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We analyze the classical stability of Schwarzschild black hole in massive conformal gravity which was
recently proposed for another massive gravity model. This model in the Jordan frame is conformally
equivalent to the Einstein–Weyl gravity in the Einstein frame. The coupled linearized Einstein equation
is decomposed into the traceless and trace equation when one chooses 6m2ϕ = δR . Solving the traceless
equation exhibits unstable modes featuring the Gregory–Laflamme s-mode instability of five-dimensional
black string, while we find no unstable modes when solving the trace equation. It is shown that the
instability of the black hole in massive conformal gravity arises from the massiveness where the geometry
of extra dimension trades for mass.
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1. Introduction

Recently, massive conformal gravity was proposed as another
massive gravity model [1]. This model is composed of a confor-
mally coupled scalar to Einstein–Hilbert term (conformal relativ-
ity) and Weyl-squared term which are invariant under conformal
transformations. Apparently, this model is related to the Einstein–
Weyl gravity of R + aCμνρσ Cμνρσ [2], which is not manifestly
invariant under conformal transformations. This model seems to
be promising because the conformal symmetry restricts the num-
ber of counter-terms arising from the perturbative quantization of
the metric tensor [3]. However, Stelle has shown that a definite
combination of aCμνρσ Cμνρσ + bR2 is necessary to improve the
perturbative properties of Einstein gravity [4]. In this sense, mas-
sive conformal gravity including the Weyl-squared term only might
not be a candidate for a proper quantum gravity model.

On the other hand, massive conformal gravity plays a role of
being massive gravity model [5,6] because it includes Einstein–
Hilbert term and Weyl-squared term in addition to a conformally
coupled scalar. Actually, this action in the Jordan frame is confor-
mally equivalent to the Einstein–Weyl action in the Einstein frame.
It turned out that the Schwarzschild black hole is unstable against
the Gregory–Laflamme (GL) s(l = 0)-mode metric perturbation [7]
in massive gravity models [8–10]. This is possible because the ex-
tra dimension in five-dimensional black string could be replaced
by the mass [11]. That is, trading geometry for mass is a plau-
sible argument for the instability of Schwarzschild black hole in
the massive gravity. If one takes into account the number of de-
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grees of freedom (DOF), it is easy to show why the Schwarzschild
black hole is physically stable in the Einstein gravity, whereas the
Schwarzschild black hole is unstable in massive conformal grav-
ity. The number of DOF of the metric perturbation is 2 DOF in the
Einstein gravity, while the number of DOF is 6 = 5 + 1 in massive
conformal gravity. The s-mode analysis is suitable for a massive
graviton with 5 DOF, whereas 1 DOF is described by a conformally
coupled scalar (linearized Ricci scalar) which satisfies a massive
scalar equation.

In this work, we investigate the classical stability of Schwarzs-
child black hole in massive conformal gravity. The coupled lin-
earized Einstein equation is decomposed into the traceless and
trace equation when one chooses 6m2ϕ = δR . Solving the traceless
equation exhibits unstable modes featuring the GL s-mode insta-
bility of five-dimensional black string, while we find no unstable
modes from solving the trace equation. This implies that massive
conformal gravity could not provide the Schwarzschild black hole
solution.

2. Massive conformal gravity

We consider the action for massive conformal gravity which is
composed of conformal relativity and Weyl-squared term [1]

SMCG

= 1 

32π

∫
d4x

√−g

[
α

(
φ2 R + 6∂μφ∂μφ

) − 1 

m2 
Cμνρσ Cμνρσ

]
,

(1)

where the Weyl tensor squared is given by
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Cμνρσ Cμνρσ = 2

(
Rμν Rμν − 1

3
R2

)

+ (
Rμνρσ Rμνρσ − 4Rμν Rμν + R2). (2)

Here the last of Gauss–Bonnet term could be neglected because
it does not contribute to equation of motion. Also, we use the
Planck units of c = h̄ = G = 1 and m is the mass of massive spin-2
graviton. The action (1) is invariant under the conformal transfor-
mations of

gμν → Ω2(x)gμν, φ → Ω−1φ, (3)

where Ω(x) is an arbitrary function of the spacetime coordinates.
From (1), the Einstein equation is derived to be

αm2[φ2Gμν + gμν∇2(φ2) − ∇μ∇ν

(
φ2)

+ 6∂μφ∂νφ − 3(∂φ)2 gμν

] − 2Wμν = 0, (4)

where the Einstein tensor is given by

Gμν = Rμν − 1

2
Rgμν (5)

and the Bach tensor Wμν takes the form

Wμν = 2

(
Rμρνσ Rρσ − 1

4
Rρσ Rρσ gμν

)
− 2

3
R

(
Rμν − 1

4
Rgμν

)

+ ∇2 Rμν − 1

6
∇2 Rgμν − 1

3
∇μ∇ν R. (6)

Its trace is zero (W μ
μ = 0).

The other scalar equation is given by

∇2φ − 1

6
Rφ = 0, (7)

which is conformally covariant. Taking the trace of (4) leads to

−φ2 R + 3∇2(φ2) − 6(∂φ)2 = 0 (8)

which vanishes when one uses the scalar equation (7).
Considering the background ansatz

R̄μν = 0, R̄ = 0, φ̄ =
√

2

α
, (9)

Eqs. (4) and (7) provide the Schwarzschild black hole solution

ds2
S = ḡμν dxμ dxν = − f (r)dt2 + dr2

f (r)
+ r2 dΩ2

2 (10)

with the metric function

f (r) = 1 − r0

r
. (11)

It is easy to show that the Schwarzschild black hole (10) is also the
solution to the Einstein equation of Gμν = 0 in Einstein gravity.

We introduce the metric and scalar perturbations around the
Schwarzschild black hole

gμν = ḡμν + hμν, φ = φ̄(1 + ϕ) =
√

2

α
(1 + ϕ). (12)

Then, the linearized Einstein equation takes the form

m2[δGμν + 2
(

ḡμν∇̄2 − ∇̄μ∇̄ν

)
ϕ

]
(13)

= [∇̄2δGμν + 2R̄ρμσνδGρσ
] + 1

3

[
ḡμν∇̄2 − ∇̄μ∇̄ν

]
δR,

where the linearized Einstein tensor, Ricci tensor, and Ricci scalar
are given by
δGμν = δRμν − 1

2
δR ḡμν, (14)

δRμν = 1

2

(∇̄ρ∇̄μhνρ + ∇̄ρ∇̄νhμρ − ∇̄2hμν − ∇̄μ∇̄νh
)
, (15)

δR = ḡμνδRμν = ∇̄μ∇̄νhμν − ∇̄2h (16)

with h = hρ
ρ .

From (7), we derive the linearized scalar equation

∇̄2ϕ − 1

6
δR = 0 (17)

which is surely a coupled equation for ϕ and δR . Plugging (17)
into (13), one finds a simpler linearized Einstein equation

m2[δGμν − 2∇̄μ∇̄νϕ]
= [∇̄2δGμν + 2R̄ρμσνδGρσ

] − 1

3
∇̄μ∇̄νδR. (18)

It might be difficult to solve (18) directly because it is a cou-
pled second-order equation for δGμν , δR , and ϕ . Taking the trace
of (18) together with δGμ

μ = −δR leads to (17) too. In order to
simplify the linearized equation (18), one way is to find a condi-
tion of non-propagating linearized Ricci scalar (δR = 0). However,
it is not justified to impose δR = 0 because of conformal symmetry
in massive conformal gravity. In Appendix A, we have δR = 0 for
the new massive conformal gravity where the conformal symmetry
is broken due to the addition of the Einstein–Hilbert term.

The other way to resolve the coupling difficulty is to propose a
relation between ϕ and δR because the massive conformal gravity
implies 6 DOF of massive graviton (with 5 DOF) and scalar. If one
requires the relation

ϕ = 1

6m2
δR (19)

the linearized equation (18) is simplified further as

∇̄2δGμν + 2R̄ρμσνδGρσ = m2δGμν. (20)

Before we proceed, we would like to mention that the relation (19)
between ϕ and δR is taken specially for the massive conformal
gravity. If we do not use this relation, we could not make a further
progress on the stability analysis. The apparently two DOF of ϕ and
δR becomes a single DOF due to the relation (19). Plugging (19)
into the linearized scalar equation (17) leads to the massive scalar
equation

(∇̄2 − m2)ϕ = 0. (21)

Also, the same equation is recovered when one takes the trace
of (20)

(∇̄2 − m2)δR = 0 (22)

which is called the trace equation. However, Eq. (20) describes 6
DOF of a massive graviton and (Ricci) scalar wholly. Splitting δRμν

into the traceless linearized Ricci tensor δ R̃μν with ḡμνδ R̃μν = 0
and the linearized Ricci scalar δR as

δRμν = δ R̃μν + 1

4
δR ḡμν, (23)

the linearized Einstein tensor is given by

δGμν = δ R̃μν − 1

4
δR ḡμν. (24)

Then, the linearized Einstein equation (20) takes the form
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∇̄2δ R̃μν + 2R̄ρμσνδ R̃ρσ − m2δ R̃μν − ḡμν

4

(∇̄2 − m2)δR = 0.

(25)

At first sight, Eq. (25) seems to be a coupled equation for δ R̃μν

and δR . Using the trace equation (22) to eliminate δR , Eq. (25) is
reduced to the traceless linearized Ricci tensor equation

∇̄2δ R̃μν + 2R̄ρμσνδ R̃ρσ = m2δ R̃μν (26)

which is our main result.
On the other hand, we note that in the Einstein–Weyl grav-

ity [10], the non-propagation of the linearized Ricci scalar (δR = 0)
is an essential requirement to arrive at the linearized massive Ricci
tensor equation

∇̄2δRμν + 2R̄ρμσνδRρσ − m2δRμν = 0 (27)

which describes a massive graviton with 5 DOF propagating around
the Schwarzschild black hole.

However, the massive conformal gravity implies that the lin-
earized Einstein tensor with 6 DOF (δ R̃μν and δR) propagat-
ing the Schwarzschild black hole satisfies the traceless equa-
tion (26) and the trace equation (22). The traceless condition of
δGμ

μ = −δR = 0 is an important requirement to show the GL in-
stability of the Schwarzschild black hole and it could be achieved
only in the Einstein–Weyl gravity. On the contrary, the trace equa-
tion (22) plays an important role of obtaining the traceless equa-
tion (26) in massive conformal gravity. In the next section, we will
prove that the conformally invariant action (1) in the Jordan frame
is conformally equivalent to the Einstein–Weyl action in the Ein-
stein frame.

3. Massive conformal gravity in Einstein frame

In this section, we transform the conformally invariant ac-
tion (1) into the corresponding action in the Einstein frame. First
of all, it would be better to show that the conformally invariant
action (1) is nothing but the ω = −3/2 Brans–Dicke theory plus
Weyl-squared term for α = 1/6 when one chooses [12]

1

12
φ2 = e−Φ. (28)

Then, (1) is given by

S̃MCG = 1

16π

∫
d4x

√−g

[
e−Φ

(
R + 3

2
∂μΦ∂μΦ

)

− 1

2m2
Cμνρσ Cμνρσ

]
. (29)

On the other hand, the Brans–Dicke theory plus Weyl-squared
term is described by

Sω
BDW = 1

16π

∫
d4x

√−g

[
φBD R − ω

φBD
∂μφBD∂μφBD

− 1

2m2
Cμνρσ Cμνρσ

]
. (30)

Choosing φBD = e−Φ , (30) could be rewritten as

S̃ω
BDW = 1

16π

∫
d4x

√−g

[
e−Φ

(
R − ω∂μΦ∂μΦ

)

− 1
2

Cμνρσ Cμνρσ

]
. (31)
2m
We note that S̃ω=−3/2
BDW = S̃MCG (29), indicating that the conformal

relativity is just the Brans–Dicke theory with ω = −3/2 in the Jor-
dan frame.

Now we make conformal transformation of the conformally in-
variant action (1) with α = 1/6 only by choosing [13,14]

ĝμν = Ω2 gμν, φ̂ = φ − φ = 0, Ω = φ

2
√

3
. (32)

Then, the transformed action takes the form

ŜMCG = 1

16π

∫
d4x

√
−ĝ

[
R̂ − 1

2m2
Ĉμνρσ Ĉμνρσ

]
(33)

which is noting but the Einstein–Weyl gravity in the Einstein
frame. Hence it is clear that the conformally invariant action (1)
(ω = −3/2 Brans–Dicke theory plus Weyl-squared term) in the
Jordan frame is conformally equivalent to the Einstein–Weyl ac-
tion (33) in the Einstein frame. The Schwarzschild black hole (10)
is also obtained as the solution to the Einstein equation. Its lin-
earized Einstein equation is given by [10]

∇̄2δ R̂μν + 2R̄ρμσνδ R̂ρσ − m2δ R̂μν = 0 (34)

together with transverse-traceless condition of ∇̄μδ R̂μν = 0 and
δ R̂ = 0. This implies that even though a conformally coupled
scalar φ provides a different linearized Einstein equation (20)
with (22) in the Jordan frame, it disappears in the Einstein frame.

If one starts with a non-conformally invariant action, there ex-
ists a scalar kinetic term of − λ

2 ĝμν∂μφ∂νφ which could be re-
duced to a canonical form of − 1

2 ĝμν∂μΨ ∂νΨ in terms of a mini-

mally coupled scalar Ψ = √
λφ. The non-conformally invariant ac-

tion (ω > −3/2 Brans–Dicke theory plus Weyl-squared term) in
the Jordan frame is conformally equivalent to the scalar-Einstein–
Weyl gravity in the Einstein frame [15]

ŜMNCG = 1

16π

∫
d4x

√
−ĝ

[
R̂ − 1

2
ĝμν∂μΨ ∂νΨ

− 1

2m2
Ĉμνρσ Ĉμνρσ

]
. (35)

It was proposed that the stability of black holes does not depend
on the frame [16], even though there exists an apparent difference
between (20) and (34). The difference is the trace equation (22)
which becomes the conformal scalar equation (21). We will check
the above proposal.

4. Instability of Schwarzschild black hole in massive conformal
gravity

Considering the number of DOF, it is helpful to show why the
Schwarzschild black hole is physically stable in the Einstein grav-
ity [17–19], whereas the Schwarzschild black hole is unstable in
massive conformal gravity. From Eq. (20) together with the lin-
earized Bianchi identity (∇̄μδGμν = 0), the number of DOF for
massive spin-2 graviton is 10 − 4 = 6 in massive conformal grav-
ity. On the other hand, the number of DOF for the massless spin-2
graviton is 2 in Einstein gravity since one requires −4 further for
a residual diffeomorphism after a gauge-fixing and the traceless
condition. The s-mode analysis is relevant to the massive graviton
in massive conformal gravity, but not to the massless graviton in
the Einstein gravity. In general, the s-mode analysis of the massive
graviton with 5 DOF shows the GL-instability which never appears
in the massless spin-2 analysis.

To perform the stability of Schwarzschild black hole in mas-
sive conformal gravity completely, we have to solve two linearized
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equations: the trace equation (22) and traceless equation (26) with
the same mass-squared m2. These are different from those aris-
ing from the forth-order gravity of R − αR2 − βRμν Rμν [10] be-
cause the latter provides different masses m2

0 = −1/2(3α + β) and
m2

2 = 1/β . If α = −β/3 (Weyl-squared term), the linearized Ricci
scalar is decoupled from the theory because its mass m2

0 blows up.
First of all, we wish to solve the massive scalar equation (21)

[equivalently, Ricci scalar equation (22)] around the Schwarzschild
black hole. It turned out that the scalar mode does not have any
unstable modes if m2 � 0 [20,21]. Explicitly, considering the scalar
perturbation

ϕ(t, r, θ,φ) = eiωt ψ(r)

r
Ylm(θ,φ) (36)

and introducing the tortoise coordinate

r∗ = r + r0 ln

[
r

r0
− 1

]
(37)

the linearized equation (21) reduces to the Schrödinger-type equa-
tion as

d2ψ

dr∗2
+ (

ω2 − Vψ

)
ψ = 0 (38)

with the potential

Vψ =
(

1 − r0

r

)[
l(l + 1)

r2
+ r0

r3
+ m2

]
. (39)

The potential Vψ is always positive exterior the event horizon
r = r0 for l � 0 and m2 � 0, implying that the black hole is sta-
ble against the scalar [Ricci scalar] perturbation.

However, the s-mode analysis is responsible for detecting an
instability of a massive graviton propagating on the Schwarzschild
black hole in massive gravity. The even-parity metric perturbation
is designed for a s(l = 0)-mode analysis in the massive gravity and
whose form is given by Htt , Htr , Hrr , and K as [7]

h(m)
μν = eΩt

⎛
⎜⎜⎝

Htt(r) Htr(r) 0 0
Htr(r) Hrr(r) 0 0

0 0 K (r) 0
0 0 0 sin2 θ K (r)

⎞
⎟⎟⎠ . (40)

Even though one starts with 4 DOF, they are related to each other
when one uses the transverse-traceless gauge of ∇̄μh(m)

μν = 0 and
h(m) = 0. Hence, we have one decoupled equation for Htr from the
massive graviton equation

∇̄2h(m)
μν + 2R̄ρμσνh(m)ρσ = m2h(m)

μν . (41)

Since Eq. (41) is the same linearized equation for four-dimensional
metric perturbation around five-dimensional black string, we use
the GL instability analysis in asymptotically flat spacetimes [7].
Eliminating all but Htr , Eq. (41) reduces to a second-order radial
equation for Htr

AH ′′
tr + B H ′

tr + C Htr = 0, (42)

where A, B and C are given by

A = −m2 f − Ω2 + f ′ 2

4
− f f ′′

2
− f f ′

r
, (43)

B = −2m2 f ′ − 3 f ′ f ′′

2
− 3Ω2 f ′

f
+ 3 f ′ 3

4 f
+ 2m2 f

r

+ 2Ω2

+ 3 f ′ 2

+ f f ′′
− 2 f f ′

2
, (44)
r 2r r r
Fig. 1. Plots of unstable modes on three curves with r0 = 1,2,4. The y(x)-axis de-
note Ω(m). The smallest curve represents r0 = 4, the medium denotes r0 = 2, and
the largest one shows r0 = 1.

C = m4 + Ω4

f 2
+ 2m2Ω2

f
− 5Ω2 f ′ 2

4 f 2
+ m2 f ′ 2

4 f
+ f ′ 4

4 f 2

− m2 f ′′

2
− Ω2 f ′′

2 f
− f ′ 2 f ′′

4 f
− f ′′ 2

2
− 2m2 f ′

r
− Ω2 f ′

r f

+ f ′ 3

r f
− 3 f ′ f ′′

r
+ 2Ω2

r2
+ 2m2 f

r2
− 5 f ′ 2

2r2
+ f f ′′

r2
+ 2 f f ′

r3

(45)

with the metric function f = 1 − r0/r (11).
It is worth noting that the s-mode perturbation is described by

single DOF but not 5 DOF. We solve (42) numerically and find
unstable modes. See Fig. 1 that is generated from the numerical
analysis. From the observation of Fig. 1 with O(1) � 0.86, we find
unstable modes [8] for

0 < m <
O(1)

r0
(46)

with mass m. As the horizon size r0 increases, the instability be-
comes weak as in the Schwarzschild black hole.

For a massive gravity theory in the Minkowski background,
there is correspondence between linearized Ricci tensor δRμν and
Ricci spinor ΦABC D when one uses the Newman–Penrose formal-
ism [22]. Here the massive gravity requires null complex tetrad to
specify six polarization modes [23,24]. This implies that in massive
conformal gravity, one takes the linearized Ricci tensor δRμν (15)
with 5 DOF as physical observables [10] by requiring the transver-
sality condition of ∇̄μδRμν = 0 from the contracted Bianchi iden-
tity and the traceless condition of δR = 0. That is, the traceless
linearized Ricci tensor δ R̃μν has the same 5 DOF as the metric
perturbation hμν does have in massive gravity theory. Actually,
Eq. (26) is considered as a boosted-up version of (41) [25]. Sim-
ilarly, we find Eq. (41) when we replace δ R̃μν by h(m)

μν in (26).
Hence, a relevant equation for δ R̃tr takes the same form

Aδ R̃ ′′
tr + Bδ R̃ ′

tr + Cδ R̃tr = 0 (47)

which shows the same unstable modes appeared in Fig. 1.
Consequently, we have found unstable s-mode from the trace-

less equation (26), but have not found unstable modes from the
trace equation (22) [scalar equation (21)] in the Jordan frame.
If one uses the linearized equation (34) arisen from the Einstein–
Weyl gravity in the Einstein frame, one finds the same unstable
modes. This implies that the instability of black holes in massive
gravity does not depend on the frame.
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5. Discussions

We discuss on the following issues.

• Ghosts and linearized Ricci tensor.

Since the linearized equation (13) is a fourth-order derivative
equation, it involves the linearized ghosts [25]. The ghost appears
surely when one introduces an auxiliary tensor fμν to reduce
fourth-order gravity theory to second-order theory [26]. This im-
plies that if one uses the massive spin-2 equation (41) to an-
alyze the instability of Schwarzschild black hole in the massive
conformal gravity, its instability might not be legitimate. If one
uses the linearized Ricci tensor δ R̃μν instead of the metric per-
turbation hμν [10], its linearized equation is a second-order equa-
tion (26) which is free from any ghosts.

• Renormalizability and conformal symmetry.

It was suggested that the conformal invariant action (1) en-
hances the renormalizability because the conformal symmetry re-
stricts the number of counter-terms arising from the perturba-
tive quantization of the metric tensor [1]. However, Stelle [4] has
shown that the quadratic curvature gravity of a(R2

μν − R2/3)+bR2

in addition to the Einstein–Hilbert term (R) is necessary to im-
prove the perturbative properties of Einstein gravity. If ab �= 0,
the renormalizability was achieved but the unitarity was vio-
lated, indicating that the renormalizability and unitarity exclude to
each other. Although the a-term of providing the massive graviton
improves the ultraviolet divergence, it induces ghost excitations
which spoil the unitarity simultaneously. The price one has to pay
for making the theory renormalizable in this way is the loss of uni-
tarity. If one excludes bR2, there is no massive spin-0 corrections.
In this sense, the conformal invariant action (1) is unhealthy and
it might not enhance the renormalizability without unitarity.

• Massive conformal gravity and black hole.

As was shown in most massive gravity theories [8–10], it is
difficult for massive conformal gravity to accommodate the static
black hole solution because the GL s(l = 0)-mode instability [7]
was found. It could be understood that the instability of the
black hole in massive conformal gravity arises from the massive-
ness of m2 �= 0, where the geometry of extra dimension in five-
dimensional black string is replaced by the mass [11].

• Role of a conformally coupled scalar ϕ .

Even the scalar is conformally coupled to Einstein–Hilbert ac-
tion to give a conformally invariant action, its role in testing the
black hole stability is trivial because the conformally invariant ac-
tion (1) (ω = −3/2 Brans–Dicke theory plus Weyl-squared term)
in the Jordan frame is conformally equivalent to the Einstein–Weyl
action (33) in the Einstein frame. The instability of Schwarzschild
black hole is determined definitely by the massive linearized Ricci
tensor equations (26) and (34) which are the same equation in
both theories. The scalar field equation (21) [Ricci scalar equa-
tion (22) using ϕ = δR/6m2] did not show any unstable modes
for m2 � 0. This implies that the instability of Schwarzschild black
hole is independent of choosing a frame.

• f (R)-gravity and massive conformal gravity.

A simple model of f (R) = R +αR2 provides a ghost-free mass-
less graviton and massive spin-0 graviton [21], while massive
conformal gravity shows a massless graviton, scalar, and massive
spin-2 graviton with ghosts in terms of metric tensor. A similarity
between two gravity theories is that both have a propagating lin-
earized Ricci scalar (δR). A difference is that f (R) gravity does not
provide a propagating Ricci tensor (δRμν), while massive confor-
mal gravity have a propagating Ricci tensor.
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Appendix A. New massive conformal gravity

Adding the Einstein–Hilbert term is an easy way to break con-
formal symmetry in massive conformal gravity [27]. Then, the new
massive conformal gravity action is proposed by

SNMCG = 1

32π

∫
d4x

√−g

[
−R + α

(
φ2 R + 6∂μφ∂μφ

)

− 1

m2
Cμνρσ Cμνρσ

]
. (48)

The Einstein equation is changed to be

Gμν = α
[
φ2Gμν + gμν∇2(φ2) − ∇μ∇ν

(
φ2) + 6∂μφ∂νφ

− 3(∂φ)2 gμν

] − 2

m2
Wμν. (49)

However, the scalar equation remains unchanged as

∇2φ − 1

6
Rφ = 0. (50)

Taking the trace of (49) leads to

R = 0 (51)

which simplifies the scalar equation (50) as the uncoupled mass-
less scalar equation

∇2φ = 0. (52)

The linearized Einstein equation around the Schwarzschild black
hole is modified into

m2
[

1

2
δGμν + 2ḡμν∇̄2ϕ − 2∇̄μ∇̄νϕ

]

= [∇̄2δGμν + 2R̄ρμσνδGρσ
] − 1

3

[∇̄μ∇̄ν − ḡμν∇̄2]δR. (53)

The linearized scalar equation is

∇̄2ϕ = 0. (54)

Taking the trace of the linearized Einstein equation and using (54),
one has

−m2

2
δR = 0 (55)

which implies the non-propagation of linearized Ricci scalar

δR = 0 (56)

unless m2 = 0. We note that δR = 0 is confirmed from linearizing
R = 0 (51). The choice of δR = 0 reflects why we consider not
the massive conformal gravity (1) but the new massive conformal
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gravity (48) as a starting action. If one does not break conformal
symmetry, one could not achieve the non-propagation of the Ricci
scalar. Plugging δR = 0 and (54) into Eq. (53) leads to the massive
equation for the linearized Ricci tensor [10]

∇̄2δRμν + 2R̄ρμσνδRρσ = m2
[

1

2
δRμν − 2∇̄μ∇̄νϕ

]
, (57)

which is still difficult to be solved because of coupling δRμν and ϕ .
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