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INTRODUCTION

The traditional approach to nuclear structure is based on the Schroedinger
equation and involves nucleons interacting through static, two-body potentials. Since
this equation can be solved exactly for two nucleons, empirical nucleon-nucleon (NN)
data is used to constrain the two-body potential. One then attempts to (approximately)
solve the many-body problem to describe atomic nuclei. This approach has been very
successful and has taught us much about nuclear structure; nevertheless, there are
several reasons why it is inadequate for a detailed understanding of nuclear systems.

For example, there is now convincing evidence that the NN interaction contains
large Lorentz scalar and four-vector components.(l‘g) This has two immediate con-
sequences for the nuclear many-body problem. First, since the resulting single-
particle potentials in a nucleus are comparable to the nucleon mass, relativistic
effects can be important at low energies and ordinary densities. In particular, the
strong scalar field enhances the lower components of the Dirac wave function of a
nucleon, Teading implicitly to significant velocity, spin, and density dependence in
the nucleon-nucleus 1nteraction.(3’4’8'12) In addition, strong interactions introduce
a new energy scale into nuclear matter calculations that is approximately several
hundred MeVY at ordinary densities. The nuclear matter binding energy now involves
not only the familiar cancellation between average kinetic and potential energies,
but also a delicate cancellation between large attractive and repulsive contributions
to the potential energy. The validity of nonrelativistic calculations of nuclear
matter saturation must therefore be re-examined so that their apparent successes can
be better understood.

There are other reasons for developing a relativistic nuclear many-body theory.
To caleulate the properties of condensed stellar objects and to predict the outcome
of collisions between energetic heavy ions, one requires the nuclear matter equation
of state at temperatures and densities far removed from the regime of ordinary nuclei.
In these extreme situations, relativistic propagation of the nucleons, retardation in
the interaction, and the causal propagation of signals are important physical
constraints. It is also necessary to introduce the mesonic degrees of freedom that
mediate the nucleon-nucleon interaction, since their production and absorption may
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play a major role under the extreme conditions mentioned above. Indeed, there is now
conclusive evidence that meson and baryon degrees of freedom (including baryon
resonances) are relevant even in ordinary nuclei, as illustrated by meson-exchange
currents in electron scattering from nuclei at momentum transfers of several hundred
MeV.(13)

The only existing framework that provides a consistent description of these
relativistic meson-baryon systems is relativistic quantum field theory based on &
local lagrangian density. We will call these theories "quantum hadrodynamics" or QHD.
There are several important reasons for using a formalism based solely on hadrons.
First, these appear to be the relevant degrees of freedom for nuclear processes at
Tow to medium energies; they are also the objects actually observed in experiments,
as quarks and gluons appear to be confined. Second, although the internal quark-gluon
substructure of hadrons may be visible under very extreme conditions (for example,
in a nuclear matter phase transition to a quark-gluon plasma), it is still important to
have a consistent description of matter in the hadronic phase. Finally, the only way
to unamibiguously identify explicit signals of quantum chromodynamic (QCD) behavior in
nuclear processes is through an inadequacy in the predictions of QHD.

It is important to formulate QHD using renormalizable lagrangian densities. This
allows for consistent calculations at any desired Tevel of approximation. The
results can be expressed in terms of a finite number of parameters (coupling constants
and masses). Renormalizable models also allow for studies of the dynamical quantum
vacuum (for example, virtual NN pairs) in the nuclear medium. Moreover, since re-
normalizable QHD does not require additional ad hoc cutoff procedures, it is the
least sensitive to the high-momentum (short-distance) behavior of the hadronic inter-
action. This input may or may not provide a satisfactory description of nuclear
matter under all of the conditions mentioned above; nevertheless, it can be tested
and its Timitatijons discovered as with all questions in physics--through a detailed
comparison between consistent theoretical results and experimental measurements.

Quantum hadrodynamics is a general framework for the relativistic nuclear many-
body prob]em.(14) The detailed dynamics must be specified by choosing a particular
renormal izable lagrangian density. In the present work, we review some applications
of QHD to nuclear matter and finite nuclei, focusing primarily on the consequences of
the Lorentz structure of the NN interaction. It is therefore useful to begin with
the Walecka modeT,(lo) which contains baryons {y) and neutral scalar {¢) and vector
{Vu) mesons. This model is called QHD-I in ref. 14. The lagrangian density is given
by
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where the conventions are those of refs. 14 and 15. The parameters M, 9 90 Mg
and m, are phenomenological constants that may be determined (in principle) from
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experimental measurements. The counterterms are for renormalization purposes, as
discussed below.

The present motivation for this model comes from the empirically observed large
Lorentz scalar and four-vector components in the NN interaction. These must, of

course, be reproduced in any relativistic theory of nuclear structure, and the sim-
Plest way to do this is through the exchange of scalar and vector mesons. The other
Lorentz components of the NN interaction {pseudoscalar, tensor, and axial vector)
average essentially to zero in spin-saturated nuclear matter and may be incorporated
as refinements to the present model.{l4) Since the lagrangian (1) resembles massive
gquantum electrodynamics with an additional scalar interaction, this model is renor-
malizable.

MEAN-FIELD THEQRY

The Euler-Lagrange equations resulting from eq. (1) are

(30" ne)e = g i (2
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Mys -
[#(e, - a¥) - (- g0)] v =0 (9

These are nonlinear guantum field eguations, and their exact solutions are very com-

plicated. In particular, they describe mesons and baryons that are not point particles,
but rather objects with intrinsic structure due to the fmplied (virtual) meson and
baryon-antibaryon loops. Moreover, since we expect the couplings 9 and 9, to be

large, perturbative solutions are not useful. Fortunately, there exists an approximate
solution that should become increasingly valid as the nuclear density increases; it may
be obtained by replacing the meson field operators and baryon sources with their
classical expectation values. In infinite matter, the resulting classical meson fields
¢D and VO are uniform and constant, and they satisfy

9 _ 9
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Note that <¥> = 0 by rotational invariance. Here kF is the Fermi wavenumber and £ is
the isospin degeneracy: ¢ = 1 for neutron matter, £ = 2 for nuclear matter.

When the classical meson fields of eqs. {5) and {(6) are substituted into eq. (4)
for the Dirac field, that equation is linear,

[Huan - QV’YOVO - (M - gs¢0)] P = 0 ( 7)
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and can be solved exactly. (It is this linearization of the full field equation (4)
that allows the baryons to be interpreted now as point particles.) The resulting
baryon solutions have a mass that is shifted by the scalar field:

M= M- g.ep (8)
and an energy spectrum that is shifted by the vector field:

E(i)(k) =gV 2 (£2 + M*z)l/2 =gVt E*(k) (9)

As expected, there are solutions with both positive and negative square roots char-
acteristic of the Dirac equation. Denoting these by solutions by U(E,A) and V(E,A),
respectively, we find

1 g - k
U(kon) = MO g k) x5 vk = N(K) Ex TRy X, (10)
E* (k) +M* 1

where X, is a two-component Pauli spinor and N(k)} is a normalization factar.
These solutions can be used to define quantum field operators, and the hamiltonian

for the system can be constructed in the canonical fashion.(l4) The result is
A= F{MFT + &H (11)
4 _ - + + 122 12 2]
ey = 9,%B + 2 E¥() [AyAp BB * Y [2m%0 - 2% (12)
3 - + +
B -%‘, [AMAM " B‘EABEA] (13)
H = - 2: B52 + M*2)1/2 _ (K? + M2)1/2] (14)

kA
Here AkA’ Bkk’ A X and Bk are creation and destruction operators for (quasi)baryons

and (quas1)ant1baryons with shifted mass and energy, and V is the quantization volume.
B is the baryon number operator, which clearly counts the number of baryons minus the
number of antibaryons. (The index A denotes both spin and isospin projections.) The
correction term §H arises from placing the operators in HMFT in normal order. (14)
This correction is easily interpreted in the context of Dirac "hole theory." The
spectrum of the infinite Dirac sea of occupied negative-energy states shifts in the
presence of the surrounding nucleons at finite density. Since all energies are
measured relative to the vacuum, the energy shift must be computed by subtracting the
total energy of the Dirac sea in the vacuum, where the nucleons have their free mass
M. This Teads to the result in eq. {14). Here we will concentrate on the mean-field-
theory (MFT) hamiltonian of eq. (12); the "vacuum fluctuation" correction &H will be
discussed below.

Since the MFT hamiltonian HMFT is diagonal, we have solved this model problem
exactly. Thus the energy density for an infinite system of baryons with filled states
up to Fermi wavenumber kF may be readily evaluated:
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Here VO has been eliminated in terms of the conserved baryon density using eq. (6),
and eq. (8) serves to eliminate g The effective mass M* must be determined by
solving eq. (5) or, equivalently, by minimizing EMFT with respect to M*, leading to
the self-consistency relation

2 2 F
= Y - S5 ¢ 2 M
M*_M——?DS-M_7—? t dtm (16)
ms ms " )

Note that the scalar density Pg is smaller than the baryon density g due to the
factor of M*/E*(t), which is an effect of Lorentz contraction. Thus the contribution
of rapidly moving baryons to the scalar source is significantly reduced. Most im-
portantly, eq. {16) is a transcendental self-consistency equation for M* that must
be solved at each value of kF. This i1lustrates the nonperturbative nature of the
MFT solution.

The pressure may be defined by the thermodynamic relation

.25 (&
p =gy (5) (17)
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It can be readily verified that this expression agrees with that obtained from the
(normal-ordered) energy-momentun tensor. 10+16)

An examination of the energy density shows that the system is unbound (&

fop > M)
(10,14) MFT "B

at either very high or very low densities. At intermediate densities, the at-
tractive scalar interaction will dominate if the coupling constants are chosen properly.
The system then saturates. The empirical equilibrium properties of symmetric (N = Z)

nuclear matter will be reproduced if the couplings are chosen as

22,2, 2 _
Cy = g5 (M/mg) = 267.1 (19}
¢ = 92 (Mz/mz) = 195.9 (20)

which leads to an equilibrium Fermi wavenumber kg

1.42 fm~ -1 and an energy/nuclecn
(& MFT/QB - M) = -15.75 MeV. (This somewhat large saturation density is chosen to
present results consistent with those in refs. 10 and 14.) Note that only the ratios
of coupling constants to masses enter in egqs. (15), (16), and {18). The resulting
saturation curve is shown in fig. 1. For reasonable values of the meson masses (see

table 1), the resulting coupling constants 9, and g, are similar to those obtained in
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Fig. 1 Energy/nucleon in infinite matter in the mean-field approximation.

Model Parameters and Results

2

Table 1

2

9 9, M*/M K{MeV)
mean field 91.64 136.2 0.56 540
mean field +
vacuum fluctuations 62.89 79.78 0.72 470
Hartree-Fock 83.11 108.1 0.53 580

The meson masses used to derive these values are mg = 550 MeV and m, = 783 MeV. Each

parameter set leads to nuclear matter saturation at kg = 1,42 fm'1 with binding eneray

15.75 MeV in the indicated approximation.

at k = k. K is the compressibility.

The HF value of M* = M + Es(k) is evaluated
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one~-boson-exchange-potential fits to NN scattering.(l’z)

This implies that the
dominant features of the observed NN interaction relevant for nuclear matter are
qualitatively reproduced by the preceding normalization conditions.

Once the parameters have been specified, the properties of infinite matter in
this approximation are determined for all densities, temperatures, and proton fractions
Z/N. For example, the energy/nucleon in neutron matter (£ = 1) is also shown in
fig. 1.

The self-consistent effective mass M* is shown in fig. 2. Observe that M*/M is
significantly less than unity at ordinary nuclear densities. This is a conseguence
of the large condensed scalar field gs¢0, which is approximately 400 MeV and pro-
vides a large attractive contribution to the energy/nucleon. There is a corresponding
large repulsive energy/nucleon fram the vector field gVVO ~ 350 MeV. Thus the Lorentz
Structure of the interaction introduces a .hew energy scale in the problem, and the
small nuclear binding energy (= 16 MeV) arises from the cancellation between the
large scalar attraction and vector repulsion. Note also that the significant shift in
the nucleon mass is a new physical effect that is not present in calculations based on
static nonrelativistic potentials. Indeed, in this approximation, it is the shift in

the nucleon mass and the relativistic properties of the scalar and vector fields that
are responsible for saturation; a Hartree-Fock variational estimate built on the non-
relativistic potential Timit of the interaction shows that such a system is unstable
against collapse. 17

Because of the sensitive cancellations involved near the equilibrium density,
Corrections to the MFT must ultimately be considered. These may be calculated system-
atically in the framework of QHD.(14) Nevertheless, the Lorentz structure of the
interaction provides an additional saturation mechanism that is not present in the

nonrelativistic potential limit.

The corresponding curves for neutron matter (obtained by setting £ = 1) are also
shown in figs. 1 and 2, and the equation of state (pressure vs. energy density) for
neutron matter at all densities is given in fig. 3. In this model, there is a phase
transition similar to the Tiquid--gas transition in the van der Waals' equation of
state, and the properties of the two phases are deduced through a Maxwell construction.
At high density, the system approaches the causal limit p =€ , representing the
"stiffest” possible equation of state; this asymptotic regime is already relevant
at densities in the interiors of neutron stars (&= 1015 g/cmg).(15’18>
Although the Tow-density behavior of nuclear matter is sensitive to the cancellation
between scalar and vector components, the scalar field approaches a limiting value
(gs¢0 + M) at high densities (see fig. 2), resulting in (essentially) massless baryons
interacting through a strong vector repu]sion.(lo’l4) Thus, regardless of the precise
values of the scalar and vector masses and couplings, the stiff high-density equation

of state is determined by the Lorentz structure of the interaction. Moreover, because

the individual Lorentz components are comparable to the nucleon mass, the onset of the
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asymptotic regime occurs at modest densities {&= 1015 g/cm3). The importance of
relativistic effects in this regime implies that the extrapolation of nonrelativistic
nuclear matter calculations to these densities is questionable.

RELATIVISTIC HARTREE THEORY OF NUCLE!

The preceding formalism can be extended to describe spherically symmetric closed-
shell nuclei by allowing the classical meson fields to acquire a spatial depend-
ence.{3'5> The fields are still determined by local sources, but the sources are now
computed using baryon wave functions that are solutions to the Dirac eguation in the
spatially dependent meson fields. Thus the scalar and vector fields are determined by
the differential equations

2 2 e

(v° - mdeg(r) = ~g.0.(r) = -g. 37, (x)v (x) (21)
2 2 , &LC

(v7 - m Wolr) = -g,ep(r) = -g, 35w (x)v, (x) (22)

where the sum runs over occupied single-particle states. As in the MFT of the previous
section, only contributions from positive-energy ("valence") nucleons are included.
Corrections from the filled Dirac sea that defines the quantum vacuum will be discussed
in the next section.

The ground state of the nucTeus is a product of relativistic single-particle wave
functions describing nucleons moving in the condensed meson fields. Each nucleon
satisfies the Dirac equation

[ o - g+ g Vg(r) + 8 - g60(r))]u (x) = E v (x) (23)

and has a shifted mass that is spatially dependent. The nuclear ground state is thus
described by coupled nonlinear differential equations that are to be solved self-con-
sistently (for example, by iteration).

The preceding relativistic Hartree equations for finite nuclei are correct in
QHD-I. For comparing quantitative predictions with experiment, however, it is neces-
sary to extend the description to include vrho mesons and the coulomb field. A re-
normalizable model ("QHD-II") containing these fields is discussed in ref. 14, and the
full Hartree equations are illustrated there. Note that since the nucleus has well-
defined charge Z, only neutral meson fields have classical counterparts and appear in
these equations. In addition, there is no condensed field for the {pseudoscalar)
pion, since the nuclear ground state has well-defined parity and is spherically sym-
metric.

Since the meson masses and coupling constants appear separately in these equations,
there are four free parameters in model QHD-II: the o (scalar), w {vector), and p meson
coupling constants, and the o meson mass L The remaining parameters (nucleon mass,
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w and p meson masses, and the fine-structure constant a) are set equal to their
experimental values. The free parameters are determined as in ref. 4 from the binding
energy, symmetry energy, and equilibrium saturation density of nuclear matter (the
value k{ = 1.30 fn”! 40

the properties of all closed-shell nuclei are determined in this approximation. For
40 d 208Pb

is used), and the rms charge radius in "~Ca. Once this is done,

example, figs. 4 and 5 show the relativistic charge densities of "~Ca an
compared with two nonrelativistic calculations and the empirical distributions

(4) Similar results are obtained for other

determined from elastic electron scattering.
closed shell nuclei. Here the empirical proton form factor is folded with the calcu-
lated "point proton” density to determine the charge density, as discussed in refs.
4 and 19.

Figure 6 compares the predicted energy Tevels in
(20,21) The relativistic Hartree calculations clearly

reveal a shell structure. This arises from the spin-orbit interaction that occurs

208Pb with experimental values

derived from neighboring nuclei.
naturally when a Dirac particle moves in large classical scalar and vector fie]ds.(3’4)

Thus, with a minimal number of phenomenological parameters determined from bulk nuclear
properties, one derives the existence of the nuclear shell model.

There are several advantages to the present model of nuclear structure. First,
the calculation of the nuclear ground state is self-consistent. The condensed scalar
and vector fields follow directly from the scalar and baryon densities, which are in
turn determined by the solutions to the Dirac equation (23) in the condensed fields.
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Fig. 4 Charge density distributions for 4OCa.(4) The experimental curve is from
ref. 37. The density-dependent Hartree-Fock (DDHF) results are those of
Negele, and the DDHF + RPA calculation is that of Gogny, as indicated in
ref. 37. The relativistic Hartree calculations yield the Tong-dashed curve.
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Second, one set of parameters specifies all closed-shell nuclei in this approximation.
Finally, this relativistic shell model is simply one piece of a complete many-body
framework based on QHD. QOne can therefore systematically investigate corrections to
the nuclear ground state (1ike those arising from nucleon exchange or two-nucleon
correlations) or compute excited states using a residual particle-hole interaction
derived from the same QHD Iagrangian.(ZZ} In addition, since the underlying theory

is renormalizable, one can examine corrections from the filled Dirac sea of negative-
energy states, as discussed in the following section.

CORRECTIONS TG THE MEAN-FIELD THEORY

One advantage of quantum hadrodynamics is that it provides a consistent framework
for studying corrections to the MFT. In this section, we examine three classes of
corrections: vacuum fluctuations, self-consistent nucleon exchange, and two-nucleon
corvelations, We will concentrate primarily on model QHD-I.

The mean-field hamiltonian ﬁMFT is defined by a normal-ordering procedure. This
isolates contributions to the energy arising from the filled Dirac sea of negative-
energy states [see egs. {11)--(14)]. Since the baryon mass becomes M* at finite
density, the spinors describing the negative-energy solutions also have a shifted mass

Teq. (10)1. The resulting shift in the spectrum of the negative-energy states
relative to the vacuum Teads to a "vacuum fluctuation" correction to the energy, as
written in eq. (14). The sum over all negative-energy states leads formally to an
infinite result. Since the present model is renormalizable, however, this result may
be rendered finite by adding the appropriate counterterms and imposing a set of re-
normalization conditions. This procedure is described in detail in refs. 14, 16, and
23 and results in a correction to the MFT energy density

4 ¢
bE, = - % %; Bkz + M*2)1/2 - (k + M )1/2] + g;l ;? (24)
= - Z-» [ﬁ* In{M*/M) + w3 (M - M*) - ?’M (M - M*)z l%. M(M - M*)3
- 55 -] (25)

Here the counterterm contributions are shown explicitly in eq. (24) as a finite
polynomial in the condensed scalar field. The total energy density is now given by the
sum of eqs. (15) and (25), and the new self-consistent M* is determined by minimizing
the result with respect to M*, This is again equivalent to solving the scalar field
equation {5), including the correction to pg coming from the shifted mass of the

negative-energy states. This is given by (14)



425

vac Y 3 1,3 3 vl 2
20Y3C = 5(a8 | )/oMx = - - [M* Tn(Me/M) + 2 - 3 MM+ 3
- % M*3] (26)

We emphasize that the corrections (24)--(26) are insensitive to the short-distance
structure of the baryons, as they arise solely from the change in the baryon mass in
the presence of the uniform scalar field.

To discuss the size of the vacuum fluctuation corrections, we use two different
procedures. First, in table I we compare the values of the coupling constants that
reproduce the empirical nuclear matter saturation properties. Observe that 9g and 9y
change by only = 25% when the fluctuation corrections are included. After renormali-
zat1on, the baryon effective mass M* and nuclear matter compressibility K = QpB
(8 EVBpB) differ at about the same Tevel in the two approximations. The new value of
M* implies that the large scalar and vector fields change by = 35%.

As a second way to examine corrections, we compare predicted quantities using a
fixed set of parameters determined from the MFT results and given in the first row of
table I. Figures 7 and 8 show the energy/nucleon and equation of state (EOS) for the
present approximations. Observe that the equilibrium Fermi wavenumber kg shifts by
= 0.25 fm'l, and the binding energy changes by = 10 MeV when the fluctuations are
included. Although the latter is small compared to the large scalar and vector fields
{~ 300 MeV), the modification to the binding energy is significant, refiecting the
sensitive cancellation between attractive and repulsive components in the potential
energy, The vacuum fluctuation corrections are a direct consequence of a relativistic
treatment of the nuclear many-body problem and are absent in a nonrelativistic approach.
The nuclear matter EOS at low densities also changes because the saturation point is
different in the two approximations, but for & 2 0.5 GeV/fm3 = 101 g/cm3, the cor-
rected results are essentially in agreement with the MFT, signaling the dominance of
the vector repulsion and the onset of a stiff equation of state.

These vacuum fluctuation corrections also modify the structure of a finite nu-

cleus. (24) To examine these effects, let o  ~ psa-Ao;ac in eq. (21) for the scalar
field, using eq. (26) for Apvac. The radial dependence of Ap:ac is achieved through

the Tocal-density approxlmatlon by taking M* = M¥(r) = M - gs¢0(r). Since AanC

now depends explicitly on ¢0(r), the modified eq. {21) becomes a nonlinear differential
equation.

Results for finite nuclei may now be obtained by solving the coupled relativistic
Hartree equations discussed above, including the modifications to eq. (21). The model
parameters are renormalized {“"re-fit") using the same input as in the original Hartree
case.(24) With these normalization conditions, the calculated charge and baryon
densities are essentially equal to those in the original Hartree approximation, as
indicated in fig. 9 for 208Pb; the effects in lighter nuclei are even smaller. Note,
howsver, that the vacuum correction reduces the scalar density relative o the baryon
density; in the present case, the former is approximately 85% of the Tatter in the
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r{fm)
Fig. 9 Density profiles in 208Pb. The total baryon density g shown by the solid

curve is calculated in the relativistic Hartree.approximation without vacuum
fluctuations. The corresponding result including vacuum fluctuations is

given by the dashed curve. Also shown are the total scalar density pe
Apgac and (minus) the vacuum fluctuation correction ~Ap§ac. A1l curves are
"point" densities that do not include single-nucleon form factors.

Nuclear interior, as compared with 93% in the simple Hartree approximation. Pre-
Timinary relativistic impulse approximation calculations show that this dif-
ference may be detectable in medium-energy nucleon-nucleus scattering.

We turn now to corrections from nucleon exchange, which are incorporated in the
relativistic Hartree-Fock {HF} approximation.(26’27> Begin by examining the proper
baryon self-energy (k) in the nuclear medium, which can be written as<14)

2(k) = £5(k) - v, (k) = 25 K) - V050 + v k(K (27)

“~t

In the MFT, 1% and 3 become momentum-independent constants -gs4q and ~g,Vys and

v . .

Z° vanishes. In the HF approximation, z(k) is calculated by summing both direct and
exchange interactions between nucleons. Thus, for scalar meson exchange:

.0
2(k) = ig2 d*e e’ F1ra(g) 6{q)
ig 5 5 + 5 5 (28)

(2n) m {k - C[)u -mg + je

Vector meson exchange may be included analogously.
Self-consistency is achieved by evaluating the baryon propagator G with Dyson's

equation:

6(k) = 620 + 200z (k)6() = [ k" - M - x()] (29)

where Go(k) is the noninteracting baryon propagator at finite density.(10’14) To
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specify the pole structure in G{k), we assume that at finite baryon density, the levels
are filled up to |k| = kg, which implies simple poles with unit residues. The Tocation
of the poles then follows from the modified Feynman prescription at finite density,

as described in detail in refs. 10 and 14.

Inserting eq. {29) into (28) leads to a set of coupled nonlinear integral equations
for k), zo(k), and £V(k). The integrals are finite if we keep only the interactions
between the positive-energy valence nucleons. 27) It can then be easily shown that
by retaining only the first term in eq. (28), one reproduces the MFT resu1ts.(16’14}
The HF approximation corrects the MFT for the exchange of identical nucleons within
the Fermi sea. The exchange integral also introduces the retarded nature of the
interaction. Exchange corrections from the occupied negative-energy Dirac sea are
discussed in ref. 28.

The HF integral eguations mentioned above are solved in refs. 26 and 27, and the
solutions are used to evaluate the HF energy density and EOS. To investigate the size
of the corrections, we again perform two comparisons. In table I, we exhibit the new
coupling constants determined from a fit to nuclear saturation properties. The
changes in 9 and g, are at the 10% level, which is remarkable, since the HF equations
include an additional infinite set of Feynman diagrams, all containing large couplings.
The resulting large scalar self-energy zsik) is independent of momentum to = 10% and
nearly equal to the MFT result 9805 similar behavior is found for the timelike
vector piece ZO. The three-vector self-energy £¥, which modifies the particle momentum
according to k » k (1+zY), is a small correction (;zvl < 0.03) at normal density.

In figs. 7 and 8, we compare the relativistic HF nuclear matter binding energy
and EQS with those of the preceding calculations for a fixed set of couplings. (The
meson masses are always assigned the values in table I.}) The exchange corrections
are similar to those from vacuum fluctuations. Although the modifications to the
large Lorentz components of the self-energy are small, the effects on the energy/
nucleon may be significant. Moreover, although the exchange terms modify the Tow-
density E0S, the corrections to the MFT become small for & > 0.5 GeV/fm3.

(29,30) These may be

Finally, we study the effects of two-nucleon correlations.
introduced through an effective interaction ("reaction matrix") I, which we take to be

the solution of the ladder-approximated Bethe-Salpeter equation in the nuclear medium:
r=v+i fveer (30)

Here V is the "ladder" kernel resulting from one-boson exchange, G is the interacting
baryon propagator, and we have used the schematic notation of ref. 15.

The single-particle proper self-energy © is determined in the present discussion by
summing effective direct and exchange interactions between nucleon pairs, which may be
written schematically as

0= 2 <kk'|Tlkk'> - <kk'[r[k'ks] = -if [Tr(6r) - G 31
(k) E(KT)<Ep [k TIkk'> - <kk'[T[k'ks] = -1 f [Tr(er) - 6r] (31)
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Self-consistency is again achieved by calculating 6 through Dyson's equation (29).
As before, self-consistency modifies both the single-particle spectrum and the Dirac
wave functions,

Equations (29), (30), and (31) may be written in a completely covariant fashion
and may be solved in any convenient reference frame. They lead to coupled, nonlinear,
multidimensional integral equations that reduce to the familiar "ladder-approximated"
Bethe-Salpeter equations in the 1imit of vanishing baryan density.(ls) To render
these equations tractable, we make several simplifying approximations.

First, we omit the interactions of positive-energy particles with the negative-
energy Dirac sea in the calculation of . This renders eq. (31) finite and corresponds
to the procedure used in the MFT and HF approximations. Thus, replacing © with V¥
in eq, {31) reproduces the HF result (28). In addition, we reduce the four-dimen-
sional integral implied in eq. (30) to a three-dimensional integral by replacing the

full two-particle propagator (iGG) with an approximate, unitarized propagator g.(31)
The reaction matrix is then determined by

r=v+ fygr (32)
Here g must be chosen to maintain two-particle unitarity and the covariance of eq.

(30), but is otherwise arbitvary.(30’31)

The solution of eq. (32) can be used to calculate I and the procedure iterated
to self-consistency. The relativistic HF results show that =° and U are reasonably
independent of momentum and that |¥| << 1. We therefore carry out the self-

consistency approximately by writing

T(k) = (M - M) - 4020 (33)

where M* and ZO are constants. This form is analogous to the MFT self-energy. As
we will see below, £0 drops out of the self-consistency procedure, and only M* needs to
be determined, Since this parameter enters in G in eqs. (29) and (31) and also in g
in eq. (32), the self-consistency procedure is now apparent. One must choose M* so
that the solution to eq. (32), when used in eq. (31), leads to a seif-energy : that
reproduces M* when approximated as in (33). [ The details of this final approximation
are described below; see eq. (36).]

For two isolated nucleons, eq. (32} is usually solved in the c. m. frame using
the helicity formalism of Jacob and Wick. (32) This is extremely(!) cumbersome to apply
at finite density in the frame where the nuclear matter is at rest. Since eq. (32)
is covariant, however, we may solve it by Lorentz boosting to the frame in which the
total velocity of a given pair of particles is zero (the "center-of-velocity"
or ¢. v, frame).(Bo) We use velocities rather than momenta, since this
eliminates the explicit dependence on the self-energy z*. Since the nuclear matter
is in uniform motion in the c. v. frame, the Fermi sphere is replaced by an ellipsoid,
whose shape is determined by ke and the parameters of the boost.

After boosting to the c. v. frame, one takes matrix elements of eg. (32) between
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self-consistent, positive-energy spinors of helicity a, defined by U(k,r) of eq.(10)
with g - kx, = 2A|£|xk. These spinors clearly depend on M* and are 1ndependent of zV.
One may then project out partial-wave helicity matrix e1ements(1) <Ay A2|V IA

and <xixé1rd|x1x2>. 1f we define the approximate propa%ator g using the form taken
by Blankenbecler and Sugar,(33) eq. {32) takes the form 30
<! xzzr {p' ,p,s*)}l Ap> = <Aixé{v3(p‘,p){alaz>

2 ak dk@ A Iv {p' ,k){u1v2>a (kge)a(k )
(2m)* e (k)L E*2(k) - s*/4 - icl

R

\)1\)2

<v1v2]T(k,p;S*)§A1A2>

(34)

Here p', p, and k denote the magnitudes of the relative three-momenta for the final,
initial, and intermediate states in the ¢. v. frame, and E*{k) = (&? + M*Z)l/z.
Helicities are labeled by A and Vi and s* is the Lorentz-invariant square of the total
four-velocity (the analogue of the "starting energy" in the usual Brueckner formal-
ism), QaV is an angle-averaged Pauli exclusion operator that prohibits scattering

into occupied intermediate states. It is determined by the Fermi “ellipsoid" in the

c. v. frame and depends on the baryon current four-vector Bu in thﬁs frame. (Angle
averaging is necessary to decouple the partial waves.) Alternative choices for the
approximate propagator g are discussed in ref., 14.

Equation (34) is an analogue of the conventional Brueckner-Bethe-Goldstone (BBG)
equation.(34) Note that the matrix elements of VJ depend explicitly on T through M*
contained in the spinors (10). This introduces significant density dependence and
differs from the traditional approach in which spinors of fixed mass M are used.(l’z)
Moreover, we include the modified wave functions with M* in intermediate states, which
is motivated by the large single-particle potentials seen at positive energies in
nucleon-nucleus scattering.(G'g) This implies a continuous particle spectrum and an
orthogonal set of single-nucleon wave functions.

To achieve self-consistency, © must be evaluated in the nuclear matter rest frame.
This is done by expanding matrix elements of I in terms of Lorentz-invariant ampli-

tudes(7>:

<A132§ {A 32 = <likélsf + VT ygl)y(z)u + PT Ygl)ygz) + TF cii)ctz)pv

A, Y{é)Y{i)Y(g}Y(z)u131RZ> (35)

where the superscripts (1) and {2) denote the interacting particles. The five invari-
ant amplitudes Sr, caes AF are linear combinations of helicity matrix elements calcu-
lated from eq. (34) with p' = p = (s*/4 - M*z)l/z, and the advantage of the decom-
position (35) is that it is easy to transform these amplitudes back to the nuclear
matter rest frame. The self-energy calculated from (31) and {35) is independent of
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momentum to within = 10%, and we use o{k = kF) to determine a new M* through the
relation

uk) = B - %0 ey e k2 U = [0 - ) - 200 - ez ] uk)
(36)

which follows from eq. (10). Comparison with eq. {33) reveals that M* must satisfy
M = M+ 55 - M¥zY, with £(k) evaluated at k = ke [ The final term is a small cor-
rection = {0.01)M.] After choosing an M*, the solution of eq., (34) and the resulting
I(k) determines the right-hand side of this relation, leading to a new M*, The pro-
cedure is then iterated to self-consistency. (Note that only M* must be determined,
since eq. (34) is independent of zV.)

Once the calculation of © has converged, the energy follows from the energy-

momentum tenscr(14’30} and can be written as
&= 20 <k|y - k + Mk +% 2 [ck'k|r|k'k> - <k'k|r|Kkk's] (37)
g ~ ~ -~ y " ~ A~ -~ ~ot
k< ke k'sk<ke

Here the matrix elements involve the spirors of eq. {10), and spin and isospin indices
have been suppressed. This result omits contributions from the negative-energy sea
and small retardation effects from energy differences between occupied states within
the Fermi sea.(27) The pressure may be defined through the thermodynamic relation
(17).

We turn now to a discussion of results. A1l calculations are illustrated for a
fixed set of parameters determined in the MFT and given in the first row of table I.
Figure 10 compares the self-consistent BBG mass M* = M + £5 to that obtained in the
MFT. It is clear that the single-particle self-energy is modified only slightly by
correlations. Similar behavior is found for XO. In fig. 11, we examine the nuclear
matter EOS in three different approximations. At low densities, the curves differ
because nuclear matter saturates at different densities in each approximation (see
figs. 7 and 12). WNevertheless, correlation corrections to the MFT equation of state
are small at high densities, and the system s&octhiy approaches the causal limit.

Figure 12 illustrates several energy/nucleon curves as a function of density.
The MFT and self-consistent BBG curves show that correlations produce significant
changes in the binding energy, even though they have a small effect on the nucleon
self-energy. (Note the different vertical scales in figs. 7 and 12.) The (dash-
dot) curve labeled "M* = M" is calculated by neglecting the self-consistency and
holding the nucleon mass fixed at M, which essentially corresponds to the treatment
in refs, 1 and 2. We emphasize that any calculation (including variational calcu-
Tations) based on the nonrelativistic {"potential®) 1imit of V will yield similar
results, since the nucleon mass is held fixed and the Lorentz character of the inter-
action is neglected. In contrast, self-consistent wave functions (M*=M) have a
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SELF-CONSISTENT MASS M¥

0.8~

0.6

M*/M
¥

0.2k

Q 1.0 2,0
kp (fﬂ'\-l)

Fig. 10 Self-consistent effective mass M*. Mean-field (solid) and relativistic
Brueckner (dashed) results are shown.

NUCLEAR MATTER

37 EQUATION OF STATE
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Fig. 11 Nuclear matter equation of state for the mean-field theory (solid),
relativistic Hartree-Fock (short dashes), and relativistic Brueckner theory
{Tong dashes), All results use parameters in the first row of table I.



433

100 ¢

ENERGY/NUCLEON
Ki-2d

SO+

n
w
T

{E781-M {MeV)

ke ttm™))

Fig. 12 Energy/nucleon in nuclear matter. Results are for the mean-field theory
(s01id), relativistic Brueckner theory (long dashes), relativistic Brueckner
theory with M* = M (dash-dot), and relativistic Brueckner plus vacuum
fluctuations (short dashes). A1l results use parameters from the first row
of table I.

Moderate effect at normal densities and become essential at densities two or three
times that of equilibrium nuclear matter. The relativistic treatment reduces the
attractive part of the interaction as the density increases. As discussed by Day,
this trend is precisely what is needed to bring nonrelativistic

Nuclear matter calculations into better agreement with the empirical saturation point.
This suggests that the relativistic approach introduces new physical effects that

are important in describing saturation. Additional evidence for this can be seen in
the short-dashed curve, in which the vacuum fluctuation correction of eq. (25) is
Simply added to the BBG result using the self-consistent BBG effective mass. Modi-
fications of the vacuum energy are also omitted in traditional studies of nuclear
Mmatter, and it is clear that these contributions may cause significant changes in

the binding energy. Variations in the binding energy of a similar magnitude are also
found when vertex cutoff factors are inserted {the preceding results involved no

Such cutoffs) or when alternative choices are made for the unitarized propagator
9-(14’29’30) Clearly, much work is needed before we have a detailed understanding

OFf nuclear matter saturation in a consistent relativistic approach,

(35)

SUMMARY

Quantum hadrodynamics is a consistent framework for studying the relativistic
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nuclear many-body problem. By specifying the interactions with a Jocal, renormal-
izable lagrangian density, we may include the effects of meson exchange, relativ-
istic propagation, retardation, causality, and the dynamical gquantum vacuum. In
addition, the correct Lorentz structure of the NN interaction can be waintained.

In this work, we focused on this Lorentz structure using the Walecka model {QHD-I),
which incorporates the relevant features of the observed NN force through the exchange
of neutral scalar and vector mesons. The Lorentz structure leads naturally to nuclear
saturation in the mean-field approximation, and the model parameters were chosen to
reproduce empirical saturation properties. The small binding energy of nuclear matter
arises from a sensitive cancellation between large attractive and repulsive components
in the nucleon self-energy. These large components introduce a new energy scale into
the nuclear matter problem and lead to new physical effects from the shifted mass of
the nucleon in nuclear matter. They also imply a stiff equation of state for nuclear
matter at energy densities greater than approximately 0.5 GeV/fms.

The mean-field results were extended to closed-shell nuclei by allowing the meson
fields to acquire a spatial variation. This leads to coupled nonlinear differential
equations describing nucleons moving in the condensed fields. These equations must be
solved self-consistently. The extended model discussed here (QHD-II) contains a
minimum number of coupling constants and masses that are again normalized to the bulk
properties of nuclear systems. This procedure gives accurate predictions for charge
density distributions and rms radii of spherical nuclei. Furthermore, the relativis-
tic Hartree calculations reproduce the observed spin-orbit splittings between single-
particle levels and predict the existence of the nuclear shell model.

Because guantum hadrodynamics is a consistent framework, corrections to the MFT
may be examined systematically. We studied corrections from vacuum fluctuations,
self-consistent nucleon exchange, and two-nucleon correlations. These have a small
effect on the large lLorentz scalar and vector components of the baryon self-energy.

In addition, corrections to the MFT equation of state become small at energy densities
£&>0.5 GeV/fm3. Thus the mean-field approximation provides a simple, accurate de-
scription of nuclear matter at densities relevant for neutron stars and energetic
heavy ion collisions.

In contrast, the nuclear matter binding energy near equilibrium density involves
delicate cancellations and is sensitive to the corrections studied here. The detailed
saturation properties of nuclear matter become difficult to calculate in view of the
new large energy scale, which suggests that the validity of nonrelativistic nuclear
matter calculations be re-examined. An accurate guantitative description of nuclear
saturation in a relativistic framework is a challenging topic for future research.

There are other outstanding questions to be addressed in QHD. Of prime importance
is the construction of models that incorporate pions accurately, while (hopefully)
Teaving intact the successes mentioned above. It now appears that some form of chiral
symmetry is necessary to achieve a reasonable description of pion-nucleon dynamics
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(14,36) Unfortunately, existing chiral models contain strong

in the nuclear medium.
nonlinearities that pose problems in the description of nuclear matter. This topic
requires further investigation.

It is also clear that QHD is an approximation to the underlying gquark-gluon
structure of nuclear systems. QHD is meant to describe the long-distance behavior of
these systems, as studied in low- and medium-energy nuclear physics. By constructing
renormalizable QHD theories, the dependence on the intrinsic hadronic structure is
minimized. The validity of this dynamical input and the delineation of the boundary

between practical QHD and QCD descriptions are important questions for future

research.
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