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INTRODUCTION 

The t rad i t i ona l  approach to nuclear st ructure is based on the Schroedinger 

equation and involves nucleons in te rac t ing  through s ta t i c ,  two-body potent ia ls .  Since 

th is  equation can be solved exact ly  fo r  two nucleons, empirical nucleon-nucleon (NN) 

data is  used to constrain the two-body po ten t ia l .  One then attempts to (approximately) 

solve the many-body problem to describe atomic nuc le i .  This approach has been very 

successful and has taught us much about nuclear s t ructure;  nevertheless, there are 

several reasons why i t  is  inadequate for a detai led understanding of  nuclear systems. 

For example, there is  now convincing evidence that  the NN in te rac t ion  contains 

large Lorentz scalar and four-vector  components. ( I ' 9 )  This has two immediate con- 

sequences fo r  the nuclear many-body problem. F i r s t ,  since the resu l t ing  s ing le-  

Par t i c le  potent ia ls  in a nucleus are comparable to the nucleon mass, r e l a t i v i s t i c  

effects can be important at low energies and ordinary densities. In particular, the 

strong scalar f i e l d  enhances the lower components o f  the Dirac wave funct ion o f  a 

nucleon, leading i m p l i c i t l y  to s i g n i f i c a n t  ve loc i t y ,  spin, and densi ty  dependence in 

the nucleon-nucleus in te rac t ion .  (3 '4 '8-12) In addi t ion,  strong in terac t ions introduce 

a new energy scale into nuclear matter ca lcu la t ions that is  approximately several 

hundred MeV at ordinary densi t ies.  The nuclear matter binding energy now involves 

not only the fam i l i a r  cancel la t ion between average k ine t ic  and potent ia l  energies, 

but also a delicate cancellation between large attractive and repulsive contributions 

to the potential energy. The val idi ty of nonrelativistic calculations of nuclear 

matter saturation must therefore be re-examined so that their apparent successes can 

be better understood. 

There are other reasons for developing a re lat iv is t ic  nuclear many-body theory. 

To calculate the properties of condensed stellar objects and to predict the outcome 

of collisions between energetic heavy ions, one requires the nuclear matter equation 

of state at temperatures and densities far removed from the regime of ordinary nuclei. 

In these extreme situations, re lat iv is t ic  propagation of the nucleons, retardation in 

the interaction, and the causal propagation of signals are important physical 

constraints. I t  is also necessary to introduce the mesonic degrees of freedom that 

mediate the nucleon-nucleon i~nteraction, since their production and absorption may 
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play a major role under the extreme condit ions mentioned above. Indeed, there is now 

conclusive evidence that meson and baryon degrees of freedom (including baryon 

resonances) are relevant even in ordinary nuclei, as i l lustrated by meson-exchange 

currents in electron scattering from nuclei at momentum transfers of several hundred 
MeV.(13) 

The only existing framework that provides a consistent description of these 

re la t i v i s t i c  meson-baryon systems is re la t i v i s t i c  quantum f ie ld  theory based on a 

local lagrangian density. We wi l l  call these theories "quantum hadrodynamics" or QHD. 

There are several important reasons for using a formalism based solely on hadrons. 

First ,  these appear to be the relevant degrees of freedom for nuclear processes at 

low to medium energies; they are also the objects actually observed in experiments, 

as quarks and gluons appear to be confined. Second, although the internal quark-gluon 

substructure of hadrons may be vis ible under very extreme conditions (for example, 

in a nuclear matter phase transit ion to a quark-gluon plasma), i t  is s t i l l  important to 

have a consistent description of matter in the hadronic phase. Final ly,  the only way 

to unamibiguously ident i fy exp l i c i t  signals of quantum chromodynamic (QCD) behavior in 

nuclear processes is through an inadequacy in the predictions of QHD. 

I t  is important to formulate QHD using renormalizable lagrangian densities. This 

allows for consistent calculations at any desired level of approximation. The 

results can be expressed in terms of a f i n i t e  number of parameters (coupling constants 

and masses). Renormalizable models also allow for studies of the dynamical quantum 

vacuum (for example, v ir tual  N~ pairs) in the nuclear medium. Moreover, since re- 

normalizable QHD does not require additional ad hoc cutoff procedures, i t  is the 

least sensitive to the high-momentum (short-distance) behavior of the hadronic inter-  

action. This input may or may not provide a satisfactory description of nuclear 

matter under all of the conditions mentioned above; nevertheless, i t  can be tested 

and i ts  l imitat ions discovered as with al l  questions in physics--through a detailed 

comparison between consistent theoretical results and experimental measurements. 

Quantum hadrodynamics is a general framework for the re la t i v i s t i c  nuclear many- 

body problem. {14)" " The detailed dynamilcs must be specified by choosing a particular 

renormalizable lagrangian density. In the present work, we review some applications 

of QHD to nuclear matter and f i n i t e  nuclei, focusing primarily on the consequences of 

the Lorentz structure of the NN interaction. I t  is therefore useful to begin with 

the Walecka model, (10) which contains baryons (~) and neutral scalar (¢) and vector 

(Vp) mesons. Thils model is  cal led QHD-I in  re f .  14. The lagrangian densi ty i s  given 

by 
I ~ 2 2  

+ 1~-m2" V ~ + counterterms ( I )  2 vV~ 

where the conventions are those of refs. 14 and 15. The parameters M, gs' gv' ms' 

and m v are phenomenological constants that may be determined (in principle) from 
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experimental measurements. The counterterms are for  renormal izat ion purposes, as 

discussed below. 

The present mot ivat ion for  th is  model comes from the empi r i ca l l y  observed large 

Lorentz scalar and four-vector  components in the NN in te rac t ion .  These must, of 

course, be reproduced in any r e l a t i v i s t i c  theory of  nuclear s t ruc ture ,  and the sim- 

plest  way to do th is  is through the exchange of  scalar and vector mesons. The other 

Lorentz components of  the NN in te rac t ion  (pseudoscalar, tensor, and ax ia l  vector) 

average essen t ia l l y  to zero in  spin-saturated nuclear matter and may be incorporated 

as refinements to the present model. (14) Since the lagrangian ( I )  resembles massive 

quantum electrodynamics wi th an addi t ional  scalar i n te rac t ion ,  th is  model is renor- 

mal izable. 

MEAN-FIELD THEORY 

The Euler-Lagrange equations resu l t ing  from eq. (1) are 

+ m~)¢ : gs$~ ( 2 )  ( ~  

~ (~V ~ - ~V ~) + m2V ~ = gv~y~@ ( 3 )  v 

- g v V )  - ( M -  gs )] : 0 ( 4 )  

These are nonl inear Quantum f i e l d  equation.s ' , and t he i r  exact solut ions are very com- 

p l icated.  In pa r t i cu la r ,  they describe mesons and baryons that  are not point  pa r t i c l es ,  

but rather objects wi th i n t r i n s i c  s t ructure due to the implied ( v i r t u a l )  meson and 

baryon-antibaryon loops. Moreover, since we expect the couplings gs and gv to be 

large, per turbat ive solut ions are not useful .  FortunatelY, there ex is ts  an approximate 

so lu t ion that  should become increas ing ly  va l id  as the nuclear densi ty increases; i t  may 

be obtained by replaci'ng the meson f i e l d  operators and baryon sources wi th t he i r  

c lassical  expectation values. In i n f i n i t e  matter, the resu l t ing  c lassical  meson f i e lds  

@0 and V 0 are uniform and constant, and they sa t i s fy  

gs gs 
~o = - ~ < ~ >  ~ --~% (. 5) 

m s m s 

Note that  <2> = 0 by ro ta t iona l  invar iance. Here k F is the Fermi wavenumber and ~ is 

the isospin degeneracy: ~ = I for  neutron matter, ~ = 2 for  nuclear matter. 

When the c lass ica l  meson f~elds of  eqs. (5) and (6) are subst i tu ted into eq. (4) 

for  the Dirac f i e l d ,  that  equation is l i nea r ,  

-  v °vo - (M - gs o . : o ( 7) 
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and can be solved exact ly.  ( I t  is this l i near i za t ion  of the f u l l  f i e l d  equation (4) 

that allows the baryons to be interpreted now as point pa r t i c les . )  The resul t ing 

baryon solutions have a mass that is shif ted by the scalar f i e l d :  

M* z M - gs~O ( 8 )  

and an energy spectrum that is shif ted by the vector f i e l d :  

E(±)(k) = gvV 0 ± (~2 + M,2)1/2 ~ gvV 0 ± E*(k) ( 9 )  

As expected, there are solutions with both posi t ive and negative square roots char- 

ac te r i s t i c  of the Dirac equation. Denoting these by solutions by U(~,~) and V(~,~), 

respect ively,  we f ind 

I ~ ~ . k 

U(~,~) = N(k) £ • ~ X~ ; V(~,~) = N(k) l l X ~  (10) 

k I /  
where Xx is a two-component Pauli spinor and N(k) is a normalization factor.  

These solutions can be used to define quantum f i e l d  operators, and the hamiltonian 

for the system can be constructed in the canonical fashion. (14) The resu l t  is 

= HMFT + aH (11) 

= + ~mvVo] (12) 
kX 

A t A - f B = ~  ~kX kx BkxBkx] (13) 
k~ . . . . .  

N 

_ ..2)1/2 _ ( # +  

k~ 
Here A~x,. B~X,~ Ak~, and Bkx are creation and destruction operators for  (quasi)baryons 

and (q~asi)antib~ryons wi~h shif ted mass and energy, and V is the quantization volume. 

is the baryon number operator, which c lea r l y  counts the number of baryons minus the 

number of antibaryons. (The index x denotes both spin and isospin project ions.)  The 

correction term aH arises from placing the operators in -HMFT in normal order. ~14)' ' 

This correction is eas i ly  interpreted in the context of Dirac "hole theory." The 

spectrum of the i n f i n i t e  Dirac sea of occupied negative-energy states sh i f ts  in the 

presence of the surroundinq nucleons at f i n i t e  density. Since a l l  energies are 

measured re la t i ve  to the vacuum, the energy sh i f t  must be computed by subtracting the 

total  energy of the Dirac sea in the vacuum, where the nucleons have the i r  free mass 

M. This leads to the resu l t  in eq. (14). Here we w i l l  concentrate on the mean-f ield- 

theory (MFT) hamiltonian of eq. (12); the "vacuum f luc tuat ion"  correction ~H w i l l  be 

discussed below. 
^ 

Since the MFT hamiltonian HMF T is diagonal, we have solved th is  model problem 

exact ly.  Thus the energy density for an i n f i n i t e  system of baryons with f i l l e d  states 

up to Fermi wavenumber k F may be readi ly  evaluated: 
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2 2 kF 

g v  ms f MFT = 2m~ P~ +---~(M - M*) 2 + - ~  t2E*(t)  dt (15) 

~gs ~ 0 

Here V 0 has been eliminated in terms of the conserved baryon density using eq. (6), 

and eq. (8) serves to el iminate ¢0" The e f fec t ive  mass M* must be determined by 

solving eq. (5) or ,  equiva lent ly ,  by minimizing ~MFT with respect to M*, leading to 

the sel f-consistency re la t ion  

2 2 
gs gs 

M* : M - -~-ps = M - -  ~- --~ 
m s m s 

Note that the scalar density Ps 

k F 

of t 2 dt 

is smaller than the baryon density 

(16) 

PB due to the 
factor  of  M*/E*( t ) ,  which is an ef fect  of  Lorentz contract ion. Thus the contr ibut ion 

of rap id ly  moving baryons to the scalar source is s i g n i f i c a n t l y  reduced. Most im- 

por tant ly ,  eq. (16) is a transcendental sel f-consistency equation for  M* that must 

be solved at each value of k F. This i l l u s t r a t e s  the nonperturbative nature of the 

MFT solut ion.  

The pressure may be defined by the thermodynamic re la t ion  

P : (17)  

g2 2 kF 
v 2 ms ( . _ . . ) 2  (18  

PMFT - 2 PB - 
2m v 2g s 

I t  can be read i l y  ver i f i ed  that th is expression agrees with that obtained from the 

(normal-ordered) energy-momentum tensor. (10,16) 

An examination of  the energy density shows that the system is unbound (~MFT/P B > M) 
at e i ther  very high or very low densi t ies.  (10'14) At intermediate densi t ies,  the at -  

t rac t i ve  scalar in teract ion w i l l  dominate i f  the coupling constants are chosen properly. 

The system then saturates. The empirical equi l ibr ium propert ies of symmetric (N = Z) 

nuclear matter w i l l  be reproduced i f  the couplings are chosen as 

C2 s z g~ (M2/m~) = 267.1 (19) 

2 2 Cv z gv (M2/m) : 195.9 (20) 

which leads to an equi l ibr ium Fermi wavenumber k~ = 1.42 fm -1 and an energy/nucleon 

(~MFT/PB - M) = -15.75 MeV. (This somewhat large saturat ion density is chosen to 

present resul ts  consistent with those in refs.  10 and 14.) Note that only the rat ios 

of coupling constants to masses enter in eqs. (15), (16), and (18). The resul t ing 

saturat ion curve is shown in f i g .  i .  For reasonable values of the meson masses (see 

table I ) ,  the resul t ing coupling constants gs and gv are s im i la r  to those obtained in 
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Table I 

Model Parameters and Results 

2 2 
gs gv M*/M K(MeV) 

mean f i e l d  91.64 136.2 0.56 540 

mean f i e l d  + 
vacuum f l u c t u a t i o n s  62.89 79,78 0.72 470 

Hartree-Fock 83.11 108.1 0.53 580 

The meson masses used to der ive these values are m s = 550 MeV and m v = 783 MeV. Each 

parameter set leads to nuclear matter sa tu ra t ion  at  k~ = 1.42 fm -1 w i th  b inding energy 

15.75 MeV in  the ind icated approximat ion. The HF value o f  M* ~ M +~S(k )  is  evaluated 
at  k = k~. K is the compress ib i l i t y .  
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one-boson-exchange-potential f i t s  to NN scatter ing. (1'2) This implies that the 

dominant features of  the observed NN in te rac t ion  relevant for  nuclear matter are 

q u a l i t a t i v e l y  reproduced by the preceding normalizat ion condit ions. 

Once the parameters have been speci f ied,  the propert ies of  i n f i n i t e  matter in 

th is approximation are determined for  a l l  densi t ies,  temperatures, and proton f ract ions 

Z/N. For example, the energy/nucleon in neutron matter (C = i )  is also shown in 

f i g .  1. 

The se l f -cons is tent  e f fec t i ve  mass M* is shown in f i g .  2. Observe that M*/M is 

s i gn i f i can t l y  less than uni ty  at ordinary nuclear densi t ies.  This is a consequence 

of the large condensed scalar f i e l d  gs@o , which is approximately 400 MeV and p~o- 

vides a large a t t rac t i ve  contr ibut ion to the energy/nucleon. There is a corresponding 

large repulsive energy/nucleon from the vector f i e l d  gvVo ~350 MeV. Thus the Lorentz 

structure of  the in terac t ion  introduces a new energy scale in the problem, and the 

small nuclear binding energy (= 16 MeV) arises from the cancel la t ion between the 

large scalar a t t rac t ion  and vector repulsion. Note also that the s ign i f i can t  sh i f t  in 

the nucleon mass is a new physical e f fec t  that is not present in calculat ions based on 

s ta t ic  non re la t i v i s t i c  potent ia ls .  Indeed, in th is approximation, i t  is the sh i f t  in 

the nucleon mass and the r e l a t i v i s t i c  propert ies of  the scalar and vector f i e l ds  that 

are responsible for  saturat ion; a Hartree-Fock var ia t iona l  estimate b u i l t  on the non- 

r e l a t i v i s t i c  potent ia l  l i m i t  of  the in te rac t ion  shows that such a system is unstable 

against col lapse. (17) 

Because o f  the sensi t ive cancel lat ions involved near the equi l ibr ium density, 

correct ions to the MFT must u l t ima te ly  be considered. These may be calculated system- 

a t i c a l l y  in the framework of  QHD. (14) Nevertheless, the Lorentz structure o f  the 

in teract ion provides an addi t ional  saturat ion mechanism that is not present in the 

no_n.relativistic potential l imi t .  

The corresponding curves for neutron matter (obtained by setting ~ = I) are also 

shown in figs. 1 and 2, and the equation of state (pressure Vs. energy density) for 

neutron matter at all densities is given in fig. 3. In this model, there is a phase 

transition similar to the liquid--gas transition in the van der Waals' equation of 

state, and the properties of the two phases are deduced through a Maxwell construction. 

At high density, the system approaches the causal l im i t  p =&, representing the 

"st i f fest" possible equation of state; this asymptotic regime is already relevant 

at densities in the interiors of neutron stars (~= 1015 g/cm3). (15'18) 

Although the low-density behavior of nuclear matter is sensitive to the cancellation 

between scalar and vector components, the scalar f ield approaches a limiting value 

(gs@o ÷ M) at high densities (see f ig. 2), resulting in (essentially) massless baryons 

interacting through a strong vector repulsion. (I0'14) Thus, regardless of the precise 

values of the scalar and vector masses and couplings, the s t i f f  hig.h-dens..ity equation 

of. state is determined b~ the Lorentz structure of the interaction. Moreover, because 

the individual Lorentz components are comparable to the nucleon mass, the onset of the 
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asymptotic regime occurs at modest densi t ies (&= 1015 g/cm3). The importance of  

r e l a t i v i s t i c  e f fects  in  th i s  regime implies that  the ex t rapo la t ion of  n o n r e l a t i v i s t i c  

nuclear matter ca lcu la t ions to these densi t ies is  questionable. 

RELATIVISTIC HARTREE THEORY OF NUCLEI 

The preceding formalism can be extended to describe spher ica l l y  symmetric closed- 

shel l  nuclei by a l lowing the c lassical  meson f i e l ds  to acquire a spat ia l  depend- 

ence. (3-5) The f i e l ds  are s t i l l  determined by local sources, but the sources are now 

computed using baryon wave funct ions that  are solut ions to the Dirac equation in the 

spa t i a l l y  dependent meson f i e l ds .  Thus the scalar and vector f i e l ds  are determined by 

the d i f f e r e n t i a l  equations 

occ 2 
( 2 _ ms)Go(r) = _gsPs(r) ~ -gs ~ ( x ) ~ ( ~ )  (21) 

OCC 

(V 2 - m~)Vo(r ) = -gvPB(r ) z -gv ~]  e~(~)em(~) (22) 

where the sum runs over occupied s i ng le -pa r t i c l e  states. As in the MFT of the previous 

section, only cont r ibut ions from posi t ive-energy ("valence") nucleons are included. 

Corrections from the f i l l e d  Dirac sea that  defines the quantum vacuum w i l l  be discussed 

in the next sect ion. 

The ground state of  the nucleus is a product of r e l a t i v i s t i c  s i ng l e -pa r t i c l e  wave 

funct ions describing nucleons moving in the condensed meson f i e l d s .  Each nucleon 

sa t i s f i es  the Dirac equation 

[- i~ • 3 +  gvVo(r) + B(M - g s ~ o ( r ) ~ ( Z )  = E ~ ( ~ )  (23) 

and has a sh i f ted mass that is s p a t i a l l y  dependent. The nuclear ground state is  thus 

described by coupled nonl inear d i f f e r e n t i a l  equations that are to be solved se l f -con-  

s i s t e n t l y  ( fo r  example, by i t e r a t i o n ) .  

The preceding r e l a t i v i s t i c  Hartree equations fo r  f i n i t e  nuclei  are correct  in  

QHD-I. For comparing quan t i t a t i ve  predic t ions w i th  experiment, however, i t  is  neces- 

sary to extend the descr ip t ion to include rho mesons and the coulomb f i e l d .  A re-  

normalizable model ("QHD-II") containing these f i e l ds  is  discussed in re f .  14, and the 

f u l l  Hartree equations are i l l u s t r a t e d  there. Note that  since the nucleus has we l l -  

defined charge Z, only neutral meson f i e lds  have c lass ica l  counterparts and appear in  

these equations. In addi t ion,  there is no condensed f i e l d  for  the [pseudoscalar) 

pion, since the nuclear ground state has wel l -def ined par i t y  and is spher ica l ly  sym- 

metr ic.  

Since the meson masses and coupling constants appear separately in these equations, 

there are four free parameters in model QHD-II: the ~ (sca lar ) ,  m (vector) ,  and p meson 

coupling constants, and the ~ meson mass m s . The remaining parameters (nucleon mass, 
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and p meson masses, and the fine-structure constant m) are set equal to their 

experimental values. The free parameters are determined as in ref. 4 from the binding 

energy, symmetry energy, and equilibrium saturation density of nuclear matter (the 

value k~ = 1.30 fm -1 is used), and the rms charge radius in 40Ca, Once this is done, 

the properties of al l  closed-shell nuclei are determined in this approximation. For 

example, f igs. 4 and 5 show the re la t i v i s t i c  charge densities of 40Ca and 208pb 

compared with two nonrelat iv ist ic calculations and the empirical distr ibut ions 

determined from elastic electron scattering. ~4)' " Similar results are obtained for other 

closed shell nuclei. Here the empirical proton form factor is folded with the calcu- 

lated "point proton" density to determine the charge density, as discussed in refs. 

4 and 19. 

Figure 6 compares the predicted energy levels in 208pb with experimental values 

derived from neighboring nuclei. (20'21) The re la t i v i s t i c  Hartree calculations clearly 

reveal a shell structure. This arises from the spin-orbit interaction that occurs 

naturally when a Dirac part icle moves in large classical scalar and vector f ie lds.  (3'4) 

Thus, with a minimal number of phenomenological parameters determined from bulk nuclear 

properties, one derives the existence of the nuclear shell model. 

There are several advantages to the present model of nuclear structure. First ,  

the calculation of the nuclear ground state is self-consistent. The condensed scalar 

and vector f ields follow direct ly  from the scalar and baryon densities, which are in 

turn determined by the solutions to the Dirac equation (23) in the condensed f ie lds. 
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Second, one set o f  parameters speci f ies a l l  c losed-shel l  nuclei  in th i s  approximation. 

F ina l l y ,  th is  r e l a t i v i s t i c  shell model is  simply one piece of  a complete many-body 

framework based on QHD. One can therefore systemat ical ly  invest igate  correct ions to 

the nuclear ground state ( l i ke  those ar is ing  from nucleon exchange or two-nucleon 

cor re la t ions)  or compute excited states using a residual pa r t i c le -ho le  in te rac t ion  

derived from the same QHD lagrangian. ~22}" " In add i t ion,  since the underlying theory 

is renormalizable, one can examine correct ions from the f i l l e d  Dirac sea of negative- 

energy states, as discussed in the fo l lowing section, 

CORRECTIONS TO THE MEAN-FIELD THEORY 

One advantage of  quantum hadrodynamics is that i t  provides a consistent framework 

for  studying correct ions to the MFT. In th is  section, we examine three classes of  

correct ions:  vacuum f l uc tua t i ons ,  se l f -cons is ten t  nucleon exchange, and two-nucleon 

cor re la t ions .  We w i l l  concentrate p r imar i l y  on model QHD-I. 

The mean-field hamiltonian HMF T is defined by a normal-ordering procedure. This 

iso lates cont r ibut ions to the energy a r is ing  from the f i l l e d  Dirac sea of negative- 

energy states [see eqs. (11)--(14)3.  Since the baryon mass becomes M* at f i n i t e  

densi ty ,  the spinors descr ibing the negative-energy solut ions also have a sh i f ted mass 

~eq. (10) I .  The resu l t ing  s h i f t  in the spectrum of  the negative-energy states 

re la t i ve  to the vacuum leads to a "vacuum f l uc tua t i on "  correct ion to the energy, as 

wr i t ten  in eq. (14). The sum over a l l  negative-energy states leads formal ly to an 

i n f i n i t e  resu l t .  Since the present model is renormalizable, however, th is  resu l t  may 

be rendered f i n i t e  by adding the appropriate counterterms and imposing a set of re- 

normal izat ion condi t ions.  This procedure is described in deta i l  in refs .  14, 16, and 

23 and resul ts  in a correct ion to the MFT energy densi ty 
4 c 

I I / 2  M2)I/21 n 

1 + M 3 ( .  - . * )  - - M 2 ( .  - M * )  2 - M*) 3 
= - ~ L .  ~ + 

25 (M - M*) 4] ~ (25) 
" T ~  

Here the counterterm cont r ibut ions are shown e x p l i c i t l y  in eq. (24) as a f i n i t e  

polynomial in  the condensed scalar f i e l d .  The to ta l  energy densi ty is  now given by the 

sum of eqs, (15) and (25), and the new se l f -cons is ten t  M* is determined by minimizing 

the resu l t  wi th respect to M*. This is again equivalent to solving the scalar f i e l d  

equation (5), inc lud ing the correct ion to Ps coming from the shi f ted mass of  the 

negative-energy states. This is given by I14) 
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 vacos [,.3 IoI,*,M  • M2M.  3MM*2 

- 1j-1M*316 (26) 

We emphasize that the corrections (24)--(26) are insensi t ive to the short-distance 

structure of  the baryons, as they ar ise sole ly  from the change in the baryon mass in 

the presence of the uniform scalar f i e l d .  

To discuss the size of the vacuum f luctuat ion correct ions, we use two d i f f e ren t  

procedures. F i rs t ,  in table I we compare the values of the coupling constants that 

reproduce the empirical nuclear matter saturat ion propert ies. Observe that gs and gv 

change by only = 25% when the f luctuat ion corrections are included. Af ter  renormali- 

zat ion, the baryon e f fec t i ve  mass M* and nuclear matter compressib i l i ty  K ~ 9OBO 

(@2~/@p~) ~ d i f f e r  at about the same level in the two approximations. The new value of 

M* implies that the large scalar and vector f i e lds  change by = 35%. 

As a second way to examine corrections, we compare predicted quant i t ies using a 

f i xed set of parameters determined from the MFT resul ts and given in the f i r s t  row of 

table I .  Figures 7 and 8 show the energy/nucleon and equation of state (EOS) for the 

present approximations. Observe that the equi l ibr ium Fermi wavenumber k~ sh i f t s  by 

= 0.25 fm - I ,  and the binding energy changes by = 10 MeV when the f luctuat ions are 

included. Although the l a t t e r  is small compared to the large scalar and vector f i e lds  

(~ 300 MeV), the modif icat ion to the binding energy is s ign i f i can t ,  re f lec t ing  the 

sensi t ive cancel lat ion between a t t rac t i ve  and repulsive components in the potential 

energy. The vacuum f luc tuat ion corrections are a d i rec t  consequence of  a r e l a t i v i s t i c  

treatment of  the nuclear many-body problem and are absent in a non re la t i v i s t i c  approach. 

The nuclear matter EOS at low densit ies also changes because the saturat ion point is 

d i f f e ren t  in the two approximations, but for  ~ 0 . 5  GeV/fm 3 = 1015 g/cm 3, the cor- 

rected resul ts  are essent ia l l y  in agreement with the MFT, signal ing the dominance of 

the vector repulsion and the onset of a s t i f f  equation of state. 

These vacuum f luc tuat ion corrections also modify the structure of a f i n i t e  nu- 

cleus. (24) To examine these ef fects ,  l e t  Ps ÷ Ps +Ap~ ac in eq. (21) for the scalar 

f i e l d ,  using eq. (26) for  aPs• vac. The radial dependence of  ApsVaC is achieved through 

the loca l -dens i ty  approximation by taking M* ~ M*(r) = M - gs@o(r). Since APsVaC 

now depends e x p l i c i t l y  on Co(r), the modified eq. (21) becomes a nonlinear d i f f e r e n t i a l  

equation. 

Results for  f i n i t e  nuclei may now be obtained by solving the coupled r e l a t i v i s t i c  

Hartree equations discussed above, including the modif ications to eq. (21). The model 

parameters are renormalized ( " r e - f i t " )  using the same input as in the or ig inal  Hartree 

case. (24) With these normalization condit ions, the calculated charge and baryon 

densi t ies are essent ia l l y  equal to those in the or ig inal  Hartree approximation, as 

indicated in f i g .  9 for  208pb; the ef fects in l i gh te r  nuclei are even smaller. Note, 

however, that the vacuu m correct ion reduces ' the scalar densit~ re la t i ve  to the baryon 

densi ty;  in the present case,~a former is approximately 85% of the l a t t e r  in the 
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Fig. 9 
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Density pro f i les  in 208pb. The total baryon density PB shown by the sol id 

curve is calculated in the r e l a t i v i s t i c  Hartree approximation without vacuum 
f luc tuat ions.  The corresponding resu l t  including vacuum f luctuat ions is 
given by the dashed curve. Also shown are the total scalar density Ps + 
ApsVaC and (minus) the vacuum f luc tuat ion correct ion -Ap vac. All curves are 

"point"  densi t ies that do not include single-nucleon form factors.  

nuclear i n t e r i o r ,  as compared with 93% in the simple Hartree approximation. Pre- 

l iminary r e l a t i v i s t i c  impulse approximation calculat ions (25) show that th is  d i f -  

ference may be detectable in medium-energy nucleon-nucleus scat ter ing.  

We turn now to correct ions from nucleon exchange, which are incorporated in the 
r e l a t i v i s t i c  Hartree-Fock (HF) approximation. (26'27) Begin by examining the proper 

baryon sel f -energy s(k) in the nuclear medium, which can be wr i t ten as (14) 

~(k) = ~S(k) - y ~U(k) = ~S(k) - ~OzO(k) + ~ • ~k ~V(k) (27) 

In the MFT, S s and sO become momentum-independent constants -gs@ 0 and -gvVo , and 

zv vanishes. In the HF approximation, ~(k) is calculated by summing both d i rec t  and 

exchange in teract ions between nucleons. Thus, for scalar meson exchange: 

. 0  q ) 2 _  m 2 1 
J ( 2 ~ )  4 m~ ( k -  + ic 

S 

Vector meson exchange may be included analogously. 

Self-consistency is achieved by evaluating the baryon propagator G with Dyson's 
equation: 

G(k) = GO(k) + GO(k)s(k)G(k) = [y k ~ - M - s(k) ]  "1 (29) 

where GO(k) is the noninteracting baryon propagator at f i n i t e  density. (10'14) To 
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specify the pole structure in G(k), we assume that at f i n i t e  baryon density,  the leve ls  

are f i l l e d  up to I~l = k F, which implies simple poles with un i t  residues. The locat ion 

of the poles then fol lows from the modified Feynman prescr ipt ion at f i n i t e  density,  

as described in detai l  in refs.  10 and 14. 

Insert ing eq. (29) into (28) leads to a set of coupled nonlinear integral equations 

for  sS(k), sO(k), and sV(k). The integrals  are f i n i t e  i f  we keep only the interact ions 

between the posit ive-energy valence nucleons. (27) I t  can then be eas i l y  shown that 

by retain ing only the f i r s t  term in eq. (28), one reproduces the MFT resu l ts .  (16'14) 

The HF approximation corrects the MFT for  the exchange of ident ical  nucleons within 

the Fermi sea. The exchange integral also introduces the retarded nature of the 

interact ion.  Exchange corrections from the occupied negative-energy Dirac sea are 

discussed in re f .  28. 

The HF integral  equations mentioned above are solved in re fs .  26 and 27, and the 

solutions are used to evaluate the HF energy density and EOS. To invest igate the size 

of the corrections, we again perform two comparisons. In table I ,  we exh ib i t  the new 

coupling constants determined from a f i t  to nuclear saturation propert ies. The 

changes in gs and gv are at the 10% leve l ,  which is remarkable, since the HF equations 

include an addit ional i n f i n i t e  set of Feynman diagrams, a l l  containing large couplings. 

The resul t ing large scalar self-energy sS(k) is independent of  momentum to = 10% and 

nearly equal to the MFT resu l t  -gs~o; s imi la r  behavior is found for  the t imel ike 

vector piece sO. The three-vector self-energy sv, which modifies the par t i c le  momentum 

according to ~ ÷ ~  ( l + s V ) ,  is a small correct ion ( Izv l  ~ 0.03) at normal density. 

In f igs .  7 and 8, we compare the r e l a t i v i s t i c  HF nuclear matter binding energy 

and EOS with those of  the preceding calculat ions for  a f ixed set of couplings. (The 

meson masses are always assigned the values in table I . )  The exchange corrections 

are s imi la r  to those from vacuum f luctuat ions.  Although the modif ications to the 

large Lorentz components of the self-energy are small, the ef fects on the energyA 

nucleon may be s ign i f i can t .  Moreover, although the exchange terms modify the low- 

density EOS, the corrections to the MFT become small for ~ 0.5 GeV/fm 3. 

F ina l l y ,  we study the ef fects of two-nucleon corre lat ions.  (29'30) These may be 

introduced through an e f fec t ive  in teract ion ("react ion matr ix" )  r ,  which we take to be 

the solut ion of  the ladder-approximated Bethe-Salpeter equation in the nuclear medium: 

r = V + i fVGGr (30) 

Here V is the "ladder" kernel resul t ing from one-boson exchange, G is the interact ing 

baryon propagator, and we have used the schematic notation of re f .  15. 

The s ing le -par t i c le  proper self-energy s is  determined in the present discussion by 

summing e f fec t ive  d i rec t  and exchange interact ions between nucleon pairs,  which may be 

wr i t ten schematically as 

S(k) = ~ ~&L'lrl~&'> - < k k ' l r l £ ' # > ]  = - i  j "  [Tr(GF) - G£] (31) 
E(k')'~E F 
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Self-consistency is again achieved by calculat ing G through Dyson's equation (29). 

As before, sel f-consistency modifies both the s ing le -par t i c le  spectrum and the Dirac 

wave functions. 

Equations (29), (30), and (31) may be wr i t ten in a completely covariant fashion 

and'may be solved in any convenient reference frame. They lead to coupled, nonlinear, 

multidimensional integral  equations that reduce to the fami l ia r  "ladder-approximated" 

Bethe-Salpeter equations in the l i m i t  of vanishing baryon density. (15) To render 

these equations t ractable,  we make several s impl i fy ing approximations. 

F i rs t ,  we omit the interact ions of posit ive-energy par t ic les  with the negative- 

energy Dirac sea in the calculat ion of s. This renders eq. (31) f i n i t e  and corresponds 

to the procedure used in the MFT and HF approximations. Thus, replacing r with V 

in eq. (31) reproduces the HF resu l t  (28). In addit ion, we reduce the four-dimen- 

sional integral implied in eq, (30) to a three-dimensional integral by replacing the 

fu l l  two-part ic le propagator (iGG) with an approximate, unitar ized propagator g (31) 

The reaction matrix is then determined by 

? = V + f V g r  (32) 

Here g must be chosen to maintain two-part ic le un i t a r i t y  and the covariance of eq. 

(30), but is otherwise a rb i t ra ry .  (30'31) 

The solut ion of eq. (32) can be used to calculate z and the procedure i terated 

to self-consistency. The r e l a t i v i s t i c  HF resul ts show that s s and s 0 are reasonably 

independent of momentum and that [svl << 1. We therefore carry out the se l f -  

consistency approximately by wr i t ing 

z(k) = (M* - M) - yOzO (33) 

where M* and s 0 are constants. This form is analogous to the MFT self-energy. As 

we w i l l  see below, z 0 drops out of  the self-consistency procedure, and only M* needs to 

be determined, Since th is parameter enters in G in eqs. (29) and (31) and also in g 

in eq. (32), the self-consistency procedure is now apparent. One must choose M* so 

that the solut ion to eq. (32), when used in eq. (31), leads to a self-energy z that 

reproduces M* when approximated as in (33). [ The deta i ls  of th is  f ina l  approximation 

are described below; see eq. (36) . ]  

For two isolated nucleons, eq. (32) is  usually solved in the c. m. frame using 

the h e l i c i t y  formalism of Jacob and Wick. (32) This is extremely( i )  cumbersome to apply 

at f i n i t e  density in the frame where the nuclear matter is at rest .  Since eq. (32) 

is covariant, however, we may solve i t  by Lorentz boosting to the frame in which the 

total  ve loc i ty  of a given pair of par t ic les is zero (the "center -o f -ve loc i ty"  

or c. v. frame). (30) We use ve loc i t ies  rather than momenta, since this 

eliminates the e x p l i c i t  dependence on the self-energy s ~. Since the nuclear matter 

is in uniform motion in the c. v. frame, the Fermi sphere is  replaced by an e l l i p so id ,  

whose shape is determined by k F and the parameters of  the boost. 

Af ter  boosting to the c. v. frame, one takes matrix elements of eq. (32) between 
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self-consistent, positive-energy spinors of helicity ~, defined by U(~,~) of eq.(10) 
with ~ • ~x~ = 2xi~Jxx. These spinors clearly depend on M* and are independent of sP. 
One may then project out partial-wave helicity matrix elements (I) <~IVJlx1~2 > 

and <~½1FJI~Ix2>. I f  we define the approximate propagator g using the form taken 
by Blankenbecler and Sugar, (33) eq. (32) takes the form (30) 

<x{x~irJ(p,,p;s*)iXlX2 > : <~x~ivJ(p,,p)i11x2 > 

Fk z dk dk ° <~{~IVJ(p',k)l~iv2>Qav(kIB)a(k O) 

E*(k)[ E*2(k) - s*/4 - is] 
<VlU21r(k,p;s*)IXl~2 > 

(34) 

Here p ' ,  p, and k denote the magnitudes of the re la t i ve  three-momenta for  the f i n a l ,  

i n i t i a l ,  and intermediate states in the c. v. frame, and E*(k) m (~z + M,2) i /2"  

He l i c i t i es  are labeled by h i and v i ,  and s* is the Lorentz- invar iant  square of  the total 

fou r -ve loc i t y  (the analogue of the "s tar t ing energy" in the usual Brueckner formal- 

ism). Qav is an angle-averaged Pauli exclusion operator that prohibi ts  scatter ing 

into occupied intermediate states. I t  is  determined by the Fermi "e l l i pso id "  in the 

c. v. frame and depends on the baryon current four-vector B in th is  frame. (Angle 

averaqing is  necessary to decouple the par t ia l  waves.) A l te rnat ive  choices for  the 

approximate propagator g are discussed in ref .  14. 

Equation (34) is an analogue of the conventional Brueckner-Bethe-Goldstone (BBG) 

equation. (34) Note that the matrix elements ~f V J depend e x p l i c i t l y  on ~ through M* 

contained in the spinors (10). This introduces s ign i f i can t  density dependence and 

d i f fe rs  from the t rad i t iona l  approach in which spinors of f ixed mass M are used. (1'2) 

Moreover, we include the modified wave functions with M* in intermediate stat~s, which 

is motivated by the large s ing le -par t i c le  potent ia ls seen at posi t ive energies in 

nucleon-nucleus scatter ing. ~6-9)'' This implies a continuous par t i c le  spectrum and an 

orthogonal set of single-nucleon wave functions. 

To achieve self-consistency, s must be evaluated in the nuclear matter rest frame. 

This is done by expanding matrix elements of  F in terms of Lorentz- invar iant  ampli- 
tudes(7): 

<x~I?i~l~2 > = <x~ i s r  + v r ¥~i)~(2)p + Pr Y5~(1)(2)y5 + Tr ~(1)~(2)p~p~ 

+ A r ( I )  ( I )  (Z) ( 2 ) ~ , .  , > 
Y 5 ~ ~ ~ 5 Y IAI~2 (35) 

where the superscripts (1) and (2) denote the interacting particles. The five invari- 

ant amplitudes Sr . . . . .  Ar are linear combinations of helicity matrix elements calcu- 

lated from eq. (34) with p' = p = (s*/4 - M*2) 1/2, and the advantage of the decom- 
position (35) is that i t  is easy to transform these amplitudes back to the nuclear 

matter rest frame. The self-energy calculated from (31) and (35) is independent of 
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momentum to within = 10%, and we use B(k = kF) to determine a new M* through the 

relation 

: k s - + ! : _ _ yo( 0_ E,(k) vs] 

(36) 

which fo l lows from eq. ( I0 ) .  Comparison wi th eq. (33) reveals that  M* must sa t i s f y  

M* = M + S s - M*s v, wi th  S(k) evaluated at k = k F. [The f ina l  term is a small cor- 

rect ion = (O.OI)M.] A f ter  choosing an M*, the so lu t ion  of  eq, (34) and the resu l t i ng  

S(k) determines the r ight-hand side of  th is  r e l a t i on ,  leading to a new M*. The pro- 

cedure is then i terated to sel f -consistency.  (Note that only M* must be determined, 

since eq. (34) is  independent of  zu.) 

Once the ca lcu la t ion  of  F has converged, the energy fo l lows from the energy- 

momentum tensor (14'30) and can be wr i t t en  as 

1 E ~ ' ~ l r l ~ ' ~ >  - C'~IF ~ ' @  (375 
= E <~lZ • ~ + MI~> + 2k, k~k F 

k~k F 

Here the matr ix elements involve the spinors of eq. (105, and spin and isospin indices 

have been suppressed. This resu l t  omits cont r ibut ions from the negative-energy sea 

and small re tardat ion ef fects from energy di f ferences between occupied states w i th in  

the Fermi sea. (27) The pressure may be defined through the thermodynamic re la t i on  

(17). 

We turn now to a discussion of results. All calculations are i l lustrated for a 

fixed set of parameters determined in the MFT and given in the f i r s t  row of table I. 

Figure 10 compares the self-consistent BBG mass M* ~ M + z s to that obtained in the 

MFT. I t  is clear that the single-particle self-energy is modified only s l ight ly  by 

correlations. Similar behavior is found for z O. In f ig.  11, we examine the nuclear 

matter EOS in three dif ferent approximations. At low densities, the curves d i f fe r  

because nuclear matter saturates at di f ferent densities in each approximation (see 

figs. 7 and 12). Nevertheless, correlation corrections to the MFT equation of state 

are small at high dens i t ies ,  and the system smoothly approaches the causal l i m i t .  

Figure 12 i l l u s t r a t e s  several energy/nucleon curves as a funct ion of  densi ty .  

The MFT and se l f - cons is ten t  BBG curves show that  cor re la t ions  produce s i g n i f i c a n t  

changes in the binding energy, even though they have a small e f fec t  on the nucleon 

self-energy. (Note the d i f f e r e n t  ver t i ca l  scales in f i gs .  7 and 12.) The (dash- 

dot) curve labeled "M* = M" is calculated by neglect ing the sel f -consis tency and 

holding the nucleon mass f ixed at  M, which essen t ia l l y  corresponds to the treatment 

in re fs .  i and 2. We emphasize that  any ca lcu la t ion  ( inc lud ing var ia t iona l  calcu- 

la t ions)  based on the n o n r e l a t i v i s t i c  ( "po ten t i a l " )  l i m i t  o f  V w i l l  y i e l d  s im i la r  

resu l ts ,  since the nucleon mass is held f ixed and the Lorentz character of the i n t e r -  

act ion is neglected. In contrast ,  se l f -cons is ten t  wave funct ions (M*#M) have a 
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Fig. 10 
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Fig. 11 Nuclear matter equation of state for  the mean-field theory (so l i d ) ,  
r e l a t i v i s t i c  Hartree-Fock (short dashes), and r e l a t i v i s t i c  Brueckner theory 
(long dashes). Al l  results use parameters in the f i r s t  row of  table I .  
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Fig. 12 
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Energy/nucleon in nuclear matter. Results are for the mean-field theory 
(sol id),  r e l a t i v i s t i c  Brueckner theory (long dashes), r e l a t i v i s t i c  Brueckner 
theory with M* = M (dash-dot), and re la t i v i s t i c  Brueckner plus vacuum 
fluctuations (short dashes), All results use parameters from the f i r s t  row 
of table I .  

moderate effect at normal densities and become essential at densities two or three 

times that of equilibrium nuclear matter. The re la t i v i s t i c  treatment reduces the 

attract ive part of the interaction as the density increases. As discussed by Day, (35) 

this trend is precisely what is needed to bring nonrelat iv is t ic  

nuclear matter calculations into better agreement with the empirical saturation point. 

This suggests that the re la t i v i s t i c  approach introduces new physical effects that 

are important in describing saturation. Additional evidence for this can be seen in 

the short-dashed curve, inwhich the vacuum fluctuation ~orrection of eq. (25) is 

Simply added to the BBG result using the self-consistent BBG effective mass. Modi- 

f ications of the vacuum energy are also omitted in tradit ional studies of nuclear 

matter, and i t  is clear that these contributions may cause signi f icant changes in 

the binding energy. Variations in the binding energy of a similar magnitude are also 

found when vertex cutoff factors are inserted (the preceding results involved no 

Such cutoffs) or when alternative choices are made for the unitarized propagator 

9. (14'29'30) Clearly, much work is needed before we have a detailed understanding 

of nuclear matter saturation in a consistent r e l a t i v i s t i c  approach. 

SUMMARY 

QQantum had~odynamics i?s a consilstent framework for studying the r e l a t i v i s t i c  
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nuclear many-body problem. By speci fy ing the in teract ions with a loca l ,  renormal- 

izable ]agrangian densi ty ,  we may include the ef fects  o f  meson exchange, r e l a t i v -  

i s t i c  propagation, re tardat ion,  causa l i ty ,  and the dynamical quantum vacuum. In 

addi t ion,  the correct  Lorentz s t ructure of  the NN in te rac t ion  can be maintained. 

In th is  work, we focused on th is  Lorentz s t ructure using the Walecka model (QHD-I), 

which incorporates the relevant features of  the observed NN force through the exchange 

of  neutral scalar and vector mesons. The Lorentz s t ructure leads na tu ra l l y  to nuclear 

saturat ion in the mean-field approximation, and the model parameters were chosen to 

reproduce empirical saturat ion propert ies.  The small binding energy of  nuclear matter 

arises from a sens i t ive  cancel la t ion between large a t t r ac t i ve  and repuls ive components 

in the nucleon sel f -energy.  These large components introduce a new energy scale into 

the nuclear matter problem and lead to new physical ef fects from the shi f ted mass of  

the nucleon in nuclear matter. They also imply a s t i f f  equation of  state for  nuclear 

matter at energy densi t ies greater than approximately 0.5 GeV/fm 3. 

The mean-field resu l ts  were extended to closed-shel l  nuclei by al lowing the meson 

f i e l ds  to acquire a spat ial  va r ia t ion .  This leads to coupled nonl inear d i f f e r e n t i a l  

equations describing nucleons moving in the condensed f i e l d s .  These equations must be 

solved se l f - cons is ten t l y .  The extended model discussed here (QHD-II) contains a 

minimum number of coupling constants and masses that are again normalized to the bulk 

propert ies of  nuclear systems. This procedure gives accurate predict ions for  charge 

density d i s t r i bu t i ons  and rms rad i i  of spherical nuc le i .  Furthermore, the r e l a t i v i s -  

t i c  Hartree ca lcu la t ions reproduce the observed sp in -o rb i t  s p l i t t i n g s  between s ing le-  

pa r t i c l e  levels  and predic t  the existence of  the nuclear shell  model. 

Because quantum hadrodynamics is a consistent  framework, correct ions to the MFT 

may be examined systemat ica l ly .  We studied correct ions from vacuum f l uc tua t i ons ,  

se l f -cons is ten t  nucleon exchange, and two-nucleon cor re la t ions .  These have a small 

e f fec t  on the large Lorentz scalar and vector components of  the baryon sel f -energy.  

In add i t ion,  correct ions to the MFT equation of  state become small at  energy densi t ies 

8 ~ 0 . 5  GeV/fm 3. Thus the mean-field approximation provides a simple, accurate de- 

sc r ip t ion  of  nuclear matter at densi t ies re levant  for  neutron stars and energetic 

heavy ion c o l l i s i o n s .  

In contrast ,  the nuclear matter binding energy near equ i l ib r ium densi ty involves 

de l ica te  cancel la t ions and is sens i t ive to the correct ions studied here. The deta i led 

saturat ion propert ies of  nuclear matter become d i f f i c u l t  to ca lcu la te  in view of  the 

new large energy scale, which suggests that the v a l i d i t y  of  n o n r e l a t i v i s t i c  nuclear 

matter ca lcu la t ions be re-examined. An accurate quan t i ta t i ve  descr ipt ion of  nuclear 

saturat ion in a r e l a t i v i s t i c  framework is a chal lenging topic for  fu ture  research. 

There are other outstanding questions to be addressed in QHD. Of prime importance 

is the construct ion of  models that  incorporate pions accurately,  whi le (hopefu l ly)  

leaving in tac t  the successes mentioned above. I t  now appears that some form of  chira l  

symmetry is necessary to achieve a reasonable descr ip t ion of  pion-nucleon dynamics 
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in the nuclear medium. (14'36) Unfortunately, existing chiral models contain strong 

nonlinearit ies that pose problems in the description of nuclear matter. This topic 

requires further investigation. 

I t  is also clear that QHD is an approximation to the underlying quark-gluon 

structure of nuclear systems. QHD is meant to describe the long-distance behavior of 

these systems, as studied in low- and medium-energy nuclear physics. By constructing 

renormalizable QHD theories, the dependence on the in t r ins ic  hadronic structure is 

minimized. The va l i d i t y  of this dynamical input and the delineation of the boundary 

between practical QHD and QCD descriptions are important questions for future 

research. 
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