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All modern methods of particle acceleration in 
cyclic accelerators may be classified into two groups 
—those in which the accelerating voltage is scheduled 
or programmed and those in which it is a random 
function of time. The first group includes all auto-phasing 
accelerators, whose theory is now well 
understood. The second type, on the other hand, 
has practically received no attention since it was first 
proposed in 19481). It should be noted, however, 
that stochastic schemes of acceleration, in addition 
to being theoretically interesting, may also prove to 
be practical for increasing the intensity of the beam 
of particles in existing phasotrons, thus eliminating 
one of their major shortcomings, namely the pulse 
nature of their operation. Stochastic schemes may 
also be of interest for use in intersecting-beam accelerators 
and stacking systems of the ring phasotron 
type2), for overcoming transition energy and so on. 
Let us consider some of the relationships for 

particle motion in a fixed magnetic field for the case 
when the voltage V(t) across the accelerating element 
is a random function of time ("noise") having a given 
spectral intensity P(ω). 
Disregarding betatron oscillations, it is convenient 

to express the equations of motion in action variables 
by means of the Hamiltonian3) 

H = -e∫F(θ,t)dθ+E(z). (1) 
Here θ is the generalized azimuth, and the canonical 

momentum z is related to energy by the relation 
dz = dE/Ω(E) (2) 

where Ω(Ε) is the revolution frequency of a particle 
having energy E. The quantity eF represents the work 
performed by the external emf during one revolution. 

For the case of one accelerating gap, F may be written 
in the following form: 

F = V(t) Σ 
K 
δ(∫Ωdt-2πΚ) (3) 

We shall assume that V(t) represents a stationary 
process, i.e. its correlation function Bυ(τ) is not 
explicitly dependent on time4) 

Bυ(τ) = <V(t)V(t-τ)> (4) 
(the brackets denote time averaging). 
Strictly speaking, F(θ(t),t) does not represent a 

stationary process, since the frequency Ω depends 
on the magnitude z(t). We assume, however, that 
the maximum correlation distance of the V(t) process, 
i.e. the value τ =τc at which Bυ decreases to zero, 
is much smaller than the time required for Ω(t) to 
change perceptibly. This condition is always fulfilled 
when V(t) is sufficiently small, which is actually the 
case in practice. (It should be noted that the value 

ωc = 2π/τc characterizes the lower limit of the accelerating 
voltage spectrum). With this assumption, it 
is easy to obtain for the correlation function of 
F(θ,t) the expression: 

BF(τ) = Βυ(τ) Σ δ(Ωτ-2πΚ) (5) BF(τ) = Βυ(τ) 
K 
δ(Ωτ-2πΚ) (5) 

showing it to be likewise independent of time. 
Now, using the equation of motion, we obtain due 
to the ergodicity of the process = 0; 

2D = = 2e2 
t 
F[θ(t),t]F[θ(τ),τ]dτ 2D = = 2e2 ∫ F[θ(t),t]F[θ(τ),τ]dτ 2D = dt = 2e

2 ∫ F[θ(t),t]F[θ(τ),τ]dτ 2D = dt = 2e
2 

0 
F[θ(t),t]F[θ(τ),τ]dτ 

= 2e2 t BF(τ)dτ = 2e2 t Βυ(τ) 
∞ δ(Ωτ-2πΚ)dτ (6) = 2e2 ∫ BF(τ)dτ = 2e2 ∫ Βυ(τ) Σ δ(Ωτ-2πΚ)dτ (6) = 2e2 

0 
BF(τ)dτ = 2e2 

0 
Βυ(τ) 

κ=0 
δ(Ωτ-2πΚ)dτ (6) 

where the bar denotes averaging over the assembly of 
particles. 
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From Eq. (6) it immediately follows that if the 
correlation distance is sufficiently small 

Ωτε 1; Ω 1 (7) 2π 1; ωc 1 (7) 

i.e. if the accelerating voltage spectrum lies in the 
frequency range ω Ω, the quantity D for t > τc is 
independent of time and is simply equal to 

D(z) = <V
2>e2 . (8) D(z) = 2Ω(z) . (8) 

Actually it is precisely the case that is discussed in 
the paper by Burshtein et al.1), where it was assumed 
that during passage through the accelerating gap the 
voltage across the gap may with equal probability 
have the values ± V0. 
In the general case, D(z,t) is a step function of 

time, assuming for time t τc the stationary value 

D(z) = e
2 

[ 
∞ 
Bυ( 

2Κπ 
)-

<v2> ] (9) D(z) = e
2 

[ Σ Bυ( 
2Κπ 

)-
<v2> ] (9) D(z) = Ω [ Σ Bυ( Ω )- 2 ] (9) D(z) = Ω [ 0 Bυ( Ω )- 2 ] (9) 

or, taking into account the fact that Bυ(τ) and Ρ(ω) 
are related by a Fourier Transformation, 

D = e
2 ∞ Ρ(ΚΩ). (10) D = e
2 

Σ Ρ(ΚΩ). (10) D = 2 Σ Ρ(ΚΩ). (10) D = 2 K=1 
Ρ(ΚΩ). (10) 

Eq. (10) has a simple physical meaning, namely the 
particle "selects", from the V(t) spectrum, the 
harmonics which are multiples of its revolution 
frequency and act in an incoherent manner. It should 
be noted that if the maximum of the spectrum corresponds 
to high values of K, then, by substituting in 
Eq. (10) integration for summation, we again obtain 
Eq. (8). 
If V(t) is sufficiently small, the acceleration process 

may be considered as a diffusion along the z axis 
with coefficient D(z,t). The particle distribution 
function ψ(z,t) obeys the Fokker-Planck equation 

∂ψ - ∂ [D(z,t) ∂ψ ]=Jδ(z-z i)- ψ (11) ∂t 
-
∂z [D(z,t) ∂z ]=Jδ(z-z i)- τ(z) (11) 

where the terms on the right-hand side represent the 
appearance of new particles from the injector (J is 
the injector current), and the losses of particles in the 
injector mechanism, these losses are due to scattering 

on residual gas, and other losses (τ(z) is the mean 
lifetime). The boundary conditions for ψ are 

ψ = ο| Z = Zmax (12) ψ = ο| z = zmin 
(12) 

where zmax and zmin represent, respectively, the 
maximum and minimum particle energy in the accelerator. 
To obtain a complete solution of Eq. (11), 
it is necessary to know the actual dependence of 
Ρ(ω) and τ(z). By way of example, let us consider 
an idealized case of stochastic stacking. Assume 
that particles with an initial energy corresponding 
to z = zi are continuously introduced into the chamber, 
where they are subjected to the action of an 
accelerating voltage V(t). In order to qualitatively 
visualize what happens, let us consider the distribution 
for the case when D(z) and τ(z) are slowly varying 
functions. Eq. (11) may then be solved by the WBK 
method and easily obtained in the following form: 

ψ = J( 
τ 
)i¼( 

τ )¼ sh 
zi dz ∙(sh 

zmax dz )-1 sh 
zmax dz 

ψ = J( 
τ 
)i¼( 

τ )¼ sh 
∫ 

dz ∙(sh 
∫ 

dz )-1 sh 
∫ 

dz 
ψ = J( D )i¼( D 

)¼ sh 
∫ √Dτ 

∙(sh 
∫ √Dτ 

)-1 sh 
∫ √Dτ ψ = J( D )i¼( D 

)¼ sh 
zmin 

√Dτ 
∙(sh 

zmin 
√Dτ 

)-1 sh 
z 
√Dτ ψ = J( D )i¼( D 

)¼ sh 
zmin 

√Dτ 
∙(sh 

zmin 
√Dτ 

ζ > ζ, 
z 

(13) 
from which it follows that ψ ~ D-¼. Qualitatively, 
this conclusion should also remain valid for the case 
when D → 0 at some points, although the method 
of solution near these points is, generally speaking, 
inapplicable. In other words, if, at some z0, D 
becomes zero, it may be expected that at z z0 
the distribution will have a sharp maximum, i.e. the 
particles will accumulate near this point, for example 
on the maximum radius of machine. Indeed, let us 
assume, for example, that at z0 D has a zero of the 
second order, and τ, as before, is a slowly varying 
function. Then it can be easily shown that at point 
z0 the distribution function has a pole of the order 

½{1+[1+(τ d
2D 

)0]-1}. (14) ½{1+[1+(τ dz2 )0]
-1}. (14) 

The pole itself, naturally, has no physical meaning 
and is associated with the adopted idealization. Its 
presence, however, indicates that the particles indeed 
accumulate at points D = 0. In order to obtain an 
exact evaluation of the distribution function, transient 
time, etc., it is necessary to know, in the first place, 
the function τ(z) and, secondly, the actual dependence 
of Ρ(ω). 
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In conclusion, it should be noted that this method 
may be used to determine the output current of a 
stochastic accelerator in accordance with the formula 

Jac = -[D 
∂ψ ]zmax (15) Jac = -[D ∂z ]zmax (15) 

Let us assume for this purpose that accelerated 
particles are lost in the working energy range only if 
they collide with the injector. If, moreover, there 
are no frequencies in the spectrum of the accelerating 
voltage Ρ (ω) that are multiples of the revolution 
frequency, we obtain for the efficiency of the accelera­
tor for not very large Ρ(ω) 

η = [ 
πτ 

]i½ exp [ 1 ΔΕ (16) η = [ Τe
2Ρ(Ω)∙Ω ]i½ exp [ 1 ΔΕ (16) η = Emax dΕ 

exp [ 
π√ 
2τ [e2Ρ(Ω)∙Ω]i½ 

(16) η = 

∫ 
dΕ 

exp [ 
π√ 
2τ [e2Ρ(Ω)∙Ω]i½ 

(16) η = 

∫ e2ΩΡ(Ω) 

exp [ 
π√ Τi 

[e2Ρ(Ω)∙Ω]i½ 
(16) η = 

Εi 
e2ΩΡ(Ω) 

exp [ 
π√ Τi 

[e2Ρ(Ω)∙Ω]i½ 
(16) 

where Τ is the period of revolution and the subscript i 
refers to the value at injection. The quantity ΔΕ 
represents the energy that a particle must gain after 
injection in order to clear the danger zone from the 
standpoint of collision with the injector. From 
Eq. (15), it is seen that the efficiency of acceleration 
depends, in the main, on the spectrum density at 
injection. In particular, for the parameters of the 
electron ring phasotron5), the losses at the injector 
become sufficiently small for Pi > 1 [V2/Hz] and the 
acceleration efficiency is about 5 × 10-3%. 
In order to secure a regime of acceleration that is 

analogous to the stochastic, we can provide a law of 

frequency change for the accelerating field that is 
deliberately made to violate the auto-phasing condition 
(cos Øs 1). In this case, after each cycle of 
frequency change—in spite of the fact that the average 
energy of the beam remains practically unchanged—the 
energy spread of the beam increases. The efficiency 
of such an accelerating method is roughly 
equal to the one considered above, but from the 
engineering point of view this method may prove to 
be preferable. 
In conclusion, let us briefly consider a regime of 

acceleration where in fixed field machines there are 
several accelerating voltages V1, V2... Vs, changing 
with various frequencies ω1, ω2... ωs. These 
frequencies may be selected, for example, in the 
interval qmin Ωmin — qmaX Ωmax, where Ωmin and Ωmax 
are the minimum and maximum values of the revolution 
frequency in the magnet system and q is the 
harmonic number. The regime of such type had 
already been considered in our Institute in 1948-1949 
for some special cases. But at that time this 
method did not find application. For cases of practical 
interest, the mean time of acceleration corresponds 
to many periods of change for the voltages Vk. 
Therefore, even with good frequency stability, the 
coherent nature (phasing) of the different voltages 
will probably be disturbed. The particle will be 
subjected to the action of voltages Vk with frequencies 
ωk, whose phase may be considered as a random 
quantity. Therefore, under certain conditions, the 
action of a system with several fixed frequencies may 
be described by means of the stochastic theory of 
acceleration developed here. 
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DISCUSSION 

SYMON: I think one consideration with regard to the 
stochastic method would be the effect of a space charge limit 
near the injector where you have a much larger current than 
eventually reaches the target. 
KOLOMENSKIJ: Symon's thoughts are correct, I think, 

because actually in the injection region there is, as a rule, a 
large space charge and because of this there are large particle 
losses. It is for this reason that we must have a sufficiently 
intensive Ρ (ω) in the region of injection in order to keep the 
particles in this region only a small time. In order to take 
into account the injection problems we must choose their 
spectrum very carefully, and because the injection problems are 
very complicated we have only some evaluations in this direc­
tion; I think we may discuss this with Symon and with any 
other people who want to. 
O'NEILL: Has Kolomenskij estimated the radio-frequency 

power required to make a voltage of several kilovolts over a 
wide frequency spectrum like this? 

KOLOMENSKIJ: I think that by appropriate choice of the 
voltage spectrum the power in our case may be reduced to 
about 10 kilowatts. 
BARBIER: i would like to know the mean acceleration time 

to get to 30 MeV and the number of accelerating sections, 
V1, V2, V3. 
KOLOMENSKIJ: The average time that corresponds to reach­

ing the maximum energy is approximately 
taccel ( 

E m a x 
∆F )2 trevol 

and here we must take into account the time of revolution. 
It is the order of magnitude but in various cases there may be 
different functions Ρ (ω). 

EXPERIMENTS O N STOCHASTIC ACCELERATION 

R. Keller 

CERN, Genève 

I. PRINCIPLES OF STOCHASTIC ACCELERATION 
We have constructed a cyclic accelerator producing 

a continuous extracted beam of protons of 4.4 MeV 
and an internal beam of the order of 1 μ A. This 
accelerator, which is in some respect similar to a 
synchro-cyclotron, has a diameter of 50 cm. The 
magnetic field of 14 000 G decreases by 8% from 
the centre to the radius of extraction. Its single 
electrode in a shape of a D is fed by a high frequency 
generator producing 5 kW and 2 000 Vrms. The 
voltage given by this generator varies at random and 
its Fourier analysis shows a continuous spectrum in 
the 21-23 Mc/s band. The idea of stochastic accelera­
tion was put forward for the first time by Burshtein, 
Veksler and Kolomenskij1). We announced the 
practical application of this idea in an earlier paper2). 

To study the motion of the protons, reference should 
be made to the phase diagram on Fig. 1 (see a paper 
by the author3)). 

Fig. 1 Phase diagram. 


