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All modern methods of particle acceleration in
cyclic accelerators may be classified into two groups
—those in which the accelerating voltage is scheduled
or programmed and those in which it is a random
function of time. The first group includes all auto-
phasing accelerators, whose theory is now well
understood. The second type, on the other hand,
has practically received no attention since it was first
proposed in 1948 . It should be noted, however,
that stochastic schemes of acceleration, in addition
to being theoretically interesting, may also prove to
be practical for increasing the intensity of the beam
of particles in existing phasotrons, thus eliminating
one of their major shortcomings, namely the pulse
nature of their operation. Stochastic schemes may
also be of interest for use in intersecting-beam accel-
erators and stacking systems of the ring phasotron
type 2, for overcoming transition energy and so on.

Let us consider some of the relationships for
particle motion in a fixed magnetic field for the case
when the voltage V(¢) across the accelerating element
is a random function of time (* noise ) having a given
spectral intensity P(w).

Disregarding betatron oscillations, it is convenient
to express the equations of motion in action variables
by means of the Hamiltonian >

H=—e[F(O,)d0+E®). )

Here 0 is the generalized azimuth, and the canonical
momentum z is related to energy by the relation

dz = dEJ(E) Q@

where Q (E) is the revolution frequency of a particle
having energy E. The quantity eF represents the work
performed by the external emf during one revolution.

For the case of one accelerating gap, F may be written
in the following form :

F=V(®)Y &fQdt—2nK) 3)

We shall assume that V (z) represents a stationary
process, i.e. its correlation function B, (r) is not
explicitly dependent on time ¥

B,(1) =<V()V(t—1)) C)

(the brackets denote time averaging).

Strictly speaking, F (0 (¢), t) does not represent a
stationary process, since the frequency £ depends
on the magnitude z(r). We assume, however, that
the maximum correlation distance of the V () process,
i.e. the value 7 =7, at which B, decreases to zero,
is much smaller than the time required for Q (¢) to
change perceptibly. This condition is always fulfilled
when V (¢) is sufficiently small, which is actually the
case in practice. (It should be noted that the value
o, = 2njt, characterizes the lower limit of the accel-
erating voltage spectrum). With this assumption, it
is easy to obtain for the correlation function of
F (0, 1) the expression :

By() = B,(t) ¥ 8(Qr—2nK) (5)
K

showing it to be likewise independent of time.
Now, using the equation of motion, we obtain due
to the ergodicity of the process dz/dt =0 ;

el
2D = e 2e J F[O(0),]F[6(7).7]dx

=2¢? f Bi(v)dz = 2¢* f B,(1) i 8(Qr~2nK)dr (6)
0 4] K=0

where the bar denotes averaging over the assembly of
particles.
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From Eq. (6) it immediately follows that if the
correlation distance is sufficiently small

c

Q Q
<1l; —<I (7)
2n ,
i.e. if the accelerating voltage spectrum lies in the
frequency range w > @, the quantity D for ¢ > 7, is
independent of time and is simply equal to

(Ve

20(2) @)

D(z) =

Actually it is precisely the case that is discussed in
the paper by Burshtein et al.’, where it was assumed
that during passage through the accelerating gap the
voltage across the gap may with equal probability
have the values - V.

In the general case, D (z,t) is a step function of
time, assuming for time ¢ 2 7, the stationary value

S, [2Kn\ (V>
D(z) = Bf — |- 9
or, taking into account the fact that B, () and P (w)
are related by a Fourier Transformation,

D= P(KQ) (10)

||[\{]8

e
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Eq. (10) has a simple physical meaning, namely the
particle “selects ”, from the V (f) spectrum, the
harmonics which are multiples of its revolution
frequency and act in an incoherent manner. It should
be noted that if the maximum of the spectrum corre-
sponds to high values of K, then, by substituting in
Eq. (10) integration for summation, we again obtain
Eq. (8).

If V (¢) is sufficiently small, the acceleration process
may be considered as a diffusion along the z axis
with coefficient D (z,t). The particle distribution
function ¥ (z, ) obeys the Fokker-Planck equation

oy a o) v
at E[ (z,t)g]—Jb(z—zi)—;(?) (11)

where the terms on the right-hand side represent the
appearance of new particles from the injector (J is
the injector current), and the losses of particles in the
injector mechanism, these losses are due to scattering

on residual gas, and other losses (t(z) is the mean

lifetime). The boundary conditions for Y are
—_— zZ= Zmax
v=0| " (12)

min

where z,,, and z,, represent, respectively, the
maximum and minimum particle energy in the accel-
erator. To obtain a complete solution of Eq. (11),
it is necessary to know the actual dependence of
P(w) and 7 (z). By way of example, let us consider
an idealized case of stochastic stacking. Assume
that particles with an initial energy corresponding
to z = z, are continuously introduced into the cham-
ber, where they are subjected to the action of an
accelerating voltage V (f). In order to qualitatively
visualize what happens, let us consider the distribution
for the case when D (2) and z (z) are slowly varying
functions. Eq. (11) may then be solved by the WBK
method and easily obtained in the following form :

Zi Zmax Zmax

)G [ )

z >z (13)

from which it follows that  ~ D~* Qualitatively,
this conclusion should also remain valid for the case
when D — 0 at some points, although the method
of solution near these points is, generally speaking,
inapplicable. In other words, if, at some 2z, D
becomes zero, it may be expected that at z = z,
the distribution will have a sharp maximum, i.e. the
particles will accumulate near this point, for example
on the maximum radius of machine. Indeed, let us
assume, for example, that at z, D has a zero of the
second order, and 1, as before, is a slowly varying
function. Then it can be easily shown that at point
z, the distribution function has a pole of the order

pl(a)]
N1+ 1+ — . 14
dz* J,

The pole itself, naturally, has no physical meaning
and is associated with the adopted idealization. Its
presence, however, indicates that the particles indeed
accumulate at points D = 0. In order to obtain an
exact evaluation of the distribution function, transient
time, etc., it is necessary to know, in the first place,
the function 7 (z) and, secondly, the actual dependence
of P (w).
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In conclusion, it should be noted that this method
may be used to determine the output current of a
stochastic accelerator in accordance with the formula

Jum _[fo] (15)

0z

Let us assume for this purpose that accelerated
particles are lost in the working energy range only if
they collide with the injector. If, moreover, there
are no frequencies in the spectrum of the accelerating
voltage P (w) that are multiples of the revolution
frequency, we obtain for the efficiency of the accelera-
tor for not very large P (w)

|: nT :r
Te*P(Q)-Q |; 1 AE .
n= Emax( ) exp - 5_ (16)
dE n\/ Z[e2P@)- Q)
QP(Q) T
E;

where T is the period of revolution and the subscript i
refers to the value at injection. The quantity 4E
represents the energy that a particle must gain after
injection in order to clear the danger zone from the
standpoint of collision with the injector. From
Eq. (15), it is seen that the efficiency of acceleration
depends, in the main, on the spectrum density at
injection. In particular, for the parameters of the
electron ring phasotron >, the losses at the injector
become sufficiently small for P,> 1 [V?/Hz] and the
acceleration efficiency is about 5x 10729,

In order to secure a regime of acceleration that is
analogous to the stochastic, we can provide a law of

frequency change for the accelerating field that is
deliberately made to violate the auto-phasing condi-
tion (cos ¢, > 1). In this case, after each cycle of
frequency change—in spite of the fact that the average
energy of the beam remains practically unchanged—
the energy spread of the beam increases. The effic-
iency of such an accelerating method is roughly
equal to the one considered above, but from the
engineering point of view this method may prove to
be preferable.

In conclusion, let us briefly consider a regime of
acceleration where in fixed field machines there are
several accelerating voltages V, V,..... V., changing
with various frequencies w;, @,..... w,. These
frequencies may be selected, for example, in the
interval g Qmin — Imax Pmaxe Where 2., and Q..
are the minimum and maximum values of the revolu-
tion frequency in the magnet system and g is the
harmonic number. The regime of such type had
already been considered in our Institute in 1948-
1949 for some special cases. But at that time this
method did not find application. For cases of prac-
tical interest, the mean time of acceleration corre-
sponds to many periods of change for the voltages V,.
Therefore, even with good frequency stability, the
coherent nature (phasing) of the different voltages
will probably be disturbed. The particle will be
subjected to the action of voltages ¥V, with frequencies
w,, whose phase may be considered as a random
quantity. Therefore, under certain conditions, the
action of a system with several fixed frequencies may
be described by means of the stochastic theory of
acceleration developed here.
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DISCUSSION

Symon : | think one consideration with regard to the
stochastic method would be the effect of a space charge limit
near the injector where you have a much larger current than
eventually reaches the target.

KOLOMENSKI) :  Symon’s thoughts are correct, 1 think,
because actually in the injection region there is, as a rule, a
large space charge and because of this there are large particle
losses. Tt is for this reason that we must have a sufficiently
intensive P (w) in the region of injection in order to keep the
particles in this region only a small time. In order to take
into account the injection problems we must choose their
spectrum very carefully, and because the injection problems are
very complicated we have only some evaluations in this direc-
tion; I think we may discuss this with Symon and with any
other people who want to.

O’NEenLL : Has Kolomenskij estimated the radio-frequency
power required to make a voltage of several kilovolts over a
wide frequency spectrum like this?

KorLoMmenskwy : I think that by appropriate choice of the
voltage spectrum the power in our case may be reduced to
about 10 kilowatts.

BarBIER : | would like to know the mean acceleration time
to get to 30 MeV and the number of accelerating sections,
Vla V‘b V-’i-

KoLoMeNskl : The average time that corresponds to reach-
ing the maximum energy is approximately

Emax) 2[ |
AE ’ Tevo

and here we must take into account the time of revolution.
It is the order of magnitude but in various cases there may be
different functions P (w).

faccel =~ (

EXPERIMENTS ON STOCHASTIC ACCELERATION

R. Keller

CERN, Genéve

. PRINCIPLES OF STOCHASTIC ACCELERATION

We have constructed a cyclic accelerator producing
a continuous extracted beam of protons of 4.4 MeV
and an internal beam of the order of 1 y A. This
accelerator, which is in some respect similar to a
synchro-cyclotron, has a diameter of 50 cm. The
magnetic field of 14 000 G decreases by 8% from
the centre to the radius of extraction. Its single
electrode in a shape of a D is fed by a high frequency
generator producing 5 kW and 2000 V. The
voltage given by this generator varies at random and
its Fourier analysis shows a continuous spectrum in
the 21-23 Mc/s band. The idea of stochastic accelera-
tion was put forward for the first time by Burshtein,
Veksler and Kolomenskij '’. We announced the
practical application of this idea in an earlier paper *.

To study the motion of the protons, reference should
be made to the phase diagram on Fig. 1 (see a paper
by the author ).
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Fig. 1 Phase diagram.



