XIV Conference on Theoretical Nuclear Physics in Italy IOP Publishing
Journal of Physics: Conference Series 527 (2014) 012001 doi:10.1088/1742-6596/527/1/012001

Universality in few-body systems: from few-atoms to

few-nucleons

A Kievsky!, M Gattobigio?, E Garrido®

Istituto Nazionale di Fisica Nucleare, Largo B. Pontecorvo 3, 56127 Pisa, Italy
2Université de Nice-Sophia Antipolis, Institut Non-Linéaire de Nice, CNRS, 1361 route des
Lucioles, 06560 Valbonne, France

3Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

E-mail: kievsky@pi.infn.it

Abstract. Some aspects of universal properties are discussed in few-atom as well as in few-
nucleon systems. When the two-body scattering length a is large the three-body system presents
some peculiar characteristics such as the Efimov effect. In the present contribution, the zero-
range theory deduced by V. Efimov is compared to results obtained using potential models.
Accordingly range corrections are introduced. These corrections appear as a shift in the variable
k+«a with k. the three-body parameter. The three-boson spectrum, atom-dimer scattering and
the recombination rate at threshold are analyzed using the finite-range theory proposed. In
the case of nuclear systems, n — d scattering is discussed using the universal formula derived by
Efimov. Furthermore, the spectrum up to N = 6 is discussed using the central Volkov potential.

1. Introduction
The scattering of two particles at very low energy E shows universal behavior encoded on the
effective range function in that regime

11,
kcotd = —;—&—grskz , (1)

where k> = E/(h?/m), § is the phase shift and r, is the effective range of the interaction.
In fact, systems interacting differently but having equal values of the scattering length a and
effective range r, share the same low energy behavior. Two different limits can be studied that
produce interesting effects in the three-body system. The first one is the scaling limit: the
range, rg, of the potential goes to zero. In this limit the two-body system presents a continuous
scale invariance (CSI): the low energy observables depend on a single parameter, the two-body
scattering length a. For example the s-wave phase shift reads kcotd = —1/a and, for positive
values of a, a two-body bound state appears (called dimer) with binding energy Fo = h?/ma?.
In this context a appears as a control parameter. As it has been demonstrated by Thomas
in 1935 [1], the three-body system collapses in this limit (this effect is known as the Thomas
collapse). Using a variational argument Thomas showed that the three-body ground state energy
scales as h?/ mr3 producing a system unbound from below as 79 — 0. Remarkably, this collapse
is independent of the magnitude of the two-body binding energy.

The second limit, which is subject of intense investigations, is the unitary limit. In this limit
|a| >> r¢ and, in the case of positive and large values of a, a shallow dimer appears with binding
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energy Fo ~ h?/ma®. As pointed out by V. Efimov in 1970 and subsequent papers [2, 3], when
a >> rg the three-boson system presents a new class of universal behavior. The spectrum of
three interacting bosons results from a geometric series: E"!/E" — e 27/50 with s ~ 1.00624
a universal constant. What is observed, introducing the three-body hyperradial variable p, is
that a very extended hyperradial potential is generated which, as p — oo, goes to k> /ma?. In
the limit @ — oo the hyperradial potential goes to zero as 1/p? supporting an infinite number
of bound states. The short range physics can be implemented as a boundary condition at short
distances (of the order of the interaction range r) and, as n increases, the universal spectrum
results. More specifically when a >> 7y a continuous scale invariance appears in the two-body
system while, in the three-body system, it is broken to a discrete scale invariance (DSI).

The DSI imposes strong constrains on the observables. In addition to the geometric spectrum
already mentioned in the case of three-boson bound states, the atom-dimer scattering length
aap has the following functional form deduced by Efimov [4]

aasp/a = di + dytan[sgIn(k.a) + ds] , (2)

where d1, ds, d3 are universal constants and k. is the three-body parameter that fixes the energy
scale at the unitary limit (see Ref. [5] for details).

For collisions below the dimer breakup threshold the DSI imposes the following universal
form for the effective range function

kacotdap = c1(ka) + ca(ka) cot[sp In(aks) + ¢(ka)] , (3)

with d4p the atom-dimer phase-shift and c1, ¢a, ¢ universal functions depending on the product
ka, where k* = (4/3)E/(h?/m), being E the center of mass energy of the process. As k — 0,
kacotdap — —1/aap and at k = 0 the constants di,ds,ds and ¢1(0), c2(0),¢(0) are related
by simple trigonometric equalities. A parametrization of the functions ¢y, co, ¢ can be found in
Ref. [5].

The universal character of the effective range function can be used to evaluate a very different
system: low energy nucleon-deuteron scattering [6]. The effective range function corresponding
to nucleon-deuteron scattering at low energies, in the J = 1/27" state, does not show the expected
linear behavior but it presents a pole structure. First observations of this particular behavior
have been done in Refs. (7, 8, 9] whereas in Ref. [10] explicit calculations of the effective range
function have been done using nucleon-nucleon potentials. The pole structure has been related
to a virtual state and, from the calculations, it was possible to extract the pole energy fitting
the effective range formula with the form suggested by Delves [11]. Recently it was shown that
the pole structure of the effective range function can be quantitatively related to the universal
form given by equation (3) and, using the parametrization determined in the atomic three-helium
system, that equation can be used to describe nucleon-deuteron scattering as well. In particular,
using the universal function ¢, the pole energy can be used to extract the three-body parameter
K+. In this way, the universal behavior imposed by the DSI is analyzed in systems with natural
lengths that differ of several order of magnitude.

The DSI imposes constrains also on the form of the S-matrix for energies above the dimer
threshold. The following peculiar form for the recombination rate at threshold [12, 13] has been

deduced:
12872 (47 — 3/3) hat )

- sinh?(msg) + cosh?(sg) cot?[sg In(k.a) +~] m

and using the large value of the factor 2™ ~ 515, the above equation can be approximated by

K3 = aa*h/m ~ 67.1sin%[sg In(k.a) + ~]a*h/m, (5)
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where v = 1.16 [5]. As it has been shown recently [14], this equation can be used to describe
very different systems as recombination of three atoms or three nucleons.

The above discussion shows that the study of universality in few-body systems is of interest
in several fields of research, ranging from cold-atoms to nuclear physics. In atomic physics,
where the Efimov effect has been observed for the first time [15], discrepancies arise between the
theoretical prediction and the experimental determination of the ratio between a, and a_ [16, 17],
that means between the scattering lengths at which the Efimov state disappears in the atom-
dimer and in the three-atom continuum, respectively. The solution to this puzzle is probably
hidden in finite-range corrections to the universal formulas (see Ref. [18] and references therein
for a recent account to the problem). A recent study has discussed these corrections from a new
perspective [19].

In nuclear physics these studies can be applied to describe halo nuclei where a cluster
description is justified. We can mention the observation of universal aspects in the scattering of
a neutron on a neutron-halo nucleus having a large scattering length, as for example the n—1°C
system (see Refs. [20, 21] and Ref. [22] for a recent review). Also the light nuclei spectrum shows
some universal characteristic as it has been discussed in Ref. [23].

2. The three-boson spectrum
The spectrum of the three-boson system (called trimer) having a large two-body scattering
length a has been derived by Efimov in the zero-range limit [4]. The Efimov’s binding energy
equation is
En h? _ —2(n—n*)m/so A
3t~ 3=¢ exp [A(£)/s0]

h2 k2

’
m

(6)

where E}/FEy = tan?¢ and the function A(€) is an universal function defined in the range
-1 < ¢ < —n/4 (a parametrization of A({) in this range can be found in [5]). The two-
body binding energy is defined in the zero-range limit as Ey = h%/ma® and the three-body
parameter k. is determined by the energy £ of the n* level at the unitary limit. The scattering
length a appears as a control parameter, fixing its value the above equation has to be solved
simultaneously with the condition E¥/(h?/ma?) = tan® ¢ to find the the binding energies E} at
each value of the angle £. In this context the three-body parameter appears as a scale parameter.
The universal character of the above equation can be seen using dimensionless quantities as

" = 0 5in? € exp [A(€) /o] (7)

with €, = E¥/E?. This form of the equation explicitly shows DSI. At fixed values of the angle
¢ the ratio between two different levels is constant and it results

B} /By = 20—/ (5)

In the case of two consecutive levels the ratio E;f“/EQ = e 27/% ~ 1/515.03 is obtained. The
behavior of the energy for two consecutive levels, n = 0, 1, as given in equation (7), is shown in
figure 1. In order to see the two levels in a single plot the quantity (e,)"/* is plotted as function
of \/x with x = k.a. In the figure the following points are indicated: a" and a} are the values
of the two-body scattering length at which the trimer disappears into the three-body continuum
or into the atom-dimer continuum, respectively.

The Efimov equations are exact in the zero-range limit. They have been derived imposing
a boundary condition in the short-range region encoded in the three-body parameter k.. The
same problem has been studied using Effective Field Theories (EFT) [24]. In this approach the
short-range physics enters through low energy constants, fitted to reproduce selected data. One
particular form to apply this theory was suggested by Lepage [25]. The interaction between two
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Figure 1. The dimensionless quantity (e,)/* as a function of (z)'/2 for n = 0, 1. The particular

values of the two-body scattering length ¢” and a? are indicated. The long-dashed line indicates
the atom-dimer threshold.

particles is replaced by an effective potential parametrized in such a way that some relevant data
are reproduced. For example, a two-parameter potential (as a gaussian) can be constructed to
reproduce the scattering length and the effective range as given in equation (1). This effective
interaction will describe the low energy dynamics of the system with good accuracy. The level
of accuracy is given by the energy scale. Equation (1) is accurate at energies E << Ejy, with
Eo = h?/mrg, and errors in that formula appear at order of (F/Ep)?. In the three-body system
the leading order (LO) prescription of the EFT is that a three-body counter term has to be
considered. At this order the EFT approach is based in a Hamiltonian with two coupling
constants, one for the two body sector, related with the control parameter a, and one for the
three-body sector, related to the scale parameter k.. The Efimov equations can be derived in
this approach as has been shown if Ref. [26].
Following the above discussion, universal aspects of a three-boson system can be studied using
a potential model. Following Refs. [6, 14, 27] the three-helium system is taken as a reference
system. At the two-body level, one of the most commonly used He-He potentials, i.e., the
LM2M2 interaction [28], is taken as the reference interaction. In particular, in order to explore
the (o™, k) plane (k = sign(E)[|E|/(h?/m)]'/? and E the energy level), we modify this potential
as:
VA(r) = AViarama(r) . 9)
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Figure 2. (Color online) The LM2M2 potential (red line) and the TBG potential (black line)
as a function of the inter-particle distance.

Examples of this strategy exist in the literature [29, 30]. For A ~ 0.9743 the interaction is close
to the unitary limit (e — oo) and for A = 1 the values predicted by the LM2M?2 are recovered.
The scattering length is @ = 189.41 ag, the two-body energy Ey = —1.303 mK and the effective
range ry = 13.845 ag, with the mass parameter h2/m = 43.281307 (ag)? K. Noticing the ro ~ 7,
the two-helium system has the r9/a << 1 allowing a description based on the Efimov universal
theory, having in mind that the range corrections have to be considered as well. As an effective
potential we define an attractive two-body gaussian (TBG) potential [27, 31]

V(r) = Voe /78 (10)

with range ro = 10 ag and strength V{ fixed to reproduce the values of a given by Vy(r). For
example with the strength V) = —1.2343566 K, corresponding to A = 1, the LM2M2 low-energy
data are closely reproduced, Fs = —1.303mK, a = 189.42 ag, and r; = 13.80 ag. In figure 2 the
two interactions are compared, the differences at short distanced are evident.

When the TBG potential is used in the three-atom system it produces a ground state binding
energy appreciable deeper than that one calculated using the V) (r) interaction. For example,
at A = 1 the LM2M2 helium-trimer ground-state binding energy is EY = 126.4mK, whereas
the one obtained using the TBG potential is 151.32 mK. Following the LO EFT prescription an
hypercentral three-body (H3B) (repulsive) interaction can be introduced

W (p1a3) = Woe Pizs/Pd (11)
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Figure 3. (Color online) The ratio between the excited state of the trimer and the dimer
binding energy as a function of k.a calculated for the TBG potential (red circles) and for
the TBG+H3B potential (green squares). The dashed line represents the zero-range theory of
equation (6) whereas the solid line has been obtained using equation (13).

with the strength Wy tuned to reproduce the trimer EY obtained with V) (r) for the different
values of A. In the above equation p?y; = %(T%Q + 135 +173,) is the hyperradius of three identical
particles and pg gives the range of the three-body force that can be fixed as py = 7.

Varying A from the unitary limit to A = 1.1 a set of values for the ground state binding energy
ES and the first excited state E} using the TBG and TBG+H3B potentials can be obtained in a
broad range of a. The results can be compared to the predictions given by the Efimov’s binding
energy equation. Fixing n* = 1, the three-body parameter , is determined by calculating E3}
at the unitary limit; we obtain k, = 2.119 X 1073 aal and r, = 1.899 x 1073 aal for the TBG
and TBG+H3B, respectively.

As it has been shown in Refs. [6, 14, 19], in order to be in accord with the numerical results
obtained solving a finite-range potential, the universal relation equation (6) must be modified
in the following way

E}/By = tan®¢ (12)
kwa+ T, = eI/ exp [ A(€)/250]/ cos €. (13)

The finite-range nature of the interaction has been taken into account by the substitution
h%/ma* — Ej in the first row. The main modification however is the introduction of the
shift T,,. In figure 3 we collect our numerical results for the ratio Ei/FEs as a function of k.a
for the TBG potential (circles) and for the TBG+H3B potential (squares). The dashed line
corresponds to the zero-range theory given in equation (6), whereas the solid line, which goes
on top of the numerical results, has been obtained using equation (13) with I'; ~ 4 X 1072
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Figure 4. (Color online) The atom-dimer scattering length a4p in units of ap calculated for
the TBG (red circles) and TBG+H3B (green squares) potentials. The dashed line represents the
zero-range theory of equation (2) whereas the solid and dotted line are the finite-range theory
of equation (14). In the latter a slightly different parametrization of the constants dj, do and ds
is used.

3. Atom-dimer scattering

The effective potential models, TBG and TBG+H3B, described in the previous section can be
used to describe atom-dimer scattering and the recombination rate K3 at threshold. To this end
the dimer-atom scattering length a4p and the s-wave atom-dimer phase § can be calculated.
The calculations have been done using the hyperspherical harmonic (HH) method as described
in Refs. [31, 32]. The results for the atom-dimer scattering length are collected in figure 4
where the ratio a4p/ap is given in terms of the product s.a (the energy scattering length ap is
defined from the dimer binding energy as Fo = h%/ ma%). It can be observed that the calculated
points, given as full circles (TBG potential) and full squares (TBG+H3B potential), are on a
curve shifted with respect to the dashed line representing the zero-range theory of equation (2)
with the parametrization given in Ref. [5]. We can interpret again the shift as produced by the
finite-range character of the calculations. Accordingly equation (2) can be modified to describe
finite-range interactions as

aAD/aB =di + do tan[so ln(/i*a + P*) + dg] , (14)

Using the values I'y = I'1, the solid line is obtained in figure 4. Furthermore, modifying
slightly the values of the universal constants as d; = 1.531, do = —2.141 and d3 = 1.100, from
those given in Ref. [5], a better description of the numerical results is obtained as it is shown by
the dotted line in the figure.

The calculations have been extended to describe atom-dimer scattering at energies below the
dimer breakup threshold for different values of a. As it has been done for the zero-range theory
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of the binding energies and atom-dimer scattering length, equation (3) has to be modified to
consider finite-range interactions. Following Ref. [6], the effective range function can be written
as

kap cot § = c1(ka) + ca(ka) cot[so In(kwa + Tx) + ¢(ka)] . (15)

The results are collected in figure 5 (full squares) at different values of k,a = k.a + T'x. In the
figure different patterns can be observed. For the smallest values of k.a the behavior is almost
linear in all the energy range. Starting at values x.a ~ 0.4 a curvature appears close to zero
energy, pointing out to an emergent pole structure that becomes evident at larger values of k. a.
Specifically, the pole appears when a4p changes sign (see figure 4) or when the argument of
the cotangent function in equation (15) becomes zero (or nm). The shadow plot in the first
row of figure 5 corresponds to the case A = 1 and describes *He-*Hey scattering (full triangles).
The shadow plot in the second row corresponds to nucleon-deuteron scattering as discussed
below. The solid curves are obtained using the finite-range theory of equation (15) with the
parametrization of Ref. [5]. We can observe a noticeable agreement along the whole range of
values.

The effective range function in the case of neutron-deuteron scattering has a peculiar
form [10]. Moreover Efimov claimed that this process can be described with the universal
formula of equation (3) [4]. In order to verify this property, equation (15) can be applied to
quantitatively describe n — d scattering at low energies. To this end the results of Ref. [10], in
which n — d scattering has been described using a spin dependent central potential, can be used.
In that reference the value of a,4 = 0.71fm has been obtained for the n — d scattering length,
and the effective range function has been parametrized as

—1/ang +rsk*/2
14+ Eem./Ep

kcotd = (16)
with F, = —160 keV and ry ~ —127 fm. It should be noticed that this particular parametrization
of the effective range function can be simple related to equation (15) in the low energy limit.
From the values of E, and a,q it is possible to determine the values of a and k! using the
universal function ¢ and equation (14). The values a = 4.075 fm and x..a = 0.5779 are obtained.
The negative energy £, of the pole implies that it appears in the negative region similar to what
happens in figure 5 at intermediate x.,a values. With these numerical values the shadow panel
of the second row in figure 5 shows a comparison between equation (15) and the n — d scattering
results of Ref. [10] (full circles). A noticeable agreement is observed. Is should be stressed that
the universal functions used in equation (15) are those obtained through the analysis of the
atomic system.

Finally the application of the finite-range theory is discussed in the case of the recombination
rate at threshold corresponding, in the case of three-helium atoms, to the process *He+*He+*He
— 4He+%Hey. The coefficient can be defined as K3 = a(ha*/m). The DSI imposes « to be a
log-periodic function, as given in equation (4), whose simplified version is given in equation (5).
In order to describe the numerical results obtained using finite-range potentials, the following
modification in the definition of K3 has to be introduced

12872 (47 — 3v/3) ha

= 17
sinh?(7sg) + cosh?(7sg) cot?[sg In(kxa + T4 ) +7] m (17)

with the simplified form
K3 = aa*h/m ~ 67.1sin’[soIn(k.a + T'1) +ylagh/m, (18)

where, as in the effective range function, a has been replaced by ap and the shift I';. has been
introduced. The results obtained in Ref. [14] are shown in figure 6 as circles (TBG potential)
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Figure 5. (Color online) The effective range function (squares) at different values of xa as
a function of (ka)?. The triangle points are the calculations for real “He-*Hey scattering. The
full circles, for k,a = 0.5779, correspond to neutron-deuteron scattering in the doublet channel.
The solid curves have been calculated using equation (15) for different values of ,a.

and squares (TBG+H3B potential). The dashed line represents equation (4) using the value
v = 1.16 from Ref. [5]. From the figure it is evident that the calculated points organize in a
curve shifted with respect to the universal curve. The solid line represents equation (17), with
the same value of v and I'y ~ 6 x 1072, Again the finite-range theory obtained by modifying
the zero-range equations with a shift in the variable k.a describes the calculated points with
good accuracy. Moreover the values of the shifts I';, 'y and 'y are of the same order.

4. Light nuclei spectrum
In this section the spectrum obtained for N < 6 fermions is discussed using a central potential.
The intention here is to see if, in the case of fermions, some of the universal properties discussed
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Figure 6. (Color online) The recombination rate K3 at threshold for different values of x.a
calculated for the TBG (red circles) and TBG+H3B (green squares) potentials. The dotted

line is the zero-range theory of equation (4) whereas the solid line is the finite-range theory of
equation (17).

before can be identified in the spectrum of light nuclei. To this end the following central potential,
the Volkov potential,

V(r) = Vge "/ 4 Ve (19)

is used with Vi = 144.86 MeV, R; = 0.82fm, V4 = —83.34 MeV, Ry = 1.60 fm. The fermions are
considered to have the same mass, chosen to be equal to the reference mass m, and corresponding
to h?/m = 41.47MeV fm? (nuclear case). With this parametrization of the potential, the two-
nucleon system has binding energy Fo = 0.54592 MeV and scattering length a = 10.082 fm.
For N > 2 the use of the s-wave version of the potential produces a spectrum much closer to
the experimental one. This is a direct consequence of the weakness of the nuclear interaction in
p-waves. The results are obtained after diagonalizing the Hamiltonian matrix constructed using
the HH basis without symmetrization as discussed in Ref. [23].

With the parametrization of the potential given above, the 3H and *He binding energies
result to be 8.431 MeV and 7.725 MeV, very close to the experimental values. In fact, this
parametrization was chosen to correctly describe the three-nucleon binding energies and, for
this reason, the deuteron binding energy results artificially low. As a consequence *H has an
excited state close to the nucleon-deuteron threshold. Using a more realistic interaction this
state should move above the threshold becoming the virtual state discussed in the previous
section. In despite of its simplicity this model predicts the *He binding energy with an error

10



XIV Conference on Theoretical Nuclear Physics in Italy IOP Publishing

Journal of Physics: Conference Series 527 (2014) 012001 doi:10.1088/1742-6596/527/1/012001
0.546 0t
" 0.599 0t
H

6.417 27,0

6.850 17,1

6.965 0~, 0
8 7.725 0*
3 8.085 0%, 0
= 8.431 0t 3He
>
o3 *H
O
=]
3|

29.43 0T
4He
33.02 0t
5He

Figure 7. Calculated levels for A =2, 3,4 and 6, using the Volkov potential with the inclusion
of the Coulomb interaction for the He isotopes.

below 5% and, more interesting, the almost correct position of the 0" excited state, as is shown
in figure 7. Without considering the spin-dependence of the force the He ground state energy
results too bound.

5. Conclusions
The zero-range theory for few-body systems having a large two-body scattering length a has
been studied and discussed using potential models. Following the prescription of Lepage [25]
an effective interaction has been constructed that reproduces the same low energy data: the
two-body scattering a, acting as a control parameter, and the energy wave number k, of one
selected level of the trimer at the unitary limit, acting as a scale parameter. Using this model
different observables have been calculated solving the Schrédinger equation: the three-boson
energy spectrum, the atom-dimer scattering length, the atom-dimer effective range function and
the recombination rate at threshold. The analysis of the numerical results allowed to judge the
capability of the zero-range theory to describe finite-range systems. The conclusion was that a
finite-range scale parameter I',, has to be introduced to correct the original zero-range theory.
This parameter appears as a finite-range scaling parameter.

Using the finite-range theory it was possible to describe very different systems as atom-dimer
scattering and neutron-deuteron scattering using the same parametrization of the universal

11
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effective range function, equation (15), obtained studying atomic systems. As a final study,
the spectrum of light nuclear systems has been analyzed using a central potential, the Volkov
potential. Fixing only the *H binding energy, this simple model describes the binding energies
of the ground and excited states in *He with an error below 5%. The SHe results slightly over
bind. Studies including the spin dependence of the interaction are at present underway.
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