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ABSTRACT

Quantum random number generation (QRNG) leveraging intrinsic quantum uncertainty has attracted significant interest in the field of
integrated photonic architecture, with applications in quantum cryptography, tests of quantum nonlocality, and beyond. The demand for
compact, low-energy consumption, robust, fast, and cost-effective QRNGs integrated into photonic chips is highlighted, whereas most previ-
ous works focused on bulk optics. Here, based on the metalens array entangled source, we experimentally realized a miniaturized,
high-dimensional quantum random number generator via a meta-device without post-randomness extraction. Specifically, the device has a
high-density output with 100 channels per square millimeter. This chip-scale quantum randomness source can obtain random number arrays
without post-randomness extraction and enable compact integration for quantum applications needing secure keys or randomness. Our
approach demonstrates potential in secure key generation and randomness for quantum applications.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0224766

INTRODUCTION

In the digital era, the safeguarding of sensitive information
represents a critical challenge across industries and sectors, such as
finance, healthcare, government, and technology, where the integ-
rity and confidentiality of data are paramount. As traditional
encryption methods increasingly succumb to advanced and artifi-
cial intelligence (AI)-driven hacking techniques,’ the urgency for
implementing enhanced security measures has intensified.
Quantum random numbers, derived from the principles of quan-
tum mechanics, offer a robust solution to these vulnerabilities.
These numbers, generated through quantum random number gen-
erators, are inherently unpredictable and truly random, making
them ideal for fortifying encryption and authentication systems
against cyberattacks.”” With the rise of big data, cloud computing,
and advanced Al the integration of quantum random numbers
into data security protocols is not only advantageous but also essen-
tial. This quantum approach not only promises to revolutionize the
landscape of information security but also aligns with the increasing
complexity and demands of global data protection standards.

The development of quantum technologies drives the demand for
quantum random numbers in applications such as quantum key distri-
bution (QKD)"” and verification of Bell’s inequality.” Random num-
bers are sequences of numbers that are unpredictable and
independent. They are uniformly distributed over a given range, mean-
ing that each number has an equal probability of occurrence. To verify
the basic physical principles of quantum mechanics, Ture random
number generators (TRNGs) are developed such as cosmic photons’
arrival times offer an avenue for generating random numbers, not only
as a source of randomness but also for closing the freedom-of-choice
loophole in quantum nonlocality tests.” Quantum mechanical phe-
nomena, like the uncertainty principle and entanglement, are a prom-
ising approach for generating truly random numbers. Device-
independent Quantum random number generations (QRNGs) provide
random numbers with the highest security among TRNGs. For exam-
ple, source-device-independent quantum random number generation
leverages the arrival time of photons from untrusted entangled sources
and the nonlocal dispersion cancelation effect for heightened security
and high-speed random number generation.” Device-independent
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QRNGs provide high security in complex setups. QRNGs based on
simpler trusted devices can be applied to more scenarios. Practical
high-speed quantum random number generators have emerged, using
the timing of single-photon detection as raw data and achieving
impressive bit rates of 109 Mbps after bias reduction and randomness
extraction.” Another applicable way to generate QRNG from
trusted device is photon number parity verification, using multi-
plexed transition-edge sensors to resolve up to 100 photons and
generate unbiased random numbers based on coherent state par-
ity."” Random number generation is a core component of quantum
technologies. In the past, most work was based on bulky optical ele-
ments and random number generators. Miniaturized high-
dimensional QRNG devices have the potential to be used in per-
sonal communication terminals based on quantum technologies,
such as communication protocols containing Bell’s inequality veri-
fication through multiple channels in personal terminals. Quantum
optical chips are indeed a crucial area with many uses,'' including
continuous-variable QKD."” The demand for compact, low-energy
consumption, robust, fast, and cost-effective QRNGs integrated
into photonic chips is highlighted."”"*

Metasurfaces enable flexible control over light wavefronts and
have been integrated into compact quantum devices for applications
such as quantum state preparation and modulation, placing demands
for further miniaturized quantum components like sources of true ran-
domness. Metasurfaces are a kind of high-performance platform com-
posed of subwavelength antennas. They are compact and easy to
integrate'” "’ and are widely used in the context of quantum
research.”' " Very recently, the learned metasurfaces for 360° struc-
tured light,”” have achieved a remarkable technological breakthrough
in 3D imaging and holographic projection and thus, opening new
horizons for applications in photonics interaction and high-
dimensional quantum technology. The realization of high-dimensional
quantum light sources has achieved tremendous success. Standing on
the shoulders of giants,”’ we have developed a realization of a high-
dimensional quantum random number generator in a miniaturized
form factor. We experimentally realized a high-dimensional quantum
random number generator based on our metalens array. We propose a
high-dimensional random number generator leveraging a high-
dimensional entangled photon source. We harnessed a quantum ran-
dom number array by collecting photons emitted from a f§ barium
borate (BBO) crystal pumped by a continuous-wave (CW) laser diode
with arrival time differences following a Poisson distribution. Utilizing
a metalens array combined with spontaneous parametric downconver-
sion (SPDC) in the BBO crystal, we recorded the time differences of
photon arrivals, obtaining a high-dimensional quantum random num-
ber array without post-randomness extraction. Al systems, while
improving the efficiency of information processing, can also be
exploited by malicious actors to pose threats to information security.
Our generated sequence of random numbers can pass NIST random-
ness tests and resist attacks against a Generative Adversarial Network
(GAN) model, as Fig. 1 shows. In this context, it is crucial to proac-
tively address information security challenges by establishing a robust
information security protection system. This involves not only advanc-
ing the adoption of quantum random numbers but also examining the
potential security threats posed by AI in the information security
domain. Only by taking a technology-driven approach can we build a
trustworthy digital world that instills confidence in its users.

ARTICLE pubs.aip.org/aip/are

RESULTS

The working principle of high-dimensional quantum
random number generator

The generation principle is that continuous laser photon arrival
times obey Poisson distribution, and the specific arrival times between
two photons are random.” SPDC is a random, nonlinear process.
When the number of photons within the correlated time is much less
than 1, the SPDC process also obeys Poisson distribution.’' These two
random occurrences are the basis for generating our high-dimensional
random number arrays. The two-photon state from the metalens array
can be written as”’

lp:ﬁquo) L)+ 2,2) = Ln—1)), (1)
where # is the total number of metalens involved in the random num-
ber generation, defined as the number of dimensions.

The details of the numerical simulation and fabrication of the met-
alens array are shown in supplementary material Note 1. In our QRNG
array scheme, the CW laser focuses through a metalens array into a
BBO crystal to generate nonlinear effects and form an SPDC photon
pair array. The experimental setup is shown in Fig. 2(a). See more details
in the supplementary material Note 2. A CW laser passes through a
metalens array to generate an SPDC photon pair array. The number of
arrival photons is less than one in each reference period Trf. The pho-
ton is detected by a Single photon counting module (SPCM, SPCM-
800-14-FC). The SPCM has a dead time of 22 ns and a maximum count
rate of 37 Mcps with continuous light illumination. To measure the tim-
ing of photon arrival, we use high-performance timing measurement
electronics with a time-to-digital converter (TDC, SIMINICS FT'1040)
operating with a time resolution of 128 ps. The arrival time transfers the
original random bits into the personal computer (PC) through USB3.0
and then uses the selected reference time as the “start” of TDC and the
SPCM detection signal as “stop” to record which time bin the photon
arrives at and to finally output a random number.

For an ideal uniform distribution, the probability of a photon
detection falling into a certain Ny, bin is 1/Np, each time bin has a time

FIG. 1. Schematic of metalens array for quantum random number.
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FIG. 2. Setup and direct counting results.
(a) Experimental setup of high-dimensional
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duration Ty, The resulting arrival time is compared with the reference
period Ty, where Tref = Np, * T,. When a single photon is detected
in a certain time bin, the label of the time bin is recorded as a time tag,
converted into binary, and finally output as the final random number.
When selecting the length of the time bin, the coincidence count time
width as shown in Fig. 2(b) is considered, and the standard deviation
is around 500 ps. We select a coincidence count period of four stan-
dard deviations as 2 ns to ensure that 99.99% of coincidence events are
recorded while avoiding recording noise signals.

In our experiment, the number of time bins is N, = 2* = 16, the
time bin duration is T, = 2ns, and the time reference period is

1000 2000

Arrival time (ps)

Tref = 32ns. In the test, we collected raw data at a rate of 200 kps.
Within a reference period, the average number of photons that can be
detected is about 0.005, which is far less than 1. It can be considered
that the photon arrival time obeys the Poisson distribution. The details
of generating quantum random numbers and evaluation of random-
ness are shown in the supplementary material Note 3.

QRNG from one metalens

We first show how to generate a random sequence from a metal-
ens. Figure 3(a) illustrates how one metalens produces the entangled
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photon pairs. The SPDC light spots, which represent H and V polari-
zation, respectively, are located on the right side of Fig. 3(a). The NIST
statistical test suite is used to assess the random number sequence for
30 x 10°. In the test setting, the assessment is set as 1 x 106, and ran-
dom streams are set as 30. The test’s outcome is displayed in Fig. 3(b).
As indicated by the result’s proportion and P-value, the generated ran-
dom number can pass every test classification. Since each sequence has
a total of about 30 Mbit binary sequences, the amount of data is too
large to be processed for further analysis. A random sequence of
2048 x 2048 bits is chosen sequentially from the quantum random
number stream that has been formed. In addition, the random number
series was subjected to various randomness testing techniques, such as
the Autocorrelation function, the Entropy, the Uniformity of the
Sequence, and the intra-hamming distance (HD intra). The ACF

displays the relationship between the provided sequence and a delayed
replica of the series. Figure 3(c) shows the average and standard devia-
tion of the results of the independent calculation of the ACF for 2048
sequences. Since they are both very close to zero, our random number
does not exhibit periodicity, which is a crucial feature of a true random
number. The number of flips required to match our random number
series to a known sequence is called HD intra. An optimal number
of HD intra is half the length of the sequence, as indicated by a
binary random number with a 50:50 distribution between 0 and 1.
Figure 3(d) displays the HD-intra result for our 2048 x 2048 sequen-
ces. The distribution’s mean value is close to 1024, demonstrating the
randomness of our values. The degree of uncertainty is called entropy,
and its optimum value is 1. Equation (1) allows us to compute the
entropy of our sequence,””
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where E is the computed entropy, and p and 1 — p represent the pro-
portion of 0 and 1, respectively, throughout the series. The entropy of
around unity, shown in Fig. 2(e), indicates that our data have maxi-
mum uncertainty. A uniformity of 0.5 is implied by a good uniformity
of binary random numbers, which shows that 0 and 1 have an equal
chance of occurring. Our findings, as seen in Fig. 3(f), suggest no bias
in our sample since our random numbers are reasonably uniform.

QRNG from metalens array

Here, we present high-dimensional QRNG from a metalens
array. Our metalens array is a 10 x 10 array, but, limited by the num-
ber of SPCMs. We only select four metalenses as an example to illus-
trate the feasibility of high dimensions. Two light spots from the same
metalens separately produce a random number. The optical image of
the metalens array and the associated light spots are displayed in
Fig. 4(a). A quantum random number array is generated by counting
the coincidences between each pair of light spots. The results of the
NIST randomness test suite are displayed in Fig. 4(b). Every random

TABLE 1. The calculation of the minimum entropy for eight sequences.

and 4(d) illustrate the random number’s physical unclonability. The
resemblance between random numbers produced by each metalens is
demonstrated using the inter-correlation function and the inter-
Hamming distance, which show peaks at 1024 and 0, respectively. This
is precisely the optimal value and indicates no similarity between the
random number streams obtained from each metalens source.

To obtain secure random numbers, we provide the calculation of
the minimum entropy. The minimum entropy is defined as Hy
= —log (Max(P;)), where P; is the detection event probability.” All
eight random sequences in our experiment are given in Table I. All
results are close to 1, which is the minimum entropy of standard uni-
form distribution with 16 variations. Note that we do not use any ran-
domness extractor here, which is one of the advantages of our approach.

Against GAN attack

Data-driven machine learning demonstrates impressive capabili-
ties in modeling data using probability distributions. It can be utilized
to learn the statistical patterns of certain pseudo-random numbers and
analyze their vulnerabilities. The key idea behind machine learning is

Lens # 1 2 3 4

Source s i s i s i s i

Hoin 0.9993 0.9991 0.9993 0.9995 0.9995 0.9988 0.9994 0.9992
11, 031418-5
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FIG. 5. Resilience to machine learning (ML) attacks. (a) A 1D GAN generator is utilized for pseudo-random number generation. A 128-dimensional uniform distribution Z vector
is projected onto a high-level convolutional representation with the same spatial extent but 512 channels. Four fractionally stridden convolutions are further applied to increase
the spatial length of the feature maps while reducing the number of channels. Batch normalization and leaky ReLU are applied after each convolution operation, except for the
final convolutional layer. The high-dimensional representation is finally transformed into a 2048-dimensional vector output. The final layer employs the sigmoid activation func-
tion. (b) A 1D GAN discriminator is used to distinguish between true and pseudo-random numbers. The 2048-dimensional random number vector is projected onto a 128-
dimensional feature representation with 512 channels through four 1D convolutions. This high-level feature representation is then converted into a probability value ranging
from 0 to 1. Batch normalization is employed after the second, third, and fourth convolutional layers. The activation functions of the former four convolutional layers are leaky
ReLU. The final layer employs the sigmoid activation function. No fully connected or pooling layers are present in the generator (a) and discriminator (b), and padding opera-
tions are employed to adjust the output size of the convolutional layers. (c) The statistics curve of the CCinter values between the GAN predicted and the experimentally mea-
sured streams. (d) The statistics curve of the HD-inter values between the GAN predicted and the experimentally measured keys. The peak value is 1024 for HD-inter values.
The standard deviation shows the fluctuation between sequences from the GAN model and metalenses.

to learn statistical distribution in data to perform specific tasks. Real
random numbers should have the characteristic of a uniform probabil-
ity distribution within a given range. Machine learning models cannot
learn from QRNG that does not follow any data distribution. A more
detailed introduction of the attack of machine learning is shown in the
supplementary material Note 4.

Generating a sequence of random numbers with a uniform prob-
ability distribution requires that every possible value has an equal
probability of being generated. However, neural networks are models

based on deterministic algorithms whose outputs are determined
by inputs and learned parameters, and they are better at learning com-
plex data distributions. Even though the output sequences obtained by
training a neural network appear to be close to a uniform
distribution, they are still obtained through a specific calculation pro-
cess and do not possess true randomness. A neural network can be
viewed as a large function approximator. We can train a neural net-
work to generate the output of a pseudo-random number generator
(PRNG).'B,H
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To test the randomness of our QRNG, we developed a GAN, a
sophisticated machine learning framework, to serve as an adversarial
force. GAN aims to learn the statistical characteristics and the corre-
sponding conditional probability distribution model of the dataset and
generate fake samples similar to real data. The GAN attacks on well-
known PRNGs demonstrated the ability of GANs to learn pseudo-
randomness with specific statistical patterns.”*"” If our QRNG is a
PRNG, GAN can learn and crack it. Should the QRNG embody true
randomness and eschew any discernible distribution, the GAN will
invariably struggle to replicate a similarly random sequence. If the
GAN fails to accurately simulate the QRNG output in this struggle, it
indicates the true randomness of our QRNG. GAN***” has two mod-
ules in the framework: a generator and a discriminator. The observable
variable is X, and the target variable is Y. The discriminator establishes
the decision boundary to distinguish between real and fake data.
The generator learns the statistical model of the joint probability
distribution on X x Y and generates new data using the obtained
probability model. The discriminator is a conditional probability
model P (Y | x=x), which refers to the distribution probability of tar-
get Y given the observation x. The generator is a dependent probability
model P (X | y=y), which is the probability of the distribution of
observation X given the target y.

Figure 5(a) demonstrates the architecture of the proposed GAN
generator for 1D random number generation. A 128-dimensional
noise vector Z with uniform distribution is projected onto a high-level
convolutional representation with the same spatial extent but 512
channels. Each channel contains a specific characteristic response pat-
tern. By increasing the number of feature channels, the network can
learn more abstract features at different levels. Four fractionally strid-
den convolutions are further applied to increase the spatial length of
the feature maps while reducing the number of channels. In this
up-sampling process, the redundant information is reduced. The fea-
tures interact with each other and are fused for better integration. To
reduce the risks of vanishing and exploding gradient problems, batch
normalization”® and leaky ReLU" are applied after each convolution
operation, except for the final convolutional layer. The high-
dimensional representation is finally transformed into a 2048-
dimensional vector output. The final layer employs the sigmoid activa-
tion function to regulate the output from 0 to 1. Figure 5(b) displays
the framework of the proposed 1D GAN discriminator used for
distinguishing between true and false random numbers. The 2048-
dimensional random number input vector is projected onto a 128-
dimensional feature representation with 512 channels through four 1D
convolutions. Such an encoder architecture is designed to extract rich
feature representations that can capture important features and pat-
terns in the input data. The encoder can gradually capture higher-level
abstract features and develop a comprehensive understanding of the
input. This high-level feature representation is then converted into a
probability value ranging from 0 to 1.

To compare the randomness produced by the GAN vs that from
our metalens array QRNG, we analyzed the inter-correlation function
and inter-Hamming distance between the GAN stream and every
QRNG stream. The inter-correlation function showed a peak at 0 in
Fig. 5(c), while the inter-Hamming distance peaked at 1024 in Fig. 5(d).
These optimal values precisely indicate no similarity for the random-
ness generated from the GAN and the metalens array. Thus, our
QRNG output successfully demonstrated decorrelated randomness on
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par with computationally created random sequences from the GAN.
This further verifies the quantum randomness originating from the
intrinsic uncertainty of photons emitted by independent metalenses.

DISCUSSION

In summary, we have experimentally realized the generation of
high-dimensional quantum random number arrays using metalens
arrays. In contrast to previous bulk optics implementations relying on
beam splitters, our approach condenses 100 metalenses within a
1 mm? footprint. The device has a high-density output with 100 chan-
nels per square millimeter, yielding a miniaturized quantum random-
ness source without post-randomness extraction. There are some
alternative physical processes used in QRNGs that can be applied in a
similar method to metalens array. Please refer to the supplementary
material Note 5, for more details. With the development of on-chip
light sources and detectors, it is believed that the size of the completed
device will be further reduced. This compact form factor and ease of
integration conferred by the metasurface platform signifies advances
for miniaturized quantum meta-devices.

MATERIALS AND METHODS
Metalenses design

The metalenses are made up of twelve distinct kinds of nanopil-
lars with variable radii to offer phases between 0 and 330°. The nano-
pillars are positioned precisely to satisfy the focal lens’s phase
requirements. The nanopillars’ geometrical information is carefully
designed by numerical simulation in COMSOL Multiphysics, which
has a height of 800 nm and a period of 200 nm. See the supplementary
material Note 1, for more details.

Sample fabrication

The sapphire substrate is cleaned by hydrogen baking and coated
with a GaN layer using metal-organic chemical vapor deposition
(MOCVD), with trimethylgallium (TMGa) and ammonia as precur-
sors. A SiO, layer is deposited by plasma-enhanced chemical vapor
deposition (PECVD) and patterned by electron-beam lithography
(EBL) and Cr evaporation, forming a hard mask for the nanopillars.
The GaN layer is etched by inductively coupled plasma reactive ion
etching (ICP-RIE) using the SiO, mask, creating the metalens arrays.
The SiO, layer is removed by buffered oxide etch (BOE), leaving the
final sample. The detailed fabrication process is shown in supplemen-
tary material Fig. S1. The process of fabricating GaN metalenses
through reactive ion beam etching is elaborated upon with greater
detail in other research articles.”’

Measurement setup

A 405nm laser produces entangled photons via spontaneous
parametric downconversion in a BBO crystal. The incident beam is
focused on the crystal by the metalens array. The emitted light is col-
lected by a 20x objective lens and filtered by a 405 nm notch filter
(Semrock NF03-405E-25) and a 475nm bandpass filter to eliminate
the pump light. A polarizing beam splitter (MPBS642, LBTEK) sepa-
rates the two entangled photons with horizontal and vertical polariza-
tion, respectively. A He-Ne laser calibrates the position of the optical
elements. A tunable delay line adjusts the path length of the vertically
polarized photon. Both horizontally and vertically polarized photons
are coupled to multimode fibers and detected by single photon diodes.
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An 808 nm bandpass filter (Semrock LL01-808-25) removes residual
pump light and ambient light. The detected photons are recorded by a
time-to-digital converter for further analysis. A qCMOS camera veri-
fies the alignment of the metalens and the BBO. See the supplementary
material Note 2, for more details.

GAN model training

The two modules play with each other in a zero-sum game where
one’s gain is the other’s loss. Given a random number sequence that
may be either a real sequence from a real physical QRNG or a fake
sequence generated by the generator, the discriminator should deter-
mine whether the sequence is real or fake. On the contrary, the genera-
tor tries to generate a fake sequence that can fool the discriminator. In
training, two modules try to complete their conditional probability
model. After training, the generator masters the distribution of real
data to generate new random number sequences.

We trained the GAN on the homemade random number dataset
collected from our QRNG. There are about 1.65x 10® binary numbers
in this dataset. Using binary data directly as the output of a GAN gener-
ator can lead to difficult training and convergence issues. Binary data
are discrete and highly discontinuous, with huge gaps from the contin-
uous output of the generator. The GAN generator aims to generate
realistic data samples that can fool the GAN discriminator. During
training, the generator adjusts its parameters via backpropagation to
minimize the loss function. However, propagation and adjustment of
the gradients become complicated when the output target of the gener-
ator is discrete binary data. Even if the Sigmoid activation function™ is
employed, training will face the challenge of non-convergence. The
Sigmoid function can map the entire real number axis to the interval
from 0 to 1. However, the gradients at the outputs 0 and 1 are extremely
small, close to zero. The corresponding inputs are extremely large (neg-
ative infinity and positive infinity). These will quickly lead to vanishing
gradient and exploding gradient problems. Therefore, we encode the
raw binary data into the signed integer with 8 bits. Every 8 binary num-
ber is converted to a signed integer, ranging from —128 to 127. The
signed integers are further normalized into the floating point numbers
ranging from 0 to 1, as shown in the following equation:

_Si+128

255 3)

S
where S is the normalized floating number, S; is the signed integer.
After the normalization, the dataset comprises 8000 training samples
and 2000 test samples. Each sample contains 2048 normalized floating
point numbers.

Batch normalization is employed after the second, third, and
fourth convolutional layers. Similar to the generator, the activation
functions of the former four convolutional layers are leaky ReLU. A
probability output of 0 indicates a fake sample, while a probability out-
put of 1 signifies a real sample. There are no fully connected or pooling
layers in the generator and discriminator. The padding operations are
employed to adjust the output size of the convolutional layers.

We use the binary cross entropy (BCE) to construct the loss
functions of the generator and the discriminator, which is defined as

1 N

n=1

—[yn - logxn + (1 = yn) -log(1 — x)],  (4)
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where X = {x,}" | is the batch of prediction probabilities, Y
={yu }i\’:l is the batch of the labels (1 for real and 0 for fake), and N is
the batch size. The training loop updates the discriminator first. We
select a batch of real samples from the training set, forward pass D,
and calculate the loss £(D; (x), 1). A batch of fake samples is generated
by the current generator. The loss for the fake batch is calculated as
l (D1 (G(2)), 0). The loss function of the discriminator is calculated as
the sum of the losses for both real and fake batches and the regulariza-
tion,” as shown in the following equation:

Lossp = £(Dy(x),1) + £(D;(G(2)),0) + Ap Z wD}
7

N
= 33 log(D1 () + log1 D) (G(2)

+Ap Y WDy, )
J

where D;(x) is the output probability of the discriminator when its
input is the real sample x from the training set, Z is the input vector of
the generator, G(2) is the output vector of the generator, D; (G(2)) is
the output probability of the discriminator when its input is the fake
sample G(Z), Jp is the regularization coefficient, and WD =
{wD; }]]-:1 are the trainable weights in the network. To minimize Lossp,
D) (x) should be 1, and D;(G(Z)) should be 0, which means the dis-
criminator can distinguish the real and fake samples correctly. With
Lossp, the training parameters in the discriminator are updated by the
gradient backpropagation algorithm. In the following training of the
generator, the loss function of the generator is calculated as

Lossg = £(D,(G(2)),1) + Ag Z WGJ2
j

N
:%Z—log(Dz(G(Z))) LYW, @
n=1 7

where D,(G(2)) is the output of the discriminator after its update, Ag
is the regularization coefficient, and WG = {ij};= , are the trainable
weights in the network. The purpose of the generator is to fool the dis-
criminator. Training of the generator aims to minimize the Lossg,
which computes the deviations between the prediction D(G(2)) and
real label y = 1.

The generator transforms a low-dimensional random vector into
a high-dimensional sample that closely resembles a real sample.
Typically, the generator exhibits greater complexity and possesses
more trainable parameters than the discriminator. Our discriminator
comprises approximately 755 thousand trainable parameters, whereas
the generator consists of around 17 x 10° trainable parameters. The
generator’s parameters are approximately 24 times that of the discrimi-
nator. Establishing a coordinated and balanced training process
between the generator and discriminator is crucial. Optimizing the
generator is a more challenging task. The initial learning rate of GAN
should be relatively small. An excessive learning rate may lead to insta-
bility in the training process, manifesting as an imbalance in the game
between the generator and the discriminator, making it difficult for
GAN to reach a convergence state. After hyperparameter attempts, the
initial learning rates for the discriminator and the generator are
2% 107® and 1.3 x 107, respectively. As the training progresses, the
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discriminators, which have a relatively more straightforward task, tend
to improve steadily. To ensure a balanced interplay between the two
components, it is beneficial to maintain a higher learning rate for the
generator during the later stages of training. This can be achieved by
setting the learning rate decay factor of 0.95 for the generator and 0.9
for the discriminator every 200 epochs. This approach facilitates faster
learning and adaptation of the generator to the feedback provided by
the discriminator. To avoid overfitting, the regularization coefficients
for the discriminator and generator are 0.001 and 0.023, respectively.

We employed the Adam Optimizer (f = 0.999 for discriminator
and generator). The batch size was 16 on a Nvidia GeForce RTX 3090
GPU. After 2000 epochs (1000000 iterations) of training, the final
D (x) and D(G(Z)) converged to approximately 0.5, realizing Nash
equilibrium.” When a GAN converges, the output of the generator
becomes consistent with the distribution of real samples, and the dis-
criminator cannot accurately distinguish them. At this time, the dis-
criminator’s judgment of real samples and generated samples is almost
random, so the probability of output is close to 0.5.

Device modeling and assumptions

We first consider the randomness of the spontaneous emission of
light. The emission of stimulated photons happens randomly as transi-
tions take place from an upper energy level to a lower energy level, with a
transition probability denoted as py.Then, the randomness of the sponta-
neous parametric downconversion (SPDC) process is considered.
Photons from the excited light interact with a nonlinear crystal, resulting
in the generation of SPDC with a probability denoted as p;, probability
of no generation is 1 — p;. The total SPDC generation probability is

P = popr- (7)

Consider a continuous-wave (CW) laser over a specific time
interval, where the upper energy level is populated with N charge car-
riers, k of which transition to the lower level to generate excited light.
This process is modeled by a binomial distribution expression,

P(X=k) = (]Z)pk(l ~ N, @®)

Continuing the analysis with the assumption of a sufficiently
large N and a sufficiently small p, the limit is taken, yielding the gener-
ation times (1) of SPDC as a Poisson distribution with a mean genera-
tion time of parameter A = yNp, where n is the total detection
efficiency. According to energy conservation, when a photon falls, it
can only produce at most one SPDC photon pair. Therefore, the gener-
ation times of SPDC are the pair numbers of SPDC generation,

- I
P(K =k =2 ¢ 9)
k!

The time difference between photon arrival time and time refer-
ence is approximately uniform distribution, which we collect to gener-
ate QRNG. We have quantitatively evaluated the randomness by the
minimum entropy in the main text. We analyze our model in the fol-
lowing. There are several assumptions for our model.

1. Dark count: The dark counts can be disregarded compared to the
count rate, as the dark counts for the SPCM amount to only 100
counts per second.

ARTICLE pubs.aip.org/aip/are

2. Detector and metalens efficiency: Considering the efficiency of
two detectors, 1, and 1, and the efficiency of the metalens 7,
the total detection efficiency is 1 = 1,151, Thus, we can refine
the probability distribution of photon pairs generated through
SPDC.

3. Dead time: The SPCM has a dead time of 7. Dead time is a
period that a detector is inactive after detection that does not
affect the randomness of the raw data.”

4. Multiphoton pair emission from the nonlinear crystal: When k
photon pairs appear in a period, every k detection event will be
announced for an ideal detector without dead time. However, in
the experiment, only the first detection event is recorded as the
raw data. Therefore, for a detection event, the conditional proba-
bility of getting the result # = i given that k photons appear in a

period,
. i—1\* i\*
P(n =ilk) = <1 N, ) - (1 _Fb) ) (10)

where i = 1,2, ..., N,. Considering the probability distributions
of the pair number of SPDC generation Equation (M7), the max-
imum probability occurs when the photon drops into the first
time bin,

LS b= 0P = K

k=1

1 & 1\*\ »*
—sz;(l—(l—ﬁb))He . (11)

Expanding the first term within the summation through a series
expansion, when N, > 1,

Prn=1) =
(@ ) 1—e*

1 Xk y
< _E — = 12
Tl-et4N, K Ny(1 —e%) 12

The TDC exhibits a time resolution of 16 ps, rendering its impact
negligible compared to the SPCM. After the photon arrives at the
SPCM, the output signal, denoted by the function f, is influenced by
the jitter-rising edge of the square wave output that conforms to a
Gaussian distribution. Specifically, the arrival time of the photon at the
SPCM is represented as f,, while the time indicated by the rising edge
of the SPCM output square wave is denoted as t; = f(ty) =ty + n, n
is the jitter caused by SPCM, obeying the normal distribution,
n ~ N(u, 6*). We denote the two generated photons with subscripts s
and i. The true value of the time difference between these two photons
is represented by dt. The measured value of the time difference is
t=1t,—t; :f(tls) _f(tli) = dt+ ns — ni.

The expected full width at half maximum (FWHM) of the time
difference statistics between two SPDC photons is influenced by
instrumental jitter in the measurement values 7.,y = n; — 1, obeying
Mioral ~ N(0,202). Finally, we have FWHM = /20 ~ 495 ps, which
is very close to the experimental fitting value 500 ps.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the design, process-
ing, and characterization of metalens array; experimental details of
random number generation; details on methods used for randomness
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extraction and verification; and details on generative adversarial
networks.
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