (e.g., Girardi et al., 1998b; Zhang et al.,

2019).

3.5 GalWeight cluster catalog, GalWCat19

3.5.1 Dynamical Parameters

As discussed in §3.2.2 we identify the location of a galaxy cluster in a cylinder of
radius R.y = 0.5 h~! Mpc and height 3000 km s~! with the condition that the cylinder has
at least eight galaxies. We then apply the GalWeight technique to assign its membership
(see §3.2.3). Then, using the virial mass estimator we determine the cluster virial mass
assuming that the virial radius is at p = 200p. (see §3.3). Finally, we select all galaxy

04 h~! My. Following this procedure we get a

clusters of virial mass Moy > 0.4 x 1
catalog of 1,800 clusters with virial mass in the range (0.40 — 14) x 104 h=! Mg, and in a
redshift range 0.01 < z < 0.2. We refer to this 1,800 galaxy cluster sample as GalWCat19.
We exclude overdensity regions (locations of galaxy clusters) for which the FOG effect is
indistinct because of interactions between different clusters in these regions.

The distribution of all galaxies in the sample (black) and the cluster members

identified by GalWeight and within r, (red) and 7 (blue) are shown in Figure 3.4. The

distortion of the line-of-sight velocity or the FOG effect is shown clearly for each cluster.
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Figure 3.4: Top panel: Aitoff projection in celestial coordinates. Bottom panel: light cone
diagram. The black points represent the distribution of all galaxies in the sample, while
the blue and red points represent the distribution of 1,800 clusters members identified by
GalWeight which are within 7999 and 75 5, respectively (see §3.3).
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As discussed in §3.3 we use the virial mass estimator to determine the virial mass
at the virial radius rogg of each cluster. Then, using NFW mass profile we determine the
dynamical parameters of each cluster at overdensities of A = [500, 200, 100, 5.5]. Note that
we assume the virial radius is at A = 200 and turnaround radius is at A = 5.5 (see §3.3).
The derived parameters for each cluster are radius, number of members, velocity dispersion
and mass at each of the different overdensities, plus the NFW parameters: scale radius,
mass at scale radius, and concentration ¢ = r909/rs (see Appendix 3.6). Table 3.1 shows
the coordinates, dynamical parameters at at Rggg, and NFW parameters for the first 15
clusters in the GalWCat19 catalog.

The GalWCat19 release consists of two catalogs. The first catalog is for the coor-
dinates and the dynamical parameters of each galaxy cluster and the second one is for the
coordinates of member galaxies belonging to each cluster. The two catalogs are described in
Appendix A, and made available in their entirety at the link®. The uncertainty of the virial
mass estimator is calculated using the limiting fractional uncertainty 7—(2 In N)Y/2N—1/2

(Bahcall & Tremaine, 1981). Note that throughout the paper the velocity dispersion is

2

2, where v, is the

calculated using the classical standard deviation o, = [(n —1)] " ;U
line-of-sight velocity of a galaxy in the cluster frame (e.g., Munari et al., 2013; Tempel

et al., 2014; Ruel et al., 2014). The uncertainty of the velocity dispersion is calculated via

performing bootstrap resampling (with 1000 resamples).

Shttps://mohamed-elhashash-94.webself .net/galucat
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3.5.2 GalWeight Catalog Matching

Matching optical catalogs with each other depends on the cluster finding method
used to extract a catalog, the kind of dataset used, the redshift range, and the identification
of the cluster center. In this section we compare the GalWCat19 catalog with previous cluster
catalogs by matching them in a traditional way as performed in the literature (see e.g., Wen
et al., 2012; Banerjee et al., 2018). This task is accomplished by searching within a given
radius and velocity gap (or redshift) from each GalWeight cluster center. We adopt a search
radius of 1.5 h~'Mpc (~ twice the mean value of Ragg in our catalog). Also, we adopt the
velocity gap of £1500 km s~! (~ redshift difference of 0.01). We compare GalWCat19 with
previous catalogs, including Yoon (Yoon et al., 2008), GMBCG (Hao et al., 2010), WHL
(Wen et al., 2012), redMaPPer (Rykoff et al., 2014), Tempel (Tempel et al., 2014), and
AMF (Banerjee et al., 2018) catalogs. Note that some catalogs provided both spectroscopic
and photometric redshifts for clusters. In that case we match our catalog with each of these
redshifts as shown in Table 3.2.

The procedure used to compare GalWCat19 with other catalogs is as follows.

1. In an overlapping redshift range (zoper) between GalWCat19 and the reference catalog
we determine the number of clusters in GalWCat19 (Ngw) and the corresponding number
of clusters in the reference catalog (Ncat).

2. We calculate how many clusters match (Nmat) in a radius of 1.5 h~! Mpc and velocity
gap of £1500 km s~! relative to GalWCat19 cluster center.

3. We determine the number of clusters which are included in GalWCat19 and are not

identified by the reference catalog (N gwy).
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Figure 3.5: Matching GalWCat19 (blue histograms) with six optical catalogs (red his-
tograms). The histograms of Yoon, GMBCG, WHL, redMaPPer, and Tempel are derived
from spectroscopic redshifts provided by each catalog, while the histogram of AMF is de-
rived from photometric redshift that does not provide spectroscopic data.

4. We calculate the number of clusters which are not identified by GalWCat19 but included
in the reference catalog (Ncat,).

5. We determine the number of clusters not identified by GalWCat19 but included in the
reference catalog for which there are at least 8 galaxies in a projected distance of R, =
0.5 h~! Mpc and velocity range = +1500 km s~! from the cluster center (Ncat, r¢) (the
cutoff condition of our catalog).

6. Finally, the ratios Rmat = Nmat/Ngw, and Rcat, rg = Ncat, pg/Ngw are calculated

(see Table 3.2).
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A summary of each catalog, cluster finding method, and redshift range is descried
below. We refer the reader to the reference of each catalog for more details.
1. The Yoon catalog:-
Yoon catalog is a local density cluster finder catalog (Yoon et al., 2008) applied on SDSS-
DR5 using the spectroscopic and photometric redshift dataset. The catalog identified 924
clusters in a spectroscopic redshift range of z,, = [0.049,0.101]. The number of matched
clusters is 417 out of 950 GalWCat19 clusters in the overlapping redshift range.
2. The GMBCG catalog:-
GMBCG is a red-sequence plus brightest cluster galaxy cluster finder catalog (Hao et al.,
2010) applied on SDSS-DR7 using the photometric redshift dataset. The catalog identified
~ 50,000 clusters in a photometric redshift range of z,, = [0.1,0.55]. The catalog also
provided spectroscopic redshift for 2,993 clusters in a range of z,, = [0.007,0.196]. There
are 440 matched clusters out of 1,800 in the overlapping spectroscopic redshift range.
3. The WHL catalog:-
WHL is a red-sequence cluster finder catalog (Wen et al., 2012) applied on SDSS-DRS
using the photometric redshift (z,,) dataset. The catalog identified 132,684 clusters in
a photometric redshift range of z,, = [0.05,0.785]. The catalog provided spectroscopic
redshift for 9,117 clusters in a range of zz, = [0.043,0.196]. The number of matched clusters
is 912 out of 1695 in the overlapping spectroscopic redshift range.
4. The redMaPPer catalog:-
redMaPPer is a red-sequence cluster finder catalog (Rykoff et al., 2014) applied on SDSS-

DRS8 using the photometric redshift dataset. The catalog identified 25,325 clusters in a
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photometric redshift range of zp, = [0.08,0.55]. The catalog also provided spectroscopic
redshift for 1,410 clusters in a range of zz, = [0.050,0.196]. The number of matched clusters
are 381 out of 1,569 in the overlapping spectroscopic redshift range.

5. The Tempel catalog:-

Tempel catalog is based on a modified friends-of-friends method (Tempel et al., 2014), and
is applied on the spectroscopic sample of galaxies of SDSS-DR10. The catalog identified
82,458 clusters in a spectroscopic redshift range of zy, = [0.08,0.2]. There are 3296 clusters
in the catalog with masses > 0.4 x 104 h=1 M, (the cutoff mass of GalWCat19) and number
of galaxy members = 4 in Rgpg. The number of matched clusters is 1,230 out of 1800 in the
spectroscopic overlapping redshift range.

6. The AMF catalog:-

AMEF catalog (Banerjee et al., 2018) is based on an adaptive matched filter technique ap-
plied to SDSS-DR9. The catalog identified 46,479 galaxy clusters in a photometric red-
shift range of z,, = [0.045,0.641]. There are 7,033 clusters in the overlapping redshift
Zpn, = [0.045,0.196]. The number of matched clusters is 848 out of 1,628 in the overlapping
photometric redshift range.

As shown in Table 3.2, the matching rate, Rmat = Nmat/N gw varies from 0.24
to 0.68 depending on the cluster finding method used to extract a catalog, the dataset used,
redshift range, and the identification of the cluster center. These are the main factors that
explain why the GalWCat19 miss clusters relative to other catalogs and vice versa. Also,
we expect that our catalog miss poor or low-mass clusters. This is because we cut the

catalog at cluster masses of Moy > 0.4 x 1014 hilM@ and with the condition that the
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number of galaxies within a cylinder of R, = 0.5h~! Mpc and velocity range = +1500 km
sl is at least 8 galaxies. Moreover, for the catalogs extracted from photometric redshifts
(GMBCG, WHL, redMaPPar, and AMF) the number of clusters at high redshift (~ 0.2) is
huge relative to GalWCat19 which is extracted from spectroscopic redshifts. This is because
the number of galaxies (and consequently the number of clusters) that have photometric

redshifts is very large relative to the spectroscopic ones. Figure 3.5 shows histograms for

matching GalWCat19 with the aforementioned six optical catalogs.

3.5.3 Velocity dispersion vs. Mass relation

Estimating cluster masses accurately is a significant challenge in astronomy, since
it is not a directly observable quantity. The use of velocity dispersion as a proxy for
cluster mass has been shown to be particularly effective at low redshift compared to other
techniques. Sereno & Ettori (2015) showed that the intrinsic scatter in the o — My,
relation was ~ 14% as opposed to ~ 30%, ~ 25%, and ~ 40% for X-ray luminosity, SZ flux,
and optical richness, respectively. Also, since galaxies are nearly collisionless tracers of the
gravitational potential, one expects velocity dispersion to be more robust than X-ray and
S7Z mass proxies.

Evrard et al. (2008) (Evrard+08) found that the o — M relation for dark matter
particles was close to the expected virial scaling relation of ¢ o« M/3, with a minimal scatter
of ~ 5%, and was insensitive to cosmological parameters. Munari et al. (2013) (Munari+13),
Saro et al. (2013) (Saro+13), and Armitage et al. (2018) (Armitage+18) investigated the o —

M relation using hydrodynamical and semi-analytic simulations in order to understand how
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Figure 3.6: Top left panel: Velocity dispersion oggg vs. virial mass Mogg for 1,800 clusters in
the GalWCat19 catalog. The gray points show the GalWCat19 clusters and the solid black line
represents the best-fit relation from Equation 3.27. The blue, purple, green, and red dashed
lines show the relations for Evrard et al. (2008), Munari et al. (2013) Saro et al. (2013),
and Armitage et al. (2018) derived from cosmological simulations, respectively. As shown,
the GalWeight relation matches the models remarkably well, indicating the accuracy of the
GalWeight to constrain cluster membership, and consequently determine cluster masses.
Bottom left panel: best-fit relations relative to the Evrard et al. (2008) result. Right panel:
The distribution of residual of velocity dispersion of clusters from the best-fit line, along
with best-fit the Gaussian curve. The inner right panel shows the best-fit parameters of
Equation 3.27 with 1,2, 30 confidence intervals.
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including baryonic physics in simulations affected the relation. Compared to the relation
derived purely from N-body simulations (Evrard+08), the relations found by Munari+13,
Saro+13 Armitage+18 suggested that galaxies introduce a bias in velocity relative to the
DM particles (see Figure 3.6). This bias can be either positive (a larger o for a given M
than what the DM particles have) or negative (a smaller o for a given M than what the
DM particles have), depending on the halo mass, redshift and physics implemented in the
simulation (e.g., Saro et al., 2013; Old et al., 2013; Wu et al., 2013). Also, Saro+13 concluded
that the effect of the presence of interlopers on the estimated velocity dispersion could be the
dominant source of uncertainty (up to ~ 49%). However, the more sophisticated interloper
rejection techniques, such as caustic Diaferio (1999) and GalWeight techniques Abdullah
et al. (2018) could result in a reduced uncertainty when calculating the velocity dispersion.

Following Evrard et al. (2008), the o999 — Mago relation can be expressed as

h(z) M200]a (3.27)

0200 = 015 [ 1050
®

where o5 is the normalization at mass 10'® h='My, and « is the logarithmic slope. We
follow Kelly (2007) and Mantz (2016) to determine these two parameters in the log-log
space of gopg and Maqg.

The scatter, g4, in the o299 — Magg relation, defined as the standard deviation
of log(o) about the best-fit relation (see e.g., Evrard et al., 2008; Lau et al., 2010), is given

by

5loga = log(ai/afit)Q (3.28)
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where o; is the velocity dispersion of the it" cluster and ot is the best-fit value. For
o200 and Mpgy determined by the virial mass estimator we get o5 = 946 £+ 52 km s~ !,
and a = 0.349 £ 0.142 with a scatter of djog; = 0.06 £ 0.04 for all clusters with mass
Mogo > 0.4 x 10Mh=1 M.

Figure 3.6 shows the o999 — Moo relation for the 1,800 clusters in the GalWCat19
catalog. The gray points represent the GalWCat19 clusters and the solid black line is the
best-fit relation from Equation 3.27. The blue, purple, green, and red dashed lines show
the relations from Evrard408, Munari+13, Saro+13, and Armitage+18 which were derived
from cosmological simulations. Generally speaking, the GalWCat19 line matches the models
remarkably well, indicating the effectiveness of the GalWeight technique in constraining
cluster membership, and consequently in determining cluster mass. However, we cannot
make a quantitative comparison between the observed line and the other three models of
Evrard+08, Munari+13 and Armitage+18. This is because Evrard+08 derived this relation
for purely dark matter particles without taking into account the effect of baryons and it is
well-known that galaxies are biased tracers of dark matter particles. Moreover, even though
Munari+13 and Armitage+18 included baryonic physics, their relations were derived from
the true members, while our sample is contaminated by interlopers (projection effects).
The only relation that took into account the baryonic physics and the projection effect (i.e.,
presence of interlopers) is Saro+13. As shown in the Figure 3.6, Saro+13 model is the
closest to our observed line.

Finally, we stress that the calculated velocity dispersion and consequently the

cluster mass are scattered by the presence of interlopers as well as other factors which were
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discussed above in §3.4.2. In order to study this scaling relation in detail one should take
into consideration all of these factors and utilize both hydrodynamical and semi-analytic
models to digest the different sources of scatter and uncertainties. This is certainly out of

the scope of this paper and we defer this investigation to a later paper.

3.6 Conclusion

In this paper we used the SDSS-DR13 spectroscopic dataset to identify and analyze
a catalog of 1,800 galaxy clusters (GalWCat19). The cluster sample has a mass range of
(0.40 — 14) x 10** h=! Mg and a redshift range 0.01 < z < 0.2 with a total of 34,471 galaxy
members identified within the virial radii of the 1,800 clusters.

The clusters were identified by a simple algorithm that looks for the Finger-of-God
effect (the distortion of the peculiar velocities of its core members along line-of-sight). The
FOG effect was detected by assuming a cylinder of radius Re, = 0.5h~! Mpc (~ the width
of FOG), and height 3000 km s~! (~ the length of FOG) centered at each galaxy in our
sample. We selected all overdensity regions with the condition that the cylinder has at least
eight galaxies. The completeness of our sample identified by the FG algorithm, was tested
by the Bolshoi simulation. The completeness to identify locations of clusters with at least
eight galaxies was approximately 100% for clusters with masses Magg > 2 x 10 A1 M,
while it dropped to ~ 92% for clusters with masses Mogg > 0.4 x 1014 h_lM@.

The membership of each detected cluster was assigned by the GalWeight technique.
Then, we used the virial theorem and NFW mass profile in order to determine dynamical

parameters for each cluster from its galaxy members. This integrated procedure was applied
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to HOD2 and SAM2 mock catalogs recalled from Old et al., 2015 to test its efficiency
in recovering cluster mass. GalWeight performs well in comparison to most other mass
estimators described in Old et al., 2015 for both the HOD2 and SAM2 models. In particular,
the rms differences of the recovered mass by GalWeight relative to the fiducial cluster mass
are 0.26 and 0.28 for the HOD2 and SAM2, respectively. Furthermore, the rms error
produced by GalWeight was among the lowest of all other methods that depend on the
phase-space and velocity dispersion to calculate mass.

Using the virial mass estimator we determined the virial radius and its correspond-
ing virial mass for each cluster. We then used NFW mass profile to determine the dynamical
parameters of each cluster at density p = Ap,, for overdensities A = [500, 200, 100, 5.5]. We
assumed that the virial radius is at A = 200 and turnaround radius is at A = 5.5. We
introduced a cluster catalog for the dynamical parameters derived by virial mass estimator
and NFW model. The derived parameters for each cluster are radius, number of members,
velocity dispersion and mass at different overdensities, plus the NFW parameters: scale
radius, mass at scale radius, and concentration. We also introduced a membership catalog
that correspond to the cluster catalog. The description of the catalogs are introduced in
appendix 3.6.

Finally, we showed that the cluster velocity dispersion scales with total mass for
GalWCat19 as log(oz00) = log(946 + 52 km s™1) + (0.349 =+ 0.142) log [h(z) Mago/10" Mo
with scatter djog;» = 0.06. This relation was well-fitted with the theoretical relations derived

from the N-body simulations.
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FUTURE WORK

In future work, we aim to: (i) study the halo-mass, stellar mass, and luminos-
ity functions of GalWCat19 to constrain the matter density of the universe, €1,,, and the
normalization of the linear power spectrum, og; (ii) investigate the stellar mass and lumi-
nosity function of member galaxies of their hosting clusters; (iii) study the shape of velocity
dispersion profiles of GalWCat19 and compare with Multi-dark simulations in order to re-
cover cluster mass. (iv) study the connection between stellar mass (or luminosity) and dark
matter halo; (v) investigate the effect of environment on the properties of member galaxies
such as size, and quenching of star formation and segregation of star forming and quiescent
galaxies on a small scale; (vi) investigate the adaptation of the GalWeight technique to
recover cluster mass and cluster mass profile; (vii)) study the correlation function of galaxy
clusters and the signature of Acoustic Baryonic Oscillation (BAO) to constrain cosmological

parameters using the GalWCat19.
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Description of the Catalogs in the GalWCat19 release

The GalWCat19 release consists of two catalogs. The first catalog lists the co-
ordinates and the dynamical parameters of each galaxy cluster. The second catalog lists
the coordinates of the member galaxies belonging to each cluster. The two catalogs are

publicly-available at the website’.

Description of the Cluster Catalog

The cluster catalog contains the following information (column numbers are given
in square brackets):

[1] clsid — our unique identification number for clusters;
[2 — 3] raj2000, dej2000 — right ascension and declination of the cluster center in deg;
[4] zqs — cluster redshift, calculated as an average over all cluster members;
[5] v — radial velocity of the cluster in units of km s=1;
[6] D.s — comoving distance of the cluster in units of A~! Mpc;
[7] Rso0 — the radius from the cluster center at which the density p = Asgop. in units of

h~! Mpc;

[8] Nsoo — number of members of the cluster within Rsgp;

"https://mohamed-elhashash-94.webself .net/
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[9] o500 — velocity dispersion in km s™! of the cluster within Rsgo;

[10 — 11] o_Err(—)s00, o_Err(+)s00 — lower and upper errors of o509 in km s™1, obtained
via 1000 bootstrap resampling;

[12] Mspo — mass of the cluster at Rsog in units of 101 h=1 My;

[13] M _Errsoo — error in Msgg in units of 1014 h=1 My

[14] Rggp — the radius from the cluster center at which the density p = Agppp. in units of
h~1 Mpc;

[15] Nago — number of members of the cluster within Rago;

[16] o200 — velocity dispersion in km s~! of the cluster within Rago;

17 — 18] o_Err(—)200, 0_Err(+)s00 — lower and upper error of gago in km s=!, obtained
via 1000 bootstrap resampling;

[19] Magp — mass of the cluster at Rogp in units of 104 h=1 Me;

[20] M _Erragg — error in Magg in units of 10 A~ Mg

[21] Rioo — the radius from the cluster center at which the density p = Ajgop. in units of
h~' Mpc;

[22] Nipo — number of members of the cluster within Ryqo;

[23] o100 — velocity dispersion in km s~! of the cluster within Rygo;

[24 — 25] o _Err(—)100, o-Err(+)100 — lower and upper errors of ogp in km s™1, obtained
via 1000 bootstrap resampling;

[26] Migo — mass of the cluster at Rigg in units of 10'* h=1 My;

[27] M _Errigo — error in Migg in units of 1014 h=1My; [28] Rss — the radius from the

cluster center at which the density p = As.5p. in units of A~ Mpc;
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[29] N55 — number of members of the cluster within R 5;

[30] 055 — velocity dispersion in km s™! of the cluster within R 5;

[381 — 32] o_Err(—)s5, o_Err(+)ss — lower and upper errors of 055 in km s~!, obtained
via 1000 bootstrap resampling;

[33] Ms.5 — mass of the cluster at Rs5 in units of 10'* =1 Me;

[34] M _Errss — error in Ms 5 in units of 10 A~ M;

[35] Rs — scale radius of NFW model in units of A~! Mpc;

[36] Rs_Err — error in scale radius of NFW model in units of A~ Mpc;

[37] My — scale mass of the cluster at Ry in units of 1014 h=1M;

[38] M_Err — error in Mj in units of 101 h=1My;

[39] ¢ — cluster concentration of NFW model

Description of the Galaxy Catalog

The catalog of the member galaxies correspond to the cluster catalog:
[1] clsid — our unique identification number for clusters that member galaxies belong to;
[2 — 3] raj2000, dej2000 — right ascension and declination of the galaxy in deg;

[4] z4 — observed redshift of the galaxy as given in the SDSS-DR-13;
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Chapter 4

Cosmological Constraints on

(), and og from Cluster
Abundances using the GalWCat19
Optical-Spectroscopic SDSS

Catalog

We derive cosmological constraints on the matter density, 1,,,, and the amplitude of
fluctuations, og, using GalWCat19, a catalog of 1800 galaxy clusters we identified in the Sloan
Digital Sky Survey-DR13 spectroscopic data set using our GalWeight technique to determine
cluster membership (Abdullah et al., 2018, 2020b). By analyzing a subsample of 756 clusters

in a redshift range of 0.045 < z < 0.125 and virial masses of M > 0.8 x 10 h=! M with
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mean redshift of z = 0.085, we obtain 2, = 0.3107053% + 0.041 (systematic) and oy =
0.810f8:8§é 4+ 0.035 (systematic), with a cluster normalization relation of og = 0.43Q; 0-55.
There are several unique aspects to our approach: we use the largest spectroscopic data
set currently available, and we assign membership using the GalWeight technique which we
have shown to be very effective at simultaneously maximizing the number of bona fide cluster
members while minimizing the number of contaminating interlopers. Moreover, rather than
employing scaling relations, we calculate cluster masses individually using the virial mass
estimator. Since GalWCat19 is a low-redshift cluster catalog we do not need to make any
assumptions about evolution either in cosmological parameters or in the properties of the
clusters themselves. Our constraints on €2, and og are consistent and very competitive with
those obtained from non-cluster abundance cosmological probes such as Cosmic Microwave
Background (CMB), Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The

joint analysis of our cluster data with Planck18+BAO-Pantheon gives Q,, = 0.315700%

_ +0.011
and og = 0.810%(10-

4.1 Introduction

In the current picture of structure formation, galaxy clusters arise from rare high
peaks of the initial density fluctuation field. These peaks grow in a hierarchical fashion
through the dissipationless mechanism of gravitational instability with more massive halos
growing via continued accretion and merging of low-mass halos (White & Frenk, 1991;
Kauffmann et al., 1999, 2003). Galaxy clusters are the most massive virialized systems

in the universe and are uniquely powerful cosmological probes. The cluster mass function
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(CMF), or the abundance of galaxy clusters, is particularly sensitive to the matter density
of the universe (2, and og, the root-mean-square (rms) mass fluctuation on the scale of 8
h~'Mpc at z = 0 (e.g., Wang & Steinhardt, 1998; Battye & Weller, 2003; Dahle, 2006; Wen
et al., 2010Db).

Cosmological analyses have been performed using samples of galaxy cluster con-
structed from galaxy surveys (e.g., Rozo et al., 2010; Kirby et al., 2019; DES Collaboration
et al., 2020), X-ray emission (e.g., Vikhlinin et al., 2009b; Mantz et al., 2015), and thermal
Sunyaev-Zel’dovich (SZ) signal (e.g., Bocquet et al., 2019; Zubeldia & Challinor, 2019).
These cluster abundance studies showed that €, varies from ~ 0.2 to 0.4 and og varies
from ~ 0.6 to 1.0. The discrepancies or tensions among these various studies is basically
dependent on the accuracy of cluster mass estimation. Cluster mass can be calculated from
cluster dynamics using, for example, the virial mass estimator (e.g., Binney & Tremaine,
1987), the weak gravitational lensing (Wilson et al., 1996; Holhjem et al., 2009), and the
application of Jeans equation for the gas density calculated from the x-ray analysis of galaxy
cluster (Sarazin, 1988). It can be also estimated from other observables, the so-called mass
proxies, which scale tightly with cluster mass, such as X-ray luminosity (e.g., Pratt et al.,
2009), optical luminosity or richness (e.g. Yee & Ellingson, 2003; Simet et al., 2017), and
the velocity dispersion of member galaxies (e.g., Biviano et al., 2006; Bocquet et al., 2015).
Generally, most of these methods introduce large systematic uncertainties which limits the
accuracy of estimating cluster masses (e.g., Wojtak & Lokas, 2007; Mantz et al., 2016).

Cosmological analyses of galaxy cluster abundance introduce a degeneracy between

Q. and og. Large ongoing and upcoming wide and deep-field imaging and spectroscopic
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surveys at different redshifts, such as DES (Abbott et al., 2018a), eROSITA (Merloni et al.,
2012), LSST (LSST Science Collaboration et al., 2009), and WFIRST (Akeson et al., 2019),
will simultaneously increase the precision of measuring the cosmological parameters and
break the degeneracy between them. This is because €2, evolves slowly while og evolves
strongly with redshift. Also, these galaxy surveys at different redshifts are significant to
study the evolution of the CMF which is critical to measuring structure growth, and there-
fore can be used to constrain properties of dark energy (e.g, Haiman et al., 2001; Mantz
et al., 2008). Introducing advanced methods is essential to analyze these surveys. One of
these methods is the GalWeight technique (Abdullah et al., 2018, hereafter Abdullah+18)
which can by applied to the available and upcoming spectroscopic database of eBOSS (Rai-
choor et al., 2017), DESI (Levi et al., 2019), and Euclid (Euclid Collaboration et al., 2019)
to construct cluster catalogs. These catalogs provide an unlimited data source for a wide
range of astrophysical and cosmological applications.

In addition, there are independent cosmological probes to constraining the cos-
mological parameters that can be applied alongside or in combination with galaxy cluster
abundance. The anisotropies in the cosmic microwave background (CMB) are an indepen-
dent probe of cosmological parameters (e.g., Hinshaw et al., 2013; Planck Collaboration
et al., 2016). The likelihoods of the €2,,-0g confidence levels introduced by the CMF and
CMB are almost orthogonal to each other, which means combining these measurements
will eliminate the degeneracy between (), and og and shrink the uncertainties. Other in-
dependent cosmological probes that are used to constrain 2, and og include cosmic shear,

galaxy-galaxy lensing, and angular clustering (e.g, Abbott et al., 2018b; van Uitert et al.,
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2018). The likelihoods of the €,,-0g confidence levels introduced by these probes are al-
most parallel to those introduced by the CMF. Moreover, the two cosmological probes of
baryon acoustic oscillations (BAO, e.g., Eisenstein et al., 2005) and supernovae (SNe, e.g.,
Perlmutter et al., 1999) can be used to constrain €2,, only (independent of og).

In this paper, we aim to derive the CMF and the cosmological parameters €2, and
og using a subsample of 756 clusters (SelFMC) obtained from the GalWCat19 cluster cat-
alog as we discuss below in detail. The GalWCat19 (Abdullah et al., 2020b, hereafter
Abdullah+20) catalog was derived from the Sloan Digital Sky Survey-Data Release 13
spectroscopic data set (hereafter SDSS-DR13!, Albareti et al., 2017). The clusters were
first identified by looking for the Finger-of-God effect (see, Jackson, 1972; Kaiser, 1987;
Abdullah et al., 2013). The cluster membership was constructed by applying our own Gal-
Weight technique which was specifically designed to simultaneously maximize the number
of bona fide cluster members while minimizing the number of contaminating interlopers
(Abdullah+18). In Abdullah+18, we applied our GalWeight technique to MDPL2 and
Bolshoi N-body simulations and showed that it was > 98% accurate in correctly assign-
ing cluster membership. The GalWCat19 catalog is at low-redshift for which the effects of
cluster evolution and cosmology are minimal. Finally, the cluster masses were calculated
individually from the dynamics of the member galaxies via the virial theorem (e.g., Limber
& Mathews, 1960; Abdullah et al., 2011), and corrected for the surface pressure term (e.g.,
The & White, 1986; Carlberg et al., 1997). A huge advantage of our approach relative to
mass proxy methods is that it returns an estimate of the total cluster mass (dark matter

and baryons) without making any assumptions about the internal complicated physical pro-

"https://www.sdss.org/dr13/
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cesses associated with the baryons (gas and galaxies). The publicly available GalWCat192,
contains 1800 clusters at redshift z < 0.2, which is one of the largest available samples that
used a high-quality spectroscopic data set.

The paper is organized as follows. In § 4.2, we describe in more detail how we
created the GalWCat19 cluster catalog. In § 4.3, we investigate the volume and mass incom-
pleteness of GalWCat19 to obtain a mass-complete local subsample of 756 clusters (Se1FMC)
used to constrain €2, and og. In § 4.4, we compare our complete sample with theoretical
models to constrain the cosmological parameters €2, and og. We investigate how sys-
tematics affect the recovered cosmological constraints and compare our results with recent
results constrained from some cosmological probes and summarize our conclusions in § 4.5.

Throughout the paper we adopt ACDM with €,,, = 1 —Qx, and Hy = 100 h km s~ Mpc~!.

4.2 The GalWCat19 Cluster Catalog

In this section, we summarize how we created the GalWCat19 cluster catalog. Full
details may be found in Abdullah+20. Using photometric and spectroscopic databases
from SDSS- DR13, we extracted data for 704,200 galaxies. These galaxies satisfied the
following set of criteria: spectroscopic detection, photometric and spectroscopic classifica-
tion as galaxy (by the automatic pipeline), spectroscopic redshift between 0.001 and 0.2
(with a redshift completeness > 0.7, Yang et al., 2007; Tempel et al., 2014), r-band mag-
nitude (reddening-corrected) < 18, and the flag SpecObj.zWarning is zero indicating a

well-measured redshift.

’https://mohamed-elhashash-94.webself .net/galwcat
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Galaxy clusters were identified by the well-known Finger-of-God effect (Jackson,
1972; Kaiser, 1987; Abdullah et al., 2013). The Finger-of-God effect causes a distortion of
line-of-sight velocities of galaxies in the redshift-phase space due to the cluster potential
well. As described in Abdullah+20, we calculated the membership of each cluster as follows.
We firstly calculated the galaxy number density within a cylinder of radius 0.5 h~! Mpc,
and height 3000 km s~! centered on a galaxy, i. Secondly, we sorted all galaxies descending
from highest to lowest number densities with the condition that the cylinder has at least
8 galaxies. Thirdly, starting with the galaxy with the highest number density, we applied
the binary tree algorithm (e.g., Serra et al., 2011) to accurately determine a cluster center
(e, d¢y2c) and a phase-space diagram. Fourthly, we applied the GalWeight technique
(Abdullah+18) to galaxies in the phase-space diagram out to a maximum projected radius
of 10 b~ Mpc and a maximum line-of-sight velocity range of 3000 km s~! to identify
cluster membership. In Abdullah+18, we showed that the cumulative completeness of the
FOG algorithm which we tested using the Bolshoi simulation Klypin et al. (2016) was
approximately 100% for clusters with masses Mooy > 2 x 10 h~'My, and ~ 85% for
clusters with masses Magy > 0.4 x 104 h_lM@.

The virial mass of each cluster was estimated by applying the virial theorem to
the cluster members, under the assumption that the mass distribution follows the galaxy
distribution (e.g., Giuricin et al., 1982; Merritt, 1988). The estimated mass was corrected
for the surface pressure term which, otherwise, would overestimate the fiducial cluster mass
(e.g., The & White, 1986; Binney & Tremaine, 1987; Carlberg et al., 1997). The cluster virial

mass was calculated at the viral radius within which the cluster is in hydrostatic equilibrium.
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The virial radius is approximately equal to the radius at which the density p = Aggopc,
where p, is the critical density of the universe and Ayyy = 200 (e.g., Carlberg et al., 1997;
Klypin et al., 2016). Abdullah+20 showed that the cluster mass estimates returned by the
virial theorem after utilizing the GalWeight technique (Abdullah+18) performed very well
in comparison to most of other mass estimation techniques described in Old et al., 2015.
In particular, our procedure was applied to two mock catalogs (HOD2 and SAM2) recalled
from Old et al. (2015). We found that the root mean square differences of the recovered
mass by GalWeight relative to the fiducial cluster mass were 0.24 and 0.32 for HOD2 and
SAM2, respectively. Also, the intrinsic scatter in the recovered mass was ~ 0.23 dex for
both catalogs. Moreover, the uncertainty of the virial mass estimator is calculated using
the limiting fractional uncertainty W_l\/m (Bahcall & Tremaine, 1981).

The scatter and bias in the recovered mass using the virial mass estimator are
caused by some factors including: (i) the assumption of hydrostatic equilibrium, projection
effect, and possible velocity anisotropies in galaxy orbits, and the assumption that halo mass
follows light (or stellar mass); (ii) the presence of substructure and/or nearby structure such
as cluster, supercluster, to which the cluster belongs, or filament (e.g., Merritt, 1988; Fadda
et al., 1996); (iii) the presence of interlopers in the cluster frame due to the triple-value
problem, for which there are some foreground and background interlopers that appear to
be part of the cluster body because of the distortion of phase space (Tonry & Davis, 1981;
Abdullah et al., 2013); and (iv) the identification of cluster center (e.g., Girardi et al.,
1998b; Zhang et al., 2019).

The 1800 GalWCat19 clusters range in redshift between 0.01 — 0.2 and in mass
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Figure 4.1: GalWCat19 completeness. Left: The black line shows the integrated abundance
of clusters as a function of redshift for the GalWwCat19 catalog. The dashed color lines present
the expectation of complete samples estimated by Tinker08 for five different cosmologies
as shown in the legend. Right: The black line shows the integrated abundance of clusters
as a function of cluster mass. The dashed color lines present the expectation of complete
samples estimated by Tinker0O8 for five different cosmologies as shown in the legend. The
fractional error (N (< 2)obs — N (< 2)model) /N (< 2)moder is shown in the lower panels. The
gray shaded areas represent the expected Poisson noise.
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between (0.4 — 14) x 10"h~'My. The GalWCat19 catalog contains a large number of
cluster parameters including sky position, redshift, membership, velocity dispersion, and
mass at overdensities A = 500,200, 100, 5.5. The 34,471 member galaxies were identified
within the radius at which the density is 200 times the critical density of the universe. The
galaxy catalog provided the coordinates of each galaxy and the ID of the cluster that the
galaxy belongs to. The catalogs was publicly available at the following website https:

//mohamed-elhashash-94.webself .net/galwcat/.

4.3 Cluster mass function

The GalWCat19 catalog is not complete in either volume or mass. In § 4.3.1, we
analyze GalWCat19 to develop an appropriate selection function of our sample which is used
to correct for the volume incompleteness. Also, in § 4.3.2, we compute the CMF derived
from GalWCat19 and compare it with the CMF calculated from the MDPL2 2 simulation
(described in the next paragraph) to obtain a mass-complete subsample (SelGMC) used to
constrain the cosmological parameters {2, and og.

The MDPL2 is an N-body simulation of 38402 particles in a box of comoving length
1 =t Gpc, mass resolution of 1.51 x 10° h~! M, and gravitational softening length of 5 h~*
kpc (physical) at low redshifts from the suite of MultiDark simulations (see Table 1 in Klypin
et al., 2016). It was run using the L-GADGET-2 code, a version of the publicly available
cosmological code GADGET-2 (Springel, 2005). It assumes a flat ACDM cosmology, with

cosmological parameters 24 = 0.693, Q,,, = 0.307, 2, = 0.048, n = 0.967, o5 = 0.823, and h

Shttps://www.cosmosim.org/cms/simulations/mdpl2/
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= 0.678 (Planck Collaboration et al., 2014). Haloes and subhaloes have been identified with
ROCKSTAR (Behroozi et al., 2013b) and merger trees constructed with CONSISTENT
TREES (Behroozi et al., 2013c). The catalogs are split into 126 snapshots between redshifts
z =17 and z = 0. We downloaded the snapshot (hlist_0.91520.list*) with z ~ 0.09 which is

consistent with the mean redshift of GalWCat19 sample.

4.3.1 GalWCat19 Completeness

The GalWCat19 catalog is incomplete in the distribution of clusters with respect
to comoving distance (redshift), and in the distribution of clusters with respect to mass. In
this section, we discuss such incompleteness and how to make corrections.

The completeness in comoving volume (redshift) of the GalWCat19 catalog can be
investigated by calculating the abundance of clusters predicted by a theoretical model and
comparing it with the abundance of GalWCat19 clusters. We adopt the functional form of
Tinker et al. (2008) (hereafter Tinker0O8) to calculate the halo mass function (HMF?, see
§ 4.4.1 for more details) and consequently the predicted abundance of clusters.

The integrated abundance of clusters as a function of redshift for the GalWCat19
sample, N(< z), is presented in the upper left panel of Figure 4.1. Note that N(< z) is
calculated for the clusters with redshift z > 0.04 to remove the effect of nearby regions where
the cosmic variance has a large effect due to the small volume. The plot shows that the
catalog is matched with the prediction of Tinker08 for z < 0.09. Also, the fractional error

of N(< z) relative to the expectation of Tinker08, (N (< z)obs — N(< 2)model) /N (< 2)model

‘https://wuw.cosmosim.org/data/catalogs/NewMD_3840_Planck1/ROCKSTAR/trees/hlists/
5We use CMF for mass functions derived from observations and HMF for mass functions computed by
theoretical models
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for each model and the expected Poisson noise (gray shaded area) are presented in the lower
left panel. The plot shows that the scatter relative to each model is nearly constant (around
zero) for z < 0.09 before it blows up after this redshift limit. This indicates that GalWCat19
is approximately complete in volume for z < 0.09 (or equivalently comoving distance of
D < 265 h=! Mpc for the ACMD universe with Q,,= 0.3). We call this volume-complete
subsample as NoSelFVC.

Similarly, the integrated abundance of clusters as a function of cluster mass, N (>
M), is presented in the upper right panel of Figure 4.1 in comparison to five Tinker(08
models and the scatter is presented in the lower right panel. The plot shows that the data
is matched with the models of ©,,= [0.20, 0.305, 0.40] with og= 0.825 better than the models
of Q= 0.305 and og= [0.725, 0.925]. Even though it is not an easy task to specifically
determine the mass threshold at which the catalog is complete, the three matched models
indicate that GalWCat19 is approximately complete for log(M) > 13.9 h=! M. We discuss
the systematics of adapting this mass threshold on our analysis in § 4.5.1. The large scatter
at the high mass end is due to the small number of massive clusters, while the large scatter
at the low mass end comes from the incompleteness of GalWCat19.

In order to correct for the incompleteness in volume of GalWCat19 each cluster
should be weighed by S(D), where S is the selection function at a distance D. Figure 4.2
introduces the normalized number density N, (D), defined as the cluster number density
normalized by the average number density calculated for clusters within comoving distance
D < 265 h~! Mpc, for all clusters and for five mass bins as described in Table 4.1. The dis-

tribution of points in Figure 4.2 can be described by an exponential function that represents
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the selection function S(D). It has the form

S(D) = aexp [_ <lb)>q (4.1)

The parameters a, b and y are determined by applying the chi-squared algorithm using the
Curve Fitting MatLab Toolbox. The best fit values of these parameters are, a = 1.07+£0.12,
b =293.4+20.7 h~! Mpc and v = 2.97 & 0.90 with root mean square error of 0.15. Note
that the normalization a is greater than unity because of the scatter and the effect of the
cosmic variance. But, we apply the selection function with the condition that S(D) < 1.

We should be cautious in using S(D) at large distances. This is because S(D 2
500) h~! Mpc drops to 2> 0.01 as demonstrated in Figure 4.2 which means that a distant
cluster would be weighted as at least 100 times as a nearby cluster. This will overestimate
or overcorrect the number of clusters at large distances, and consequently the estimated
CMF will be noisy. Thus, in order to avoid the overcorrection and the noisiness of CMF we
restrict our sample to a maximum comoving distance of D < 365 (or z < 0.125) for which
S(D) £0.2.

It is well-known that the cluster number density of a given mass decreases with
redshift for a 100% complete sample because of the HMF evolution effect. Thus, the CMF
should be scaled or corrected by an evolution function, Sgyo(D). For a sample with a
broad range of redshifts, the only way to take the evolution into account is to calculate
this function. However, the disadvantage of this approach is that the correction is model
dependent: the measured HMF (i.e., CMF) is a convolution of the true HMF and theoretical

estimate of Seyo(D). However, for a sample with a narrow range of redshifts (as in our case)
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Table 4.1: The cluster average number density for different mass bins.

Mass number of average color
bin clusters number density
[~ M) [107° h3 Mpc~3]
13.6 - 15.2 1800 5.6 black
13.6 - 13.8 527 2.2 blue
13.8 - 14.0 461 1.5 green
14.0 - 14.2 411 1.0 red
14.2 - 14.5 326 0.7 cyan
14.5-15.2 75 0.2 magenta

Columns: (1) the mass bin in units of logM [h~! Mg]; (2) the number of clusters in each
mass bin; (3) the average number density calculated for clusters within comoving distance
D < 265 h~! Mpc in each mass bin; (4) the color of number density profile as shown in the
right panel of Figure 4.1.

we show in appendix 4.5.4 that the evolution effect is less than 3% for clusters in the redshift
range of 0.045 < z < 0.125. In appendix 4.5.4, we discuss the effect of adopting this redshift

interval on our results.

4.3.2 Estimating the Mass Function

In this section, we compute the CMF, dn(M)/dlog(M), and its corresponding
cumulative mass function, n(> M), which are estimated for a ACDM cosmology with €,,=
0.3 and 25 = 0.7. The CMF is defined as the number density of clusters per logarithmic
cluster mass interval. Also, the cumulative CMF is defined as the number density of clusters
more massive than a given mass M.

Mathematically, the CMF, weighted by the selection function S, is given by

dn(M) 1 11
dlogM ~— dlog M 2 V S(D;) (42)

7

110



10: T T T T ‘ T T T T ‘ T T T T ‘ T T T T
1 £
o’ 0.1t
8
=
005 .
Z 0015 ¢ 136 <log(M)< 13.8
| * 13.8 <log(M)< 14.0
- 14.0 <log(M)< 14.2
0.0015 * 14.2 <log(M)< 14.5
“| * 14.5 <log(M)< 15.2
|—S(D), best fi
1 P
£ of ﬂ b 3 ﬁ.TﬂT A I P PP -
S e [ H ﬂi : ! i
_1 ?l | ‘ | ‘ | N ‘ | N ‘ | ‘ | ‘ | |
0 100 200 300 400 500 600

Figure 4.2: Selection function of GalWCat19 cluster sample. Colored points show the nor-
malized number density of the five mass bins described in Figure 4.1. The black line shows
an exponential form describing the selection function S(D) which is fitted with the data.
The scatter of data relative to the exponential form is presented in the lower panel.
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Figure 4.3: The cumulative CMF derived from the GalWCat19 cluster sample. The black
line shows the mass function computed from the MDPL2 simulation (for the snapshot
hlist_0.91520.list at z ~ 0.9 or D ~ 260) (Klypin et al., 2016). The blue points present
the CMF for the volume-complete subsample with D < 265 A~ Mpc (z ~ 0.09) without
the correction of S(D) (NoSelFVC). The red points show the CMF corrected by S(D) for
D < 365 h~! Mpc(z ~ 0.125, Se1FMC). The vertical dashed line shows the low-mass limit
(log(M) = 13.9 h=! M) used to constrain €2, and og. The error bars on the vertical axis
are calculated by Poisson statistics. The fractional errors between the CMF of MDPL2 and
both NoSelFVC and SelFMC are shown in the lower panels. The gray shaded areas represent
the expected Poisson noise.
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where D; is the comoving distance of a cluster i, and V is the comoving volume which is

given by

_ 41 qurvey

= D3 — D3 4.
Vngky(2 1) (4.3)

where (g, = 41,253 deg? is the area of the sky, Qg =~ 11,000 deg? is the area covered
by GalWCat19, and D; and D5 are the minimum and maximum comoving distances of the
cluster sample.

Figure 4.3 introduces the cumulative CMF computed from GalWCat19. The black
line is the CMF computed from the MDPL2 simulation (for the snapshot hlist_0.91520.list
at z ~ 0.09 or D ~ 265, Klypin et al., 2016). The blue points introduces the CMF for
NoSelFVC without the correction of S(D), since this sample is already complete in volume
(see, § 4.3.1 and Figure 4.1). The red points represents our CMF corrected by S(D) for
D <365 h~! Mpc (z ~ 0.125). Comparing the CMF estimated by the NoSelFVC subsample
with that derived from the MDPL2 simulation indicates that the sample is approximately
complete in mass for log(M) > 13.9 h=! Mg, while it drops lower than the CMF of MDPL2
at low-mass end. Also, our CMF, corrected by S(D < 365), is in good agreement with
the CMF derived from NoSelFVC with a scatter of 0.026 dex. The mass completeness of
GalWCat19 is discussed in § 4.3.1 and Figure 4.1. In appendix 4.5.4, we show that the results
of deriving the cosmological parameters from NoSelFVC is consistent with that derived
from SelFMC. This indicates that weighting each cluster in our sample by S(D < 365)
introduced in § 4.3.1 and Equation 4.1 is sufficient to correct for the volume incompleteness

of GalWCat19.
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Therefore, our final subsample, corrected by S(D) is restricted by log(M) > 13.9
h1 Mg and 0.045 < z < 0.125. The number of clusters of this subsample is 756, which
represents ~ 42% of the GalWCat19 sample. We use this subsample to constrain €, and

og and call it as fiducial Se1FMC sample.

4.4 Implications for Cosmological Models

In § 4.4.1, we discuss the prediction of HMF from the theoretical framework. In
§ 4.4 we derive the constrains on the cosmological parameters §2,, and og, and discuss the

degeneracy between these two parameters.

4.4.1 Prediction of Halo Mass Function

The number of dark matter halos per unit mass per unit comoving volume of the

universe, HMF, is given by

dn B
din M

dlno
din M

G ; (4.4)

here pg is the mean density of the universe, o is the rms mass variance on a scale of radius
R that contains mass M = 4wpgR3/3 , and f(o) represents the functional form that defines
a particular HMF fit.

Assuming a Gaussian distribution of mass fluctuation, Press & Schechter (1974)
used a linear theory to derive the first theoretical model (hereafter PS) of HMF. While

fairly successful in matching the results of N-body simulations, the PS formalism tends to
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Figure 4.4: Likelihood contour map of x? in 0g-€,, plane derived from the SelFMC cluster
catalog. The black star represents the best-fit point for Q,, and og which minimizes y?
value. Ellipses show 1o, 20, and 30 confidence levels, respectively. The dashed yellow line
represents the best-fit og-(2,,, relation as shown in the legend.
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Figure 4.5: Effect of varying €1, and og on the HMF. The left panel shows the HMF
calculated from Tinker08 for five different values of €,,= [0.1 0.2 0.3 0.4 0.5] while fixing
og= 0.3 (solid colored lines as shown in the legend). The right panel shows the HMF
calculated from Tinker08 for five different values of og= [0.6 0.7 0.8 0.9 1.0] while fixing
Q= 0.3 (solid colored lines as shown in the legend). Our derived CMF corrected by S(D)
for D < 365 h™! Mpc(z ~ 0.125) is shown by black points.

predict too many low-mass clusters and too few high-mass clusters. More recently proposed
theoretical models provide better approximations to the output from N-body simulations
(e.g., Sheth et al., 2001; Jenkins et al., 2001; Warren et al., 2006; Tinker & Wetzel, 2010;
Bhattacharya et al., 2011; Behroozi et al., 2013b).

In this paper, we adopt the functional form proposed by Tinker et al. (2008)
(hereafter Tinker08) as our form of the HMF. This approach assumes universality of the
HMF across the cosmological parameter space considered in this work, and uses a fitting
function that was calibrated against N-body simulations. The Tinker0O8 model is formally
accurate to better than 5% for the cosmologies close to the ACDM cosmology and for the

mass and redshift range of interest in our study (e.g., Vikhlinin et al., 2009b). Although
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the formula has been calibrated using dissipationless N-body simulations (i.e., without the
effect of baryons), hydrodynamic simulations suggest that these have negligible impact for
clusters with masses as high as those considered here (e.g., Rudd et al., 2008; Velliscig et al.,
2014; Bocquet et al., 2016). Finally, note that the Tinker08 model is defined in spherical
apertures enclosing overdensities similar to the mass we derive for the GalWCat19 observed

clusters.

flo,2)=A [(Z)_ + 1] exp (—c/o?) (4.5)

where A = 0.186(1+2) "™, ¢ = 1471 +2)7"%, b = 257(142)7%, ¢ = 1.19, and

Ina(Ayir) = [75/ (In (Ayir/75))]*2, and 02 is the mass variance defined as

o2(M, 2) = 42 / Pk)W2(kR)k>dk (4.6)

o

P(k) is the current linear matter power spectrum (at z = 0) as a function of wavenumber
k, W(kR) = 3[sin(kR) — kRcos(kR)])/(kR)? is the Fourier transform of the real-space
top-hat window function of radius R, and ¢(z) = 0g(z)/0s(0) is the growth factor of linear
perturbations at scales of 8h~! Mpc, normalized to unity at z = 0.

The current linear power spectrum P(k) is defined as P(k) = Bk"T?(k), where
T'(k) is the transfer function, B is the normalization constant and n is the spectral in-
dex. Usually the normalization B is calculated from the cosmological parameter og, (e.g.,
Reiprich & Bohringer, 2002; Murray et al., 2013a). The function k™ imprints the primordial

power spectrum during the epoch of inflation. The transfer function T'(k) quantifies how
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this primordial form is evolved with time to the current linear power spectrum on different
scales. The transfer function T'(k) is calculated using the public Code for Anisotropies in
the Microwave Background (CAMBS, Lewis et al., 2000). The quantities 2,,, and og are the
main cosmological parameters that define the HMF. The other parameters do not strongly
affect the HMF and thus we fix them during the calculation of the HMF as described below

(e.g., Reiprich & Bohringer, 2002; Bahcall et al., 2003; Wen et al., 2010b).

4.4.2 Constraining €2,, and oy

The HMF is calculated using the publicly available HMFcalc 7 code (Murray et al.,
2013a). The code provides about 20 fitting functions that can be used to calculate the
HMF. In this paper, in order to constrain €2, and og, we use Tinker08 (Equation 4.5) as
discussed above. We calculate the HMF by allowing ,,, to range between [0.1, 0.6] and
og between [0.6, 1.2], both in steps of 0.005. We keep the following cosmological parameters
fixed: the CMB temperature T,,,;, = 2.725K°, baryonic density €2, = 0.0486, and spectral
index n = 0.967 (Planck Collaboration et al., 2014), at redshift z = 0.089 (the mean redshift
of GalWCat19).

In order to determine the best-fit mass function and constrain €2, and og we use

a standard y? procedure

2 _ Y [yo,i - ym,i]2
D e (47)

i=1

where the likelihood, L(y|os, 2m), of a data (CMF) given a model (HMF) is

Shttps://camb.info/
"http://hmf . icrar.org/
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—2(ylo
L(ylos, Q) ox exp (W) (48)

Yo and y,, are the data and model cumulative mass functions at a given mass and o is the
statistical uncertainty of the data.

Using the fiducial Se1FMC sample of 756 clusters with log(M) > 13.9 and 0.045 <
z < 0.125, the best-fit parameters for the minimum value of x? are €, = 0.310f8:8%g and
og = 0.810f8:8§2 for Tinker0O8 at redshift z = 0.085. In § 4.5.1 we discuss the systematics
of cluster mass uncertainty, mass threshold, and selection function.

The banana shape in Figure 4.4 shows the well-known degeneracy between og and

Q... The relationship between og and €2, is often expressed as

og =a QP (4.9)

The parameters a, 3, and § are determined by applying the x? algorithm using the Curve
Fitting MatLab. The best fit values of these parameters are a = 0.425 + 0.006 and 8 =
—0.550 + 0.007 with root mean square error of 0.005 for the Tinker08 model.

We now ask the question - how do €2,,, and og contribute individually to the HMF?
In other words, why do cluster abundance studies introduce a degeneracy between €2, and
os? The degeneracy occurs because a low abundance of massive clusters could be caused
either by a small amount of matter in the universe (a low value of €2,,,) or small fluctuations
in the density field (a low value of og). Similarly, a high abundance of massive clusters

could be caused either by a large amount of matter in the universe (a high value of Q,,) or
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Figure 4.6: Effects of cluster mass uncertainty (left), mass threshold (middle), and selection
function (right) on our constraints on €, and og. Left: the 68% CLs of our fiducial sample
(black), fractional mass uncertainty (blue), and intrinsic scatter of 0.23 (red). Middle: the
68% CLs (green) for varying mass threshold log M from 13.8 to 14 h~! M. Right: the
68% CLs (magenta) due to systematic of the selection function.

large fluctuations in the density field (a high value of og). Therefore, it is possible to obtain
the same abundance of massive clusters by fixing one parameter and varying the other one.
Figure 4.5 introduces two sets of HMFs calculated by Tinker08. The first set is shown on
the left panel for five different values of Q,, = [0.1 0.2 0.3 0.4 0.5] while fixing og = 0.8. The
second set is shown on the right panel for five different values of og = [0.6 0.7 0.8 0.9 1.0]
while fixing €,, = 0.3. As expected, increasing the matter density of the universe increases
the number of clusters of all masses. But increasing the rms mass fluctuation increases the
number of high-mass clusters more dramatically than number the low-mass clusters. In

other words, og is very sensitive to the high-mass end of the HMF.

4.5 Discussion and Conclusion

In this section, we investigate how systematics affect the recovered cosmological

constraints from our analysis (§ 4.5.1). We compare our constraints on the cosmological
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parameters ), and og with those obtained from cluster abundance studies (§ 4.5.2). We
also compare our constraints with those obtained from other cosmological probes which we

refer to as non-cluster cosmological probes (§ 4.5.3).

4.5.1 Systematics

In constraining 2,,, and og in § 4.4.2, we only account for the statistical uncertainty
of the estimated cumulative CMF using the fiducial Se1FMC sample. In this section, we
discuss the systematics due to mass uncertainty, mass threshold, and parameterization of

the selection function.

Mass Uncertainty

The first uncertainty comes from the difficulty of calculating cluster masses accu-
rately. Generally, masses which are estimated using scaling relations, such as luminosity,
richness, temperature, and dispersion velocity-mass relations, introduce large scatter and
consequently large systematic uncertainties (e.g., Mantz et al., 2016; Mulroy et al., 2019).
Masses which are computed by dynamical estimators are subject to systematic uncertainties
(e.g., Wojtak & Lokas, 2007; Rozo et al., 2010; Old et al., 2018). However, using the virial
theorem, corrected for the surface pressure term, provides a relatively unbiased estimation
of cluster masses (e.g., Rines et al., 2010; Ruel et al., 2014), particularly when using a
sophisticated interloper rejection technique such as GalWeight (Abdullah+18). Also, the
virial mass estimator calculates the total cluster mass including baryonic (gas and galax-
ies) and dark matter regardless the internal complex physical processes associated with the

baryonic component in clusters. However, the virial mass estimator still introduces scatter
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in estimating cluster masses (see § 4.2). Abdullah+20 showed that the application of the
virial mass estimator on two mock catalogs (HOD2 and SAM2) recalled from Old et al.
(2015) returned intrinsic scatter of ~ 0.23 dex in the recovered mass relative to the fiducial
cluster mass. Also, the GalWCat19 catalog introduced the fractional uncertainty (see § 4.2)
of each cluster mass.

Assuming a normal distribution, we investigate the systematics of the mass un-
certainty by generating ~ 8000 estimate for each cluster mass using both the fractional
uncertainty for each cluster and the intrinsic scatter for the entire sample. In other words,
we reanalyze Se1FMC ~ 8000 times and refit for 2, and og for each time. The left panel of
Figure 4.6 introduces the effect of cluster mass uncertainty on the constraints on €, and
os. Using the fractional uncertainty, we obtain ,,= 0.305 £ 0.014 and og= 0.816 4+ 0.021,
where the red ellipse represents 68% CL for the disribution of the reestimated 8000 pairs
of ©,, and og. Using the intrinsic scatter (blue ellipse), we find €Q,,= 0.309 + 0.014 and
og= 0.815 + 0.022. Both results indicate that the cluster mass uncertainty (fractional or

intrinsic) does not affect our constraints on 2, and og using SelFMC.

Mass Threshold

The second systematic uncertainty comes from the difficulty of determining accu-
rately the mass threshold at which the sample is mass complete. As discussed in § 4.3.1 and
Figure 4.1 the catalog is approximately complete around log M > 13.9 [h~! Mg]. However,
the mass threshold at which the sample is mass-complete is not accurately specified. There-
fore, we investigate the effect of varying the mass threshold log M between 13.8 and 14.0

[h=t M) in steps of 0.05 dex on the recovered cosmological constraints from our analysis.
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Figure 4.7: Constraints on 2, and og obtained from cluster abundance studies (cluster
mass function; CMF). Left: 68% confidence levels (CLs) derived from SelFMC (magenta)
plus select other optical, X-ray or SZ-detected cluster catalogs as shown in the legend
and summarized in the first three sections of Table 4.2. The two dashed lines show the
best-fit values derived in this work. Right: Uncertainties on £2,, and og for each of the
cluster abundance studies listed in Table 4.2 (Note: For clarity, not all studies in Table 4.2
are shown in the left panel). While in agreement with the other cluster abundance studies
within 1o uncertainties, the value of €2, determined from our work is slightly higher and the
value of oy slightly lower than most of the other studies. As shown in Fig 4.8 and discussed
in § 4.5.3, we note that our values are in better agreement with €, and og obtained from
non-cluster determinations as shown in Fig 4.8.

For each mass threshold we calculate the x? likelihood and then we obtain the joint 68%
CL of all y? distributions as shown in the middle panel of Figure 4.6. The plot shows that
the best fit values of §2,,, and og deviate very slightly from the results of the fiducial sample

with Q,,, = 0.3003:95 and g = 0.82079:920.
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Table 4.2: Comparison of constraints on cosmological parameters €),,, and og derived from
Clusters Abundances (CMF) and from Other Cosmological Probes, including cosmic shear,
galaxy-galaxy lensing, angular clustering, BAO, supernovae, and CMB

Sample Mass estimation Qm o8 Ss(a) Apgb) ref
spectroscopically-selected catalogs — cluster abundance
GalWCat19 virial theorem  0.30570 0% 0.8107002% 0.817 0.032
optical photometrically-selected catalogs — cluster abundance
MaxBCG rich-mass 0.28170008  0.804700%3  0.779  0.108  [1]
RedMaPPer rich-mass 0.22010050  0.91070100  0.778 0.325 2]
RedMaPPer rich-mass 0.25010040  0.8507008  0.776 0.212  [3]
x-rays catalogs — cluster abundance
REFLEX lum-mass 0.34170050  0.7117053)  0.758  0.148  [4]
Chandra lum-mass 0.255T00%  0.82010512  0.757 0.191  [5]
WtG () lum-mass 0.260100%  0.830750; 0.773 0.176  [6]
HIFLUGCS lum-mass 0.217H00%%  0.89310 008 0.760 0.327 (7]
XMM-XXL temp-mass  0.3997000;  0.72175070  0.832 0.289  [8]
SZ catalogs — cluster abundance
ACT, [B12] SZ-mass 0.25270097  0.87270502  0.799 0.214  [9]
ACT, [Dyn] SZ-mass 0.3011008%  0.9757010%  0.977 0.207 [10]
SPT SZ-mass 0.2761004F  0.78170037  0.776  0.129 [11]
HECS-SZ SZ-mass - - 0.751 - [12]
Planck18 SZ-mass 0.31010050  0.77070040 0.783 0.138  [13]
other cosmological probes
DES-Y1 CS+GL+AC @ 0.2707003 0.820700%  0.778 0.143 [14]
KiDS+GAMA CS+GGL+AC  0.31570008  0.78510-117  0.804 0.032 [15]
Pantheon SNe 0.30710:913 — — —  [16]
6dF+DR7+BOSS () BAO 0.34610-012 — —  — 17
WMAP9 CMB only  0.280%0055 0.82070058 0.792 0.112 [18]
Planck18 CMB only  0.31570507 0.811700% 0.832 0.000 [19]

(a) The cluster normalization condition parameter, Sg, is defined as Sg = 08(Q2m/0.3)?® as used in the literature.

(b) Ap = \/[(Qm,ref — (‘2,”71,1)/9,”,101]2 + [(O’gyref — 0'871,1)/0'8,1)1]2 is the scatter of {2, and og obtained from each
method listed the table relative to that obtained from Planck18 (Planck Collaboration et al., 2018). (¢) Mantz et al.
(2015) used the combination of luminosity, temperature, gas mass, and lensing mass to estimate cluster mass which
were refereed to as Weighting the Giant (WtG) (d) CC = cosmic shear, GL = galaxy-galaxy lensing, AC = angular
clustering. (e) 6dF = Six Degree Field Galaxy Survey (Beutler et al., 2011), DR7 = SDSS data release 7 (Ross
et al., 2015), BOSS = Baryon Oscillation Spectroscopic Survey (Alam et al., 2017). Reference: [1]=Rozo et al., 2010,
[2]=Costanzi et al., 2019, [3]=Kirby et al., 2019, [4]=Schuecker et al., 2003, [5]=Vikhlinin et al., 2009b, [6]=Mantz
et al., 2015, [7]=Schellenberger & Reiprich, 2017, [8]=Pacaud et al., 2018, [9]=Hasselfield et al., 2013, [10]= Hasselfield
et al., 2013, [11]= Bocquet et al., 2019, [12]=Ntampaka et al., 2019, [13]=Zubeldia & Challinor, 2019, [14]=Abbott
et al., 2018b, [15]=van Uitert et al., 2018, [16]=Scolnic et al., 2018, [17]=Alam et al., 2017, [18]=Hinshaw et al., 2013,
[19]=Planck Collaboration et al., 2018.
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Selection Function Parameterization

The constraints on 2, and og is affected by parameterization of the selection
function. Our selection function depends on three parameters a, b, and . The normalization
a is already fixed to unity. Assuming a normal distribution, the systematic of the selection
function is investigated by generating ~ 8000 pairs of b and ~y, using the uncertainty in b
and 7 (see § 4.3.1). For each pair we estimate the best fit values of €, and og. Figure 4.6
shows the 68% CL for the systematic of the selection function. This analysis rotates the
error ellipses slightly compared to our fiducial analysis, but does not affect our results. We
obtain €,,= 0.313 +=0.035 and og= 0.809 £ 0.012, which is consistent with our result of the

fiducial sample.

4.5.2 Comparison with external data from cluster abundance

The left panel of Figure 4.7 introduces the 68% confidence level (CL) derived from
SelFMC in comparison to the results obtained from other cluster abundance studies. Samples
of galaxy cluster constructed from galaxy surveys include optical photometric (e.g., Kirby
et al., 2019), X-ray (e.g., Mantz et al., 2015), and SZ (e.g., Zubeldia & Challinor, 2019)
catalogs as listed in Table 4.2. The figure shows that the CLs of all cluster abundance
studies introduce a degeneracy between 2, and og as we discussed in § 4.4.2. Also, the CL
derived from Se1FMC overlaps the CLs obtained from all other results as shown in the figure.
Regardless of this overlapping, the right panel of Figure 4.7 shows that the constraints on
Q,, and og from cluster abundance studies are in tension with each other, even for the studies

that use the same type of cluster sample. Specifically, the X-ray independent studies listed
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in Table 4.2 introduce different values of €0, and og, which vary from ~ 0.22 to 0.40 and
0.71 to 0.89, respectively. Also, the independent studies that use SZ-cluster samples show
that Q,, and og vary from ~ 0.25 to 0.31 and 0.77 to 0.98, respectively.

The question is now, why are the cosmological constraints derived from many of the
cluster abundance techniques in tension with each other? All cluster samples constructed
from photometric surveys or detected by SZ effect do not return an estimate of each cluster’s
mass directly. For such samples the cluster mass has to be inferred indirectly from other
observables, which scale tightly with cluster mass. Among these mass proxies are X-ray
luminosity, temperature, the product of X-ray temperature and gas mass (e.g., Vikhlinin
et al., 2009b; Mantz et al., 2016), richness (e.g., Yee & Ellingson, 2003; Simet et al., 2017),
and SZ signal (e.g., Bocquet et al., 2019). To estimate cluster masses for the clusters in
these samples it is necessary to follow up a subset of clusters and calculate their masses
using, e.g., weak lensing or x-ray observations. Then, an observable-mass relation can be
calibrated for these subsamples. Finally, the mass of each cluster in the sample can be
estimated from this scaling relation. However, this reliance on observable-mass proxies
introduces significant systematic uncertainties which is the dominant source of error (e.g.,
Henry et al., 2009; Mantz et al., 2015) for the reasons explained in the next paragraph.

Firstly, the masses obtained for the follow-up subsample of clusters are often bi-
ased. For example, it is known that X-ray mass estimates are typically biased low and
so a mass bias factor, (1-8), needs to be introduced and calibrated. Secondly, the size
of the subsample used for calibration is usually small (tens of clusters) which introduces

large uncertainties in both the slope and the normalization of the scaling relation. Thirdly,
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many cluster catalogs span a large redshift range so evolution (due to both the evolution of
the universe and the physical processes of baryons in clusters) in the the scaling-relations
used to estimate the masses needs to be carefully handled, introducing another source of
uncertainty. All of the aforementioned assumptions can introduce large uncertainties in the
estimates of cluster mass and consequently the constraints on cosmological parameters. For
instance, og is specifically very sensitive to the high-mass end of the CMF and any offset of
cluster true masses leads to biased estimation of og. Other observational systematics that
introduce additional uncertainties are photometric redshift errors and cluster miscentering.

By using the GalWCat19 cluster catalog and deriving cluster masses using the
virial theorem, we were able to avoid most of the complexities described above. Firstly,
we were able to identify clusters, assign membership, and determine cluster centers and
redshifts with high accuracy from the high-quality SDSS spectroscopic data set. Secondly,
cluster membership was determined by the GalWeight technique which has been shown to
be ~ 98% accurate in assigning cluster membership (Abdullah+18). Thirdly, a mass for
each cluster was determined directly using the virial theorem. Therefore, we were able to
recover a total (dark plus baryonic) mass for each cluster and circumvent having to make
any assumptions about the complicated physical processes associated with the baryons. It
has been suggested that cluster masses estimated via the virial theorem are overestimated
by 20%. But we note that we have applied a correction for the surface pressure term which
we believe decreases this bias, especially when applied in combination with our GalWeight
membership technique (Abdullah+18). Abdullah+20 showed that the virial mass estimator

performed well in comparison to the other mass estimators described in Old et al., 2015, and
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Figure 4.8: Constraints on €, and og obtained from cluster abundance (SelFMC; magenta)
and non-cluster cosmological constraint methods. Left: 68% confidence levels (CLs) derived
from SelFMC, WMAP9 (CMB; Hinshaw et al., 2013), Planck18 (CMB; Planck Collaboration
et al., 2018), BAO data (Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017), Pantheon
sample (SNe; Scolnic et al., 2018), and the surveys KiDS+GAMA (van Uitert et al., 2018)
and DES Y1 (Abbott et al., 2018b) which both use the cosmological probes of cosmic shear,
galaxy-galaxy lensing, and angular clustering. As in Figure 4.7, the two dashed lines show
the best-fit values derived in this work. The constraints on 2, and og derived from SelFMC
are consistent with those derived from the non-cluster methods. Joint analysis between our
constraints and the results of Planck184+BAO-+Pantheon is represented by the red contour
line. Right: uncertainties of {2, and og estimated for the aforementioned probes except for
the BAO and SNe probes which constrain €,, only.
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resulted in a relatively low bias and scatter when applied to two semi-analytical simulations
(see Figure 3 in Abdullah+20). Fourthly, since GalWCat19 is a low-redshift cluster catalog
it eliminates the need to make any assumptions about evolution in clusters themselves and
evolution in cosmological parameters. Finally, because of the large size of the GalWCat19
we are able to determining the CMF well and consequently constrain the cosmological

parameters (), and og with high precision.

4.5.3 Comparison with external data from non-cluster cosmological probes

Cosmological parameters can be estimated from different cosmological probes
rather than cluster abundance studies. We use measurements of primary CMB anisotropies
from both WMAP (9-year data; Hinshaw et al., 2013) and Planck satellites focused on
the TT+lowTEB data combination from the 2018 analyses (Planck Collaboration et al.,
2018). We also use angular diameter distances as probed by Baryon Acoustic Oscillations
(BAO) including the 6dF Galaxy Survey (Beutler et al., 2011), the SDSS Data Release
7 (Ross et al., 2015), and the BOSS Data Release 12 (Alam et al., 2017). Furthermore,
we use measurements of luminosity distances from Type la supernovae from the Pantheon
sample (Scolnic et al., 2018). Finally, we use the measurements from a joint analysis of
three cosmological probes: cosmic shear, galaxy-galaxy lensing, and angular clustering, in-
cluding the results of the Kilo Degree Survey and the Galaxies And Mass Assembly survey
(KiDS+GAMA; van Uitert et al., 2018) and the first year of the Dark Energy Survey (DES
Y1; Abbott et al., 2018b) (see Table 4.2). The left panel of Figure 4.8 introduces the 68%
CL derived from SelFMC in comparison to the those obtained from the aforementioned cos-

mological probes. As shown, the CL derived from SelFMC overlaps the CLs obtained from
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all non-cluster abundance probes.

We define the scatter

A = <Qm,7‘ef - Qm,pl)2 + (0-8,Tef - U8,pl)2 (4 10)
P Qi pi 08,pl ’

to compare the constraints on €, and og obtained from all cosmological probes which are

listed in Table 4.2 with that obtained from Planckl8 (Planck Collaboration et al., 2018).
Note that the constraints on €, and og derived from most of the cluster abundance studies
independently introduce a relatively large scatter compared to the CMB experiment of
Planck18. However, our constraints on (), and og are very comparable and competitive
with Planck18 with a minimum value of A, = 0.018. Moreover, our constraint on {2, is in
excellent agreement with the results of the BAO and Pantheon, separately. This remarkable
consistency demonstrates that our derived cluster catalog at low redshift and calculating
cluster masses using spectroscopic database of galaxy surveys is essential to obtain robust
cosmological parameters. These results also emphasize the necessarily need to construct
accurate cluster catalogs at high redshifts using the ongoing and upcoming galaxy surveys
and perform similar analyses as introduced in this work.

As discussed above there is a degeneracy between €2, and og derived from the CMF
at low redshift. We combine our 68% CL with those obtained from Planck18+BAO+Pantheon,
to eliminate the degeneracy of the our likelihood and to remarkably shrink the uncer-

0.013 . 4

tainties of the cosmological parameters. The joint analysis gives €, = 0.315J_r0.011 an

os = 0.81070 0.
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4.5.4 Conclusion

In this paper, we derived the CMF and the cosmological parameters §2,, and
og using a mass-complete subsample of 756 clusters (SelFMC) obtained from the GalWCat19
cluster catalog which was constructed from SDSS-DR13 spectroscopic data set. The ad-
vantages of using this catalogs are: i) we were able to identify clusters, assign membership,
and determine cluster centers and redshifts with high accuracy from the high-quality SDSS
spectroscopic data set; ii) cluster membership was determined by the GalWeight technique
which has been shown to be ~ 98% accurate in assigning cluster membership (Abdul-
lah+18); iii) the cluster masses were calculated individually using the virial theorem, and
corrected for the surface pressure term; iv) GalWCat19 is a low-redshift cluster catalog which
eliminates the need to make any assumptions about evolution in clusters themselves and
evolution in cosmological parameters; v) the size of GalWCat19 is one of the largest available
spectroscopic samples to be a fair representation of the cluster population.

Our CMF closely matches predictions from MultiDark Planck N-body simulations
(snapshot hlist_0.91520.list®, with z ~ 0.09) for log(M) > 13.9 h™! M. Assuming a flat
ACDM cosmology, we used the publicly available HMFcalc ? code (Murray et al., 2013a)
to estimate HMFs for the Tinker08 model (Equation 4.5). Then, using a standard y?
procedure, we compared our cumulative mass function to HMFs to determine the best-fit
mass function and constrain €2,,, and og. We measured €),,, and og to be €, = 0.310f8:8§?i
0.041 (systematic) and og = 0.81070 035 £ 0.035 (systematic), with a cluster normalization

relation of og = 0.43Q;,0-5%.

8https://www.cosmosim.org/data/catalogs/NewMD_3840_Planck1/ROCKSTAR/trees/hlists/
“http://hmf.icrar.org/
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The cosmological constraints we derived are very competitive with those recently
derived using both cluster abundance studies and other cosmological probes. In particular,
our constraint on €, and og are consistent with Planck18+BAQO-+Pantheon constraints.
This remarkable consistency highlights the potential of using GalWCat19 and its subsample
SelFMC which are derived from SDSS-DR13 spectroscopic data set utilizing the applica-
tion of GalWeight to produce precision constraints on cosmological parameters. The joint
analysis of our cluster data with Planck18+BAO+Pantheon gives €, = 0.3151“8:8% and

oy = 0.81070:011
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Evolution

In this section, we discuss the evolution effect for a sample of clusters with a narrow
redshift range between z1 and 2z with an average of (z). The HMF depends on the mass and
redshift and is given by f;lz n(M, z)dz/(z2 — z1). We test the effect of evolution assuming
an analytical model for the evolution of HMF and cosmological model with reasonable
parameters. We then take the integral fzzf n(M,z)dz/(z2 — z1) and compare the results
with n(M, z) at z = 0.085.

Figure 4.9 shows the evolution of the cluster number density expected by Tinker0O8
for cosmological parameters §2,,= 0.305 and og= 0.825. In the left panel, we plot the HMF
times M /p., pc is the critical density of the universe, to clarify the differences between
the models at different redshifts. The right panel shows the scatter of models relative to
the expectation at z = 0.085 (black line). As expected, the evolution of clusters with
z < 0.085 is less than unity relative to that at z = 0.085 and the evolution of clusters
with z > 0.085 is larger than unity relative to that at z = 0.085. The two dashed lines
shows the expectation [f;f n(M, z)dz/(z2 — z1)] in the redshift intervals of 0.0 < z < 0.125
(brown) and 0.045 < z < 0.125 (red). The plot indicates that the evolution is > 15% for
0.0 < z <€ 0.125 for massive clusters, while it drops to < 3% for 0.045 < z < 0.125.

Note that we do not neglect the effects of evolution. In other words, we do not
assume that the HMF at z; is (nearly) the same as at zo (admittedly, there is 10-20%
difference in the most massive M). Because we use ratios of these quantities, most of the
cosmological parameters (e.g., og) are canceled for sensible range (e.g., og= 0.75-0.85).

We also test other HMF approximations such as Despali HMF (?) and obtain the same
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Figure 4.9: The effect of cluster number density evolution. Left: Tinker08 HMF times
M?/p. at different redshifts as well as the average HMF for 0.0 < z < 0.125 (brawn) and
0.045 < z < 0.125 (red) as shown in the legend. Right: The scatter of each HMF relative
to that at z = 0.085 (the mean redshift of the sample).

conclusion. Therefore, we restrict our data (observed clusters) to 0.045 < z < 0.125 for

which the evolution effect of the number density of clusters is minimal.

Redshift Threshold

In this section we investigate the choice of the redshift interval and the application
on the selection function of our results of the fiducial analysis as shown in Figure 4.6. In
the left panel, we fix the upper redshift threshold to 0.125 and decrease the lower redshift
threshold from 0.075 to 0.045. The plots indicates that decreasing the lower redshift thresh-
old does not affect our result of the fiducial sample (black ellipse). It also demonstrates

that the evolution effect is unremarkable in this small redshift interval. The left panel also
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Figure 4.10: The effect of adopting the redshift threshold. Left: 68% CLs for three sub-
samples with fixing the upper redshift threshold to 0.125 and decreasing the lower redshift
threshold from 0.075 to 0.045. The dashed brown ellipse represents the 68% CL of the
NoSelFVC sample. Right: 68% CLs for three subsamples with fixing the lower redshift
threshold to 0.045 and increasing the upper redshift threshold from 0.125 to 0.16.
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introduces the 68% CL of the NoSelFVC sample (dashed brown ellipse) which gives §,,,=
0.29570:03% (5% less than the fiducial value) and os= 0.81570030 (1% greater than the
fiducial value). The consistency between the results of Se1FMC and NoSelFVC demonstrates
that applying the selection function for z < 0.125 does not affect the results of the fiducial
analysis and is sufficient to correct for the volume incompleteness of GalWCat19. In the right
panel, we fix the lower redshift threshold to 0.045 and increase the upper redshift threshold
from 0.125 to 0.16. The plots indicates that increasing the upper redshift threshold sig-
nificantly affects our constraints on €2, and og because applying the selection function to
higher redshift (> 0.125) affects the shape of the CMF by increasing the scatter and noise

and overcorrecting the number of clusters at high redshifts.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The dissertation included three publications which were discussed in chapters two,
three, and four. In chapter two, we introduced a new technique (GalWeight) for assigning
galaxy cluster membership. We showed that the technique can be applied to both massive
galaxy clusters and poor galaxy groups. It also can be used to identify members in both
the virial and infall regions with high efficiency. We applied the GalWeight technique to
MDPL2 & Bolshoi N-body simulations, and found that it is > 98% accurate in correctly
assigning cluster membership.

In chapter three, we applied the GalWeight technique to the SDSS-DR13 spectro-
scopic data set to create a new publicly-available catalog of 1800 galaxy clusters (GalWeight
cluster catalog, GalWCat19) and a corresponding catalog of 34471 identified member galax-
ies. The clusters were identified from overdensities in redshift-phase space by looking for the

Finger-of-God effect. The cluster masses were calculated using the virial theorem, corrected
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for the surface pressure term and NFW model. The 1800 GalWCat19 clusters range in red-
shift between 0.01 — 0.2 and in mass between (0.4 — 14) x 10'*A~1 M. The cluster catalog
provides a large number of cluster parameters including sky position, redshift, membership,
velocity dispersion, and mass at overdensities A = 500,200, 100,5.5. The 34471 member
galaxies are identified within the radius at which the density is 200 times the critical density
of the Universe. The galaxy catalog provides the coordinates of each galaxy and the ID of
the cluster that the galaxy belongs to.

In chapter four, we derived cosmological constraints on §2,,, and og using GalWCat19.
By analyzing the SelFMC sample, we obtained €, = 0.310f8:8§§ + 0.041 (systematic)
and og = 0.810f8:8§é + 0.035 (systematic), with a cluster normalization relation of og =
0.439;10'55. Our constraints on €2, and og are consistent and very competitive with those ob-
tained from non-cluster abundance cosmological probes such as CMB, BAO, and SNe. The
joint analysis of our cluster data with Planck18+BAO-Pantheon gave Q,, = 0.315700:%

_ +0.011
and og = 0.810%(10-

5.2 Ongoing Work

5.2.1 Cluster Richness-Mass Relation

I am studying the evolution of the richness-mass relation by identifying clusters
from the GOGREEN galaxy survey at redshift z ~ 1 utilizing the GalWeight technique and
using the RedMaPPer (Rykoff et al., 2014, 2016) and the GalWeight19 cluster catalogs. The
project aims to introducing this relationship to estimate cluster masses of the RedMaPPer

catalog to constrain cosmological parameters from RedMaPPer.
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5.2.2 Galaxy Stellar Mass Function of numerical simulations

I am conducting a study of the galaxy stellar mass function (SMF) of hydrody-
namical simulations (EAGLE, Tllustris and TNG) and semi-analytical models (Galacticus)
for 0 < z < 3. The project aims to study the evolution of galaxy stellar mass in differ-
ent environments and for different galaxy types (quiescent vs. star-forming and central vs.
satellite) to understand the mechanisms of how galaxies build their masses and the physical
processes that govern galaxy formation and evolution in halos. This project to improve
the current models of galaxy evolution and understand the physical processes that govern

galaxy evolution in clusters.

5.3 Future Work

5.3.1 Connection between Galaxies and Hosting Clusters

Investigating the evolution of the properties of galaxy clusters sheds light on the
physical processes regulating galaxy evolution (e.g., Erfanianfar et al., 2019. The correla-
tions between properties of brightest cluster galaxies (BCGs), usually located at the center
of galaxy clusters, and their host galaxy clusters allow us to understand the environmental
effect of the host clusters on the formation and evolution of the central galaxies. Using
the GalWeight19 and other cluster catalogs at different redshifts and utilizing numerical
simulations, I am interested in studying the BCG stellar mass-halo mass relation, and the
fraction of early- and late-type galaxies as a function of radius from the cluster center.
These studies shed light on the connection between the galaxies and their hosting clusters,

allowing us to test the current models of galaxy formation and evolution with observations.
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5.3.2 Velocity Bias between Galaxies and Dark Matter

Studying the velocity bias (the difference in the velocity fields of dark matter and
galaxies) is a key tool in understanding the formation mechanisms of galaxies in clusters and
their evolution with time. A large uncertainty in estimating dynamical cluster mass and
extracting cosmological information from observations is due to the bias between galaxies
and dark matter (the systematic of the assumption that galaxies follows dark matter).
Comparing the velocity distribution of galaxies in clusters with the expectation of pure
nbody simulations allows us to investigate this bias. This bias is due to the effect of baryons
on the dynamics of galaxies in clusters. Investigating the hydrodynamical simulations and
semi-analytic models allows us to understand the physics behind this effect to improve the

current models of galaxy formation and evolution.
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