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Abstract
The nuclear spins of ion-implanted donor spins in silicon have demonstrated record-
breaking coherence times of over 30-seconds, along with high fidelity (>99%) single and
two-qubit operations, approaching the fidelity required to perform fault-tolerant quantum
computation. The considerable coherence times observed for the nuclei are owing to the
fact that the nuclear spin interacts very weakly with its environment. This property of the
nucleus, although a desirable advantage from the perspective of noise resilience, results in
nuclear qubits only weakly coupling to one another, presenting a challenge for performing
scalable, multi-qubit operations. Fortunately, donor atoms have the additional resource of
the donor-bound electron, which can be utilised as a means of coupling nuclei over larger
distance scales.

In this thesis, we focus on a system of two 31P nuclei, each possessing their own bound
electron. These electrons are exchange-coupled to one another with a strength of 12
MHz. We begin by experimentally demonstrating high fidelity operation of the electrons
in this always-on exchange coupled system. In the regime of weak exchange coupling,
defined as the regime for which the qubit coupling is much weaker than the detuning,
every native operation on the electrons represents either a conditional rotation (CROT)
or zero-conditional rotation (zCROT) gate; rotating one electron conditional on the state
of the other electron. We benchmark these native gates using gate set tomography (GST),
obtaining single-qubit fidelities of >99.63 ± 0.07% for both electrons. Additionally, we
benchmark the native gates in a two-qubit subspace using phase reversal tomography, ob-
taining a Bell state fidelity of 92.5 ± 4.5%. Moreover, we assess the coherence times of the
electrons both with and without the presence of the exchange interaction and find that
the presence of the weak exchange interaction has no discernible impact on the electron’s
coherence.

We then benchmark the fidelity of the single qubit gates on the nucleus using single-qubit
GST, obtaining a fidelity above 99.82 ± 0.09% and above 99.5 ± 0.1% for nucleus 1 and
2 respectively. Using these single-qubit rotations to initialise a superposition state of the
nuclei, we utilise an electron in the exchange-coupled pair in order to perform a two-qubit
nuclear geometric controlled-Z (CZ) gate between the two nuclei. This is achieved by
rotating the electron by 2π, conditional one of the states of the two nuclei that make up
the superposition, in order to impart a geometric phase of π on the nuclear state upon
which the rotation was conditioned. Finally, we demonstrate the generation of a three-
qubit entangled state between the electron and the two-nuclei, by performing a π pulse
on the electron, conditional on the state of the two nuclei.
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1.

Introduction
Remember to look up at the stars and

not down at your feet.

Stephen Hawking
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The laws that govern the universe appear to be approximately divided into the laws that

govern the macroscopic world, and the laws that govern the microscopic. The nature of

the boundary between these worlds, as well as how the laws of the macroscopic world

emerge from those dictating the behaviour at the smallest length scales, remains a fiercely

studied, open question. Although the physics that governs the large-scale, namely classi-

cal physics and, more recently, relativistic mechanics [4, 5], has been studied for at least

the last five centuries, the study of quantum mechanics began with the discovery by Max

Planck in 1900 that light is absorbed in discrete packets of energy; which Planck denoted

as quanta [6]. This discovery sparked the quantum revolution, which took hold in the

1920s with the likes of Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Paul Dirac and

many others [7–10]. Although initially dismissed by many in the physics community, as

a result of the discrepancy between its physical implications and humanity’s classically

trained intuition, quantum mechanics now represents one of the most experimentally ver-

ified theories ever established.

The two quantum phenomena that are most commonly regarded as defying classical intu-

ition are the concepts of quantum superposition and entanglement. Superposition refers

to the ability for quantum states to exist in a linear combination of distinct possible states,

until a measurement is performed on the system. Correspondingly, entanglement between

quantum particles describes the situation in which an individual particle loses the ability

to be described as its own distinct entity and, instead, may only be fully described in

relation to the other particles in the entangled pair or group. It is these properties that

lead Yuri Manin and Richard Feynman to propose in the 1980s that certain computational

problems could benefit from the unique behaviour observed in the quantum world [11,12].

Both Manin and Feynman noted the potential for enormous amounts of information to be

stored in the superposition state of a quantum particle, with a superposition state of N

quantum particles, capable of encoding up to 2N bits of information. Additionally, it was

noted that these superposition states could offer the potential for significant parallelisa-

tion of certain computational tasks. These postulations spawned an endeavour to build a

machine that utilises the laws of the microscopic, instead of the laws of the macroscopic,
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to solve certain computational problems with far greater efficiency than possible with the

laws of classical physics alone; thus marking the birth of the field of quantum computing.

Since the 1980s, a prodigious amount of research and progress has been made, developing

both the quantum hardware upon which the constituent bits, or qubits, of a quantum

computer will be built, along with the development of intelligent algorithms that attempt

to bring to bear the full benefit of quantum properties on problems useful to humanity.

Although in 2023 we still do not have a quantum computer in every household, the idea of

a quantum computer has almost certainly become a household term. With the prevalence

of quantum computing in popular news and culture, it is easy to forget that, on the front

lines of quantum computing research, even the physical platform upon which a large-scale

quantum computer should be ultimately constructed, is still a hotly contended subject.

Some of the most promising physical platforms to host a quantum computer, that ex-

ist today, include: superconducting qubits [13], trapped-ions [14], photons [15], quantum

dots [16, 17] and solid-state nuclear spins [18]; with each platform possessing a unique

set of advantages and challenges. Consequently, a widely-held view within the research

community is that, ultimately, a combination of multiple physical qubit platforms may be

required, in order to realise the full potential of a quantum computer.

One of the outstanding challenges of quantum computing from the perspective of hard-

ware, is in the minimisation of unwanted interactions between qubits and their environ-

ment, which offers a pathway through which the sensitive information encoded in the

qubit state can be lost to its surroundings. Nuclear spins in the solid state have long been

considered a promising candidate for hosting quantum information, as a result of the weak

interaction between nuclear spins and their environment; which make the spins extremely

resilient to noise in their surroundings [19]. The most well-studied examples of nuclear

spins in the solid state, within the context of quantum information, include color-centres

in diamond [20–22], magnetic molecules [23] and dopant atoms in silicon [24–26]. It is the

latter of this list that forms the basis of the work presented in this thesis.
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1.1 Donor spins as qubits

Colloquially, the most basic requirements necessitated by a scalable quantum processor

are [27]:

• A well-defined qubit or qudit system.

• The capacity to initialise and read out the state of the qubits with the levels of

fidelity required for fault-tolerant quantum computation.

• The capacity to implement a universal set of quantum gates consisting of both single-

qubit operations and two-qubit entangling operations.

In 1998, Bruce Kane published a seminal paper in Nature, detailing how the requirements

laid out above could be met using the spins of donor atoms in silicon [25]. In this proposal,

Kane envisioned utilising the spin of the nucleus, in the presence of a strong magnetic field,

as the foundation of the qubit, with the Zeeman-split spin states, |⇑⟩, |⇓⟩ being used to

encode the qubit |0⟩ and |1⟩ states respectively.

Upon fabricating an array of donor atoms, Kane envisioned controlling these donor spins

through the application of a globally applied field, which acts to rotate all the qubits

simultaneously. Within this scheme, individual qubits would be addressed by using the

voltages applied to local gates to DC Stark shift the qubits in and out of resonance with the

globally applied field [28]. Furthermore, Kane proposed to mediate the coupling between

neighbouring nuclei via their electrons, with the exchange coupling between the electrons

being controlled by intermediate gates fabricated between the donor atoms.
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1.1. DONOR SPINS AS QUBITS

nm
1 10 100 1000

Wavefunction sharing

Exchange coupling Electric dipole Electron shuttling

Jellybean dot

Figure 1.1: Donor coupling length scales. Diagram of the approximate length scales
of different coupling mechanisms in silicon [29–33]

Significant progress has been made towards Kane’s vision over the last 25 years, with many

of the capabilities proposed being successfully demonstrated , [19,26,28,34–36]. The work

in this thesis focuses primarily on the multi-qubit aspect of Kane’s proposal, using the

spin of the electron to mediate the coupling between neighbouring donor nuclei. Since

1998 however, the toolbox for coupling nuclei in silicon has expanded considerably, with

numerous coupling mechanisms being demonstrated, over a range of different length scales.

Figure 1.1 details some of these coupling mechanisms and the length scales at which they

operate [29–32]. Crucially, a number of these coupling mechanisms are agnostic to the

exact distance between the donors, allowing the flexibility necessary for the placement of

ion-implanted donor atom arrays [37]. The two coupling mechanisms most pertinent to

this thesis are: wave-function sharing and exchange-coupling.

Wave-function sharing is a coupling mechanism that exists between donor nuclei at the

smallest length-scales. When nuclei are very close together, of order < 10 nm, the wave-

function of the donor-bound electron is no longer localised to one individual donor but,

instead can be spread out over both nuclei. This results in the electron Hamiltonian pos-
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sessing two hyperfine coupling terms, one for each of the nuclei, and thus the transition

frequency of the electron is conditional on the state of both the nuclei. This condition

allows for the performance of nuclear geometric controlled-Z (CZ) gates [29].

Moving from wavefunction sharing to larger distance coupling mechanisms, neighbouring

nuclei with a distance of approximately 10-30 nm, can be coupled together via an inter-

mediary exchange interaction [30]. This coupling mechanism forms the foundation for the

work carried out in this thesis.

With a means of controlling, initialising and reading out the state of individual nuclear

and electron spins, as well as coupling nuclei together using the donor-bound electrons,

these capabilities complete the most fundamental checklist for building a scalable donor

quantum processor within this physical platform.

1.2 Thesis outline

Chapter 2 - Theory of donor spin qubits in silicon

This chapter begins by detailing the terms in the Hamiltonian of a 31P donor atom in silicon

before describing the theory behind the coherent control of the donor nucleus and electron.

Coherence of the spins, and the role this plays in mapping out the noise environment of

the donors, is also discussed.

Chapter 3 - Donor spin qubit device

The chapter begins by describing the fabrication and experimental design of the devices

used in the remainder of this thesis. The basic principles behind the readout and coherent

control of the donor electron and nuclear spin are outlined in detail. Finally, the machine

learning techniques that have been implemented for electron readout optimisation are

6



1.2. THESIS OUTLINE

described.

Chapter 4 - Theory of exchange coupled 31P donors

This chapter describes the fundamental theory behind the exchange interaction between

neighbouring donor electrons, detailing the eigenstates of the Hamiltonian of the exchange-

coupled donor system for different regimes of exchange coupling. The basic theory behind

entanglement and how it is quantified experimentally in donor systems is then explained.

Chapter 5 - Two-qubit electron conditional rotation gates in a J-coupled

system

This chapter outlines the experimental results associated with benchmarking the first

experimental demonstration of exchange-based, entangling two-qubit logic gates between

electrons bound to individual 31P donors in silicon. The system consists of two 31P donor

nuclei, each with a bound electron that are coupled together with an exchange interaction.

Gate set tomography (GST) is performed to assess the performance of the electron two-

qubit conditional rotation (CROT) gate native to this system. The limitations of the

quantum-non demolition (QND) readout technique used to read out the state of an electron

in the J-coupled pair are also discussed.

Chapter 6 - Two-qubit nuclear geometric controlled-Z gates in a J-coupled

system

This chapter discusses the experimental implementation of a nuclear geometric controlled-

Z (CZ) gate on the nuclei of a pair of exchange-coupled 31P donors by using the conditional

rotation of the donor-bound electron to impart a geometric phase on the nuclei. The

operations on the nuclei are benchmarked with single-qubit GST.
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Chapter 7 - Conclusion and future directions

This chapter summarises the key results presented in this thesis and presents the future

outlook of this work.
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2.

Theory of donor spin

qubits in silicon
The scientist does not defy the

universe. He accepts it... It is

wonderful both in the small and in the

large.

Isidor Isaac Rabi
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2.1 Donors in silicon

Doping is the process of introducing impurity atoms into a semiconductor crystal. Semi-

conductor crystals are a class of crystalline solids, whose electrical conductivity lies some-

where in the intermediate regime, between that of a conductor and that of an insulator.

The introduction of impurities into these crystals, allows for the conductivity of the crystal

to be significantly modified, making these materials extremely valuable for the construction

of a number of instrumental devices, within the computer and photovoltaic industries [38].

Some examples of the most prevalent semiconductors used in these industries are: silicon,

germanium and gallium arsenide. In our group, we utilise silicon as the host crystal for our

dopant atom qubits, as this element is the material of choice for classical computer chip

manufacturing [39]; thus offering the possibility of utilising the pre-existing technological

developments of this mature industry.

Silicon possesses a diamond cubic crystal structure, with a face-centred cubic lattice and

a basis of two silicon atoms. The bandgap of silicon is 1.1 eV, with the Fermi level ly-

ing almost in the centre of the bandgap, between the valence and conduction bands [38].

Consequently, at 300 K, thermal excitations cause some electrons to be excited into the

conduction band and holes to be created in the valence band, resulting in silicon being

conductive at room temperature. When silicon is cooled down to cryogenic temperatures

however, the electrons no longer possess sufficient thermal energy to be excited into the

conduction band, and thus silicon becomes an insulator.

There are two types of doping that can be used to alter the conductive properties of sil-

icon: positive (p)- type doping and negative (n) - type doping. P-type doping involves

introducing an additional positive charge to the silicon lattice, while conversely, n-type

doping involves the introduction of an additional negative charge to the crystal. N-type

doping can be achieved, by introducing an impurity atom from group V of the periodic

table into the silicon lattice. The group V element has 5 electrons in its outer shell, com-
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2.1. DONORS IN SILICON
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Figure 2.1: Doping in silicon. The top row shows a representation of the silicon crystal
with negative (n)-type doping using phosphorus atoms (a.), no doping (b.) and positive
(p)-type doping using boron atoms (c.). The bottom row (d.,e.,f.) shows the corre-
sponding bandgap for each of these doping regimes. The Fermi level (EF ) in silicon shifts
towards either the valence or conduction band, according to the atomic species of the
doping impurities [40].

pared to the 4 electrons in the outer shell of the group IV silicon. Thus, when incorporated

into the lattice, 4 electrons in the outer shell of the impurity atom form strong covalent

bonds with an electron in the outer shell of 4 neighbouring silicon atoms. The remain-

ing unpaired electron from the group V impurity serves as an additional negative charge,

which is weakly coupled to the impurity atom. As the impurity has contributed an extra

electron to the lattice, these impurities are known as donor atoms. The extra electron

weakly bound to the donor atom requires less energy to be excited into the conduction

band, compared to the electrons in strong covalent bonds, and thus, for the example of

a phosphorus donor atom, the donor energy level lies only 45 meV from the conduction

band edge [41].
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In contrast, p-type doping can be achieved by introducing a group III impurity atom into

the silicon lattice, thus attracting an additional electron from the silicon atoms and leaving

behind a positively charged hole in its place. Consequently, group III impurity atoms are

known as acceptors, with the acceptor atom energy level, for the example of the acceptor

atom boron, lying 45 meV above the valence band. Figure 2.1 shows the silicon lattice

and band structure in the presence of both n and p type doping. In the work described in

this thesis we make use of donor atoms, introducing a group V impurity nucleus, with a

weakly coupled bound electron, into the silicon lattice, to form the basic building blocks

of our quantum processors.

Table 2.1 shows some key properties of the group V donors in silicon. One property

particularly pertinent to quantum computation is the value of the nuclear spin, as this

is the degree of freedom in which we encode our quantum information. Although for a

number of purposes, a higher nuclear spin number is desirable, as it gives access to a larger

number of states on which to encode our quantum information, in this thesis we will focus

primarily on the phosphorus donor atom, 31P, with a nuclear spin of 1/2.

Element Nuclear
spin

Ground state
binding energy
(meV)

Hyperfine
coupling,
A (MHz)

Nuclear gyromagnetic
ratio,
γn (MHz/T)

31P 1/2 45.59 117.53 17.26

75As 3/2 53.76 198.35 7.31

123Sb 7/2 42.74 101.52 5.55

209Bi 9/2 70.98 1475.4 6.96

Table 2.1: Group V donors in silicon. Parameters of group V donors in silicon. The
values in this table were obtained from [1–3]
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2.2. THE SPIN OF THE ELECTRON AND NUCLEUS

2.2 The spin of the electron and nucleus

The concept of spin was first experimentally demonstrated in 1921, by Otto Stern and

Walter Gerlach [42]. In this experiment, Stern and Gerlach heated silver atoms in an oven

possessing a small aperture, through which a beam of energetic atoms could escape. A

series of magnets were positioned such that a magnetic field gradient was created in a

direction perpendicular to the atoms’ trajectory. The beam was then detected using a

photographic plate. The purpose of the experiment was to detect the angular momentum

of the single outer shell electron of the silver atom, by observing the deflection of the

atom in the inhomogeneous magnetic field. The results of this experiment were utterly

unexpected to the physics community at the time. If the angular momentum of the elec-

tron was classically distributed, then the expected outcome of the experiment would be

a continuous distribution of deflection angles of the beam, resulting in a smeared smudge

observed on the photographic plate. Instead, two discrete lines, were observed, indicating

that the angular momentum of the electron must be quantised. This result was also incom-

patible with the prevailing knowledge of the time that orbital angular momentum, L̂, was

responsible for the angular momentum of a particle, as L̂ is quantised according to 2L+1,

where L must take an integer value [43]. Thus, if the orbital angular momentum were

responsible for this quantisation, an odd number of discrete trajectories should have been

observed. This led researchers to postulate the idea of an intrinsic angular momentum, Ŝ,

independent of the orbital angular momentum, which instead possesses 2S+1 quantised

levels, where S can take a non-integer value. This intrinsic angular momentum is what we

now refer to as the spin and, like mass or charge, it is a property inherent to every particle.
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Figure 2.2: Stern Gerlach experimental apparatus. Experimental setup to test the
angular momentum of a single electron. Silver atoms were heated in an oven before
travelling in a beam through an inhomogeneous magnetic field towards a photographic
detector plate. The trajectories of the atoms displaced by the field revealed that the
electron possesses a quantised intrinsic angular momentum. Image taken from [44].

The overall angular momentum, Ĵ,of a given particle is made up of contributions from both

its orbital angular momentum and its spin. The total magnitude of angular momentum

is therefore given by

Ĵ = L̂ + Ŝ. (2.1)

The angular momentum of a single electron in the s-orbital consists of only contributions

from the intrinsic spin angular momentum. For a nucleus however, the overall angular mo-

mentum consists of contributions from all of its constituent protons and neutrons, which

themselves can possess both spin and orbital angular momentum. The spin of a nucleus

can therefore take both integer or half-integer values, depending on its constituent nucle-

ons [45].

For simplicity, for the remainder of this section, we will refer only to a generic spin, Ŝ,

however, although this notation typically refers to the electron spin, the same mathematics

can be applied to both the spin of the electron and of the nucleus (which is typically

denoted by Î). The square of the total angular momentum of a spin is given by the spin
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2.2. THE SPIN OF THE ELECTRON AND NUCLEUS

operator Ŝ2 = (Ŝx
2 + Ŝy

2 + Ŝz
2), where Ŝx, Ŝy and Ŝz refer to the projection operators

along the x, y and z axis respectively, given by the spin matrices

Ŝx = 1
2

0 1

1 0

 , (2.2)

Ŝy = 1
2

0 −i

i 0

 , (2.3)

Ŝz = 1
2

1 0

0 −1

 . (2.4)

Note that we ignore the multiplicative factor ℏ = 1.0546×10−34 m2kgs−1 in our definition

of the spin operators, such that any subsequent Hamiltonian terms may be written in units

of frequency. Computing the commutator between each of these projection operators gives

the following

[Ŝx, Ŝy] = iŜz, (2.5)

[Ŝy, Ŝz] = iŜx, (2.6)

[Ŝz, Ŝx] = iŜy, (2.7)

The fact that the spin projection operators along x, y and z do not commute, tells us that

we cannot simultaneously acquire knowledge regarding the projection of the spin along

more than one of these three axis, within an uncertainty given by Heisenberg’s uncer-

tainty principle, which has important implications for quantum operations.

Both the total spin operator Ŝ and the spin projection operator along z, Ŝz share a set

of eigenstates |mS⟩. The projection of the total angular momentum along the z-axis can

therefore by written as

Ŝz |mS⟩ = mS |mS⟩ , (2.8)
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where mS , can only take a set of 2S + 1 discrete values, between mS = −S and mS = S,

where S is the spin quantum number. For example, for the electron spin, with S = 1
2 , the

possible projection outcomes along the z-axis are mS = ±1
2 , as depicted schematically in

Figure 2.3.

z

-1/2

ms = 1/2

ms = -1/2

1/2

S

Figure 2.3: Quantisation of the spin along the z-axis. The total angular momentum
of a spin S = 1

2 particle is depicted by the purple arrows, with the two possible projections
along the z-axis, ±1

2 shown by the dashed purple line. The dashed black circle represents
the lack of knowledge regarding the orientation of the spin along the xy plane.

In this thesis, we work with both the spin of an electron and the spin of a 31P nucleus,

both of which possess a spin quantum number of S = 1
2 . The possible projection outcomes

along the z-axis are therefore

Ŝz

∣∣∣∣−1
2

〉
= −1

2

∣∣∣∣−1
2

〉
, (2.9)

Ŝz

∣∣∣∣+1
2

〉
= +1

2

∣∣∣∣+1
2

〉
. (2.10)

For the remainder of this thesis, we will refer to the two eigenstates for the projection of
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2.3. DONOR SPIN HAMILTONIAN

a spin S = 1
2 along the z-axis,

∣∣∣−1
2

〉
and

∣∣∣+1
2

〉
, as the spin down, |↓⟩, and spin up, |↑⟩,

states respectively.

2.3 Donor spin Hamiltonian

We can determine the energy of a given system by writing down its Hamiltonian. The

eigenstates of the Hamiltonian tell us important information regarding the stationary

states of a given spin system and thus how the system will evolve as a function of time.

For a neutral donor atom in silicon, in the presence of a static magnetic field, there

are two primary mechanisms that contribute to the system’s overall energy: the Zeeman

interaction and the hyperfine interaction.

2.3.1 The Zeeman energy term

For illustrative purposes we can start by considering the case of an isolated 31P nucleus

and electron, with no coupling between them. We can denote the spin down (up) states

of the isolated electron and nucleus as |↓⟩ (|↑⟩) and |⇓⟩ (|⇑⟩) respectively. In the pres-

ence of a magnetic field the electron (nuclear) spin |↓⟩ (|⇓⟩) and spin |↑⟩ (|⇑⟩) states

separate in energy as a result of the Zeeman interaction [46]. The magnitude of this en-

ergy splitting, known as Zeeman splitting, is given, in units of frequency, by the formula

EZeeman = γB0, where γ is the gyromagnetic ratio and B0 is the strength of the mag-

netic field applied to the spin. The gyromagnetic ratio of an electron spin is given by

γe = geµB/h, where h = 6.626 × 10−34Js is Planck’s constant, ge = 2.002 is the electron

g-factor and µB = 9.274 × 10−24J/T is the Bohr magneton. In a similar fashion, the

gyromagnetic ratio of a 31P nuclear spin is given by the formula γn = gnµn/h, where

gn = 2.263 is the 31P nuclear gyromagnetic ratio and µn = 5.051× 10−27J/T the nuclear

magneton accordingly [47].

The gyromagnetic ratio of an electron, γe = 28.025 GHz/T, is over three orders of mag-

nitude larger then that of the phosphorus nucleus with γn = -17.235 MHz/T [48]. Con-
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sequently, the energy splitting due to the Zeeman interaction is considerably greater for

the electron spin compared to that of the donor nucleus, for a given magnetic field. Note

that the difference in sign between the gyromagnetic ratio of the electron and that of the

nucleus is indicative of the opposing precession directions of the electron and nuclear spins

in the presence of a magnetic field. Figure 2.4 shows the magnitude of Zeeman splitting as

a function of increasing magnetic field strength, for both the spin of an isolated electron

and the spin of an isolated 31P nucleus.

�� ��

Figure 2.4: Zeeman splitting with magnetic field. a. Energy eigenvalues of an
isolated electron with increasing magnetic field. b. Energy eigenvalues of an isolated
nucleus with increasing magnetic field. In both a. and b., the energy difference between
the two eigenvalues for denotes the Zeeman splitting. The vast difference in Zeeman
splitting between the electron and the nucleus is due to the fact that the Zeeman spitting
is given by Ez = γ B0, where γ is the gyromagnetic ratio of the spin and B0 is the static
magnetic field strength. The electron gyromagnetic ratio is three orders of magnitude
larger than that of the nucleus, hence the much larger Zeeman splitting observed.

For the case of an isolated electron and donor nucleus, with no coupling between them,

in the presence of a DC magnetic field B0, the Hamiltonians for the nucleus (Ĥn) and for

the electron (Ĥe), are given by the following, in units of frequency:

Ĥe = γeB0Ŝz , (2.11)

Ĥn = γnB0Îz , (2.12)

where Ŝz and Îz are the spin projection operators along the z-axis for the electron and
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2.3.1 The Zeeman energy term

nuclear spin respectively.

Focusing first on the electron spin, the eigenstates of the Hamiltonian Ĥe consist of the

|↓⟩ and |↑⟩ spin states, which are orientated along the z-direction of the Bloch sphere,

parallel to the static B0 field. These states thus represent the stationary states of the

electron for this Hamiltonian. If however, the electron is initialised into a state that does

not constitute an eigenstate of the system, but rather a superposition of these eigenstates,

then the spin will precess about the applied B0 field. The frequency at which the spin

precesses about the B0 field is called the Larmor precession frequency, ω0 and is given by

the energy difference between the eigenvalues of the two eigenstates, E↓ and E↑ .

ω0
2π = E↑ − E↓

h
= γB0, (2.13)

where, for the case of an electron, γ = γe.

Figure 2.5 shows the precession of the electron spin, after being initialised in the superpo-

sition state 1√
2(|↓⟩ + |↑⟩), pointing along the xy plane of the Bloch sphere. As this state

is not an eigenstate of the Hamiltonian, the spin is seen to precess about the z-axis at the

Larmor precession frequency ω0
2π = 28.025 GHz, for a B0 field of 1 T.

The same principles also hold for the nuclear spin in the presence of a static B0 field, with

the eigenstates of the nuclear Hamiltonian, Ĥn consisting of the |⇓⟩ and |⇑⟩ spin states

of the nuclei. Similarly to the electron, if the nucleus is initialised into a superposition

state that is not an eigenstate of the Hamiltonian, for example, 1√
2(|⇓⟩ + |⇑⟩), then it

will precess around the applied B0 field. For the case of the nucleus however, due to the

lower gyromagnetic ratio, its Larmor precession frequency is much slower than that of the

electron at ωn
2π = γnB0 = -17.235 MHz, for a B0 of 1 T.
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Figure 2.5: Larmor precession. Simulation of the Larmor precession of an electron
spin, initilised in the state 1√

2(|↓⟩ + |↑⟩), in a DC field pointing along the z-direction of
magnitude 1 T. a. Simulation of the individual x,y and z expectation values against time.
b. Expectation values from the simulation in a, projected onto a Bloch sphere. The
expectation value along z remains constant while the x and y components oscillate at the
Larmor precession frequency.

2.3.2 The hyperfine interaction term

In the previous section, we considered an electron and nuclear spin existing in isolation of

one another and hence only influenced by the presence of an external, static magnetic field

B0. For neutral donor atoms in silicon however, a more physical situation is described by

a donor nucleus coupled to a weakly bound electron. Upon bringing an electron in close

proximity to a donor nucleus, (≲ 10 nm) a coupling term arises between the nuclear and

electron spin, known as the hyperfine interaction.

The hyperfine interaction is comprised of two individual components, which sum together

to give the total hyperfine interaction between the electron and nucleus [49]. The first

component is known as the Fermi contact hyperfine [50], given by
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2.3.2 The hyperfine interaction term

Fermi contact 
   interaction Dipole interaction

= electron 
    spin

= nuclear
    spin

r

Figure 2.6: Hyperfine interaction terms. Schematic depiction of the conceptual dif-
ferences between the Fermi contact and dipole interaction term that constitute the overall
hyperfine interaction.

AFC = −2
3µ0⟨µn · µB⟩|ψ(0)|2, (2.14)

where µ0 = 4π × 10−7 H/m is the vacuum magnetic permeability constant and |ψ(0)|2

denotes the probability of finding the electron at the site of the nucleus, in the ground

state, ψ0. As a result of this dependence on the overlap of the wavefunction of the electron

at the site of the nucleus, the Fermi contact interaction is only non-zero for the case of

an electron occupying an s-like orbital, as all other orbital states possess a node at the

nuclear site and hence the probability of finding the electron falls to zero at the site of

the nucleus. For donor atoms in silicon, at cryogenic temperatures, the electron resides

almost exclusively in an s-orbital and hence the Fermi contact hyperfine is the dominant

term in the hyperfine interaction. This interaction is isotropic, meaning that it does not

depend on the spins’ orientation with respect to the magnetic field.

The second component of the hyperfine interaction is the dipole-dipole interaction [51],

given by
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Add = gegnµBµn

[
3(Ŝ · r⃗)(Î · r⃗)

r5 − Ŝ · Î
r3

]
, (2.15)

where Ŝ = (Ŝx + Ŝy + Ŝz) is the electron spin operator and Î = (Îx + Îy + Îz) is the nuclear

spin operator, r is the distance between the two spins and r⃗ = (x⃗i+ yj⃗+ zk⃗) is the vector

distance between them, where i⃗, j⃗, k⃗ are the unit vectors in the three Cartesian directions.

This expression reveals that the dipole-dipole hyperfine coupling depends on the distance

between the two spins, as well as the orientation of the spins with respect to the external

magnetic field, making this an anisotropic interaction.

The overall hyperfine term can therefore be constructed by summing together the contri-

butions from both the Fermi contact and dipole-dipole hyperfine term

A = AFC +Add. (2.16)

The hyperfine coupling term in the neutral donor Hamiltonian can then be written as:

Ĥhyperfine = AŜ · Î . (2.17)

The value of the hyperfine interaction strength, A, depends on the donor atomic species.

For a 31P nucleus in silicon, the hyperfine strength in the bulk of the sample is A = 117.53

MHz [2]. However, this value is dependent on the strain profile within the device, resulting

in the exact hyperfine coupling strength for a given donor deviating according to the exact

positioning of the donor within the device. A donor closer to the interface for example,

will be in closer proximity to the aluminium gates on the surface of the device. These

gates possess a different thermal coefficient of expansion compared to the silicon lattice

and hence introduce some strain to the lattice upon cooling to the mK temperatures re-

quired to operate the donors as qubits (see section 3.4) [52]. Consequently, donors closer

to the interface are known to exhibit greater discrepancies in hyperfine strength from the

bulk hyperfine value of A = 117.53 MHz, as a result of the strain deforming the electron

wavefunction and therefore influencing the overlap of the electron wavefunction at the site
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2.3.2 The hyperfine interaction term
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Figure 2.7: Two qubit electron, nuclear Bloch sphere. Two-qubit Bloch sphere
denoting the electron-nuclear eigenstates in a hyperfine coupled system depending on
the ratio between the difference in Zeeman splitting, in units of frequency, ∆Ez

h and the
hyperfine term A. The double arrows denote the nuclear spin state while the single arrows
denote the electron spin state. On the poles of the Bloch sphere are the singlet state, |S⟩
and triplet state, |T0⟩, which represent fully-entangled states between the electron and
nucleus. For large values of detuning, the eigenstates become the |⇓↑⟩ and |⇑↓⟩ states. If
however, the detuning becomes comparable to the coupling term then the eigenstates of
the system become hybridised, resulting in the eigenstates ˜|⇑↓⟩, ˜|⇓↑⟩.

of the nucleus.

For the case of a neutral donor atom in the presence of a static magnetic field, B0, we

can combine the Zeeman interaction term of the electron and nucleus with the hyperfine

interaction term to form the following Hamiltonian:

Ĥfull = γeB0Ŝz + γnB0Îz + AŜ · Î (2.18)

Electron Zeeman

Nuclear Zeeman

Hyperfine coupling

As this Hamiltonian now includes a coupling term between the two spins, the eigenstates

of the system now depend very intimately on the ratio between the coupling and detuning
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between the spins, A
∆Ez/h , where A is the hyperfine coupling and ∆Ez is the difference

in Zeeman energy between the nucleus and electron. For the case of a 31P nucleus in a

1 T static magnetic field, ∆Ez
h >> A. Thus, in the high field regime, the eigenstates can

be approximated very accurately as the product states between the electron and nuclear

spin states. The eigenstates of the Hamiltonian are therefore the following, in order of

increasing energy, as depicted in Figure 2.8 [53]:

|ϕ1⟩ = |⇑↓⟩ , (2.19)

|ϕ2⟩ = |⇓↓⟩ , (2.20)

|ϕ3⟩ = |⇓↑⟩ , (2.21)

|ϕ4⟩ = |⇑↑⟩ . (2.22)

Figure 2.8: Donor energy levels. Schematic depiction of the eigenstates of the neutral
donor with the lowest energy state at the bottom and the highest energy state at the top.

Figure 2.9 shows the energy levels of these eigenstates with increasing magnetic field. The

frequencies required to drive transitions between each of these energy levels, are discussed

in greater depth in section 2.4.
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2.4. COHERENT CONTROL OF THE SPIN

Figure 2.9: Hyperfine interaction with Zeeman splitting. Energy levels of the
neutral donor with both a Zeeman and hyperfine interaction term. A hyperfine value of
1.5 GHz was used in order to exaggerate the hyperfine splitting of the energy levels for
better visual demonstration.

2.4 Coherent control of the spin

2.4.1 Spin resonance

In order to perform useful quantum operations on the donor spin qubits, we require the

ability to control the spin, such that we can prepare any arbitrary state on the Bloch

sphere. To do this, we make use of a technique known as spin resonance, whereby a ro-

tating B1 field is applied in a plane orthogonal to the static B0 field, in order to induce

rotations around the Bloch sphere.

This rotating, magnetic field, B⃗1(t), can be written as the following

B⃗1(t) = B1[cos(ωt)⃗i+ sin(ωt)⃗j], (2.23)

where i⃗ and j⃗ are the unit vectors in two Cartesian directions, B1 is the amplitude of the

B⃗1 field and ω = 2πν, where ν is the frequency of the rotating field.
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For simplicity, we can consider the Hamiltonian of an isolated electron spin in the presence

of a static B0 field along z and a rotating B1 field in the xy plane, which can be written

as

ˆH(t) = γeB0Ŝz + γeB1[cos(ωt)Ŝx + sin(ωt)Ŝy], (2.24)

As the field along z generates a rotation around the xy plane of the Bloch sphere, at the

Larmor precession frequency, we can simplify this picture by moving into a rotating frame

that rotates around the xy plane with frequency ω
2π . To transform the spin states into

this rotating frame, we can apply a rotation of angle θ(t) = ωt to the states, using the

following rotation operator

ˆR(t) = eiωtσ̂z/2, (2.25)

where σ̂z =

1 0

0 −1

 represents the Pauli z operator. The spin states in the rotating

frame can therefore be calculated by applying this rotation operator to the states written

in the static, also known as laboratory, frame.

|ψRot(t)⟩ = ˆR(t) |ψLab(t)⟩ , (2.26)

where |ψRot(t)⟩ and |ψLab(t)⟩ are the states in the rotating and laboratory frame respec-

tively. In order to obtain the Hamiltonian of the system in the rotating frame, we can

make use of the fact that a transformation of frame should have no influence on the un-

derlying physics of the system and thus the Schrödinger equation must remain valid in

the rotating frame

iℏ
d |ψRot(t)⟩

dt
= ĤRot |ψRot(t)⟩ . (2.27)

Substituting the expression for |ψRot(t)⟩ from equation 2.26 into equation 2.27 and rear-

ranging for ĤRot, we are left with the following expression for the spin Hamiltonian in the
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2.4.2 Rabi frequency

rotating frame, in units of angular frequency [54].

ĤRot = (ω0 − ω)Ŝz + ω1Ŝx , (2.28)

Detuning

Coupling

where ω0 = 2πγB0 is the Larmor precession frequency, ω1 = 2πγB1 and ω is the angular

frequency of the rotating frame. Comparing equation 2.24 and equation 2.28, we can see

that transforming from the laboratory to the rotating frame, results in the Hamiltonian

losing its time dependency. Consequently, only a time dependency of the spin states re-

mains in the rotating frame.

For the case for which the rotating frame is rotating at the Larmor precession frequency, we

can substitute the expression ω = ω0 into equation 2.28 and are left with the Hamiltonian

ĤRot = ω1Ŝx. (2.29)

In this reference frame we have therefore effectively ‘cancelled out’ the precession due to

the static B0 field and are simply left with a field, B1, pointing along the x direction of

the Bloch sphere, which induces a precession of the spin about the B1 field at an angular

frequency of ω1. We can use this precession to rotate the spin to any arbitrary position

on the Bloch sphere, by applying the rotating B1 field for well calibrated intervals of time,

such that the spin is rotated by the desired angle on the sphere.

2.4.2 Rabi frequency

In order to calculate the amount of time for which we need to apply the rotating B1 field

in order to fully invert the spin between the |↓⟩ and |↑⟩ states on the Bloch sphere, we can

first calculate the eigenvectors and corresponding eigenvalues of the Hamiltonian derived

in the rotating frame in equation 2.28, which can be written in matrix form as
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ĤRot = (ω0 − ω)Ŝz + ω1Ŝx =

(ω0 − ω) ω1

ω1 −(ω0 − ω)

 . (2.30)

The eigenvectors of this Hamiltonian can thus be formulated in the spin |↓⟩ and spin |↑⟩

basis as

|ψ1⟩ = sin
(
θ

2

)
|↓⟩+ cos

(
θ

2

)
|↑⟩ , (2.31)

|ψ2⟩ = cos
(
θ

2

)
|↓⟩ − sin

(
θ

2

)
|↑⟩ , (2.32)

where tan θ = (ω0−ω)
ω1

. The corresponding eigenvalues of these eigenvectors are then given,

in units of angular frequency, by E1 =
√

(ω0 − ω)2 + ω2
1 and E2 = −

√
(ω0 − ω)2 + ω2

1.

Rearranging this expression, the two spin states |↓⟩, |↑⟩ can therefore be re-written in the

eigenbasis of |ψ1⟩, |ψ2⟩, as the following

|↓⟩ = sin
(
θ

2

)
|ψ1⟩+ cos

(
θ

2

)
|ψ2⟩ =

sin
(
θ
2

)
cos

(
θ
2

)
 , (2.33)

|↑⟩ = cos
(
θ

2

)
|ψ1⟩ − sin

(
θ

2

)
|ψ2⟩ =

 cos
(
θ
2

)
− sin

(
θ
2

)
 . (2.34)

(2.35)

In order to understand how a spin initialised along the ±z axis of the Bloch sphere, for

example the spin |↑⟩ state, will evolve over time upon the application of a rotating B1

field, we can apply the time evolution operator to the spin states. For a two-level system,

described in the basis of the eigenstates of its Hamiltonian, this operator is given by

Û(t) =

e−iE1
ℏ t 0

0 e−iE2
ℏ t

 , (2.36)

where t is the time for which we are evolving the state. Applying this operator to an

initial |↑⟩ state gives

28



2.4.2 Rabi frequency

|ψ(t)⟩ =

 e−iE1
ℏ t cos

(
θ
2

)
−e−iE2

ℏ t sin
(
θ
2

)
 . (2.37)

To better understand the physical implications of this time evolution, we can look at the

projection of this time evolved state onto the |↓⟩ state as a function of time

⟨↓ |ψ(t)⟩ =
(

sin
(
θ
2

)
cos

(
θ
2

)) e−iE1
ℏ t cos

(
θ
2

)
−e−iE2

ℏ t sin
(
θ
2

)
 (2.38)

= sin
(
θ

2

)
cos

(
θ

2

)
e−iE1

ℏ t − sin
(
θ

2

)
cos

(
θ

2

)
e−iE2

ℏ t. (2.39)

Substituting in the expression sin(θ) = (ω0−ω)√
(ω0−ω)2+ω2

1
, the expressions for the eigenvalues

E1(2) and utilising the trigonometric identity 2 sin(x) cos(x) = sin(2x) we arrive at the

following expression

⟨↓ |ψ(t)⟩ = i
ω1√

(ω0 − ω)2 + ω2
1

sin


√

(ω0 − ω)2 + ω2
1

ℏ
t

 . (2.40)

The probability of the system being found in the |↓⟩ state after being initialised in the

state |↑⟩, as function of time, is therefore [45,55]

P|↓⟩↔|↑⟩ = | ⟨↓ |ψ(t)⟩ |2 = ω2
1

(ω0 − ω)2 + ω2
1

sin2


√

(ω0 − ω)2 + ω2
1

ℏ
t

 . (2.41)

This is known as the Rabi flopping formula and it describes the evolution of a spin upon

the application of a rotating B1 field at a frequency ω
2π . We can see that when the driving

field is equal to the resonance frequency of the spin, ω = ω0, the spin precessess between

the spin |↓⟩ and spin |↑⟩ states, at the Rabi frequency, given by νR = ω1
2π . If however,

the frequency of the applied field is detuned from resonance, such that ω ̸= ω0, then the

frequency of the resulting Rabi oscillation will increase, while the amplitude will decrease,

as explored in greater depth in section 2.7. The Rabi frequency therefore dictates the

amount of time for which the B1 field must be applied in order to fully invert the spin

between the |↓⟩ and |↑⟩ states.
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2.4.3 Rotating wave approximation

Recall, in section 2.4.1, that in order to control the state of the spin, a rotating B1 field

is applied in a direction perpendicular to the applied B0 field. In order to efficiently drive

the spin, this field is applied at such a frequency that it rotates at the Larmor precession

frequency of the spin, ω = ω0. In practice however, a rotating magnetic field is difficult to

apply. A more easily implementable magnetic field is a linearly oscillating field, which can

be driven by an AC current. From the perspective of the spin however, with B1 ≪ B0,

only a magnetic field rotating close to the Larmor precession frequency, ω0, has any in-

fluence on its state. We can therefore determine what magnitude of rotating field the

spin experiences upon the application of a linearly oscillating field, by decomposing this

oscillating field into its constituent rotating fields.

Any linearly oscillating field can be decomposed into two counter-rotating fields, each with

half the amplitude [56].

cos(ωt) = 1
2(eiωt + e−iωt), (2.42)

where ω is the frequency of the driving field. Therefore, from the perspective of the spin,

for a resonant driving field, ω = ω0, the linearly oscillating field has a component that

rotates with the spin at the Larmor precession frequency, ω0, and a component that ro-

tates in the opposite direction, at −ω0, and is hence detuned by 2ω0 from the precession

frequency of the spin. As this counter rotating component is so far detuned from the

spin’s precession frequency, we can effectively ignore this counter rotating term, as it has

negligible impact on the state of the spin. Therefore, only half the amplitude of the ap-

plied oscillating field has any meaningful effect on the spin, and thus, experimentally, the

Rabi frequency is given by ω1
2 instead of ω1. This neglecting of the far off-resonant term

is known as the rotating wave approximation [57].

It should be noted however, that this approximation only holds in the case for which
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ω0 ≫ ω1. Although this is a very good approximation for the situation described in the

majority of this thesis, in which ω0
2π is given by the Zeeman splitting (≈ 30 GHz) and ω1

2π is

given by the Rabi frequency (≈ 1 MHz for the experiments performed in this thesis), there

are cases for which this condition does not hold and hence a breakdown in the rotating

wave approximation may be observed [58].

2.5 Transition frequencies

The ability to fully invert the spin of the electrons and nuclei is contingent on our knowl-

edge of the resonance frequencies of the system. These resonance frequencies can be

determined by first calculating the energy eigenvalues of the donor Hamiltonian. For the

case of the donor nucleus, by carefully manipulating the electrostatic environment of the

donor using locally applied gate voltages, we are able to selectively remove the electron,

such that the nucleus is either in the neutral state, D0, with the electron bound to the

donor, or in the ionised state, D+, with the electron removed from the donor (see section

3.9.3). For the case of the ionised donor, the only term present in the Hamiltonian is the

nuclear Zeeman interaction term. The eigenstates of this Hamiltonian therefore consist of

the nuclear spin down |⇓⟩ and spin up |⇑⟩ states. The corresponding eigenvalues for these

states, in units of frequency, are the following:

E|⇓⟩ = −γnB0/2, (2.43)

E|⇑⟩ = +γnB0/2. (2.44)

The resonant frequency, νn0, to excite the transition between the |⇓⟩ and |⇑⟩ states for the

ionised donor nucleus is therefore given by:

νn0 = E|⇑⟩ − E|⇓⟩ = γnB0. (2.45)

For the case of a neutral donor atom in silicon, the Hamiltonian of the system consists

of both the Zeeman interaction term for the electron and nucleus, as well as a hyperfine

coupling term between the two spins. As discussed in section 2.3.2, the eigenstates of this
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system can be well approximated as |⇑↓⟩, |⇓↓⟩, |⇓↑⟩, |⇑↑⟩. The corresponding energy of

these eigenstates, in units of frequency, are therefore:

E|⇑↓⟩ = −
√

(γ+B0)2 +A2 −A/2
2 , (2.46)

E|⇓↓⟩ = −γ−B0 +A/2
2 , (2.47)

E|⇓↑⟩ =
√

(γ+B0)2 +A2 −A/2
2 , (2.48)

E|⇑↑⟩ = γ−B0 +A/2
2 , (2.49)

(2.50)

where γ+ = γe + γn and γ− = γe − γn.

The resonance frequencies to transition between the eigenstates of the Hamiltonian are

thus given by the following, as depicted schematically in Figure 2.10:

For the electron spin:

νe1 = E|⇓↑⟩ − E|⇓↓⟩ = γeB0 −A/2, (2.51)

νe2 = E|⇑↑⟩ − E|⇑↓⟩ = γeB0 +A/2. (2.52)

For the nuclear spin:

νn1 = E|⇑↓⟩ − E|⇓↓⟩ = A/2 + γnB0, (2.53)

νn2 = E|⇑↑⟩ − E|⇓↑⟩ = A/2− γnB0. (2.54)
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Figure 2.10: Electron and nuclear transition frequencies. Energy eigenstates and
the corresponding transition frequencies between them for both the neutral (a.) and
ionised donor atom (b.).

2.6 Coherence

The coherence time of a spin is an indication of how long we can faithfully maintain infor-

mation about where that spin is pointing along the Bloch sphere. Knowledge regarding

the exact orientation of the spin at any given time is important as it informs the phase of

our applied control pulses, allowing us to manipulate the spin to a desired state.

Loss of knowledge regarding where the spin is pointing along the Bloch sphere can occur

as a result of additional terms appearing in the Hamiltonian of the spin that are unknown

to us. The most pertinent example of this is noise in the environment, which can add

additional terms to the Hamiltonian that are often random in nature and thus difficult for
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us to keep track of.

In donor spin qubits more specifically, there are two types of noise in the environment that

can introduce random terms to the spin Hamiltonian and thus cause the spin to decohere

over time, as highlighted in the following Hamiltonian

Ĥfull = γe(B0 + Bn )Ŝz + γn(B0 + Bn )Îz + (A+ An )Ŝ · Î. (2.55)

Magnetic noise

Magnetic noise

Electric noise

The first type of noise is magnetic noise. This magnetic noise can arise primarily due to

either noise associated with the source of the static B0 field, or due to random flipping

of coupled 29Si nuclei in the vicinity. Both of these noise sources act to add a random

magnetic noise term, Bn, to the Zeeman term of the nucleus and electron. As the Lar-

mor precession frequency of the spin is given by γB0, any change in the B0 field will

thus manifest itself as a change in the Larmor precession frequency of the spin. This un-

known change in the precession frequency of the spin on the xy plane of the Bloch sphere

results in us no longer possessing knowledge of where the spin is pointing at any given time.

The other prominent noise source in donor atoms is electric noise. This can influence the

terms in the donor Hamiltonian in a number of ways but, the most common channel for

a 31P donor atom, is via the hyperfine interaction, by adding random noise, An, to the

hyperfine term in the Hamiltonian. Random electric noise caused by lattice phonons or

voltage noise on the gates used to control the electrostatic environment of the donors can

influence the overlap between the electron and donor nucleus and thus randomly modu-

late the hyperfine interaction term in the Hamiltonian [28]. This also leads to a loss of

knowledge regarding the spin’s position on the Bloch sphere.

One experiment that allows us to directly probe the coherence times of our system is

a measurement known as a Ramsey experiment [59]. The pulse sequence of a Ramsey
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2.6.1 Extending the coherence time

experiment is shown in Figure 2.12. In the Ramsey sequence, the spin is first initialised

along the xy plane of the Bloch sphere with a π
2 pulse, before being allowed to freely

precess about the xy plane for some wait time, the duration of which is swept, before a

final π
2 pulse brings the spin to the ± z axis. In the absence of noise, the spin will precess

around the xy plane, during the free precession period, at the Larmor precession frequency,

ω0. In the presence of noise however, this precession frequency becomes ω0 + ωn, where

ωn is the additional frequency induced by the noise, the value of which is unknown to

us. The precession of the spin during the wait time of a Ramsey experiment is shown in

Figure 2.11. The loss of information regarding the precession frequency of the spin in the

presence of noise thus leads us to lose knowledge of the spin orientation along the Bloch

sphere and hence results in the loss of spin coherence.

2.6.1 Extending the coherence time

The loss of spin coherence observed in a Ramsey measurement, occurs as a result of the

expected value of the spin orientation, becoming misaligned from the actual orientation

of the spin. In order to maintain spin coherence therefore, we must utilise schemes that

maximise or revive the instances for which the expected and actual spin projections are

aligned. One method of doing this, is by applying a refocusing pulse to the spin in a

scheme known as a Hahn echo sequence [60], shown in Figure 2.12.

The working principle behind a Hahn echo sequence is shown in Figure 2.13. The Hahn

echo is identical to the Ramsey sequence, with the exception of a π pulse applied at the

half-way point of the free-precession period, which acts to rotate the spin 180o on the xy

plane. If the noise in the environment was acting to slow down the precession frequency

of the spin, such that ω0 + ωn < ω0, then, after the refocusing π pulse, the spin is left

‘ahead’ of the expected spin position on the xy plane. Therefore, during the second half

of the precession time, the expected position, precessing at ω0, catches up to the actual

position of the spin and we obtain a revival of coherence. The same is true for the case

of ω0 + ωn > ω0 however, in this case the refocusing pulse leaves the spin ‘behind’ the
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Figure 2.11: Ramsey measurement simulation. a. Simulation of the free precession
time during a Ramsey measurement on the electron, averaged over 10 repetitions, with a
random value of magnetic noise added to each repetition. Upper panel shows a zoomed
view of the pale blue highlighted region, where each of the 10 individual Ramsey oscillation
repetitions are plotted. The oscillations are given by the Larmor precession frequency of
the spin and therefore each of the 10 individual Ramsey oscillation repetitions has a slightly
different precession frequency, due to the added noise, and hence when averaged together
give an expectation value along z of 0 (i.e. 50% |↓⟩ and 50% |↑⟩) for longer wait times.b.
Expectation values of these averaged free-precession periods onto the Bloch sphere. We
can see that as the wait time increases, the expectation value of the spin spirals towards
0, indicating that we are creating a random state and have thus lost complete knowledge
of the state of the spin before the final π

2 pulse of our Ramsey sequence.

expected spin position on the xy plane, allowing the actual spin position to catch up to

the expected position by the end of the wait period; similarly reviving the spin coherence

when the expected and actual spin orientations align.

Hahn echo sequences are a useful method of extending the coherence of the spin in the

presence of noise that remains constant for the duration of the Hahn experiment and is

thus the same before and after the refocusing π pulse. It is easy to see that if the noise

changes after the refocusing pulse, then the spin will no longer align on the Bloch sphere
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2.6.2 Noise spectroscopy

2�

2� �

2�

2�

H
ah

n 
ec

ho
Ra

m
se

y

��

��

Figure 2.12: Ramsey and Hahn echo pulse sequences. a. Schematic of the pulse
sequence for a Ramsey experiment. b. Schematic of the pulse sequence for a Hahn echo.
Note that an X pulse indicates a pulse that is along the x direction of the Bloch sphere.
Rotations around a given axis of the Bloch sphere are achieved by altering the phase of
the applied pulse.

with its expected direction at the expected time, and hence coherence is not maintained.

The Hahn echo sequence is thus sensitive to any noise that changes between the time

period before and after the refocusing pulse.

2.6.2 Noise spectroscopy

Although the sensitivity to noise that differs before and after the refocusing pulse lim-

its the applicability of the Hahn echo scheme for coherence extension, the selective noise

sensitivity of this sequence can be used as a resource, for probing the noise in the spin’s

environment. The benefits of probing the noise in the environment of the spin are twofold.

Firstly, it allows us to identify the nature of the noise sources and hence attempt to re-

duce or remove this noise where possible. Secondly, for noise sources that are not able to

be removed or reduced, knowledge of the nature of the noise can allow us to design pulse
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Figure 2.13: Hahn echo sequence. Bloch spheres depicting the basic principles behind
a Hahn echo sequence. In panel 1, the spin (depicted by the green arrow) is prepared
along the xy plane of the Bloch sphere. At this point, the spin direction and the expected
direction along the Bloch sphere (depicted by the dashed black line) are aligned. In the
second panel, the spin begins to precess about the B0 field at a frequency ω0 + ωn, where
ωn is the deviation in the expected Larmor precession frequency as a consequence of the
noise. The spin thus starts to precess at a different frequency from the expected precession
frequency ω0. In this example, ωn < 0. In panel 3, a refocusing π pulse is applied along
the +x axis of the Bloch sphere, which rotates the spin by 180o around the +x axis. The
spin is now ahead of the expected orientation. In panel 4, after another wait time, the
expected spin direction now catches up with the spin’s actual direction and the coherence
of the spin is revived. A final π

2 pulse is then applied.
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2.6.2 Noise spectroscopy

sequences to specifically avoid sensitivity to prevalent noise frequencies in the environment.

The dependence of the measured spin coherence on the applied pulse sequence gives us

precious information regarding the nature of the noise affecting the spin. For example,

the increased coherence time obtained from a Hahn echo sequence compared to a Ramsey

experiment, tells us that the noise affecting the spin systems is dominant at low frequencies,

for example a 1
f noise distribution. The frequency distribution of the noise from a given

noise source, λ, can be expressed through the power spectral density (PSD) of the noise

Sλ(ω) =
( 1

2π

)∫ ∞

−∞
dt ⟨λ(0)λ(t)⟩ e−iωt, (2.56)

where ω represents the noise frequency in units of angular frequency [61].

The sequence applied to the spin when it is in a superposition state, acts as a bandpass

filter to this noise spectrum, allowing the noise to be sampled over a narrow frequency

range. The bandpass frequency filter generated from a given pulse sequence is known as

its filter function and is given by

F (ω, t) = 1
(ωτ)2 |1 + (−1)1+Neiωτ + 2

N∑
j=1

(−1)jeiωδjτ cos(ωτπ2 )|2, (2.57)

where τπ represents the length of a π pulse, τ is the total free precession time of the

spin, N is the number of π pulses applied to the spin and δj is the normalised position

(between 0 and 1) of the jth π pulse between the two π
2 pulses [61]. We can thus see

that the frequency range sampled from a given Hahn-type refocusing sequence depends

on both the number of π pulses as well and their distribution within the free precession

period. By increasing the number of pulses, N , while keeping the total duration of the

free precession, Nτ , fixed the filter function shifts towards sampling higher frequencies.

Moreover, by keeping the time between neighbouring π pulses fixed and instead increasing

N , the frequency range sampled by the filter function becomes more narrow. Figure 2.14

shows the filter functions moving to higher frequency as a function of increased number
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of refocusing pulses and a fixed τ .

Figure 2.14: Filter functions with increased number of refocusing pulses. This
plot shows the filter functions, representing the noise frequencies each sequence is sensitive
to, for different numbers of refocusing pulses N, ranging from 0 for the Ramsey sequence,
to a sequence with N=16 refocusing pulses. Sequences with more than one refocusing
pulses are known as Carr-Purcell-Meiboom-Gill (CPMG) sequences. As the number of
refocusing pulses increases, we can see that the noise frequencies at which the sequence is
sensitive to shifts to higher frequencies. Figure was taken from [62].

These filter functions can be translated into information regarding the noise spectrum

of the spin by measuring the coherence of the spin as a function of the frequency range

sampled by a given filter function. The coherence, χ of a spin for a given noise spectrum

and filter function is given by the overlap between the noise power spectral density and

the filter function, as expressed by

χN(τ) = τ2∑
λ

(
∂ω0
∂λ

)2 ∫ ∞

0
dω Sλ(ω) F (ω, t) , (2.58)

Noise power spectral density

Filter function

where
(
∂ω0
∂λ

)
is the sensitivity of the Larmor precession frequency of the spin to noise λ.

The diffusion of the precession frequency of the spin, over multiple precession periods, is
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2.7. OFF RESONANT DRIVING

owing the random noise-induced fluctuations in the resonance frequency of the spin, which

can be written as

δψ(t) =
(
∂ω0
∂λ

)∫ t

0
dt′δψ(t′). (2.59)

For a large number of two-level random fluctuators in the environment, weakly coupled

to the donor spin, averaging over all resonance frequency fluctuations gives the following

dephasing of the spin

⟨e[iδψ(t)]⟩ ≡ eχN(t). (2.60)

As the filter function overlaps with a peak in the noise spectral power density, this will

result in a decrease in the spin coherence, presenting a convenient method of mapping out

the noise in the spin’s environment [61,63].

2.7 Off resonant driving

2νR

2νR 2νR

Δν

Δν

>> 

 ≈ 

2νR

Δν νR

Δν νR

Figure 2.15: Frequency detuning against Rabi frequency. Schematic illustration
of the peaks observed in a frequency spectrum of a spin for both the case in which the
frequency detuning, ∆ν, between the resonances is much greater than the Rabi frequency,
νR (a.) and the case for which ∆ν ≈ νR (b.).
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Spins are susceptible to off-resonant effects of the AC driving fields used for spin resonance.

When coupling multiple qubits together, for example through a weak exchange interac-

tion, the resonance frequencies become separated by a frequency equal to the coupling

strength between them (see section 4.2.2). Therefore, especially in the regime of weak

exchange interaction, the detuning between resonance frequencies, ∆ν, can be comparable

to the Rabi frequency, νR. It thus becomes increasingly important to keep track of and

mitigate the off-resonant effects of the AC drive when operating in the regime of weak

qubit coupling.

2.7.1 Off-resonant Rabi drive

In order to understand the effect of an off-resonant AC magnetic field on the spin, we

need to calculate the effective magnetic field experienced by the spin as we detune the AC

field from the resonance frequency. The effect of a detuned AC field is made apparent by

examining the Hamiltonian of the spin in the rotating frame, in units of angular frequency,

derived in section 2.4

ĤRot = (ω0 − ω)Ŝz + ω1Ŝx. (2.61)

Here we can see that upon application of an AC driving field, we have a term (ω0−ω) = ∆ω

along the z-axis of the Bloch sphere, representing the detuning between the frequency of the

AC field and the resonance frequency of the spin. Similarly, we have a term ω1 = 2πνR

along the x-axis of the Bloch sphere, representing the Rabi frequency. The frequency

with which the spin precesses about the effective magnetic field in the presence of a

frequency detuning is thus given by the vector sum of the frequency detuning with ω1,

ωeff =
√
ω2

1 + (ω0 − ω)2, as shown in Figure 2.16.

The expression for ωeff also corresponds to the frequency of precession given by the Rabi

flopping formula.

P|↓⟩↔|↑⟩ = | ⟨↓ |ψ(t)⟩ |2 = ω2
1

(ω0 − ω)2 + ω2
1

sin2


√

(ω0 − ω)2 + ω2
1

ℏ
t

 . (2.62)
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2.7.1 Off-resonant Rabi drive

ω0 - ω

ωe�

ω1

Figure 2.16: AC field vector sum. Vector sum between the Rabi frequency in units
of angular frequency, ω1, in red and the frequency detuning between the applied field, ω,
and resonance frequency, ω0 in navy. The result of the vector sum is the effective field
experienced by the spin, ωeff shown in purple.

When the field is applied on resonance with the transition frequency, (ω0 − ω) = 0, the

Rabi flopping formula becomes

P|↓⟩↔|↑⟩ = sin2
(
ω1
ℏ
t

)
. (2.63)

Comparing this to the original Rabi flopping formula, in equation 2.62, two effects of a

detuned AC field, (ω0 − ω) ̸= 0, become apparent:

1. The Rabi frequency increases as the detuning from the resonance frequency increases.

2. The amplitude of the Rabi oscillations decreases as the detuning from the resonance

increases.

These two effects can be conceptually understood as the spin undergoing a precession

about a smaller cone on the Bloch sphere when the AC magnetic field is detuned from
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resonance, as shown in Figure 2.17.
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Figure 2.17: Resonant and detuned Rabi oscillations. a. Rabi flopping formula
plotted for both an on resonant AC driving field and a detuned AC driving field. b., c.
Plot of the corresponding simulated spin tracjectories on the Bloch sphere for an initial
spin state of |↓⟩.

When attempting to drive multiple coupled donors, particularly in systems where the spin

resonance transitions are closely spaced, this off-resonant Rabi drive can become non-

negligible and result in some unwanted driving between the |↓⟩ and |↑⟩ for the off-resonant

state. One method of mitigating the effect of this off-resonant Rabi excitation is to ensure

that the off-resonant Rabi drive on the adjacent resonance induces a rotation that is a

multiple of 4π, in the time taken to perform a π rotation on the resonance being addressed.

The reason a 4π rotation of the spin is desirable, and not simply a 2π rotation, is due to
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2.7.2 AC Zeeman shift

the geometric phase that is incurred by the spin traversing a path across the Bloch sphere,

as discussed in section 2.8. Performing a multiple of 4π rotation on an off resonant state,

in the time taken to apply a π pulse on resonance, can be achieved by carefully tuning the

power of the applied pulse, to increase or decrease the frequency of the off-resonant drive.

2.7.2 AC Zeeman shift

As well as off-resonant Rabi drive, which affects the z-projection of the spin on the Bloch

sphere, the effect of off-resonant driving also needs to be considered along the equator of

the Bloch sphere. To do this we must re-examine the precession of the spin along the

Bloch sphere during off-resonant driving. As stated previously, the vector sum of the

detuning and the Rabi frequency gives the precession frequency of the spin about the

effective B-field.

ωeff =
√
ω2

1 + (ω0 − ω)2, (2.64)

where ω1 = 2πνR is the Rabi frequency in units of angular momentum, ω0 is the Larmor

precession frequency and ω is the frequency of the applied AC field. ωeff is therefore

the rotation frequency of the spin when driven by an off-resonant drive. Upon Taylor

expanding this formula we are left with the following expression [64,65] :

ωeff = ω0 − ω + ω2
1

2(ω0 − ω) . (2.65)

If we move into the rotating frame of the spin, rotating at a frequency of ω, then this

becomes

ωeff = ω0 + ω2
1

2(ω0 − ω) . (2.66)

This formula thus highlights that, upon introducing a frequency detuning between the

resonance frequency and the driving frequency, ω0−ω, there is a correction to its resonance

frequency ω0 of
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ωAC = ω2
1

2(ω0 − ω) , (2.67)

where ωAC is in units of angular frequency. This correction to the resonance frequency

caused by an off resonant magnetic drive is called the AC Zeeman shift. The implications

of this effect is hence an instantaneous shift in the resonance frequency of the spin upon

the application of an off-resonant AC field, the magnitude of which depends only on the

Rabi frequency of the AC pulse, ω1, and the frequency detuning between the applied pulse

and the resonance frequency, ω0 − ω.

Un-coupled system

hΔv0

E

0

Coupled system

EMW

0 hΔv
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EZeeman

EMW

EZeeman

AC Zeeman shift
2νR
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Figure 2.18: Spin- photon coupling. Two plots of energy, E, against frequency detuning
from the resonance frequency of the spin (∆ν). a. Zeeman energy splitting of the spin,
EZeeman, (red line) and the energy of the photons in the AC field, EMW (blue line). b.
Plot of the same energy levels but, with a coupling between the spin and the photons in
the AC field, resulting in an avoided crossing between the two. The difference between
the two energies on resonance (∆ν = 0) is given by twice the Rabi frequency, 2× νR. The
deviation of the energy level of the Zeeman splitting from the dashed line close to the
resonance frequency is as a result of the AC Zeeman shift.

The physical origin of the AC Zeeman shift can be further understood by considering the

coupling between the electron (nuclear) spin and the microwave (radio-frequency) photons

of the AC field. To illustrate the implications of this coupling, Figure 2.18 depicts two en-

ergies as a function of frequency detuning between the applied AC field and the resonance
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2.7.2 AC Zeeman shift

frequency of the spin. These energies are plotted both for the case of no coupling between

the photons and the spin (Fig. 2.18, a) and for the presence of a coupling between the

photons and the spin (Fig. 2.18, b).

For the uncoupled case, we see that the energy of the spin is given by the Zeeman splitting,

EZeeman, which is independent of the frequency of the applied AC magnetic field and hence

is represented by a horizontal line. The energy of the photons however, EMW, is given by

the formula E = hν, where ν is the frequency of the field, and hence the photon energy

increases linearly with increasing frequency. When the applied field is on resonance with

the transition energy between |↓⟩ and |↑⟩ (i.e, the detuning ∆ν=0), then the two lines

cross and EMW = EZeeman.

Upon coupling the photons of the AC field with the spin however, the two energy branches

form an avoided crossing at the resonance frequency, ∆ν=0. Looking along the x-axis,

either side of ∆ν=0, we see that for values of small frequency detuning, the Zeeman split-

ting deviates from its value in the absence of spin-photon coupling (denoted by the dashed

red line). This deviation in Larmor precession frequency, for small values of frequency

detuning, is the AC Zeeman shift effect. For large values of detuning, the Zeeman energy

converges towards the dashed line, indicating that the AC Zeeman shift becomes negligible.

Interestingly, the energy of the photons also deviates from its original energy (denoted

by the blue-dashed line), for small values of frequency detuning from resonance. This

effect, symmetric to the AC Zeeman shift, where the photon energy shifts as a result

of the coupling between the photons and the spin is called a dispersive shift and is the

physical mechanism that underpins an important photon-based spin readout technique

called dispersive readout [66].
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2.7.2.1 Measuring AC Zeeman shift

As with the case of the off-resonant Rabi drive, in order to perform high-fidelity control

of multiple coupled qubits, where the difference between resonance frequencies becomes

comparable to the Rabi frequency (as shown in Figure 2.15), we must perform mitigation

techniques to account for the unwanted effect of the AC Zeeman shift. For the case of

AC Zeeman shift, this mitigation involves accounting for the unwanted phase accumulated

during off-resonant driving. Perhaps the most straightforward method of doing this in-

volves keeping track of the AC Zeeman shift induced on each resonance from the applied

driving pulses and accounting for the additional induced phase in the subsequent control

pulses. For example, if a phase of π
4 were incurred on a given transition as a result of the

AC Zeeman shift, then the subsequent control pulse addressing this transition would be

applied with a phase of θ = θ0 + π
4 , where θ0 is the phase of the pulse that would have

been applied in the absence of any phase shift. It should be noted that the additional

phase accumulated due to noise in the environment, cannot be accounted for in this way,

due to the random nature of the phase accumulations and thus the lack of repeatability.

Although the AC Zeeman shift of a given driving field can be calculated theoretically,

using equation 2.67, it is often useful to corroborate this with experimental data. One

convenient method of measuring the AC Zeeman shift experimentally is using a Hahn echo

pulse sequence, by making use of the fact that this sequence only refocuses noise that is

the same before and after the refocusing pulse (discussed in depth in section 2.6). The

Hahn echo sequence is generally preferable to a Ramsey sequence for this measurement,

due to the fact that the lowest frequency shift detectable with this technique depends

on 1/T2, where T2 = T ∗
2 (THahn

2 ) for the case of a Ramsey (Hahn echo) experiment. As

THahn
2 ≫ T ∗

2 the Hahn echo experiment therefore increases the sensitivity of the measure-

ment by enabling a lower shift in frequency to be detected.

By applying an off-resonant pulse only in the first half of the Hahn echo sequence, before
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2.7.2 AC Zeeman shift

the refocusing pulse, we introduce a phase to the spin through the AC Zeeman shift, that

is not refocused by the refocusing pulse. By applying a wait-time dependent phase shift

to the final π
2 pulse, we can induce oscillations in the Hahn echo decay, making the effect

of the added phase induced by the AC Zeeman shift easier to distinguish.
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Figure 2.19: AC Zeeman shift measurement. Two Hahn echo pulse sequences that
can be used to measure AC Zeeman shift. An X pulse represents the application of an AC
field along the +x direction of the Bloch sphere (i.e. with a phase of 0), while a ϕ pulse
represents a pulse of an arbitrary phase, where the phase of the pulse is swept as a function
of the wait time, τ . This thus induces artificial oscillations in the Hahn echo decay. In
the pulse sequence in panel 1, an off-resonance pulse is applied for a fixed duration of
time. This adds a fixed phase to the Hahn echo oscillation. The second panel shows an
off resonance pulse that is applied for the entire duration of the first wait time. As the
duration of this pulse is therefore swept, this results in a variable amount of phases added
from AC Zeeman shift, which thus manifests itself as a change in the frequency of the
resulting Hahn echo oscillations.

If we apply the off-resonant pulse in the first half of the Hahn echo sequence for a fixed

duration of time, then a fixed phase will be added to the spin that does not depend on the

duration of the Hahn echo wait time, resulting in a change in the phase of the resulting

49



Hahn echo oscillation. Conversely, if we instead apply the off-resonant pulse for the entire

duration of the first wait time of the sequence, i.e. between the first π
2 pulse and the

refocusing pulse, then the phase induced by the AC Zeeman shift on the spin will depend

on the duration of this wait time, τ . This will therefore manifest itself as a change in the

frequency of the resulting Hahn echo oscillations, equal to the resonance frequency shift

caused by the AC Zeeman shift. These two pulse sequences are depicted in Figure 2.19.

2.8 Geometric phase

An important phase to consider, particularly when operating with multiple, coupled spin

qubits, where relative phases between the spins become important, is the geometric phase

that comes about simply as a result of the topology and geometry of the Bloch sphere

across which the spin is traversing [67]. This phase can be calculated by considering an

arbitrary state on the Bloch sphere, which can be described with two angles: θ and ϕ.

Any given state can therefore be parameterised by the coordinates n1, n2, n3 along, x, y

and z respectively

n1 = sin(θ) cos(ϕ), (2.68)

n2 = sin(θ) sin(ϕ), (2.69)

n3 = cos(θ). (2.70)

(2.71)
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2.8. GEOMETRIC PHASE

Figure 2.20: Arbitrary state on the Bloch sphere. Arbitrary state |ψ⟩ described
using the angles θ and ϕ. Image taken from [68].

We can describe the generic path of the evolution of a state on the Bloch sphere using the

vector n⃗ = (n1⃗i, n2j⃗, n3k⃗). For illustrative purposes we will consider the case of a state

that traverses a closed path on the Bloch sphere however, it is important to note that

a geometric phase is acquired by the spin regardless of whether its ultimate trajectory

represents a closed path or not. For the case of a closed path traversed on the sphere, the

area on the sphere traversed by the path of the state is given by [69]

∆Ω =
∫

Surface
= n⃗ · dS. (2.72)

This represents the solid angle subtended on the sphere by the enclosed path of the state.

By utilising Stokes theorem, it can be shown that this expression can be rewritten as a

more easily solvable line integral, in terms of the generic path vector ⃗n(t) evolving in time

as

∆Ω =
∫

Surface
= n⃗ · dS =

∫ τ

0

n1ṅ2 − n2ṅ1
1 + n3

dt, (2.73)

where ṅ1, ṅ2 represent the time derivatives of n1 and n2 respectively.
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In order to determine the phase incurred by a spin traversing an arbitrary path on the

Bloch sphere, we can first write down a generic initial state for the spin as

|ψ(0)⟩ =

e−iϕ0
2 cos

(
θ0
2

)
ei
ϕ0
2 sin

(
θ0
2

)
 . (2.74)

This state can then be time evolved to give

|ψ(t)⟩ =

e−iϕ(t)
2 cos

(
θ(t)

2

)
ei
ϕ(t)

2 sin
(
θ(t)

2

)
 , (2.75)

where ϕ0 = ϕ(0) and θ0 = θ(0). As we are considering a state traversing a closed path

on the Bloch sphere, we can assume that the state evolution is cyclic, with a period of τ .

Thus, with this assumption and by comparing equation 2.75 and 2.74, we can write down

the following

|ψ(t)⟩ = eiα(τ) |ψ(0)⟩ , (2.76)

eiα(τ) = ei
[ϕ(τ)−ϕ0]

2 . (2.77)

The phase incurred by a spin, ϕG, between a time 0 and τ is then given by

ϕG = [ϕ(τ)− ϕ0]
2 + i

∫ τ

0
⟨ψ(t)| d

dt
|ψ(t)⟩ (2.78)

= −1
2

∫ τ

0
ϕ̇(1− cos(θ))dt. (2.79)

Using the definitions for n1, n2 and n3 above, along with the fact that ϕ = tan−1(n2
n1

) and,

due to us traversing a closed loop with vector n⃗, n⃗2 = 1, we can show that

ϕ̇ = n1ṅ2 − n2ṅ1
1− n2

3
. (2.80)

Finally, by substituting the definitions for n1, n2 and n3 and equation 2.80 into equation

2.79 and comparing this to equation 2.73, we are left with the following expression for the

phase incurred by the spin
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2.8. GEOMETRIC PHASE

ϕG = −1
2

∫ τ

0

n1ṅ2 − n2ṅ1
1 + n3

dt (2.81)

= −1
2∆Ω. (2.82)

This expression thus reveals that whenever the state of the spin traverses a path along

the Bloch sphere, it incurs a geometric phase equal to half the solid angle subtended by

its path [69]. This geometric phase is known as the Aharonov-Anandan phase [70], which

is a generalisation of the Berry phase [71]. The Aharonov-Anandan phase has important

implications for spin control and can actually be used as an important resource for quan-

tum computation, as discussed in chapter 6.
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3.
Donor spin qubit
device

No amount of experimentation can
ever prove me right; a single
experiment can prove me wrong.

Albert Einstein

This chapter includes results from the following publication:
Section 3.5: C. Adambukulam, V. Sewani, H. Stemp, S. Asaad, M. Mądzik, A. Morello,
and A. Laucht, “An ultra-stable 1.5 T permanent magnet assembly for qubit experiments
at cryogenic temperatures,” Review of Scientific Instruments, vol. 92, no. 8, 2021

The author acknowledges Ass Prof Evert van Nieuwenburg from the Univerity
of Copenhagen for support in implementing a neural network for single elec-
tron transistor (SET) current blip detection.
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3.1. DEVICE ARCHITECTURE AND GATE LAYOUT

3.1 Device architecture and gate layout

The phosphorus-31 (31P) donor spin qubit devices used in this thesis are fabricated ex-

clusively using silicon-metal oxide semiconductor (Si-MOS) compatible techniques and

materials. This allows us to leverage the substantial technological progress of the modern

classical electronics industry for qubit fabrication. With this compatibility in mind, the

basic structure of our devices consist of a silicon substrate, upon which a series of gates

are patterned, allowing us to control, initialise and read out the state of individual donor

atoms, introduced into the silicon lattice via ion-implantation.

The substrate used to host our donor qubits is a 500 µm thick wafer of natural silicon.

In order to maximise the coherence times of the donor qubits, it is important to minimise

the presence of any spin-carrying isotopes within the host material. This is detrimental

to the qubit’s performance, as any spin-carrying nuclei in the vicinity of the donor, may

couple to the donor-bound electron via the hyperfine interaction. This unwanted hyper-

fine coupling results in the resonance frequency of the electron depending on the state of

nearby silicon (Si) nuclei and thus any fluctuations in the state of these nuclei will result

in random jumps in the electron’s resonance frequency [72], which can in turn negatively

affect the performance of the donor qubit. The naturally occurring isotopes present in

silicon, in order of abundance, are 28Si (92.2%), 29Si (4.7%) and 30Si (3.1%) [73]. While

the isotopes 28Si and 30Si possess no nuclear spin, the nucleus of 29Si possesess a spin of
1
2 . A 900 nm isotopically enriched layer of 28Si is therefore grown on the surface of the

silicon wafers via a technique of low pressure chemical vapor deposition (LPCVD) at Keio

University in Japan, resulting in a residual 29Si concentration of 0.08%, or 800 ppm [74].

Alternative techniques of isotopic enrichment also exist and have demonstrated residual
29Si concentrations, as low as 0.025%, or 250 ppm [75]. A high-quality layer of SiO2 is then

thermally grown on top of the silicon, in order to provide an insulating barrier between

the substrate and the aluminium gates fabricated on the surface of the chip.
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Figure 3.1: Device gate layout. False-coloured scanning electron microscope (SEM)
image of the aluminium gates used to control and readout the donor. The purple structure
is the magnetic antenna used to control the state of the electron and nucleus using ESR
and NMR respectively. DG1-4 represent the donor gates, which are used to tune the donor
energy levels with respect to the electrochemical potential of the SET, which can be itself
tuned with the plunger gate (PL). The rate gate (RG) is used to influence the tunnel
coupling between the donors and the single electron transistor (SET). The SET enables
us to read out the spin state of the donor and is formed using the top gate (TG) and left
and right barrier gates (LB and RB). The gates shown in the SEM image are patterned
atop a layer of SiO2 (dark grey), which is grown on top of a layer of isotopically enriched
28Si (light green). This isotopically enriched layer lies on top of a layer of natural silicon,
natSi (dark green).
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3.1. DEVICE ARCHITECTURE AND GATE LAYOUT

The donor atoms are implanted using a process of timed implantation, into a window of

size 90 nm × 90 nm. The energy and fluence of the ion beam are chosen to optimise

the following parameters: the average number of addressable donors within the device,

the average distance between neighbouring donors and the average donor depth from the

interface [37,76]. The optimal values for these parameters will depend on the experimental

goals and are discussed in greater depth in section 3.2.

Following the implantation of the donors, aluminium gates are fabricated on top of the

SiO2. These gates can be broadly categorised into: gates for donor readout, gates for con-

trol of the electrostatic environment of the donors and gates for magnetic control. Donor

readout is done using a single-electron transistor (SET). The SET consists of three alu-

minium gates: the top gate (TG) and two barrier gates: the left barrier gate (LB) and

the right barrier gate (RB). A detailed explanation of the working principles behind the

SET is provided in section 3.6. The electrostatic environment of the donor, with respect

to the SET, is controlled via a series of gates called donor gates. In Figure 3.1, these

donor gates are labelled as DG1, DG2, DG3, DG4 and the plunger gate, PL. Together

these gates enable us to identify individual donors within the device as well as carefully

tune the energy levels of each donor with respect to the SET, a vital requirement for qubit

readout and control. The device used in this thesis also includes a rate gate (RG). The RG

lies between the SET and donor gates and was designed with the intention of providing a

tuneable barrier between the donor and the SET, in order to control the electron tunnel

rates between the two. The small (≈ 30 nm) distance between the donors and the SET

however, makes the control of the tunnel barrier difficult to achieve and thus, in the device

discussed in this thesis, the RG primarily serves as an additional means of electrostatic

tuning of the donor environment.

Finally, a co-planar waveguide antenna, terminated by a short circuit, allows us to control

both the states of the donor nucleus and electron via nuclear magnetic resonance (NMR)

or electron-spin resonance (ESR) respectively. This is done by applying an oscillating AC
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current, at the required frequency, through the shorts at the end of the waveguide, which

is translated to an oscillating magnetic field at the site of the donor [77].

3.2 Donor implantation

The donor atoms are introduced into the device via a process of timed implantation with

an ion beam at either the University of Melbourne or the Australian National University

(ANU). The choice of fluence and implantation energy of the donor atoms in the ion beam

are dictated by both the atomic species being implanted and the experimental require-

ments.

To facilitate the correct parameter choice, simulations of the implantation are performed

using the software tool Stopping and Range of Ions in Matter (SRIM) [78]. Figure 3.2

shows an SRIM implantation simulation of both the atomic species 31P and 123Sb for an

implantation energy of 14 keV and fluence of 1 × 1012 cm−2. Owing to its higher atomic

mass, 123Sb is implanted at a lower mean depth, with a lower spread in the implantation

depths, referred to as ‘straggle’, compared to 31P for the same implantation energy [79].

A higher atomic mass of the species being implanted is therefore beneficial for improving

the implantation precision, enabling greater control over the positioning and inter-donor

spacing of the atoms [80].
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3.3. DEVICE FABRICATION
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Figure 3.2: SRIM simulation of 31P (a.) and 123Sb donor (b.) implantation.
Both simulations were carried out with an implantation energy of 14 keV, fluence of 1 ×
1012 cm−2, an angle of incidence of 0o and an 8 nm layer of SiO2 with a density of 2.2
gcm−3. Simulations were carried out by Dr Danielle Holmes at the University of New
South Wales (UNSW).

3.3 Device fabrication

The silicon substrate is a p-type <100> silicon wafer, with a resistivity of 10-20 Ωcm. The

device fabrication process can be divided into two steps. The first step is the fabrication of

the silicon stock, which is carried out by dedicated fabrication personnel. Once the stock

has been fabricated, the implantation window and aluminium gates are then fabricated

by members of the research group.

The basic outline of the silicon stock fabrication procedure, omitting details for confiden-

tiality purposes, is as follows:

1. Defining optical alignment markers. The alignment markers are defined by first

growing a hard SiO2 mask using a wet oxidation furnace. The marker patterns are
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then created using photolithography, followed by a buffered hydrofluoric acid (BHF)

and tetramethylammonium hydroxide (TMAH) etching. The hard SiO2 mask is

then removed using buffered HF etching.

2. Definition of p-doped regions. P-doped regions are used to reduce unwanted

leakage currents flowing at the 28Si - SiO2 interface, between the n-doped regions

of the device. The regions are first defined by growing a hard SiO2 mask, followed

by optical lithography. The regions are then doped using thermal diffusion of boron

(B). The SiO2 hard mask is once again removed using buffered HF etching.

3. Definition of n-doped regions. N-doped regions are created in the same process

as the p-type regions however, this time phosphorus (P) is used instead of B.

4. Repairing damage caused by the creation of the doped regions. A two-step

thermal oxidation process repairs the defects caused by the thermal diffusion process

and ensures the P and B is well integrated into the silicon.

5. Growth of a field oxide layer. A layer of field oxide, 200 nm in thickness, is

grown in a wet oxidation furnace.

6. Growth of high quality gate oxide. A 26 µm × 60 µm opening in the field oxide

is etched in the centre of each device using BHF, followed by the growth of an 8 nm

thick layer of high quality, dry thermal oxide. The high quality oxide is important

as the donors and SET will be situated in close proximity (≈ 10 nm) to the interface

between silicon and this thermally-grown oxide.

7. Definition of large alignment markers. Large alignment markers are patterned

using optical lithography followed by electron-beam evaporation of 15 nm of platinum

and 65 nm of titanium. Unwanted regions of metal are lifted off with warm N-Methyl-

2-pyrrolidone (NMP).

Following the stock fabrication, the silicon wafer is then diced and device fabrication can

begin. The donor devices are fabricated on silicon stock using the following fabrication

steps:
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3.3. DEVICE FABRICATION

1. Patterning of small alignment markers. These markers are patterned using

electron bean lithography (EBL), followed by electron-beam evaporation of 15 nm

of titanium and 65 nm of platinum and liftoff in NMP.

2. Definition of the implantation window. A 90 nm × 90 nm implantation win-

dow is patterned into a layer of poly-methyl-methacrylate (PMMA) electron-beam

resist. The sample is then subsequently sent to the University of Melbourne or the

Australian National University, where the phosphorus donors are implanted into this

window.

3. Repair of the damage caused by ion implantation. A rapid thermal anneal

is performed for 5 seconds at 1000 oC. This both reduces the damage of the silicon

lattice caused by the donor implantation, while also acting to activate the donors.

4. Definition of ohmic contacts to the n-doped regions. Ohmic contacts are

created by etching through the field oxide using buffered HF etching, followed by

electron-beam evaporation of 200 nm of aluminium, liftoff and a 15 minute anneal

in forming gas (consisting of 5% hydrogen and 95% nitrogen) at 400 oC.

5. Patterning of the gates. Patterning of the gates is done in a three-step EBL

process. Before every step a PMMA mask is spun onto the chip. The gates are then

patterned into the PMMA using EBL, followed by evaporation of aluminium (Al)

and liftoff in either acetone or warm NMP. In the first EBL layer, the SET barrier

gates and two-donor gates are patterned and evaporated with 30 nm of Al. For the

second EBL step, the SET top gate and the remaining donor gates are patterned

and evaporated with 50 nm of Al. For the third EBL step, the antenna is patterned

and evaporated with 80 nm of Al. Each deposition of metal is insulated from the

subsequent layers with a layer of native AlxOy oxide, that naturally coats the Al

upon exposure to air.

6. Dicing. The chips are diced into 2.8 mm × 1.4 mm pieces, with each sample

containing two devices.

7. Passivating the oxide traps. A final anneal with forming gas, consisting of 95%
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N2 and 5% H2, is performed for 15 minutes at 400 oC to passivate the charge traps

in the gate oxide caused by damage from EBL.

Once these fabrication steps have been successfully concluded, the devices are ready to be

bonded into an enclosure and mounted into a dilution refrigerator, ready for measurements

to commence.

3.4 Device instrumentation

Readout and control of the donors requires the use of DC, radio-frequency (RF) and

microwave-frequency control lines. For this reason, we make use of a custom printed cir-

cuit board (PCB), that contains both microwave and low frequency lines. These lines are

centered around a rectangular cut-out in the centre of the PCB, where the donor device is

situated. The PCB is mounted to a copper enclosure, which possesses SK 2.92 mm stan-

dard connectors, suitable for high frequency operation up to 40 GHz, as well as MMCX

connectors suitable for frequencies less than 6 GHz. The device sample is glued to the

copper enclosure, through the cut-out in the PCB, using a thermally conductive adhesive

that ensures that the device is well thermalised with the enclosure. The device is then

aluminium wire bonded to the PCB and bolted to a permanent magnet assembly, which

provides a strong, static magnetic field, B0, to Zeeman split the spin states of the donor

electrons and nuclei. The details of this permanent magnetic assembly are discussed in

greater depth in section 3.5.

The permanent magnet assembly is then mounted onto the mixing chamber plate of a

Bluefors BF-LD400 cryogen free dilution refrigerator, enabling us to cool the device to

a base temperature of approximately 20 mK. These temperatures are essential for the

spin-dependent electron tunnelling readout scheme used to measure the state of the donor-

bound electrons, discussed in section 3.6.
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3.4.1 Control lines

3.4.1 Control lines

Connecting the device to the instruments required to control and readout the donor qubits

is a delicate matter and careful consideration must be put into ensuring that the lines are

well filtered and correctly thermalised at each stage of the dilution fridge, such that the

thermal noise reaching the device is minimised. Additionally, vibrations, originating from

the pulse tube of the dilution fridge, can manifest as triboelectric noise seen by the de-

vice, unless careful consideration is placed into the materials used for the device control

lines [81]. With these considerations in mind, the instrumentation layout for the readout

and control of the donor device is displayed in Figure 3.3. As stated previously, this control

scheme can be separated according to three regimes of operation: DC, RF and microwave

frequencies.

DC lines are required in order to apply static DC voltages to the donor gates, as well as

to bias the source and drain, such that a current may flow between the two leads when

the device has reached turn-on (see section 3.7.2). These DC lines consist of a constantan

loom, which is low pass filtered with a 20 Hz cutoff at the mixing chamber stage.

RF lines are used in order to dynamically control a selection of donor gates for fast pulsing

between the donor operation and readout positions in gate space. An RF line is also re-

quired for controlling the donor nucleus through nuclear magnetic resonance (NMR) and

for the return signal coming from the single-electron transistor (SET). Furthermore, RF

lines are used to transmit the input signals for the in-phase (I) and quadrature (Q) inputs

used for single-sideband modulation of a microwave signal, in order to perform electron

spin resonance (ESR). The RF lines are made from a flexible copper-nickel (Cu-Ni) coaxial

line. These lines are graphite coated to reduce triboelectric noise [81] and filtered to a

cutoff frequency of 145 MHz at the mixing chamber plate.
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Figure 3.3: Device instrumentation layout. Diagram depicting the control lines and
electronic equipment used to operate the donor spin qubits. Blue lines are used to indicate
DC lines, while red and gold lines indicate radio-frequency (RF lines) and the purple line
represents the microwave line. The different temperature stages at which the instrumen-
tation is placed are indicated by the 300 K, 4 K and 20 mK boxes, which represent the
room temperature setup, setup at the 4 K plate of the dilution fridge and setup at the
mixing chamber of the dilution fridge respectively.
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3.4.2 Electronic equipment

A single microwave line is used to carry both the NMR and ESR control pulses. This

microwave line consists of a semi-rigid, silver-plated Cu-Ni coaxial line. The line passes

through an inner/outer DC block at room temperature, to prevent possible voltage offsets

from creating a DC current through the thin short circuit termination of the microwave

antenna. Additionally, this line is attenuated by 10 dB, with an attenuator positioned at

the 4K stage of the dilution refrigerator.

3.4.2 Electronic equipment

The DC voltages applied to the donor gates in order to provide static tuning of the donor’s

electrostatic environment are provided by 9 Stanford Research systems (SRS) SIM 928 DC

sources, hosted in two SIM 900 mainframes. The voltages each pass through an AC/DC

combiner, which divides the incoming voltage, the division values of which are depicted

in Figure 3.3. Three of the donor gates, namely the PL, DG2 and DG4 gates also have

an AC input to allow for fast dynamic tuning of these gate voltages for fast control of

the readout position of the donor. These RF signals are provided by a Keysight M3300A

arbitrary waveform generator (AWG), which is bandwidth limited to 200 MHz, and passed

into the AC inputs of the AC/DC combiners for these gates. This thus allows for an RF

modulation to be added on top of a static DC voltage applied to these donor gates.

A Keysight M3201A module hosts a field-programmable gate array (FPGA), on which we

have built an in-house direct digital synthesis (DDS) system (described in more detail in

section 3.4.4). The DDS provides RF input signals to the I and Q inputs of a Keysight

E8267D PSG vector microwave source, to allow for single and dual-sideband modulation

of a microwave tone produced by the vector source, for control of the electron spin. De-

tails regarding the single and dual-sideband modulation techniques utilised for ESR are

provided in section 3.4.3. Additionally, the DDS provides the RF signal for control of the

nuclear spin through NMR. The NMR signal is attenuated by 10 dB at room temperature,

to protect the antenna from any unexpected spikes in NMR amplitude, before being com-
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bined with the microwave output of the vector source using a DPX1721 diplexer, allowing

both NMR and ESR signals to travel down the same line to the device’s antenna.

The SET current returning from the drain is passed through a Basel SP983c transimpe-

dence amplifier, which converts the current into a voltage with a gain of 107 V/A and

frequency bandwidth of 100 kHz. The voltage signal is then passed into a SIM911 bipolar

junction transistor (BJT) amplifier, which is housed in the same SIM900 mainframe as the

DC sources and provides an additional gain of 102. This amplifier also has the important

function of breaking the ground between the fridge and the measurement setup, to avoid

the formation of ground-loops that can introduce additional noise to the system. As the

BJT amplifier can add additional noise to the current signal, the signal is passed through

a further passive low pass filter, with a cutoff at 100 kHz. The signal then enters the digi-

tiser channel of the Keysight M3300A, with a sample rate of 100 megasamples-per-second,

before the SET current trace is recorded and analysed.

3.4.3 Phase modulation

For a range of operation sequences on the donor spin qubits, we are required to rapidly

switch between frequencies, such that we can sweep over a range of frequencies, or apply

multiple frequencies within the same pulse sequence. When applying a microwave pulse

to drive ESR on the donor electrons, one option would be to simply output a microwave

signal at a given frequency from the vector microwave source. This method however, does

not allow for the fast switching of frequencies required in the majority of pulse sequences.

We can thus make use of single and dual-sideband modulation techniques in order to

switch frequencies at the rate required to operate our donor spin qubits.
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3.4.3 Phase modulation

Frequency
ωcωc - ωm

Frequencyωc + ωmωc

Frequency
ωc - ωm ωc + ωmωc

Single sideband - left sideband Single sideband - right sideband

Dual sideband

�� ��

��

Figure 3.4: Single and dual sideband modulation. Single sideband modulation with
either the left sideband active, a., or the right sideband active, b.. ωc. represents the carrier
frequency, while ωm represents the modulation frequency. c. Dual sideband operation,
with both sidebands active, each possessing half the amplitude of the input signal.

3.4.3.1 Single-sideband modulation

Single-sideband modulation involves inputting two signals, I and Q, that are phase shifted

by 90o with respect to each other, into a vector microwave source. These input signals

are generated using the DDS of the Keysight M3201A module. Let us therefore define the

input signals for I and Q as follows [82]:

I(t) = cos(ωmt), (3.1)

Q(t) = cos(ωmt−
π

2 ) = sin(ωmt), (3.2)

where I(t) is the input signal for the I port, Q(t) is the input signal for the Q port and ωm

is the modulation frequency. The microwave source generates a signal, which we refer to

as the carrier signal. The carrier signal is of microwave frequency and forms the central
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frequency about which we form our sidebands. The carrier signal can be defined as:

C(t) = cos(ωct), (3.3)

where ωc is the carrier frequency. Inside the vector source, the I signal is multiplied with

the carrier signal, while the Q signal is multiplied with a carrier signal that has been

shifted by 90o. In order to calculate the output of these multiplications we can make use

of the following trigonometric identities:

sinµ sin ν = 1
2[cos(µ− ν)− cos(µ+ ν)], (3.4)

cosµ cos ν = 1
2[cos(µ− ν) + cos(µ+ ν)]. (3.5)

Using these identities we can calculate the resultant signals, a(t) and b(t):

a(t) = cos(ωct) cos(ωmt) (3.6)

= 1
2[(cos(ωc − ωm)t) + cos(ωc + ωm)t)], (3.7)

b(t) = sin(ωct) sin(ωmt) (3.8)

= 1
2[(cos(ωc − ωm)t)− cos(ωc + ωm)t)]. (3.9)

For single-sideband modulation, we can choose which of the sidebands is present, either to

the left of the carrier frequency or the right of the carrier frequency, by either performing

the operation a+ b or a− b respectively in the vector microwave source.

a(t) + b(t) = cos(ωc − ωm)t, (3.10)

a(t)− b(t) = cos(ωc + ωm)t. (3.11)

We are hence left with a single-sideband signal, of full amplitude, that is either at a

frequency ωc − ωm or ωc + ωm, as shown in panel a. and panel b. in Figure 3.4 [82]. As

the modulation frequency ωm can be switched very rapidly, this therefore allows for fast

switching of the output frequency.
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3.4.3 Phase modulation

3.4.3.2 Dual-sideband modulation

For dual-sideband modulation, the exact same principle as that used for single-sideband

modulation is utilised, with the only difference being that in this case, a signal is applied

only to either the I or the Q input of the vector microwave source, while the input of the

other channel is 0. Therefore in this case:

I(t) = cos(ωmt), (3.12)

Q(t) = 0. (3.13)

Using the same method of multiplying the carrier signal with the I and Q inputs as used

for single-sideband modulation, we are therefore left with the following signals:

a(t) = cos(ωct) cos(ωmt) (3.14)

= 1
2[(cos(ωc − ωm)t) + cos(ωc + ωm)t)], (3.15)

b(t) = sin(ωct)× 0 = 0. (3.16)

Thus, in this case, whether we perform the operation a+ b or a− b, we are left with the

same result

a+ b = a− b = 1
2[(cos(ωc − ωm)t) + cos(ωc + ωm)t)]. (3.17)

We therefore observe two sideband frequencies present simultaneously, each with half the

amplitude of the input signal, one at a frequency of ωc−ωm and the other at a frequency

of ωc +ωm, as shown in panel c. of Figure 3.4 [82]. This mode of operation is useful when

two frequencies need to be applied simultaneously. However, this does come at the cost of

each frequency possessing half the amplitude of the original signal, resulting in a slower

driving of the spin states.
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3.4.4 Phase coherent DDS

As stated in section 3.4, the RF pulses required for the I and Q inputs of the vector

microwave source (used for sideband modulation for ESR) as well as for the NMR pulses

used to control the nuclei, are generated using an in-house direct digital synthesis (DDS).

This DDS was designed to maintain phase coherence of the generated signals.

Phase coherence is vital for the coherent control of the donor spins. As stated previously,

in a typical pulse sequence, applied to either the donor nucleus or electron, we are fre-

quently required to switch between multiple frequencies within the same pulse sequence.

It is imperative for coherent control therefore, that when switching between multiple fre-

quencies within the same control sequence, the DDS possesses an internal clock for each of

the applied frequencies. These individual clocks, held for each outputted frequency means

that when the DDS switches back to a previously applied frequency within the pulse se-

quence, the instrument can apply the correct phase to the outputted pulse, such that the

pulse is still able to coherently manipulate the spin. Figure 3.5 shows an example of this

phase coherence in action. In this figure, we are applying three instances of a pulse of

the same frequency, and between each pulse we are adding some wait time, during which

we output a pulse of a different frequency, not shown in the figure. The coloured lines

show the output pulses taken from an oscilloscope, while the dashed black lines show an

extrapolated fit to the original pulse. We can see that with the application of the second

and third pulse, these pulses do not start with a phase of 0, as with the original pulse, but

instead begin with such a phase that they perfectly line up with the extrapolated fit of

the first pulse. This allows us to keep track of the state of the spin, such that we maintain

coherent control, even with the spin undergoing Larmor precession between intermittent

control pulses.
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Figure 3.5: Phase coherence of the DDS output. Three outputted pulses of the
same frequency, with a wait time between, during which we apply a pulse of a different
frequency, not shown in the figure. The black dashed line shows an extrapolated fit of the
first pulse. The second and third pulse line up with the extrapolated fit, indicating that
the pulses are phase coherent.

3.5 Static DC magnetic field

In order to induce the Zeeman splitting required to lift the degeneracy of the |↓⟩ and

|↑⟩ spin states, we must apply a static magnetic field, of typically around 1 T, along the

z-axis of the spin. Experimentally, this field is typically provided by a superconduct-

ing solenoid. However, superconducting solenoids are very large and expensive and can

result in slow drifts in the magnetic field over time, as a result of the slow loss in the

superconducting current used to generate the magnetic field. One benefit of using a su-

perconducting solenoid to provide the static B0 field is that this field can be swept in

order to vary the magnitude of the field. However, in the majority of experiments, the

B0 field is simply ‘set and forget’ and hence this tuneability of the field becomes redun-

dant. A simpler solution that we have explored is to place the spin qubit device into an

assembly of strong, permanent magnets which, although lacking in tuneability, offers a

much cheaper and more compact alternative to a superconducting solenoid. Figure 3.6

shows the layout of the magnet assembly and the positioning of the donor device within it.

An additional benefit of replacing the superconducting solenoid with permanent magnets,
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is the elimination of any risk of quenching. In the event of any technical faults associated

with the dilution refrigerator, that cause the solenoid’s temperature to rise above its critical

temperature, the superconducting wire inside the magnet will turn normal, causing the

magnet to ‘quench’ and resulting in a rapid increase in the temperature of the fridge

used to cool the qubit devices. As the permanent magnet assembly does not contain any

superconducting elements, quenching is not an issue for these magnets, allowing the user

more time to deal with dilution fridge faults before the qubit device is warmed significantly.

Figure 3.6: Permanent magnet assembly. a. Diagram of the permanent magnet
assembly, with N and S, and I and II denoting north and south, and the two permanent
magnet shapes, respectively. b. Diagram of the magnet assembly inside the copper
enclosure used to keep the magnets in place. This copper enclosure is bolted to the
mixing chamber of the dilution refrigerator. c. Diagram of a cross-section of the magnet
assembly in the yz-plane. Figure taken from [83].

Although permanent magnets offer a number of attractive benefits over superconducting

solenoids, before adopting them into the qubit setup it was important to assess the level

of magnetic drift present in these magnets, compared to the approximately 40 parts per

billion per hour drift in magnetic field experienced by the superconducting solenoids, while

in persistent current mode. In order to assess this magnetic drift, we repeatedly measured

the resonance frequency of the ionised nucleus of a 31P donor atom implanted into a device
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that was subsequently bolted to a permanent magnet assembly. The Hamiltonian of the

ionised phosphorus nucleus, as defined in section 2.3.1, is given by

Ĥ = γnB0Îz. (3.18)

As this Hamiltonian possesses only a magnetic term, any changes in the resonance fre-

quency of the ionised nucleus are caused by changes in the magnetic field at the site of the

nucleus. Tracking changes in the resonance frequency of the ionised nucleus hence offers

a convenient and highly precise means of tracking any magnetic field drift experienced by

the donor.

We utilised two techniques in order to obtain the resonance frequency of a single spin with

high accuracy. The first, was to perform a low-power frequency spectrum of the spin, such

that the linewidth of the resonance peak approached the intrinsic linewidth of the system.

The other, was to perform a Ramsey experiment on the spin, with the oscillation frequency

of the measured Ramsey fringes directly corresponding to the frequency detuning between

the AC drive and the resonance frequency of the system.

Figure 3.7 shows a repeated Ramsey measurement performed on the ionised donor nucleus

in the permanent magnet assembly. Approximately 70 repetitions of the Ramsey measure-

ment were performed, which took a total of around 25 hours to measure, allowing us to

track the frequency drift over a time period of 25 hours. By repeating this long Ramsey

experiment over a number of repeated occasions, we were able to track the magnetic field

drift over a significant length of time, as shown in Figure 3.8. The decay in the field

observed from hours 0 to 400 we believe to be attributed to the temperature dependence

of the magnets, as these measurements were taken immediately following the cooldown

of the magnet assembly from room temperature to 20 mK in a dilution fridge. Once the

temperature effects of the magnets had fully stabilised however (after approximately 3

weeks of continuous operation at 20 mK), we extracted a magnetic field drift rate of <

2.8 parts per billion per hour, more than a factor of 10 lower than the magnetic field drift
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rate observed in the superconducting solenoid.
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Figure 3.7: Magnetic field drift measured by Ramsey fringes. Repeated Ramsey
measurement performed on the ionised nucleus over a 25 hour time period, in a permenant
magnet setup, with the repetitions of the Ramsey fringes along the y axis. The shift in
the frequency of the Ramsey oscillations is as a result of the shift in the magnetic field
experienced by the spin.

Figure 3.8: Long-term frequency tracking of the ionised nucleus. Repeated
overnight Ramsey measurements of the ionised nucleus taken over an ≈ 900 hour time
period. The increased shift in NMR frequency for the measurement duration between 0-
400 hours is as a result of the magnetic field stabilising after cooling down the permanent
magnet assembly to the mK base temperature of the dilution fridge. After the magnets
had stabilised in temperature, the magnetic field drift rate, extracted from the drift in
ionised NMR frequency, was found to be < 2.8 parts per billion, per hour.

74



3.5. STATIC DC MAGNETIC FIELD

In order to more thoroughly investigate the effect of temperature change on the magnetic

field of the permanent magnet assembly, after cooling the magnets to 20 mK in a dilution

fridge for a sufficient length of time for the temperature induced magnetic field drift to

stabilise, we applied a small amount of heat to the mixing chamber plate, leading to a

small increase in the temperature of the permanent magnets. By performing a repeated

Ramsey measurement on the ionised 31P nucleus, we were able to monitor the shift in

magnetic field as a function of temperature. Figure 3.9 shows the resulting drift in the

frequency of the Ramsey oscillations, and thus the magnetic field, upon switching the

mixing chamber heater on and off. We observed a shift of approximately 40 parts per

million in the frequency of the ionised nucleus, for a temperature change of 60 mK.

These measurements all corroborate that, in the normal operating regime of a qubit device

in a dilution refrigerator, the permanent magnet assembly provides a more stable source

of static magnetic field than a superconducting solenoid in persistent current mode.

�� ��

Figure 3.9: Effect of temperature on the magnetic field. We measured the effect
of temperature on the magnetic field of the permanent magnet assembly, by cooling the
magnets down to the base temperature of the dilution fridge (≈ 20 mK) before applying
a small amount of heat to the mixing chamber plate. a. Mixing chamber temperature
as a function of time, with the sudden increase and decrease in temperature indicating
the times when the heater was switched on and off and the corresponding shift in ionised
nuclear magnetic resonance (NMR) frequency. b. Repeated Ramsey measurements used
to extract this frequency shift. From this measurement we extracted a change in the NMR
frequency of ≈ 40 parts per million with a temperature shift of 60 mK. The plot in a. was
taken from [83].
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3.6 The single-electron transistor (SET)

For the readout and initialisation of the donor bound electron we employ an SET, which

acts as a highly sensitive detector of charge movement in its vicinity. Principally, the SET

is comprised of a large quantum dot, referred to as the SET island, which consists of ≈ 100

electrons. At this electron occupation, the spacing between energy levels is reduced to such

an extent that the levels form a near-continuum of states. The energy levels of the island

can thus be described by a Fermi distribution, with occupied electron energy levels lying

below the electrochemical potential of the SET (µSET) and un-occupied electron states

above µSET [84]. At finite temperature (T), where T> 0, this Fermi distribution deviates

from a step function and is instead smeared according to kBT , where kB is the Boltzmann

constant. This smearing results in some residual occupation of states existing above µSET,

the implications of which are discussed in section 3.10. The method of experimentally

realising the SET is discussed in section 3.7.2.

Increasing N
μSET

E E

Quantized Semi-continuous

Figure 3.10: Potential well of the SET island. Depiction of the potential well of a
quantum dot with increasing numbers of electrons, N. The left well depicts the potential
well of the dot with only a few electrons, resulting in well quantised energy levels. The
right well on the other hand, depicts the energy levels of the dot with increasing electron
occupation, N. As the number of electrons in the dot is increased, the energy levels of
the well become more closely spaced, until they become a semi-continuum of states. This
semi-continuum of states can be described by a Fermi distribution, depicted schematically
on the far right; with un-occupied states above the electrochemical potential energy and
occupied states below.

Although the purpose of the SET, namely to measure the spin state of a single electron
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along the Z-axis of the Bloch sphere, is decidedly quantum in nature, the working principle

behind its operation can be explained chiefly through classical capacitive couplings, plus

the ability of electrons to tunnel on and off the island. The SET can thus be represented

as a circuit diagram, shown in Figure 3.11.

SET island

Drain

Source

CD

CS

CTG

VTGS

VSD
Top gate

VTG

Figure 3.11: SET circuit diagram. Circuit diagram depicting the capacitive couplings
to the SET. VSD represents the voltage bias applied between the source and drain leads,
CD (CS) represents the capacitive coupling between the SET island and the drain (source)
lead. VTGS represents the voltage applied to the top gate, while VTG represents the voltage
from the top gate experienced by the SET, which may differ from VTGS due to losses at
the source contact. CTG represents the capacitive coupling between the SET island and
the top gate, which is used to control the electron occupation of the island.

The SET island possesses three capacitive couplings: one to the source lead, CS, one to

the drain lead, CD, and one to the top gate CTG. Together, these make up the total

capacitive coupling experienced by the SET island, CΣ

CΣ = CS + CD + CTG. (3.19)

The occupation of the SET island is controlled using the voltage applied to the gate TG.

The total energy of the SET island when a voltage of VTG is applied to the TG is given

by the following formula (which has been simplified for clarity):
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E(N) = [−eN + CTGVVG]2

2CΣ
, (3.20)

where N is the number of electrons on the island and e is the charge of each electron. The

energy required to add the N th electron to the SET island, with an occupation of N − 1

electrons, is referred to as the electrochemical potential of the SET island and is given by

µ(N) = E(N)− E(N − 1), (3.21)

= [−eN + CTGVVG]2

2CΣ
− [−e(N − 1) + CTGVVG]2

2CΣ
, (3.22)

= e2

CΣ

(
N − 1

2 −
CTGVVG

e

)
. (3.23)

As the applied voltage VTG is increased, electrons are sequentially added to the SET

island, resulting in the formation of a ladder of electrochemical potential levels. The

spacing between these levels is given by

EC = µ(N)− µ(N − 1), (3.24)

= e2

2CΣ
. (3.25)

The spacing between adjacent electrochemical potential levels in the ladder represents

the energetic cost of adding an additional electron to the SET island, referred to as the

addition or charging energy, and depends exclusively on the total capacitive coupling ex-

perienced by the island.

Figure 3.12 depicts the equidistant ladder of electrochemical potential levels present in

the SET island. By applying a voltage difference (bias) between the source and drain,

VSD, we can detune the electrochemical potentials of the source and drain (µS and µD re-

spectively) from one another. Whether or not a current can flow through the SET island,

now depends very sensitively on whether an electrochemical energy level lies in the energy

region between µD and µS, highlighted in green in Figure 3.12.
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Figure 3.12: Operation of the SET. a and b both illustrate the electrochemical potential
levels in the SET island, with µN+1 representing the energy to add an additional electron
to the island. The island is enclosed by two barrier gates, the left barrier gate (LB) and
right barrier gate (RB). µD and µS represent the drain and source potentials respectively,
with the green box highlighting the region between the drain and source level. a. The case
for which the electrochemical potentials of the island lie outside of the region between the
drain and source. This results in tunneling from the drain to the island being prohibited
and thus blocking any current from flowing between the source and drain, through the
island. b. The case for which the electrochemical potential of the island lies in the region
between the drain and source and thus an electron can tunnel onto the island from the
drain, allowing a current to flow between the source and drain. EC represents the charging
energy.

The tunnel coupling between the SET island and the source and drain leads means that

if the electrochemical potential of the SET lies within the region, between µD and µS,

then an electron can tunnel from the drain, onto the island and to the source. If however,

the electrochemical potential of the SET lies outside of this region, then tunneling of the

electron is prohibited and hence no current will flow between the source and drain. We call

this regime of prohibited tunneling through the SET, Coulomb blockade. The capacitive

coupling between the island and the TG means that by changing the voltage applied to

the TG, we can shift the ladder of electrochemical potentials in the SET island higher

or lower in energy. Therefore, by sweeping the voltage applied to the TG, the ladder of

electrochemical potentials in the SET will move sequentially through the green highlighted

region between the source and drain and thus the SET will move in and out of Coulomb

blockade, resulting in peaks in the current running through the SET, as a function of VTG.

We call these oscillations in current with sweeping gate voltage, Coulomb oscillations [85].
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Figure 3.13: One-dimensional Coulomb oscillations. Diagram illustrating the current
through the SET (ISET) against the voltage applied to the top gate (VTG). As VTG is
increased, the electrochemical potential ladder of the SET island is shifted sequentially
through the region between the drain and source potentials, as highlighted in the green
box. Every time an electrochemical potential level of the island enters this region, current
can flow through the SET. When the levels are shifted outside of this region however, the
current through the SET is blocked and the SET is in Coulomb blockade. The oscillation
of the current in and out of Coulomb blockade with the application of a gate voltage is
referred to as Coulomb oscillations.

The concept behind the detection of charge movement in the vicinity of the SET is illus-

trated in Figure 3.14. The movement of a charge in the vicinity of the SET, results in a

shift of ∆q
e to the levels in the electrochemical potential ladder, where ∆q is the charge

induced on the SET island. This shift in the electrochemical potential of the SET is known

as the charge-transfer signal and its strength depends on a number of factors. If the charge

transfer signal is sufficiently large then, upon the movement of charge, the electrochemical

potential of the SET can shift from outside the region between the source and drain poten-

tials, to inside this region, resulting in a binary shift between no current flowing through

the SET and current flowing through the SET. This binary shift in current through the

SET therefore represents a clear indication of the movement of charge in the SET’s vicinity.
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For readout of the donor-bound electron, we selectively remove the electron from the

donor, dependent on its spin state, such that we can detect this movement of the electron

with the SET [86, 87]. In order to maximise the readout signal of this ionisation event,

we fabricate the SET island close enough to the donor, such that the donor electron is

tunnel-coupled to the SET island. This results in the donor electron tunneling onto the

SET island itself, thereby maximising the resulting shift in the electrochemical potential

and thus the change in current through the SET as a result of the ionisation [88]. Figure

3.14 shows the resultant shift in the SET Coulomb peaks as a result of the donor electron

tunneling onto the SET island.

In order to convert this charge detection from the ionisation of the donor into information

regarding the electron’s spin state, we can manipulate the relative positioning between

the energy levels of the donor and the electrochemical potential of the SET, such that the

tunneling of the donor electron onto the SET island is dependent on its spin state. To

do this we can make use of the Zeeman interaction, which splits the energy level of the

spin |↓⟩ and spin |↑⟩ states in the presence of a magnetic field. It is important to note

that this method of spin readout relies on the fact that the Fermi distribution of the SET

is sharp in the energy scale defined by the Zeeman splitting [88], which is discussed in

greater depth in section 3.10. For this reason, we operate the donor spin qubit devices at

≈ 20 mK in a dilution refrigerator.

Using local gates that are capacitively coupled to the donor, along with gates capacitively

coupled to the SET island, we can manipulate the energy levels of the donor, such that the

spin |↑⟩ and spin |↓⟩ energy levels straddle the electrochemical potential of the SET. Con-

sequently, only a spin |↑⟩ electron is able to tunnel onto the SET island, while tunneling of

the spin |↓⟩ electron is prohibited. We refer to this point of operation of the gates as the

‘read’ level. The tunneling of the electron onto the SET island results in the ionised donor

nucleus being left with a positive charge, causing a shift in the electrochemical potential,

as described above, resulting in the SET being shifted out of Coulomb blockade and hence
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Figure 3.14: Shift in Coulomb oscillations. Two plots of Coulomb oscillations for
the case of both a neutral and ionised donor atom in the vicinity of the SET. The purple
current peaks are artificially offset along the y axis from the blue current peaks, for clarity.
The purple and blue peaks are shifted from one another by the charge transfer signal, ∆q

e ,
where ∆q represents the change in charge on the island. The panels surrounding the figure
indicate the positioning of the electrochemical potentials of the SET island with respect
to the source and drain potentials, µS and µD.

a current flowing between the source and drain. Conversely, in this configuration, a spin

|↓⟩ electron is able to tunnel from the SET island, back onto the donor, while the tunneling

of a spin |↑⟩ electron is prohibited. Thus, after some time, a spin |↓⟩ electron will tunnel

from the island, back onto the donor, causing the electrochemical potentials of the SET
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to move back to their original position with respect to the source-drain window, resulting

in the SET returning to Coulomb blockade and the current being blocked. The tunneling

of a spin |↑⟩ electron can therefore be detected by looking for instances where the current

through the SET is high for the duration it takes for a spin |↓⟩ electron to tunnel back

onto the donor from the island. We call this a ‘blip’ of current and it allows us to convert

the charge movement of the electron, into the detection of a spin |↑⟩ state. Similarly,

the observation of no current blip for the duration of the read period is indicative of the

presence of a spin |↓⟩ electron.

Using the same principles as those underpinning the read out of the donor electron, we

ionise the donor by manipulating both energy levels of the donor electron above the electro-

chemical potential of the SET, such that the electron can tunnel onto the island, regardless

of its spin state. We refer to the gate voltage at which we enter this regime as the ‘empty’

level. Moreover, when actively performing operations on the electron, it is important that

the electron remain continuously bound to the donor. During operation on the electron,

we can therefore manipulate the electron energy levels, such that they both lie below the

electrochemical potential of the SET island, prohibiting the electron from tunneling to the

island, regardless of its charge state, which we refer to as the ‘load’ or ‘plunge’ regime.
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Figure 3.15: Spin readout with an SET. Diagram of the spin |↓⟩ and spin |↑⟩ donor
electron energy levels, with respect to the electrochemical potential of the SET for the
case of the device being at the empty, a., read, b., and load, c. position. The green
arrows represent the energy levels for which tunneling is allowed, while the orange arrows
represent the energy levels for which tunneling is prohibited. For the empty case, the
donor electron can tunnel onto the SET island regardless of its spin state. For the read
level however, only a spin |↑⟩ electron can tunnel onto the island, while a spin |↓⟩ state
is prohibited from tunneling. Conversely, for the load case, both the |↓⟩ and |↑⟩ electron
states are prohibited from tunneling onto the island.

The shifts in the electrochemical potential of the SET caused by the tunneling of a donor

bound electron to the SET island is most clearly observed by sweeping the voltages applied

to two gates in the device and measuring the resulting Coulomb oscillations, as shown in

Figure 3.16. By sweeping two gates, we are able to observe the Coulomb oscillations in

two-dimensions, with the gradient of the oscillations depending on the relative strength

of the capacitive couplings between each gate and the SET island, as discussed in greater

depth in section 3.10.3. As with the one-dimensional case, we can observe clear disconti-

nuities in the Coulomb peaks, indicative of the movement of charge in the vicinity of the

SET, which results in a shift in the electrochemical potential of the island. Each break in

the Coulomb peaks is referred to as a charge transition, with each transition representing

a unique movement of charge in the vicinity of the SET.

Further investigation is required in order to identify which of these transitions may be

associated with the tunneling of a donor bound electron onto the SET island and which

are simply caused by the displacement of charge traps in the vicinity of the SET. The

process of distinguishing between these two cases is detailed in section 3.8.
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(0, N)

(0, N-1)

(0, N+1)

(0, N+2)
(1, N+2)

(1, N+1)

(1, N)

Empty

Read

Load

Charge 1

Charge 2 Charge 3

Figure 3.16: Two-dimensional charge stability diagram. Plot of Coulomb oscilla-
tions through the SET as a function of two gate voltages. The breaks in the Coulomb
oscillations represent the movement of charge in the vicinity of the SET island, which
shift the electrochemical potential levels of the SET island. a. Charge stability map high-
lighting the different transitions caused by the displacement of charge in the SET vicinity.
b. Charge stability map highlighting the donor and SET occupation at various locations
on the charge stability map, where the labelling (x, y) corresponds to x = donor electron
occupancy and y = SET island electron occupancy. The donor electron occupancy of 0(1)
represents the ionised (neutral) state of the donor, while the SET island occupancy of N
represents the number of additional electrons added to the SET island.

3.7 Device characterisation

After fabricating the qubit devices, there are a number of steps that must be carried out

before donor qubit experiments can commence. This process involves first testing that all

gates on the device are working correctly, before cooling the device down to milli-kelvin

(mK) temperatures in a dilution refrigerator, forming a working SET and ensuring that

Coulomb oscillations can be performed with every gate.

3.7.1 Testing at 4K

The fabrication yield of donor qubit devices is not 100% and therefore it is important

to carefully screen for working devices upon completion of device fabrication, in order to

identify promising candidates for donor spin experiments. Cooling down a device in a
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dilution fridge is a time intensive process and thus it is far more time efficient to carry

out the preliminary testing of the device functionality at 4.2 K, in a liquid helium dewar.

The first test that should be carried out is to assess the functionality of the gates, by

determining if there are any current leakage channels within the device. There are a

number of different mechanisms through which current leakage can occur in a device

however, the primary mechanisms observed are the following:

1. Metallic shorting of the gates. This can occur for example through issues with the

device fabrication or the wires used for bonding making contact with one another.

2. Gate to ohmic contact leakage. This is often due to a poor quality oxide layer

between the silicon and the aluminium gates.

3. Leakage between the source and drain of the SET. This leakage mechanism is often

caused by positive charges trapped in the oxide, which result in a conductive channel

of electrons being drawn towards the SiO2/Si interface, allowing current to flow

between the source and drain even with no voltage applied to the top gate.

In order to test for current leakage within the device at 4.2 K, we carry out the following

process:

1. Ground all the gates in the device.

2. Connect the gate that we wish to test for leakage to a source measure unit (SMU),

which is capable of both sourcing a voltage and measuring a current simultaneously.

Unground this gate.

3. Using the SMU, slowly increase the voltage applied to the ungrounded gate, up to

the voltage that would typically be applied in experiments. As the voltage applied

to this gate is increased, a potential difference is introduced between this gate and

the remaining gates at ground.
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4. Monitor the SMU for any resultant current detected. If the leakage current is low

(typically ≈ 20 pA) when the maximum voltage applied to the gate is reached, then

this gate is deemed to be free of leakage channels. If however, the current increases

above a chosen threshold upon increasing in the gate voltage then this is indicative

of leakage from the gate.

5. If the gate is determined to be leaking, then we can attempt to identify which gate

it might be leaking to, for diagnostic purposes, by sequentially ungrounding each of

the other gates in the device, while continuing to monitor the current with the SMU.

If we unground the gate to which our gate of interest is leaking, then we allow the

two gates to equalise, removing the voltage differential between them. This results

in the elimination of the current flowing from the gate to ground and hence the

observation of the current measured by the SMU dropping to 0.

6. These steps are repeated for every gate, until all the gates are either verified to be

free of current leakage or the device is deemed unsuitable for donor experiments.

3.7.2 Forming an SET

Once all the gates in a device have been assessed for gate leakage, the next step is to

determine if we are able to form a working SET. The first step towards forming an SET

is ascertaining if we are able to induce a conductive channel of electrons underneath the

top gate, known as a two-dimensional electron gas (2DEG). To do this, all the gates as-

sociated with the SET are first ungrounded, namely the top gate, left and right barrier

gate and source. A small voltage is applied to the source to produce a source-drain bias

potential. An increasing voltage is then simultaneously applied to the top gate and both

barrier gates, while the current between the source and drain is monitored. This increasing

positive voltage draws electrons towards the SiO2/Si interface, resulting in a conductive

channel of electrons forming at the silicon-oxide interface. When the voltage reaches the

value at which this 2DEG continuously connects the source and drain, known as the ‘turn-

on voltage’, a current can flow between the two. This measurement is hence known as a
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‘turn-on’ measurement.

Once a conductive channel has been formed and a current is flowing between the source

and drain, we can test if the barrier gates are capable of successfully blocking this conduc-

tive channel. For this measurement we typically test each of the barrier gates individually.

With voltages applied to the top gate, barrier gates and source-drain bias such that a

2DEG is present between the source and drain, we then ramp the voltage applied to one

of the barriers to more negative voltages while monitoring the current between the source

and drain. As the barrier gate becomes more negative in voltage, it begins to repel elec-

trons from the 2DEG beneath it and thus breaks the conductive channel between the

source and drain, resulting in the observation of the current dropping to zero below a

certain barrier voltage. We call this measurement ‘pinch-off’ as we are pinching off the

current between the source and drain contacts. We can then ramp this barrier back to

the turn on voltage regime and repeat this process with the other barrier.

After a successful turn on and pinch-off measurement, we can once again return the volt-

ages to the turn-on regime, before ramping both barriers together to more negative volt-

ages, thus repelling the 2DEG from underneath both the barriers simultanelously. Once

the current between the source and drain has been pinched off by both barriers, we are

left with a small reservoir of electrons underneath the TG, between the two barrier gates,

thus forming our SET island.
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TGLB RBAl
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Al2O3
SiO2

Drain SET island Source

Figure 3.17: Working SET. Depiction of the 2DEG after the formation of a working SET,
with the 2DEG repelled from underneath the barrier gates, in order to form a reservoir of
electrons between the two, which we use as our SET island.
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Figure 3.18: Device turn on and pinch off. a. Device schematic during a turn on
measurement. In this measurement the voltages of the top gate (TG), LB and RB are
swept simultaneously, until turn on voltage is reached, at which point a 2DEG is formed,
forming a conductive channel between the source and drain. b. Turn on measurement,
showing a current flowing through the SET once the turn on voltage is reached. c. Device
schematic during a pinch-off measurement of the left barrier (LB). In this measurement
the two-dimensional electron gas (2DEG) is depleted from underneath the LB.d. Pinch-off
measurement of the left barrier, showing the SET current being cut off below the pinch-off
voltage applied to LB. e. Device schematic during a pinch-off measurement of the right
barrier (RB). In this measurement the 2DEG is depleted from underneath the RB. f.
Pinch-off measurement of the right barrier, showing the SET current being cut off below
the pinch-off voltage applied to RB. The measurements in b,d,f were performed by Dr
Danielle Holmes at the University of New South Wales, with a source-drain bias of 1 mV.
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3.8. DONOR SEARCH

3.8 Donor search

Once the functionality of the device gates have been verified at 4K, the device can be

cooled to ≈ 20 mK in a dilution fridge and the search for a donor atom can commence.

After forming an SET, we can sweep the voltages on pairs of gates to obtain Coulomb

oscillations in the SET current. As stated previously, any breaks in these oscillations

represent the movement of charge in the vicinity and can be investigated as a potential

donor transition. The number of donor transitions present in the device will depend on

the donor implantation parameters chosen and thus the number of addressable donors

in the vicinity of the SET island. Although the exact pattern of Coulomb peaks can

vary between instances of warming to room temperature and cooling it back down to mK

temperature (referred to as a thermal cycle), the slope of the charge transitions through

the Coulomb peaks forms a unique fingerprint for each device, as this gradient is dictated

by the capacitive coupling between the SET and the charge responsible for the transition.

The slope of a transition can therefore be used as a method of identifying key transitions

in a device through multiple cooldowns. Figure 3.19 shows a series of Coulomb oscillations

taken before and after a thermal cycle of the device in a dilution fridge. Although the maps

show significant changes between thermal cycles, the gradient of the charge transitions (i.e.

the breaks in the Coulomb peaks) remain constant between each cooldown.
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Figure 3.19: Charge stability map across cooldowns. Coulomb oscillations on the
same device carried out before, a., and after, b., a thermal cycle of the device from mK
temperaures to room temperature and back to mK. The two red lines in both a. and b.
are of the same slope, which is an indication that the transitions covered by the red line
belong to the same charge transition. Similarly the purple lines in both a. and b. are of
the same slope, indicating that this transition belongs to the same charge transition.

3.8.0.1 Distinguishing a donor from a charge trap

Before discussing the methods by which we can distinguish a donor transition from that

of a charge trap, it is pertinent to briefly comment on the physical mechanism behind the

origin of charge traps in these devices. One of the most common source of defects in these

devices are dangling-bond (DB) defects that occur at the Si/SiO2 interface, usually as a

result of an oxygen deficiency at the interface [89]. These DBs typically occupy a range

of energy levels that span the entire semiconductor band gap. When the DB energy level

falls within an energy range kBT of the interface Fermi level, then it can act as a trapping

centre for interface electrons. Additionally, DBs can couple to structural defects in the

silicon, associated with a local reordering of the atomic positions of a non-crystalline ma-

terial. These structural defects act as tunneling two-level systems. The random switching

of these two-level fluctuators introduces a source of charge noise, in the environment of the

donor spin. When averaging over many two-level fluctuators, each switching randomly,

the resultant charge noise has a characteristic 1
f behaviour. This tunneling of electrons

92



3.8. DONOR SEARCH

as a function of gate voltage, either between neighbouring defects or between defects and

the SET island also results in charge transitions observed in the Coulomb oscillations of

the SET [89,90].

In order to investigate an individual transition, the gate voltages, identified from the 2D

gate sweep, are focused to a particular transition and Coulomb peak in gate space. Fig-

ure 3.20 shows a focused gate sweep around a given charge transition, representing the

ionisation of a donor atom, with the the gate regions corresponding to the neutral and

ionised donor state highlighted in blue and green respectively. Although any region above

or below the transition could be chosen as our load/empty region of gate space, voltages

are typically chosen that lie on the slope of the Coulomb peak as shown in Figure 3.20.

We refer to this mode of operation as ‘compensated’ loading or emptying of the donor,

because we typically use one gate to move above or below the transition in gate space and

another gate to compensate for this movement, such that we always stay on the slope of

the Coulomb peak. Although not strictly necessary, this compensation ensures that the

SET electrochemical potential is kept constant, while the donor potential is being moved

up or down. In the quantum dot community, this mode of operation is often referred to

as a ‘virtual gate’ [91].
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Figure 3.20: Donor charge transition. Region of donor operation in gate space, showing
the empty, load and read points for the donor. The dark grey stripes represent the Coulomb
peaks, with the break in this peak originating from the donor charge transition. The
blue region represents the gate space for which the donor is neutral, while the green
region represents the gate voltages for which the donor is ionised. Red line indicates the
direction along which the voltages are swept between the load, read and empty position
when sweeping in a compensated mode. The slope of this red line matches the slope of
the Coulomb peak.

In order to distinguish whether a transition such as the one shown in Figure 3.20 belongs

to a donor atom or to the discharging of charge from a defect in the lattice, we can perform

a T1 measurement to measure the relaxation time of the spin associated with the charge

transition. The typical relaxation time of a donor electron is of order 1 s, compared to of

order a few µs for a charge trap [89,92]. The relaxation time is therefore a clear indication

of the nature of the transition. If the transition belongs to a charge trap, then we can

continue exploring gate space for a more favourable transition.

In a typical donor experiment, the relaxation time is measured by initialising the electron

spin into a spin |↓⟩ state, applying an oscillating B1 field for the duration required to flip
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3.9. CONTROL AND READOUT OF THE ELECTRON SPIN

the spin into the |↑⟩ state and then sweeping the wait duration before reading out the

state of the spin. This process however, relies on the ability to invert the spin from the

|↓⟩ to the |↑⟩ state and thus the knowledge of the resonance frequencies of the system. If

however, we are still in the process of identifying if this transition belongs to a donor, than

these frequencies are unknown to us. In this case, we can measure the relaxation time, by

setting the voltages to the load point in order to randomly load a spin |↓⟩ or |↑⟩ electron

onto the donor, and then sweeping the wait time before reading the electron. As a result

of the multiple repetitions of this sequence necessary to gain statistics, this method thus

results in a spin up proportion of ≈ 0.5 being observed at the beginning of the wait time,

with the spin up proportion decaying to 0 as the spin relaxes.

3.9 Control and readout of the electron spin

3.9.1 Adiabatic electron spin resonance (ESR)

Immediately upon the discovery of a donor transition, a number of key donor parameters,

namely the resonance frequencies and π pulse durations of the electron and nuclear spin,

are unknown to us. This makes the search for the resonance frequencies somewhat dif-

ficult when first calibrating the donor. To make this process easier, we use a method of

spin inversion that is agnostic to the exact duration or resonance frequency of the applied

pulse. This technique is known as adiabatic electron spin resonance (adiabatic ESR) [93].

The process of adiabatic ESR involves applying an oscillating B1 pulse to the spin, which

is swept in frequency from a frequency that is negatively detuned from the resonance fre-

quency, to a frequency that is positively detuned from the resonance frequency. The exact

duration of the pulse, and hence the rate at which this frequency is swept is not important,

as long as the sweeping rate of the pulse frequency meets the following requirement

∂

∂t
∆ν ≪ ν2

R, (3.26)

where ∂
∂t∆ν is the frequency sweep rate in units of s−2 and νR is the Rabi frequency of
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the spin [93]. Similarly, the exact frequency range of the frequency sweep is not impor-

tant, provided that the range is large enough, such that the frequency sweep starts and

ends highly detuned (i.e. the detuning is much larger than the Rabi frequency) from the

resonance frequency of the spin, as shown in Figure 3.21.

ω

d
dt Δ << R

Δ

υυ 2

Figure 3.21: Adiabatic frequency sweeping. Diagram showing the sweeping of the AC
magnetic field used to adiabatically invert the spin. The frequency of the AC field sweeps
a range of ∆ about the resonance frequency, ω0. The asymmetry of the sweep about
the resonance frequency is representative of the fact that the resonance frequency does
not have to lie in the centre of the adiabatic frequency sweep in order to be successfully
inverted by the adiabatic pulse, provided that the adiabatic frequency sweep begins and
ends at sufficient frequency detuning from ω0. This makes adiabatic frequency sweeps
a useful tool for inverting the spin without requiring knowledge of the exact resonance
frequency of the system, for example when finding the resonance frequencies for the first
time or when noise in the environment causes the resonance frequency of the spin to
change frequently. In order to adiabatically invert the spin the sweep rate d

dt∆ must be
much smaller than ν2

R.

If the spin is initialised in the |↓⟩ state then, when the field is highly detuned from the

resonance frequency, this state represents an eigenstate of the system and thus the spin

remains stationary. As we slowly sweep the frequency of the B1 field however, towards the

resonance frequency of the spin, then the detuning along the z-axis of the Bloch sphere

becomes gradually smaller, while the B1 along the xy plane remains the same magnitude.

Thus the vector sum between the two fields results in the effective field experienced by the

spin pointing further away from the -z-axis and hence this field gradually moves around

the Bloch sphere, as the frequency detuning decreases. If this change in the direction of
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Figure 3.22: Adiabatic inversion. a. Bloch sphere of the spin, with the yellow line
representing the effective field experienced by the field (calculated with the vector sum
between the Rabi frequency of the spin and the frequency detuning of the B1 field) and the
black line representing the spin state. As the detuning of the applied B1 field is swept, the
effective field slowly moves around the Bloch sphere. As the change in the instantaneous
eigenstate of the Hamiltonian is gradual, the spin follows the instantaneous eigenstate
around the Bloch sphere. b. The resultant spin up proportion of the spin.

the field is gradual enough, then the effective field will only be displaced very subtly from

its previous position and hence the instantaneous eigenstate of the Hamiltonian will only

change very subtly. If this change is slow enough compared to the precession frequency of

the spin, caused by the small deviation of the instantaneous eigenstate of the system from

the spin’s state, then the spin will undergo a small precession about the new eigenstate

and thus follow the field around the Bloch sphere. This movement of the spin around

the Bloch sphere, following the instantaneous eigenstate of the system, is shown in Figure

3.22. Adiabatic ESR is thus a very helpful tool for donor calibration, as it allows us to

invert the spin without knowledge of its exact resonance frequency or π pulse duration.

Although adiabatic ESR can be performed without knowledge of the exact resonance fre-

quency or Rabi frequency of the spin, it is important to select the frequency range and

duration of the adiabatic pulse such that it remains adiabatic in nature. Figure 3.23 shows
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Figure 3.23: Adiabatic inversion simulation. Three separate simulations of driving
the state of an electron spin initialised in the |↓⟩ state. In order to adiabatically invert
the spin, the sweep rate must be sufficiently slower than the Rabi frequency of the spin.
We therefore simulate the adiabatic inversion with: a too fast sweep rate, a., a too small
sweep range, b., and with the correct parameters, c.. Note that the Rabi frequency used
in these simulations is much faster than the Rabi frequencies achieved experimentally for
the electron spin (≈ 1 MHz) in order to reduce the time required for the simulations.

a simulation of the adiabatic inversion of the spin for three distinct cases: the case in which

the frequency ramp rate of the adiabatic pulse is too fast, the case in which the frequency

sweep range is too small and the case for which the frequency ramp rate and range are

sufficient to adiabatically invert the spin.

If the frequency sweep rate is too fast, then the physical implication of this is that the in-

stantaneous eigenstate of the spin moves too quickly across the Bloch sphere. This means

that the spin is not able to follow the direction of the effective field, as it is traversing
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the Bloch sphere much faster than the spin is able to precess about it. Thus, the field

direction becomes far displaced from the spin direction on the Bloch sphere, mimicking

the conditions of coherent ESR and thus the inversion is no longer adiabatic in nature.

Moreover, if the frequency range of the adiabatic sweep is not sufficiently large, then the

field does not start highly detuned from the resonance frequency. The physical implica-

tion of this is that the eigenstate of the system does not begin the adiabatic inversion

aligned with the state of the spin. This results in the spin traversing larger precession

cones around the Bloch sphere as it follows the instantaneous eigenstate of the system. If

these become too large, then the drive once again loses its adiabatic nature and mimics

coherent drive instead.

If however, the frequency range and sweep rate are sufficient for adiabatic inversion, then

the spin will be dragged around the Bloch sphere with the applied field. In order to find

the resonance frequencies of the donor electron we therefore apply adiabatic pulses (where

the frequency of the pulse is swept over an intelligently chosen range and duration), while

also sweeping the centre frequency of the adiabatic pulse about the frequencies we expect

the resonances to occur, given the strength of the static B0 field. This should result in

peaks observed in the spin up proportion of the electron, indicating that the adiabatic

pulse has inverted the electron spin.

3.9.2 Coherent ESR

After the approximate electron spin resonance (ESR) resonance frequencies have been

found adiabatically, we can proceed with performing coherent ESR. Coherent ESR is

important to demonstrate, as it facilitates the preparation of any arbitrary state of the

electron spin on the Bloch sphere. In order to obtain coherent ESR we must calibrate

the frequency and duration of our applied B1 field, such that upon the application of a π

pulse, the spin performs a 180o rotation on the Bloch sphere.
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3.9.2.1 Calibrating resonance frequencies

After obtaining the approximate resonance frequencies of the electron spin adiabatically,

we can obtain the resonance frequencies of the spin more accurately using coherent ESR, by

first initialising the electron into the |↓⟩ state, before sweeping the frequency of an applied

B1 pulse about the resonances found with adiabatic ESR. As the correct π pulse duration

is initially unknown to us, we can begin by applying the pulse for some reasonably chosen

duration, the value of which will depend on the pulse power. When the frequency of the

B1 field reaches the active resonance frequency of the spin, a peak in the spin up propor-

tion will be observed, the fitting of which will return the centre frequency of this resonance.

The linewidth of a power broadened resonance peak can be understood by studying the

component of the Rabi flopping formula that governs the amplitude of the Rabi oscillations

A = ν2
R

(ν2
R + ∆2)

, (3.27)

where νR is the Rabi frequency and ∆ is the frequency detuning between the resonance

frequency of the spin and the frequency of the B1 field. Plotting the amplitude, A, as a

function of the frequency detuning, ∆, results in a Lorenzian lineshape with a full-width at

half-maximum of 2νR [94]. Consequently, by applying a lower power B1 field, the ampli-

tude of the Rabi oscillations is decreased, along with the linewidth of the resonance peaks.

In order to more accurately determine the ESR resonance frequencies, we can therefore

lower the power of the driving field B1, such that the centre frequency of the resonance

peak can be more accurately determined. Experimental data showing the linewidth of an

ESR resonance peak as a function of B1 power is shown in Figure 3.24. The minimum

linewidth of a resonance peak, is given by the intrinsic linewidth, which depends on the

coherence time T ∗
2 of the spin.
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Figure 3.24: Power broadening. a. ESR frequency spectra as a function of B1 power
along the y-axis. Each spectrum is performed by sweeping the frequency of an oscillating
B1 field and measuring the resulting spin-up proportion. A peak in spin up proportion
is observed when the B1 field frequency is equal to the resonance frequency of the spin,
as explained in section 2.4. b. Each individual ESR frequency spectra from a. plotted
on top of one another. The frequency spectrum for each value of B1 power is fit with a
Lorentzian, with the resulting linewidth extracted from each fit stated in the legend.

3.9.2.2 Calibrating pulse duration

In order to calibrate the duration of the π pulse used to coherently invert the spin between

the |↓⟩ and |↑⟩ states, a Rabi measurement is performed. This measurement involves first

initialising the spin in the |↓⟩ state, before applying an oscillating B1 field at the resonance

frequency, while sweeping the duration for which this pulse is applied. In the absence of

state preparation and measurement (SPAM) error, as a function of pulse duration, we

should observe the up proportion of the spin to oscillate between 0 and 1 as the spin

rotates between the ± z poles of the Bloch sphere. In practice however, SPAM error will

reduce the amplitude of our Rabi oscillations. An example Rabi oscillation is shown in

Figure 3.26. As discussed in section 2.7, the frequency of the Rabi oscillation is given by

νeff
R =

√
ν2
R + ∆2. (3.28)

The frequency of the measured Rabi oscillation, νeff
R thus depends on the frequency de-

tuning of the B1 field from the resonance frequency of the spin. For ∆ = 0, νeff
R = νR and

therefore, it is important to ensure that the frequency of the applied B1 field is exactly on

resonance when performing a Rabi measurement in order to attain an accurate calibration
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of the π pulse time required to fully rotate the spin between the |↓⟩ and |↑⟩ state, for a

given B1 power.

3.9.3 Electron readout

As discussed in depth in section 3.6, the state of the donor electron is read out via spin

dependent tunnelling to the SET island. Upon the tunnelling of a spin |↑⟩ electron from

the donor onto the SET island, the SET is shifted out of Coulomb blockade, and thus

current flows through the SET. Conversely, when a |↓⟩ electron tunnels back onto the

donor from the SET island, the SET is shifted back into Coulomb blockade and thus the

current through the SET is blocked. This thus results in a ‘blip’ of current appearing

through the SET as the SET is shifted out and in of Coulomb blockade through the

ionisation event. In order to detect this blip of current, we can set a value of ‘threshold

current’. If the SET current rises above this value during the read period, we determine

the electron to be in the spin |↑⟩ state, whereas if the SET current remains below this

threshold for the read duration, we determine the electron to be in the spin |↓⟩ state.

Figure 3.25 shows an example readout current trace following the preparation of a spin

|↑⟩ electron by initialising the electron in the |↓⟩ state and then inverting the spin with an

adiabatic pulse (Fig.3.25, a) or the preparation of a spin |↓⟩ electron,(Fig.3.25, b) via spin-

dependant tunneling from the SET to the donor. For the case of the spin |↓⟩ electron, the

SET current remains below the threshold current for the duration of the read period. For

the case of the spin |↑⟩ electron on the other hand, the current rises above the threshold

current indicating that the electron has tunnelled onto the SET island, leaving behind an

ionised donor nucleus. The SET current then falls below the threshold current after the

time taken for another electron to tunnel back onto the donor from the SET.

The threshold current can either be determined statically, by manually selecting a value

of threshold current in advance based on observation of the SET current trace, or dynam-

ically, where a threshold current is determined for each readout automatically. This is

done by plotting a histogram of the SET current for each readout trace. In the presence of

current blips this should result in two histograms, with one histogram centered about the
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Figure 3.25: SET current traces. a. Example readout current trace following the
preparation of a spin |↑⟩ state electron. The |↑⟩ electron tunnels from the donor onto the
SET, before a spin |↓⟩ electron tunnels from the SET to the donor to take its place. This
is indicated by the blip of current in the readout trace, whereby the current rises above the
threshold current for the duration of time it takes for a spin |↓⟩ electron to tunnel from the
SET to the donor. b. Example readout current trace following the preparation of a spin
|↓⟩ state electron. As the electron is in the |↓⟩ state it is prohibited from tunnelling from
the donor to the SET island, resulting in no blip of current being observed, as indicated by
the current remaining below the threshold current for the duration of the readout period.
Note that these current traces show a zoomed in region of the total read duration in order
to better observe the current blip. The nominal duration of the readout period is ≈ 1 ms
(depending on tunnel times of the donor).

mean background current of the SET, Īlow and the other centred around the mean high

current caused by the current blips, Īhigh. Fitting the histograms to determine Īlow and

Īhigh, the current threshold is then determined with either of the two following formula
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Ithreshold = Īlow + 5σI , (3.29)

Ithreshold = Īhigh − 5σI , (3.30)

where σI represents the standard deviation of the current trace. Dynamically choosing the

threshold current has the advantage of being robust against changes in the background

current of the SET, which is in turn dictated by the noise in the device. Dynamical thresh-

old current selection, using equation 3.29, is therefore the method used for readout in the

entirety of experiments discussed in this thesis.

As each readout trace only gives a single bit of information, namely a 0 if the electron

is found to be in the |↓⟩ state and a 1 if the electron is found to be in the |↑⟩ state, we

must repeat each pulse sequence and readout many times, in order to gain information

regarding the nature of an electron superposition state. This allows us to obtain the spin

up proportion, given by the formula

Pup prop = N↑
Ntotal

, (3.31)

where N↑ are the number of readout traces for which a blip of current indicating a spin

|↑⟩ electron was detected and Ntotal is the total number of readout traces.

Figure 3.26 shows the readout window for 30 repetitions of a pulse sequence, taken at dif-

ferent points on a Rabi oscillation. When the spin is at the minima of the Rabi oscillation,

i.e. in the |↓⟩ state then very few readout repetitions show a blip of current. The number

of blips at the minima of the Rabi oscillation is not zero due to the thermal broadening of

the SET Fermi distribution, which can lead to errors in electron initialisation and read-

out, as discussed in greater depth in section 3.10. The number of blips observed in the

readout repetitions increases as the spin rotates around the Bloch sphere to the |↑⟩ state,

corresponding to an increase in the spin up proportion measured.
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Figure 3.26: Rabi oscillations with SET traces. The bottom plot shows a fit to a
measured Rabi oscillation on an electron. Each point on the Rabi oscillation was measured
100 times, with the readout period from 30 of these repetitions shown in the top plots.
These readout traces were taken at the minima (red), maxima (green) and half way in
between the two (yellow) points on the Rabi oscillation. The black dashed, vertical line
in the readout traces shows the read time, before which the detection of a current blip
is counted as a spin |↑⟩ electron. After this time, the wait time becomes comparable to
the tunnel time of a spin |↓⟩ electron, and thus the detection of a current blip may also
indicate the presence of a spin |↓⟩ electron. Current blips are therefore not counted after
this time.
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3.10 Electron readout contrast optimisation

For the construction of a scalable quantum processor, error correction schemes demand

not only that the quantum operations are performed reliably with high fidelity (greater

than the error correcting threshold) but, also that the infidelity associated with initialisa-

tion and readout of the qubits remains sufficiently low (< 1%) [95]. It is therefore of great

importance that the qubit readout and initialisation fidelity is maximised. For the case of

the electron, the readout fidelity can be maximised by carefully tuning the electrostatic

environment of the donor with respect to the SET, such that the electron readout contrast

is optimised.

3.10.1 Readout contrast

The readout contrast of the electron spans between 0 and 1, and refers to the ability to

correctly distinguish the presence of a spin |↓⟩ electron from the presence of a spin |↑⟩

electron during readout. Denoting the probability of a spin |↑⟩ or spin |↓⟩ electron tun-

nelling off of the donor, onto the SET island within the read duration, tread, as P|↑⟩(tread)

and P|↓⟩(tread) respectively, the readout contrast can be defined as

C(tread) = P|↑⟩(tread)− P|↓⟩(tread), (3.32)

= −exp
(
− tread
τ|↑⟩→SET

)
+ exp

(
− tread
τ|↓⟩→SET

)
, (3.33)

where τ|↓⟩→SET and τ|↑⟩→SET are the tunnel times of a spin |↓⟩ and spin |↑⟩ electron from

the donor, onto the SET island. The tunnel time τ|↓⟩→SET depends on the density of

unoccupied |↓⟩ states in the SET island at the electrochemical potential of the |↓⟩ donor-

bound electron state, µ↓. Similarly, the tunnel time τ|↑⟩→SET depends on the density of

unoccupied |↑⟩ states in the SET island that face the electrochemical potential of the |↑⟩

electron state, µ↑.
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3.10.1 Readout contrast
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Figure 3.27: Fermi-Dirac distribution of the SET island. E − EF represents the
electron energy with respect to the Fermi energy, EF , while f(E) represents the Fermi-
Dirac distribution. At a temperature T = 0 (blue line) the Fermi-Dirac distribution is
given by a step function. As T increases (red line) the function broadens by an amount
proportional to ≈ 5× kBT .

At a temperature T=0, the Fermi distribution of the SET island is represented by a step

function, as shown in Figure 3.27. In this case, the density of unoccupied |↓⟩ states in

the SET island at µ↓ is 0. Thus, at T=0, P|↓⟩(tread) = 0 and P|↑⟩(tread) = 1 resulting in

a readout contrast of C(tread) = 1. At T > 0 however, the Fermi distribution of the SET

island becomes thermally broadened, resulting in a finite density of unoccupied |↓⟩ states

at µ↓. In this case, although P|↓⟩(tread)≪ P|↑⟩(tread), P|↓⟩(tread) is now finite, resulting in

a reduction in readout contrast.

Experimentally, we minimise the reduction in readout contrast brought about by thermal

broadening of the Fermi distribution of the SET, by cooling the spin qubit devices to T ≈

20 mK in a dilution refrigerator. However, despite the silicon lattice of the device being

at a temperature of T ≈ 20 mK, the temperature of relevance to the thermal broadening

of the Fermi distribution of the SET is the electron temperature of the SET, Te. Te is

determined experimentally by measuring the broadening of the Coulomb peaks through

the SET as a function of the mixing chamber temperature of the dilution fridge [96, 97],
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with temperatures of Te ≈ 260 mK being reported using this technique [98]. There are

a number of factors that result in the large deviation between the temperature of the

device and the electron temperature of the SET, such as the thermal load induced by the

radiation travelling through the high-frequency cables, used for spin control. Addition-

ally, the sporadic current flowing through the SET during spin readout, can also lead to

heating of the SET [98]. The electron temperature can thus be minimised through careful

attenuation of the signals travelling down the lines, along with potentially increasing the

tunnel barrier between the source and drain leads and the SET, such that the peak current

through the SET, when the device is outside of Coloumb blockade, is reduced.

Furthermore, the reduction in readout contrast caused by thermal broadening of the SET

Fermi distribution can also be reduced by increasing the Zeeman splitting between the

electron |↓⟩ and |↑⟩ states, through increasing the magnetic field, B0 [85]. For this reason,

we typically perform the spin qubit experiments in a strong B0 ≈ 1-1.4 T. The reason for

staying below B0 ≈ 1.4 T is due to both the shortening relaxation time of the spin as a

function of increasing B0 [99] and also due to the reduced cost effectiveness and experi-

mental practicality of applying frequencies γeB0 > 44 GHz for spin control.

One of the simplest methods of measuring the readout contrast of a spin system experi-

mentally is to perform a Rabi measurement. In a Rabi measurement, an AC B1 pulse of

sweeping duration is applied at the resonance frequency of the spin, resulting in the spin

oscillating between the spin |↓⟩ and spin |↑⟩ states. With a well calibrated B1 frequency

(see section 3.9.2), and a readout contrast, C(tread) = 1, the Rabi oscillation will span

between a spin up proportion of 0 and 1, indicating that we can perfectly distinguish the

presence of a spin |↓⟩ electron from a spin |↑⟩. In the presence of thermal broadening of

the Fermi distribution of the SET however, C(tread) ≤ 1, which can result in a reduction

in the amplitude of the Rabi oscillation. The readout error mechanisms that cause the

trough of the Rabi oscillation to increase from a spin up proportion of 0 include: a spin

|↓⟩ electron erroneously tunnelling from the donor to the SET during the readout period
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3.10.2 Readout optimisation with manual tuning

or a spin |↑⟩ electron erroneously tunneling onto the donor from the SET during the read

period and tunnelling back off of the donor onto the SET during the same read period,

before any pulse has been applied to this electron. Moreover, the readout error mecha-

nisms that cause the peak of the Rabi oscillations to decrease from an up proportion of

1 include: a spin |↑⟩ electron erroneously tunneling onto the donor from the SET during

the read period, before being inverted to the spin |↓⟩ state during a π rotation in the Rabi

oscillation, and hence not tunnelling during the subsequent read period.

Additionally, the peak in the Rabi oscillation can decrease due to missed current blips

in the readout period. Upon the ionisation of the donor, the duration of time for which

the current through the SET remains above the threshold current is dictated by the time

taken for a spin |↓⟩ electron to tunnel back onto the donor, τSET→|↓⟩. If τSET→|↓⟩ is suf-

ficiently fast, such that it is faster than the bandwidth of the instruments, then the SET

current may not have sufficient time to rise above the threshold current before the electron

tunnels back onto the donor. A fast tunnel rate can therefore lead to the misattributing

of a spin |↑⟩ electron as a spin |↓⟩ electron, through missed current blips. The device

measured in this thesis possessed a fast tunnel time of τSET→|↓⟩ ≈ 20 µs, at the limit of

the readout bandwidth, resulting in missing blips constituting a large proportion of the

electron readout error in this device.

3.10.2 Readout optimisation with manual tuning

There are a number of parameters that can be systematically swept in order to find

the optimal value for electron readout contrast in a given device. Perhaps the most

straightforward of these is the read duration, tread. The optimal tread is determined by

the electron tunnel rates and is chosen such that P|↑⟩(tread) is maximised and P|↓⟩(tread)

is minimised. The read duration that gives maximum readout contrast is therefore given

by the formula [100]
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Figure 3.28: Optimal read duration. a. the spin up proportion calculated for 25
iterations, as a function of read duration, for the case in which we attempt to prepare and
then read a spin |↓⟩ electron, via spin dependent tunnelling from the SET. b. the spin up
proportion calculated for 25 iterations, as a function of read duration, for the case in which
we attempt to prepare and then read a spin |↑⟩ electron. This is done by first preparing a
spin |↓⟩ state via spin dependent tunnelling from the SET, followed by an adiabatic pulse
to invert the spin to the |↑⟩ state. c. Readout contrast calculated by subtracting the
spin up proportion from a. from the spin up proportion from b.. d. Average over the 25
repetitions of calculated readout contrast. The peak in the contrast identifies the optimal
read duration.

tread, max =
τ|↑⟩→SET × τ|↓⟩→SET
τ|↑⟩→SET − τ|↓⟩→SET

log
(
τ|↑⟩→SET
τ|↓⟩→SET

)
. (3.34)

Figure 3.28 shows an experiment whereby the spin is initialised in the |↓⟩ state via spin

dependent tunnelling from the SET to the donor and either directly read out (Fig. 3.28,a)

or, inverted to the |↑⟩ state with an adiabatic pulse and then read out (Fig. 3.28,b).

The read duration is swept and the readout contrast is determined. Repeating this mea-

surement over multiple iterations and taking the mean of the contrast reveals a peak in

contrast at the optimal tread value.
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3.10.3 Readout optimisation with machine learning (ML)

3.10.3 Readout optimisation with machine learning (ML)

The readout contrast of the electron is maximised by carefully tuning the gate voltages

such that the the electrochemical potential of the SET island lies at such a position with

respect to the donor energy levels that the ratio between the |↓⟩ and |↑⟩ tunnel times is

maximised, as discussed in section 3.10. When tuning the readout position for a donor-

bound electron this process is often done manually, with the user sequentially manipulating

the gate voltages and measuring the resulting readout contrast. This process is not scal-

able however, and does not allow us to fully explore the multi-dimensional gate space

available for tuning, as a result of the difficulty and time cost associated with humans

navigating such a high-dimensional landscape. We can therefore make use of machine

learning algorithms to help improve the scalability of this process. Additionally, machine

learning allows us to more easily compare the tuneup process of donor readout over multi-

ple devices, potentially enabling some insight to be made into the physics that underpins

the optimisation of electron readout contrast.

3.10.3.1 ML for fast readout tuning

There are two areas of readout optimisation for which we have implemented machine

learning (ML) to automate the optimisation process. The first is for the fast, automated

retuning of the readout contrast during long measurement routines. For this we make use

of the Nelder-Mead algorithm; a numerical method used to find the maxima or minima of

a function in a multi-dimensional space [101–103]. The input parameters for this method

are the gate voltages to be manipulated for the readout optimisation. We typically use

two gates in the retuning sequence, in order to speed up the time taken for the optimisa-

tion process, such that the algorithm is efficient to run during a measurement. The cost

function being optimised is the readout contrast of the electron. Although this readout

contrast could be measured by determining the amplitude of a Rabi oscillation performed

on resonance with the spin, this measurement is time consuming to perform and therefore

not ideal as a method of determining the readout contrast for fast readout optimisation.
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Consequently, we can determine the readout contrast of the electron much more efficiently,

by first initialising the electron into the |↓⟩ state and then simply performing two adiabatic

ESR pulses, one on the ESR resonance conditional on the nucleus being in the spin |⇓⟩

state and one on the ESR resonance conditional on the nucleus being in the spin |⇑⟩ state.

The difference in up proportion obtained between the two readout traces gives the readout

contrast.

Figure 3.29 shows a plot of the readout contrast against repetition number of the retuning

sequence. Between each repetition, the retuning sequence evaluates the readout contrast

at the current gate position, before feeding this value into the Nelder-Mead algorithm,

which subsequently provides a new position in gate space to test. The retuning sequence

then ramps the gate voltages to this new position. This process is repeated until either a

readout contrast of 1 is achieved, or the maximum number of iterations of the retuning

sequence has been reached. The maximum retuning iterations is typically chosen to be 10

+ 10n, where n is the number of device gates included in the retuning process. For n = 2,

the retuning sequence takes approximately 30 seconds to run and is thus a fast and efficient

method to determine the optimal electron readout spot in a very localised region about the

donor transition, helping us account for both slow drifts and sudden jumps in the readout

position over the period of time it takes to run a given measurement on the system. It

should be noted however, that the efficiency of the Nelder-Mead algorithm deteriorates

rapidly as the dimensionality of the optimisation problem is increased [103, 104]. Thus,

when attempting to include n > 2 gates into the automated retuning sequence, the time

taken to run the sequence quickly becomes impractical on the timescale required for fast,

automated retuning of the readout position.
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3.10.3 Readout optimisation with machine learning (ML)
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Repetition of retuning algorithm
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Figure 3.29: Nelder-Mead retuning algorithm. a. Single run of the automated
retuning sequence. Each repetition of the retuning sequence, along the x-axis, involves
evaluating the readout contrast at the current gate position, before inputting this value
into a Nelder-Mead algorithm, which subsequently outputs the next set of gate voltages
to ramp the device to. The readout contrast can be seen to converge towards the optimal
value over 30 repetitions of the retuning algorithm. b. The gate voltage applied to one
of the gates used in the optimisation algorithm (DBL) against the voltage applied to the
gate used for compensation (TG) in order to remain on the Coulomb peak and donor
transition throughout the retuning sequence.

In order to optimise the efficiency of the Nelder-Mead retuning algorithm we can employ

virtual ‘compensation gates’ to remain on a given Coulomb peak and charge transition

throughout the tuning process. To do this we first select a gate in the device to act as

the ‘compensation gate’, for example the top gate (TG). We can then measure a two-

dimensional gate map for each of the gates, by sweeping the compensation gate along the

x-axis and the gate of interest along the y axis. The gradient of the donor transition, αT, is

dictated by the relative capacitive coupling of the gate being tested and the compensation

gate and is given by

αT = ∆VG
∆VC

, (3.35)

where ∆VG is the change in voltage of the gate being tested and ∆VC is the change in

voltage of the compensation gate required to remain on the donor transition. Similarly, by

extracting the slope of the Coulomb peak, αC, for every gate we can determine the relative

capacitive coupling of each gate to the SET island. This allows us to determine the voltage
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that must be applied to the compensation gate, in order to compensate for any change in

voltage applied to each of the device gates, such that we remain on the correct Coulomb

peak and donor transition during the automated retuning algorithm. The measurement

of the relative capacitive couplings to the donor and SET island, for an example gate, are

shown in Figure 3.30.

SET current (nA
)

SET current (nA
)

αT αC

�� ��

Compensation gate (V) Compensation gate (V)

Te
st

 g
at

e 
(V

)

Te
st

 g
at

e 
(V

)

Figure 3.30: Capacitive couplings to the donor and SET. Current through the
SET in a two dimensional gate voltage sweep across a donor transition. a. The red line
highlights the slope of the donor transition, αT. The value of αT tells us the relative
capacitive couplings between the compensation and test gate to the donor. b. The
blue line highlights the slope of the Coloumb peak, αC. The value of αC tells us the
relative capacitive couplings between the compensation gate and the test gate to the SET.
Measuring these slopes for each of the device gates tells us how much voltage to apply
to the compensation gate, in order to remain on the donor transition and Coulomb peak
while changing the voltage of the test gate. This process is repeated in order to test the
relative capacitive coupling of every gate in the device with respect to the compensation
gate.

3.10.3.2 ML for invesigating fundamental spin dependent tunnelling princi-
ples

Additionally, along with fast, automated retuning of the readout position involving only

two gates for optimisation, we can utilise more advanced optimisation protocols, involving

a greater number of gates, in an attempt to investigate the underlying physical principles

behind optimal readout contrast in these devices. For this purpose we made use of the
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3.10.3 Readout optimisation with machine learning (ML)

Boulder Opal optimisation tools provided over the cloud by the company Q-CTRL [105].

The purpose of utilising these tools to optimise the readout contrast in the device were

twofold:

1. To incorporate more gates into the optimisation algorithm in order to explore and

find a position of maximum readout contrast in a larger dimensional gate landscape.

2. To invesigate some of the underlying physical principles that dictate the maximum

readout contrast in these devices.

The optimisation procedure involved evaluating the readout contrast, C, at a given posi-

tion in gate space, using the same measurement discussed in section 3.10.3.1. The readout

contrast was then converted into a cost score (given by 1-C) and sent over the cloud

to the Boulder Opal optimisation software, which used a Gaussian process based opti-

mizer [106, 107] to calculate the next set of gate voltages to be tested, which were sub-

sequently sent back to us via the cloud. The new gate voltages were then automatically

read in by our measurement software, which then ramped the gate voltages to the next

position in gate space and repeated the procedure. A ‘cost-array’ was thus calculated by

determining the cost score at each location in gate space tested during the optimisation

procedure. Figure 3.31 shows a three-dimensional map of this cost array for two example

runs of the optimisation algorithm, each using n = 3 gates in the optimisation procedure.

We found that when incorporating n > 2 gates into the optimisation algorithm, we were

unable to converge to a position of maximum readout contrast in any reasonable time. This

may however, have been due to the lack of compensation gate used to stay on the donor

transition and Coulomb peak at the time these experiments were performed. Additionally,

although no clear trends emerged from the gate exploration that provided definitive insight

into the physical mechanisms governing the improvement of readout contrast, we did find

that the amount of current flowing through the SET appeared to have an influence on

the readout contrast. Some evidence was found that suggested more opaque SET barrier
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gates, combined with a lower source drain bias, and thus less current through the SET, led

to a trend towards higher readout contrast. Figure 3.31 shows a three-dimensional map

of the cost array of the optimisation function as a function of the gate voltages applied to

the three gates.
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Figure 3.31: Boulder Opal readout optimisation. Optimisation of readout contrast
using Q-CTRL’s neural network optimisation software. a.(b.) Gates highlighted in blue
are the gates used in the readout contrast optimisation algorithm, the results of which are
shown in c(d). c. Cost array for an example optimisation run using the Boulder Opal
Gaussian process optimiser. Each point of the cost array plotted represents 1-C, where C
is the electron readout contrast, for each set of voltages tested. The gates used were PL,
DFR and DFL. d. Cost array for an example optimisation run using the Boulder Opal
Gaussian process optimiser using the SRC (source-drain bias), gates DFL and DFR.

3.10.3.3 ML for detecting SET current blips

Another area of readout optimisation for which we can utilise machine learning is in the

detection of current blips through the SET. Normally, the binary response of the SET

current to the ionisation event of the donor, along with the high signal to noise ratio,

means that the threshold current method, discussed in section 3.9.3, is entirely sufficient
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3.10.3 Readout optimisation with machine learning (ML)

to determine the tunnelling event of an electron onto the SET island. However, if the

tunnel rate of a spin |↓⟩ electron from the SET island to the donor is sufficiently fast, such

that it is faster than the bandwidth of the instruments, then the current may not have suf-

ficient time to rise above the threshold and therefore the current blip will go un-detected.

This thus leads to the missing of spin |↑⟩ electron tunnelling events and hence a reduction

in readout contrast.

Although generally effective, the threshold current technique is somewhat rudimentary

in nature and hence an obvious question is whether a more advanced technique such as

machine learning can help alleviate this issue of missing blips. We therefore trained a

neural network from the open source library Keras to detect the tunnelling event of a spin

|↑⟩ electron onto the SET island [108]. The steps involved in using this neural network for

SET blip detection were as follows:

1. Initialise the nucleus into the |⇑⟩ state.

2. Perform a measurement involving two adiabatic ESR pulses, each followed by a read

period, with one adiabatic pulse applied at the ESR frequency conditional on the

donor nucleus being in the |⇓⟩ state and one pulse applied at the ESR frequency

conditional on the donor nucleus being in the |⇑⟩ state. Repeat this measurement

5000 times. As the nucleus is initialised in the |⇑⟩ state, the adiabatic ESR pulse

conditional on the nucleus being in the |⇓⟩ should not be on resonance and thus the

electron should remain in the |↓⟩ state. Consequently, the readout period following

this pulse should give a low spin up proportion. We assign the readout traces fol-

lowing this adiabatic pulse the label ‘low’. On the other hand, the adiabatic pulse

conditional on the nucleus being in the |⇑⟩ state, should be on resonance and hence

invert the electron to the |↑⟩ state. The readout period following this pulse should

therefore give a high spin up proportion. We thus label the readout traces following

this adiabatic pulse as ‘high’.

3. Divide the 5000 repetitions of the measurement into a training dataset and a testing
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dataset (e.g. 4000 repetitions for training and 1000 repetitions for testing).

4. Input the training dataset, with the associated labels, into the model, such that the

model can learn to identify which features of the current traces correspond to the

presence of a spin |↑⟩ electron (defined as the traces belonging to the ‘high’ dataset)

and which belong to a spin |↓⟩ (defined as belonging to the ‘low’ dataset).

5. Test the model on the testing dataset, by using the neural network to determine if

each current trace possesses a ‘high’ or a ‘low’ label and scoring the output based

on the success rate of the model’s classification. Success is defined as the model

assigning the ‘low’ label to a readout period that was following an adiabatic ESR

pulse dependent on the nuclear state |⇓⟩ or a ‘high’ label to a readout period that

was following an adiabatic ESR pulse dependent on the |⇑⟩ nuclear state.

6. The model is now trained and can be used to determine the presence of a spin |↑⟩

tunnelling event in the SET current. For every measurement, the current traces

are then fed into the model, which assigns a ‘high’ or a ‘low’ label to each trace

depending on if it identifies the presence of a spin |↑⟩ tunnelling event in the current

trace. The spin up proportion is then calculated by Pup prop = Nhigh
(Nhigh+Nlow)

, where

Nhigh is the number of traces determined to belong to the ‘high’ label and Nlow is

the number of traces determined to belong to the ‘low’ label.

In order to test how well the neural network detects the presence of a spin |↑⟩ tunnelling

event, we can repeat the measurement used to determine the readout contrast of the elec-

tron using both the trained neural network and the nominal threshold current technique.

We therefore measured 1000 repetitions of this pulse sequence, where we prepare the nu-

cleus in the |⇑⟩ state, before performing one adiabatic ESR pulse at the ESR resonance

conditional on the nucleus |⇓⟩ state and one adiabatic ESR pulse at the ESR resonance

conditional on the nucleus being in the |⇑⟩ state. We then used both the neural network

and the current thresholding method to determine the spin up proportion for each readout

trace. Figure 3.32 shows the results of this measurement, repeated 20 times.
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Figure 3.32: Determination of spin up proportion with ML. Up proportion of
a current trace measuring a spin |↓⟩ electron (blue lines) and up proportion of a current
trace measuring a spin |↑⟩ electron (purple lines). The up proportion was determined using
either the threshold current technique (solid line) or machine learning (ML), (dashed line).

Both the neural network and the threshold method determined very similar up proportions

for the traces following an adiabatic pulse conditional on the nucleus being in the |⇓⟩ state,

which we assume belongs to a spin |↓⟩ electron. However, the neutral network consistently

finds a higher spin up proportion for the current traces that follow an adiabatic pulse

conditional on the nucleus being in the |⇑⟩ state, which we assume belongs to a spin |↑⟩

electron. This suggests, that the neural network is more proficient at identifying a spin |↑⟩

tunnelling event than the threshold technique and is therefore less susceptible to missing

blips. This measurement was performed on a donor with very fast tunnel times, such that

there is a high probability of missing blips using the threshold current method. Further

study must therefore be performed, to determine if this gain in readout contrast is unique

to donors for which the electron tunnel time from the SET island to the donor is very fast

(i.e. blip detection is limited by the bandwidth of the instruments).
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3.11 Control and readout of the 31P nuclear spin

3.11.1 Coherent nuclear magnetic resonance (NMR)

The process behind the coherent manipulation of the nuclear spin is very similar to that

of the electron, with the noticeable exception of the initialisation and readout scheme. As

with the spin of the electron, the resonance frequency is found by making an initial guess

of the π pulse duration, before sweeping the frequency of the B1 field about the expected

resonance frequencies. A Rabi experiment is then performed at that resonance frequency

and used to inform the pulse duration used in a subsequent frequency spectrum. Due to

the significantly (≈ 1000 times) lower gyromagnetic ratio of the nuclear spin compared

to the electron spin, the resonance frequency of the nuclear spin is in the radio frequency

regime for a DC magnetic field of 1 T, compared to the microwave regime of the electron

resonance frequency. Similarly, the π time (defined as time taken to full invert the spin

between the |↓⟩ and |↑⟩ state) of the nucleus is typically of order 100 µs, compared to the

≈ 1 µs π time of the electron.

3.11.2 Nuclear readout

As the donor nuclei cannot be read out directly via spin-dependent tunnelling to the SET,

we instead read out the nuclei indirectly, via the donor-bound electrons. We do this by

rotating the electron conditionally on the state of the nucleus, before reading out the elec-

tron via spin dependent tunneling to the SET [19]. We can thus infer, from whether the

electron is successfully rotated to the spin |↑⟩ state or not, the state of the donor nucleus.
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Figure 3.33: Nuclear readout sequence. a. Schematic depicting the eigenstates of the
donor and the corresponding ESR and NMR transitions between them. b. A schematic
illustration of the nuclear readout process. This process first begins by performing the
desired control sequence on the nucleus as depicted with the green box. For nuclear readout
we then sequentially apply ESR 1 and ESR 2, which rotates the electron conditional on
the nucleus being in the |⇓⟩ state or |⇑⟩ state respectively. After each conditional rotation
the electron is read out. The conditional rotations are repeated multiple times after the
same pulse sequence in order to perform quantum non-demolition (QND) readout. The
entire pulse sequence including nuclear control is then repeated many times in order to
obtain a nuclear flip probability.

The postulates of quantum mechanics state that, when performing a measurement of a

quantum state, that state will be projected into one of its eigenstates. Thus when we

measure the state of the spin of the donor nucleus or electron we will only ever receive an

outcome of 0 or 1. We must therefore repeat the measurement many times, by re-preparing

the state and measuring it, in order to build the statistics necessary to determine the nature

of any superposition state. For the case of the electron, the spin is initialised into the spin

|↓⟩ state automatically after every iteration of the pulse sequence, as the readout process

automatically results in the initialisation of a spin |↓⟩ electron onto the donor. For the

case of the nuclei on the other hand, the nucleus is not automatically initialised into the

|⇓⟩ state automatically at the end of each pulse sequence. We therefore have two options:

1. Manually initialise the nuclei at the beginning of every pulse sequence into the |⇓⟩

121



state.

2. Do not initialise the nuclei and instead measure the flip probability between the

nuclear |⇓⟩ and |⇑⟩ state between each repetition of the pulse sequence.
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1Outcome 0
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Figure 3.34: Flip and filtered flip probability. Demonstration of the principles behind
measuring both the flip and filtered flip probability of the nucleus. ESR 1 and ESR 2
represent the rotation of the electron, conditional on the nucleus being either in the |⇓⟩
state or |⇑⟩ state respectively. The repetition number indicates if the outcome belongs
to the first or second repetition of the nuclear control sequence. The flip probability
represents the probability of the nucleus flipping state between repetition 1 and repetition
2 of the pulse sequence. This is indicated by the active ESR resonance (indicated in blue)
flipping between ESR 1 and ESR 2 between a repetition of the pulse sequence. Filtered
flip probability is used to distinguish if this flipping of active resonances between ESR 1
and ESR 2 is likely attributed to readout error.

Measuring the flip probability is a convenient method to avoid initialising the nuclei for

every repetition of the pulse sequence, as this is a time costly process. There are two meth-

ods by which we can determine if the nucleus has flipped between sequential repetitions

of the nuclear pulse sequence:

1. Measure only one of the conditional rotations of the electron e.g. either ESR 1 or

ESR 2. We refer to this as the flip probability.

2. Measure both of the conditional rotations on the electron, i.e. both ESR 1 and ESR
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3.11.2 Nuclear readout

2 and verify that they display the opposite behaviours (i.e. when ESR 1 gives a high

up proportion then ESR2 should give a low up proportion.) This method provides a

convenient method of ascertaining if the electron readout position is in tune during

an experiment on the nuclei and is referred to as the filtered flip probability as, if

the outcomes of ESR 1 and ESR 2 do not corroborate each other then this datapoint

is filtered from the dataset as a readout error.

3.11.2.1 Quantum non-demolition (QND) readout of the donor nucleus

An added benefit of reading out the nucleus indirectly via the electron, is that the nucleus

can be readout in a process known as quantum non-demolition (QND) measurement. The

principal concept behind QND readout is that, upon measuring some physical quantity

of a system, described by a Hermitian operator Â, with an outcome an, the system will

be projected into the corresponding eigenstate |ϕn⟩ and remain in this post-measurement

state. Consequently, every subsequent measurement of Â, should result in the same out-

come, an [109]. In practice, errors in the readout process can mean that, after the system

has been projected into |ϕn⟩, repeated measurements of the system will not necessarily re-

turn the same outcome, an. However, the ability to perform repeated QND measurements

and average over the results, allows us to greatly increase our confidence of the measure-

ment outcome in the presence of readout errors, thus increasing the readout fidelity.

Experimentally, the QND readout procedure generally consists of the system of interest,

denoted ĤQ (this system represents a qubit in the context of quantum information), the

ancillary system, ĤA, which can be read out either destructively or non-destructively, and

a coupling term between these systems, ĤC . In order to constitute a true QND readout,

the condition that must be fulfilled is that ĤQ must commute with ĤC [19, 109,110]

[ĤC , ĤQ] = 0. (3.36)

For the case of nuclear readout, ĤQ describes the nucleus, ĤA describes the electron and

ĤC represents the hyperfine coupling between them. In this case [ĤC , ĤQ] ̸= 0 and thus
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the readout of the nucleus via the electron is not perfectly QND in nature. The effect of

this is that, with every repetition of the QND readout process, the nucleus and the electron

become weakly entangled with one another. This results in a small but finite probability

of flipping the nucleus every time the electron is measured projectively; thus constituting

an error channel for the QND readout. The magnitude of this QND error depends on the

degree to which the eigenstates of the qubit-ancilla system become hybridised through the

weak entanglement, as a consequence of [ĤC , ĤQ] ̸= 0. The hybridised eigenstates of the

qubit-ancilla system can be written, in the basis {↑A/Q, ↓A/Q}, as [109]

˜|↑A↓Q⟩ = c |↑A↓Q⟩+ s |↓A↑Q⟩ , (3.37)

˜|↓A↑Q⟩ = c |↓A↑Q⟩+ s |↑A↓Q⟩ , (3.38)

where s = cos(θ) and c = sin(θ), where tan(2θ) = νC
∆ϵ . νC represents the coupling between

the qubit and the ancilla, in units of frequency, and ∆ϵ = ϵA− ϵQ represents the difference

in the frequency splitting of the spin states of the ancilla, ϵA, and of the qubit, ϵQ.

Given the eigenstates stated in equations 3.37 and 3.38, the probability of flipping the

qubit spin when a projective measurement is made on the ancilla is given by [109]

Pflip = s2

(1 + s2) . (3.39)

For the case of a donor nucleus, νC represents the hyperfine coupling strength, A ≈ 117

MHz, while ϵQ and ϵA are given by the Zeeman splitting of the donor nucleus and electron

respectively. As a result of the vastly different gyromagnetic ratios of the nucleus and

electron, |γe/γn| ≈ 103, for a B0 field of 1.4 T, ∆ϵ ≈ 40 GHz.

The experimental QND readout procedure for the donor nucleus, involves repeating the

process of loading an electron onto the donor, rotating the electron conditional on the
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3.11.3 Nuclear initialisation

state of the nucleus and then projectively measuring the state of the electron. Given

the parameters for νC and ∆ϵ stated above, the probability of flipping the nucleus every

time the electron is projectively measured in this QND procedure, is Pflip ≈ 10−6. The

readout of the nucleus is thus, to a very good approximation, QND in nature, despite

the fact that there are noncommuting terms in its Hamiltonian. This allows for very high

readout fidelities, > 99% [19], to be achieved when reading out the nucleus with QND read-

out. It should be noted however, that this discussion only considered the case for which

the hyperfine interaction is isotropic in nature. For the case of an anisotropic hyperfine

interaction, additional error channels are introduced into the QND measurement, which

can increase the erroneous flipping rate of the nucleus during repeated QND readout [109].

3.11.3 Nuclear initialisation

As stated in the previous section, the donor nuclei, unlike the electrons, cannot be ini-

tialised via spin dependent tunnelling to and from the SET reservoir and must therefore be

initialised using specially designed pulse sequences. For nuclear initialisation, we therefore

make use of a technique known as electron-nuclear double resonance spectroscopy (EN-

DOR) [2,111–113]; a widely used technique that is characterised by the hybrid addressing

of both the electron and the nuclei within the same pulse sequence.
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Figure 3.35: Electron-nuclear double resonance spectroscopy (ENDOR) nuclear
initialisation sequence. Depiction of the process behind nuclear initialisation, with
the coloured eigenstate levels representing the occupied levels and the coloured transition
frequencies indicating the applied pulse frequencies. a. The sequence for the case of the
nucleus being in the spin |⇓⟩ state at the start of the experiment. b. The sequence for
the case of the nucleus being in the spin |⇑⟩ state at the start of the experiment. Both of
these sequences result in the nucleus being initialised in the spin |⇓⟩ state at the end of
the sequence.

Crucially, for the initialisation of the donor nuclei, the ENDOR sequence acts to initialise

the donor nucleus regardless of its initial state. Figure 3.35 shows the steps comprising

the scheme to initialise the nucleus into the |⇓⟩ state, for both the case of the nucleus

being initially in the |⇓⟩ state or in the |⇑⟩ state. It is important at this point to reiterate

the nomenclature that a small arrow (↓ or ↑) represents the state of the donor bound

electron, while a large arrow (⇓ or ⇑) represents the state of the donor nucleus. With this

nomenclature in mind, the nuclear initialisation steps depicted schematically in Figure

3.35 are as follows:

1. Initialise the electron into the |↓⟩ state via spin dependent tunnelling from the SET

island, such that either the |↓⇓⟩ or |↓⇑⟩ state is occupied.

2. Apply an ESR pulse at the resonance for ESR 1, which flips the electron conditional

on the nucleus being in the |⇓⟩ state. If the nucleus is in the |⇓⟩ state then this pulse

is on resonance and hence the electron is flipped into the |↑⟩ state. If however, the

nucleus is in the |⇑⟩ state, then this pulse on the electron will not be on resonance

and hence the electron will remain in the |↓⟩ state.
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3.12. DONOR CHARACTERISATION

3. Apply an NMR pulse at the resonance for NMR 1, which flips the nucleus conditional

on the electron being in the |↓⟩ state. If the electron is in the |↓⟩ state, then the

system occupies the state |↓⇑⟩ and thus the NMR pulse flips the nucleus such that

the state |↓⇓⟩ is now occupied. Conversely, if the electron is in the |↑⟩ state, then

the |↑⇓⟩ state is occupied. The NMR pulse is therefore off resonance as the electron

is in the |↑⟩ state and therefore the system remains in the |↑⇓⟩ state.

4. Finally, the electron is re-initialised into the |↓⟩ state via spin dependent tunnelling

from the SET island, leaving us in the |↓⇓⟩ state in both cases.

3.12 Donor characterisation

Piecing together the techniques discussed in sections 3.9,-3.11, following the identification

of a donor transition, the full process for characterising the donor is summarised in Figure

3.36. The goal of this workflow is to go from identifying a charge transition in gate space

to having comprehensive control over the donor electron and nuclear state, along with

high fidelity readout, such that more complex measurements can then be carried out on

the donor.
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Figure 3.36: Donor calibration workflow.
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4.
Theory of exchange-
coupled 31P donors

The best that most of us can hope to
achieve in physics is simply to
misunderstand at a deeper level.

Wolfgang Pauli
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In the previous chapters, we have predominantly focused on the case of a single donor

atom, consisting of a 31P nucleus and a single, bound electron. However, in order to

construct a scalable quantum processor using donor atoms in silicon, it is vital that we

are able to couple multiple donor atoms together, such that we can perform multi-qubit

operations. As mentioned in section 1.1, a range of different coupling mechanisms between

donors in silicon exist, spanning a large range of distances [29–33]. In this thesis we will

focus primarily on the exchange coupling interaction, which can be utilised over a rela-

tively robust range of intermediate inter-donor distances (≈ 10-30 nm) [114].

4.1 The exchange interaction

The exchange interaction is a vital resource for quantum computation in semiconductor

spin qubits and has been exploited in almost the entirity of semiconductor spin qubit plat-

forms [115] for either the implementation of single-qubit [116–118] or two-qubit [119–122]

operations. Although a rich and complex topic, the fundamental principles behind the

origin of the exchange interaction can be introduced by considering the simple case of two

electrons, with spatial coordinates r1 and r2 respectively. The spatial component of the

wave functions of these two electrons can be expressed as ψa(r1) and ψb(r2). In order to

find the joint state for the spatial component of the wave function of the two electrons

we can take the product of the two electron states to give ψa(r1)ψb(r2). However, empir-

ical evidence tells us that indistinguishable particles must obey an exchange symmetry,

meaning that if we exchange the two electrons we are left with a multiple of the original

state [123]. For the example two-electron wave function given above, this symmetry con-

dition is not satisfied, since ψa(r1)ψb(r2) ̸= c(ψa(r2)ψb(r1)) where c represents a constant.

Consequently, the only allowed states for the spatial component of the wave function for

a joint system are either symmetrised or antisymmetrised product states, which obey the

principle of exchange symmetry. These allowed states can be written as the following [123]
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4.1. THE EXCHANGE INTERACTION

ψS = 1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)], (4.1)

ψA = 1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)], (4.2)

where ψS and ψA represent the symmetric and antisymmetric spatial wave functions re-

spectively.

The overall wave function of a particle, Ψ, is comprised not only of a spatial component,

ψ, but also of a spin component, χ, such that

Ψ = ψχ. (4.3)

The Pauli exclusion principle demands that the overall wave function of any Fermion is

antisymmetric [124]. As the electron is a Fermion this therefore offers two possibilities for

the two-electron wave function. The first possibility, is that the spatial component of the

wave function is symmetric, ψS . In this case, in order to preserve an antisymmetric overall

electron wave function it is necessary for the electron to possess an antisymmetric spin

state, χA. The second possibility, is that the spatial component of the wavefunction is

antisymmetric, ψA. In this case, an overall antisymmetric wavefunction is only maintained

if the spin component of the wavefunction is symmetric, χS . The two possible wave

functions can thus be written as [123]

ΨI = 1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χA,

ΨII = 1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χS ,

with corresponding energies

EI =
∫

Ψ∗
IĤΨIdr1dr2,

EII =
∫

Ψ∗
IIĤΨIIdr1dr2,

where Ĥ represents the Hamiltonian of the system. The difference in the energy of the

two possible wave functions is therefore given by
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EI − EII = 2
∫
ψ∗
a(r1)ψ∗

b (r2)Ĥψa(r2)ψb(r1)dr1dr2. (4.4)

The exchange constant, J , is defined as [123]

J = EI − EII
2 =

∫
ψ∗
a(r1)ψ∗

b (r2)Ĥψa(r2)ψb(r1)dr1dr2. (4.5)

Focusing on the implications of this on the spin component of the wavefunction, for the

case of J < 0, EII > EI and thus the most energetically favourable state is ΨI . The most

energetically favourable spin wave function for the case of J < 0 is therefore the anti-

symmetric wavefunction, χA. There is a single state that corresponds to an antisymmetric

spin wavefunction, which is known as the singlet state |S⟩ where

|S⟩ = 1√
2

(|↑↓⟩ − |↓↑⟩). (4.6)

Geometrically, the singlet state represents a state of two spins that point anti-parallel to

one another in an undefined direction in space, as illustrated in Fig.4.1, a.

Conversely, for the case of J > 0, EI > EII and thus the most energetically favourable

state is ΨII , with an associated symmetric spin wavefunction, χS . There are three states

that correspond to a symmetric spin wavefunction, known as the triplet states, |T−⟩ , |T0⟩

and |T+⟩

|T−⟩ = |↓↓⟩ , (4.7)

|T0⟩ = 1√
2

(|↑↓⟩+ |↓↑⟩), (4.8)

|T+⟩ = |↑↑⟩ . (4.9)

Geometrically, the |T−⟩ and |T+⟩ states represents a state of two spins pointing towards

the -z or +z direction of the Bloch sphere respectively. The |T0⟩ state represents a state

of two spins pointing parallel to one another, along some undefined direction in the xy

plane of the Bloch sphere. These geometric interpretations are represented schematically

in Fig.4.1, b.
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Figure 4.1: Geometric interpretation of singlet and triplet states. a. Schematic
of the geometric interpretation of the singlet state |S⟩ = 1√

2(|↑↓⟩ − |↓↑⟩) on the Bloch
sphere. The singlet state represent a state of anti-parallel spins that point in an undefined
direction in space. b. Schematic of the geometric interpretation of the triplet states on
a Bloch sphere. The |T−⟩ = |↓↓⟩ state represents a state of two spins pointing along the
-z direction of the Bloch sphere. The |T0⟩ = 1√

2(|↑↓⟩ + |↓↑⟩) state represents the state of
two parallel spins pointing in an undefined direction in the xy-plane of the Bloch sphere.
The |T+⟩ = |↑↑⟩ state represents a state of two spins pointing along the +z direction of
the Bloch sphere.
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4.2 The exchange interaction in a two 31P system

4.2.1 Hamiltonian of an exchange coupled two-donor system

The Hamiltonian of a system of two 31P donors, coupled via an exchange interaction be-

tween the the two donor-bound electrons is given by

Hfull = γeB0(Ŝz1 + Ŝz2) + γnB0(Îz1 + Îz2) + A1(Ŝ1 · Î1) +A2(Ŝ2 · Î2) + J(Ŝ1 · Ŝ2) ,

Electron Zeeman

Nuclear Zeeman

Hyperfine coupling

Exchange interaction

where the subscripts 1 and 2 denote donor 1 and donor 2 and hence A1 and A2 denote

the hyperfine coupling strengths for donor 1 and donor 2 respectively. As discussed in

section 2.3.2, the hyperfine coupling strength of the donor will depend on factors such as

the exact positioning of the donor within the device and the local electric fields in the

donor’s environment. For this reason A1 and A2 are not necessarily equivalent. We there-

fore define two quantities: ∆A = |A1 − A2| which represents the difference in hyperfine

coupling between the two donors and Ā = A1+A2
2 , which represents the average hyperfine

coupling of the two donors.

The eigenstates of the electrons in a two-qubit exchange-coupled system depend very in-

timately on the ratio between the coupling, J , and the detuning between the electron

spins, ∆. In the quantum dots community, a detuning between the two electrons of an

exchange-coupled system is often achieved by introducing a magnetic field gradient to

the system, such that the magnetic field experienced by the two electrons differs by an

amount ∆Bz [125]. In the case of donors, this detuning can instead be introduced in a

binary fashion by initialising the donor nuclei in either a parallel or an anti-parallel spin

orientation.

For the case of a parallel nuclear orientation, the detuning between the two electrons, in
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4.2.2 Eigenstates of an exchange coupled system

units of frequency, is given by ∆ = ∆A. ∆A arises from spatial inhomogeneity of electric

fields and strain in the device. For donors spaced by ≈ 20 nm, as required for the values

of J we are interested in, one typically finds ∆A ≈ a few MHz. For the case of the nuclei

being in an anti-parallel orientation on the other hand, the detuning between the electrons

is given by ∆ = Ā, where Ā ≈ 117 MHz (the bulk value for the hyperfine interaction in

silicon). For the case in which ∆A < J < Ā, there is therefore the opportunity to

transition between the regimes of J < ∆ to J > ∆, simply by choosing to initialise the

nuclei in either a parallel or anti-parallel orientation. It is therefore insightful to evaluate

the eigenstates of the exchange-coupled donor Hamiltonian for each of the orientations of

the two donor nuclei individually.

4.2.2 Eigenstates of an exchange coupled system
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Figure 4.2: Simulated ESR frequency spectrum for electron 1 for the case of the nuclei
in the state |⇓1⇓2⟩ (a.), |⇓1⇑2⟩ (b.), |⇑1⇓2⟩ (c.), |⇑1⇑2⟩ (d.) plotted on a log scale
of J/Ā. Each inset shows a zoomed region of the plot for clarity. The colors of the
transitions are scaled according to the probility of the transition, given by PESR∆S1z
where PESR = | ⟨ψi| (S1x + S2x) |ψf ⟩ |2 and ∆S1z = ⟨ψf |S1z |ψf ⟩ − ⟨ψi|S1z |ψi⟩ where |ψi⟩
and |ψf ⟩ represent the initial and final state of electron 1 respectively. The term ∆S1z is
present in the scaling factor to mimic the readout of the electron experimentally, which
occurs along the z-axis of the Bloch sphere (see section 3.9.3). The simulation code used
for these simulations was written by Dr Rachpon Kalra during his time at the University
of New South Wales [114].

Figure 4.2 shows the simulated ESR spectrum for the electron bound to donor 1, referred

to as electron 1, in an exchange-coupled donor system. The system has been simulated
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for each of the four possible two-nuclear states: |⇓1⇓2⟩ , |⇓1⇑2⟩ , |⇑1⇓2⟩ and |⇑1⇑2⟩ over a

range of J values spanning from J ≪ Ā to J ≫ Ā.

For the case of the nuclei in the |⇓1⇓2⟩ configuration (Fig.4.2, a) the following transition

frequencies are present:

ν1 = T− ←→ S̃, (4.10)

ν2 = T− ←→ T0, T0 ←→ T+, (4.11)

ν3 = S̃ ←→ T+, (4.12)

where S̃ represents a singlet-like state. In the limits of high J this singlet-like state be-

comes a pure singlet, with a total spin of zero and thus can no longer be driven with ESR.

For the case of J ≫ Ā, ν2 represents the combined transition between T− ←→ T0 and

T0 ←→ T+. In the limit of small J however, these transitions become split in frequency

by ∆A = |A1 −A2| and hence can be individually addressed.

For the case of the nuclei in the |⇓1⇑2⟩ configuration (Fig.4.2, b) the transition frequencies

present are the following. Electron 1 has been highlighted in blue to indicate that we are

considering the frequency spectrum of this electron only, in the following discussion:

ν4 = |↓1 ↓2⟩ ←→ ˜|↑1 ↓2⟩, (4.13)

ν5 = ˜|↓1 ↑2⟩ ←→ |↑1 ↑2⟩ , (4.14)

ν6 = |↓1 ↓2⟩ ←→ ˜|↓1 ↑2⟩, (4.15)

ν7 = ˜|↑1 ↓2⟩ ←→ |↑1 ↑2⟩ , (4.16)

where ˜|↓1 ↑2⟩ = cos(θ) |↓1 ↑2⟩ + sin(θ) |↑1 ↓2⟩, ˜|↑1 ↓2⟩ = cos(θ) |↑1 ↓2⟩ + sin(θ) |↓1 ↑2⟩ and

tan(2θ) = J
Ā

. ν6 and ν7 represents transitions to flip electron 2 for the |⇓1⇑2⟩ nuclear state.

The reason that these transitions are seen in the ESR spectrum for electron 1 is due to the

fact that for J > 0, the eigenstates of the two-electron system are no longer the product
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4.2.2 Eigenstates of an exchange coupled system

states |↓1↓2⟩ , |↓1↑2⟩ , |↑1↓2⟩ and |↑1↑2⟩ but rather the hybridised states |↓1↓2⟩ , |̃↓1↑2⟩, |̃↑1↓2⟩

and |↑1↑2⟩. This hybridisation of states introduces an additional excitation of electron 1

upon driving electron 2 (and vice versa for driving electron 1). The magnitude of this

excitation depends on the value of θ = 1
2 arctan( J

Ā
). For J → ∞, θ → π

4 and hence

|̃↓1↑2⟩ = |̃↑1↓2⟩ = 1√
2(|↓1↑2⟩+ |↑1↓2⟩). For J → 0 however θ → 0 and hence |̃↑1↓2⟩ = |↑1↓2⟩

and |̃↓1↑2⟩ = |↓1↑2⟩ resulting in an increasingly smaller excitation of electron 1 upon driv-

ing electron 2.

As J increases, ν5 and ν6 tend towards the transitions T0 ←→ T+ and T− ←→ T0 respec-

tively. In the limits of low J these transitions are split by ∆A however, the two transitions

become degenerate as J →∞.

For the case of the nuclei in the |⇑1⇓2⟩ configuration (Fig.4.2, c) the transition frequencies

present are the following:

ν8 = |↓1 ↓2⟩ ←→ ˜|↓1 ↑2⟩, (4.17)

ν9 = ˜|↑1 ↓2⟩ ←→ |↑1 ↑2⟩ , (4.18)

ν10 = |↓1 ↓2⟩ ←→ ˜|↑1 ↓2⟩, (4.19)

ν11 = ˜|↓1 ↑2⟩ ←→ |↑1 ↑2⟩ . (4.20)

ν8 and ν9 represent transitions to flip electron 2 conditional on the nuclear state |⇑1⇓2⟩.

These transitions are observed in the ESR spectrum of electron 1 as a result of the hy-

bridisation of the electron states for J > 0 as explained above. As for the case of the

|⇓1⇑2⟩ nuclear state, ν9 and ν10 become degenerate as J →∞.

For the case of the nuclei in the |⇑1⇑2⟩ configuration (Fig.4.2, d) the transition frequencies

present are:
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ν12 = T− ←→ S̃, (4.21)

ν13 = T− ←→ T0, T0 ←→ T+, (4.22)

ν14 = S̃ ←→ T+. (4.23)

These transitions are identical in nature to the transitions present for the |⇓1⇓2⟩ nuclear

state.

4.2.3 Two-qubit gates in an exchange-coupled system

There exists two distinct two-qubit gate implementations that are native to the electrons

of an exchange-coupled system: the SWAPα gate and the controlled-rotation (CROT)

gate [114].

4.2.3.1 The SWAPα gate

The SWAPα gate represents one of the simplest two-qubit entangling operations which,

when combined with single qubit rotations, makes up a universal gate set for quantum

computation [126]. The implementation of the SWAPα gate can be understood by studying

the |S⟩ − |T0⟩ Bloch sphere of a two-spin system, as shown in Figure 4.3.

A SWAPα operation represents a rotation by an angle απ about the J-axis of the |S⟩−|T0⟩

Bloch sphere shown in Figure 4.3. In the limit of J ≫ ∆, the eigenstates of the system

are approximately the |S⟩ and |T0⟩ states. Therefore, upon initialising the two electrons

in either the |↓↑⟩ or |↑↓⟩ state, the electrons will precess about the J axis of the |S⟩− |T0⟩

Bloch sphere, between the states |↓↑⟩ and |↑↓⟩ .

The implementation of a high-fidelity SWAPα gate in an exchange-coupled system requires

the ability to tune J to the regime for which J ≫ ∆ for the amount of time required for

the spins to rotate an angle α around the J axis, given by t = α
2
√
J2+∆2 , before tuning J

to the regime for which J ≪ ∆, such that no residual, unwanted rotation between the |↓↑⟩

and |↑↓⟩ states occurs once the SWAPα gate has been implemented. In the donor system,
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4.2.3 Two-qubit gates in an exchange-coupled system
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Figure 4.3: S − T0 Bloch sphere. J is pointing along the |S⟩ − |T0⟩ axis, while the
detuning between the qubits, ∆ is along the |↓↑⟩, |↑↓⟩ axis. The purple line depicts the
path around the Bloch sphere of a spin initialised in the |↓↑⟩ or |↑↓⟩ for the case of J ≫ ∆.

as mentioned in section 4.2.2, the J value can be switched in a binary fashion between

the regimes of J ≫ ∆ = ∆A and J ≪ ∆ = Ā simply by flipping the donor nuclei from a

parallel to an anti-parallel spin orientation. A SWAPα gate can therefore be implemented

in this system by initialising the electrons into an anti-parallel spin orientation of either

|↓↑⟩ or |↑↓⟩ and digitally switching between the ‘on’ and ‘off’ regime (defined as the regimes

of J ≪ ∆ and J ≫ ∆ respectively) by flipping the nuclei between a parallel and anti-

parallel spin orientation. The fidelity of the SWAPα gate implemented using this technique

however, becomes compromised as the value of J approaches 1
tπ,n

where tπ,n is the π time

of the nucleus. As tπ,n ≈ 100µs in a typical donor system, this places severe restraints on

the maximum value of J that still allows a high fidelity SWAPα to be implemented with

this technique.

4.2.3.2 The CROT gate

Another native two-qubit gate present in the exchange-coupled system is the controlled

rotation (CROT) gate or zero-controlled rotation (zCROT). In this thesis we define the
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CROT gate as a rotation of the target electron, conditional on the control electron being

in the spin |↓⟩ = |1⟩ state and the zCROT gate as a rotation of the target electron, con-

ditional on the control electron being in the spin |↑⟩ = |0⟩ state.

For a rotation around the x-axis of the Bloch sphere the unitary operations that define

the CROT and zCROT gates for electrons 1 and 2 are therefore the following:

CROT↕1↓2 =



0 0 −i 0

0 1 0 0

−i 0 0 0

0 0 0 1


,CROT↓1↕2 =



0 −i 0 0

−i 0 0 0

0 0 1 0

0 0 0 1


(4.24)

zCROT↕1↑2 =



1 0 0 0

0 0 0 −i

0 0 1 0

0 −i 0 0


, zCROT↑1↕2 =



1 0 0 0

0 1 0 0

0 0 0 −i

0 0 −i 0


, (4.25)

where ↕ represents the electron being driven during the gate implementation. The CROT

gate is equivalent to a CNOT gate but, with the addition of a phase imparted on the

control qubit. This phase comes about as a result of the geometric phase imparted by the

target electron on the control and is equal to half the rotation angle of the target electron.

As introduced in section 4.2.2, in the regime for which J ≫ ∆, created by initialising the

nuclei in an anti-parallel spin orientation, whereby ∆ = Ā, each resonance on the electrons

represents a rotation of one electron, conditional on the state of the other electron. In

this regime, a π rotation of either electron thus constitutes the implementation of a native

CROT or zCROT gate.

In the perfect implementation of a CROT or zCROT gate, the electrons would undergo
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rotations between the exact computational states, |↓1↓2⟩ , |↓1↑2⟩ , |↑1↓2⟩ , |↑1↑2⟩ . For ex-

ample, for the case of the ideal CROT gate performed on electron 1, the electrons would

undergo a transition between the states |↓1↓2⟩ ←→ |↑1↓2⟩. As discussed in section 4.2.2,

in the regime for which ∆A < J < Ā however, the eigenstates of the electrons are instead

the hybridised states |↓1↓2⟩ , |̃↓1↑2⟩, |̃↑1↓2⟩, |↑1↑2⟩ and hence a CROT gate on electron 1

represents a transition between the states |↓1↓2⟩ ←→ |̃↑1↓2⟩. The hybridisation of states

thus introduces an inherent error associated with the implementation of the CROT or

zCROT gate, the magnitude of which is given by sin2(θ), where tan(2θ) = J
∆ .

4.3 Entanglement

4.3.1 Generating entanglement in an exchange-coupled system

A universal gate set for quantum computation cannot consist solely of single-qubit gates

alone but, must also consist of a two-qubit gate that is capable of generating entangle-

ment. As discussed in section 4.2.3, in the presence of the exchange interaction, two

native two-qubit gates exist in the system: the SWAPα gate and the CROT gate. Al-

though the SWAPα gate also represents an entangling operation between qubits (for the

case of α = π
2 ), we will focus primarily on the utilisation of the native CROT gate to

generate entanglement, as the CROT and zCROT gates form the basis of the majority of

the work carried out in this thesis.

In the exchange-coupled donor system, we use the two-qubit CROT gate to generate

entanglement between the electrons by first preparing one of the electrons in the spin

down state, |↓⟩, and the other electron in a superposition state, 1√
2(|↓ + ↑⟩), with a π

2

pulse. The state of the two electrons is therefore given by the following

|↓⟩ ⊗ 1√
2

(|↓⟩+ |↑⟩) = 1√
2

(|↓↓⟩+ |↓↑⟩). (4.26)

A CROT or zCROT pulse is then applied to the electron in the |↓⟩ state, to flip this

electron conditional on the electron in a superposition state being in the spin |↓⟩ state or
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|↑⟩ state respectively. For the example of a CROT gate this thus results in the following

1√
2

(|↓↓⟩+ |↓↑⟩)→CROT 1√
2

(|↑↓⟩+ |↓↑⟩), (4.27)

where 1√
2(|↑↓⟩+ |↓↑⟩) represents a fully entangled state (see section 4.3.3). And similarly

for the application of a zCROT gate

1√
2

(|↓↓⟩+ |↓↑⟩)→zCROT 1√
2

(|↓↓⟩+ |↑↑⟩), (4.28)

where 1√
2(|↓↓⟩+ |↑↑⟩) also represents a fully entangled state (see section 4.3.3).

Figure 4.4 introduces the circuit representation of the procedure outlined above, the no-

tation of which will be used throughout the remainder of this thesis.

π
2 X

Xπ

1

1

1

1

�� ��

1

1

1

1

�� ��

π
2 X

π
2 X

π
2 X

Xπ

Xπ
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Figure 4.4: Circuit diagram representation of generating entanglement with
the CROT gate. The top(bottom) horizontal line of each circuit diagram depicts the
operations performed on electron 1(2). The electrons are initially prepared in the |↓⟩ = |1⟩
state. The π

2X represents a π
2 pulse applied along the x-direction of the Bloch sphere. The

CROT or zCROT gate (which are also applied along the x-direction of the Bloch sphere
in this example) are represented by the conditional πX gate, with the state on which the
gate is conditioned indicated by either a full circle (|↓⟩ = |1⟩ state) or an empty circle
(|↑⟩ = ||0⟩⟩ state). Consequently, a,c represents circuits containing CROT operations,
while b,d represent circuits containing the zCROT operation. At the end of each circuit
both electrons are measured as indicated by the circuit symbol for a measurement on both
the upper and lower circuit line.
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4.3.2 Quantifying entanglement

4.3.2 Quantifying entanglement

Entanglement is a precious resource for quantum computing and thus it is important, when

assessing the fidelity of a quantum processor, to ascertain the degree of entanglement that

we are able to generate. There are three well-established metrics used to ascertain the

degree of entanglement of a state: entanglement entropy, concurrence and state fidelity.

4.3.2.1 Entanglement entropy

One of the defining features of an entangled state between two subsystems, which we can

refer to as subsystem A and B, is that upon entangling A and B together, both sub-

systems no longer possess their own definite quantum state. Entanglement entropy is a

metric that uses the classical analogy of entropy from thermodynamics, to quantify the

degree of uncertainty that arises from the lack of definite quantum state associated with

a particle that forms a subsystem of an entangled state [127].

The entanglement entropy of the subsystem A of a joint state of A and B can be calculated

with the expression

SA = −TrA{ρ̂Aln(ρ̂A)}, (4.29)

where TrA represents the partial trace used to extract the component space of the density

matrix, A, and ρ̂A is the density matrix associated with subsystem A [127].

The quantity of entanglement entropy has the following bounds

0 ≤ SA ≤ ln(d), (4.30)

where d represents the dimensions of the individual constituents of the entangled sys-

tem. The origin of the upper bound for the entanglement entropy can be understood by
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considering the example of the fully-entangled singlet state, |S⟩, which consists of two

subsystems, each with a dimension of d = 2. The density operator for the singlet state,

ρ̂(S) is given by

ρ̂(S) = |S⟩ ⟨S| = 1
2(|↑↓⟩ − |↓↑⟩)(⟨↑↓| − ⟨↓↑|). (4.31)

Tracing out the subsystem B, which describes the second spin, we are left with the fol-

lowing reduced density matrix

ρ̂A = 1
2(|↑↑ + ↓↓⟩). (4.32)

Written in the basis {|↓⟩ , |↑⟩}, ρ̂A can be written in matrix form as

ρ̂A =

1
2 0

0 1
2

 . (4.33)

The entanglement entropy is therefore calculated as [127]

SA = −TrA{ρ̂Aln(ρ̂A)} = −Tr

1
2 ln(1

2) 0

0 1
2 ln(1

2)

 = ln(2). (4.34)

The entanglement entropy of a fully entangled state, where the dimension of the subsys-

tems that make up the entangled state are each d = 2, is thus ln(2).

4.3.2.2 Concurrence

Another metric used to determine the degree of entanglement is a quantity known as

concurrence, C. The definition of concurrence, which currently only exists for pairs of

qubits, is given by [128]

C = | ⟨Φ|Φ̃⟩ |, (4.35)

where |Φ⟩ is the state of a pair of qubits, written in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}.

|Φ̃⟩ = (σ̂y ⊗ σ̂y) |Φ∗⟩ is the ‘spin-flip’ operation where |Φ∗⟩ is the complex conjugate of |Φ⟩
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4.3.2 Quantifying entanglement

and σy is the Pauli-y matrix. When applied to a state, the spin-flip operator will take each

qubit to the orthogonal state on the Bloch sphere. Physically the concurrence therefore

represents the overlap between a state |Φ⟩ and a state that is diametrically opposite to

|Φ⟩ on the Bloch sphere.

For the case in which |Φ⟩ represents a pure state, the overlap between |Φ⟩ and a state

that is orthogonal to |Φ⟩ on the Bloch sphere, |Φ̃⟩, is 0 and thus for the case of a pure

state, the concurrence, C = 0. In order to understand the implications of applying the

spin flip operation to an entangled state, we can use the example of the singlet state, |S⟩,

and the triplet state, |T0⟩; referring back to the geometric interpretations of these states

discussed in section 4.1. For the case of the singlet state, which geometrically represents

a state of anti-parallel spins pointing along some undefined direction on the Bloch sphere,

this state is left invariant, up to a phase factor, to a spin flip. In this case the overlap

| ⟨Φ|Φ̃⟩ | = 1 and thus C = 1. Similarly, for the case of the |T0⟩ state, which geometrically

represents, a state of parallel spins pointing along some undefined direction in the xy plane

of the Bloch sphere, this state is also invariant to the spin flip operation and therefore the

concurrence C = 1 also for this state. A concurrence value of 1 therefore represents a fully

entangled state, while a concurrence value of 0 represents a completely pure state [129,130].

Experimentally, the most straightforward method of calculating the concurrence is by

reconstructing the density matrix of the physical system (as discussed in sections 4.3.3

and 4.3.4) and calculating the quantity [128]

R̂ =
√√

ρ̂ρ̃
√
ρ̂. (4.36)

where ρ̂ is the measured density matrix and ρ̃ is the result of applying the spin flip

operation to ρ̂, given by

ρ̃ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y), (4.37)
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where ρ̂∗ is the complex conjugate transpose of the measured density matrix. The value

of concurrence is then given by

C = max{0, λ1 − λ2 − λ3 − λ4}, (4.38)

where λi are the square roots of the eigenvalues of R̂ in decreasing order.

4.3.2.3 State fidelity

The final commonly utilised method of quantifying the degree of entanglement in a system

is to prepare a known entangled state and then calculate the fidelity with which the mea-

sured state that has been experimentally prepared, corresponds to the expected entangled

state. This fidelity is obtained by calculating the overlap between the measured density

matrix, ρ̂ (discussed in sections 4.3.3 and 4.3.4) and the entangled state that we wished

to prepare, ρ̂entangled, which is given by

F = ⟨ψentangled|ρ̂|ψentangled⟩ . (4.39)

where ρ̂entangled = |ψentangled⟩ ⟨ψentangled|. A fidelity of 1 indicates that the prepared state,

ρ̂ fully overlaps with the entangled state ρ̂entangled. A fidelity of 0 on the other hand,

indicates that there is no overlap between the prepared state ρ̂ and the entangled state

ρ̂entangled. Although this does not necessarily mean that ρ̂ does not represent an entangled

state (as it could represent a different entangled state that is orthogonal to ρ̂entangled ) a

fidelity of < 1 is an indication that there has been some error in preparing the intended

entangled state ρ̂entangled.

All of these techniques of quantifying the degree of entanglement of a density matrix, ρ̂,

require us to have access to the density matrix of a given prepared state. The two most

commonly used methods of experimentally extracting the density matrix of a prepared

entangled state are: Bell state tomography [131] and phase reversal tomography [132].
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4.3.3 Bell state tomography

Bell states are four specific, maximally entangled states of a two-qubit system and are

given by

|Φ+⟩ = 1√
2

(|00⟩+ |11⟩), (4.40)

|Φ−⟩ = 1√
2

(|00⟩ − |11⟩), (4.41)

|Ψ+⟩ = 1√
2

(|01⟩+ |10⟩), (4.42)

|Ψ−⟩ = 1√
2

(|01⟩ − |10⟩). (4.43)

Bell state tomography involves preparing a given Bell state, before reconstructing the den-

sity matrix of the prepared state, using state tomography, and comparing the resulting

matrix to the expected density matrix.

Any qubit density matrix can be written as a superposition of the Pauli matrices, σ̂I =1 0

0 1

 , σ̂x =

0 1

1 0

 , σ̂y =

0 −j

j 0

 , σ̂z =

1 0

0 −1

 using the following:

ρ̂ = 1
2I+ 1

2

i=4n−1∑
i=1

Siσ̂i, (4.44)

where n represents the number of qubits in the system, σi = {σ̂I, σ̂x, σ̂y, σ̂z} and Si are

the Stokes parameters, which together form the Stokes vector, S⃗ = (S1, S2, S3, ...S4n−1)

[133, 134]. For the case of a pure state, the magnitude of the Stokes vector is |S⃗| = 1.

For a mixed state however, the state no longer lies on the surface of the Bloch sphere and

instead shrinks towards the centre of the Bloch sphere, resulting in |S⃗| < 1.

The Stokes parameters can be calculated from the the density matrix ρ̂ with the following

formula
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Si = Tr[σ̂iρ̂]. (4.45)

In order to experimentally determine the Stokes parameters for a given system and hence

reconstruct the density matrix we must therefore perform a set of measurements on the

qubits in the three bases: x, y and z. We can define P|↓i⟩(P|↑i⟩) as the probability of

obtaining the result |↓i⟩ (|↑i⟩) upon measuring the qubit in the basis {|↓i⟩ , |↑i⟩}. Using

this notation, the Stokes parameters for the example of a single qubit can be calculated

as the following [131,133,134]

S0 = Si = P|↓x⟩ + P|↑x⟩ = P|↓y⟩ + P|↑y⟩ = P|↓z⟩ + P|↑z⟩ = 1, (4.46)

S1 = Sx = P|↓x⟩ − P|↑x⟩, (4.47)

S2 = Sy = P|↓y⟩ − P|↑y⟩, (4.48)

S3 = Sz = P|↓z⟩ − P|↑z⟩. (4.49)

Similarly, for the case of a two-qubit system the Stokes parameters are calculated as:

S0 = Sii = (P|↓z⟩ + P|↑z⟩)⊗ (P|↓z⟩ + P|↑z⟩) = P|↓z↓z⟩ + P|↓z↑z⟩ + P|↑z↓z⟩ + P|↑z↑z⟩,

S1 = Siz = (P|↓z⟩ + P|↑z⟩)⊗ (P|↓z⟩ − P|↑z⟩) = P|↓z↓z⟩ − P|↓z↑z⟩ + P|↑z↓z⟩ − P|↑z↑z⟩,

S2 = Six = (P|↓z⟩ + P|↑z⟩)⊗ (P|↓x⟩ − P|↑x⟩) = P|↓z↓x⟩ − P|↓z↑x⟩ + P|↑z↓x⟩ − P|↑z↑x⟩,

S3 = Siy = (P|↓z⟩ + P|↑z⟩)⊗ (P|↓y⟩ − P|↑y⟩) = P|↓z↓y⟩ − P|↓z↑y⟩ + P|↑z↓y⟩ − P|↑z↑y⟩,

S4 = Sxi = (P|↓x⟩ − P|↑x⟩)⊗ (P|↓z⟩ + P|↑z⟩) = P|↓x↓z⟩ + P|↓x↑z⟩ − P|↑x↓z⟩ − P|↑x↑z⟩,

S5 = Sxz = (P|↓x⟩ − P|↑x⟩)⊗ (P|↓z⟩ − P|↑z⟩) = P|↓x↓z⟩ − P|↓x↑z⟩ − P|↑x↓z⟩ + P|↑x↑z⟩,

S6 = Sxx = (P|↓x⟩ − P|↑x⟩)⊗ (P|↓x⟩ − P|↑x⟩) = P|↓x↓x⟩ − P|↓x↑x⟩ − P|↑x↓x⟩ + P|↑x↑x⟩,

S7 = Sxy = (P|↓x⟩ − P|↑x⟩)⊗ (P|↓y⟩ − P|↑y⟩) = P|↓x↓y⟩ − P|↓x↑y⟩ − P|↑x↓y⟩ + P|↑x↑y⟩,

S8 = Syi = (P|↓y⟩ − P|↑y⟩)⊗ (P|↓z⟩ + P|↑z⟩) = P|↓y↓z⟩ + P|↓y↑z⟩ − P|↑y↓z⟩ − P|↑y↑z⟩,

S9 = Syz = (P|↓y⟩ − P|↑y⟩)⊗ (P|↓z⟩ − P|↑z⟩) = P|↓y↓z⟩ − P|↓y↑z⟩ − P|↑y↓z⟩ + P|↑y↑z⟩,

S10 = Syx = (P|↓y⟩ − P|↑y⟩)⊗ (P|↓x⟩ − P|↑x⟩) = P|↓y↓x⟩ − P|↓y↑x⟩ − P|↑y↓x⟩ + P|↑y↑x⟩,

S11 = Syy = (P|↓y⟩ − P|↑y⟩)⊗ (P|↓y⟩ − P|↑y⟩) = P|↓y↓y⟩ − P|↓y↑y⟩ − P|↑y↓y⟩ + P|↑y↑y⟩,
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4.3.3 Bell state tomography

S12 = Szi = (P|↓z⟩ − P|↑z⟩)⊗ (P|↓z⟩ + P|↑z⟩) = P|↓z↓z⟩ + P|↓z↑z⟩ − P|↑z↓z⟩ − P|↑z↑z⟩,

S13 = Szz = (P|↓z⟩ − P|↑z⟩)⊗ (P|↓z⟩ − P|↑z⟩) = P|↓z↓z⟩ − P|↓z↑z⟩ − P|↑z↓z⟩ + P|↑z↑z⟩,

S14 = Szx = (P|↓z⟩ − P|↑z⟩)⊗ (P|↓x⟩ − P|↑x⟩) = P|↓z↓x⟩ − P|↓z↑x⟩ − P|↑z↓x⟩ + P|↑z↑x⟩,

S15 = Szy = (P|↓z⟩ − P|↑z⟩)⊗ (P|↓y⟩ − P|↑y⟩) = P|↓z↓y⟩ − P|↓z↑y⟩ − P|↑z↓y⟩ + P|↑z↑y⟩.

Experimentally, in order to measure the Bell states along the different projection axis, we

must re-prepare the Bell state for each projection axis measured. In the donor spin sys-

tem, we are only able to directly measure along the z-axis of the spin using spin dependent

tunneling (see section 3.9.3). In order to measure the projection along the x or y axis we

must therefore append a projection pulse to the end of the Bell state preparation pulse,

to map the information along the x or y axis onto the z-axis of the Bloch sphere. For

example, to measure the projection along the +x axis, we can apply a π
2 projection pulse

about the -y axis (i.e. with a phase of -900) in order to rotate the information along the +x

axis, to the +z axis of the Bloch sphere, where it can then be read out via spin-dependent

tunnelling.

Upon measuring the required Stokes parameters, the density matrix, ρ̂, of the state can

be reconstructed using equation 4.44. For the example of a two-qubit system the density

matrix is calculated from the measured Stokes parameters with the following

II = Sii
4Sii

σ̂I ⊗ σ̂I, IZ = Siz
4Sii

σ̂I ⊗ σ̂z, IX = Six
4Sii

σ̂I ⊗ σ̂x, IY = Siy
4Sii

σ̂I ⊗ σ̂y

XI = Sxi
4Sii

σ̂x ⊗ σ̂I,XZ = Sxz
4Sii

σ̂x ⊗ σ̂z,XX = Sxx
4Sii

σ̂x ⊗ σ̂x,XY = Sxy
4Sii

σ̂x ⊗ σ̂y

YI = Syi
4Sii

σ̂y ⊗ σ̂I,YZ = Syz
4Sii

σ̂y ⊗ σ̂z,YX = Syx
4Sii

σ̂y ⊗ σ̂x,YY = Syy
4Sii

σ̂y ⊗ σ̂y

ZI = Szi
4Sii

σ̂z ⊗ σ̂I,ZX = Szx
4Sii

σ̂z ⊗ σ̂x,ZZ = Szz
4Sii

σ̂z ⊗ σ̂z,ZY = Szy
4Sii

σ̂z ⊗ σ̂y.
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Figure 4.5: Bell state tomography pulses. Pulse sequence for carrying out Bell state
tomography on two qubits, Q1 and Q2. In order to carry out full tomography of a state,
this state must be measured along the x, y and z axis of the Bloch sphere. As we are only
able to directly measure the qubits along the z-axis of the Bloch sphere, this means that
we require projection pulses appended to the end of the Bell state preparation, in order
to rotate the information along the x and y axis to the z-axis of the Bloch sphere, such
that it can be read out. The table thus indicates which projection must be applied to Q1
and Q2 for each of the two-qubit projection axes.

ρ̂ = II+ IZ+ IX+ IY (4.50)

+XI+XZ+XX+XY (4.51)

+YI+YZ+YX+YY (4.52)

+ZI+ZX+ZZ+ZY (4.53)
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4.3.4 Phase reversal tomography

4.3.4 Phase reversal tomography

Another method of reconstructing the density matrix of an entangled state, is phase

reversal tomography, which is related to the parity scan commonly used in trapped

ions [29, 132, 135]. This method can be beneficial over Bell state tomography for cases

where there exists a large difference in the coherence times of the two qubits constituting

the entangled pair, such that the coherence time of one of the spins becomes comparable

to the operation time of the other. This situation is the case for the entanglement between

the donor nucleus and electron. The difference in coherence times leads to the electron

spin dephasing in the time taken to perform the projection pulse on the nucleus required

for Bell state tomography. Phase reversal tomography on the other hand, is generally

agnostic to the ratio of coherence times between the two spins of the entangled pair, as

the spin with the shortest coherence time can be entangled last and immediately projected

into an eigenstate with the reversal pulses.

In its most basic form, phase reversal tomography allows for the extraction of the corner

elements of the density matrix, ρ11, ρ14, ρ41 and ρ44 where

ρ̂ =



ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44


. (4.54)

This is sufficient to extract the fidelity for any state that has non-zero elements only in

the corners of the density matrix. Examples of such states include the |Φ+⟩ = 1√
2(|00⟩+

|11⟩) Bell state and Greenberger–Horne–Zeilinger (GHZ) states [136], which are both vi-

tal resources for quantum computation. The reason that only calculating the elements

ρ11, ρ14, ρ41 and ρ44 is sufficient in these cases, can be understood by examining the method

of calculating state fidelity. As discussed in section 4.3.2.3, the formula for calculating the

state fidelity is given by
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F = ⟨ψ|ρ̂|ψ⟩ . (4.55)

where |ψ⟩ represents the state that we are attempting to create. For the example of

|ψ⟩ = 1√
2(|00⟩ + |11⟩), which can be represented in vector form, written in the basis

{|00⟩ , |01⟩ , |10⟩ , |11⟩}, as

|ψ⟩ = 1√
2



1

0

0

1


, (4.56)

the fidelity of ρ̂ in this case is calculated as the following

F = 1
2

(
1 0 0 1

)


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44





1

0

0

1


(4.57)

= 1
2

(
1 0 0 1

)


1× ρ11 0× ρ12 0× ρ13 1× ρ14

1× ρ21 0× ρ22 0× ρ23 1× ρ24

1× ρ31 0× ρ32 0× ρ33 1× ρ34

1× ρ41 0× ρ42 0× ρ43 1× ρ44


(4.58)

= 1
2

(
1 0 0 1

)


ρ11 + ρ14

ρ21 + ρ24

ρ31 + ρ34

ρ41 + ρ44


(4.59)

= 1
2(ρ11 + ρ14 + ρ41 + ρ44). (4.60)

Thus, only the corner elements of the measured density matrix contribute to the fidelity

and hence only these matrix elements must be extracted experimentally in order to assess

the fidelity of ρ̂.
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4.3.4 Phase reversal tomography

The process of phase reversal tomography can be broken down into two distinct steps,

with the first step allowing for the extraction of the diagonal elements of ρ̂, ρ11 and ρ44,

and the second step allowing for the extraction of the off-diagonal elements of ρ̂, ρ14 and

ρ41.
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Figure 4.6: Phase reversal tomography density matrix elements. Depiction of the
processes required to extract the corner elements of the density matrix. The diagonal,
population elements depicted in purple, are obtained simply by preparing the state and
measuring it along the z-axis. The off-diagonal, coherence elements on the other hand,
depicted in blue, are obtained by preparing the state and then reversing the state, while
sweeping the phase of the reversal pulses. The resulting oscillation is then fit, with the
amplitude and phase extracted from this fit, giving the corner off-diagonal matrix elements.

4.3.4.1 Extracting the diagonal elements of ρ̂

In order to extract the matrix elements ρ11 and ρ44, we first initialise the electrons in the

|↓↓⟩ = |11⟩ state, and then prepare the |Φ+⟩ = 1√
2(|00⟩+ |11⟩) Bell state using the process

described in section 4.2.3, namely by performing a π
2 pulse on one electron and a zCROT
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gate on the other electron, to rotate the second electron conditional on the electron in the

superposition being in the |↑⟩ state. We then measure the state of the electron along the

Z-direction of the Bloch sphere using two qubit readout to obtain

|ψ⟩ = α |↓↓⟩+ β |↓↑⟩+ γ |↑↓⟩+ δ |↑↑⟩ , (4.61)

where |ψ⟩ is the measured qubit state and α, β, γ and δ are the measured populations

for each of the four two-qubit states. The diagonal elements of ρ̂ are then given by the

measured populations for the |↓↓⟩ and |↑↑⟩ states, such that ρ11 = α and ρ44 = δ.

4.3.4.2 Extracting the off-diagonal elements of ρ̂

In order to extract the off-diagonal elements of the density matrix ρ̂, ρ14 and ρ41, we

perform the following steps:

1. Initialise the electrons in the |↓↓⟩ state.

2. Perform a π
2 pulse on electron 1 with a phase of θ = 0.

3. Perform a zCROT gate on electron 2 with a phase of θ = 0.

4. Perform a zCROT gate on electron 2 with a phase of θ = θk + π where θk is swept

from a value of 0 to 2π.

5. Perform a π
2 gate on electron 1 with a phase of θ = θk + π where θk is swept from a

value of 0 to 2π.

6. Measure the state of the electrons.

Steps 1-3 above prepare the Bell state |Φ+⟩ = 1√
2(|00⟩+ |11⟩). For a value of θk = 0, steps

4-5 will exactly reverse the preparation of this Bell state, such that the electrons return

to the |↓↓⟩ state at the end of the sequence. However, as θk is swept from a value of 0 to

2π the ability for the pulses applied in steps 4 and 5 to return the electrons to their initial

state will oscillate as a function of θk. For the pulses outlined in steps 2-5 this therefore
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4.3.5 Finding a physical density matrix

results in an oscillation observed in the populations of the measured two-qubit states |↓↓⟩

and |↑↓⟩ (the states between which an oscillation occurs will depend on which electron of

the pair we apply the zCROT gate to). This oscillation is then fit with the following curve

P = A sin(2πνθk +B) + C, (4.62)

where A represents the amplitude of the oscillations from the centre of the oscillation to

the peak or trough, ν is the frequency of the oscillation as a function of θk, B is the phase

of the oscillation and C is the offset of the oscillation from 0. The phase and amplitude

of this oscillation can then be used to calculate the off-diagonal elements of the density

matrix using the following expressions

ρ14 = A cos(B) + iA sin(B), (4.63)

ρ41 = A cos(B)− iA sin(B). (4.64)

The difference in sign between equations 4.63 and 4.64 ensures that the resulting density

matrix is Hermitian.

Figure 4.6 depicts the process of extracting both the diagonal and off diagonal corner

elements of ρ̂ using phase reversal tomography.

4.3.5 Finding a physical density matrix

The density matrix, ρ̂, calculated using the two methods above, does not necessarily rep-

resent a physical density matrix, as a result of imperfections in the measurement process.

For example, these measurement imperfections may result in the measured density matrix

possessing negative eigenvalues. To best represent the true density matrix of the state,

we must therefore find the closest physical density matrix that represents the measured

density matrix. The method by which the closest physical density matrix is found will

depend on which density matrix elements have been obtained experimentally and thus, the
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procedure will differ depending on if Bell state tomography or phase reversal tomography

is used to obtain ρ̂.

4.3.5.1 ρ̂ with Bell state tomography

After performing Bell state tomography, to obtain the Bell state density matrix, ρ̂, all

elements of the density matrix have been measured experimentally. The following method

of maximum likelihood estimation can therefore be utilised in order to estimate the closest

possible physical density matrix to the calculated ρ̂ [131]:

1. Construct an initial guess from the measured density matrix. This is done by first

generating the following lower-triangular matrix.

T =



t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4


, (4.65)

where tn represent the initial guess for the respective matrix elements.

2. Calculate the following cost function

L =
16∑
ν=1

[⟨ψi|T (t1, t2, ..., t16) |ψi⟩ − P|ψi⟩]2

2 ⟨ψi|T (t1, t2, ..., t16) |ψi⟩
. (4.66)

where |ψi⟩ is the basis state of the projection i (see section 4.3.3) and P|ψi⟩ is the

measured probability of the basis state |ψi⟩.

3. Vary the parameters tn and recalculate the cost function L. In this way we can use

numerical methods to iteratively minimise this cost function. Once this cost function

has been minimised we have found the closest possible physical density matrix to

the measured estimate.

4. Once the values of tn that result in the minimisation of L have been found, the

physical density matrix can then be expressed in terms of T using the following

formula
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4.3.5 Finding a physical density matrix

ρ̂(t) = T †(t)T (t)
Tr(T †(t)T (t)) . (4.67)

This density matrix represents a physical density matrix with a trace of 1 and non-

negative eigenvalues.

4.3.5.2 ρ̂ with phase reversal tomography

The method of extracting the closest physical density matrix to the density matrix ob-

tained experimentally is very similar for the case of ρ̂ being obtained through phase reversal

tomography, with a few alterations depending on the exact density matrix elements mea-

sured. For the case described in section 4.3.4, in which only the corner elements of the
1√
2(|↓↓⟩+ |↑↑⟩) density matrix are extracted with phase reversal tomography, the following

procedure can be followed:

1. Construct an initial guess from the real part of the measured density matrix. This

is done by generating the following lower-triangular matrix.

T =



t1 0 0 0

0 t2 0 0

0 0 t3 0

t4 + it5 0 0 t6


, (4.68)

It is important to note that, although calculating the Bell state fidelity of the
1√
2(|↓↓⟩ + |↑↑⟩) state only requires knowledge of the four corner elements of the

density matrix, when using an optimisation process to find the nearest physical den-

sity matrix, the remaining elements along the diagonal of the matrix (ρ22, ρ33, ρ44)

must also be included in the optimisation procedure. This is due to the fact that,

during the procedure, the trace of the density matrix, Tr(ρ̂) is forced to a value of 1.

Therefore, if the entire diagonal of the matrix is not measured, the corner elements

may be artificially increased in amplitude during the optimisation process, resulting

in an artificially high Bell state fidelity obtained from the resulting density matrix.

The entire diagonal of the matrix is obtained by preparing the Bell state and mea-
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suring it along the z-axis to obtain each of the 4 state probabilities: |↓↓⟩, |↓↑⟩, |↑↓⟩

and |↑↑⟩ (see section 4.3.4.1).

2. Calculate an estimated density matrix from T using

σ̂(t) = T †(t)T (t)
Tr(T †(t)T (t)) . (4.69)

This density matrix represents a physical density matrix with a trace of 1 and non-

negative eigenvalues.

3. Calculate the overlap between this density matrix and the measured density matrix,

using the formula

L = (Tr
√√

ρ̂σ̂(t)
√
ρ̂)2 (4.70)

4. Vary the parameters tn and recalculate the cost function L. In this way we can use

numerical methods to iteratively minimise this cost function. Once this cost function

has been minimised we have found the closest possible physical density matrix to

the measured estimate. The final density matrix is then given by σ̂(t).

4.4 Implantation parameters and donor distance

As discussed in section 4.2.3, in the presence of an exchange coupling between the electrons

of neighbouring donor atoms, depending on the orientation of the donor nuclei, the native

two-qubit gate between the electrons is either the SWAPα or CROT gate. In the case of

the CROT operation, present for the case of the nuclei in an antiparallel configuration, the

requirement for this gate to be implemented with high fidelity, is that the resonance fre-

quencies to flip the target electron, conditional on the control electron being in the spin |↓⟩

or |↑⟩ state (Figure 4.2) are well separated, such that they can be individually addressed.

This condition is met, for a power-broadened pulse, provided that J > 2νR, where νR is

the Rabi frequency of the electron. The ability to meet this condition therefore depends

on the two donors being in close enough proximity, as a result of the value of J depending

very sensitively on the inter-donor distance [137,138]. Although an inherently probabilistic

process, we can maximise the probability of finding a pair of exchange-coupled donors at
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4.4. IMPLANTATION PARAMETERS AND DONOR DISTANCE

a favourable inter-donor distance, by optimising the parameters of the ion implantation

process (see section 3.2 for details on the ion implantation parameters).
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Figure 4.7: Implantation SRIM simulations for P+
2 and P+ ions. a. Stopping and

Range of Ions in Matter (SRIM) simulation performed for a 10 kV ion beam of P+
2 ions

at a fluence of 5 × 1010cm−2. b. SRIM simulation performed for a 10 kV ion beam of P+

ions at a fluence of 1.25 × 1012cm−2. A higher density of small inter-donor distances is
observed for the case of the higher fluence P+ beam. Figures taken from [30].

There are two methods by which we can optimise the average inter-donor distance between

ion implanted 31P donors. The first method is to implant P+
2 molecular ions rather than

P+ ions. When the P+
2 molecule hits the surface of the chip, the two P atoms break apart

and come to rest at an inter-donor distance that depends on the implantation energy. The

implantation energy can thus be chosen such that the probability of a favourable inter-

donor distance between the two P atoms is maximised. The other method of optimising

the inter-donor distance is to simply increase the fluence of P+ ions in the ion beam, such

that the probability of two donors being implanted in close proximity to one another is

similarly maximised. Figure 4.7 shows a Stopping and Range of Ions in Matter (SRIM)

simulation performed for a 10 kV ion beam for the case of either a beam of P+
2 molecular

ions at a fluence of 5 × 1010cm−2 (Fig 4.7 ,a) or a beam of P+ ions at a fluence of 1.25

× 1012cm−2 (Fig 4.7 ,b). For the case of the higher fluence beam of P+ ions, a much

higher density of smaller inter-donor distances is observed. A high fluence P+ beam thus

allows us to best optimise the probability of finding two P donor atoms at a close enough
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inter-donor distance such that the condition J > 2νR is met.

The implantation parameters for the donor device used in this thesis consisted of a beam

of P+ ions with an implantation fluence of 1.4 × 1012cm−2 and an implantation energy

of 10 kV. These parameters were chosen following SRIM simulations, which estimated an

average inter-donor distance of 8 nm for these implantation parameters and an 8 nm thick

oxide layer [78].
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5.
Two-qubit electron
conditional rotation gates
in a J-coupled system

Sometimes it’s the detours which turn
out to be the fruitful ideas.

Roger Penrose

This chapter includes results from the following publications:
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Mądzik, A. J. A. Heskes, H.R. Firgau, Y.Su, C.H. Yang, A. Laucht, K. M. Rudinger, R.
Blume-Kohout, F. E. Hudson, A. S. Dzurak, K. M. Itoh, A. M. Jakob, B.C. Johnson, D.
N. Jamieson, and A. Morello, “Tomography of universal two-qubit logic operations
in exchange-coupled donor electron spin qubits” arXiv preprint arXiv:2309.15463,
2023

Section 5.9: B. Joecker, H. G. Stemp, I. Fernandez De Fuentes, M. A. I. Johnson, and
A. Morello, “Error channels in quantum nondemolition measurements on spin systems”
arXiv preprint arXiv:2307.14103, 2023
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5.1 Introduction

The exchange interaction, J , is a fundamental form of coupling between electron spins. It

stems from the Pauli exclusion principle, and arises in the presence of an overlap between

the wave functions of the electrons [115]. In the context of spin-based quantum information

processing, the exchange interaction features prominently as a natural method to enable

entangling operations between electron spins [16]. In early experiments on electron spin

qubits in quantum dots, J was controlled by detuning the two electrons’ potentials with

respect to each other [117, 120, 139]. More recently, J was varied over many orders of

magnitude by controlling the height of the tunnel barrier between the dots [140,141]. This

method also reduces the sensitivity to charge noise [142,143].

The situation is more complicated in donor-based spin qubits. Encoding quantum infor-

mation in the nuclear spin of donor atoms in silicon was one of the earliest proposals for

solid-state quantum computers [25]. This vision has been corroborated by the experimen-

tal demonstration of exceptionally long spin coherence times, exceeding 30 seconds [34],

and 1- and 2-qubit gate fidelities above 99% [29, 35]. The Coulomb potential of a donor

also naturally binds an electron, which is itself an excellent qubit, with demonstrated

single-qubit gate fidelity up to 99.98% [144]. However, electron two-qubit logic gates

based on exchange face the challenge that J is both oscillating and exponentially depen-

dent on inter-donor distance [137, 138, 145]. The useful range of the exchange is only

∼ 10−20 nm, making it extremely difficult to fabricate and align metallic gates to control

the tunnel barrier between the donors. Therefore, the only example of exchange control in

donor systems to date was achieved by detuning the electrochemical potentials of a pair

of multi-donor quantum dots, resulting in gate-controlled SWAP oscillations [126]. Since

the donor-bound electrons were not operated as qubits, it was not possible to benchmark

the fidelity of such operations, nor to demonstrate spin entanglement.

Here we present the first experimental demonstration of exchange-based, entangling two-

qubit logic gates between electrons bound to individual 31P donors in silicon. This is

obtained by implementing a scheme exploiting a fixed J , weaker than the electron-nuclear
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5.2. OPERATION OF THE TWO-ELECTRON PROCESSOR

hyperfine interaction, A [114]. In this regime, preparing the two 31P nuclei in an opposite

state detunes the two electrons by A≫ J and renders each electron’s resonance frequency

dependent on the state of the other. The native two-qubit operation is a CROT gate

(similar to a CNOT, plus a phase), implemented by electron spin resonance [30]. Since

the precise value of J is irrelevant, provided it is ≪ A and larger than the resonance

linewdith, this scheme is relatively insensitive to uncertainties in the precise location of

the donors. It is thus well suited to ion-implanted donor spins [37, 146], which retain

compatibility with standard metal-oxide-semiconductor manufacturing processes [147], at

the cost of some uncertainty (∼ 5− 10 nm, depending on implantation energy and donor

species) in the final location of the implanted donor [80]. Both electron spins are operated

coherently as individual qubits [26] and read out in single-shot, either directly [88] or via

quantum logic [148,149]. This allows us to perform accurate tomography of the one- and

two-qubit gate operations, and show that the weak-J regime does not affect the coherence

of the individual spins.

5.2 Operation of the two-electron processor

The two-qubit processor consists of electron spins, Q1 and Q2, each with spin S=1/2

and basis states |↓⟩, |↑⟩, bound to 31P donor nuclei with spin I =1/2 and basis states |⇓⟩,

|⇑⟩ (Fig. 5.1b). Denoting with S1,2, I1,2 the vector spin operators for each electron and

nucleus, and A1,2 the electron-nuclear hyperfine couplings on each atom, the Hamiltonian

of the system (in frequency units) is:

H =(µB/h)B0(g1Sz1 + g2Sz2)+ (5.1)

γnB0(Iz1 + Iz2)+

A1S1 · I1 +A2S2 · I2+

J(S1 · S2),

where µB is the Bohr magneton, h is Planck’s constant, g1,2 ≈ 1.9985 the Landé g-factors

of each electron spin, gµB/h ≈ 27.97 GHz/T and γn ≈ 17.23 MHz/T is the 31P nuclear

gyromagnetic ratio.
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We use aluminium gate electrodes, patterned on the surface of the silicon chip via elec-

tron beam lithography, to control the electrostatic environment of the donors for donor

initialisation and readout [19, 26]. A broadband antenna delivers oscillating microwave

or radio frequency (RF) magnetic fields to control the spin of the electrons and nuclei

using electron spin resonance (ESR) or nuclear magnetic resonance (NMR), respectively

(Fig. 5.1a).
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Figure 5.1: Two-qubit phosphorus device operation. a. Schematic of the system
consisting of two phosphorus donors, each with their own single, bound electron. Setting
the nuclei in an anti-parallel configuration results in an effective ∆Bz between the two
electrons, which is given by the average hyperfine, Ā, between the two donors. b. Device
layout showing the silicon substrate upon which Al gates are fabricated for device control
and readout. The top of the figure shows an enlarged, false-coloured SEM image of the
Al gate layout. c. Quantum circuits denoting the readout process for Q1 and Q2. Q1
is readout via spin dependent-tunneling to an SET reservoir, while Q2 is instead readout
indirectly via Q1 using quantum logic.

The Q1 electron is read out and initialised directly via the standard method of energy-

dependent tunnelling to a nearby single-electron transistor (SET) island [86, 88]. This

readout also automatically initialises Q1 in the |↓⟩ ground state. The Q2 electron is read

out indirectly via quantum logic with Q1, by first initialising Q1 into the |↓⟩ state, then

rotating Q1 conditional on the state of Q2, then reading out Q1. To initialise Q2, we first

prepare Q1 in the |↓⟩ state, before transferring the spin state from Q1 to Q2 using a pro-

cess similar in nature to the well established electron-nuclear double resonance (ENDOR)
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5.2. OPERATION OF THE TWO-ELECTRON PROCESSOR

technique [150].
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Figure 5.2: Electron Q2 initialisation scheme. a. Full ESR frequency spectrum show-
ing the ESR resonances for both electron 1 and electron 2 for each nuclear configuration.
The number in the frequency subscripts represents which electron is being addressed by
each resonance, while the arrow denotes the spin state of the idle electron. b. Pulse se-
quence for the initialisation of Q2 into the spin |↓⟩ state. Each box represents an adiabatic
pulse, with a frequency range chosen such that it addresses both resonances listed above
each pulse simultaneously, as indicated by the striped purple and green colour. c. Circuit
diagram depicting the Q2 initialisation scheme, where N1 and N2 represent the donor
nucleus 1 and 2 respectively.

The electron Q2 initialisation scheme is designed in such a way that Q2 is initialised in

the |↓⟩ state regardless of if the nuclei are in the |⇓⇑⟩ or |⇑⇓⟩ state (if the nuclei are in a

parallel spin configuration then the electrons can no longer be individually addressed, as

discussed in section 5.10). Figure 5.2,b shows the pulse sequence for the initialisation of

Q2, consisting of three adiabatic pulses. Although only three pulses are applied, each of

these pulses addresses two resonance frequencies simultaneously, as a result of ∆νA > ∆νf
where ∆νA = 3 MHz is the frequency range of the adiabatic pulses and ∆νf = ∆A = 2
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MHz is the difference in frequency between the frequencies listed above each pulse in

Fig.5.2, b. To understand this pulse sequence we can first consider the case for which the

nuclei are in the ⇓⇑ configuration. We assume that the electron Q1 has been initialised

in the |↓1⟩ state at the beginning of the Q2 initialisation sequence using the initialisation

process described above. Electron Q1 is also read out at the end of this pulse sequence

such that it is always re-initialised into the |↓1⟩ state. With the assumption that Q1 is in

the |↓⟩ state, there are two possible states for the two electrons before the start of the Q2

initialisation scheme: |↓1↓2⟩ or |↓1↑2⟩.

If the electrons start in the |↓1↓2⟩ state then the Q2 initialisation scheme will do the

following:

1. Apply an adiabatic pulse to address resonances f1↑ and f∗
2↑ simultaneously (see

Fig.5.2,a). As we are assuming that the nuclei are in the ⇓⇑ for this example,

the resonance that is active for this nuclear configuration is f∗
2↑, which flips Q2

conditional on Q1 being in the |↑1⟩ state. As Q1 is in the |↓1⟩ state in this example,

this pulse therefore does nothing and we remain in the |↓1↓2⟩ electron state.

2. Apply an adiabatic pulse to address resonances f∗
1↑ and f2↑ simultaneously. As we

are assuming that the nuclei are in the ⇓⇑ for this example, the resonance that is

active for this nuclear configuration is f∗
1↑, which flips Q1 conditional on Q2 being

in the |↑2⟩ state. As Q2 is in the |↓2⟩ state in this example, this pulse therefore does

nothing and we remain in the |↓1↓2⟩ electron state.

3. Apply an adiabatic pulse to address resonances f1↑ and f∗
2↑ simultaneously. As we

are assuming that the nuclei are in the ⇓⇑ for this example, the resonance that is

active for this nuclear configuration is f∗
2↑, which flips Q2 conditional on Q1 being

in the |↑1⟩ state. As Q1 is in the |↓1⟩ state in this example, this pulse therefore does

nothing and we remain in the |↓1↓2⟩ electron state.

By the end of this sequence Q2 is therefore left in the |↓2⟩ state.
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5.2. OPERATION OF THE TWO-ELECTRON PROCESSOR

If the electrons instead start in the |↓1↑2⟩ state (still considering the case for which the

nuclei are in the ⇓⇑ configuration) then the Q2 initialisation scheme will do the following:

1. Apply an adiabatic pulse to address resonances f1↑ and f∗
2↑ simultaneously. As we

are assuming that the nuclei are in the ⇓⇑ state for this example, the resonance that

is active for this nuclear configuration is f∗
2↑, which flips Q2 conditional on Q1 being

in the |↑1⟩ state. As Q1 is in the |↓1⟩ state in this example, this pulse therefore does

nothing and we remain in the |↓1↓2⟩ electron state.

2. Apply an adiabatic pulse to address resonances f∗
1↑ and f2↑ simultaneously. As we

are assuming that the nuclei are in the ⇓⇑ state for this example, the resonance that

is active for this nuclear configuration is f∗
1↑, which flips Q1 conditional on Q2 being

in the |↑2⟩ state. As Q2 is in the |↑2⟩ state in this example, this pulse therefore flips

Q1 and hence we are left in the |↑1↑2⟩ electron state.

3. Apply an adiabatic pulse to address resonances f1↑ and f∗
2↑ simultaneously. As we

are assuming that the nuclei are in the ⇓⇑ state for this example, the resonance that

is active for this nuclear configuration is f∗
2↑, which flips Q2 conditional on Q1 being

in the |↑1⟩ state. As Q1 is in the |↑1⟩ state now, this pulse therefore flips Q2 and we

are left in the state |↑1↓2⟩.

By the end of this sequence Q2 is therefore left in the |↓2⟩ state.

This process can be sequentially worked through also for the example of the nuclei being

initialised in the ⇑⇓ configuration, revealing that Q2 is initialised in the |↓2⟩ at the end of

the pulse sequence regardless of which anti-parallel spin state the nuclei occupy.

Reading out the Q2 electron indirectly via Q1 presents several advantages, compared to

reading both electrons individually via spin-dependent tunnelling. Firstly, the Q2 electron

can be read out via repetitive quantum nondemolition (QND) measurements [148, 149],
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thanks to its long spin relaxation time (T1 ≈ 1.4 s) and the fact that J ≪ A renders the

exchange interaction approximately of Ising type, fulfilling the QND condition [109]. The

QND readout is performed by loading a |↓⟩ Q1 electron from the reservoir, rotating Q1

conditional on the state of Q2, reading out Q1, and repeating the cycle 11 times. The

resulting readout contrast is greatly enhanced, from a bare 0.48 to 0.76. Fig.5.3 shows

the effect of QND readout on the readout contrast of the electron, as ascertained by a

Rabi oscillation performed on Q2 both with no QND readout and with 11 shots of QND

readout. Fig.5.3,b shows the readout contrast of Q2 as a function of the number of QND

readout repetitions performed. A peak in the readout contrast is observed for a QND

readout repetition number of approximately 11. The decline in readout contrast beyond

a certain number of QND readout shots, we believe to be attributed to the QND error

associated with the hybridisation of electron states, as discussed in section 5.9 [109].
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5.2. OPERATION OF THE TWO-ELECTRON PROCESSOR

a b

c

Figure 5.3: QND readout of the electron. a Rabi measurement performed on electron
Q2, with and without 11 shots of QND readout. The readout contrast increased from 0.48
without QND readout to 0.76 with 11 repetitions of QND readout. b Readout contrast of
the electron as a function of number of QND readout repetitions, showing an optimum at
approximately 11 QND shots. c T1 measurement of the electron, showing a T1 relaxation
time of 1.4 ± 0.09 seconds. This time far exceeds the time taken to perform 11 QND
readout shots, indicating that relaxation of the electron is not the limiting factor for QND
readout.

The second benefit of this indirect readout scheme, is that the electron Q2 never leaves

the donor. When the electron is present on the donor, there exists a hyperfine coupling

between the donor-bound electron and the spin carrying Si isotopes, 29Si, in the vicinity

of the donor. The strength of this hyperfine coupling depends on the distance between the

electron and the surrounding 29Si and hence each individual 29Si in the donor vicinity pos-

sess a unique hyperfine coupling to the donor-bound electron. This difference in hyperfine

interaction strength between different 29Si nuclei thus detunes the neighbouring 29Si from

one another in energy. If this detuning is sufficiently large, such that it is greater than
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the coupling strength between the 29Si nuclei, then any flip-flopping between the nuclei is

suppressed; an effect known as nuclear freezing [151]. This nuclear freezing removes any

magnetic fluctuations caused by flip-flopping of the spin bath surrounding donor 2 and

hence results in a considerably more stable resonance frequency for electron Q2. Con-

versely, donor 1 is ionised during the readout of electron Q1 and hence the flip-flopping

of the spin bath surrounding donor 1 is ‘unfrozen’ every time the electron is removed

for readout. These 29Si nuclear spin flips in the surrounding spin bath result in jumps

observed in the resonance frequency of Q1, as shown in Figure 5.4.
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5.2. OPERATION OF THE TWO-ELECTRON PROCESSOR

Q1 Q2�� ��

�� ��

Figure 5.4: Electron frequency stability. a.(b.) Rabi chevrons performed on electron
Q1(Q2) showing the greater stability of Q2. An automated retuning algorithm was run
after the completion of every frequency sweep, in order to stay at the correct gate tuning
position for gate readout. The yellow horizontal lines present in the Rabi chevrons are
due to the device readout position drifting out of tune during the measurement, resulting
in a spin up proportion of 1 being erraneously measured. As the retuning algorithm is
only repeated once every frequency sweep, the device hence remains out of tune until the
end of the frequency sweep. c. Repeated ESR frequency spectrum of Q1 taken over a
time period of a few hours. The jumps observed in the resonance frequency of Q1 are as
a result of two 29Si nuclei that are hyperfine coupled to Q1 with a hyperfine coupling of
200 kHz and 2 MHz respectively. d. Repeated ESR frequency spectrum of Q2 taken over
a time period of a few hours, exhibiting a much more stable ESR frequency as a result of
nuclear freezing.

In a similar fashion to the readout of electron Q2, the donor nuclei are read out indirectly

via the electron Q1. In order to read out the state of the nucleus of either donor 1 or 2,

Q1 is initialised in the |↓⟩ state and then rotated conditional on the state of the nucleus,

before being read out. As with electron Q2, the nuclei can hence be read out using QND
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readout, resulting in high nuclear readout fidelities, exceeding 99% [19]. The nuclei are

initialised using an ENDOR technique [150].

5.3 Effect of weak exchange on qubit coherence

2� �

2�
2

O

0

f f

f

0

f ff
f

f

f

f

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

(      )

2
O(      )

�������� �� ������±����������

��������� �� ������±����������

�������� �� �����±�����


��������� �� �����±�����


Figure 5.5: Effect of weak exchange on electron coherence time. a. Electron
spin dephasing measurements by Ramsey experiment performed on Q2 with (green) and
without (black) the presence of an exchange interaction J with Q1. The regime without
J was created by ionising nucleus 1. b. Hahn echo experiment performed on Q2 with and
without the presence of the exchange coupling. The oscillations are artificially introduced
by a wait time dependent phase shift added to the final π

2 pulse.
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5.4. EXCHANGE-BASED TWO-QUBIT GATES

One significant advantage of operating in the always-on, weak exchange regime is that

the exchange interaction is not detrimental to the qubit coherence. We investigated the

effect of the exchange interaction on the coherence of the electrons by performing Ramsey

and Hahn echo experiments on electron Q2 both with donor 1 in the neutral and ionised

state. Donor 1 was ionised by tuning the device gate voltages such that electron Q1 is

able to tunnel from the donor to the SET island. With the removal of Q1, the exchange

coupling is no longer present in the system. The T ∗
2 and THahn

2 times of Q2 did not change

within the error bars for the fits (shown in Figure 5.5) with the removal of the exchange

coupling, indicating that the noise in the exchange interaction is not a dominant source

of decoherence of the qubits.

5.4 Exchange-based two-qubit gates

Two-qubit controlled rotation (CROT) gates are naturally obtained by preparing the two

donor nuclear spins in an anti-parallel configuration, i.e. either |⇓⇑⟩ or |⇑⇓⟩. In do-

ing so, the two electron spins are frequency-detuned by the average hyperfine coupling

A = (A1+A2)
2 . This can be thought of as the switchable, digital version of the detuning

caused by a gradient in Overhauser field ∆Bz in double quantum dots [117], i.e. ∆Bz = ±A

(Fig. 5.6).
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Figure 5.6: Exchange vs detuning hybridisation of states. Bloch sphere denoting
the hybridised states brought about by the ratio of the energy detuning ∆Bz with the
exchange coupling J , which constitute the eigenstates of the system in the weak J regime.

The two-electron spin eigenstates of the system are as shown in Table 5.1, where tan(2θ) =

J/A. In the present device, J ≈ 12 MHz ≪ A ≈ 112 MHz results in cos(θ) = 0.9986,

so that the eigenstates are almost (but not exactly) the tensor products of the individual

spins’ basis states {|↓⟩ , |↑⟩}.

|Q1Q2⟩ Eigenbasis Sz basis

|11⟩ |↓↓⟩ |↓↓⟩

|10⟩ |̃↓↑⟩ cos(θ) |↓↑⟩+ sin(θ) |↑↓⟩

|01⟩ |̃↑↓⟩ cos(θ) |↑↓⟩+ sin(θ) |↓↑⟩

|00⟩ |↑↑⟩ |↑↑⟩

Table 5.1: Two-qubit electron spin states.
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5.5. FIDELITY BENCHMARKING

An electron spin resonance (ESR) transition between any of these states, that exist when

the nuclei are in an anti-parallel spin orientation, (Fig. 5.7) results in a rotation of one

electron conditional on the state of the other, constituting a native CROT or zCROT gate.

For the entirety of this work we therefore set the nuclei into an anti-parallel spin config-

uration, of |⇑1⇓2⟩, such that the ESR transitions constitute native two-qubit conditional

rotations, similar to experiments in double quantum dots with fixed exchange [122,152].

0

f ff f
f

f

f

f

0

Figure 5.7: Antiparallel nuclei ESR spectrum. ESR spectrum showing the resonant
frequencies used to control electron 1 (purple) and electron 2 (green). These resonant
frequencies appear when the nuclei are in an antiparallel configuration, with nucleus 1 in
the down state and nucleus 2 in the up state. A resonant π pulse on any of these resonant
frequencies represents a two-qubit CROT or zCROT gate, as shown in the circuit diagrams
above each resonance.

5.5 Fidelity benchmarking

5.5.1 Single-qubit GST

Since the native gates in this J-coupled system are two-qubit CROT operations, a one-

qubit electron gate is performed by two sequential CROT gates, in order to rotate one

electron unconditional on the state of the other electron [152]. We then use gate set

tomography (GST) [29, 144, 153] to quantify the fidelity of the operations. We perform

three distinct runs of one-qubit GST on each of the qubits, where the idle qubit is kept

either in the |↓⟩, or 1√
2(|↓⟩+|↑⟩), or |↑⟩ state for the duration of the experiment. Figure 5.8
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shows the estimated Xπ
2

(rotation of the target qubit by an angle π/2 around the X-axis)

error rates for each of the unconditional single-qubit operations. Notwithstanding the

longer gate times compared to the native conditional operations, all Xπ
2

and Yπ
2

fidelities

exceed 99.00±0.29%
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Figure 5.8: Unconditional single-qubit GST. Error rates for the unconditional, single-
qubit gates, estimated with single-qubit GST. The unconditional gates were implemented
by applying two sequential π2 rotations to Q1(Q2), one conditional on Q2(Q1) being in the
spin |↓⟩ state and one conditional on Q2(Q1) being in the |↑⟩ state, in order to rotate one
electron unconditional on the state of the other electron. To test the effectiveness of this
unconditional gate, we performed three separate GST experiments on each electron, with
the other electron intialised in either the |↓⟩ state, a superposition state of 1√

2(|↓⟩ + |↑⟩)
or the |↑⟩ state. The diagrams to the left of the rows indicate which electron is acting
as the target electron in each GST experiment, while the Bloch sphere schematics above
each of the columns denotes the state of the corresponding control electron throughout
each GST experiment. The fidelities estimated for each gate are quoted in the inset
of each plot. The error rates for each error mechanism were calculated through simple
combinations of stochastic and coherent Pauli projections, extracted from the GST results.
The ‘Axis misalignment’ of the idle gate quantifies the component of the idle gate’s rotation
perpendicular to the Z-axis of the Bloch sphere. The ‘Axis misalignment’ of the Xπ

2
and

Yπ
2

gates on the other hand, represents the error associated with the relative angle between
the X and Y rotation axis of the qubit and hence is represented by a single striped column,
to indicate that this error is associated with both the Xπ

2
and Yπ

2
gates.

We additionally performed one-qubit GST on each of the four native conditional rotation

176



5.5.2 Two-qubit GST

operations, by keeping the idle electron in one of its eigenstates, either |↓⟩ or |↑⟩, for the

duration of the experiment, effectively truncating the Hilbert space of the two-electron

system into a one-qubit subspace. Figure 5.9 shows the one-qubit error rates obtained for

each of the Xπ
2

gates generated using either the native CROT and zCROT gates, with the

other electron initialised in an eigenstate. The Xπ
2

and Yπ
2

gate fidelity of both electrons

extracted from the GST results for the native conditional rotations exceeded 99.63±0.07%.
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Figure 5.9: Conditional single-qubit GST on both electrons. a. Error rates for
the native, conditional gates performed on electron Q1, estimated using single-qubit GST.
The schematics above each plot depict the state in which electron Q2 was initialised and
upon which each gate on Q1 was conditioned, for the two separate GST experiments. b.
Error rates for the native, conditional gates performed on electron Q2, estimated using
single-qubit GST. For both a.,b. the error rates for each error mechanism were calculated
using combinations of Pauli projections extracted from the single-qubit GST results. The
fidelities estimated for each gate are quoted in the inset of each plot.

5.5.2 Two-qubit GST

Next, we performed full two-qubit GST on a gate set consisting of the eight native CROT

and zCROT gates (Fig. 5.10) together with a global idle. The analysis of the two-

qubit GST results tells a more complicated story, revealing error mechanisms that were

otherwise invisible when operating the device as an effectively one-qubit system as above.

The error budget in the two qubit case is dominated by three main sources. For the CROT

and zCROT gates there are systematic coherent errors that correspond to relational axis

misalignment errors between pairs of CROT and zCROT gates acting on different control

and target qubits. Additionally, the CROT and zCROT gates induce a significant amount

of dephasing on the control qubit. For the idle gate, on the other hand, the error is
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predominantly depolarization.

From the perspective of understanding the underlying device characteristics it is useful to

separate out coherent errors, which are primarily attributable to the control system and

can largely be corrected through calibration, from stochastic errors which typically arise

from the device physics. Using the generator fidelity introduced in [29] we can perform

such a partition, dividing the infidelity into its coherent and incoherent contributions.

Doing so we find that the CROT and zCROT gates have incoherent contributions to their

infidelities ranging from 6.91% to 21.88%, with an average of 12.54±6.40%.

While significantly lower than the fidelity obtained when restricting our attention to a one-

qubit subspace, these results have elucidated the existence of error mechanisms coming

from the device physics that, while previously known about, have greater than expected

impacts on device performance. We conjecture, for example, that a significant amount of

the observed uptick in dephasing on the control qubit, can be attributed to jumps in the

resonance frequency of the target qubit, induced by changes in the orientation of weakly

coupled, residual 29Si nuclei in the vicinity of the donor, as discussed in section 5.2. The

impact of these small jumps in frequency could potentially play a significant role in the

dephasing observed on the control qubit, as a result of the geometric phase induced on

the control qubit upon performing a rotation of the target qubit. The magnitude of the

geometric phase imparted on the control qubit is equal to half the solid angle traversed

by the target qubit on the Bloch sphere. As a consequence of this, the exact phase im-

parted on the control will depend very sensitively on any frequency detuning between the

resonance frequency and the frequency of the microwave driving field. Thus, even a small

shift in the resonance frequency (∆ν ≪ 2νRabi, where ∆ν is the shift in the resonance

frequency and νRabi is the Rabi frequency of the target electron) of the target qubit, can

alter the path traversed by the target qubit on the Bloch sphere and thus manifest itself

as a noticeable stochastic error induced on the phase of the control qubit. Although this

effect can often be mitigated through careful frequency re-calibration of the microwave

driving field, for example using a Ramsey experiment, this strategy becomes increasingly

difficult as the coupling strength of the fluctuating 29Si nuclei approaches the intrinsic
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linewidth of the target qubit, proportional to 1
T ∗

2
. In these cases, pulse engineering could

be utilised to design a drive that is more robust against these small shifts in the resonance

frequency. Additional work is currently underway validating this conjecture and explor-

ing other possible decoherence mechanisms which could be partially responsible for the

observed dephasing rates.

���������
π�

���������
π�

0

f ff f
f

f

f

f

0

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

0

f ff f
f

f

f

f

0

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Rates

Rates

Rates

Rates

Rates

Rates

Rates

Rates

Figure 5.10: Two-qubit GST on the electrons. Stochastic error rates estimated using
two-qubit GST for both the Xπ

2
(a.) and Yπ

2
(b.) gates. From left to right in a.(b.) these

Xπ
2
(Yπ

2
) rotations were performed on: Q1, conditional on Q2 being in the |↓⟩ state, Q1

conditional on Q2 being in the |↑⟩ state, Q2 conditional on Q1 being in the |↓⟩ state and
Q2 conditional on Q1 being in the |↑⟩ state. These eight gates were all tested in the same
two-qubit GST experiment.

5.6 Electron spin Bell state tomography

We demonstrated the entangling nature of the two-qubit CROT operations by creating

and tomographing electron Bell states. We created a two-electron Bell state by initialising

the spins in the state |Q1Q2⟩ = |↓↓⟩, performing an Xπ
2 gate on Q1, and then an entangling

CROT operation on Q2. The fidelity of the resulting state was benchmarked using phase

reversal tomography [36,132,135,136], whereby the pulses used to create the Bell state are

applied in reverse, but with a progressively increasing phase (Fig. 5.11a). Accordingly, the
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Figure 5.11: Electron phase reversal tomography. a. Top shows the circuit diagram
associated with the preparation of the Φ+ = 1√

2(|↓↓⟩ + |↑↑⟩) Bell state. Bottom plot
shows the oscillation in the spin up proportion of electron Q1 and Q2 as a function of the
phase of the reversal pulses, with amplitude of the oscillations corrected for SPAM error.
b. Reconstructed density matrix of the Φ+ state using phase reversal tomography. The
magnitude of the density matrix elements are represented by the height of the respective
bars, while the phase of each element is denoted by the associated color on the color wheel.
From this density matrix a Bell state fidelity of 92.5 ± 4.5% was extracted.

ability to reverse the electrons back to their initial state oscillates according to the phase

of the reversal pulses. This results in the spin up proportion of the electron oscillating

as a function of reversal phase, with a spin up proportion of 0 at a reversal phase of 0

indicating that the electrons have been successfully reversed to their initial state. The

amplitude and phase of these oscillations allows for the reconstruction of the off-diagonal

corner elements of the two-qubit density matrix, ρ14, ρ41. In order to obtain the diagonal

corner elements, ρ11, ρ44, we directly measured the Bell state populations in the Z-basis

immediately following the state’s preparation. By choosing to prepare the Φ+ = 1√
2(|↓↓⟩+

|↑↑⟩) Bell state, which only has non-zero elements in each of the four corners of the density

matrix, the fidelity of this Bell state can be ascertained using these four matrix elements.

Using this method we obtained a Bell state fidelity of 93 ± 9%, with state preparation

and measurement (SPAM) error removed and 73 ± 6% without SPAM removal. The full
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5.6. ELECTRON SPIN BELL STATE TOMOGRAPHY

measured density matrices with and without SPAM are the following:

ρ̂SPAM = (5.2)

0.460± 0.032 0 0 0.332± 0.062 + 0.109± 0.096j

0 0.116± 0.012 0 0

0 0 0.097± 0.016 0

0.332± 0.062− 0.109± 0.096j 0 0 0.327± 0.032


(5.3)

ρ̂no SPAM = (5.4)

0.431± 0.058 0 0 0.464± 0.084 + 0.154± 0.136j

0 −0.023± 0.058 0 0

0 0 0.050± 0.064 0

0.464± 0.084− 0.154± 0.136j 0 0 0.485± 0.038


(5.5)

The error bars were obtained through repeating the phase reversal measurement 10 times,

constructing a density matrix for each repetition, with an associated Bell state fidelity,

and calculating 2σ, where σ is the standard deviation of the 10 resultant fidelity values. As

discussed in section 4.3.4, measurement imperfections can result in the estimated density

matrix not representing a physical density matrix. To find the nearest physical density

matrix to the estimated matrix, ρ̂, we therefore used a Nelder-Mead optimisation algorithm

in python to optimise the parameters tn in the following lower triangular matrix

T =



t1 0 0 0

0 t5 0 0

0 0 t6 0

t2 + it3 0 0 t4


, (5.6)

The cost function to be minimised was given by the overlap between σ̂ and the measured

density matrix ρ̂, where
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σ̂ = T †(t)T (t)
Tr(T †(t)T (t)) . (5.7)

Figure 7.2 shows the individual iterations of the optimisation algorithm for both the

density matrix with (Fig. 7.2, a) and without (Fig. 7.2, b) SPAM extracted. The tn
values converge to optimal values within 175 iterations of the optimisation algorithm in

both cases, rendering a final overlap between the measured and estimated density matrices

of 100.0% with SPAM error and 99.79% for the density matrix with SPAM extracted.

�� ��

Figure 5.12: Nelder-Mead estimation of density matrix elements. a. Plot showing
175 iterations of the Nelder-Mead optimisation algorithm to find the nearest physical
density matrix to the measured matrix. The values tn are seen to converge to their
optimal value. b. Plot of the same Nelder-Mead algorithm run on the density matrix
with SPAM error extracted.

We extracted SPAM error by performing two Rabi oscillations, both with two-qubit read-

out. One Rabi was performed on Q2, between the states |↓↓⟩ and |̃↓↑⟩ and one was

performed on Q1, between the states |̃↓↑⟩ and |↑↑⟩. The amplitude of the Rabi oscil-

lation is dictated by a combination of initialisation, Iψ and readout, Rψ, error, where

ψ = {↓↓, ↓↑, ↑↓, ↑↑} denotes the state being initialised or read out. The amplitudes of

each of the four Rabi oscillations, as shown in Figure 5.13, can therefore be written as the

following:

182



5.6. ELECTRON SPIN BELL STATE TOMOGRAPHY

A1a A1b
A2a A2b

Rabi on Q1 Rabi on Q2�� ��

Figure 5.13: Phase reversal tomography SPAM extraction. a. Rabi oscillation
with two-qubit readout performed on Q1. A1a represents the amplitude of the oscillation
of the |↓↑⟩ state while A1b represents the amplitude of the oscillation of the |↑↑⟩ state.
These amplitudes provide a scaling factor for the phase reversal oscillations and direct
Bell state measurement, allowing for the extraction of SPAM error from the results. b.
Rabi oscillation with two-qubit readout performed on Q2. A2a represents the amplitude
of the oscillation of the |↓↓⟩ state while A2b represents the amplitude of the oscillation of
the |↓↑⟩ state.

A1a = I↓↑ ×R↓↑, (5.8)

A1b = I↓↑ ×R↑↑, (5.9)

A2a = I↓↓ ×R↓↓, (5.10)

A2b = I↓↓ ×R↓↑, (5.11)

(5.12)

In order to extract the SPAM from our phase reversal measurement, we require the in-

formation I↓↓ × R↓↓ and I↓↓ × R↑↑. The value of I↓↓ × R↓↓ is obtained directly from

the amplitude A2a (see Fig. 5.13), while I↓↓ × R↑↑ can be obtained with the following

expression:

I↓↓ ×R↑↑ = I↓↑ ×R↑↑ × I↓↓ ×R↓↑
I↓↑ ×R↓↑

(5.13)

= A1b ×A2b
A1a

(5.14)

These values are then used as a scaling factor for the Bell state measurements.

As discussed in section 4.3.2.2, one useful metric for quantifying entanglement is concur-
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rence, which represents the overlap between a state |Φ⟩ and a state that is diametrically

opposite to |Φ⟩ on the Bloch sphere. A concurrence value of 0.91 ± 0.08 was obtained

from the SPAM excluded, physical density matrix, indicating a high degree of entangle-

ment between Q1 and Q2.

5.7 Further mechanisms associated with a reduction in two-
qubit fidelity

5.7.1 AC Zeeman shift

In order to obtain high-fidelity two-qubit operations, we must account for off-resonant

driving effects, such as AC Zeeman shift, as discussed in section 2.7. Although the reso-

nance frequency shift induced by the AC Zeeman shift for a given pulse can be calculated

theoretically, it is often beneficial to corroborate the theoretical results experimentally.

Figure 5.14 shows the shift in resonance frequency caused by the AC Zeeman shift, as a

function of frequency detuning between the applied magnetic field and the resonance fre-

quency of the system, as well as power of the applied pulse. This information can be used

to mitigate the effect of AC Zeeman shift during a two-qubit experiment, by performing

a virtual Z gate after each pulse, through an additional phase added to the subsequent

control pulses. The amount of phase added by the virtual gate can be extracted for each

pulse by calculating the expected AC Zeeman shift for a given frequency detuning and

pulse power (see equation 2.67 in section 2.7). Using these virtual-Z gates we can mitigate

the effects of AC Zeeman shift in the system.
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�� ��

Figure 5.14: Experimental AC Zeeman shift. a. Measured vs theoretical frequency
shift from the AC Zeeman effect, as a function of frequency detuning between the resonance
frequency and the frequency of the magnetic AC driving field. b. Measured frequency
shift as a function of the power of the AC drive.

5.7.2 Beating in spin precession

Another potential source of reduction in two-qubit fidelity in this device was a beating

observed in the spin precession of electron Q2. Figure 5.15 shows a Ramsey measure-

ment performed on electron Q2, with a destruction in the coherence of the Ramsey fringes

observed at a wait time of approximately 15 µs, followed by a subsequent revival of the

coherence fringes. Additionally, this beating in the coherence oscillations was observed

in the two-electron Bell state. To probe this, we performed a modified version of the

phase reversal tomography measurement discussed in section 5.6, whereby we introduced

a wait time in between the Bell state preparation and reversal pulses; the duration of

which was incrementally swept. This allowed us to measure the coherence time of the

Bell state. As with the Ramsey measurement performed on a Q2, we observed a beating

in the coherence of the Bell state, with the same period as that observed in the Ramsey

measurement. Figure 5.16 shows this beating in the coherence of the Bell state for the

case of the 1√
2(|↑↓⟩+ |↓↑⟩) Bell state.

This beating was not however, observed in a Hahn echo measurement performed on elec-

tron Q2, as shown in Figure 5.15, indicating that the source of the beating is refocused

during a Hahn echo measurement.
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Figure 5.15: Beating in Ramsey coherence. a. Ramsey measurement performed
on electron Q2 (blue line) and phase reversal tomography of a Bell state between the
electrons (pink line), with a wait time introduced between the preparation and reversal
pulses. A destruction of coherence is observed in both measurements at a wait time
of approximately 15µs, which we denote as a beating in the coherence. b. Hahn echo
measurement performed on electron Q2, which does not show any beating, indicating that
the source of the beating has been refocused in this measurement.

One potential mechanism for this beating in the coherence of electron Q2 is as a result

of a switching in the precession frequency of the electron, caused by the loading and

unloading of a nearby charge trap in the vicinity of the donor. To test this, we performed

a Ramsey measurement on Q2, while sweeping the voltage applied to the gate PL during

the electron loading phase. We observed that the period of the beating observed in the

Ramsey oscillation did not change as a function of gate voltage. This makes it unlikely

that the ESR frequency switching is caused by a switching charge trap, because such

traps typically switch only within narrow regions of gate space, whereas they are frozen
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5.7.2 Beating in spin precession

(polarized) by tuning them away from their charge resonance condition.

Figure 5.16: Beating in the Bell state coherence. In this measurement we first
prepare the bell state 1√

2(|↑↓⟩+ |↓↑⟩) with a π
2 on Q1 and a CROT on Q2. We then apply

these pulses in reverse, while sweeping the phase of the reversal pulses. Additionally, we
introduce a wait time between the Bell state preparation and reversal pulses, which is
also swept. The duration along the x-axis of the plot represents the duration of the wait
time between the Bell state preparation and reversal pulses. In this way we can therefore
measure the coherence time of the prepared electron Bell state, revealing a beating in the
coherence.
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Figure 5.17: Ramsey measurement on electron Q2 for varying loading voltages.
Beating observed in the Ramsey oscillation as a function of voltage applied to the PL gate
at the ‘load’ tuning point of the electron (see section 3.9.3 for information on the ‘load’
tuning point).
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5.8 Tuning the exchange interaction

The exact value of the exchange interaction between two exchange-coupled electrons de-

pends upon the overlap of their wavefunctions, which in turn can be influenced by the

voltages applied to the gates fabricated on the surface of the device. In order to test

the tunability of the exchange interaction with the applied gate voltages, we initialised

the nuclei in an anti-parallel spin configuration of |⇑⇓⟩, before performing two Ramsey

measurements, one on Q2 conditional on Q1 being in the |↓⟩ state (f2↓) and one on Q2 con-

ditional on Q1 being in the |↑⟩ state (f2↑). These Ramsey measurements were performed

while sweeping the voltage applied to one of the gates. Any frequency shift as a function

of gate voltage, that shifts both f2↓ and f2↑ together can be explained by DC Stark shift of

both the hyperfine interaction and g-factor. However, the frequency difference |f2↓ − f2↑|

depends only on the exchange interaction between Q1 and Q2 and hence any change in

|f2↓ − f2↑| represents a change in the magnitude of the exchange interaction between the

electrons.

For a change in voltage of ≈ 70 mV we observed a DC Stark shift of ≈ 40 kHz and a shift in

exchange coupling of ≈ 400 kHz. This translates to a tunability of the exchange coupling

of dJ
dVG

= 5.7 MHz/V. This low tunability, indicates that we may be in a plateau region of

electric sensitivity. This is also corroborated by the low noise in J-coupling measured by

comparing the coherence times of the electrons with and without the exchange coupling

present (see section 5.3).
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Figure 5.18: Tuning the exchange coupling. a. Ramsey measurements performed
on the electron Q2 with electron Q1 either in the |↓⟩ state (left plot) or |↑⟩ state (right
plot) as a function of the loading voltage of the electron. Each Ramsey was fitted and the
frequency of the Ramsey oscillations as a function of voltage was extracted. b. DC Stark
shift as a function of gate voltages, extracted with ν̄

∆V where ∆V is the change in voltage
and ν̄ = ν1+ν2

2 . ν1 is the frequency of the Ramsey oscillation conditional on Q1 in the |↓⟩
state and ν2 is the frequency of the Ramsey oscillation conditional on Q1 in the |↑⟩ state.
The change in exchange interaction as a function of gate voltage was calculated with ∆ν

∆V
where ∆ν = ν2 − ν1.

5.9 Limitations of QND readout of the electron

As discussed in section 3.11.2, a condition that must be fulfilled in order for a measurement

to be truly QND in nature is that the qubit Hamiltonian, ĤQ must commute with the

interaction ĤC [109]
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[ĤQ, ĤC ] = 0. (5.15)

For the case of J ≪ A the exchange interaction is only approximately of Ising type and

thus for this system [ĤQ, ĤC ] ̸= 0, resulting in the readout of the electron Q2 being not

fully QND in nature. As a consequence of this, the exchange interaction acts to weakly

entangle the two electrons, resulting in the eigenstates of the system becoming hybridised.

These hybridised eigenstates can be written as follows

˜|↑A↓D⟩ = c |↑A↓D⟩ − s |↓A↑D⟩ , (5.16)

˜|↓A↑D⟩ = c |↓A↑D⟩ − s |↑A↓D⟩ , (5.17)

where the subscript D denotes the state of the data electron being read out (Q2 in the

case of this thesis) and A denotes the state of the ancillary electron being used to read out

the data qubit (Q1 in this case). c = cos(θ) and s = sin(θ), tan(2θ) = J
∆ . where ∆ = Ā for

the case of the anti-parallel nuclei. This hybridisation of states leads to a small probability

of flipping the data electron during the QND readout process. To understand the origin

of this we must determine the tunnelling rates associated with the QND readout process.

We can start by restricting our analysis to the case in which the temperature T = 0 [138].

There are two main contributions to the tunnel rates in this system. The first contribution

is from the amplitudes of the transition matrix elements coupling the one-particle (1P)

and two-particle (2P) states, where the 1P states consist of the donor qubit states |↓D⟩ and

|↑D⟩, while the 2P states consist of the two-electron states |↑A↑D⟩ , ˜|↑A↓D⟩, ˜|↓A↑D⟩, |↓A↓D⟩.

These amplitudes are given by

M1P,2P = | ⟨1P | â↑ + â↓ |2P ⟩ |2, (5.18)

where â†
↓(â†

↑) creates a spin ↓ (↑) particle on the ancilla. A value of M1P,2P = 0 for a given

transition, indicates that this transition is forbidden.
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The second contribution to the tunnel rates is the selection through energy occurring as a

result of the relative positioning of the chemical potentials of each energy level with respect

to the SET electrochemical potential, µSET. In this system, there are three chemical

potentials that lie above the electrochemical potential of the SET: µ↑̃A↓D↔↓D
, µ↑A↑D↔↑D ,

µ↓̃A↑D↔↓D
and three chemical potentials that lie below the electrochemical potential of the

SET: µ↑̃A↓D↔↑D
, µ↓A↓D↔↓D , µ↓̃A↑D↔↑D

. Making the assumption that the density of states

in the SET is approximately constant over the relevant energy scales and that the Fermi

distribution of the SET, f(E), is approximately the same for all the cases of an ↑ electron

tunnelling and all the cases of a ↓ electron tunnelling we can define the following tunnel

rates

Γin
↑ = Γ0f(µ↑), (5.19)

Γout
↑ = Γ0f(1− µ↑), (5.20)

Γin
↓ = Γ0f(µ↓), (5.21)

Γout
↓ = Γ0f(1− µ↓), (5.22)

where µ↓(µ↑) represent the low (high) chemical potentials and Γ0 = |t0|2n(µ) is the bare

tunnelling rate, where n(µ) is a constant. For the case in which T = 0 only the tunnel

rates Γin
↓ and Γout

↑ are non-zero.

We can first consider the case for which an ancilla electron is loaded while the data qubit

is in the ↑D state. In this case the relevant transition rates are given by the following

Γin
↑D↔↑̃A↓D

= Γin
↓ M↑D,↑̃A↓D

= Γin
↓ s

2, (5.23)

Γin
↑D↔↓̃A↑D

= Γin
↓ M↑D,↓̃A↑D

= Γin
↓ c

2. (5.24)

(5.25)

For these three states the time evolution of the system can then be calculated using the

following rate equations [138]
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
ρ̇↑̃A↓D

ρ̇↓̃A↑D

ρ̇↑D

 =


0 0 Γin

↓ s
2

0 0 Γin
↓ c

2

0 0 −Γin
↓



ρ↑̃A↓D

ρ↓̃A↑D

ρ↑D

 . (5.26)

For the case of an initial ↑D state of the data qubit the 2P state probabilities as a function

of time are the following

ρ↑̃A↓D
(t) = s2(1− e−Γin

↓ t)→t→∞ s2, (5.27)

ρ↓̃A↑D
(t) = c2(1− e−Γin

↓ t)→t→∞ c2. (5.28)

The implications of this are that as the tunneling time t → ∞ there exists a non-zero

probability, even at T = 0, to flip the data qubit upon loading the ancilla, purely as a

result of the weak entanglement between the ancilla and target electron. The probability

of flipping the data qubit from ↑D↔↓D upon loading the ancilla is given by s2. In the sys-

tem described in this thesis, where J ≈ 12 MHz and ∆ = Ā ≈ 112 MHz, s2 ≈ 2.8× 10−3.

For the case of T = 0, the probability of flipping the data qubit from ↓D↔↑D is 0 due to

the fact that this requires the tunnel rates Γin
↑ and Γout

↓ to be non-zero.

For the case of T > 0 however, the Fermi distribution of the SET is broadened and hence

Γin
↓ = Γout

↑ = Γ0(1− f), (5.29)

Γin
↑ = Γout

↓ = Γ0f. (5.30)

where we assume that the chemical potential is centred perfectly between µ↑ and µ↓ and

hence f = f(µ↑) = 1 − f(µ↓). For electrons in a magnetic field of approximately 1 T,

µ↑ − µ↓ ≈ 27.97 GHz and hence f ≈ 0.03.

Simulating this tunnelling process, we find that the the probability of flipping the data

qubit from ↓D→↑D increases and then saturates at a flipping rate of 1.2×10−2 [109]. This

saturation is as a result of two competing processes which converge to an equilibrium,
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5.9. LIMITATIONS OF QND READOUT OF THE ELECTRON

due to the fact that, when the data qubit is flipped to the ↑D state, then the processes

described above act to flip this spin back to the ↓D state. The point at which this equilib-

rium converges depends upon the ratio of the ‘fast’ tunneling events: Γin
↓ , Γout

↑ (which are

non-zero even at T = 0) and the ‘slow’ tunnelling events: Γin
↑ , Γout

↓ (which come about as

a result of thermal broadening of the SET island for T > 0).

Interestingly, this equilibrium point also depends on which conditional resonance is used

to flip the ancilla electron: the conditional resonance to flip the ancilla dependent on the

data qubit being in the ↓D state (CR(↓D)) or the conditional resonance to flip the ancilla

dependent on the data qubit being in the ↑D state (CR(↑D)). To understand the reason

behind this we can break down the process involved in a spin flip of the data qubit from

↓D to ↑D, for the case of driving either CR(↓D) or CR(↑D), as shown in Figure 5.19. This

reveals that, for the case of driving CR(↓D), both a slow and a fast tunnelling process are

required in order to flip the data qubit from ↓D to ↑D. For the case of driving CR(↑D) on

the other hand, the only tunnelling processes involved are slow tunnelling processes. Con-

sequently, the flipping rate of the data qubit is slower for the case of driving the CR(↑D)

resonance.

�� ��

Figure 5.19: Errors in the QND process.a. Shows the tunnelling processes involved
in flipping the data qubit from ↓D to ↑D for the case of reading out the resonance CR(↓D)
revealing that this flipping mechanism relies on both fast and slow tunnelling mechanisms.
b. Shows the tunnelling processes involved in flipping the data qubit from ↓D to ↑D for
the case of reading out the resonance CR(↑D). In this case only slow tunnelling processes
are involved in the flipping process, resulting in a slower flipping rate of the data qubit
from ↓D to ↑D for the case of driving the CR(↑D) resonance.
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In order to best describe the true situation of QND readout in a two-donor exchange

coupled electron system we input experimentally informed tunnelling rates into this QND

model, as well as relaxing both the assumption that the density of states of the SET is con-

stant [85] and that the electrochemical potential of the SET is perfectly centred between

the µ↓ and µ↑ states. With these experimentally informed parameters, the simulations of

the QND measurement process with an initial state of the data qubit of ↓D, and driving

the conditional rotation CR(↑D) is shown in Figure 5.20. In this case, the ratio Γin
↓ /Γin

↑ = 2

and hence there is a much higher probability of erroneously loading a spin ↑A ancilla spin.

This hence increases the likelihood of the process ↓D→ ↓̃A↑D and hence the probability of

flipping the data qubit from ↓D to ↑D.

These error mechanisms associated with imperfections in the QND readout process repre-

sent the dominant source of erroneous flipping of the data qubit compared to the natural

relaxation of the electron spin [109].

Figure 5.20: Error channels in the QND measurement of exchange-coupled spins
with experimental parameters. a. Chemical potentials with respect to a Fermi dis-
tribution in the lead for an off-centered read/load tuning representing the given set of
experimentally-informed spin-dependent tunnel rates. b. Simulations of the QND mea-
surement with an initial state of the data qubit of |↓⟩, and driving a conditional rotation
on the ancilla dependent on the data being spin |↓⟩ state. N represents the number of
QND repetitions.c. Probability of finding the data in the spin |↑⟩ state after repeated
QND measurements as a function of time for different conditional rotations (CR) on the
ancillate qubit. The case of conditionally rotating the ancilla depending on the data qubit
being in the |↓⟩ state, with an initial spin |↓⟩ data electron is highlighted by the black
dotted line. Figure taken from [109].
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5.10. OPERATION AND READOUT OF ELECTRONS IN THE
PARALLEL NUCLEAR REGIME OF A J-COUPLED SYSTEM

5.10 Operation and readout of electrons in the parallel nu-
clear regime of a J-coupled system

In the previous sections we have focused primarily on the operation and readout of the

electrons in an exchange-coupled donor pair, for the case in which the two donor nuclei

are initialised in an anti-parallel spin orientation of either |⇓⇑⟩ or |⇑⇓⟩. In this anti-

parallel configuration, the detuning, ∆, between the two electrons is given by ∆ = Ā,

where Ā = A1+A2
2 is typically ≈ 117 MHz. In the following sections we will consider

the readout and operation of the electrons in an exchange-coupled donor pair, when the

nuclei are instead initialised in a parallel spin orientation of either |⇓⇓⟩ or |⇑⇑⟩. When

the nuclei are in a parallel orientation, the detuning between the electrons is given by

∆ = ∆A = |A1 − A2|, which is typically of order ≈ a few MHz. Consequently, for the

cases in which ∆A < J < Ā, as is the case for the device measured in this thesis with

Ā ≈ 112 MHz, ∆A ≈ 2 MHz and J ≈ 12 MHz, flipping the nuclei from an anti-parallel to

a parallel spin orientation allows us to transition from the J << ∆ to the J > ∆ regime.

5.10.1 Operation

As discussed in section 4.2.2, when the nuclei are initialised in a parallel spin orientation

of either |⇓⇓⟩ or |⇑⇑⟩ the electron transitions frequencies are the following

νβ = T− ←→ S̃, (5.31)

να = T− ←→ T0, T0 ←→ T+, (5.32)

νγ = S̃ ←→ T+, (5.33)

where S̃ is a hybridised singlet-like state, introduced in section 4.2.2. Fig.5.21,a and b show

a schematic representation of these resonance frequencies in the regime of J > ∆ = ∆A.

The transition α is comprised of two transitions, one from T− ←→ T0 and one from

T0 ←→ T+, which differ in frequency by an amount ∆A in the limit of low J (J < Ā).

For the case in which 2νR >> ∆A, where νR is the Rabi frequency of the electron, the AC

driving field will overlap with both transition frequencies and thus drive both transitions
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Figure 5.21: Operation of the electrons for the case of parallel nuclear spins. a.
Energy eigenstates of the electrons in parallel nuclei regime. T−,T0 and T+ represent the
three triplet states, while S̃ represents a hybridised ‘singlet-like’ state. b. Schematic of
the expected ESR transitions present in the parallel nuclear regime. c. Simulation of the
driving of the α transition, at a frequency centred between the T− ↔ T0 transition and
T0 ↔ T+ transition, which differ due to a different hyperfine between the two donors.
The simulation was carried out with J = 12 MHz and ∆A = 2 MHz. d. Simulation of
the β and γ transitions for J = 12 MHz and ∆A = 10 MHz. A higher value of ∆A was
chosen in order to amplify the amplitude of the S̃ occupation.

simultaneously. This is shown schematically in Fig.5.21,c, which shows a driving field,

applied at the centre of the two frequencies representing the transitions T− ←→ T0 and

T0 ←→ T+, where the the linewidth of the driving field, 2νR > ∆A and hence the field

drives both transitions simultaneously. The result of driving both transitions simultane-

ously is shown in the simulation in Fig 5.21 d and e. In this simulation, an AC driving

field, with a Rabi frequency 2νR > ∆A is applied for a varying duration of time at a fre-

quency centred between the frequency of the two transitions T− ←→ T0 and T0 ←→ T+.

Plotting the projection of both electrons on the z-axis of the Bloch sphere (Fig 5.21 d), we

see that both electrons oscillate between the |↓⟩ and |↑⟩ state. If we plot the projection of

the electron states on the triplet and singlet states however (Fig 5.21 e), we see that the

electrons oscillate between the T− state and a state comprised primarily of the T+ state,
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5.10.1 Operation

with a small contribution from the T0 state. By extracting the π
2 pulse duration from Fig

5.21 d, we see that upon applying a π
2 pulse at the resonance να we do not prepare the T0

state but instead prepare a mixture of T−, T0 and T+ state.

Fig. 5.21 f-i, shows the simulation of an AC driving field applied at either the resonance

νβ (Fig.5.21 f,g) or νγ (Fig.5.21 h,i). Although a pure singlet state possesses a total

spin of zero, resonances β and γ are addressable via ESR, as a result of the singlet state

becoming hybridised, in the energy regime for which J ≈ ∆A. This hybridised singlet-like

state, S̃, thus no longer possess a spin of zero, allowing it to be addressed with ESR.

As J → ∞ however, this state approaches a pure singlet state and hence the β and

γ transitions become forbidden in this energy regime. A characteristic behaviour of a

weakly J coupled system is therefore the observation of two ESR transitions that always

occur simultaneously when the electrons are initialised in the T− state, corresponding to

the α and β transitions, as shown in Figure 5.22. The difference in frequency between

these transitions is given by J . In order to observe the γ transition, a pre-pulse at a

frequency β must first be applied, in order to initialise the electrons into the S̃ state.

J = 11.64 MHz

Figure 5.22: Adiabatic ESR transitions in a parallel nuclear configuration. Adia-
batic ESR spectrum with the nuclei initialised in the |⇓⇓⟩ state. Left peak centred around
the pink line indicates the T− ↔ S̃ transition, while the right peak centred around the
blue line indicates the T− ↔ T+ transition. The two transition frequencies are separated
by the exchange coupling strength J = 11.64 MHz and are simultaneously active when
the nuclei are initialised in a parallel orientation.
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5.10.1.1 Readout
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Figure 5.23: Tunnelling to the SET in the parallel nuclear regime. Two-electron
energy levels with respect to the electrochemical potential of the SET, µSET. Labels (i -
iv) depict the numbered steps associated with the electron readout process for the case of
the nuclei in a parallel spin orientation. The subscripts for each of the two-electron energy
levels depict the initial (red) and final (blue) states following a tunnelling event. Following
the preparation of a T+ state, in step (i) electron 1 tunnels onto the SET island, leaving
behind a spin |↑⟩ electron on donor 2. In step (ii) a spin |↓⟩ electron tunnels onto the
donor into a T0/S state. The T0 and S state energy levels have not been differentiated
in this diagram as the energy level splitting between these states (given by J) is very
small compared to the splitting between the spin |↓⟩ and spin |↑⟩ states (given by the
Zeeman splitting). In step (iii) a spin |↑⟩ electron tunnels from the T0/S state onto the
SET island, leaving behind a spin |↓⟩ electron on donor 2. Finally, in step (iv), a spin |↓⟩
electron tunnels from the SET island, into the T− state, resulting in further tunnelling to
the SET being prohibited.

In a weakly J coupled donor system, the electron readout contrast is increased when the

nuclei are in a parallel spin orientation, compared to an anti-parallel spin orientation,

when the electrons are read out via spin dependent tunnelling to an SET [30]. We believe

this to be attributed to the fact that a spin |↑⟩ electron will result in two tunnelling events

to the SET island for the case of the nuclei being in a parallel state, compared to a single

tunnelling event for the case of the nuclei being in an anti-parallel state. This extra tun-

nelling event presents an additional opportunity to identify a current blip, thus reducing

the instances of missed current blips and the subsequent mis-identification of a spin |↑⟩

electron as a spin |↓⟩.
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5.10.1 Operation
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Figure 5.24: Readout of the electron in the parallel nuclear regime.a. Readout
schematic of the electrons in the regime of parallel nuclear spins (top, green box) and the
anti-parallel nuclear regime (bottom, pink box). b Histogram of 10,000 repetitions of T+
readout for the anti-parallel and parallel nuclear configurations. c Histogram of 10,000
repetitions of the T−, T̃0 and T+ readout for the parallel nuclear state.

The process behind this double tunnelling event is outlined in Figure 5.23, where only

electron 1 is read out via spin dependent tunnelling to the SET. In the case of a parallel

nuclear orientation, as the eigenstates of the two electrons consist of highly entangled T0

and S states, we must consider the combined, two-electron energy levels of the system

in order to understand the tunnelling behaviour of electron 1. When the nuclei are in a

parallel spin configuration, upon initialising the electrons into the T+ state and moving to

the readout position, the spin |↑1⟩ electron 1 will tunnel off of the donor, resulting in a blip

of current and leaving behind a spin |↑2⟩ electron on donor 2. Remaining at the readout

position, a spin |↓1⟩ electron will eventually tunnel back onto the ionised donor 1. As the

electron must tunnel into an eigenstate of the system, and the other electron of the pair

is in the |↑2⟩ state, the most energetically favourable state for the electron to tunnel into
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is either the T0 and S state. Both the T0 and S state have an associated tunneling time

to the SET, which is typically smaller then the readout duration. This therefore presents

an additional opportunity, during the same readout window, for electron 1 to once again

tunnel from the donor onto the SET island as a spin |↑1⟩ electron, this time leaving behind

a spin |↓2⟩ electron on the donor 2.

For the case of the anti-parallel nuclei on the other hand, in the energy regime for which

∆A < J < Ā, the eigenstates of the electrons consist of, to a good approximation, separa-

ble product states between the spin states of electron 1 and electron 2 (see section 4.2.2).

Therefore, when considering the tunnelling of electron 1, in the case of the nuclei in an

anti-parallel spin orientation, the pertinent energy levels to consider are the single-electron

energy levels belonging to electron 1. In this case the readout situation is exactly the same

as the standard electron readout detailed in section 3.9.3, whereby a spin |↑1⟩ electron tun-

nels from the donor onto the SET island, resulting in a blip of current. After some time

a spin |↓1⟩ electron tunnels from the SET and thus any further tunnelling events to the

SET during the read period are prohibited.

Figure 5.24 shows the experimental results of 10,000 read periods of the T+ state for the

case of both the nuclei initialised in the parallel |⇓⇓⟩ or the anti-parallel |⇑⇓⟩ spin state.

A histogram is plotted of the average number of current blips per read period, showing

that for the case of the anti-parallel nuclear state, the average number of blips per read

period is centred just below 1, compared to around 1.5 for the case of the anti-parallel

nuclei. Similarly, for the case of the parallel nuclei, 10,000 read periods were measured

for the initialisation of both the T−, T0 state and T+ state. It is important to note that

the T0 state was prepared by performing a π
2 pulse on the transition between the T− and

T+ state and thus the state does not constitute a pure T0 state as discussed above (Fig.

5.21, e). For the case of the T− state, the histogram of average blips per readout period

is close to 0, for the T0 state the histogram is centred around an average number of blips

per read period of 1 and for the T+ state this histogram is centred around 1.5. The reason
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5.11. CONCLUSION

why this value for T+ is not closer to 2 is likely as a result of missed current blips, which

result in a misattributiung of the readout traces with two tunnelling events as a readout

trace with only a single tunnelling event. These results corroborate the theory that the

T+ state results in multiple tunnelling events for the case of the parallel nuclei, explaining

the increased electron readout observed for this nuclear configuration.

5.11 Conclusion

Here we have demonstrated a two-qubit gate between two exchange-coupled electrons by

exploiting the hyperfine interaction to provide a natural source of detuning, ∆Bz = ±Ā,

between the two qubits. The major benefit of this method of two-qubit operation is that

it is robust against the exact placement of the donors and hence relaxes the accuracy

requirements of donor positioning and gate fabrication. In addition, the smaller value

of J results in a lower sensitivity to electric noise. Consequently, the coupling does not

introduce any signficant decoherence channels to the qubits. The ability to perform high

fidelity two-qubit operations over the larger length scales, compared to electron sharing,

offered by the exchange interaction opens the path towards scaling arrays of distant donor

nuclei, coupled together via a weak exchange interaction. Additionally we have shown the

principles behind the operation and readout of the electrons in the parallel nuclear regime,

revealing that for the case of the parallel nuclei, the electron readout contrast is increased

as a result of multiple tunnelling events to the SET island during a single read period.
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6.
Two-qubit nuclear
geometric controlled-Z
gates in a J-coupled
system

For a successful technology, reality
must take precedence over public
relations, for Nature cannot be fooled.

Richard Feynman

This chapter contain results that will form the basis of the following publication in prepa-
ration:

H. G. Stemp, S. Asaad, M. A. I. Johnson, M. T. Mądzik, A. J. A. Heskes, H.R. Firgau,
Y.Su, A. Laucht, K. M. Rudinger, R. Blume-Kohout, F. E. Hudson, A. S. Dzurak, K. M.
Itoh, A. M. Jakob, B.C. Johnson, D. N. Jamieson, and A. Morello, “Universal nuclear
two-qubit logic operations in an exchange-coupled donor system”

202



6.1. INTRODUCTION

6.1 Introduction

The DiVincenzo criteria for realising a scalable quantum computer demands that the

constituent qubits must demonstrate long coherence times, be capable of performing a

universal set of quantum gates and must be initialised and read out with sufficient fi-

delity [154]. Nuclear spins in silicon represent a qubit candidate that meets the entirety

of these conditions, with measured coherence times of over 30 seconds [34], a universal set

of quantum gates exceeding 99.4% fidelity [29] and initialisation and measurement fidelity

exceeding 99.8% [19]. However, the weak coupling of such nuclei with each other and

with external fields, although leading to long coherence times, also presents a challenge

for coupling donor nuclei over the length scales required when scaling up these physical

systems for large-scale quantum computation applications. Fortunately, donor nuclei in

silicon have the additional resource of an electron bound by the Coulomb potential of

the nucleus, which can be used as a mechanism of coupling nuclei over larger distances.

Previously however, this mechanism has relied on utilising the hyperfine coupling between

two nuclei to a shared electron, limiting the range over which the nuclei can be coupled

to ⪅ 10 nm [29].

Here we present a system of two nuclei, each possessing their own bound electron, which

are coupled to one another via the exchange interaction. By performing a 2π rotation on

one of the electrons conditional on the state of the two nuclei, we impart a geometric phase

of π on the nuclei, thus implementing a nuclear, geometric controlled-Z (CZ) gate [29].

6.2 Operation of the two nuclear processor

The system discussed in this chapter is the same system as that discussed in Chapter 5.

The 31P nuclei have a spin of I = 1
2 , with basis states |⇓⟩ and |⇑⟩. Similarly, the spin

of the electrons is given by S = 1
2 , with the basis states |↓⟩ and |↑⟩. In this experiment

however, we now utilise the spin of the 31P nuclei as the qubits and thus refer to the two
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Figure 6.1: Operation of the two nuclei quantum processor. a. Nuclear magnetic
resonance (NMR) spectrum showing the neutral NMR frequency of nucleus 1 and nucleus
2. These resonance frequencies are separated by the difference in hyperfine between the
two donors, ∆A

2 . b. Elecron spin resonance (ESR) spectrum showing the ESR resonances
present for electron 2 in the J-coupled system, with each resonance representing a frequency
to flip the electron conditional on the state of the two nuclei, Q1 and Q2. The frequency
difference between the ESR resonances conditional on the nuclei in the state |⇓⇓⟩ and |⇑⇓⟩
is different to the frequency difference between the ESR conditional on the nuclei in the
|⇑⇑⟩ and |⇓⇑⟩ as a result of a 29Si nucleus coupled with a hyperfine coupling of 2 MHz,
which flipped between the frequency spectra.

nuclei as Q1 and Q2 respectively.

Denoting with S1,2, I1,2 the vector spin operators for each electron and nucleus, and A1,2

the electron-nuclear hyperfine couplings on each atom, the Hamiltonian of the system (in

frequency units) is:
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6.2. OPERATION OF THE TWO NUCLEAR PROCESSOR

H =(µB/h)B0(g1Sz1 + g2Sz2)+ (6.1)

γnB0(Iz1 + Iz2)+

A1S1 · I1 +A2S2 · I2+

J(S1 · S2),

where µB is the Bohr magneton, h is Planck’s constant, g1,2 ≈ 1.9985 the Landé g-factors

of each electron spin, gµB/h ≈ 27.97 GHz/T and γn ≈ 17.23 MHz/T is the 31P nuclear

gyromagnetic ratio.

Fig.6.1,c shows the nuclear magnetic resonance (NMR) frequency spectrum of Q1 and Q2

when both nuclei are in the neutral state, with an electron bound to each donor. As a re-

sult of the hyperfine coupling, A, between the donor nucleus and the electron, there exists

two resonance frequencies for the neutral nucleus: one conditional on the electron being

in the spin |↓⟩ state, with an associated resonance frequency given by να = A
2 + γnB0,

and one conditional on the electron being in the spin |↑⟩ state, with associated frequency

νβ = A
2 − γnB0. As the electron is typically initialised in the |↓⟩ state before applying an

NMR pulse, for the entirity of this work, when referring to the neutral NMR frequency

for either Q1 or Q2, we are referring to the frequency να for either nucleus (this is also

the resonance frequency shown for both Q1 and Q2 in Fig.6.1,c). The two nuclei Q1

and Q2 are individually addressable when in the neutral charge state as a result of both

donors possessing a slightly different hyperfine coupling strength, ∆A > 2νR,n , where

∆A = |A1 −A2| and νR,n is the nuclear Rabi frequency.

Fig.6.1,d, shows the electron spin resonance (ESR) frequency spectrum for the electron

bound to donor Q2, as introduced in Chapter 5. The key property of this spectrum, per-

tinent to the work discussed in this chapter, is that, in the presence of the weak exchange

interaction, there exists a resonance to flip the electron conditional on each of the four

possible two-nuclear states: |⇓⇓⟩, |⇓⇑⟩, |⇑⇓⟩, |⇑⇑⟩.
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The spins of the two nuclei and electrons in this system are initialised and read out using

the same processes described in Chapter 4.

6.3 One-qubit gates

Q1 Q2 Q1 Q2

± ± 

± ± 

�� ��

Figure 6.2: One-qubit GST on the nuclei. a. Process matrices estimated by single-
qubit gate set tomography (GST) for the X π

2 (top) and Y π
2 (bottom) gates performed on

nucleus Q1 in the neutral charge state. b. Process matrices estimated by single-qubit gate
set tomography (GST) for the X π

2 (top) and Y π
2 (bottom) gates performed on nucleus

Q2 in the neutral charge state. The corresponding estimated gate fidelities are shown
beneath each process matrix.

Single qubit operations on Q1 and Q2 are trivially implemented, by applying an NMR

pulse at one of the frequencies shown in Fig.6.1,c. In order to benchmark these single qubit
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6.4. TWO-QUBIT GATES

operations we performed single-qubit GST on each nucleus, on a gate set consisting of an

Xπ
2

and Yπ
2

rotation, along with an idle. Fig.6.2 shows the estimated process matrices and

gate fidelities for the Xπ
2

and Yπ
2

gates performed on Q1 and Q2, with the single-qubit

fidelities exceeding 99.82 ± 0.09% and 99.5 ± 0.1% for Q1 and Q2 respectively.

6.4 Two-qubit gates

In order to implement a two-qubit gate between Q1 and Q2, we can utilise the geometric

phase imparted by an electron onto the two nuclei of the J-coupled system, upon being

driven around the Bloch sphere, in order to perform a two-qubit geometric CZ gate [29].

This CZ gate is performed by first initialising one of the nuclei into an eigenstate, such as

the |⇓⟩ state and the other nucleus in a superposition state, such as 1√
2(|⇓⟩+ |⇑⟩). For the

case of these example initial states, the resulting two-qubit nuclear state is the following

|⇓⟩ ⊗ 1√
2

(|⇓⟩+ |⇑⟩) = 1√
2

(|⇓⇓⟩+ |⇓⇑⟩), (6.2)

which represents a superposition between the two nuclear states |⇓⇓⟩ and |⇓⇑⟩. By per-

forming a 2π rotation on one of the electrons, conditional on one of the nuclear states that

make up the superposition (either |⇓⇓⟩ or |⇓⇑⟩ in this case), a geometric phase of π, equal

to half the solid angle traversed on the Bloch sphere by the electron, is induced on the

nuclear state upon which the electron rotation was conditioned (for a more thorough dis-

cussion on geometric phase, see section 2.8). For example, for the nuclear state described

in equation 6.2, a 2π rotation of the electron bound to either Q1 or Q2, conditional on

the nuclear state |⇓⇑⟩, will result in the following

1√
2

(|⇓⇓⟩+ |⇓⇑⟩)→2π 1√
2

(|⇓⇓⟩ − |⇓⇑⟩) = |⇓⟩ ⊗ 1√
2

(|⇓⟩ − |⇑⟩). (6.3)

The negative sign added to the nuclear superposition represents a rotation of the nucleus

in a superposition state by 180o around the XY plane of the Bloch sphere.
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If however, the nucleus in an eigenstate was instead initialised in the spin |⇑⟩ state, rather

than the spin |⇓⟩ as before, and we performed the same 2π rotation of the electron condi-

tional on the state |⇓⇑⟩, then the following would happen

1√
2

(|⇑⇓⟩+ |⇑⇑⟩)→2π 1√
2

(|⇑⇓⟩+ |⇑⇑⟩). (6.4)

In this case the |⇓⇑⟩ state is not part of the nuclear superposition, and thus the ESR

pulse is far off-resonant such that the electron does not undergo any rotation and thus no

geometric phase is imparted on the nuclei. This conditional geometric phase of π imparted

on one nucleus conditional on the state of the other nucleus thus constitutes a two-qubit

nuclear CZ gate.

The magnitude of the geometric phase imparted by the electron on the nuclei, depends

on the solid angle traversed by the electron on the Bloch sphere, which in turn depends

on the frequency detuning ∆ = ν0 − νMW , where ν0 is the electron resonance frequency

and νMW is the frequency of the AC field used to drive the electron. Fig.6.3 shows the

path traversed by an electron on the Bloch sphere, for various magnitudes of frequency

detuning, ∆, illustrating that the electron traverses a smaller cone on the Bloch sphere

as ∆ is increased. However, the solid angle ultimately traversed by the spin depends not

only on the area of the cone enclosed by the path of the electron on the Bloch sphere

but also on how many times the electron performs a rotation about this cone during the

duration of the ESR pulse. As ∆ increases, and thus the area of the cone about which the

electron traverses decreases, although the electron traverses a smaller cone on the Bloch

sphere, the electron is able to perform many more rotations about this smaller area for a

given pulse duration, compared to the larger cone traversed for smaller values of ∆. The

amount of geometric phase imparted on the nuclei therefore depends non-trivially on a

combination of both these factors.
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6.4. TWO-QUBIT GATES
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Figure 6.3: Electron rotation with a frequency detuning. a. Simulation of the
expectation values of the path traversed by an electron on the Bloch sphere with the
application of an AC driving field with a detuning ∆ = ν0 − νMW = 0, where ν0 is the
electron resonance frequency and νMW is the frequency of the AC field used to drive the
electron. b. Simulation of the expectation values of the path traversed by an electron on
the Bloch sphere with the application of an AC driving field with a detuning ∆ = 2γeB1
where γe = 28.025 GHz/T and B1 is the amplitude of the AC driving field in units of T.
c. Simulation of the expectation values of the path traversed by an electron on the Bloch
sphere with the application of an AC driving field with a detuning ∆ = 10γeB1. It should
be noted that, in the case of a detuned AC driving field, where the cone traversed on the
Bloch sphere is smaller, for the same duration of the application of an AC driving field,
the electron will perform more full rotations about this smaller cone, increasing the solid
angle traversed.

Fig.6.4b and c show a simulation and corresponding experimental results from a measure-

ment designed to investigate the geometric phase incurred by the rotation of an electron

in the J-coupled system. In this measurement the nucleus Q1 was first initialised in the

spin |⇓⟩ state, while the nucleus Q2 was initialised in the superposition state 1√
2(|⇓⟩+ |⇑⟩).

The nuclei were hence in the following two-qubit state

|ψ⟩ = 1√
2

(|⇓⇓⟩+ |⇓⇑⟩). (6.5)

An AC driving field was then applied to the electron bound to Q1, with the frequency of

the driving field being swept from ν|⇓⇑⟩+ν|⇓⇓⟩
2 - 10 MHz to ν|⇓⇑⟩+ν|⇓⇓⟩

2 + 10 MHz, where

ν|⇓⇑⟩ represents the ESR frequency to flip the electron bound to Q1 conditional on the
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|⇓⇑⟩ state and ν|⇓⇓⟩ represents the frequency to flip the electron bound to Q1 conditional

on the |⇓⇓⟩ nuclear state. The duration of the AC driving field was also swept, from 0 - 20

µs. It should be noted that the π pulse duration for the electron bound to Q1 at the AC

driving field power used in this experiment was ≈ 1 µs. A final π
2 pulse was then applied

to nucleus Q2, in order to project the information along the equator of the Bloch sphere

of Q2 onto the Z-axis of the Bloch sphere, which could then be subsequently read out (see

section 3.11.2). Fig.6.4,c shows the results of the nuclear readout of Q2.

There are three key results of interest that should be highlighted from Fig.6.4. The first,

is that a two-qubit nuclear CZ gate is performed whenever the electron traverses a solid

angle of 2π around the Bloch sphere. When a geometric phase of π is added to the nuclei,

the two-qubit nuclear state becomes |ψ⟩ = 1√
2(|⇓⇓⟩ − |⇓⇑⟩) following the rotation of the

electron. Therefore, the final π
2 pulse on the nucleus rotates Q2 into the |⇓⟩ state, as

indicated by the regions of the plot for which the NMR flip probability drops to 0 (see sec-

tion 3.11.2 for information on NMR flip probability). Conversely, if no geometric phase is

added to the nuclei then the nuclear two-qubit state will remain as |ψ⟩ = 1√
2(|⇓⇓⟩+ |⇓⇑⟩)

following the rotation of the electron and thus the final π
2 pulse will rotate Q2 to the |⇑⟩

state, as indicated by the regions of the plot for which the NMR flip probability of Q2 is

1.

The second point to highlight is that whenever the electron traverses a solid angle of π on

the Bloch sphere, a two qubit entangled state is created between the nucleus Q2 and the

electron bound to nucleus Q1. This is due to the fact that, whenever the electron traverses

an angle of π, the electron is flipped conditionally on the state of the two nuclei. As nucleus

Q2 is in a superposition state, this results in the electron becoming entangled with Q2.

For example, in the case for which the AC driving field is applied at the resonance to flip

the electron conditional on Q2 being in the |⇑⟩ state (i.e. the resonance |⇓⇑⟩ in Fig.6.4)

for such a duration that the electron is flipped by an angle π on the Bloch sphere, then

this leads to the following
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6.4. TWO-QUBIT GATES

1√
2

(|↓e1⇓Q2⟩+ |↓e1⇑Q2⟩ →
1√
2

(|↓e1⇓Q2⟩+ |↑e1⇑Q2⟩), (6.6)

where |↓e1⟩ (|↑e1⟩) represents the state of the electron bound to Q1 and |⇓Q2⟩ (|⇑Q2⟩) rep-

resents the state of nucleus Q2. As 1√
2(|↓e1⇓Q2⟩ + |↑e1⇑Q2⟩) represents a fully entangled

state, rotating the electron by an angle π thus entangles the electron with the nucleus Q2.

This is also shown in Fig.6.4a, which depicts the simulated path of the electron bound to

Q1 when an AC driving field is applied at a frequency denoted by the purple vertical line

in Fig.6.4b. When the electron traverses a solid angle of π on the Bloch sphere, and hence

the two spins become entangled, the vectors representing the two spins are seen to shrink

towards the centre of the Bloch sphere.
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Figure 6.4: Controlled-Z (CZ) gate in a J-coupled system. Simulation (b.) and
experimental results (c.) showing the geometric phase imparted by the electron onto
the nuclei. Q2 is initialised into a superposition state before applying a pulse of varying
frequency and duration to electron 1, to impart a varying geometric phase to Q2. A final
π
2 pulse then projects the information along the XY plane onto the Z-axis of the Bloch
sphere. The schematics above c. show which nuclear states (|⇓⇑⟩ or |⇓⇓⟩) are responsible
for the two resonances observed for electron e1. a. Simulated trajectory on the Bloch
sphere of the two electrons (denoted e1 and e2) and the nucleus Q2. The simulation was
performed at a frequency denoted by the vertical purple line in b., which corresponds to
a frequency detuned slightly from the resonance to flip the electron e1 conditional on the
nuclei being in the |⇓⇑⟩ state. The leftmost Bloch sphere is a snapshot taken from the
start of the simulation, at time t = 0, showing the nucleus Q2 initialised in a superposition
state along the XY plane and electrons e1 and e2 pointing along the -Z direction. The
middle Bloch sphere shows a snapshot of the simulation taken from a time t = πe1 where
πe1 is the π time for electron e1. At this time the electron e1 and the nucleus Q2 become
entangled, as indicated by the spins shrinking towards the centre of the Bloch sphere. The
electron e2 remains in -Z, as the AC field frequency is far detuned from the resonance
frequency of this electron. The rightmost Bloch sphere is taken from a snapshot of the
simulation at time t = 2πe1. At this time, the electron e1 has returned to the -Z state,
while the nucleus Q2 has been rotated almost 180o around the XY plane as a result of the
geometric phase imparted by the electron.
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6.4. TWO-QUBIT GATES

Finally, when the electron is rotated by an angle of π on the Bloch sphere, at the resonance

frequency conditional on the nuclear |⇓⇓⟩ state, a three qubit entangled state is created

between the two electrons and the nucleus Q2. As discussed in section 4.2.2, when the

nuclei are in a parallel orientation, the detuning between the two electrons in the J coupled

system is given by ∆A. For the case in which ∆A < 2νR,e, where νR,e represents the

Rabi frequency of the electron, this results in an AC driving field rotating both electrons

simultaneously. Consequently, for the cases in Fig.6.4,b,c in which the electron is rotated

at the resonance conditional on the nuclei being in the parallel orientation, |⇓⇓⟩, both

electrons are simultaneously driven. Thus, at this resonance frequency, when the electrons

traverse an angle of π on the Bloch sphere, then both electrons are flipped conditional on

the state of the nucleus Q2, which is in a superposition state, thus resulting in a three-qubit

entangled state between the two electrons and the nucleus. Fig.6.5,d shows the simulation

of electron e2 during this measurement revealing that, when the AC driving field is on

resonance with the ESR frequency conditional on the parallel nuclear |⇓⇓⟩ state then

electron e2 is also driven. Plotting
√
x2 + y2 + z2, where x, y and z are the projections

along the X,Y and Z axis on the Bloch sphere, we see from Fig.6.5b,c and d that the

spins for nucleus Q2 and electrons e1 and e2 all shrink to the middle of the Bloch sphere

(indicated by
√
x2 + y2 + z2 = 0) when the AC driving field is on resonance with the ESR

resonance conditional on the |⇓⇓⟩ state, indicating that we have prepared a three-qubit

entangled state.
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Figure 6.5: Simulation of geometric phase in a four-qubit system. The mea-
surement simultaed involves first initialising Q1 in the spin |⇓⟩ state, Q2 along the +X
direction of the Bloch sphere and both electrons e1 and e2 in the |↓⟩ state. An AC driving
field is then applied, with the frequency swept between ν|⇓⇑⟩+ν|⇓⇓⟩

2 - 10 MHz to ν|⇓⇑⟩+ν|⇓⇓⟩
2

+ 10 MHz, where ν|⇓⇑⟩ represents the ESR frequency to flip the e1 conditional on the
|⇓⇑⟩ state and ν|⇓⇓⟩ represents the frequency to flip the e1 and e2 conditional on the |⇓⇓⟩
nuclear state (the two electrons are effectively degenerate for this nuclear orientation).
The duration of the AC driving field is swept from 0-10 µs. a. Projection along the X and
Y axis of the Bloch sphere for nucleus Q1. The total spin projection

√
x2 + y2 + z2 is also

plotted. This nucleus is not driven and hence remains in the |⇓⟩ state for the duration of
the simulation. b. Projection along the X and Y axis of the Bloch sphere and the total
spin projection for nucleus Q2. This nucleus is rotated about the XY plane of the Bloch
sphere depending on the geometric phase imparted by the electrons. c. Projection along
the X and Y axis of the Bloch sphere and the total spin projection for electron e1. This
electron is rotated around the Bloch sphere when the AC driving field is close to or on
resonance with the ESR resonances conditional on the nuclear |⇓⇑⟩ and |⇓⇓⟩ state. d.
Projection along the X and Y axis of the Bloch sphere and the total spin projection for
electron e2. This electron is only rotated around the Bloch sphere when the AC driving
field is close to or on resonance with the ESR resonances conditional on the nuclear |⇓⇓⟩
state.
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6.5. PULSE-INDUCED RESONANCE SHIFTS

6.5 Pulse-induced resonance shifts

As a result of the geometric phase imparted by the electrons being very sensitive to the

frequency detuning, ∆, in order to impart a geometric phase of exactly π on the nuclei,

and hence perform a high fidelity nuclear geometric CZ gate, it is crucial that the rotation

of the electron is applied at exactly the resonance frequency. One phenomenon that can

therefore result in the reduction of the CZ gate fidelity is the observation of a shift in the

electron resonance frequency upon the application of an AC driving field, which we refer

to as a pulse-induced resonance shift (PIRS). There are a number of characteristics of

PIRS which clearly differentiate this effect from the AC Zeeman shift discussed in section

2.7. These characteristics include:

1. The electron resonance frequency does not shift instantaneously upon switching on

the AC driving field but instead drifts over a timescale of ≈ 100µs, before saturating

at a new frequency approximately 100 kHz from the original resonance frequency.

Similarly, upon switching off the AC driving field, the electron resonance drifts back

to its original resonance frequency over the same timescale.

2. The shift in the electron resonance frequency does not depend on the frequency

of the AC driving field but rather the power and duration for which it is applied.

This results in a shift in the resonance frequency of the electrons occurring when

an NMR pulse is applied, despite the NMR pulse frequency being detuned from the

ESR resonance by ≈ 27 GHz.

PIRS is not an effect unique to this device, or even the donor system more generally; with

the effect being reported in a number of different semiconductor qubit devices with a vari-

ety of architectures and material platforms [121,155–158]. Operating the devices at higher

temperatures has been found to help mitigate this effect, suggesting that the resonance

shift is caused by a heating of the device from the AC driving field [158]. Although the

microscopic physics underpinning this effect is still unknown, it has been suggested that
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it may be related to two-level systems in the qubit’s environment [159].

In order to minimise the impact of PIRS on the CZ gate performance, we performed a

‘saturation pulse’ before the CZ gate. This pulse consists of an off-resonant NMR pulse

that is applied for a sufficient duration to saturate the frequency shift of the electron

induced by PIRS. As an AC driving field is continuously applied during the performance

of the CZ gate, the saturation pulse ensures that the frequency of the electron remains

stable throughout the implementation of the CZ gate.

NMR saturation 
pulse

Electron
π/2

Electron
π/2

Wait time

Electron Ramsey measurement

Figure 6.6: a. Schematic of the pulse sequence used in this experiment consisting of a
long (≈ 5πQ2, where πQ2 is the π time for the nucleus Q2) off-resonant NMR pulse used
to saturate the pulse-induced frequency shift of the electron. This pulse is followed by
a wait time, the duration of which is swept. A Ramsey measurement is then performed
on the electron e1.b. Ramsey fringes as a function of the wait time after the NMR
saturation pulse. The change in frequency of the Ramsey fringes is as a result of the
resonance frequency of the electron drifting. c. Frequency extracted from the fit of the
Ramsey fringes as a function of the wait time after the saturation pulse, revealing that
the resonance frequency of the electron returns to its original resonance frequency (in the
absence of any AC driving field) after ≈ 150 µs.

Fig.6.6c, shows the resonance frequency of the electron, as measured by a Ramsey exper-
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6.6. CONCLUSION

iment, as a function of the wait time after the saturation pulse. A shift in the electron

resonance of ≈ 120 kHz is observed over a time period following the saturation pulse of ≈

150 µs. We therefore apply the saturation pulse for > 150 µs before implementing the CZ

gate in order to ensure the resonance frequency of the electron is at this saturation point.

6.6 Conclusion

Here we have benchmarked the fidelity of operations on the nuclei of a J-coupled donor

pair. We have demonstrated the implentation of a nuclear geometric CZ gate, achieved by

utilising the exchange interaction between the donor-bound electrons. Work is currently

underway to use this two-qubit CZ gate to generate an entangled state between the two

nuclei.

In previous work, the hyperfine interaction between two nuclei and a shared electron

was utilised as the coupling mechanism for the nuclear geometric CZ gate, limiting the

maximum inter-donor distance over which this gate can be performed to ⪅ 10 nm. In this

work, with an exchange interaction strength of 12 MHz, we estimate the distance between

the two nuclei of the exchange-coupled donor system to be ≈ 18 nm [138]. Utilising the

exchange interaction to perform the nuclear CZ gate thus offers the possibility to entangle

nuclei over larger distances then previously achievable.
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7.
Conclusion and Future Di-
rections

As for the future, your task is not to
foresee it, but to enable it.

Antoine de Saint Exupery
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In this work, we have presented the first experimental demonstration of exchange-based,

entangling 2-qubit logic gates between electrons bound to individual 31P donors in silicon.

In the presence of the weak exchange interaction, each resonance frequency on the electron

represents a native two-qubit CROT gate, to rotate one electron conditional on the state

of the other electron. We have performed careful tomography of these native CROT gates

in a one-qubit subspace using gate set tomography (GST), obtaining fidelities above 99.63

± 0.07% for both qubits in the exchange-coupled pair. Using phase reversal tomography,

we have benchmarked the fidelity of the entangling operations between the two electrons,

obtaining a Bell state fidelity of 93 ± 9 %, with SPAM error extracted. Additionally, by

comparing the coherence times of the electrons both with and without the presence of the

exchange-interaction, we have shown that, in the regime of weak exchange, the presence

of the coupling has no influence on the coherence of the individual spins.

Furthermore, we have utilised the weak exchange interaction to perform two-qubit gates

between nuclei, over greater distances than previously achievable using the hyperfine in-

teraction to mediate the coupling. The presence of the weak exchange interaction between

the two electrons, results in each electron resonance being conditional on the state of both

nuclei in the donor pair. Consequently, by initialising one of the nuclei into a superposition

state and performing a 2π rotation on the electron conditional on a given state of the two

nuclei, a geometric phase of π is incurred on the nuclear state upon which the electron

rotation was conditioned. This therefore represents the implementation of a two-qubit CZ

gate between the two nuclei of the exchange-coupled donor pair.

The appeal of this scheme of coupling nuclei is that the only requirement for its viability,

is that there exists distinct ESR resonances to rotate an electron conditional on each of

the two-qubit nuclear states |⇓⇓⟩, |⇓⇑⟩, |⇑⇓⟩, |⇑⇑⟩. Fig.7.1 shows an ESR spectrum for

one of the electrons in an exchange-coupled donor pair for three regimes of exchange, J :

J ≪ ∆A,∆A < J < Ā and J ≫ Ā where ∆A = |A1 − A2| and Ā = A1+A2
2 and A1 and

A2 are the hyperfine coupling strengths for donor 1 and donor 2 respectively. It can be
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seen that in the regime for which ∆A < J < Ā there exists ESR resonances to rotate

the electron conditional on each of the four two-qubit nuclear states. Consequently, the

coupling of nuclei in an exchange-coupled system using the nuclear CZ gate is agnostic to

the exact value of J , provided that it is within this energy regime. This optimal range of

J corresponds to a range of possible inter-donor distances of approximately 10-24 nm [138].
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Figure 7.1: ESR spectrum in different exchange-coupling regimes. a. Simulated
ESR frequency spectrum in the regime of J ≪ ∆A. In this regime there exists two
resonance frequencies for the electron, one conditional on the nucleus to which the electron
is bound being in the |⇓⟩ state and one conditional on this nucleus being in the |⇑⟩ state.
b. Simulated ESR frequency spectrum for the regime for which ∆A < J < Ā. In this
regime there exists ESR resonances to flip the electron conditional on each of the four
nuclear states for the two nuclei: |⇓⇓⟩, |⇓⇑⟩, |⇑⇓⟩ and |⇑⇑⟩. c. Simulated ESR spectrum
for the regime in which J ≫ Ā. In this regime the ESR resonances for the nuclear states
|⇓⇑⟩ and |⇑⇓⟩ are split by ∆A. If ∆A > 2νR where νR is the electron Rabi frequency
then the electron is no longer able to be driven conditionally on each of the distinct
two-qubit nuclear states, when in this energy regime. Simulations were performed using
simulation code written by Dr Rachpon Kalra during his time at the University of New
South Wales [114].

Having coupling mechanisms that do not rely on an exact value of J is crucial as they al-

low the coupling scheme to be robust against the uncertainty in donor placement inherent

to the donor-implantation process. Using ion-implantation to introduce the donor atoms

to the silicon lattice is beneficial as it allows these devices to retain compatibility with

standard metal- oxide-semiconductor manufacturing processes [147], which represents a

significant advantage when attempting to address the immense technological challenge

of scaling up these systems. The uncertainty in lateral donor placement during the ion-
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implantation process has reached unprecedented levels of precision, as a result of utilising

an atomic-force microscope (AFM) nanostencil tip, with an aperture through which the

the ion-beam can pass, to increase the localisation of the donor implantation site [37].

Using this procedure, the uncertainty in lateral donor placement depends on a number

of factors, including: the lateral straggle of the donor as it is implanted in the lattice

(≈ 9 nm for a P ion implanted at a mean implantation depth of 20 nm and ≈ 5 nm for

an Sb ion implanted at the same mean depth) the uncertainty in nanostencil aperature

size (≈ 5 nm for an aperature size of 10 um) and the uncertainty in AFM positioning (≈

0.5 nm). Combining these factors gives a rough estimate for the lateral uncertainty in

donor placement of ≈ ±14.5 nm for a phosphorus donor and ≈ ±10.5 nm for an antimony

donor [76]. This lateral uncertainty in donor placement achievable with ion-implantation

techniques is therefore compatible with the range of viable distances for the optimal value

of J for donor coupling.

Looking to the future, the fact that this operating regime is contingent only on the presence

of conditional resonances to flip an electron depending on the state of two nuclei, allows for

the possibility of introducing new mechanisms to mediate the exchange coupling between

neighbouring donor atoms and thus further extend the range over which we can couple

neighbouring donor atoms. One example of this exchange-mediating mechanism, is the

jellybean quantum dot [31]. Jellybean quantum dots are elongated, gate defined quantum

dots, which can act as mediating couplers of the exchange interaction [160,161], potentially

extending the range of exchange interaction to > 100 nm. As long as the mediated

exchange is J < A and larger than the ESR linewidth, the same geometric nuclear CZ

gate demonstrated in chapter 6, for directly-coupled donors, can be extended to donors

that are indirectly coupled through the jellybean dot. This scheme has two major benefits.

The first, is that the increased distance between the donors helps to alleviate some of the

crowding associated with integrating classical control electrons on-chip [162]. Secondly,

this scheme allows us to benefit from the extremely long coherence times of the donor nuclei

(> 30 seconds), whilst still being able to perform two-qubit operations on the nuclei in the

much faster time required to perform a rotation on the electrons compared to the nuclei
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(1 us, compared to approximately 100 us). These considerations offer exciting promise to

the potential of utilising donor atoms as the foundation of a scalable quantum processor.

Figure 7.2: Jellybean quantum dot. Schematic depicting the concept of an elongated
quantum dot being used as a mechanism of mediating the exchange-interaction between
neighbouring spins. Image was taken from the cover art for the Advanced Materials
publication in [31].
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