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ABSTRACT OF THE DISSERTATION

A New GalWeight-Derived SDSS Galaxy Cluster Catalog and Cosmological Constraints
on Ωm and σ8

by

Mohamed H El Hashash

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2020

Prof. Gillian Wilson, Chairperson

The dissertation includes three manuscripts. Firstly, we introduce the GalWeight

technique, a new technique for assigning galaxy cluster membership. GalWeight is designed

to simultaneously maximize the number of bona fide cluster members while minimizing

the number of interlopers. GalWeight can be applied to both massive and poor galaxy

groups and is effective in identifying members in both the virial and infall regions with high

efficiency. We apply GalWeight to MDPL2 & Bolshoi N-body simulations, and find that

it is > 98% accurate in correctly assigning cluster membership. We apply GalWeight to a

sample of twelve Abell clusters using observations from the Sloan Digital Sky Survey.

Secondly, we apply GalWeight to the SDSS-DR13 spectroscopic data set to create

a new publicly-available catalog of 1800 galaxy clusters (GalWCat19) and a corresponding

catalog of 34471 identified member galaxies. The clusters are identified from overdensities in

redshift-phase space. The cluster masses are calculated using the virial theorem and NFW

model. The GalWCat19 clusters range in redshift between 0.01 − 0.2 and in mass between

(0.4−14)×1014h−1M�. The cluster catalog provides position, redshift, membership, velocity
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dispersion, and mass at overdensities ∆ = 500, 200, 100, 5.5 for each cluster. The 34471

member galaxies are identified within the radius at overdensity of ∆ = 200. The galaxy

catalog provides the coordinates of each galaxy and the ID of the cluster that the galaxy

belongs to.

Thirdly, we derive cosmological constraints on the matter density, Ωm, and the

amplitude of fluctuations, σ8, using GalWCat19. We investigate the volume and mass in-

completeness of GalWCat19 to obtain a complete local subsample of 756 clusters (SelFMC)

in a redshift range of 0.045 ≤ z ≤ 0.125 and virial masses of M ≥ 0.8 × 1014 h−1 M�used

to constrain Ωm and σ8. Utilizing SelFMC, we obtain Ωm = 0.310+0.023
−0.027±0.041 (systematic)

and σ8 = 0.810+0.031
−0.036±0.035 (systematic). Our constraints on Ωm and σ8 are consistent and

very competitive with those obtained from other cosmological probes of Cosmic Microwave

Background (CMB), Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The

joint analysis of our cluster data with Planck18+BAO+Pantheon gives Ωm = 0.315+0.013
−0.011

and σ8 = 0.810+0.011
−0.010.
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Chapter 1

Introduction

Large ongoing and future wide and deep-field surveys of galaxies [e.g., DES (Ab-

bott et al., 2018a), DESI (Levi et al., 2019), Euclid (Euclid Collaboration et al., 2019),

eBOSS (Raichoor et al., 2017), eROSITA (Merloni et al., 2012), LSST (LSST Science Col-

laboration et al., 2009), and WFIRST (Akeson et al., 2019)] are our unique tools for studying

galaxy clusters, cosmology, and galaxy formation and evolution. These galaxy surveys are

used to construct galaxy cluster catalogs which provide an exquisite data source for a wide

range of cosmological and astrophysical applications. In particular, the statistical study of

the abundance of galaxy clusters as a function of mass and redshift (Wang & Steinhardt,

1998; Haiman et al., 2001; Reiprich & Böhringer, 2002; Battye & Weller, 2003; Dahle, 2006;

Lima & Hu, 2007; Wen et al., 2010b) is a powerful tool for constraining the cosmological pa-

rameters, specifically the normalization of the power spectrum, σ8, and the matter density

parameter, Ωm. Catalogs of galaxy clusters are also interesting laboratories to investigate

galaxy evolution under the influence of extreme environments (Butcher & Oemler, 1978;
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Figure 1.1: The flowchart summarizes the pathway to construct cluster catalogs from galaxy
surveys and their different astrophysical and cosmological applications.

Dressler, 1980; Goto et al., 2003; Leauthaud et al., 2012; Bayliss et al., 2016; Foltz et al.,

2018). Moreover, they can be utilized to study the galaxy-halo connection which correlates

galaxy growth with halo growth (e.g., Wechsler & Tinker, 2018). The connection between

numerical simulations and observations is a key role in guiding the development of accu-

rate theoretical models which will advance our understanding of the hierarchical growth of

structure, cosmology, and galaxy formation and evolution (see the flowchart in Figure 1.1).

Identification of galaxy clusters and estimation of cluster masses are the key chal-

lenges to accurately constructing cluster catalogs. In this dissertation, we introduce an

automated technique for constructing galaxy cluster catalogs, identifying cluster members,

and estimating cluster masses (Abdullah et al., 2018, 2020b), which can be applied to op-

tical spectroscopic galaxy surveys. The cluster locations are identified by searching for the
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Finger-of-God effect (FoG, see Jackson, 1972; Kaiser, 1987; Abdullah et al., 2013). This is

the distortion of line-of-sight velocities of galaxies both in viral and infall regions due to the

cluster potential well, i.e. galaxies peculiar motions. The cluster members are identified

by the GalWeight technique introduced in Abdullah et al. (2018). The cluster masses are

calculated from the dynamics of the member galaxies using the virial mass estimaor (e.g.,

Limber & Mathews, 1960; Abdullah et al., 2011) corrected for the surface pressure term

(e.g., The & White, 1986; Carlberg et al., 1997), and the NFW model (Navarro et al., 1996,

1997).

1.1 Galaxy Clusters

Galaxy clusters are the most massive bound systems in the universe and are

uniquely powerful cosmological probes. Cluster dynamical parameters, such as line-of-sight

velocity dispersion, optical richness, and mass are closely tied to the formation and evolu-

tion of large-scale structure (Postman et al., 1992; Carlberg et al., 1996; Sereno & Zitrin,

2012).

1.1.1 Components of Galaxy Clusters

Galaxy clusters consist of three main components listed as follows. I. An aggregate

of 100-1000 galaxies in a region of ∼ two Mpc. It contributes about 10% of the baryons in

the clusters. II. Intracluster medium (ICM) of hot ionized gas and dust surrounding galaxies.

It contributes about 90% of the baryons in the clusters. The ICM consists mainly of ionized

hydrogen, heated to extremely high temperatures as it fall into the gravitational potential
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well of the cluster (e.g., Sarazin, 1988). III. The dark matter which contributes about 90% of

the total cluster mass. The dark matter does not emit or reflect electromagnetic radiation,

but its presence is inferred by its gravitational effect on luminous matter.

1.1.2 Observations of Galaxy Clusters

Galaxy clusters can be detected based on a number of different properties, such

as: i) X-ray emission from hot intracluster gas (e.g., Sarazin, 1988; Reichardt et al., 2013);

ii) the Sunyaev-Zeldovich (SZ) effect (distortion of the cosmic microwave background ra-

diation by electrons of hot intracluster gas; Planck Collaboration et al., 2011); iii) optical

(e.g., Abell et al., 1989; den Hartog & Katgert, 1996; Abdullah et al., 2011) and infrared

emissions (e.g., Genzel & Cesarsky, 2000; Muzzin et al., 2009; Wilson et al., 2009; Wylezalek

et al., 2014) from stars in cluster members. Using current capabilities, both X-ray emis-

sion and SZ effect are detectable only for the very deep gravitational potential wells of the

most massive systems. They cannot be used to detect the outskirts of massive clusters, or

intermediate/low-mass clusters. Thus, current optical surveys of galaxies, such as SDSS,

and upcoming surveys such as Euclid (Amendola et al., 2013), and LSST (LSST Science

Collaboration et al., 2009) are required in order to produce the largest and most complete

cluster sample.

Optically, galaxy surveys provides data for position, spectroscopic and/or photo-

metric redshift, magnitudes and other parameters for galaxies. Cluster catalogs constructed

by photometric data introduce a large number of groups of different richness ranging from a

pair of galaxies to very massive clusters with hundreds of galaxies for entire surveys. How-

ever, using photometric redshift to extract cluster catalogs leads to substantial uncertainty
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in identifying clusters and their membership in comparison to spectroscopically produced

catalogs. Cluster catalogs constructed by spectroscopic data show high accuracy in deter-

mining cluster membership but it is prohibitively expensive to obtain spectroscopy of large

samples of galaxies. Thus, the expected number of clusters identified spectroscopically is

very small relative to that identified photometrically.

1.1.3 Galaxy Cluster Finding

There are many statistical cluster finding methods which rely on optical surveys.

For instance, the friends-of-friends (FoF) algorithm is the most frequently usable means

for identifying groups and clusters in galaxy redshift data (Turner & Gott, 1976; Press &

Davis, 1982). It uses galaxy distances derived from spectroscopic or photometric redshifts

as the main basis of grouping. Another group of cluster finding methods are halo-based

group finders (Yang et al., 2005, 2007; Duarte & Mamon, 2015). These methods assume

some criteria to identify galaxies which belong to the same dark matter halo. There are

other cluster finding methods which are used in the literature, including density-field based

methods (e.g., Miller et al., 2005), matched filter techniques (e.g., Kepner et al., 1999;

Milkeraitis et al., 2010; Bellagamba et al., 2018), and the Voronoi-Delaunay method (e.g.,

Ramella et al., 2001; Pereira et al., 2017; Soares-Santos et al., 2011). These methods are

capable of identifying clusters and groups of different richness ranging from a pair of galaxies

to very massive clusters with hundreds of galaxies for entire surveys. However, they assume

certain criteria and apply fast-run codes to construct catalogs of entire surveys. This may

lead to inaccurate results for recovering the true cluster members because the proposed

criteria could be suitable for only some individual clusters depending on their masses and/or

5



dynamical status. Also, most of these methods use photometric redshift to extract cluster

catalogs, leading to substantially more uncertainty in cluster membership in comparison to

spectroscopically produced catalogs.

Moreover, there are some cluster finding techniques that depend on the physi-

cal properties of galaxy clusters, such as, FOG (e.g., Jackson, 1972; Kaiser, 1987; Abdullah

et al., 2013), gravitational lensing (e.g., Metzler et al., 1999; Kubo et al., 2009), red-sequence

(e.g., Gladders & Yee, 2005; Rykoff et al., 2014), and Stellar Bump Sequence (SBS) intro-

duced by Muzzin et al. (2013). We discuss the FOG effect in detail in the next section since

this is the feature that we use in identifying galaxy clusters in our investigation.

1.1.4 Dynamics of Galaxy Clusters

Galaxy clusters can be divided into three regions: The core, the virialized region

and the infall region. The core is the region in which the motion of galaxies is randomly

distributed Binney & Tremaine (1987); Praton & Schneider (1994). The boundary of this

region is the core radius which cannot determine accurately, but it extends to ∼ 0.25− 0.5

Mpc. The virialized region is the region in which the system is in a dynamical equilibrium

or the radial velocity ≈ transverse velocity. The boundary of this region is the viral radius

rv. It is approximately equal to the radius at which the density ρ = ∆200ρc, where ρc is

the critical density of the Universe and ∆200 = 200 (e.g., Carlberg et al., 1997). Therefore,

we assume that rv = r200. The infall region in which galaxies radially infall to the center

center. The boundary of this infall reion is the turnaround radius rt at which a galaxy’s

peculiar velocity (vpec) is canceled out by the global Hubble expansion. In other words, it

is the radius at which the infall velocity vanishes (vinf = vpec − H r = 0), which can be
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Figure 1.2: Nested spherical shells in the field of a simulated cluster. The left panel shows
the shells in real space and the right panels show the shells in the redshift spaces. The FoG
effect is shown clearly (blue and red shells) in the redshift space.

calculated as the radius at which ρ = 5.55ρc (e.g., Nagamine & Loeb, 2003; Busha et al.,

2005; Dünner et al., 2006).

In Figure 1.2, we introduce a set of nested shells of a spherically symmetric simu-

lated cluster. The shells are shown in both real space (left) and redshift space (right). Shells

drawn with thin lines are outside the cluster’s turnaround shell (bold) and shells drawn with

thick lines are inside. The innermost shell represents the virial radius. The near side of

each shell is dashed and the far side is solid line. Note that the shells inside the turnaround

turn inside-out so that near side and far side reverse, while the turnaround shell collapses so

that its near side and far side coincide to form a circular arc in this cross-section view. The

shells immediately outside the turnaround do not turn inside out, but are crowded together,
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so that some material outside the turnaround lies inside the envelope. This illustrates the

triplevalue problem (see Tonry & Davis, 1981), where there are some foreground and back-

ground galaxies that appear to be part of the cluster because of the distortion in redshift

space. In the redshift space, the distortion of line-of-sight velocities of galaxies (shells) both

in viral and infall regions due to the cluster potential well is shown clearly in right panel.

We introduce a simple algorithm, called FG, that identifies locations of clusters by looking

for the FOG effect. Similar algorithms were introduced in the literature to identity FoG

(e.g., Yoon et al., 2008; Tempel et al., 2018). We identify galaxy clusters in the redshift

space using the FG algorithm in the optical band using a high-quality spectroscopic data

set.

The observed velocity of a galaxy, of radial infall speed srad and azimuthal angle

φ, on a shell of radius r′ centered on the cluster is given by

sobs = (H0R− v0x) cosφ−
(
srot(r

′)
R

r′
+ v0y

)
sinφ

±
(
H0r

′ − srad(r′)
)(

1−
(
R

r′
sinφ

)2
)1/2

,

(1.1)

where v0x and v0y are the radial and transverse peculiar velocities of the observer, respec-

tively, and srot is rotational speed about the cluster center (see Abdullah et al., 2013 for

details). Notice that equation 1.1 is a generalized case of equation (23) in Regos & Geller

(1989), which ignores the spatial velocity of the observer with respect to the cluster center

and assumes the flow is purely radial.
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1.2 Outline

The dissertation includes three publications which are discussed in the next three

chapters. In chapter two, we discuss the issue of identification of cluster membership and

introduce the GalWeight technique, a new technique for assigning galaxy cluster mem-

bership. This technique is specifically designed to simultaneously maximize the number

of bona fide cluster members while minimizing the number of contaminating interlopers.

The GalWeight technique can be applied to both massive galaxy clusters and poor galaxy

groups. Moreover, it is effective in identifying members in both the virial and infall regions

with high efficiency. We apply the GalWeight technique to MDPL2 & Bolshoi N-body

simulations, and find that it is > 98% accurate in correctly assigning cluster membership.

We show that GalWeight compares very favorably against four well-known existing cluster

membership techniques (shifting gapper; Girardi et al., 1998b, den Hartog; den Hartog &

Katgert, 1996, caustic; Diaferio, 1999, SIM; Yahil, 1985; Regos & Geller, 1989). We also

apply the GalWeight technique to a sample of twelve Abell clusters (including the Coma

cluster) using observations from the Sloan Digital Sky Survey. This chapter is introduced

in the publication Abdullah M. H., Wilson G., Klypin A., 2018, ApJ, 861, 22, Abdullah

et al. (2018).

In chapter three, we apply the GalWeight technique to the SDSS-DR13 spectro-

scopic data set to create a new publicly-available catalog of 1800 galaxy clusters (GalWeight

cluster catalog, GalWCat19) and a corresponding catalog of 34471 identified member galax-

ies. The clusters are identified from overdensities in redshift-phase space by looking for

FOG. The cluster masses are calculated individually using the virial theorem, corrected

9



for the surface pressure term and NFW model. The completeness of the cluster catalog

(GalWCat19) and the procedure followed to determine cluster mass are tested on the Bol-

shoi N-body simulations. The 1800 GalWCat19 clusters range in redshift between 0.01− 0.2

and in mass between (0.4 − 14) × 1014h−1M�. The cluster catalog provides a large num-

ber of cluster parameters including sky position, redshift, membership, velocity dispersion,

and mass at overdensities ∆ = 500, 200, 100, 5.5. The 34471 member galaxies are identified

within the radius at which the density is 200 times the critical density of the Universe. The

galaxy catalog provides the coordinates of each galaxy and the ID of the cluster that the

galaxy belongs to. The relationship between In this chapter, we also discuss the comparison

between the GalWCat19 catalog and some previous catalogs and introduce the cluster mass-

velocity dispersion relation. This chapter is introduced in the publication Abdullah M. H.,

Wilson G., Klypin A., Old L., Ali G. B., 2020, ApJS, 246, 2, Abdullah et al. (2020b).

In chapter four, we derive cosmological constraints on the matter density, Ωm,

and the amplitude of fluctuations, σ8, using GalWCat19. We investigate the volume and

mass incompleteness of GalWCat19 to obtain a complete local subsample of 756 clusters

(SelFMC) in a redshift range of 0.045 ≤ z ≤ 0.125 and virial masses of M ≥ 0.8 × 1014

h−1 M� with mean redshift of z = 0.085 used to constrain Ωm and σ8. We compare our

complete sample with theoretical models to constrain the cosmological parameters. By

analyzing the SelFMC sample, we obtain Ωm = 0.310+0.023
−0.027 ± 0.041 (systematic) and σ8 =

0.810+0.031
−0.036 ± 0.035 (systematic), with a cluster normalization relation of σ8 = 0.43Ω−0.55

m .

We compare our results with recent results constrained from some cosmological probes. Our

constraints on Ωm and σ8 are consistent and very competitive with those obtained from
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non-cluster abundance cosmological probes such as Cosmic Microwave Background (CMB),

Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The joint analysis of our

cluster data with Planck18+BAO+Pantheon gives Ωm = 0.315+0.013
−0.011 and σ8 = 0.810+0.011

−0.010.

There are several unique aspects to this approach: we use the largest spectroscopic data

set currently available, and we assign membership using the GalWeight technique which we

have shown to be very effective at simultaneously maximizing the number of bona fide cluster

members while minimizing the number of contaminating interlopers. Moreover, rather than

employing scaling relations, we calculate cluster masses individually using the virial mass

estimator. Since GalWCat19 is a low-redshift cluster catalog we do not need to make any

assumptions about evolution either in cosmological parameters or in the properties of the

clusters themselves. This chapter is accepted for publication in the ApJ as Abdullah M.

H., Klypin A., Wilson G., 2020b, Abdullah et al. (2020a) (accepted for publication in the

ApJ in July 2020).
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Chapter 2

GalWeight: A New and Effective

Weighting Technique for

Determining Galaxy Cluster and

Group Membership

We introduce GalWeight, a new technique for assigning galaxy cluster member-

ship. This technique is specifically designed to simultaneously maximize the number of bona

fide cluster members while minimizing the number of contaminating interlopers. The Gal-

Weight technique can be applied to both massive galaxy clusters and poor galaxy groups.

Moreover, it is effective in identifying members in both the virial and infall regions with high

efficiency. We apply the GalWeight technique to MDPL2 & Bolshoi N-body simulations,

and find that it is > 98% accurate in correctly assigning cluster membership. We show that
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GalWeight compares very favorably against four well-known existing cluster membership

techniques (shifting gapper, den Hartog, caustic, SIM). We also apply the GalWeight tech-

nique to a sample of twelve Abell clusters (including the Coma cluster) using observations

from the Sloan Digital Sky Survey. We end by discussing GalWeight’s potential for other

astrophysical applications.

2.1 Introduction

The problem of contamination of kinematic samples of galaxies in clusters by

foreground and background galaxies is longstanding. It arises because of the fact that only

the projected positions and velocities of galaxies are measured in redshift surveys. Due to

the lack of knowledge about the motion perpendicular to the line of sight, it is difficult to

judge a priori which of the galaxies found close to a cluster in projected space are actually

bound to it and a good tracer of the underlying potential. Excluding fiducial members or

including unbound galaxies, or interlopers, may lead to significantly incorrect estimates of

the cluster mass.

Several methods have been suggested in the literature to address this problem.

All these methods aim at cleaning the galaxy sample by removing non-members before

attempting a dynamical analysis of the cluster. Some algorithms utilize only the redshift

information, such as (i) the 3σ-clipping method (Yahil & Vidal, 1977) which iteratively

eliminates interlopers with velocities greater than 3σ; (ii) the fixed gapper technique (Beers

et al., 1990; Zabludoff et al., 1990) in which any galaxy that is separated by more than

a fixed value (e.g., 1σ of the sample or 500-1000 km s−1) from the central body of the
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velocity distribution is rejected as a non-member; or (iii) the jackknife technique (Perea

et al., 1990a) which removes the galaxy whose elimination causes the largest change in the

virial mass estimator. These methods are primarily based on statistical rules and some

selection criteria. Other algorithms utilize both position and redshift information, such

as (i) the shifting gapper technique (Fadda et al., 1996) which applies the fixed gapper

technique to a bin shifting along the distance from the cluster center, or (ii) the den Hartog

& Katgert (1996) technique that estimates the maximum (escape) velocity as a function of

distance from the cluster center calculated either by the virial or projected mass estimator

(e.g., Bahcall & Tremaine, 1981; Heisler et al., 1985).

In addition to the techniques described above, the spherical infall models (hereafter

referred to as SIMs, e.g., Gunn & Gott, 1972; Yahil, 1985; Regos & Geller, 1989; Praton &

Schneider, 1994) can determine the infall velocity as a function of distance from the cluster

center. The SIM in phase-space has the shape of two trumpet horns glued face to face

(Kaiser, 1987) which enclose the cluster members. However, studies shows that clusters

are not well fit by SIMs in projected phase-space diagram, because of the random motion

of galaxies in the cluster outer region caused by the presence of substructure or ongoing

mergers (van Haarlem & van de Weygaert, 1993; Diaferio, 1999). A recent investigation

(Abdullah et al., 2013) showed that SIMs can be applied to a sliced phase-space by taking

into account the distortion of phase-space due to transverse motions of galaxies with respect

to the observer and/or rotational motion of galaxies in the infall region in the cluster-rest

frame. However, that is out of the scope of the current paper.
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Another sophisticated method is the caustic technique described by Diaferio (1999)

which, based on numerical simulations (Serra & Diaferio, 2013), is estimated to be able to

identify cluster membership with ∼ 95% completeness within 3rv (rv is the virial radius

defined below). The caustic technique depends on applying the two-dimensional adaptive

kernel method (hereafter, 2DAKM, e.g., Pisani, 1993, 1996) to galaxies in phase-space (Rp,

vz), with the optimal smoothing length hopt = (6.24/N)
√

(σ2
Rp

+ σ2
vz)/2, where σRp and

σvz are the standard deviations of projected radius and line-of-sight velocity, respectively,

and N is the number of galaxies. σRp and σvz should have the same units and therefore the

coordinates (Rp, vz) should be rescaled such that q = σv/σRp , where q is a constant which

is usually chosen to be 25 or 35 (additional details about the application of this technique

may be found in Serra et al., 2011).

One more technique that should be mentioned here is the halo-based group finder

(Yang et al., 2005, 2007). Yang et al. (2007) were able to recover true members with

∼ 95% completeness in the case of poor groups (∼ 1013M�). However, they found that

the completeness dropped to ∼ 65% for rich massive clusters (∼ 1014.5M�). Also, theirs

is an iterative method which needs to be repeated many times to obtain reliable members.

Moreover, its application depends on some assumptions and empirical relations to identify

the group members.

This paper introduces a simple and effective new technique to constrain cluster

membership which avoids some issues of other techniques e.g., selection criteria, statistical

methods, assumption of empirical relations, or need for multiple iterations. The paper is

organized as follows. The simulations used in the paper are described in §2.2. In §2.3 the
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GalWeight technique is introduced and its efficiency at identifying bona fide members is

tested on MultiDark N-body simulations. In §2.4, we compare GalWeight with four well-

known existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM).

We apply GalWeight to twelve Abell clusters (including the Coma cluster) in §2.5, and

present our conclusions in §4.5.4. Throughout this paper we adopt ΛCDM with Ωm = 0.3,

ΩΛ = 0.7, and H0 = 100 h km s−1 Mpc−1, h = 1.

2.2 Simulations

In this section we describe the simulated data that we use in this work in order to

test the efficiency of the GalWeight technique to recover the true membership of a galaxy

cluster.

1. MDPL2: The MDPL2 1 simulation is an N-body simulation of 38403 particles

in a box of co-moving length 1 h−1 Gpc, mass resolution of 1.51 × 109 h−1 M�, and

gravitational softening length of 5 h−1 kpc (physical) at low redshifts from the suite of

MultiDark simulations (see Table 1 in Klypin et al., 2016). It was run using the L-GADGET-

2 code, a version of the publicly available cosmological code GADGET-2 (Springel, 2005). It

assumes a flat ΛCDM cosmology, with cosmological parameters ΩΛ = 0.692, Ωm = 0.307, Ωb

= 0.048, n = 0.96, σ8 = 0.823, and h = 0.678 (Planck Collaboration et al., 2014). MDPL2

provides a good compromise between numerical resolution and volume (Favole et al., 2016).

It also provides us with a large number of clusters of different masses extended from 0.7×1014

to 37.4× 1014 h−1 M� (the range used to test the efficiency of GalWeight).

1https://www.cosmosim.org/cms/simulations/mdpl2/
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2. Bolshoi: The Bolshoi simulation is an N-body simulation of 20483 particles

in a box of co-moving length 250 h−1 Mpc, mass resolution of 1.35 × 108 h−1 M�, and

gravitational softening length of 1 h−1 kpc (physical) at low redshifts. It was run using the

Adaptive Refinement Tree (ART) code (Kravtsov et al., 1997). It assumes a flat ΛCDM

cosmology, with cosmological parameters (ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.047, n = 0.95,

σ8 = 0.82, and h = 0.70. Bolshoi provides us with clusters of higher mass resolution than

MDPL2. Thus, we use both simulations to test the efficiency of GalWeight to recover the

true membership.

For both simulations halos are identified using the Bound Density Maximum

(BDM) algorithm (Klypin & Holtzman, 1997; Riebe et al., 2013), that was extensively

tested (e.g., Knebe et al., 2011) which identifies local density maxima, determines a spher-

ical cut-off for the halo with overdensity equal to 200 times the critical density of the

Universe (ρ = 200ρc) for MDPL2 and 360 times the background matter density of the

Universe (ρ = 360ρbg), and removes unbound particles from the halo boundary. Among

other parameters, BDM provides a virial masses and radii. The virial mass is defined as

Mv = 4
3π200ρcr

3
v for MDPL2 and Mv = 4

3π360ρbgr
3
v for Bolshoi (see Bryan & Norman,

1998; Klypin et al., 2016). The halo catalogs are complete for halos with circular velocity

vc ≥ 150 km s−1 for MDPL2 (Klypin et al., 2016) and vc ≥ 100 km s−1 for Bolshoi (e.g.,

Klypin et al., 2011; Busha et al., 2011; Old et al., 2015).

For both MDPL2 and Bolshoi the phase-space (line-of-sight velocity vz versus

projected radius Rp) of a distinct halo (cluster) is constructed as follows. We assume the

line-of-sight to be along the z-direction and the projection to be on the x-y plane. We select
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a distinct halo of coordinates (xh, yh, zh) and velocity components (vhx , v
h
y , v

h
z ), and then

we calculate the observed line-of-sight velocity of a subhalo, taking the Hubble expansion

into account, as vz = (vgz − vhz ) + H0(zg − zh), where (xg, yg, zg) and (vgx, v
g
y , v

g
z) are the

coordinates and velocity components of the subhalo, respectively. Finally, we select all

subhalos within a projected radius of 2Rp,max = 10 h−1 Mpc from the center of distinct

halo and within a line-of-sight velocity interval of |vz,max| = 3500 km s−1. These values are

chosen to be sufficiently large to exceed both the turnaround radius and the length of the

Finger-of-God (hereafter, FOG) which are typically ∼ 7 − 8 h−1 Mpc and ∼ 6000 km s−1

respectively for massive clusters. The turnaround radius rt is the radius at which a galaxy’s

peculiar velocity (vpec) is canceled out by the global Hubble expansion. In other words, it

is the radius at which the infall velocity vanishes (vinf = vpec −H r = 0).

2.3 The Galaxy Weighting Function Technique (GalWeight)

In this section, we describe the GalWeight technique in detail and demonstrate its

use by applying it interactively to a simulated cluster of mass 9.37× 1014 h−1 M� selected

from the Bolshoi simulation. Figure 2.1 shows the phase-space distribution of subhalos

(galaxies) near the center of the simulated cluster.

The GalWeight technique works by assigning a weight to each galaxy i according

to its position (Rp,i,vz,i) in the phase-space diagram. This weight is the product of two

separate two-dimensional weights which we refer to as the dynamical and phase-space

weights. The dynamical weight (see § 2.3.1 parts A.1 and A.2, and Figure 2.4a which is

2Throughout the paper we utilize small r to refer to 3D radius and capital R to refer to projected radius.
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Figure 2.1: Line-of-sight velocity vz as a function of projected radius Rp in the extended
region around a simulated cluster of mass 9.37 × 1014 h−1 M� selected from the Bolshoi
simulation. The Finger-of-God is clearly seen in the main body of the cluster within Rp . 1
Mpc h−1. The effect of the mass concentration in and around the cluster is manifested as
a concentration of galaxies around vz = 0 line well outside the cluster itself. Interlopers are
mostly galaxies at large projected distances and large peculiar velocities. In § 2.3 and in
Figures 2.2, 2.3 & 2.4 we show in detail how GalWeight can be applied to this cluster to
distinguish between interlopers and cluster members (Figure 2.5).
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Figure 2.2: Weighting function along projected radius Rp for the simulated cluster of mass
9.37 × 1014 h−1 M� selected from Bolshoi (see § 2.3.1 A.1). The left panel (a) shows the
function DRp derived from the data (black points, Equation (2.1)), normalized by Equation
(2.2), and fitted by WRp (red curve, Equation (2.4)). The right panel (b) presents its
corresponding probability density function in phase-space diagram. As shown in (a & b),
the weighting is greatest at Rp = 0 and decreases outwards.

the product of Figure 2.2b and Figure 2.3b) is calculated from the surface number density

Σ(Rp), velocity dispersion σvz(Rp), and standard deviation σRp(vz) profiles of the cluster.

The phase-space weight (see § 2.3.1 part B and Figure 2.4b) is calculated from the two-

dimensional adaptive kernel method that estimates the probability density underlying the

data and consequently identification of clumps and substructures in the phase-space (Pisani,

1996). The total weight is then calculated as the product of the dynamical and phase-space

weights (see § 2.3.1 part C and Figure 2.4c). The advantage of using the total weight rather

than the dynamical weight or the phase-space weight alone is discussed in § 2.3.3.
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Figure 2.3: Weighting function along line-of-sight velocity vz for the simulated cluster se-
lected from Bolshoi. The left panel (a) shows the function Dvz calculated from the data
(black points, Equation (2.5)), normalized by Equation (2.6), and fitted byWvz (blue curve,
Equation (2.7)). The right panel (b) presents its corresponding probability density function
in phase-space. As shown in (a & b), the applied weight is greatest at vz = 0 and decreases
as the absolute line-of-sight velocity increases.
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2.3.1 Galaxy Weighting Functions

A. Dynamical Weighting Wdy(Rp, vz)

In calculating the dynamical weighting function, we assume that the weighting we

apply should be larger at the cluster center i.e., at the origin in phase-space (Figure 2.1),

and decay along both the Rp and vz phase space axes. This weighting function is, therefore,

a product of two individual weighting functions; one which decays along the Rp-axis and

the other along the vz-axis as described below.

A.1. Rp-axis Weighting Function, WRp(Rp)

In order to calculate the projected radius weighting function, WRp(Rp), we select

two properties that are strongly correlated with projected radius and with the dynamical

state of a cluster.

The first property is the Surface Number Density Profile Σ(Rp), defined

as the number of galaxies per unit area as a function of distance from the cluster center.

It has its maximum value at the cluster center and decreases with radial distance, and

is also strongly correlated with the mass distribution of the cluster. The significance of

introducing Σ(Rp) for calculating WRp is that the velocities of member galaxies in the core

of some clusters can be as high as ≈ 3000 km s−1. It produces the Kaiser or FOG effect (see

Kaiser, 1987). This FOG distortion is the main reason that many membership techniques

fail to correctly identify galaxies in the core with high line-of-sight velocities as members.

Thus, Σ(Rp) is essential to recover the members in the cluster core. In other words, ignoring

Σ(Rp) means missing some of the cluster members in the core.
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The second property is the Projected Velocity Dispersion Profile, σvz(Rp).

The significance of introducing σvz(Rp) for calculating WRp is that it characterizes the

dynamical state of a cluster from its core to its infall region. Specifically, there are random

motion of member galaxies in the infall region due to the presence of substructures and

recent mergers (e.g., van Haarlem & van de Weygaert, 1993; Diaferio & Geller, 1997). This

effect of random motion can be taken into account implicitly in σvz(Rp). This is the main

reason why the SIM technique fails in the cluster outskirts in the projected phase-space.

Thus, σvz(Rp) is essential to recover the members in the cluster infall region. In other

words, ignoring σvz(Rp) means missing some of the cluster members in the infall region.

Thus, the weighting WRp(Rp) in the projected radius direction can be calculated

by introducing the function DRp(Rp) that is given by

DRp(Rp) =
Σ(Rp)σvz(Rp)

Rνp
, (2.1)

with the normalization

NRp =

∫ Rp,max

0
DRp(Rp)dRp, (2.2)

where Rp,max is the maximum projected radius in phase-space. The denominator Rνp , where

the slope of the power low ν is a free parameter in the range −1 . ν . 1, is introduced in

Equation (2.1) to provide flexibility and generalization for the technique. The free parameter

ν is selected to adjust the effect of the distortion of FOG in the core and the distortion of

the random motion in the outer region. It is defined as
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ν =
σFOG(R ≤ 0.25)

σrand(0.25 < R ≤ 4))
− 1, (2.3)

where σFOG is the velocity dispersion of the core galaxies and σrand is the velocity dispersion

of the galaxies outside the core.

The function DRp(Rp), calculated from the data, is contaminated by interlopers

that cause scattering, especially at large projected distances (see black points in the left

panel of Figure 2.2). Therefore, in order to apply a smooth weighting function, we fit

DRp(Rp) with an analytical function. Any analytical function that is a good fit to DRp(Rp)

could be utilized. In this paper we choose to use the function

WRp(Rp) = A0

(
1 +

R2
p

a2

)γ
+Abg, (2.4)

which has four parameters: a is a scale radius (0 < a . 1), γ is a slope of the power law

(−2 . γ < 0), and A0 and Abg are the central and background weights in the Rp-direction.

These parameters are determined by applying the chi-squared algorithm using the Curve

Fitting MatLab Toolbox. Note that the analytical function we selected here has the same

form as the generalized King model (King, 1972; Adami et al., 1998).

Thus, the weight WRp(Rp,i) of each galaxy can be calculated according to its

projected radius Rp from the cluster center. The weighting along Rp is shown in Figure 2.2a,

where the function DRp(Rp) is normalized using Equation (2.2). The data are smoothed

and approximated using Equation (2.4) (shown as red line). The right panel (b) shows the

projected radius weight function in phase space.
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A.2. vz-axis Weighting Function, Wvz(vz)

In phase-space, most members are concentrated near the line vz = 0 and the

number of members decreases with increasing absolute line-of-sight velocity. The weighting

function along vz-axis can, therefore, be approximated by the histogram of the number

of galaxies per bin, Nbin(vz), or equivalently the standard deviation of projected radius,

σRp(vz), directed along the line-of-sight velocity axis, normalized by the total number of

galaxies Ntot in the cluster field. In other words, the weighting in the line-of-sight velocity

direction can be calculated by introducing the function Dvz(vz) that is given by

Dvz(vz) = σRp(vz), (2.5)

with the normalization

Nvz =

∫ vz,max

−vz,max
Dvz(vz)dvz, (2.6)

where vz,max is the maximum line-of-sight velocity of phase-space. As above, to obtain a

smooth weighting function in vz, the histogram or equivalently Dvz(vz) can be fitted by an

analytical function. In this paper we select an exponential model that is given by

Wvz(vz) = B0 exp (b vz) + Bbg, (2.7)

where B0 is the central weight, Bbg is the background weight in vz and b is scale parameter

(−0.01 . b < 0). Again, these parameters are determined by applying the chi-squared
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Figure 2.4: Weights to be applied as a function of position in line-of-sight velocity/projected
radius phase-space for the simulated cluster selected from the Bolshoi simulation. Panel
(a) shows the dynamical weight Wdy (The product of the weights shown in Figures 2.2b
and 2.3b). Panel (b) presents the phase-space weight Wph calculated from the 2DAKM.
The total weight Wtot = Wdy × Wph is shown in panel (c) with explicitly drawing three
contour weights. The weight Wdy is maximum at the origin (0,0) and decreases along both
the Rp and vz axes andWph gives higher weight for galaxy clumping around the center and
substructures as well. Note that the scaling for each panel is independent, with magenta
representing maximum values.

algorithm using the Curve Fitting MatLab Toolbox. The weighting along vz, is shown in

Figure 2.3a, where the function Dvz(vz) (black points) is normalized using Equation (2.6).

The data are smoothed and approximated by Equation (2.7) for an exponential model (blue

curve). The right panel (b) shows the resulting exponential-model weight as a function of

location in line-of-sight velocity/projected radius phase-space. As shown in (a & b), the

applied weight is greatest at vz = 0 and decreases as the absolute line-of-sight velocity

increases.

We can now construct a two-dimensional dynamical weight Wdy(Rp, vz) by mul-

tiplying WRp(Rp) and Wvz(vz) together:

Wdy(Rp, vz) =WRp(Rp)Wvz(vz), (2.8)
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Wdy(Rp, vz) is shown in the left panel of Figure 2.4, and is the product of the weights shown

in Figure 2.2b and Figure 2.3b. The weight is maximum at the origin, and decreases along

both Rp and vz.

To sum up, the dynamical weight is calculated from three properties (surface

number density Σ(Rp) and velocity dispersion σvz(Rp) along Rp, and standard deviation of

projected radius σRp(vz) along vz) which are correlated strongly with the dynamics of the

cluster. This weight takes into account the effects of the FOG in the cluster core and the

random motion of galaxies in the infall region.

B. Phase-Space Weighting, Wph(Rp, vz)

This weighting is the coarse-grained phase-space density which can be simply calcu-

lated by the 2-dimensional adaptive kernel method (2DAKM, e.g., Silverman, 1986; Pisani,

1996). The kernel density estimator is the estimated probability density function of a ran-

dom variable. For N galaxies with coordinates (x, y) = (Rp, vz) the density estimator is

given by

f(x, y) =
1

N

N∑
i=1

1

hx,ihy,i
K

(
x−Xi

hx,i

)
K

(
y − Yi
hy,i

)
(2.9)

where, the kernel K(t) is given by Gaussian distribution

K(t) =
1√
(2π)

exp

(
−1

2
t2
)

(2.10)

and hj,i = λihj is the local bandwidth, hj = σjN
−1/6 is the fixed bandwidth for 2-

dimensional space and σj is the standard deviation for j={x,y}. The term λi = [γ/f0(xi, yi)]
0.5
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Figure 2.5: Identification of the simulated cluster membership from weighted galaxies. Panel
(a) shows the weight of each galaxy in line-of-sight velocity/projected radius phase-space
(magenta color indicates higher weight). Panel (b) shows a histogram or PDF of the weight
applied to each galaxy, Wtot(Rp,i, vz,i). 1DAKM fitting returns a bimodal PDF in this
example of the simulated cluster. We choose to use the number density method (NDM,
Abdullah et al., 2013) to identify the contour weight value which separates cluster members
from interlopers. This is shown by the solid red vertical line in panel (c) and solid red line in
panel (a). 1σ confidence intervals are shown by the two red dashed lines. The two vertical
dashed-black lines represent the virial and turnaround radii, where the cluster members are
those enclosed by the best contour line and within the turnaround radius. We impose one
additional cut, shown by the black solid lines in panel (a), cutting the red contour line in
the very inner radius by the maximum vz of the enclosed members.

and log γ =
∑

i log f0(xi, yi)/N , where f0(xi, yi) is given by Equation 2.9 for λi = 1 (see

also, Shimazaki & Shinomoto, 2010).

Consequently, applying 2DAKM for the distribution of galaxies in the phase-space

demonstrates high weights for positions of high-density distribution of galaxies. Therefore,

the main purpose of introducing the phase-space weight is to take into account the effect

of the presence of any clump or substructure in the field that cannot be counted by the dy-

namical weight. Also, the phase-space weight is introduced to reduce the excessive increase

of dynamical weight near the center (see §2.3.3). The phase-space weight Wph(Rp, vz) is

shown in Figure 2.4b that gives more weights for galaxies in clumps and substructures, and
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from the distribution of galaxies in the cluster field this weighting function is maximum

around the cluster center.

C. Total Weighting, Wtot(Rp, vz)

The total weighting function is calculated as

Wtot(Rp, vz) =Wdy(Rp, vz)Wph(Rp, vz), (2.11)

and shown in Figure 2.4c for the simulated cluster. It shows the probability distribution

function of the total weight Wtot(Rp, vz). The weighting in Figure 2.4c is then applied to

individual galaxies. Figure 2.5a shows Fig 2.1 once again, but now after applying the “total

weighting”. We still need to separate cluster members from interlopers. We explain how to

do that in § 2.3.2.

2.3.2 Membership Determination

Figure 2.5a shows the weight of each galaxy in the simulated cluster phase-space.

The question is now how to utilize the weighted galaxies in phase-space to best identify

cluster members. One would like to identify a single, optimal weight value which separates

cluster members from field galaxies i.e., identify the best contour weight to select in panel

(a). One way is to consider the probability distribution function (PDF), or histogram of

the total weight for all galaxies, which is shown in Figure 2.5b. Fitting the PDF using a

1DAKM reveals two obvious peaks (bimodal PDF). One might imagine simply drawing a

vertical line to separate the members located on the right with higher weights from the

interlopers located on the left. However, not all clusters show this bimodality in the PDF of
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Figure 2.6: Application of dynamical, phase-space, and total weights (green, blue, and black
lines, respectively) to three simulated clusters taken from the Bolshoi simulation (§ 2.2).
The red points show true members within 3rv. Applying the dynamical weight alone (green)
results in the inclusion of many galaxies within R ∼ 1 Mpc h−1 with very high line-of-sight
velocities. Applying the phase-space weight alone (blue), fails to recover some members in
the core while simultaneously incorrectly including some interlopers at large distances due
to the presence of nearby clusterings and clumps. The total weight (black), the product of
the dynamical and phase-space weights, recovers true members effectively in both the core
and infall regions (see Table 2.1).

Wtot. Another way could be to exclude all galaxies that have weights less than, for example,

3σ from the average value of the main peak (i.e.,Wcut =Wpeak−3σ). However, attempting

to do the separation by either of these two ways is subjective.

Therefore, we prefer to select the optimal contour weight by utilizing the Number

Density Method (hereafter, NDM), a technique which was introduced in Abdullah et al.

(2013). The goal in applying the method here, is to find the optimal contour weight (or

line) that returns the maximum number density of galaxies. In other words, we select

a certain contour line (weight) and calculate its enclosed area and number of galaxies,

Nin (which contribute positively), then account for the number of galaxies, Nout (which

contribute negatively) located outside this contour line. Then, the number density of this
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contour line can be calculated by (Nin −Nout)/Area (see figure 9 in Abdullah et al., 2013).

In Figure 2.5c the PDF of the number density of galaxies calculated by NDM is

plotted for weights (contour lines) in the range −12 ≤ logWtot ≤ −6. The optimal contour

line corresponds to the maximum number density of galaxies, the value of weight which

should be utilized as the separator of cluster members from interlopers, is shown by the red

vertical solid line with 1σ confidence intervals shown by the red two vertical dashed lines.

This optimal contour line with 1σ confidence are shown as solid and dashed red lines in

panel (a), respectively.

As shown in Figure 2.5a the optimal contour line extends to large distances (R ∼

10 h−1 Mpc) and not all galaxies within this boundary are members. Therefore, the last

step of GalWeight is to determine a cutoff radius within which the galaxies are assumed to

be bounded. Thus, the cluster members are defined as the galaxies enclosed by the optimal

contour line and within the cutoff radius. This cutoff radius can be adopted as the virial

radius rv (which is the boundary of the virialized region) or the turnaround radius rt (which

is the boundary of the cluster infall region). Note that the main goal of this paper is to

introduce and test the efficiency of GalWeight to recover the true members in the virial and

infall regions using simulations. Thus, knowing the virial radius of each simulated cluster

we test the efficiency of GalWeight at rv, 2rv, and 3rv projected on the phase-space diagram

as described in §2.3.4 and Table 2.1 (see, e.g., Serra & Diaferio, 2013). However, for our

sample of the twelve Abell clusters (observations) rv and rt are determined from the mass

profile estimated by the virial mass estimator and NFW mass profile (Navarro et al., 1996,

1997) as discussed in §2.5.
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We impose one additional cut, shown by the solid black lines highlighted by black

circles in panel (a), to cut the red contour line in the very inner radius by the maximum vz

of the enclosed members. This is because in some cases the optimal contour line extends

to very high velocities in the innermost region (R . 0.25h−1 Mpc) without including any

other members, so it is not necessarily to show this tail of the contour line.

The main steps in applying the GalWeight technique to determine cluster mem-

bership are summarized below:

1. Make an appropriate cut inRp and vz, and plot galaxies in line-of-sight velocity/projected

radius phase-space. In this paper, we use Rp,max = 10 h−1 Mpc and |vz,max| = 3500 km

s−1.

2. Calculate the function
Σ(Rp)σ(Rp)

Rνp
and fit it with an analytical model (e.g., Equation 2.4)

to obtain WRp(Rp).

3. Calculate the function σvz(vz) and fit it with an analytical model (e.g., Equation 2.7) to

obtain Wv(v).

4. Determine the dynamical weighting, Wdy(Rp, vz) =WRp(Rp)×Wvz(vz).

5. Apply the 2DAKM in phase-space to determine the phase-space weighting, Wph(Rp, vz).

6. Calculate the total weight Wtot(Rp, vz) =Wdy(Rp, vz)×Wph(Rp, vz).

7. Plot the PDF for all galaxy weights and apply a cut, retaining all galaxies with weight

larger than this cut as members (NDM is used here to determine the optimal value of cut).

8. Determine the cutoff radius (rv or rt) using a dynamical mass estimator and identify

cluster members as those enclosed by the optimal contour line and within the cutoff radius.
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2.3.3 Why do we use total weight rather than dynamical or phase-space

weights?

One may ask why we depend on the total weight to assign a cluster membership

rather than using the dynamical weight or phase-space weight alone. We present Figure 2.6

to help answer this question. It shows the phase-space of three Bolshoi simulated clusters

(see §2.2). Using simulated clusters brings the advantage that true members are known

definitively. Figure 2.6 shows the optimal contour lines determined by applying, separately,

the dynamical weight (green line), the phase-space weight (blue line) and the total weight

(black line). The red points show true members within 3rv.

In Figure 2.6, the dynamical weight Wdy(Rp, vz) (green; see also Figure 2.4a)

is seen to be very smooth and idealised. In other words, Wdy(Rp, vz) describes well an

isolated galaxy cluster in phase-space. It does not take into account the effects of nearby

clusters, clumps and/or substructures. Also, it shows an excessive increase near the cluster

center (∼ 1 h−1 Mpc) and incorrectly includes interlopers near the center which have very

high velocities. This effect is due to introducing Σ(Rp) in Wdy(Rp, vz), where the surface

number density is very high near the cluster center. However, ignoring Wdy(Rp, vz) leads

to missing some cluster members especially those that close to the center in phase-space.

Thus, Wdy(Rp, vz) cannot be used on its own to assign cluster membership, but it is very

important for correctly identifying members with high line-of-sight velocities.

Figure 2.6 demonstrates that, on its own, phase-space weighting Wph(Rp, vz) also

has some difficulty in recovering true cluster members (blue; see also Figure 2.4b). This

is because it does not take into account the FOG effect in the cluster core, where those
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members that have high velocities do not have high concentration, so they are assigned low

weights in phase-space and not counted as members. Also, the presence of nearby clusterings

and substructures have the effect of widening the “optimal” contour line. Consequently,

it is very difficult to separate true members from galaxies (interlopers) located in nearby

clumps. This results in the inclusion of some interlopers in the infall region. In summary,

usingWph(Rp, vz) alone, simultaneously excludes some true members near the cluster center

and includes some interlopers in the infall region.

We have shown that both the dynamical weight and phase-space weight have

issues in identifying true members when applied alone. However, as the black solid line in

Figure 2.6 shows, the total weight (the product of the dynamical and phase-space weights),

is very effective. It can simultaneously identify cluster members moving with high velocities

in the core (Rp . 1 Mpc h−1) as well as members moving with random motions in the infall

regions (Rp ∼ 3rv).

2.3.4 Testing the Efficiency of GalWeight on MDPL & Bolshoi Simula-

tions

To further demonstrate and quantify the GalWeight technique at assigning mem-

bership, we again utilize the MDPL2 & Bolshoi3 simulations from the suite of MultiDark

simulations. The efficiency of GalWeight can be quantified by calculating two fractions

defined as follows. The first is the completeness fc, which is the fraction of the number

of fiducial members identified by GalWeight as members in the projected phase-space rel-

ative to the actual number of 3D members projected in the phase-space. The second is

3https://www.cosmosim.org/cms/simulations/mdpl2/
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the contamination fi, which is the fraction of interlopers incorrectly assigned to be mem-

bers, projected in the phase-space (see e.g., Wojtak &  Lokas, 2007; Serra & Diaferio, 2013).

Ideally, of course, GalWeight would return fractions of fc = 1 and fi = 0.

MDPL2 provides us with 1500 simulated clusters with masses ranging from 0.73×

1014h−1M� to 37.4 × 1014h−1M� to which we can apply GalWeight. We calculate the

fractions fc and fi at three radii – rv, 2rv and 3rv. As shown in Table 2.1, the mean values

of fc and fi within rv are 0.993 and 0.112 respectively for the 1500 clusters overall. Also,

the fraction fc decreases from 0.993 at rv to 0.981 at 3rv.

For Bolshoi, we have about 500 clusters with masses greater than 0.70×1014h−1M�.

In order to increase the cluster sample of Bolshoi to 1500 clusters, we randomly select

different line-of-sights or ordinations for each distinct halo in additional to the original

line-of-sight along the z-direction (see column 3 in Table 2.1 for Bolshoi). Then, we ap-

ply GalWeight to each cluster. The mass range of the sample is 0.70 × 1014h−1M� to

10.92×1014h−1M� as shown in Table 2.1. The mean values of fc and fi within rv are 0.995

and 0.126 respectively for the 1500 clusters overall. Also, the fraction fc decreases from

0.995 at rv to 0.971 at 3rv.

The main reason that some interlopers are assigned as members (fi = 0.113 for

MDPL2 and fi = 0.226 for Bolshoi, as maximal value) is because of the triple-value problem

(Tonry & Davis, 1981). That is, there are some foreground and background interlopers that

appear to be part of the cluster body because of the distortion of phase-space. The effect

of the triple-value problem is apparent in Figure 2.7 (discussed below), where most of the

interlopers assigned as members are embedded in the cluster body.
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Figure 2.7: Application of the GalWeight technique (solid black lines) to twelve simulated
clusters selected from the MDPL simulation (§ 2.2). Red points show fiducial members
within 3rv. The virial mass (log Mv h

−1 M�) and number of members within rv is shown
for each cluster. Clearly, GalWeight does well in effectively identifying members with high
accuracy in both the virialized and infall regions for structures ranging in mass from rich
clusters to poor groups.
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Figure 2.8: Example of four well-known membership techniques applied to two simulated
clusters with mass of 10.92 × 1014 h−1 M� (top panles) & 4.24 × 1014 h−1 M� (bottom)
from the Bolshoi simulation (§ 2.2). In each panel, the red points represent fiducial cluster
members within 3rv, and the solid black lines show the demarcation contour enclosing
cluster members, identified by applying our new technique (GalWeight). The open blue
circles in panels (a, b, e & f) show members identified by the shifting gapper technique
using Nbin = 10 and Nbin = 15, respectively. Panel (c & g) shows the caustic technique
employing rescale parameters of q=25 (cyan lines), and q=35 (pink lines) and also the Den
Hartog technique (dotted black lines). The Yahil SIM (dark green lines) and Regős SIM
(light green lines) techniques are presented in panel (d & h). GalWeight recovers fiducial
members with high accuracy, improving upon the shifting gapper and den Hartog techniques
simultaneously at small and large projected radii, the caustic techniques at small projected
radius and the SIM technique at large projected radius (∼ 3rv)
.
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In order to demonstrate the ability of GalWeight to assign membership in the case

of both poor and massive clusters we divide the 1500 clusters (for each simulation) into

four mass bins as shown in Table 2.1. The fraction fc varies from 0.998 (0.996) for the poor

clusters of mean mass 1.44 × 1014 (1.13 × 1014) h−1M� to 0.988 (0.997) for the massive

clusters of mean mass 11.34 × 1014 (9.68 × 1014) h−1M� at rv for MDPL2 (Bolshoi). We

conclude that GalWeight can be applied effectively to a range of clusters masses with high

efficiency.

Figure 2.7 shows examples of GalWeight being applied to twelve simulated Bolshoi

clusters (solid black lines), where red and gray points show fiducial members and interlopers,

respectively, within 3rv. The twelve clusters shown in Figure 2.7 are ranked by virial mass,

with the most massive cluster (10.92 × 1014 h−1 M�) shown in the upper left corner and

the least massive one (1.06 × 1014 h−1 M�) shown in the lower right corner. The figure

demonstrates that GalWeight can effectively recover cluster membership for rich massive

galaxy clusters as well as small or poor groups of galaxies with the same efficiency.

In summary, applying GalWeight to the suite of MDPL2 and Bolshoi simulations

demonstrates that GalWeight can successfully recover cluster membership with high effi-

ciency. It also further demonstrates that it can simultaneously identify members in both

the virial and infall regions with taking into account the FOG effect and the random motion

of galaxies in the infall region. Furthermore, it can be applied to both rich galaxy clusters

and poor groups of galaxies with the same efficiency (see Table 2.1).
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2.4 A comparison of membership techniques

In this section, we perform a general comparison between GalWeight and four other

well-known techniques (shifting gapper, caustic, den Hartog technique, and SIM)

without doing any quantitative comparison. We defer testing the efficiency of different

membership techniques to recover the 3D true members of clusters and the influence of the

determining their dynamical masses to a future work (see e.g., Wojtak &  Lokas, 2007).

We begin by showing how each technique fares when it is applied in turn to two

simulated clusters with mass of 10.92×1014 h−1 M� & 4.24×1014 h−1 M� from the Bolshoi

simulation, shown in Figure 2.8. Making the assumption that the cluster is spherical,

fiducial members are assumed to lie within three virial radii, 3rv, and are shown as 2D

members in the phase-space (red points) in each panel of Figure 2.8. We select this radius

(3rv) in order to examine the ability of each technique to recover true members not only

within the virial radius but also in the infall region i.e., the region of a cluster that extends

from the viral radius rv to the turnaround radius rt, where rt ∼ 2 − 4 rv. Shown in

each panel by the solid black line is the optimal choice of demarcation contour separating

members and field galaxies identified by our GalWeight technique. For reasons of space we

do not describe each of the four techniques (shifting gapper, den Hartog, caustic and SIM)

in detail here. However, we summarize them below and refer the reader to the references

for more information.

The shifting gapper technique (Fadda et al., 1996) works by first placing galax-

ies into bins according to their projected radial distance from the cluster center. The user

has the freedom to choose the number of galaxies per bin which they believe is best-suited

40



to each application of the technique. Commonly chosen values are Nbin = 10 or 15. For

each bin, the galaxies are sorted according to their velocities, then any galaxy separated by

more than a fixed value (e.g., 1σ of the sample or 500-1000 km s−1) from the previous one

is considered an interloper and removed. Fadda et al. (1996) used a gap of 1000 km s−1 and

a bin of 0.4 h−1 Mpc or larger, in order to have at least 15 galaxies. The open blue circles

in panels (a, e) & (b, f) of Figure 2.8 represent the members identified by this technique,

where the number of galaxies utilized per bin was Nbin = 10 and Nbin = 15, respectively.

The gray points symbolize interlopers. Clearly, membership identification depends heavily

upon the choice of Nbin, as there are many differences between the galaxies identified as

members in panels (a, e) & (b, f). Additionally, in both cases, some true members of

the two cluster are missed, especially at small projected radius. Furthermore, the shifting

gapper technique depends on the choice of the velocity gap used to remove interlopers in

each bin. A choice of a high-velocity gap results in the identification of large fraction of

interlopers as cluster members, while the choice of a low-velocity gap results in missing true

cluster members (Aguerri et al., 2007).

The application of the caustic technique (e.g., Alpaslan et al., 2012; Serra &

Diaferio, 2013) is shown in panels (c & g) of Figure 2.8 for two rescale parameters, q

= 25 (cyan lines) and q = 35 (pink lines). Although this technique is quite successful

when applied to the cluster outskirts, it misses some of the true members located within

the core, which are the most important galaxies affecting the dynamics of the clusters.

They are missed because the caustic technique does not take into account the effects of

the FOG distortion. Also, the caustic technique cannot be applied to small galaxy groups.

41



Furthermore, applying the caustic technique is rather subjective and relies upon how the

caustics can be inferred from the data (Reisenegger et al., 2000; Pearson et al., 2014).

Nonetheless, it is still a powerful technique for estimating cluster masses.

The application of the den Hartog technique (den Hartog & Katgert, 1996) is

also shown by the dotted black lines in Figure 2.8 panels (c & g). This technique estimates

the escape velocity as a function of distance from the cluster center by calculating the

virial mass profile (see §2.5), vesc(R) =

√
2GMvir(R)

R , where G is the gravitational constant,.

The figure demonstrates that this technique is very biased towards including many far

interlopers. In addition, its application relies on assumptions of hydrostatic equilibrium

and spherical symmetry.

Panels (d & h) in Figure 2.8 show the application of two spherical infall models

(SIMs). The Yahil (Yahil, 1985) and Regős models (Regos & Geller, 1989) are shown by

dark green and light green lines respectively. Note that, one needs to determine the mass

density profile and the background mass density in order to apply the SIM technique and

determine the infall velocity profile (e.g., van Haarlem & van de Weygaert, 1993). We

determine the mass density profile for the simulated cluster from the NFW model (Navarro

et al., 1996 & 1997, Equations (2.15 & 2.16), knowing its concentration c, virial radius rv,

and scale radius rs = rv/C. Also, the background mass density is given by ρbg = Ωm ρc.

As shown in Figure 2.8 (d & h), SIMs have difficulty identifying true members in

the infall region in projected phase-space. This is due to the fact that the effect of random

motion of galaxies in the infall regions (van Haarlem & van de Weygaert, 1993; Diaferio,

1999) causes some members in the cluster outskirts to be missed. A recent investigation by
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our own team (Abdullah et al., 2013) has shown that SIMs can successfully be applied to

sliced phase-space by taking into account some kinds of distortions such as the transverse

motion of galaxies with respect to the observer and/or rotational motions of galaxies inside

the cluster. However, this is out of the scope of the current paper.

2.5 Observations - Application to a Sample of 12 Abell Clus-

ters

In this section we apply GalWeight to a sample of twelve Abell galaxy clusters,

with galaxy coordinates and redshifts taken from SDSS-DR124 (hereafter, SDSS-DR12 Alam

et al., 2015). In order to demonstrate the technique for both massive and poor clusters,

we selected clusters with Abell richness parameter ranging from 0 to 3 (Abell et al., 1989).

We deliberately selected some clusters which were almost isolated and others which had

clumps or groups of galaxies nearby in order to demonstrate how the technique performs

under these different scenarios. We apply the GalWeight technique only to this pilot sample

of twelve clusters in this paper, deferring application to the entire SDSS-DR13 sample of

∼ 800 clusters to a later paper.

The data sample is collected as follows. The NASA/IPAC Extragalactic Database

(NED)5 provides us with a first approximation of the angular coordinates and redshift of the

center of our cluster sample (αc, δc, zc). We then download the coordinates and redshifts

(right ascension α, declination δ, and spectroscopic redshift z) for objects classified as

galaxies near the center of each cluster from SDSS-DR12 (Alam et al., 2015). The next

4https://http://www.sdss.org/dr12
5https://ned.ipac.caltech.edu

43



step is to apply the binary tree algorithm (e.g., Serra et al., 2011) to accurately determine

the cluster center (αc, δc, zc) and create a line-of-sight velocity (vz) versus projected radius

(Rp) phase-space diagram. Rp is the projected radius from the cluster center and vz is the

line-of-sight velocity of a galaxy in the cluster frame, calculated as vz = c(z − zc)/(1 + zc),

where z is the observed spectroscopic redshift of the galaxy and zc is the cluster redshift.

The term (1 + zc) is a correction due to the global Hubble expansion (Danese et al., 1980)

and c is the speed of light.

We then apply GalWeight to the twelve Abell clusters as described in detail in

§ 2.3 in order to get the optimal contour line. The final step is to determine the virial

radius, rv, at which ρ = 200ρc and the turnaround radius, rt, at which ρ = 5.55ρc (e.g.,

Nagamine & Loeb, 2003; Busha et al., 2005; Dünner et al., 2006) from all galaxies located

inside optimal contour line of a cluster.

In order to calculate these two radii we should first determine the cluster mass

profile. The cluster mass can be estimated from the virial mass estimator and NFW mass

profile (Navarro et al., 1996, 1997) as follows.

The viral mass estimator is given by

M(< r) =
3πN

∑
i vz,i(< r)2

2G
∑

i 6=j
1
Rij

(2.12)

where vz,i is the galaxy line-of-sight velocity and Rij is the projected distance between two

galaxies (e.g., Limber & Mathews, 1960; Binney & Tremaine, 1987; Rines et al., 2003).

If a system extends beyond the virial radius, Equation (2.12) will overestimate the

mass due to external pressure from matter outside the virialized region (The & White, 1986;
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Carlberg et al., 1997; Girardi et al., 1998b). The corrected virial mass can be determined

using the following expression:

Mv(< r) = M(< r)[1− S(r)], (2.13)

where S(r) is a term introduced to correct for surface pressure. For an NFW density

profile and for isotropic orbits (i.e. the projected, σv, and angular, σθ, velocity dispersion

components of a galaxy in the cluster frame are the same, or equivalently the anisotropy

parameter β = 1− σ2
θ
σ2
r

= 0), S(r) can be calculated by

S(r) =

(
x

1 + x

)2 [
ln(1 + x)− x

1 + x

]−1 [ σv(r)
σ(< r)

]2

, (2.14)

where x = r/rs, rs is the scale radius, σ(< r) is the integrated three-dimensional velocity

dispersion within r, and σv(r) is a projected velocity dispersion (e.g., Koranyi & Geller,

2000; Abdullah et al., 2011).

The mass density within a sphere of radius r introduced by NFW is given by

ρ(r) =
ρs

x (1 + x)2 , (2.15)

and its corresponding mass is given by

M(< r) =
Ms

ln(2)− (1/2)

[
ln(1 + x)− x

1 + x

]
, (2.16)

where Ms = 4πρsr
3
s [ln(2) − (1/2)] is the mass within rs, ρs = δsρc is the characteristic
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Figure 2.9: Application of the GalWeight technique to twelve Abell clusters from SDSS-
DR12 (see also Table 2.2). The solid black lines shows the optimal contour line and the
two dashed vertical lines show the virial and turnaround radii respectively. The red points
show galaxies identified as clusters members - those enclosed by optimal contour line and
rt. Also shown in each panel is the cluster virial mass (log Mv h

−1 M�) and number of
galaxies within rv.
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density within rs and δs = (∆v/3)c3
[
ln(1 + c)− c

1+c

]−1
, and the concentration c = rv/rs

(e.g., Navarro et al., 1997; Rines et al., 2003; Mamon et al., 2013).

The projected number of galaxies within a cylinder of radius R is given by inte-

grating the NFW profile (Equation (2.15)) along the line of sight (e.g., Bartelmann, 1996;

Zenteno et al., 2016)

N(< R) =
Ns

ln(2)− (1/2)
g(x), (2.17)

where Ns is the number of galaxies within rs that has the same formula as Ms, and g(x) is

given by (e.g., Golse & Kneib, 2002; Mamon & Boué, 2010)

g(x) =



ln(x/2) + cosh−1(1/x)√
1−x2 if x < 1

1− ln(2) if x = 1

ln(x/2) + cos−1(1/x)√
x2−1

if x > 1

(2.18)

Thus, we can fit rs for each cluster to get S(r) from Equation 2.14 and calculate the

corrected mass profile Mv(r) from Equation 2.13. Also, the NFW mass profile is calculated

from Equation 2.16. Then, rv, at which ∆ = 200ρc, can be calculated from the viral or

NFW mass profiles. While rt, at which ∆ = 5.55ρc, can be determined from NFW mass

profile only. We cannot determine rt from the virial mass profile because the assumption

of hydrostatic equilibrium is invalid.

Finally, after we calculate rv and rt (from NFW mass profile) the cluster mem-

bership can be defined as all galaxies enclosed by the optimal contour line and within rt,
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as shown by the red points in Figure 2.9. It is worth noting once again that GalWeight is

effective at taking into account the effects of the FOG distortion in the innermost regions

and the random motion of galaxies in the cluster infall region. Moreover, GalWeight is not

affected by the presence of substructures or nearby clusters or groups as demonstrated, for

example, for A2063 & A2065. Furthermore, GalWeight can be applied both to rich clusters

such as A2065 & A1656 and to poor galaxy groups such as A1459 & A2026.

In order to compare our results with the literature, we calculate the radii and their

corresponding masses at three overdensities, ∆500 = 500ρc, ∆200 = 200ρc and ∆100 = 100ρc

as shown in Table 2.2. The sample is displayed in order of decreasing NFW M200 mass. A

complete list of NFW parameters is also provided in Table 2.2.

In Table 2.3 we list ratios of radii and masses for each of the twelve Abell clusters

using our GalWeight-determined method (assuming an NFW profile) divided by previously-

published values, (rNFW /rref ) and (MNFW /Mref ) respectively, at overdensities of ∆ = 500,

200 and 100ρc. Column 8 of Table 2.3 also lists the ratio of GalWeight-determined masses

relative to those estimated from the caustic technique (Rines et al., 2016), (MNFW /Mcaus)200,

at ∆ = 200ρc. Table 2.3 clearly shows that the radii and masses estimated for a cluster

are strongly dependent on the technique used to assign membership and remove interlopers

(see Wojtak &  Lokas, 2007). The ratio (rNFW /rref ) ranges between 0.63 and 1.55, while

the ratio (MNFW /Mref ) ranges between 0.58 and 2.18.

The cluster masses from the literature tabulated in Table 2.3 have been calculated

in various ways. Below, we explicitly compare our values to those obtained from applying

the shifting gapper, SIM and caustic methods.
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Figure 2.10: Example of four well-known membership techniques applied to the cluster.
The blue open symbols and solid lines are as in Figure 2.8. Clearly GalWeight (solid black
lines) appears to identify cluster members well both in the virialized and infall regions of
phase-space.

First, comparing to the shifting gapper technique (see (•) in Table 2.3, Girardi

et al., 2002; Sifón et al., 2015), we find that the ratio (MNFW /Mref ) is larger than unity

in some cases (A2065, A1185) and smaller than unity in others (A2029, A2142). This is

because members assigned by this technique, and consequently the mass calculated, depend

on the selection criteria of number of galaxies and velocity gap per bin. As discussed before,

the choice of a high-velocity gap includes more members and consequently larger mass and

vice versa.

Second, comparing to the SIM method (see (?) in Table 2.3, Abdullah et al., 2011)

we note that the mass ratio (MNFW /Mref ) is less than unity for the three clusters A0117,

A1436 and A1459. This is because SIM includes more galaxy members inside the virial

region even though they are very far from the cluster body. This is due to the assumption

of conservation of mass that influences on the validity of SIM in the innermost region (see

Figure 6 in Abdullah et al., 2011).
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Third, comparing to the caustic technique (see (+) in Table 2.3, Rines et al., 2003;

Rines & Diaferio, 2006; Rines et al., 2016) we specifically calculate the ratio (MNFW /Mcaus)200

as listed in Table 2.3, column 8. It demonstrates that this ratio is larger than unity for

7 clusters with the highest ratio is for A2065, for which the estimated mass from NFW is

four times that expected from the caustic technique. As described above, the main reason

for this discrepancy is that the caustic technique does not take into consideration the effect

of FOG. Thus, it misses more members inside the virial region and consequently expects

lower masses.

We compare again GalWeight with the four well-known techniques (shifting gap-

per, caustic, den Hartog, and SIM) for the Coma cluster as shown in Figure 2.10. The Figure

(see also Figure 2.8) demonstrates that the GalWeight performs very favorably against es-

tablished methods, taking into account as it does the effects of the FOG distortion at small

projected radius well as the random motion of galaxies in the infall region. In order to apply

SIM to the Coma cluster the spatial number density profile is calculated from the NFW

model (Navarro et al., 1996, 1997). Also, we assume that the background number density

ρbg = 0.0106 h3 Mpc−3 which is calculated using the parameters of Schechter luminosity

function (φ∗ = 0.0149 h3 Mpc−3, M∗ − 5 log h = −20.44 and α = −1.05 for r magnitude,

Blanton et al., 2003).

Because of the presence of interlopers, estimates of cluster mass tend to be biased

too high and estimates of cluster concentration tend to be biased too low. Our work suggests

that applying GalWeight rather than another technique to determine cluster membership

before applying a dynamical mass estimator (virial theorem, NFW model etc.), likely results
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in a more accurate estimate of the true cluster mass and concentration. In a future work we

will compare the efficiency of different membership techniques to assign membership and

their influence on estimating cluster mass using different mass estimators.

2.6 Discussion and Conclusion

In this paper we introduced the Galaxy Weighting Function Technique (Gal-

Weight), a powerful new technique for identifying cluster members. specifically designed

to simultaneously maximize the number of bona fide cluster members while minimizing the

number of contaminating interlopers.

GalWeight takes into account the causes of different distortions in phase-space

diagram and is independent of statistical or selection criteria. It can recover membership

in both the virial and infall regions with high accuracy and is minimally affected by sub-

structure and/or nearby clusters.

We first demonstrated GalWeight’s use by applying it interactively to a simulated

cluster of mass 9.37 × 1014 h−1 M� selected from Bolshoi simulation. Next, we tested the

efficiency of the technique on ∼ 3000 clusters selected from the MDPL2 and Bolshoi simula-

tions with masses ranging from 0.70× 1014h−1M� to 37.4× 1014h−1M�. The completeness

and interloper fractions for MDPL2 are fc = 0.993, 0.992 and 0.981 and fi = 0.096, 0.098

and 0.118, while for Bolshoi fc = 0.995, 0.981 and 0.971 and fi = 0.126, 0.217 and 0.226

within rv, 2rv and 3rv, respectively. We then compared its performance to four well-known

existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM). Finally,

we applied GalWeight to a sample of twelve Abell clusters of varying richnesses taken from
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SDSS-DR12. By assuming an NFW model and applying the virial mass estimator we de-

termined the radius and corresponding mass at overdensities of ∆500, ∆200 and ∆100. The

virial mass (at ∆200) of the sample ranged from 0.82 × 1014 h−1 M� to 12.97 × 1014 h−1

M�, demonstrating that GalWeight is effective for poor and massive clusters. In the future

we plan to apply GalWeight to a larger SDSS sample of galaxy clusters at low and high

redshifts.

We believe that GalWeight has the potential for astrophysical applications far

beyond the identification of cluster members e.g., identifying stellar members of nearby

dwarf galaxies, or separating star-forming and quiescent galaxies. We also plan to investigate

these applications in a future work.
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Chapter 3

GalWeight Application: A

publicly-available catalog of

dynamical parameters of 1,800

galaxy clusters from SDSS-DR13,

(GalWCat19

Utilizing the SDSS-DR13 spectroscopic dataset, we create a new publicly-available

catalog of 1,800 galaxy clusters (GalWeight cluster catalog, GalWCat19) and a corresponding

catalog of 34,471 identified member galaxies. The clusters are identified from overdensities

in redshift-phase space. The GalWeight technique introduced in Abdullah, Wilson and

Klypin (AWK18) is then applied to identify cluster members. The completeness of the
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cluster catalog (GalWCat19) and the procedure followed to determine cluster mass are tested

on the Bolshoi N-body simulations. The 1,800 GalWCat19 clusters range in redshift between

0.01 − 0.2 and in mass between (0.4 − 14) × 1014h−1M�. The cluster catalog provides a

large number of cluster parameters including sky position, redshift, membership, velocity

dispersion, and mass at overdensities ∆ = 500, 200, 100, 5.5. The 34,471 member galaxies

are identified within the radius at which the density is 200 times the critical density of

the Universe. The galaxy catalog provides the coordinates of each galaxy and the ID of

the cluster that the galaxy belongs to. The cluster velocity dispersion scales with mass as

log(σ200) = log(946± 52 km s−1) + (0.349± 0.142) log
[
h(z) M200/1015M�

]
with scatter of

δlog σ = 0.06± 0.04. The catalogs are publicly available at the following website1.

3.1 Introduction

Galaxy clusters are the most massive bound systems in the universe and are

uniquely powerful cosmological probes. Cluster dynamical parameters, such as line-of-sight

velocity dispersion, optical richness, and mass are closely tied to the formation and evolution

of large-scale structures (Bahcall, 1988; Postman et al., 1992; Carlberg et al., 1996; Sereno

& Zitrin, 2012). Catalogs of galaxy clusters provide an unlimited data source for a wide

range of astrophysical and cosmological applications. In particular, the statistical study of

the abundance of galaxy clusters as a function of mass and redshift (Wang & Steinhardt,

1998; Haiman et al., 2001; Reiprich & Böhringer, 2002; Battye & Weller, 2003; Dahle, 2006;

Lima & Hu, 2007; Wen et al., 2010b) is a powerful tool for constraining the cosmological

1https://mohamed-elhashash-94.webself.net/galwcat/
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parameters, specifically the normalization of the power spectrum σ8 and the matter density

parameter Ωm. Catalogs of galaxy clusters are also interesting laboratories to investigate

galaxy evolution under the influence of extreme environments(Butcher & Oemler, 1978;

Dressler, 1980; Goto et al., 2003; Leauthaud et al., 2012; Bayliss et al., 2016; Foltz et al.,

2018). Moreover, they can be utilized to study the galaxy-halo connection which correlates

galaxy growth with halo growth (e.g., Wechsler & Tinker, 2018).

Galaxy clusters can be detected based on a number of different properties, such

as X-ray emission from hot intracluster gas (e.g., Sarazin, 1988; Reichardt et al., 2013), the

Sunyaev-Zeldovich (SZ) effect (Planck Collaboration et al., 2011), optical (e.g., Abell et al.,

1989; den Hartog & Katgert, 1996; Abdullah et al., 2011) and infrared emissions (e.g., Genzel

& Cesarsky, 2000; Muzzin et al., 2009; Wilson et al., 2009; Wylezalek et al., 2014) from

stars in cluster members, Stellar Bump Sequence (Muzzin et al., 2013), and the gravitational

lensing (e.g., Metzler et al., 1999; Kubo et al., 2009). Using current capabilities, both X-ray

emission and SZ effect are detectable only for the very deep gravitational potential wells of

the most massive systems. They cannot be used to detect the outskirts of massive clusters,

or intermediate/low-mass clusters. Thus, current optical surveys of galaxies, such as SDSS,

and upcoming surveys such as Euclid (Amendola et al., 2013), and LSST (LSST Science

Collaboration et al., 2009) are required in order to produce the largest and most complete

cluster sample.

Among the most popular applications of galaxy cluster catalogs are scaling rela-

tions. Scaling relations of clusters provide insight into the nature of cluster assembly and

how the implementation of baryonic physics in simulations affects such relations. Studying
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these relations for local clusters is also crucial for high-z cluster studies to constrain dark

energy (e.g., Majumdar & Mohr, 2004). Cluster mass is not a directly observable quantity.

It can be calculated in several ways such as, the caustic technique (Diaferio, 1999), the

projected mass estimator (e.g, Bahcall & Tremaine, 1981), the virial mass estimator (e.g.,

Binney & Tremaine, 1987), weak gravitational lensing (Wilson et al., 1996; Holhjem et al.,

2009), and application of Jeans equation for the gas density calculated from the x-ray analy-

sis of galaxy cluster (Sarazin, 1988). However, these methods are observationally expensive

to perform, requiring high quality datasets, and are biased due to the assumptions that

have to be made (e.g. spherical symmetry, hydrostatic equilibrium, and galaxies as tracers

of the underlying mass distribution). Fortunately, the cluster mass can be still indirectly

inferred from other observables, the so-called mass proxies, which scale tightly with cluster

mass. Among these mass proxies are X-ray luminosity, temperature, the product of X-ray

temperature and gas mass (e.g. Vikhlinin et al., 2009b; Pratt et al., 2009; Mantz et al.,

2016), optical luminosity or richness (e.g. Yee & Ellingson, 2003; Simet et al., 2017), and

the velocity dispersion of member galaxies (e.g. Biviano et al., 2006; Bocquet et al., 2015).

There are many cluster finding methods which rely on optical surveys. For in-

stance, the friends-of-friends (FoF) algorithm is the most frequently usable means for iden-

tifying groups and clusters in galaxy redshift data (Turner & Gott, 1976; Press & Davis,

1982). It uses galaxy distances derived from spectroscopic or photometric redshifts as the

main basis of grouping. Another group of cluster finding methods are halo-based group

finders (Yang et al., 2005, 2007; Duarte & Mamon, 2015). These methods assume some cri-

teria to identify galaxies which belong to the same dark matter halo. An additional cluster
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finding method is the red-sequence technique, which relies on galaxy colors (e.g., Gladders

& Yee, 2005; Rykoff et al., 2014). This red-sequence-based technique assumes the existence

of a tight red sequence for clusters, and uses only quiescent galaxies as a proxy of their

host cluster environment. There are other cluster finding methods which are used in the

literature, including density-field based methods (e.g., Miller et al., 2005), matched filter

techniques (e.g., Kepner et al., 1999; Milkeraitis et al., 2010; Bellagamba et al., 2018), and

the Voronoi-Delaunay method (e.g., Ramella et al., 2001; Pereira et al., 2017; Soares-Santos

et al., 2011). These methods are capable of identifying clusters and groups of different rich-

ness ranging from a pair of galaxies to very massive clusters with hundreds of galaxies for

entire surveys. However, they assume certain criteria and apply fast-run codes to construct

catalogs of entire surveys. This may lead to inaccurate results for recovering the true cluster

members because the proposed criteria could be suitable for only some individual clusters

depending on their masses and/or dynamical status. Also, most of these methods use pho-

tometric redshift to extract cluster catalogs, leading to substantially more uncertainty in

cluster membership in comparison to spectroscopically produced catalogs.

It is well-known that galaxy clusters manifest the Finger-of-God effect ( FoG, see

Jackson, 1972; Kaiser, 1987; Abdullah et al., 2013). This is the distortion of line-of-sight

velocities of galaxies both in viral and infall regions due to the cluster potential well, i.e.

galaxies peculiar motions. We introduce a simple algorithm, called FG, that identifies

locations of clusters by looking for the FOG effect. Similar algorithms were introduced in

the literature to identity FOG (e.g., Yoon et al., 2008; Wen et al., 2009; Tempel et al., 2018).

In this paper, we aim to construct a sample of galaxy clusters using the FG identification in
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the optical band using a high-quality spectroscopic dataset. In a previous work (Abdullah

et al. 2018, hereafter AWK18) we introduced a new technique (GalWeight) to assign cluster

membership. Galaxy clusters in this catalog are studied individually after assigning galaxy

members using the GalWeight technique.

The paper introduces a catalog of 1800 galaxy clusters (hereafter, GalWCat19)

identified from the spectroscopic dataset of the Sloan Digital Sky Survey-Data Release 13

(hereafter, SDSS-DR132, Albareti et al., 2017). We also provide a catalog of 34,471 cluster

members. The paper is organized as follows. The data, the FG cluster finding algorithm,

and membership identification using GalWeight are introduced in §3.2. In §3.3 we describe

our procedure for calculating the dynamical parameters of each galaxy cluster. Testing

the completeness of the catalog and the recovery of dynamical mass using simulations are

discussed in §3.4. In §3.5 we describe the GalWCat19 catalog and compare it with some

previous catalogs, and introduce the velocity dispersion-mass relation. We summarize our

conclusions and future work in §3.6. Throughout the paper we adopt ΛCDM with Ωm = 0.3,

ΩΛ = 0.7, and H0 = 100 h km s−1 Mpc−1.

3.2 Data and clusters identification

3.2.1 SDSS sample

Using photometric and spectroscopic database from SDSS-DR13, we extract data

for 704,200 galaxies. These galaxies fulfill the following set of criteria: spectroscopic detec-

tion, photometric and spectroscopic classification as a galaxy (by the automatic pipeline),

2https://http://www.sdss.org/dr13
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spectroscopic redshift between 0.001 and 0.2 (with a redshift completeness > 0.7, Yang

et al., 2007; Tempel et al., 2014), r-band magnitude (reddening-corrected) < 18, and the

flag SpecObj.zWarning is zero for well-measured redshift. We downloaded the following

parameters for each galaxy: photometric object ID, equatorial coordinates (right ascension

α, declination δ), spectroscopic redshift (z), Petrosian magnitudes in the u, g, r, i and z

bands, uncertainties, and extinction values based on Schlegel et al. (1998).

3.2.2 Identification of a galaxy cluster

Galaxy clusters exhibit overdensity regions of ∼2-3 orders of magnitude above

the background density. One key signature of a galaxy cluster is the distortion of the

peculiar velocities of its core members (within ∼ 0.5 Mpc from the cluster center) along the

line-of-sight. This distortion of FOG appears clearly in a line-of-sight velocity (vz) versus

projected radius (Rp) phase-space diagram. Here Rp is the projected radius from the cluster

center. While, vz is the line-of-sight velocity of a galaxy in the cluster frame, calculated

as vz = (vobs − vc)/(1 + zc), where vobs is the observed spectroscopic velocity of the galaxy

and zc and vc are the cluster redshift and velocity, respectively. The observed spectroscopic

velocity is calculated as vobs = c[(z + 1)2 − 1]/[(z + 1)2 + 1] (relativistic correction). The

term (1 + zc) is a correction due to the global Hubble expansion (Danese et al., 1980) and

c is the speed of light. Consequently, the procedure that we follow in this investigation

depends on looking for the FOG effect as described below.

1. We calculate the number density ρcy of all galaxies within a cylinder of radius Rcy =

0.5h−1 Mpc (∼ the width of FOG), and height 3000 km s−1 (∼ the length of FOG)
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centered on a galaxy i. Note that the radius of the cylinder is equivalent to angular ra-

dius sin(θcy) = Rcy/Dc,g, where the comoving distance of the galaxy Dc,g is calculated

as

Dc,g =
c

H0

∫ z

0

dz′√
Ωm(1 + z)3 + Ωk((1 + z)2 + ΩΛ

(3.1)

2. We sort all galaxies descending from highest to lowest number density with the condi-

tion that the cylinder has at least eight galaxies. This means we are aiming to detect

all clusters that have at least eight galaxies within a projected distance Rp = 0.5h−1

Mpc and velocity range = ±1500 km s−1 from the cluster center. The completeness

of the catalog is tested on an N-body simulation as described in §3.4.1.

3. Starting with the galaxy with highest number density, we apply the binary tree algo-

rithm (e.g., Serra et al., 2011) to accurately determine a cluster center (αc, δc, zc) and

a phase-space diagram.

4. We apply the GalWeight technique (see §3.2.3) to galaxies in the phase-space diagram

out to maximum projected radius of Rp,max = 10 h−1 Mpc and a maximum line-of-

sight velocity of |vz,max| = 3000 km s−1 to identify those galaxies within the optimal

contour line (see §3.2.3 and AWK18). These values are chosen to be sufficiently large

to exceed both the turnaround radius (defined in §3.2.3) and the length of the FOG

which is typically ∼ 7 − 8 h−1 Mpc and ∼ 6000 km s−1, respectively, for massive

clusters.
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5. Next, using all galaxies enclosed by the optimal contour line (see §3.2.3), we determine

the dynamical parameters of each cluster in the catalog (see §3.3).

3.2.3 Membership identification: GALWEIGHT

In AWK18, we introduced GalWeight, a new technique for assigning galaxy cluster

membership. AWK18 showed that GalWeight could be applied both to massive galaxy

clusters and poor galaxy groups. They also showed that it is effective in identifying members

both in the virial and infall regions with high efficiency.

The GalWeight technique works by assigning a weight to a galaxy i according to

its position (Rp,i,vz,i) in phase-space diagram. This weight is the product of two separate

two-dimensional weights which we refer to as the dynamical and phase-space weights:

1. The dynamical weight is calculated from the surface number density Σ(Rp), velocity

dispersion σvz(Rp), and standard deviation σRp(vz) profiles of the cluster as follows. We

introduce the function

DRp(Rp) =
Σ(Rp)σvz(Rp)

Rνp
, (3.2)

with the normalization

NRp =

∫ Rp,max

0
DRp(Rp)dRp, (3.3)

where Rp,max is the maximum projected radius in phase-space and ν is a free parameter

in the range −1 . ν . 1 which is introduced to adjust the effect of the distortion of FOG

in the core and the distortion of the random motion in the outer region. It is defined as

ν = σFOG(R≤0.25)
σrand(0.25<R≤4))−1, where σFOG is the velocity dispersion of the core galaxies and σrand
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is the velocity dispersion of the galaxies outside the core. Then, Equation 3.2 is fitted with

the following analytical function

WRp(Rp) = A0

(
1 +

R2
p

a2

)γ
+Abg, (3.4)

where a is a scale radius (0 < a . 1), γ is a slope of the power law (−2 . γ < 0), and A0

and Abg are the central and background weights along the Rp-direction. Also, we define the

function

Dvz(vz) = σRp(vz), (3.5)

with the normalization

Nvz =

∫ vz,max

−vz,max
Dvz(vz)dvz, (3.6)

where vz,max is the maximum line-of-sight velocity of phase-space. Then, Equation 3.5 is

fitted with the following exponential model

Wvz(vz) = B0 exp (b vz) + Bbg, (3.7)

where B0 is the central weight, Bbg is the background weight along vz and b is scale parameter

(−0.01 . b < 0). Then, the two-dimensional dynamical weight is calculated as

Wdy(Rp, vz) =WRp(Rp)Wvz(vz), (3.8)
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2. The phase-space weight is calculated from the two-dimensional adaptive kernel method

that estimates the probability density underlying the data and consequently identifies

clumps and substructures in the phase-space (Silverman, 1986; Pisani, 1996).

The total weight is then calculated as the product of the dynamical and phase-

space weights

Wtot(Rp, vz) =Wdy(Rp, vz)Wph(Rp, vz), (3.9)

The optimal total weight value (the optimal contour line) is determined by utilizing

the Number Density Method (Abdullah et al., 2013) in order to separate members and

interlopers. Then, we calculate the virial radius rv (which is the boundary of the virialized

region) and the turnaround radius rt (which is the boundary of the cluster infall region)

using the virial mass and NFW mass estimators (§3.3). Finally, the cluster membership

are those enclosed by the optimal contour line and within the turnaround radius. The

viral radius rv is the radius within which the cluster is in hydrostatic equilibrium. It is

approximately equal to the radius at which the density ρ = ∆200ρc, where ρc is the critical

density of the Universe and ∆200 = 200 (e.g., Carlberg et al., 1997). Therefore, we assume

here that rv = r200. The turnaround radius rt is the radius at which a galaxy’s peculiar

velocity (vpec) is canceled out by the global Hubble expansion. In other words, it is the

radius at which the infall velocity vanishes (vinf = vpec−H r = 0), which can be calculated

as the radius at which ρ = 5.55ρc (e.g., Nagamine & Loeb, 2003; Busha et al., 2005; Dünner

et al., 2006).
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3.3 Dynamics of galaxy clusters

For each cluster, we calculate dynamical parameters i.e., mass, virial and turnaround

radii, velocity dispersion, number of spectroscopic members, and concentration as described

below.

The cluster mass is estimated from the virial mass estimator (e.g., Limber & Math-

ews, 1960; Binney & Tremaine, 1987; Rines et al., 2003) and NFW mass profile (Navarro

et al., 1996, 1997) as follows. The viral mass estimator is given by

M(< r) =
3πN

∑
i vz,i(< r)2

2G
∑

i 6=j
1
Rij

(3.10)

where vz,i is the galaxy line-of-sight velocity and Rij is the projected distance between two

galaxies.

If a system extends beyond the virial radius, Equation (3.10) will overestimate

the mass due to external pressure from matter outside the virialized region (The & White,

1986; Carlberg et al., 1997; Girardi et al., 1998b). The corrected virial mass is determined

using the following expression:

Mv(< r) = M(< r)[1− S(r)], (3.11)

where S(r) is a term introduced to correct for surface pressure. For an NFW density

profile and for isotropic orbits (i.e. the projected, σv, and angular, σθ, velocity dispersion

components of a galaxy in the cluster frame are the same, or equivalently the anisotropy

parameter β = 1− σ2
θ
σ2
r

= 0), S(r) is calculated by
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S(r) =

(
x

1 + x

)2 [
ln(1 + x)− x

1 + x

]−1 [ σv(r)
σ(< r)

]2

, (3.12)

where x = r/rs, rs is the scale radius, σ(< r) is the integrated three-dimensional velocity

dispersion within r, and σv(r) is a projected velocity dispersion (e.g., Koranyi & Geller,

2000; Abdullah et al., 2011).

The mass density within a sphere of radius r introduced by NFW is given by

ρ(r) =
ρs

x (1 + x)2 , (3.13)

and its corresponding mass is given by

M(< r) =
Ms

ln(2)− (1/2)

[
ln(1 + x)− x

1 + x

]
, (3.14)

where Ms = 4πρsr
3
s [ln(2) − (1/2)] is the mass within rs, ρs = δsρc is the characteristic

density within rs and δs = (∆v/3)c3
[
ln(1 + c)− c

1+c

]−1
, and the concentration c = rv/rs

(e.g., Navarro et al., 1997; Rines et al., 2003; Mamon et al., 2013).

The projected surface number density of galaxies is given by

Σ(< R) = 2ρsrsf(x) =
Ns

ln(2)− (1/2)
f(x), (3.15)

where Ns is the number of galaxies within rs that has the same formula as Ms, and f(x) is

given by (e.g., Golse & Kneib, 2002; Mamon & Boué, 2010)
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f(x) =



1
x2−1

[
1− cosh−1(1/x)√

1−x2

]
if x < 1

1
3 if x = 1

1
x2−2

[
1− cos−1(1/x)√

x2−1

]
if x > 1

(3.16)

The projected number of galaxies within a cylinder of radius R is given by inte-

grating the NFW profile (Equation (3.13)) along the line of sight (e.g., Bartelmann, 1996;

Zenteno et al., 2016)

N(< R) =
Ns

ln(2)− (1/2)
g(x), (3.17)

where g(x) is given by (e.g., Golse & Kneib, 2002; Mamon & Boué, 2010)

g(x) =



ln(x/2) + cosh−1(1/x)√
1−x2 if x < 1

1− ln(2) if x = 1

ln(x/2) + cos−1(1/x)√
x2−1

if x > 1

(3.18)

Given the projected radii of galaxies in each cluster, we fit rs with a maximum-

likelihood estimation (MLE) by finding the value of rs that minimizes the probability

− lnL = −
∑
i

ln
xiΣ(xi)∫ xmax

0 xiΣ(xi)dx
(3.19)

where xmax = Rmax/rs and Rmax is a maximum projected radius. In practice, we search

for the best value of rs that gives minimum likelihood within Rmax . 3R200, where R200

is initially calculated from the uncorrected virial mass estimator (Equation 3.10). We
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determine the uncertainty of 1σ confidence interval by − lnL = − lnLML + 0.5, where

lnLML is the maximum likelihood (see e.g., Koranyi & Geller, 2000; Mamon & Boué, 2010;

Mamon et al., 2013).

To summarize the procedure described above to calculate the corrected virial mass

and NFW mass profile for each cluster: we first fit rs for each cluster to get S(r) (Equa-

tion 3.12); we then calculate the corrected virial mass Mv(< r200) (Equation 3.11) at the

virial radius r200
3, at which ρ = 200ρc; we then calculate the NFW mass profile from Equa-

tion 3.14; finally, we determine the dynamical parameters (radius, number of members,

velocity dispersion and mass) at overdensities of ∆ = 500, 200, 100, 5.5.

3.4 Application to Simulations

In §3.4.1 we test the completeness of the FG algorithm (see §3.2.2) using the

Bolshoi N-body simulation (Klypin et al., 2016). In §3.4.2 we test the procedure described

in §3.3 to recover a cluster mass using two mock catalogs recalled from Old et al. (2015).

Note that the efficiency of GalWeight for assigning cluster membership has already been

tested on Bolshoi & MDPL2 N-body simulations, and has been found to be > 98% accurate

in correctly assigning cluster membership (see Table 1 in AWK18).

3.4.1 Catlaog Completeness as a Function of Cluster Mass and Redshift

In this section we investigate the completeness of the FG algorithm to identify

locations of clusters with at least eight spectroscopic galaxies (see §3.2.2). In order to

3Throughout the paper we interchangeably call rv and r200 for the virial radius. In practice, the virial
radius at which the cluster is in hydrostatic equilibrium cannot be determined. We follow convention and
assume that rv is at ρ = 200ρc.
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achieve this investigation we apply the FG algorithm to the Bolshoi4 simulation. The

Bolshoi simulation is an N-body simulation of 20483 particles in a box of comoving length

250 h−1 Mpc, mass resolution of 1.35 × 108 h−1 M�, and gravitational softening length

of 1 h−1 kpc (physical) at low redshifts. It was run using the Adaptive Refinement Tree

(ART) code (Kravtsov et al., 1997). It assumes a flat ΛCDM cosmology, with cosmological

parameters (ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.047, n = 0.95, σ8 = 0.82, and h = 0.70. Halos are

identified using the Bound Density Maximum (BDM) algorithm (Klypin & Holtzman, 1997;

Riebe et al., 2013), that was extensively tested (e.g., Knebe et al., 2011) which identifies

local density maxima, determines a spherical cut-off for the halo with overdensity equal to

200 times the critical density of the Universe (ρ = 200ρc), and removes unbound particles

from the halo boundary. Among other parameters, BDM provides a virial masses and radii.

The virial mass is defined as Mv = 4
3π200ρcr

3
v (see Bryan & Norman, 1998; Klypin et al.,

2016). The halo catalogs are complete for halos with circular velocity vc ≥ 100 km s−1 (e.g.,

Klypin et al., 2011; Busha et al., 2011).

In order to investigate the completeness and purity of FG we construct a light-

cone from Bolshoi as follows. We treat all subhalos as galaxies and assume the line-of-sight

to be along the z-direction and the projection to be on the x-y plane. We calculate right

ascension (α), declination (δ) and radial distance (Dc) in real-space as,

4https://www.cosmosim.org
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

Dc =
√
x2 + y2 + z2

α = arctan(yx)

δ = arcsin(x/d),

(3.20)

where x, y, and z are the co-moving coordinates along the principal axes of the simulation

box.

The cosmological redshift zcosm of a galaxy is determined by inverting Dc, using

the distance-redshift relation for the given simulation cosmology (see Equation 3.1). The

line-of-sight peculiar redshift in a cluster-frame is calculated as

zpec =

(
x

Dc
vx +

y

Dc
vy +

z

Dc
vz

)
/c, (3.21)

where vx, vy, and vz are the peculiar velocity components and c is the speed of light.

Finally the observed redshift is calculated as

(1 + zobs) = (1 + zcosm)(1 + zpec) (3.22)

For Bolshoi, we have about 791 clusters with masses ≥ 0.40 × 1014h−1M�. We

triple the number of clusters by operating the same task on the other two line-of-sights (x-

and y-directions) and the other two projections (x-z, and y-z planes). We apply the FG

algorithm to each light-cone. We then match the detected clusters with the true simulated

ones within a radius of 1.5 h−1Mpc and velocity gap of ±1500 km s−1 (see §3.5.2).
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The completeness and purity of FG are defined as (e.g., Hao et al., 2010)



Cbin(x) =
Nmatch
sim (x1≤x<x2)
Nsim(x1≤x<x2) × 100

Ccum(x) =
Nmatch
sim (x≥x1)
Nsim(x≥x1) × 100,

(3.23)



Pbin(x) =
Nmatch
sim (x1≤x<x2)
Ndet(x1≤x<x2) × 100

Pcum(x) =
Nmatch
sim (x≥x1)
Ndet(x≥x1) × 100,

(3.24)

where Cbin and Pbin are the completeness and purity between x1 and x2, Ccum and Ccum

represent the cumulative rates, and x is a parameter that represents cluster mass or richness

(number of galaxies). Here, Ndet is the total number of clusters detected by FG, Nsim is the

total number of simulated clusters, and Nmatch
sim is the number of clusters which are detected

by FG and matched with the simulated clusters.

Figure 3.1.a shows the completeness of FG as a function of cluster mass for at

least eight galaxies in a cylinder of radius Rcy = 0.5 h−1 Mpc and height 3000 km s−1

(see §3.2.2). As shown, the cumulative completeness (red line) is ∼ 100% for clusters

with masses M200 > 2 × 1014 h−1M�, while it drops to ∼ 85% for clusters with masses

M200 > 0.4 × 1014 h−1M�. Figure 3.1.b presents the completeness of FG as a function of

richness (number of galaxies in the cylinder), and Figure 3.1.c shows the purity of FG.
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Figure 3.1: Completeness and purity of the FG algorithm. (a): completeness of FG applied
to the Bolshoi clusters as a function of cluster mass for at least eight galaxies in a cylinder
of radius Rcy = 0.5 h−1 Mpc and height 3000 km s−1 (see §3.2.2). (b): completeness of
FG as a function of richness (number of galaxies in the cylinder). (c): purity of FG as a
function of richness. The blue lines represent the rates per bin, and the red lines represent
the cumulative rates.

Figure 3.2: Completeness of GalWeight catalog. (a): the abundance of clusters as a function
of mass for GalWCat19 (red area) compared to the abundance of clusters predicted by Tinker
et al. (2008) model (blue area). (b): cluster number density as a function of comoving
distance for GalWCat19. The solid black line shows the number density the sample and
the dashed black horizontal line represents the number density of 5.6 × 10−5 h3 Mpc−3

averaged for the overall sample within distance D ≤ 225 h−1. (c): number of clusters as a
function of comoving distance. The dashed black line shows the expectation for a completed
volume-limited sample with a density of 5.6× 10−5 h3 Mpc−3 for Ωm = 0.3 and ΩΛ = 0.7.
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The completeness in mass of the GalWCat19 catalog can be investigated by calcu-

lating the abundance of clusters predicted by a theoretical model and compare it with the

abundance of GalWCat19 clusters. The halo mass function (HMF), defined as the number

of dark matter halos per unit mass per unit comoving volume of the universe, is given by

dn

d lnM
= f(σ)

ρ0

M

∣∣∣∣ d lnσ

d lnM

∣∣∣∣ ; (3.25)

here ρ0 is the mean density of the universe, σ is the rms mass variance on a scale of radius

R that contains mass M = 4πρ0R
3/3 , and f(σ) represents the functional form that defines

a particular HMF fit.

We adopt the functional form of Tinker et al. (2008) (hereafter Tinker08) to calcu-

late the HMF and consequently the predicted abundance of clusters. For more detail about

the calculation of the HMF we refer the reader to e.g., Press & Schechter (1974); Sheth

et al. (2001); Jenkins et al. (2001); Warren et al. (2006); Tinker & Wetzel (2010); Behroozi

et al. (2013b). The HMF is calculated using the publicly available HMFcalc 5 code (Murray

et al., 2013a). We adopt the following cosmological parameters: Ωm = 0.307, ΩΛ = 0.693,

σ8 = 0.823, CMB temperature Tcmb = 2.725K◦, baryonic density Ωb = 0.0486, and spectral

index n = 0.967 (Planck Collaboration et al., 2014), at redshift z = 0.089 (the mean redshift

of GalWCat19).

Figure 3.2.a shows the abundance of clusters as a function of mass for GalWCat19

(red) compared to the abundance predicted by Tinker08 (blue). As shown, the GalWCat19

is complete in mass for M200 & 1× 1014 h−1M�, while it drops off below this mass.

5http://hmf.icrar.org/
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We also investigate the completeness of GalWCat19 as a function of redshift or

comoving distance. The left panel of Figure 3.2.b shows the number density of clusters as

a function of comoving distance. The number density is almost constant within comoving

distance ∼ 225h−1Mpc (z ∼ 0.088), except for the nearby regions where the cosmic variance

due to the small volume has a large effect. The number density drops catastrophically

beyond ∼ 225h−1Mpc. Figure 3.2.c presents the abundance of clusters as a function of

distance. Comparing the data with the expectation of a constant number density (shown as

the dashed black line, 5.6×10−5 h3 Mpc −3) shows that GalWCat19 is incomplete beyond ∼

225h−1Mpc. The dependence of the number density on both the cluster mass and selection

function of GalWCat19 is investigated in detail in Abdullah et al. (2019b, in prep) which

studies the cluster mass function.

3.4.2 Effectiveness of Cluster Mass Estimation

In order to test our procedure to determine cluster masses (see §3.3) we use two

distinct mock catalogs utilized in Old et al. (2015, 2018) to investigate the performance of

a variety of cluster mass estimation techniques. These two mock catalogs are derived from

the Bolshoi DM simulation. The first mock catalog places galaxies onto the Bolshoi DM

simulation by a Halo Occupation Distribution (HOD) model. The specific model in this

case is referred to as HOD2, and is an updated version of the model described in Skibba

et al. (2006); Skibba & Sheth (2009). The second one depends on the Semi-Analytic Galaxy

Evolution (SAGE) galaxy formation model (Croton et al., 2016), which is an updated version

of that described in (Croton et al., 2006). This mock catalog is referred to as SAM2. We

refer the reader to Old et al. (2014, 2015) for details about constructing these catalogs.
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Old et al. (2015) performed an extensive comparison of 25 galaxy-based cluster

mass estimation methods using the HOD2 and SAM2 catalogs. Following Old et al. (2015),

we examine the performance of our procedure to recover cluster mass by calculating the

root-mean-square (rms) difference between the recovered and input log mass, defined as

rms =

√√√√ 1

N

N∑
i

(logMi,true − logMi,rec)
2 (3.26)

where Mi,true is the true mass of the cluster and Mi,rec is its recovered or estimated mass.

We also test the performance of the procedure by calculating the scatter in the

recovered mass, σMrec (delivers a measure of the intrinsic scatter), the scatter about the

true mass, σMtrue , and the bias at the pivot mass, where the pivot mass is taken as the

median log mass of the input cluster sample (logMtrue = 14.05). For these three statistics,

we assume a linear relationship between the recovered and true log mass (see section 4.2 in

Old et al., 2015 for a full description of these statistics and, e.g., Hogg et al., 2010; Sereno

& Ettori, 2015; Andreon et al., 2017).

We apply our procedure (see §3.3) on the HOD2 and SAM2 catalogs to calculate

cluster mass. Figure 3.3 shows the recovered versus true cluster mass applied to the HOD2

(left) and the SAM2 (right) catalogs (see Figures 2 and 4 in Old et al., 2015 for comparison).

We find that the procedure performs very well in comparison to all of the other 25 methods

and results in lower values of the aforementioned statistical quantities than most of these

methods for both the HOD2 and SAM2 models. Quantitatively, rms, σMrec , σMtrue , and

bias are 0.24, 0.23, 0.23, and 0.06 for HOD2 and 0.32, 0.21, 0.23, and 0.24 for SAM2,

respectively. These values are amongst the lowest of all the methods which calculate the

76



Figure 3.3: Recovered versus true cluster mass applied to the HOD2 (left) and the SAM2
(right) catalogs. The blue dashed lines represent the one-to-one relation. The solid black
lines show the linear relationship between the recovered and true log mass. NR in the legend
represents the number of missing clusters out of 1000 simulated clusters.

cluster mass from the galaxy velocity dispersion except for the bias calculated for SAM2

which returns a slightly higher value (see Table 2 in Old et al., 2015 for comparison). We

use two different mock catalogs that have been constructed in an inherently different in

the way for the purpose of observing any potential variation in mass estimation technique

assessment due to assumptions made in constructing the mock catalogs.

The scatters and bias calculated above have a number of causes. Specifically, fac-

tors that introduce scatter when using the virial mass estimator include: (i) the assumption

of hydrostatic equilibrium, projection effect, and possible velocity anisotropies in galaxy

orbits, and the assumption that halo mass follows light (or stellar mass); (ii) presence of

substructure and/or nearby structure such as cluster, supercluster, to which the cluster be-

longs, or filament (see e.g., The & White, 1986; Merritt, 1988; den Hartog & Katgert, 1996;

Fadda et al., 1996; Girardi et al., 1998b; Abdullah et al., 2013 for more details about these
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effects); (iii) presence of interlopers in the cluster frame due to the triple-value problem,

for which there are some foreground and background interlopers that appear to be part of

the cluster body because of the distortion of phase-space (Tonry & Davis, 1981; Abdullah

et al., 2013); (iv) identification of cluster center (e.g., Girardi et al., 1998b; Zhang et al.,

2019).

3.5 GalWeight cluster catalog, GalWCat19

3.5.1 Dynamical Parameters

As discussed in §3.2.2 we identify the location of a galaxy cluster in a cylinder of

radius Rcy = 0.5 h−1 Mpc and height 3000 km s−1 with the condition that the cylinder has

at least eight galaxies. We then apply the GalWeight technique to assign its membership

(see §3.2.3). Then, using the virial mass estimator we determine the cluster virial mass

assuming that the virial radius is at ρ = 200ρc (see §3.3). Finally, we select all galaxy

clusters of virial mass M200 ≥ 0.4 × 1014 h−1 M�. Following this procedure we get a

catalog of 1,800 clusters with virial mass in the range (0.40− 14)× 1014 h−1 M� and in a

redshift range 0.01 ≤ z ≤ 0.2. We refer to this 1,800 galaxy cluster sample as GalWCat19.

We exclude overdensity regions (locations of galaxy clusters) for which the FOG effect is

indistinct because of interactions between different clusters in these regions.

The distribution of all galaxies in the sample (black) and the cluster members

identified by GalWeight and within rv (red) and rt (blue) are shown in Figure 3.4. The

distortion of the line-of-sight velocity or the FOG effect is shown clearly for each cluster.
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Figure 3.4: Top panel: Aitoff projection in celestial coordinates. Bottom panel: light cone
diagram. The black points represent the distribution of all galaxies in the sample, while
the blue and red points represent the distribution of 1,800 clusters members identified by
GalWeight which are within r200 and r5.5, respectively (see §3.3).
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As discussed in §3.3 we use the virial mass estimator to determine the virial mass

at the virial radius r200 of each cluster. Then, using NFW mass profile we determine the

dynamical parameters of each cluster at overdensities of ∆ = [500, 200, 100, 5.5]. Note that

we assume the virial radius is at ∆ = 200 and turnaround radius is at ∆ = 5.5 (see §3.3).

The derived parameters for each cluster are radius, number of members, velocity dispersion

and mass at each of the different overdensities, plus the NFW parameters: scale radius,

mass at scale radius, and concentration c = r200/rs (see Appendix 3.6). Table 3.1 shows

the coordinates, dynamical parameters at at R200, and NFW parameters for the first 15

clusters in the GalWCat19 catalog.

The GalWCat19 release consists of two catalogs. The first catalog is for the coor-

dinates and the dynamical parameters of each galaxy cluster and the second one is for the

coordinates of member galaxies belonging to each cluster. The two catalogs are described in

Appendix A, and made available in their entirety at the link6. The uncertainty of the virial

mass estimator is calculated using the limiting fractional uncertainty π−1(2 ln N)1/2N−1/2

(Bahcall & Tremaine, 1981). Note that throughout the paper the velocity dispersion is

calculated using the classical standard deviation σv = [(n− 1)]−1∑
i v

2
z , where vz is the

line-of-sight velocity of a galaxy in the cluster frame (e.g., Munari et al., 2013; Tempel

et al., 2014; Ruel et al., 2014). The uncertainty of the velocity dispersion is calculated via

performing bootstrap resampling (with 1000 resamples).

6https://mohamed-elhashash-94.webself.net/galwcat
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3.5.2 GalWeight Catalog Matching

Matching optical catalogs with each other depends on the cluster finding method

used to extract a catalog, the kind of dataset used, the redshift range, and the identification

of the cluster center. In this section we compare the GalWCat19 catalog with previous cluster

catalogs by matching them in a traditional way as performed in the literature (see e.g., Wen

et al., 2012; Banerjee et al., 2018). This task is accomplished by searching within a given

radius and velocity gap (or redshift) from each GalWeight cluster center. We adopt a search

radius of 1.5 h−1Mpc (∼ twice the mean value of R200 in our catalog). Also, we adopt the

velocity gap of ±1500 km s−1 (∼ redshift difference of 0.01). We compare GalWCat19 with

previous catalogs, including Yoon (Yoon et al., 2008), GMBCG (Hao et al., 2010), WHL

(Wen et al., 2012), redMaPPer (Rykoff et al., 2014), Tempel (Tempel et al., 2014), and

AMF (Banerjee et al., 2018) catalogs. Note that some catalogs provided both spectroscopic

and photometric redshifts for clusters. In that case we match our catalog with each of these

redshifts as shown in Table 3.2.

The procedure used to compare GalWCat19 with other catalogs is as follows.

1. In an overlapping redshift range (zover) between GalWCat19 and the reference catalog

we determine the number of clusters in GalWCat19 (Ngw) and the corresponding number

of clusters in the reference catalog (Ncat).

2. We calculate how many clusters match (Nmat) in a radius of 1.5 h−1 Mpc and velocity

gap of ±1500 km s−1 relative to GalWCat19 cluster center.

3. We determine the number of clusters which are included in GalWCat19 and are not

identified by the reference catalog (Ngwo).
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Figure 3.5: Matching GalWCat19 (blue histograms) with six optical catalogs (red his-
tograms). The histograms of Yoon, GMBCG, WHL, redMaPPer, and Tempel are derived
from spectroscopic redshifts provided by each catalog, while the histogram of AMF is de-
rived from photometric redshift that does not provide spectroscopic data.

4. We calculate the number of clusters which are not identified by GalWCat19 but included

in the reference catalog (Ncato).

5. We determine the number of clusters not identified by GalWCat19 but included in the

reference catalog for which there are at least 8 galaxies in a projected distance of Rp =

0.5 h−1 Mpc and velocity range = ±1500 km s−1 from the cluster center (Ncato,FG) (the

cutoff condition of our catalog).

6. Finally, the ratios Rmat = Nmat/Ngw, and Rcato,FG = Ncato,FG/Ngw are calculated

(see Table 3.2).
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A summary of each catalog, cluster finding method, and redshift range is descried

below. We refer the reader to the reference of each catalog for more details.

1. The Yoon catalog:-

Yoon catalog is a local density cluster finder catalog (Yoon et al., 2008) applied on SDSS-

DR5 using the spectroscopic and photometric redshift dataset. The catalog identified 924

clusters in a spectroscopic redshift range of zsp = [0.049, 0.101]. The number of matched

clusters is 417 out of 950 GalWCat19 clusters in the overlapping redshift range.

2. The GMBCG catalog:-

GMBCG is a red-sequence plus brightest cluster galaxy cluster finder catalog (Hao et al.,

2010) applied on SDSS-DR7 using the photometric redshift dataset. The catalog identified

∼ 50,000 clusters in a photometric redshift range of zph = [0.1, 0.55]. The catalog also

provided spectroscopic redshift for 2,993 clusters in a range of zsp = [0.007, 0.196]. There

are 440 matched clusters out of 1,800 in the overlapping spectroscopic redshift range.

3. The WHL catalog:-

WHL is a red-sequence cluster finder catalog (Wen et al., 2012) applied on SDSS-DR8

using the photometric redshift (zph) dataset. The catalog identified 132,684 clusters in

a photometric redshift range of zph = [0.05, 0.785]. The catalog provided spectroscopic

redshift for 9,117 clusters in a range of zsp = [0.043, 0.196]. The number of matched clusters

is 912 out of 1695 in the overlapping spectroscopic redshift range.

4. The redMaPPer catalog:-

redMaPPer is a red-sequence cluster finder catalog (Rykoff et al., 2014) applied on SDSS-

DR8 using the photometric redshift dataset. The catalog identified 25,325 clusters in a
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photometric redshift range of zph = [0.08, 0.55]. The catalog also provided spectroscopic

redshift for 1,410 clusters in a range of zsp = [0.050, 0.196]. The number of matched clusters

are 381 out of 1,569 in the overlapping spectroscopic redshift range.

5. The Tempel catalog:-

Tempel catalog is based on a modified friends-of-friends method (Tempel et al., 2014), and

is applied on the spectroscopic sample of galaxies of SDSS-DR10. The catalog identified

82,458 clusters in a spectroscopic redshift range of zsp = [0.08, 0.2]. There are 3296 clusters

in the catalog with masses ≥ 0.4×1014 h−1M� (the cutoff mass of GalWCat19) and number

of galaxy members = 4 in R200. The number of matched clusters is 1,230 out of 1800 in the

spectroscopic overlapping redshift range.

6. The AMF catalog:-

AMF catalog (Banerjee et al., 2018) is based on an adaptive matched filter technique ap-

plied to SDSS-DR9. The catalog identified 46,479 galaxy clusters in a photometric red-

shift range of zph = [0.045, 0.641]. There are 7,033 clusters in the overlapping redshift

zph = [0.045, 0.196]. The number of matched clusters is 848 out of 1,628 in the overlapping

photometric redshift range.

As shown in Table 3.2, the matching rate, Rmat = Nmat/Ngw varies from 0.24

to 0.68 depending on the cluster finding method used to extract a catalog, the dataset used,

redshift range, and the identification of the cluster center. These are the main factors that

explain why the GalWCat19 miss clusters relative to other catalogs and vice versa. Also,

we expect that our catalog miss poor or low-mass clusters. This is because we cut the

catalog at cluster masses of M200 ≥ 0.4 × 1014 h−1M� and with the condition that the
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number of galaxies within a cylinder of Rp = 0.5h−1 Mpc and velocity range = ±1500 km

s−1 is at least 8 galaxies. Moreover, for the catalogs extracted from photometric redshifts

(GMBCG, WHL, redMaPPar, and AMF) the number of clusters at high redshift (∼ 0.2) is

huge relative to GalWCat19 which is extracted from spectroscopic redshifts. This is because

the number of galaxies (and consequently the number of clusters) that have photometric

redshifts is very large relative to the spectroscopic ones. Figure 3.5 shows histograms for

matching GalWCat19 with the aforementioned six optical catalogs.

3.5.3 Velocity dispersion vs. Mass relation

Estimating cluster masses accurately is a significant challenge in astronomy, since

it is not a directly observable quantity. The use of velocity dispersion as a proxy for

cluster mass has been shown to be particularly effective at low redshift compared to other

techniques. Sereno & Ettori (2015) showed that the intrinsic scatter in the σ − MWL

relation was ∼ 14% as opposed to ∼ 30%, ∼ 25%, and ∼ 40% for X-ray luminosity, SZ flux,

and optical richness, respectively. Also, since galaxies are nearly collisionless tracers of the

gravitational potential, one expects velocity dispersion to be more robust than X-ray and

SZ mass proxies.

Evrard et al. (2008) (Evrard+08) found that the σ −M relation for dark matter

particles was close to the expected virial scaling relation of σ ∝M1/3, with a minimal scatter

of ∼ 5%, and was insensitive to cosmological parameters. Munari et al. (2013) (Munari+13),

Saro et al. (2013) (Saro+13), and Armitage et al. (2018) (Armitage+18) investigated the σ−

M relation using hydrodynamical and semi-analytic simulations in order to understand how

87



0.2

0.4

0.8

1.4

2
0

0
 [

1
0

3
 k

m
 s

-1
]

GalWCat, cls

Evrard+08, sim

Munari+13, AGN

Armitage+18, Eagle-Gas

Saro+13

GalWCat19, obs

10
14

10
15

M
200

 [h
-1

 M ]

0.8

1

1.2

2
0

0
/

E
v
ra

rd

-200 -150 -100 -50 0 50 100 150 200

Residuals (km s
-1

)

0

1

2

3

4

5

6

7

8

9

P
D

F

10
-3

2 2.5 3 3.5 4

log(
15

)

-0.6

-0.2

0.2

0.6

1

1.4

Figure 3.6: Top left panel: Velocity dispersion σ200 vs. virial mass M200 for 1,800 clusters in
the GalWCat19 catalog. The gray points show the GalWCat19 clusters and the solid black line
represents the best-fit relation from Equation 3.27. The blue, purple, green, and red dashed
lines show the relations for Evrard et al. (2008), Munari et al. (2013) Saro et al. (2013),
and Armitage et al. (2018) derived from cosmological simulations, respectively. As shown,
the GalWeight relation matches the models remarkably well, indicating the accuracy of the
GalWeight to constrain cluster membership, and consequently determine cluster masses.
Bottom left panel: best-fit relations relative to the Evrard et al. (2008) result. Right panel:
The distribution of residual of velocity dispersion of clusters from the best-fit line, along
with best-fit the Gaussian curve. The inner right panel shows the best-fit parameters of
Equation 3.27 with 1, 2, 3σ confidence intervals.
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including baryonic physics in simulations affected the relation. Compared to the relation

derived purely from N-body simulations (Evrard+08), the relations found by Munari+13,

Saro+13 Armitage+18 suggested that galaxies introduce a bias in velocity relative to the

DM particles (see Figure 3.6). This bias can be either positive (a larger σ for a given M

than what the DM particles have) or negative (a smaller σ for a given M than what the

DM particles have), depending on the halo mass, redshift and physics implemented in the

simulation (e.g., Saro et al., 2013; Old et al., 2013; Wu et al., 2013). Also, Saro+13 concluded

that the effect of the presence of interlopers on the estimated velocity dispersion could be the

dominant source of uncertainty (up to ∼ 49%). However, the more sophisticated interloper

rejection techniques, such as caustic Diaferio (1999) and GalWeight techniques Abdullah

et al. (2018) could result in a reduced uncertainty when calculating the velocity dispersion.

Following Evrard et al. (2008), the σ200 −M200 relation can be expressed as

σ200 = σ15

[
h(z) M200

1015M�

]α
(3.27)

where σ15 is the normalization at mass 1015 h−1M�, and α is the logarithmic slope. We

follow Kelly (2007) and Mantz (2016) to determine these two parameters in the log-log

space of σ200 and M200.

The scatter, δlog σ, in the σ200 −M200 relation, defined as the standard deviation

of log(σ) about the best-fit relation (see e.g., Evrard et al., 2008; Lau et al., 2010), is given

by

δlog σ =

√√√√ 1

N

N∑
i=1

log(σi/σfit)2 (3.28)
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where σi is the velocity dispersion of the ith cluster and σfit is the best-fit value. For

σ200 and M200 determined by the virial mass estimator we get σ15 = 946 ± 52 km s−1,

and α = 0.349 ± 0.142 with a scatter of δlog σ = 0.06 ± 0.04 for all clusters with mass

M200 ≥ 0.4× 1014h−1M�.

Figure 3.6 shows the σ200 −M200 relation for the 1,800 clusters in the GalWCat19

catalog. The gray points represent the GalWCat19 clusters and the solid black line is the

best-fit relation from Equation 3.27. The blue, purple, green, and red dashed lines show

the relations from Evrard+08, Munari+13, Saro+13, and Armitage+18 which were derived

from cosmological simulations. Generally speaking, the GalWCat19 line matches the models

remarkably well, indicating the effectiveness of the GalWeight technique in constraining

cluster membership, and consequently in determining cluster mass. However, we cannot

make a quantitative comparison between the observed line and the other three models of

Evrard+08, Munari+13 and Armitage+18. This is because Evrard+08 derived this relation

for purely dark matter particles without taking into account the effect of baryons and it is

well-known that galaxies are biased tracers of dark matter particles. Moreover, even though

Munari+13 and Armitage+18 included baryonic physics, their relations were derived from

the true members, while our sample is contaminated by interlopers (projection effects).

The only relation that took into account the baryonic physics and the projection effect (i.e.,

presence of interlopers) is Saro+13. As shown in the Figure 3.6, Saro+13 model is the

closest to our observed line.

Finally, we stress that the calculated velocity dispersion and consequently the

cluster mass are scattered by the presence of interlopers as well as other factors which were
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discussed above in §3.4.2. In order to study this scaling relation in detail one should take

into consideration all of these factors and utilize both hydrodynamical and semi-analytic

models to digest the different sources of scatter and uncertainties. This is certainly out of

the scope of this paper and we defer this investigation to a later paper.

3.6 Conclusion

In this paper we used the SDSS-DR13 spectroscopic dataset to identify and analyze

a catalog of 1,800 galaxy clusters (GalWCat19). The cluster sample has a mass range of

(0.40− 14)× 1014 h−1 M� and a redshift range 0.01 ≤ z ≤ 0.2 with a total of 34,471 galaxy

members identified within the virial radii of the 1,800 clusters.

The clusters were identified by a simple algorithm that looks for the Finger-of-God

effect (the distortion of the peculiar velocities of its core members along line-of-sight). The

FOG effect was detected by assuming a cylinder of radius Rcy = 0.5h−1 Mpc (∼ the width

of FOG), and height 3000 km s−1 (∼ the length of FOG) centered at each galaxy in our

sample. We selected all overdensity regions with the condition that the cylinder has at least

eight galaxies. The completeness of our sample identified by the FG algorithm, was tested

by the Bolshoi simulation. The completeness to identify locations of clusters with at least

eight galaxies was approximately 100% for clusters with masses M200 > 2 × 1014 h−1M�,

while it dropped to ≈ 92% for clusters with masses M200 > 0.4× 1014 h−1M�.

The membership of each detected cluster was assigned by the GalWeight technique.

Then, we used the virial theorem and NFW mass profile in order to determine dynamical

parameters for each cluster from its galaxy members. This integrated procedure was applied
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to HOD2 and SAM2 mock catalogs recalled from Old et al., 2015 to test its efficiency

in recovering cluster mass. GalWeight performs well in comparison to most other mass

estimators described in Old et al., 2015 for both the HOD2 and SAM2 models. In particular,

the rms differences of the recovered mass by GalWeight relative to the fiducial cluster mass

are 0.26 and 0.28 for the HOD2 and SAM2, respectively. Furthermore, the rms error

produced by GalWeight was among the lowest of all other methods that depend on the

phase-space and velocity dispersion to calculate mass.

Using the virial mass estimator we determined the virial radius and its correspond-

ing virial mass for each cluster. We then used NFW mass profile to determine the dynamical

parameters of each cluster at density ρ = ∆ρc, for overdensities ∆ = [500, 200, 100, 5.5]. We

assumed that the virial radius is at ∆ = 200 and turnaround radius is at ∆ = 5.5. We

introduced a cluster catalog for the dynamical parameters derived by virial mass estimator

and NFW model. The derived parameters for each cluster are radius, number of members,

velocity dispersion and mass at different overdensities, plus the NFW parameters: scale

radius, mass at scale radius, and concentration. We also introduced a membership catalog

that correspond to the cluster catalog. The description of the catalogs are introduced in

appendix 3.6.

Finally, we showed that the cluster velocity dispersion scales with total mass for

GalWCat19 as log(σ200) = log(946 ± 52 km s−1) + (0.349 ± 0.142) log
[
h(z) M200/1015M�

]
with scatter δlog σ = 0.06. This relation was well-fitted with the theoretical relations derived

from the N-body simulations.
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FUTURE WORK

In future work, we aim to: (i) study the halo-mass, stellar mass, and luminos-

ity functions of GalWCat19 to constrain the matter density of the universe, Ωm, and the

normalization of the linear power spectrum, σ8; (ii) investigate the stellar mass and lumi-

nosity function of member galaxies of their hosting clusters; (iii) study the shape of velocity

dispersion profiles of GalWCat19 and compare with Multi-dark simulations in order to re-

cover cluster mass. (iv) study the connection between stellar mass (or luminosity) and dark

matter halo; (v) investigate the effect of environment on the properties of member galaxies

such as size, and quenching of star formation and segregation of star forming and quiescent

galaxies on a small scale; (vi) investigate the adaptation of the GalWeight technique to

recover cluster mass and cluster mass profile; (vii)) study the correlation function of galaxy

clusters and the signature of Acoustic Baryonic Oscillation (BAO) to constrain cosmological

parameters using the GalWCat19.
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Description of the Catalogs in the GalWCat19 release

The GalWCat19 release consists of two catalogs. The first catalog lists the co-

ordinates and the dynamical parameters of each galaxy cluster. The second catalog lists

the coordinates of the member galaxies belonging to each cluster. The two catalogs are

publicly-available at the website7.

Description of the Cluster Catalog

The cluster catalog contains the following information (column numbers are given

in square brackets):

[1] clsid – our unique identification number for clusters;

[2− 3] raj2000, dej2000 – right ascension and declination of the cluster center in deg;

[4] zcls – cluster redshift, calculated as an average over all cluster members;

[5] vcls – radial velocity of the cluster in units of km s−1;

[6] Dcls – comoving distance of the cluster in units of h−1 Mpc;

[7] R500 – the radius from the cluster center at which the density ρ = ∆500ρc in units of

h−1 Mpc;

[8] N500 – number of members of the cluster within R500;

7https://mohamed-elhashash-94.webself.net/
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[9] σ500 – velocity dispersion in km s−1 of the cluster within R500;

[10− 11] σ Err(−)500, σ Err(+)500 – lower and upper errors of σ500 in km s−1, obtained

via 1000 bootstrap resampling;

[12] M500 – mass of the cluster at R500 in units of 1014 h−1M�;

[13] M Err500 – error in M500 in units of 1014 h−1M�;

[14] R200 – the radius from the cluster center at which the density ρ = ∆200ρc in units of

h−1 Mpc;

[15] N200 – number of members of the cluster within R200;

[16] σ200 – velocity dispersion in km s−1 of the cluster within R200;

[17 − 18] σ Err(−)200, σ Err(+)200 – lower and upper error of σ200 in km s−1, obtained

via 1000 bootstrap resampling;

[19] M200 – mass of the cluster at R200 in units of 1014 h−1M�;

[20] M Err200 – error in M200 in units of 1014 h−1M�;

[21] R100 – the radius from the cluster center at which the density ρ = ∆100ρc in units of

h−1 Mpc;

[22] N100 – number of members of the cluster within R100;

[23] σ100 – velocity dispersion in km s−1 of the cluster within R100;

[24− 25] σ Err(−)100, σ Err(+)100 – lower and upper errors of σ100 in km s−1, obtained

via 1000 bootstrap resampling;

[26] M100 – mass of the cluster at R100 in units of 1014 h−1M�;

[27] M Err100 – error in M100 in units of 1014 h−1M�; [28] R5.5 – the radius from the

cluster center at which the density ρ = ∆5.5ρc in units of h−1 Mpc;
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[29] N5.5 – number of members of the cluster within R5.5;

[30] σ5.5 – velocity dispersion in km s−1 of the cluster within R5.5;

[31 − 32] σ Err(−)5.5, σ Err(+)5.5 – lower and upper errors of σ5.5 in km s−1, obtained

via 1000 bootstrap resampling;

[33] M5.5 – mass of the cluster at R5.5 in units of 1014 h−1M�;

[34] M Err5.5 – error in M5.5 in units of 1014 h−1M�;

[35] Rs – scale radius of NFW model in units of h−1 Mpc;

[36] Rs Err – error in scale radius of NFW model in units of h−1 Mpc;

[37] Ms – scale mass of the cluster at Rs in units of 1014 h−1M�;

[38] Ms Err – error in Ms in units of 1014 h−1M�;

[39] c – cluster concentration of NFW model

Description of the Galaxy Catalog

The catalog of the member galaxies correspond to the cluster catalog:

[1] clsid – our unique identification number for clusters that member galaxies belong to;

[2− 3] raj2000, dej2000 – right ascension and declination of the galaxy in deg;

[4] zg – observed redshift of the galaxy as given in the SDSS-DR-13;
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Chapter 4

Cosmological Constraints on

Ωm and σ8 from Cluster

Abundances using the GalWCat19

Optical-Spectroscopic SDSS

Catalog

We derive cosmological constraints on the matter density, Ωm, and the amplitude of

fluctuations, σ8, using GalWCat19, a catalog of 1800 galaxy clusters we identified in the Sloan

Digital Sky Survey-DR13 spectroscopic data set using our GalWeight technique to determine

cluster membership (Abdullah et al., 2018, 2020b). By analyzing a subsample of 756 clusters

in a redshift range of 0.045 ≤ z ≤ 0.125 and virial masses of M ≥ 0.8× 1014 h−1 M� with
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mean redshift of z = 0.085, we obtain Ωm = 0.310+0.023
−0.027 ± 0.041 (systematic) and σ8 =

0.810+0.031
−0.036 ± 0.035 (systematic), with a cluster normalization relation of σ8 = 0.43Ω−0.55

m .

There are several unique aspects to our approach: we use the largest spectroscopic data

set currently available, and we assign membership using the GalWeight technique which we

have shown to be very effective at simultaneously maximizing the number of bona fide cluster

members while minimizing the number of contaminating interlopers. Moreover, rather than

employing scaling relations, we calculate cluster masses individually using the virial mass

estimator. Since GalWCat19 is a low-redshift cluster catalog we do not need to make any

assumptions about evolution either in cosmological parameters or in the properties of the

clusters themselves. Our constraints on Ωm and σ8 are consistent and very competitive with

those obtained from non-cluster abundance cosmological probes such as Cosmic Microwave

Background (CMB), Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The

joint analysis of our cluster data with Planck18+BAO+Pantheon gives Ωm = 0.315+0.013
−0.011

and σ8 = 0.810+0.011
−0.010.

4.1 Introduction

In the current picture of structure formation, galaxy clusters arise from rare high

peaks of the initial density fluctuation field. These peaks grow in a hierarchical fashion

through the dissipationless mechanism of gravitational instability with more massive halos

growing via continued accretion and merging of low-mass halos (White & Frenk, 1991;

Kauffmann et al., 1999, 2003). Galaxy clusters are the most massive virialized systems

in the universe and are uniquely powerful cosmological probes. The cluster mass function
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(CMF), or the abundance of galaxy clusters, is particularly sensitive to the matter density

of the universe Ωm and σ8, the root-mean-square (rms) mass fluctuation on the scale of 8

h−1 Mpc at z = 0 (e.g., Wang & Steinhardt, 1998; Battye & Weller, 2003; Dahle, 2006; Wen

et al., 2010b).

Cosmological analyses have been performed using samples of galaxy cluster con-

structed from galaxy surveys (e.g., Rozo et al., 2010; Kirby et al., 2019; DES Collaboration

et al., 2020), X-ray emission (e.g., Vikhlinin et al., 2009b; Mantz et al., 2015), and thermal

Sunyaev-Zel’dovich (SZ) signal (e.g., Bocquet et al., 2019; Zubeldia & Challinor, 2019).

These cluster abundance studies showed that Ωm varies from ∼ 0.2 to 0.4 and σ8 varies

from ∼ 0.6 to 1.0. The discrepancies or tensions among these various studies is basically

dependent on the accuracy of cluster mass estimation. Cluster mass can be calculated from

cluster dynamics using, for example, the virial mass estimator (e.g., Binney & Tremaine,

1987), the weak gravitational lensing (Wilson et al., 1996; Holhjem et al., 2009), and the

application of Jeans equation for the gas density calculated from the x-ray analysis of galaxy

cluster (Sarazin, 1988). It can be also estimated from other observables, the so-called mass

proxies, which scale tightly with cluster mass, such as X-ray luminosity (e.g., Pratt et al.,

2009), optical luminosity or richness (e.g. Yee & Ellingson, 2003; Simet et al., 2017), and

the velocity dispersion of member galaxies (e.g., Biviano et al., 2006; Bocquet et al., 2015).

Generally, most of these methods introduce large systematic uncertainties which limits the

accuracy of estimating cluster masses (e.g., Wojtak &  Lokas, 2007; Mantz et al., 2016).

Cosmological analyses of galaxy cluster abundance introduce a degeneracy between

Ωm and σ8. Large ongoing and upcoming wide and deep-field imaging and spectroscopic
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surveys at different redshifts, such as DES (Abbott et al., 2018a), eROSITA (Merloni et al.,

2012), LSST (LSST Science Collaboration et al., 2009), and WFIRST (Akeson et al., 2019),

will simultaneously increase the precision of measuring the cosmological parameters and

break the degeneracy between them. This is because Ωm evolves slowly while σ8 evolves

strongly with redshift. Also, these galaxy surveys at different redshifts are significant to

study the evolution of the CMF which is critical to measuring structure growth, and there-

fore can be used to constrain properties of dark energy (e.g, Haiman et al., 2001; Mantz

et al., 2008). Introducing advanced methods is essential to analyze these surveys. One of

these methods is the GalWeight technique (Abdullah et al., 2018, hereafter Abdullah+18)

which can by applied to the available and upcoming spectroscopic database of eBOSS (Rai-

choor et al., 2017), DESI (Levi et al., 2019), and Euclid (Euclid Collaboration et al., 2019)

to construct cluster catalogs. These catalogs provide an unlimited data source for a wide

range of astrophysical and cosmological applications.

In addition, there are independent cosmological probes to constraining the cos-

mological parameters that can be applied alongside or in combination with galaxy cluster

abundance. The anisotropies in the cosmic microwave background (CMB) are an indepen-

dent probe of cosmological parameters (e.g., Hinshaw et al., 2013; Planck Collaboration

et al., 2016). The likelihoods of the Ωm-σ8 confidence levels introduced by the CMF and

CMB are almost orthogonal to each other, which means combining these measurements

will eliminate the degeneracy between Ωm and σ8 and shrink the uncertainties. Other in-

dependent cosmological probes that are used to constrain Ωm and σ8 include cosmic shear,

galaxy-galaxy lensing, and angular clustering (e.g, Abbott et al., 2018b; van Uitert et al.,
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2018). The likelihoods of the Ωm-σ8 confidence levels introduced by these probes are al-

most parallel to those introduced by the CMF. Moreover, the two cosmological probes of

baryon acoustic oscillations (BAO, e.g., Eisenstein et al., 2005) and supernovae (SNe, e.g.,

Perlmutter et al., 1999) can be used to constrain Ωm only (independent of σ8).

In this paper, we aim to derive the CMF and the cosmological parameters Ωm and

σ8 using a subsample of 756 clusters (SelFMC) obtained from the GalWCat19 cluster cat-

alog as we discuss below in detail. The GalWCat19 (Abdullah et al., 2020b, hereafter

Abdullah+20) catalog was derived from the Sloan Digital Sky Survey-Data Release 13

spectroscopic data set (hereafter SDSS-DR131, Albareti et al., 2017). The clusters were

first identified by looking for the Finger-of-God effect (see, Jackson, 1972; Kaiser, 1987;

Abdullah et al., 2013). The cluster membership was constructed by applying our own Gal-

Weight technique which was specifically designed to simultaneously maximize the number

of bona fide cluster members while minimizing the number of contaminating interlopers

(Abdullah+18). In Abdullah+18, we applied our GalWeight technique to MDPL2 and

Bolshoi N-body simulations and showed that it was > 98% accurate in correctly assign-

ing cluster membership. The GalWCat19 catalog is at low-redshift for which the effects of

cluster evolution and cosmology are minimal. Finally, the cluster masses were calculated

individually from the dynamics of the member galaxies via the virial theorem (e.g., Limber

& Mathews, 1960; Abdullah et al., 2011), and corrected for the surface pressure term (e.g.,

The & White, 1986; Carlberg et al., 1997). A huge advantage of our approach relative to

mass proxy methods is that it returns an estimate of the total cluster mass (dark matter

and baryons) without making any assumptions about the internal complicated physical pro-

1https://www.sdss.org/dr13/

101

https://www.sdss.org/dr13/


cesses associated with the baryons (gas and galaxies). The publicly available GalWCat192,

contains 1800 clusters at redshift z ≤ 0.2, which is one of the largest available samples that

used a high-quality spectroscopic data set.

The paper is organized as follows. In § 4.2, we describe in more detail how we

created the GalWCat19 cluster catalog. In § 4.3, we investigate the volume and mass incom-

pleteness of GalWCat19 to obtain a mass-complete local subsample of 756 clusters (SelFMC)

used to constrain Ωm and σ8. In § 4.4, we compare our complete sample with theoretical

models to constrain the cosmological parameters Ωm and σ8. We investigate how sys-

tematics affect the recovered cosmological constraints and compare our results with recent

results constrained from some cosmological probes and summarize our conclusions in § 4.5.

Throughout the paper we adopt ΛCDM with Ωm = 1−ΩΛ, and H0 = 100 h km s−1 Mpc−1.

4.2 The GalWCat19 Cluster Catalog

In this section, we summarize how we created the GalWCat19 cluster catalog. Full

details may be found in Abdullah+20. Using photometric and spectroscopic databases

from SDSS- DR13, we extracted data for 704,200 galaxies. These galaxies satisfied the

following set of criteria: spectroscopic detection, photometric and spectroscopic classifica-

tion as galaxy (by the automatic pipeline), spectroscopic redshift between 0.001 and 0.2

(with a redshift completeness > 0.7, Yang et al., 2007; Tempel et al., 2014), r-band mag-

nitude (reddening-corrected) < 18, and the flag SpecObj.zWarning is zero indicating a

well-measured redshift.

2https://mohamed-elhashash-94.webself.net/galwcat
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Galaxy clusters were identified by the well-known Finger-of-God effect (Jackson,

1972; Kaiser, 1987; Abdullah et al., 2013). The Finger-of-God effect causes a distortion of

line-of-sight velocities of galaxies in the redshift-phase space due to the cluster potential

well. As described in Abdullah+20, we calculated the membership of each cluster as follows.

We firstly calculated the galaxy number density within a cylinder of radius 0.5 h−1 Mpc,

and height 3000 km s−1 centered on a galaxy, i. Secondly, we sorted all galaxies descending

from highest to lowest number densities with the condition that the cylinder has at least

8 galaxies. Thirdly, starting with the galaxy with the highest number density, we applied

the binary tree algorithm (e.g., Serra et al., 2011) to accurately determine a cluster center

(αc, δc, zc) and a phase-space diagram. Fourthly, we applied the GalWeight technique

(Abdullah+18) to galaxies in the phase-space diagram out to a maximum projected radius

of 10 h−1 Mpc and a maximum line-of-sight velocity range of ±3000 km s−1 to identify

cluster membership. In Abdullah+18, we showed that the cumulative completeness of the

FOG algorithm which we tested using the Bolshoi simulation Klypin et al. (2016) was

approximately 100% for clusters with masses M200 > 2 × 1014 h−1M�, and ∼ 85% for

clusters with masses M200 > 0.4× 1014 h−1M�.

The virial mass of each cluster was estimated by applying the virial theorem to

the cluster members, under the assumption that the mass distribution follows the galaxy

distribution (e.g., Giuricin et al., 1982; Merritt, 1988). The estimated mass was corrected

for the surface pressure term which, otherwise, would overestimate the fiducial cluster mass

(e.g., The & White, 1986; Binney & Tremaine, 1987; Carlberg et al., 1997). The cluster virial

mass was calculated at the viral radius within which the cluster is in hydrostatic equilibrium.
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The virial radius is approximately equal to the radius at which the density ρ = ∆200ρc,

where ρc is the critical density of the universe and ∆200 = 200 (e.g., Carlberg et al., 1997;

Klypin et al., 2016). Abdullah+20 showed that the cluster mass estimates returned by the

virial theorem after utilizing the GalWeight technique (Abdullah+18) performed very well

in comparison to most of other mass estimation techniques described in Old et al., 2015.

In particular, our procedure was applied to two mock catalogs (HOD2 and SAM2) recalled

from Old et al. (2015). We found that the root mean square differences of the recovered

mass by GalWeight relative to the fiducial cluster mass were 0.24 and 0.32 for HOD2 and

SAM2, respectively. Also, the intrinsic scatter in the recovered mass was ∼ 0.23 dex for

both catalogs. Moreover, the uncertainty of the virial mass estimator is calculated using

the limiting fractional uncertainty π−1
√

2 lnN/N (Bahcall & Tremaine, 1981).

The scatter and bias in the recovered mass using the virial mass estimator are

caused by some factors including: (i) the assumption of hydrostatic equilibrium, projection

effect, and possible velocity anisotropies in galaxy orbits, and the assumption that halo mass

follows light (or stellar mass); (ii) the presence of substructure and/or nearby structure such

as cluster, supercluster, to which the cluster belongs, or filament (e.g., Merritt, 1988; Fadda

et al., 1996); (iii) the presence of interlopers in the cluster frame due to the triple-value

problem, for which there are some foreground and background interlopers that appear to

be part of the cluster body because of the distortion of phase space (Tonry & Davis, 1981;

Abdullah et al., 2013); and (iv) the identification of cluster center (e.g., Girardi et al.,

1998b; Zhang et al., 2019).

The 1800 GalWCat19 clusters range in redshift between 0.01 − 0.2 and in mass
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Figure 4.1: GalWCat19 completeness. Left: The black line shows the integrated abundance
of clusters as a function of redshift for the GalWCat19 catalog. The dashed color lines present
the expectation of complete samples estimated by Tinker08 for five different cosmologies
as shown in the legend. Right: The black line shows the integrated abundance of clusters
as a function of cluster mass. The dashed color lines present the expectation of complete
samples estimated by Tinker08 for five different cosmologies as shown in the legend. The
fractional error (N(< z)obs −N(< z)model)/N(< z)model is shown in the lower panels. The
gray shaded areas represent the expected Poisson noise.
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between (0.4 − 14) × 1014h−1M�. The GalWCat19 catalog contains a large number of

cluster parameters including sky position, redshift, membership, velocity dispersion, and

mass at overdensities ∆ = 500, 200, 100, 5.5. The 34,471 member galaxies were identified

within the radius at which the density is 200 times the critical density of the universe. The

galaxy catalog provided the coordinates of each galaxy and the ID of the cluster that the

galaxy belongs to. The catalogs was publicly available at the following website https:

//mohamed-elhashash-94.webself.net/galwcat/.

4.3 Cluster mass function

The GalWCat19 catalog is not complete in either volume or mass. In § 4.3.1, we

analyze GalWCat19 to develop an appropriate selection function of our sample which is used

to correct for the volume incompleteness. Also, in § 4.3.2, we compute the CMF derived

from GalWCat19 and compare it with the CMF calculated from the MDPL2 3 simulation

(described in the next paragraph) to obtain a mass-complete subsample (SelGMC) used to

constrain the cosmological parameters Ωm and σ8.

The MDPL2 is an N-body simulation of 38403 particles in a box of comoving length

1 h−1 Gpc, mass resolution of 1.51×109 h−1 M�, and gravitational softening length of 5 h−1

kpc (physical) at low redshifts from the suite of MultiDark simulations (see Table 1 in Klypin

et al., 2016). It was run using the L-GADGET-2 code, a version of the publicly available

cosmological code GADGET-2 (Springel, 2005). It assumes a flat ΛCDM cosmology, with

cosmological parameters ΩΛ = 0.693, Ωm = 0.307, Ωb = 0.048, n = 0.967, σ8 = 0.823, and h

3https://www.cosmosim.org/cms/simulations/mdpl2/
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= 0.678 (Planck Collaboration et al., 2014). Haloes and subhaloes have been identified with

ROCKSTAR (Behroozi et al., 2013b) and merger trees constructed with CONSISTENT

TREES (Behroozi et al., 2013c). The catalogs are split into 126 snapshots between redshifts

z = 17 and z = 0. We downloaded the snapshot (hlist 0.91520.list4) with z ∼ 0.09 which is

consistent with the mean redshift of GalWCat19 sample.

4.3.1 GalWCat19 Completeness

The GalWCat19 catalog is incomplete in the distribution of clusters with respect

to comoving distance (redshift), and in the distribution of clusters with respect to mass. In

this section, we discuss such incompleteness and how to make corrections.

The completeness in comoving volume (redshift) of the GalWCat19 catalog can be

investigated by calculating the abundance of clusters predicted by a theoretical model and

comparing it with the abundance of GalWCat19 clusters. We adopt the functional form of

Tinker et al. (2008) (hereafter Tinker08) to calculate the halo mass function (HMF5, see

§ 4.4.1 for more details) and consequently the predicted abundance of clusters.

The integrated abundance of clusters as a function of redshift for the GalWCat19

sample, N(< z), is presented in the upper left panel of Figure 4.1. Note that N(< z) is

calculated for the clusters with redshift z ≥ 0.04 to remove the effect of nearby regions where

the cosmic variance has a large effect due to the small volume. The plot shows that the

catalog is matched with the prediction of Tinker08 for z . 0.09. Also, the fractional error

of N(< z) relative to the expectation of Tinker08, (N(< z)obs−N(< z)model)/N(< z)model,

4https://www.cosmosim.org/data/catalogs/NewMD_3840_Planck1/ROCKSTAR/trees/hlists/
5We use CMF for mass functions derived from observations and HMF for mass functions computed by

theoretical models
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for each model and the expected Poisson noise (gray shaded area) are presented in the lower

left panel. The plot shows that the scatter relative to each model is nearly constant (around

zero) for z . 0.09 before it blows up after this redshift limit. This indicates that GalWCat19

is approximately complete in volume for z . 0.09 (or equivalently comoving distance of

D . 265 h−1 Mpc for the ΛCMD universe with Ωm= 0.3). We call this volume-complete

subsample as NoSelFVC.

Similarly, the integrated abundance of clusters as a function of cluster mass, N(>

M), is presented in the upper right panel of Figure 4.1 in comparison to five Tinker08

models and the scatter is presented in the lower right panel. The plot shows that the data

is matched with the models of Ωm= [0.20, 0.305, 0.40] with σ8= 0.825 better than the models

of Ωm= 0.305 and σ8= [0.725, 0.925]. Even though it is not an easy task to specifically

determine the mass threshold at which the catalog is complete, the three matched models

indicate that GalWCat19 is approximately complete for log(M) & 13.9 h−1 M�. We discuss

the systematics of adapting this mass threshold on our analysis in § 4.5.1. The large scatter

at the high mass end is due to the small number of massive clusters, while the large scatter

at the low mass end comes from the incompleteness of GalWCat19.

In order to correct for the incompleteness in volume of GalWCat19 each cluster

should be weighed by S(D), where S is the selection function at a distance D. Figure 4.2

introduces the normalized number density Nn(D), defined as the cluster number density

normalized by the average number density calculated for clusters within comoving distance

D < 265 h−1 Mpc, for all clusters and for five mass bins as described in Table 4.1. The dis-

tribution of points in Figure 4.2 can be described by an exponential function that represents
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the selection function S(D). It has the form

S(D) = a exp

[
−
(
D

b

)γ]
(4.1)

The parameters a, b and γ are determined by applying the chi-squared algorithm using the

Curve Fitting MatLab Toolbox. The best fit values of these parameters are, a = 1.07±0.12,

b = 293.4 ± 20.7 h−1 Mpc and γ = 2.97 ± 0.90 with root mean square error of 0.15. Note

that the normalization a is greater than unity because of the scatter and the effect of the

cosmic variance. But, we apply the selection function with the condition that S(D) ≤ 1.

We should be cautious in using S(D) at large distances. This is because S(D &

500) h−1 Mpc drops to & 0.01 as demonstrated in Figure 4.2 which means that a distant

cluster would be weighted as at least 100 times as a nearby cluster. This will overestimate

or overcorrect the number of clusters at large distances, and consequently the estimated

CMF will be noisy. Thus, in order to avoid the overcorrection and the noisiness of CMF we

restrict our sample to a maximum comoving distance of D ≤ 365 (or z ≤ 0.125) for which

S(D) . 0.2.

It is well-known that the cluster number density of a given mass decreases with

redshift for a 100% complete sample because of the HMF evolution effect. Thus, the CMF

should be scaled or corrected by an evolution function, Sevo(D). For a sample with a

broad range of redshifts, the only way to take the evolution into account is to calculate

this function. However, the disadvantage of this approach is that the correction is model

dependent: the measured HMF (i.e., CMF) is a convolution of the true HMF and theoretical

estimate of Sevo(D). However, for a sample with a narrow range of redshifts (as in our case)
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Table 4.1: The cluster average number density for different mass bins.

Mass number of average color
bin clusters number density

[h−1 M�] [10−5 h3 Mpc−3]

13.6 - 15.2 1800 5.6 black

13.6 - 13.8 527 2.2 blue
13.8 - 14.0 461 1.5 green
14.0 - 14.2 411 1.0 red
14.2 - 14.5 326 0.7 cyan
14.5 - 15.2 75 0.2 magenta

Columns: (1) the mass bin in units of log M [h−1 M�]; (2) the number of clusters in each
mass bin; (3) the average number density calculated for clusters within comoving distance
D < 265 h−1 Mpc in each mass bin; (4) the color of number density profile as shown in the
right panel of Figure 4.1.

we show in appendix 4.5.4 that the evolution effect is less than 3% for clusters in the redshift

range of 0.045 ≤ z ≤ 0.125. In appendix 4.5.4, we discuss the effect of adopting this redshift

interval on our results.

4.3.2 Estimating the Mass Function

In this section, we compute the CMF, dn(M)/dlog(M), and its corresponding

cumulative mass function, n(> M), which are estimated for a ΛCDM cosmology with Ωm=

0.3 and ΩΛ = 0.7. The CMF is defined as the number density of clusters per logarithmic

cluster mass interval. Also, the cumulative CMF is defined as the number density of clusters

more massive than a given mass M .

Mathematically, the CMF, weighted by the selection function S, is given by

dn(M)

d logM
=

1

d logM

∑
i

1

V

1

S(Di)
(4.2)
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Figure 4.2: Selection function of GalWCat19 cluster sample. Colored points show the nor-
malized number density of the five mass bins described in Figure 4.1. The black line shows
an exponential form describing the selection function S(D) which is fitted with the data.
The scatter of data relative to the exponential form is presented in the lower panel.
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Figure 4.3: The cumulative CMF derived from the GalWCat19 cluster sample. The black
line shows the mass function computed from the MDPL2 simulation (for the snapshot
hlist 0.91520.list at z ∼ 0.9 or D ∼ 260) (Klypin et al., 2016). The blue points present
the CMF for the volume-complete subsample with D ≤ 265 h−1 Mpc (z ∼ 0.09) without
the correction of S(D) (NoSelFVC). The red points show the CMF corrected by S(D) for
D ≤ 365 h−1 Mpc(z ∼ 0.125, SelFMC). The vertical dashed line shows the low-mass limit
(log(M) = 13.9 h−1 M�) used to constrain Ωm and σ8. The error bars on the vertical axis
are calculated by Poisson statistics. The fractional errors between the CMF of MDPL2 and
both NoSelFVC and SelFMC are shown in the lower panels. The gray shaded areas represent
the expected Poisson noise.
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where Di is the comoving distance of a cluster i, and V is the comoving volume which is

given by

V =
4π

3

Ωsurvey

Ωsky
(D3

2 −D3
1) (4.3)

where Ωsky = 41, 253 deg2 is the area of the sky, Ωsur ' 11, 000 deg2 is the area covered

by GalWCat19, and D1 and D2 are the minimum and maximum comoving distances of the

cluster sample.

Figure 4.3 introduces the cumulative CMF computed from GalWCat19. The black

line is the CMF computed from the MDPL2 simulation (for the snapshot hlist 0.91520.list

at z ∼ 0.09 or D ∼ 265, Klypin et al., 2016). The blue points introduces the CMF for

NoSelFVC without the correction of S(D), since this sample is already complete in volume

(see, § 4.3.1 and Figure 4.1). The red points represents our CMF corrected by S(D) for

D ≤ 365 h−1 Mpc (z ∼ 0.125). Comparing the CMF estimated by the NoSelFVC subsample

with that derived from the MDPL2 simulation indicates that the sample is approximately

complete in mass for log(M) & 13.9 h−1 M�, while it drops lower than the CMF of MDPL2

at low-mass end. Also, our CMF, corrected by S(D ≤ 365), is in good agreement with

the CMF derived from NoSelFVC with a scatter of 0.026 dex. The mass completeness of

GalWCat19 is discussed in § 4.3.1 and Figure 4.1. In appendix 4.5.4, we show that the results

of deriving the cosmological parameters from NoSelFVC is consistent with that derived

from SelFMC. This indicates that weighting each cluster in our sample by S(D ≤ 365)

introduced in § 4.3.1 and Equation 4.1 is sufficient to correct for the volume incompleteness

of GalWCat19.
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Therefore, our final subsample, corrected by S(D) is restricted by log(M) ≥ 13.9

h−1 M� and 0.045 ≤ z ≤ 0.125. The number of clusters of this subsample is 756, which

represents ∼ 42% of the GalWCat19 sample. We use this subsample to constrain Ωm and

σ8 and call it as fiducial SelFMC sample.

4.4 Implications for Cosmological Models

In § 4.4.1, we discuss the prediction of HMF from the theoretical framework. In

§ 4.4 we derive the constrains on the cosmological parameters Ωm and σ8, and discuss the

degeneracy between these two parameters.

4.4.1 Prediction of Halo Mass Function

The number of dark matter halos per unit mass per unit comoving volume of the

universe, HMF, is given by

dn

d lnM
= f(σ)

ρ0

M

∣∣∣∣ d lnσ

d lnM

∣∣∣∣ ; (4.4)

here ρ0 is the mean density of the universe, σ is the rms mass variance on a scale of radius

R that contains mass M = 4πρ0R
3/3 , and f(σ) represents the functional form that defines

a particular HMF fit.

Assuming a Gaussian distribution of mass fluctuation, Press & Schechter (1974)

used a linear theory to derive the first theoretical model (hereafter PS) of HMF. While

fairly successful in matching the results of N-body simulations, the PS formalism tends to
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Figure 4.4: Likelihood contour map of χ2 in σ8-Ωm plane derived from the SelFMC cluster
catalog. The black star represents the best-fit point for Ωm and σ8 which minimizes χ2

value. Ellipses show 1σ, 2σ, and 3σ confidence levels, respectively. The dashed yellow line
represents the best-fit σ8-Ωm relation as shown in the legend.
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Figure 4.5: Effect of varying Ωm and σ8 on the HMF. The left panel shows the HMF
calculated from Tinker08 for five different values of Ωm= [0.1 0.2 0.3 0.4 0.5] while fixing
σ8= 0.3 (solid colored lines as shown in the legend). The right panel shows the HMF
calculated from Tinker08 for five different values of σ8= [0.6 0.7 0.8 0.9 1.0] while fixing
Ωm= 0.3 (solid colored lines as shown in the legend). Our derived CMF corrected by S(D)
for D ≤ 365 h−1 Mpc(z ∼ 0.125) is shown by black points.

predict too many low-mass clusters and too few high-mass clusters. More recently proposed

theoretical models provide better approximations to the output from N-body simulations

(e.g., Sheth et al., 2001; Jenkins et al., 2001; Warren et al., 2006; Tinker & Wetzel, 2010;

Bhattacharya et al., 2011; Behroozi et al., 2013b).

In this paper, we adopt the functional form proposed by Tinker et al. (2008)

(hereafter Tinker08) as our form of the HMF. This approach assumes universality of the

HMF across the cosmological parameter space considered in this work, and uses a fitting

function that was calibrated against N-body simulations. The Tinker08 model is formally

accurate to better than 5% for the cosmologies close to the ΛCDM cosmology and for the

mass and redshift range of interest in our study (e.g., Vikhlinin et al., 2009b). Although
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the formula has been calibrated using dissipationless N-body simulations (i.e., without the

effect of baryons), hydrodynamic simulations suggest that these have negligible impact for

clusters with masses as high as those considered here (e.g., Rudd et al., 2008; Velliscig et al.,

2014; Bocquet et al., 2016). Finally, note that the Tinker08 model is defined in spherical

apertures enclosing overdensities similar to the mass we derive for the GalWCat19 observed

clusters.

f(σ, z) = A

[(σ
b

)−a
+ 1

]
exp (−c/σ2) (4.5)

where A = 0.186 (1 + z)−0.14, a = 1.47 (1 + z)−0.06, b = 2.57 (1 + z)−α, c = 1.19, and

lnα(∆vir) = [75/ (ln (∆vir/75))]1.2, and σ2 is the mass variance defined as

σ2(M, z) =
g(z)

2π

∫
P (k)W 2(kR)k2dk (4.6)

P (k) is the current linear matter power spectrum (at z = 0) as a function of wavenumber

k, W (kR) = 3 [sin(kR)− kR cos(kR)])/(kR)3 is the Fourier transform of the real-space

top-hat window function of radius R, and g(z) = σ8(z)/σ8(0) is the growth factor of linear

perturbations at scales of 8h−1 Mpc, normalized to unity at z = 0.

The current linear power spectrum P (k) is defined as P (k) = BknT 2(k), where

T (k) is the transfer function, B is the normalization constant and n is the spectral in-

dex. Usually the normalization B is calculated from the cosmological parameter σ8, (e.g.,

Reiprich & Böhringer, 2002; Murray et al., 2013a). The function kn imprints the primordial

power spectrum during the epoch of inflation. The transfer function T (k) quantifies how
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this primordial form is evolved with time to the current linear power spectrum on different

scales. The transfer function T (k) is calculated using the public Code for Anisotropies in

the Microwave Background (CAMB6, Lewis et al., 2000). The quantities Ωm and σ8 are the

main cosmological parameters that define the HMF. The other parameters do not strongly

affect the HMF and thus we fix them during the calculation of the HMF as described below

(e.g., Reiprich & Böhringer, 2002; Bahcall et al., 2003; Wen et al., 2010b).

4.4.2 Constraining Ωm and σ8

The HMF is calculated using the publicly available HMFcalc 7 code (Murray et al.,

2013a). The code provides about 20 fitting functions that can be used to calculate the

HMF. In this paper, in order to constrain Ωm and σ8, we use Tinker08 (Equation 4.5) as

discussed above. We calculate the HMF by allowing Ωm to range between [0.1, 0.6] and

σ8 between [0.6, 1.2], both in steps of 0.005. We keep the following cosmological parameters

fixed: the CMB temperature Tcmb = 2.725K◦, baryonic density Ωb = 0.0486, and spectral

index n = 0.967 (Planck Collaboration et al., 2014), at redshift z = 0.089 (the mean redshift

of GalWCat19).

In order to determine the best-fit mass function and constrain Ωm and σ8 we use

a standard χ2 procedure

χ2 =
N∑
i=1

(
[yo,i − ym,i]2

σ2
i

)
(4.7)

where the likelihood, L(y|σ8,Ωm), of a data (CMF) given a model (HMF) is

6https://camb.info/
7http://hmf.icrar.org/
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L(y|σ8,Ωm) ∝ exp

(
−χ2(y|σ8,Ωm)

2

)
(4.8)

yo and ym are the data and model cumulative mass functions at a given mass and σ is the

statistical uncertainty of the data.

Using the fiducial SelFMC sample of 756 clusters with log(M) ≥ 13.9 and 0.045 ≤

z ≤ 0.125, the best-fit parameters for the minimum value of χ2 are Ωm = 0.310+0.025
−0.029 and

σ8 = 0.810+0.039
−0.034 for Tinker08 at redshift z = 0.085. In § 4.5.1 we discuss the systematics

of cluster mass uncertainty, mass threshold, and selection function.

The banana shape in Figure 4.4 shows the well-known degeneracy between σ8 and

Ωm. The relationship between σ8 and Ωm is often expressed as

σ8 = α Ωβ
m (4.9)

The parameters α, β, and δ are determined by applying the χ2 algorithm using the Curve

Fitting MatLab. The best fit values of these parameters are α = 0.425 ± 0.006 and β =

−0.550± 0.007 with root mean square error of 0.005 for the Tinker08 model.

We now ask the question - how do Ωm and σ8 contribute individually to the HMF?

In other words, why do cluster abundance studies introduce a degeneracy between Ωm and

σ8? The degeneracy occurs because a low abundance of massive clusters could be caused

either by a small amount of matter in the universe (a low value of Ωm) or small fluctuations

in the density field (a low value of σ8). Similarly, a high abundance of massive clusters

could be caused either by a large amount of matter in the universe (a high value of Ωm) or
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Figure 4.6: Effects of cluster mass uncertainty (left), mass threshold (middle), and selection
function (right) on our constraints on Ωm and σ8. Left: the 68% CLs of our fiducial sample
(black), fractional mass uncertainty (blue), and intrinsic scatter of 0.23 (red). Middle: the
68% CLs (green) for varying mass threshold logM from 13.8 to 14 h−1 M�. Right: the
68% CLs (magenta) due to systematic of the selection function.

large fluctuations in the density field (a high value of σ8). Therefore, it is possible to obtain

the same abundance of massive clusters by fixing one parameter and varying the other one.

Figure 4.5 introduces two sets of HMFs calculated by Tinker08. The first set is shown on

the left panel for five different values of Ωm = [0.1 0.2 0.3 0.4 0.5] while fixing σ8 = 0.8. The

second set is shown on the right panel for five different values of σ8 = [0.6 0.7 0.8 0.9 1.0]

while fixing Ωm = 0.3. As expected, increasing the matter density of the universe increases

the number of clusters of all masses. But increasing the rms mass fluctuation increases the

number of high-mass clusters more dramatically than number the low-mass clusters. In

other words, σ8 is very sensitive to the high-mass end of the HMF.

4.5 Discussion and Conclusion

In this section, we investigate how systematics affect the recovered cosmological

constraints from our analysis (§ 4.5.1). We compare our constraints on the cosmological
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parameters Ωm and σ8 with those obtained from cluster abundance studies (§ 4.5.2). We

also compare our constraints with those obtained from other cosmological probes which we

refer to as non-cluster cosmological probes (§ 4.5.3).

4.5.1 Systematics

In constraining Ωm and σ8 in § 4.4.2, we only account for the statistical uncertainty

of the estimated cumulative CMF using the fiducial SelFMC sample. In this section, we

discuss the systematics due to mass uncertainty, mass threshold, and parameterization of

the selection function.

Mass Uncertainty

The first uncertainty comes from the difficulty of calculating cluster masses accu-

rately. Generally, masses which are estimated using scaling relations, such as luminosity,

richness, temperature, and dispersion velocity-mass relations, introduce large scatter and

consequently large systematic uncertainties (e.g., Mantz et al., 2016; Mulroy et al., 2019).

Masses which are computed by dynamical estimators are subject to systematic uncertainties

(e.g., Wojtak &  Lokas, 2007; Rozo et al., 2010; Old et al., 2018). However, using the virial

theorem, corrected for the surface pressure term, provides a relatively unbiased estimation

of cluster masses (e.g., Rines et al., 2010; Ruel et al., 2014), particularly when using a

sophisticated interloper rejection technique such as GalWeight (Abdullah+18). Also, the

virial mass estimator calculates the total cluster mass including baryonic (gas and galax-

ies) and dark matter regardless the internal complex physical processes associated with the

baryonic component in clusters. However, the virial mass estimator still introduces scatter
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in estimating cluster masses (see § 4.2). Abdullah+20 showed that the application of the

virial mass estimator on two mock catalogs (HOD2 and SAM2) recalled from Old et al.

(2015) returned intrinsic scatter of ∼ 0.23 dex in the recovered mass relative to the fiducial

cluster mass. Also, the GalWCat19 catalog introduced the fractional uncertainty (see § 4.2)

of each cluster mass.

Assuming a normal distribution, we investigate the systematics of the mass un-

certainty by generating ∼ 8000 estimate for each cluster mass using both the fractional

uncertainty for each cluster and the intrinsic scatter for the entire sample. In other words,

we reanalyze SelFMC ∼ 8000 times and refit for Ωm and σ8 for each time. The left panel of

Figure 4.6 introduces the effect of cluster mass uncertainty on the constraints on Ωm and

σ8. Using the fractional uncertainty, we obtain Ωm= 0.305± 0.014 and σ8= 0.816± 0.021,

where the red ellipse represents 68% CL for the disribution of the reestimated 8000 pairs

of Ωm and σ8. Using the intrinsic scatter (blue ellipse), we find Ωm= 0.309 ± 0.014 and

σ8= 0.815 ± 0.022. Both results indicate that the cluster mass uncertainty (fractional or

intrinsic) does not affect our constraints on Ωm and σ8 using SelFMC.

Mass Threshold

The second systematic uncertainty comes from the difficulty of determining accu-

rately the mass threshold at which the sample is mass complete. As discussed in § 4.3.1 and

Figure 4.1 the catalog is approximately complete around logM & 13.9 [h−1 M�]. However,

the mass threshold at which the sample is mass-complete is not accurately specified. There-

fore, we investigate the effect of varying the mass threshold logM between 13.8 and 14.0

[h−1 M�] in steps of 0.05 dex on the recovered cosmological constraints from our analysis.
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Figure 4.7: Constraints on Ωm and σ8 obtained from cluster abundance studies (cluster
mass function; CMF). Left: 68% confidence levels (CLs) derived from SelFMC (magenta)
plus select other optical, X-ray or SZ-detected cluster catalogs as shown in the legend
and summarized in the first three sections of Table 4.2. The two dashed lines show the
best-fit values derived in this work. Right: Uncertainties on Ωm and σ8 for each of the
cluster abundance studies listed in Table 4.2 (Note: For clarity, not all studies in Table 4.2
are shown in the left panel). While in agreement with the other cluster abundance studies
within 1σ uncertainties, the value of Ωm determined from our work is slightly higher and the
value of σ8 slightly lower than most of the other studies. As shown in Fig 4.8 and discussed
in § 4.5.3, we note that our values are in better agreement with Ωm and σ8 obtained from
non-cluster determinations as shown in Fig 4.8.

For each mass threshold we calculate the χ2 likelihood and then we obtain the joint 68%

CL of all χ2 distributions as shown in the middle panel of Figure 4.6. The plot shows that

the best fit values of Ωm and σ8 deviate very slightly from the results of the fiducial sample

with Ωm = 0.300+0.015
−0.017 and σ8 = 0.820+0.020

−0.023.
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Table 4.2: Comparison of constraints on cosmological parameters Ωm and σ8 derived from
Clusters Abundances (CMF) and from Other Cosmological Probes, including cosmic shear,
galaxy-galaxy lensing, angular clustering, BAO, supernovae, and CMB

Sample Mass estimation Ωm σ8 S
(a)

8 ∆
(b)
pl ref

spectroscopically-selected catalogs — cluster abundance

GalWCat19 virial theorem 0.305+0.037
−0.042 0.810+0.053

−0.056 0.817 0.032

optical photometrically-selected catalogs — cluster abundance

MaxBCG rich-mass 0.281+0.066
−0.066 0.804+0.073

−0.073 0.779 0.108 [1]

RedMaPPer rich-mass 0.220+0.050
−0.040 0.910+0.110

−0.100 0.778 0.325 [2]

RedMaPPer rich-mass 0.250+0.040
−0.040 0.850+0.06

−0.08 0.776 0.212 [3]

x-rays catalogs — cluster abundance

REFLEX lum-mass 0.341+0.030
−0.029 0.711+0.039

−0.031 0.758 0.148 [4]

Chandra lum-mass 0.255+0.043
−0.043 0.820+0.013

−0.013 0.757 0.191 [5]

WtG (c) lum-mass 0.260+0.030
−0.030 0.830+0.04

−0.04 0.773 0.176 [6]

HIFLUGCS lum-mass 0.217+0.073
−0.054 0.893+0.098

−0.095 0.760 0.327 [7]

XMM-XXL temp-mass 0.399+0.094
−0.094 0.721+0.071

−0.071 0.832 0.289 [8]

SZ catalogs — cluster abundance

ACT, [B12] SZ-mass 0.252+0.047
−0.047 0.872+0.065

−0.065 0.799 0.214 [9]

ACT, [Dyn] SZ-mass 0.301+0.082
−0.082 0.975+0.108

−0.108 0.977 0.207 [10]

SPT SZ-mass 0.276+0.047
−0.047 0.781+0.037

−0.037 0.776 0.129 [11]
HECS-SZ SZ-mass – – 0.751 – [12]

Planck18 SZ-mass 0.310+0.020
−0.020 0.770+0.040

−0.040 0.783 0.138 [13]

other cosmological probes

DES-Y1 CS+GL+AC (d) 0.270+0.041
−0.040 0.820+0.038

−0.036 0.778 0.143 [14]

KiDS+GAMA CS+GGL+AC 0.315+0.068
−0.092 0.785+0.111

−0.117 0.804 0.032 [15]

Pantheon SNe 0.307+0.012
−0.012 — — — [16]

6dF+DR7+BOSS (e) BAO 0.346+0.045
−0.045 — — — [17]

WMAP9 CMB only 0.280+0.041
−0.040 0.820+0.038

−0.036 0.792 0.112 [18]

Planck18 CMB only 0.315+0.007
−0.007 0.811+0.006

−0.006 0.832 0.000 [19]

(a) The cluster normalization condition parameter, S8, is defined as S8 = σ8(Ωm/0.3)0.5 as used in the literature.

(b) ∆pl =
√[

(Ωm,ref − Ωm,pl)/Ωm,pl
]2

+
[
(σ8,ref − σ8,pl)/σ8,pl

]2
is the scatter of Ωm and σ8 obtained from each

method listed the table relative to that obtained from Planck18 (Planck Collaboration et al., 2018). (c) Mantz et al.
(2015) used the combination of luminosity, temperature, gas mass, and lensing mass to estimate cluster mass which
were refereed to as Weighting the Giant (WtG) (d) CC = cosmic shear, GL = galaxy-galaxy lensing, AC = angular
clustering. (e) 6dF = Six Degree Field Galaxy Survey (Beutler et al., 2011), DR7 = SDSS data release 7 (Ross
et al., 2015), BOSS = Baryon Oscillation Spectroscopic Survey (Alam et al., 2017). Reference: [1]=Rozo et al., 2010,
[2]=Costanzi et al., 2019, [3]=Kirby et al., 2019, [4]=Schuecker et al., 2003, [5]=Vikhlinin et al., 2009b, [6]=Mantz
et al., 2015, [7]=Schellenberger & Reiprich, 2017, [8]=Pacaud et al., 2018, [9]=Hasselfield et al., 2013, [10]= Hasselfield
et al., 2013, [11]= Bocquet et al., 2019, [12]=Ntampaka et al., 2019, [13]=Zubeldia & Challinor, 2019, [14]=Abbott
et al., 2018b, [15]=van Uitert et al., 2018, [16]=Scolnic et al., 2018, [17]=Alam et al., 2017, [18]=Hinshaw et al., 2013,
[19]=Planck Collaboration et al., 2018.
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Selection Function Parameterization

The constraints on Ωm and σ8 is affected by parameterization of the selection

function. Our selection function depends on three parameters a, b, and γ. The normalization

a is already fixed to unity. Assuming a normal distribution, the systematic of the selection

function is investigated by generating ∼ 8000 pairs of b and γ, using the uncertainty in b

and γ (see § 4.3.1). For each pair we estimate the best fit values of Ωm and σ8. Figure 4.6

shows the 68% CL for the systematic of the selection function. This analysis rotates the

error ellipses slightly compared to our fiducial analysis, but does not affect our results. We

obtain Ωm= 0.313± 0.035 and σ8= 0.809± 0.012, which is consistent with our result of the

fiducial sample.

4.5.2 Comparison with external data from cluster abundance

The left panel of Figure 4.7 introduces the 68% confidence level (CL) derived from

SelFMC in comparison to the results obtained from other cluster abundance studies. Samples

of galaxy cluster constructed from galaxy surveys include optical photometric (e.g., Kirby

et al., 2019), X-ray (e.g., Mantz et al., 2015), and SZ (e.g., Zubeldia & Challinor, 2019)

catalogs as listed in Table 4.2. The figure shows that the CLs of all cluster abundance

studies introduce a degeneracy between Ωm and σ8 as we discussed in § 4.4.2. Also, the CL

derived from SelFMC overlaps the CLs obtained from all other results as shown in the figure.

Regardless of this overlapping, the right panel of Figure 4.7 shows that the constraints on

Ωm and σ8 from cluster abundance studies are in tension with each other, even for the studies

that use the same type of cluster sample. Specifically, the X-ray independent studies listed
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in Table 4.2 introduce different values of Ωm and σ8, which vary from ∼ 0.22 to 0.40 and

0.71 to 0.89, respectively. Also, the independent studies that use SZ-cluster samples show

that Ωm and σ8 vary from ∼ 0.25 to 0.31 and 0.77 to 0.98, respectively.

The question is now, why are the cosmological constraints derived from many of the

cluster abundance techniques in tension with each other? All cluster samples constructed

from photometric surveys or detected by SZ effect do not return an estimate of each cluster’s

mass directly. For such samples the cluster mass has to be inferred indirectly from other

observables, which scale tightly with cluster mass. Among these mass proxies are X-ray

luminosity, temperature, the product of X-ray temperature and gas mass (e.g., Vikhlinin

et al., 2009b; Mantz et al., 2016), richness (e.g., Yee & Ellingson, 2003; Simet et al., 2017),

and SZ signal (e.g., Bocquet et al., 2019). To estimate cluster masses for the clusters in

these samples it is necessary to follow up a subset of clusters and calculate their masses

using, e.g., weak lensing or x-ray observations. Then, an observable-mass relation can be

calibrated for these subsamples. Finally, the mass of each cluster in the sample can be

estimated from this scaling relation. However, this reliance on observable-mass proxies

introduces significant systematic uncertainties which is the dominant source of error (e.g.,

Henry et al., 2009; Mantz et al., 2015) for the reasons explained in the next paragraph.

Firstly, the masses obtained for the follow-up subsample of clusters are often bi-

ased. For example, it is known that X-ray mass estimates are typically biased low and

so a mass bias factor, (1-β), needs to be introduced and calibrated. Secondly, the size

of the subsample used for calibration is usually small (tens of clusters) which introduces

large uncertainties in both the slope and the normalization of the scaling relation. Thirdly,
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many cluster catalogs span a large redshift range so evolution (due to both the evolution of

the universe and the physical processes of baryons in clusters) in the the scaling-relations

used to estimate the masses needs to be carefully handled, introducing another source of

uncertainty. All of the aforementioned assumptions can introduce large uncertainties in the

estimates of cluster mass and consequently the constraints on cosmological parameters. For

instance, σ8 is specifically very sensitive to the high-mass end of the CMF and any offset of

cluster true masses leads to biased estimation of σ8. Other observational systematics that

introduce additional uncertainties are photometric redshift errors and cluster miscentering.

By using the GalWCat19 cluster catalog and deriving cluster masses using the

virial theorem, we were able to avoid most of the complexities described above. Firstly,

we were able to identify clusters, assign membership, and determine cluster centers and

redshifts with high accuracy from the high-quality SDSS spectroscopic data set. Secondly,

cluster membership was determined by the GalWeight technique which has been shown to

be ∼ 98% accurate in assigning cluster membership (Abdullah+18). Thirdly, a mass for

each cluster was determined directly using the virial theorem. Therefore, we were able to

recover a total (dark plus baryonic) mass for each cluster and circumvent having to make

any assumptions about the complicated physical processes associated with the baryons. It

has been suggested that cluster masses estimated via the virial theorem are overestimated

by 20%. But we note that we have applied a correction for the surface pressure term which

we believe decreases this bias, especially when applied in combination with our GalWeight

membership technique (Abdullah+18). Abdullah+20 showed that the virial mass estimator

performed well in comparison to the other mass estimators described in Old et al., 2015, and
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Figure 4.8: Constraints on Ωm and σ8 obtained from cluster abundance (SelFMC; magenta)
and non-cluster cosmological constraint methods. Left: 68% confidence levels (CLs) derived
from SelFMC, WMAP9 (CMB; Hinshaw et al., 2013), Planck18 (CMB; Planck Collaboration
et al., 2018), BAO data (Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017), Pantheon
sample (SNe; Scolnic et al., 2018), and the surveys KiDS+GAMA (van Uitert et al., 2018)
and DES Y1 (Abbott et al., 2018b) which both use the cosmological probes of cosmic shear,
galaxy-galaxy lensing, and angular clustering. As in Figure 4.7, the two dashed lines show
the best-fit values derived in this work. The constraints on Ωm and σ8 derived from SelFMC

are consistent with those derived from the non-cluster methods. Joint analysis between our
constraints and the results of Planck18+BAO+Pantheon is represented by the red contour
line. Right: uncertainties of Ωm and σ8 estimated for the aforementioned probes except for
the BAO and SNe probes which constrain Ωm only.
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resulted in a relatively low bias and scatter when applied to two semi-analytical simulations

(see Figure 3 in Abdullah+20). Fourthly, since GalWCat19 is a low-redshift cluster catalog

it eliminates the need to make any assumptions about evolution in clusters themselves and

evolution in cosmological parameters. Finally, because of the large size of the GalWCat19

we are able to determining the CMF well and consequently constrain the cosmological

parameters Ωm and σ8 with high precision.

4.5.3 Comparison with external data from non-cluster cosmological probes

Cosmological parameters can be estimated from different cosmological probes

rather than cluster abundance studies. We use measurements of primary CMB anisotropies

from both WMAP (9-year data; Hinshaw et al., 2013) and Planck satellites focused on

the TT+lowTEB data combination from the 2018 analyses (Planck Collaboration et al.,

2018). We also use angular diameter distances as probed by Baryon Acoustic Oscillations

(BAO) including the 6dF Galaxy Survey (Beutler et al., 2011), the SDSS Data Release

7 (Ross et al., 2015), and the BOSS Data Release 12 (Alam et al., 2017). Furthermore,

we use measurements of luminosity distances from Type Ia supernovae from the Pantheon

sample (Scolnic et al., 2018). Finally, we use the measurements from a joint analysis of

three cosmological probes: cosmic shear, galaxy-galaxy lensing, and angular clustering, in-

cluding the results of the Kilo Degree Survey and the Galaxies And Mass Assembly survey

(KiDS+GAMA; van Uitert et al., 2018) and the first year of the Dark Energy Survey (DES

Y1; Abbott et al., 2018b) (see Table 4.2). The left panel of Figure 4.8 introduces the 68%

CL derived from SelFMC in comparison to the those obtained from the aforementioned cos-

mological probes. As shown, the CL derived from SelFMC overlaps the CLs obtained from
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all non-cluster abundance probes.

We define the scatter

∆pl =

√(
Ωm,ref − Ωm,pl

Ωm,pl

)2

+

(
σ8,ref − σ8,pl

σ8,pl

)2

, (4.10)

to compare the constraints on Ωm and σ8 obtained from all cosmological probes which are

listed in Table 4.2 with that obtained from Planck18 (Planck Collaboration et al., 2018).

Note that the constraints on Ωm and σ8 derived from most of the cluster abundance studies

independently introduce a relatively large scatter compared to the CMB experiment of

Planck18. However, our constraints on Ωm and σ8 are very comparable and competitive

with Planck18 with a minimum value of ∆pl = 0.018. Moreover, our constraint on Ωm is in

excellent agreement with the results of the BAO and Pantheon, separately. This remarkable

consistency demonstrates that our derived cluster catalog at low redshift and calculating

cluster masses using spectroscopic database of galaxy surveys is essential to obtain robust

cosmological parameters. These results also emphasize the necessarily need to construct

accurate cluster catalogs at high redshifts using the ongoing and upcoming galaxy surveys

and perform similar analyses as introduced in this work.

As discussed above there is a degeneracy between Ωm and σ8 derived from the CMF

at low redshift. We combine our 68% CL with those obtained from Planck18+BAO+Pantheon,

to eliminate the degeneracy of the our likelihood and to remarkably shrink the uncer-

tainties of the cosmological parameters. The joint analysis gives Ωm = 0.315+0.013
−0.011 and

σ8 = 0.810+0.011
−0.01 .
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4.5.4 Conclusion

In this paper, we derived the CMF and the cosmological parameters Ωm and

σ8 using a mass-complete subsample of 756 clusters (SelFMC) obtained from the GalWCat19

cluster catalog which was constructed from SDSS-DR13 spectroscopic data set. The ad-

vantages of using this catalogs are: i) we were able to identify clusters, assign membership,

and determine cluster centers and redshifts with high accuracy from the high-quality SDSS

spectroscopic data set; ii) cluster membership was determined by the GalWeight technique

which has been shown to be ∼ 98% accurate in assigning cluster membership (Abdul-

lah+18); iii) the cluster masses were calculated individually using the virial theorem, and

corrected for the surface pressure term; iv) GalWCat19 is a low-redshift cluster catalog which

eliminates the need to make any assumptions about evolution in clusters themselves and

evolution in cosmological parameters; v) the size of GalWCat19 is one of the largest available

spectroscopic samples to be a fair representation of the cluster population.

Our CMF closely matches predictions from MultiDark Planck N-body simulations

(snapshot hlist 0.91520.list8, with z ∼ 0.09) for log(M) & 13.9 h−1 M�. Assuming a flat

ΛCDM cosmology, we used the publicly available HMFcalc 9 code (Murray et al., 2013a)

to estimate HMFs for the Tinker08 model (Equation 4.5). Then, using a standard χ2

procedure, we compared our cumulative mass function to HMFs to determine the best-fit

mass function and constrain Ωm and σ8. We measured Ωm and σ8 to be Ωm = 0.310+0.023
−0.027±

0.041 (systematic) and σ8 = 0.810+0.031
−0.036 ± 0.035 (systematic), with a cluster normalization

relation of σ8 = 0.43Ω−0.55
m .

8https://www.cosmosim.org/data/catalogs/NewMD_3840_Planck1/ROCKSTAR/trees/hlists/
9http://hmf.icrar.org/
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The cosmological constraints we derived are very competitive with those recently

derived using both cluster abundance studies and other cosmological probes. In particular,

our constraint on Ωm and σ8 are consistent with Planck18+BAO+Pantheon constraints.

This remarkable consistency highlights the potential of using GalWCat19 and its subsample

SelFMC which are derived from SDSS-DR13 spectroscopic data set utilizing the applica-

tion of GalWeight to produce precision constraints on cosmological parameters. The joint

analysis of our cluster data with Planck18+BAO+Pantheon gives Ωm = 0.315+0.011
−0.013 and

σ8 = 0.810+0.011
−0.010.
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Evolution

In this section, we discuss the evolution effect for a sample of clusters with a narrow

redshift range between z1 and z2 with an average of 〈z〉. The HMF depends on the mass and

redshift and is given by
∫ z2
z1
n(M, z)dz/(z2 − z1). We test the effect of evolution assuming

an analytical model for the evolution of HMF and cosmological model with reasonable

parameters. We then take the integral
∫ z2
z1
n(M, z)dz/(z2 − z1) and compare the results

with n(M, z) at z = 0.085.

Figure 4.9 shows the evolution of the cluster number density expected by Tinker08

for cosmological parameters Ωm= 0.305 and σ8= 0.825. In the left panel, we plot the HMF

times M/ρc, ρc is the critical density of the universe, to clarify the differences between

the models at different redshifts. The right panel shows the scatter of models relative to

the expectation at z = 0.085 (black line). As expected, the evolution of clusters with

z < 0.085 is less than unity relative to that at z = 0.085 and the evolution of clusters

with z > 0.085 is larger than unity relative to that at z = 0.085. The two dashed lines

shows the expectation [
∫ z2
z1
n(M, z)dz/(z2 − z1)] in the redshift intervals of 0.0 ≤ z ≤ 0.125

(brown) and 0.045 ≤ z ≤ 0.125 (red). The plot indicates that the evolution is > 15% for

0.0 ≤ z ≤ 0.125 for massive clusters, while it drops to < 3% for 0.045 ≤ z ≤ 0.125.

Note that we do not neglect the effects of evolution. In other words, we do not

assume that the HMF at z1 is (nearly) the same as at z2 (admittedly, there is 10-20%

difference in the most massive M). Because we use ratios of these quantities, most of the

cosmological parameters (e.g., σ8) are canceled for sensible range (e.g., σ8= 0.75-0.85).

We also test other HMF approximations such as Despali HMF (?) and obtain the same
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Figure 4.9: The effect of cluster number density evolution. Left: Tinker08 HMF times
M2/ρc at different redshifts as well as the average HMF for 0.0 ≤ z ≤ 0.125 (brawn) and
0.045 ≤ z ≤ 0.125 (red) as shown in the legend. Right: The scatter of each HMF relative
to that at z = 0.085 (the mean redshift of the sample).

conclusion. Therefore, we restrict our data (observed clusters) to 0.045 ≤ z ≤ 0.125 for

which the evolution effect of the number density of clusters is minimal.

Redshift Threshold

In this section we investigate the choice of the redshift interval and the application

on the selection function of our results of the fiducial analysis as shown in Figure 4.6. In

the left panel, we fix the upper redshift threshold to 0.125 and decrease the lower redshift

threshold from 0.075 to 0.045. The plots indicates that decreasing the lower redshift thresh-

old does not affect our result of the fiducial sample (black ellipse). It also demonstrates

that the evolution effect is unremarkable in this small redshift interval. The left panel also
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Figure 4.10: The effect of adopting the redshift threshold. Left: 68% CLs for three sub-
samples with fixing the upper redshift threshold to 0.125 and decreasing the lower redshift
threshold from 0.075 to 0.045. The dashed brown ellipse represents the 68% CL of the
NoSelFVC sample. Right: 68% CLs for three subsamples with fixing the lower redshift
threshold to 0.045 and increasing the upper redshift threshold from 0.125 to 0.16.

135



introduces the 68% CL of the NoSelFVC sample (dashed brown ellipse) which gives Ωm=

0.295+0.033
−0.034 (5% less than the fiducial value) and σ8= 0.815+0.049

−0.050 (1% greater than the

fiducial value). The consistency between the results of SelFMC and NoSelFVC demonstrates

that applying the selection function for z ≤ 0.125 does not affect the results of the fiducial

analysis and is sufficient to correct for the volume incompleteness of GalWCat19. In the right

panel, we fix the lower redshift threshold to 0.045 and increase the upper redshift threshold

from 0.125 to 0.16. The plots indicates that increasing the upper redshift threshold sig-

nificantly affects our constraints on Ωm and σ8 because applying the selection function to

higher redshift (> 0.125) affects the shape of the CMF by increasing the scatter and noise

and overcorrecting the number of clusters at high redshifts.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The dissertation included three publications which were discussed in chapters two,

three, and four. In chapter two, we introduced a new technique (GalWeight) for assigning

galaxy cluster membership. We showed that the technique can be applied to both massive

galaxy clusters and poor galaxy groups. It also can be used to identify members in both

the virial and infall regions with high efficiency. We applied the GalWeight technique to

MDPL2 & Bolshoi N-body simulations, and found that it is > 98% accurate in correctly

assigning cluster membership.

In chapter three, we applied the GalWeight technique to the SDSS-DR13 spectro-

scopic data set to create a new publicly-available catalog of 1800 galaxy clusters (GalWeight

cluster catalog, GalWCat19) and a corresponding catalog of 34471 identified member galax-

ies. The clusters were identified from overdensities in redshift-phase space by looking for the

Finger-of-God effect. The cluster masses were calculated using the virial theorem, corrected
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for the surface pressure term and NFW model. The 1800 GalWCat19 clusters range in red-

shift between 0.01− 0.2 and in mass between (0.4− 14)× 1014h−1M�. The cluster catalog

provides a large number of cluster parameters including sky position, redshift, membership,

velocity dispersion, and mass at overdensities ∆ = 500, 200, 100, 5.5. The 34471 member

galaxies are identified within the radius at which the density is 200 times the critical density

of the Universe. The galaxy catalog provides the coordinates of each galaxy and the ID of

the cluster that the galaxy belongs to.

In chapter four, we derived cosmological constraints on Ωm and σ8 using GalWCat19.

By analyzing the SelFMC sample, we obtained Ωm = 0.310+0.023
−0.027 ± 0.041 (systematic)

and σ8 = 0.810+0.031
−0.036 ± 0.035 (systematic), with a cluster normalization relation of σ8 =

0.43Ω−0.55
m . Our constraints on Ωm and σ8 are consistent and very competitive with those ob-

tained from non-cluster abundance cosmological probes such as CMB, BAO, and SNe. The

joint analysis of our cluster data with Planck18+BAO+Pantheon gave Ωm = 0.315+0.013
−0.011

and σ8 = 0.810+0.011
−0.010.

5.2 Ongoing Work

5.2.1 Cluster Richness-Mass Relation

I am studying the evolution of the richness-mass relation by identifying clusters

from the GOGREEN galaxy survey at redshift z ∼ 1 utilizing the GalWeight technique and

using the RedMaPPer (Rykoff et al., 2014, 2016) and the GalWeight19 cluster catalogs. The

project aims to introducing this relationship to estimate cluster masses of the RedMaPPer

catalog to constrain cosmological parameters from RedMaPPer.
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5.2.2 Galaxy Stellar Mass Function of numerical simulations

I am conducting a study of the galaxy stellar mass function (SMF) of hydrody-

namical simulations (EAGLE, Illustris and TNG) and semi-analytical models (Galacticus)

for 0 < z < 3. The project aims to study the evolution of galaxy stellar mass in differ-

ent environments and for different galaxy types (quiescent vs. star-forming and central vs.

satellite) to understand the mechanisms of how galaxies build their masses and the physical

processes that govern galaxy formation and evolution in halos. This project to improve

the current models of galaxy evolution and understand the physical processes that govern

galaxy evolution in clusters.

5.3 Future Work

5.3.1 Connection between Galaxies and Hosting Clusters

Investigating the evolution of the properties of galaxy clusters sheds light on the

physical processes regulating galaxy evolution (e.g., Erfanianfar et al., 2019. The correla-

tions between properties of brightest cluster galaxies (BCGs), usually located at the center

of galaxy clusters, and their host galaxy clusters allow us to understand the environmental

effect of the host clusters on the formation and evolution of the central galaxies. Using

the GalWeight19 and other cluster catalogs at different redshifts and utilizing numerical

simulations, I am interested in studying the BCG stellar mass-halo mass relation, and the

fraction of early- and late-type galaxies as a function of radius from the cluster center.

These studies shed light on the connection between the galaxies and their hosting clusters,

allowing us to test the current models of galaxy formation and evolution with observations.
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5.3.2 Velocity Bias between Galaxies and Dark Matter

Studying the velocity bias (the difference in the velocity fields of dark matter and

galaxies) is a key tool in understanding the formation mechanisms of galaxies in clusters and

their evolution with time. A large uncertainty in estimating dynamical cluster mass and

extracting cosmological information from observations is due to the bias between galaxies

and dark matter (the systematic of the assumption that galaxies follows dark matter).

Comparing the velocity distribution of galaxies in clusters with the expectation of pure

nbody simulations allows us to investigate this bias. This bias is due to the effect of baryons

on the dynamics of galaxies in clusters. Investigating the hydrodynamical simulations and

semi-analytic models allows us to understand the physics behind this effect to improve the

current models of galaxy formation and evolution.
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