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Abstract

Abstract

NOvA is a long-baseline neutrino experiment studying neutrino oscilla-
tions, a quantum mechanical interference phenomena where the observed
neutrino flavour differs from that measured earlier, stemming from neu-
trino mass and flavour states mixing. NOvA consists of two functionally
identical tracking calorimeter detectors deployed in the Fermilab NuMI
beam. Both detectors are placed 14.6 mrad off the beam axis to achieve
a narrow energy peak at 1.8 GeV at an oscillation maximum.

The NOvA 3-flavour oscillation analysis measures the neutrino os-
cillation parameters sin2θ23 and ∆m2

32 as well as sets limit to δCP , the
octant of θ23 and the sign of ∆m32. The event selection for 3-flavour
neutrino oscillation analysis ensures the maximum quantity of signal is
made available and a minimal amount of background is present. The
current disappearance analysis selection has an efficiency of 80% for se-
lecting νµ CC events, and with some improvements additional events
could be recovered into the analysis to improve the sensitivity to the
aforementioned oscillation parameters. In an effort to recover the cur-
rently rejected signal event to the analysis, these events were trained in a
classification neural network. The aim of the network was to divide the
data into signal (νµ CC events) and background (NC and νe CC events).
The highest performing network gave an additional figure of merit gain
of 2.34 increasing the sensitivity by 4.3% in effective POT equal to 33
days of additional data taking. This was compared to changing the cur-
rent particle identification event selection cuts, the best result out of the
tested cut combinations gave an additional FOM of 3.36 equal to 3.7%
increase in effective POT equivalent to 28 days of data taking.
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Impact Statement

Impact Statement

The work presented in this thesis was completed with the intention of
improving the understanding the phenomena of neutrino oscillations in
the NOvA neutrino oscillation experiment. Despite being one of the most
abundant particles in nature, there are still a lot that is not known about
the nature of neutrinos. Neutrino oscillations are a widely researched
area in particle physics and have the potential to profoundly change
our understanding of the Universe. Neutrino oscillations may provide
answers to one of the most fundamental questions in the Universe: why is
the Universe made of matter instead of antimatter? Neutrino oscillations
can also provide insight into the nature of neutrino mass, which cannot
be explained by the Standard model, currently the most comprehensive
understanding of particle physics theory. This thesis uses neural networks
in its analysis, which are widely used in many applications in particle
physics as well as other areas of scientific research.

Outside academia, neutrino physics research has the potential to pro-
vide important technological advancements. Particle physics has already
provided technology for particle detectors used in medical applications.
Particle detectors produce a large amount of data which has forced re-
searchers to find new techniques for storing and handling large data sets.
These advancement have been adopted by private industries as well as
governments outside of research environments. Especially the use of ma-
chine learning is widespread in a lot of industries, such as the tech in-
dustry. In the era of big data and the surge of artificial intelligence,
understanding these technologies is crucial.

4 of 165



Acknowledgements

Acknowledgements

Firstly, I want to thank my supervisor Prof. Ryan Nichol for guidance
and support throughout my PhD. I would like to thank my fellow PhD
students and postdocs at UCL and all of my colleagues at NOvA for all
the help and great memories we have experienced together. Specifically,
I would like to thank Mike Wallbank and Kevin Mulder for answering
all of my coding questions, and both Flavia Cicala and Simeon Bash for
help and support when I needed it the most. Thank you to all the lovely
people that I was fortunate enough to share my time at Fermilab with,
especially thanks to Henry Lay for being a great friend.

Most of all, I want to thank my parents and my amazing sisters.
Thank you for all the love, support and laughs. And finally, a big thank
you to my partner Frazer, this would have never been possible without
your support.

5 of 165



Contents

Contents

Declaration 2

Abstract 3

Impact Statement 4

Acknowledgements 5

List of Figures 9

List of Tables 23

1 Neutrinos 25
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Neutrino Interactions . . . . . . . . . . . . . . . . . . . . 26
1.3 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Neutrino Mixing . . . . . . . . . . . . . . . . . . 28
1.3.2 Two-Flavour Oscillations . . . . . . . . . . . . . . 29
1.3.3 Three-Flavour Oscillations . . . . . . . . . . . . . 31

1.4 Neutrino Oscillation Experiments . . . . . . . . . . . . . 32
1.4.1 Solar Neutrino Experiments . . . . . . . . . . . . 32
1.4.2 Atmospheric Neutrino Experiments . . . . . . . . 34
1.4.3 Long-Baseline Experiments . . . . . . . . . . . . 34
1.4.4 Reactor Experiments . . . . . . . . . . . . . . . . 36

1.5 CP Violation and Neutrino Mass . . . . . . . . . . . . . 37
1.5.1 CP Violation . . . . . . . . . . . . . . . . . . . . 37
1.5.2 Neutrino Mass . . . . . . . . . . . . . . . . . . . . 38
1.5.3 Matter Effects . . . . . . . . . . . . . . . . . . . . 39

2 NOvA 42
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 NuMI Beam . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Off-Axis Concept . . . . . . . . . . . . . . . . . . 45
2.3 NOvA Detectors . . . . . . . . . . . . . . . . . . . . . . 46

6 of 165



Contents

2.3.1 The NOvA Cell . . . . . . . . . . . . . . . . . . . 46
2.3.2 Liquid Scintillator . . . . . . . . . . . . . . . . . . 47
2.3.3 Wavelength Shifting Fibre . . . . . . . . . . . . . 48
2.3.4 Avalanche Photo Diodes (APDs) . . . . . . . . . 48
2.3.5 NOvA Data Acquisition System . . . . . . . . . . 48
2.3.6 Near Detector . . . . . . . . . . . . . . . . . . . . 50
2.3.7 Far Detector . . . . . . . . . . . . . . . . . . . . . 52
2.3.8 Neutrino Interactions in NOvA Detectors . . . . . 53

2.4 NOvA Oscillation Channels . . . . . . . . . . . . . . . . 54

3 NOvA 3-Flavour Analysis 56
3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Beam Simulation . . . . . . . . . . . . . . . . . . 56
3.1.2 Event Generation . . . . . . . . . . . . . . . . . . 57
3.1.3 Detector Simulation . . . . . . . . . . . . . . . . 57

3.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Event Reconstruction . . . . . . . . . . . . . . . . 58
3.2.2 Energy Estimation . . . . . . . . . . . . . . . . . 61
3.2.3 Particle Identification . . . . . . . . . . . . . . . . 65

3.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Basic Quality Cut . . . . . . . . . . . . . . . . . . 70
3.3.2 Containment Cut . . . . . . . . . . . . . . . . . . 71
3.3.3 Cosmic Rejection . . . . . . . . . . . . . . . . . . 72
3.3.4 PID Cut . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.5 Final Event Samples . . . . . . . . . . . . . . . . 74

3.4 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 νµ Quartile Bins . . . . . . . . . . . . . . . . . . . 75
3.4.2 νe Binning . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Decomposition and Extrapolation . . . . . . . . . . . . . 78
3.5.1 Decomposition . . . . . . . . . . . . . . . . . . . 78
3.5.2 FD Extrapolation . . . . . . . . . . . . . . . . . . 78

3.6 Systematic Uncertainties . . . . . . . . . . . . . . . . . . 80
3.6.1 Detector Calibration . . . . . . . . . . . . . . . . 80
3.6.2 Detector Response . . . . . . . . . . . . . . . . . 81
3.6.3 Beam Uncertainties . . . . . . . . . . . . . . . . . 81
3.6.4 Neutron Uncertainties . . . . . . . . . . . . . . . 82
3.6.5 Cross-section Uncertainties . . . . . . . . . . . . . 82
3.6.6 Lepton Reconstruction . . . . . . . . . . . . . . . 82
3.6.7 Near-Far Differences . . . . . . . . . . . . . . . . 82

3.7 Oscillation Fits . . . . . . . . . . . . . . . . . . . . . . . 83
3.8 Latest 3-Flavour Oscillation Results . . . . . . . . . . . . 84

7 of 165



Contents

3.8.1 Final Data Samples . . . . . . . . . . . . . . . . . 86
3.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . 86

4 νµ Event Selection 89
4.1 Improvements to the Current Analysis . . . . . . . . . . 89
4.2 Current νµ Selection . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Efficiency and Purity . . . . . . . . . . . . . . . . 93
4.3 Rejected Events . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Event Properties . . . . . . . . . . . . . . . . . . 97
4.4 Maximum Improvement . . . . . . . . . . . . . . . . . . 106

5 Improvements to Event Selection 107
5.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Neural Network Learning Processes . . . . . . . . 109
5.1.2 Network Performance . . . . . . . . . . . . . . . . 109
5.1.3 Neural Networks in Particle Physics . . . . . . . . 110

5.2 Neural Network Training . . . . . . . . . . . . . . . . . . 110
5.2.1 Training Variable Selection . . . . . . . . . . . . . 111
5.2.2 Network Structure . . . . . . . . . . . . . . . . . 113
5.2.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.4 7 Variable Training . . . . . . . . . . . . . . . . . 116
5.2.5 5 Variable Training . . . . . . . . . . . . . . . . . 123
5.2.6 Network Including Events Above 5 GeV . . . . . 128
5.2.7 3 Variable Network . . . . . . . . . . . . . . . . . 132

5.3 Sensitivity Improvement . . . . . . . . . . . . . . . . . . 136
5.3.1 Reconstructed Neutrino Energy . . . . . . . . . . 138
5.3.2 Figure of Merit . . . . . . . . . . . . . . . . . . . 139
5.3.3 Sensitivity Contours . . . . . . . . . . . . . . . . 140

5.4 Changing Current Cuts . . . . . . . . . . . . . . . . . . . 142
5.5 Summary and Further Work . . . . . . . . . . . . . . . . 145

6 Conclusions 147
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 149

A Variables Not Used in Training 159

B ND MC-Data Comparison Plots for Training Variables 162

8 of 165



List of Figures

List of Figures

1.1 Feynman diagram for charged current (left) and neutral
current (right) electron neutrino interaction. . . . . . . . 26

1.2 Types of CC interactions for different energies. QE (red)
is for quasi-elastic scattering, dominating in low energies.
RES (blue) is for resonant pion production and DIS (green)
for deep inelastic scattering, the most prominent in high
energies. The total cross-section taking into account all
interaction types is also marked in black. Retrieved from
[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 µ and τ solar neutrino flux vs e flux from the three types
of neutrino interactions (NC, CC and elastic scattering,
ES) measured by the SNO detector. Dashed lines show
the flux predicted by a solar model and solid lines what is
measured at the SNO detector. The bands intercept at the
best fit value indicating that the results are consistent with
neutrino oscillations and no distortion in the solar model.
The limit of the bands represent ±1σ errors. Retrieved
from [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 The proposed location of the DUNE detectors, retrieved
from [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Expected oscillated spectra of JUNO experiment for both
mass orderings: normal (blue) and inverted (red) as well
as unoscillated spectra in black with assumptions of an
average baseline of 52.5 km and a data-taking time of 6
years. Retrieved from [34]. . . . . . . . . . . . . . . . . . 36

1.6 Illustration of the neutrino mass hierarchy. . . . . . . . . 38

1.7 Coherent scattering of neutrinos for CC (left and middle)
and NC (right) interactions. X in NC plots indicates that
the interactions happens equally often for all three neu-
trino flavours. Reproduced from [52]. . . . . . . . . . . . 40

9 of 165



List of Figures

1.8 Illustration of matter effects for oscillation probability in
the NOvA experiment. Black line describes the probabil-
ity for oscillations in vacuum, blue line in matter for nor-
mal hierarchy and orange for inverted hierarchy assuming
δCP = 0. Upper plot describes the probability for neutri-
nos and lower plot for anti-neutrinos. The error bans in
blue and orange illustrate the allowed range for δCP values.
Retrieved from [53]. . . . . . . . . . . . . . . . . . . . . . 40

2.1 Schematic of the NuMI beamline components, not to scale.
Protons from the main injector strike a target, then the
created particles are focused onto a decay pipe with two
magnetic horns. At the end of the pipe, the remaining
particles (mostly muons) are absorbed leaving a beam of
neutrinos or anti-neutrinos. Retrieved from [57]. . . . . . 42

2.2 NuMI horn focusing effect for hadrons arriving in different
angles. The solid red line is for a particle passing straight
through. The red dashed line is where horn 2 focus the
particles. The red dotted line describes particles that are
underfocused by horn 1 and corrected by 2. Solid blue
line is particles that are overfocused by both first horn
and corrected by the second one, and blue dotted line is
for particles focused by horn 1. Retrieved from [57]. . . . 43

2.3 The composition of the NuMI beam at the NOvA near
detector for neutrino (FHC) mode, produced using NOvA
simulation. Retrieved from [59]. . . . . . . . . . . . . . . 44

2.4 The composition of the NuMI beam at the NOvA near
detector for anti-neutrino (RHC) mode, produced using
NOvA simulation. Retrieved from [59]. . . . . . . . . . . 44

2.5 The composition of the NuMI beam at the NOvA far de-
tector for neutrino (FHC) mode, produced using NOvA
simulation. Retrieved from [59]. . . . . . . . . . . . . . . 44

2.6 The composition of the NuMI beam at the NOvA far
detector for anti-neutrino (RHC) mode, produced using
NOvA simulation. Retrieved from [59]. . . . . . . . . . . 44

2.7 The off-axis effect in the NuMI beam for different axis
angles with neutrino energy on the x-axis and a (scaled)
number of CC muon neutrino events on the y-axis. Re-
trieved from [58]. . . . . . . . . . . . . . . . . . . . . . . 45

10 of 165



List of Figures

2.8 A schematic showing the scale between the two NOvA
detectors. The zoomed-in part illustrates the placement
of the two alternating orientations of the cell planes. On
the right is pictured NOvA’s basic building block, cell.
Each cell has a wave length sifting fibre looping around
and is connected to an APD to record the signal from the
fibre. Retrieved from [61]. . . . . . . . . . . . . . . . . . 47

2.9 NOvA APD: the end of the scintillator cells where the
fibres mount to the APD (left) and the front of the APD
(right). Photo courtesy of Kevin Mulder. . . . . . . . . . 49

2.10 NOvA FEB up close. Photo courtesy of Kevin Mulder. . 49

2.11 View from the top of the far detector, showing FEBs con-
necting to DCMs (grey boxes with yellow lights in the
middle). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.12 NOvA near detector at Fermilab, Illinois. Retrieved from
[66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.13 An event display of the ND during a NuMI beam spill. . 51

2.14 NOvA far detector at Ash River, Minnesota. Retrieved
from [68]. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.15 An event display of the FD with all cosmic events included
in a 550 µs time window. Retrieved from [70]. . . . . . . 53

2.16 A neutrino candidate event from the previous event dis-
play in figure 2.15 after cosmic filtering has been applied.
Retrieved from [70]. . . . . . . . . . . . . . . . . . . . . . 53

2.17 Examples of the three neutrino interactions in NOvA: νµ
CC, νe CC and NC, showing the different signals left in
the detectors. Retrieved from [71]. . . . . . . . . . . . . . 54

3.1 An example event from FD after hit finding and slicing.
The clustered area of hits found by the algorithm is marked
in red. Retrieved from [70]. . . . . . . . . . . . . . . . . 58

3.2 The same example event as seen in figure 3.1 after Hough
transform has been performed to find straight lines, rep-
resented here in gold. The red cross indicates the elastic
arms vertex. Retrieved from [70]. . . . . . . . . . . . . . 58

3.3 The same event as figures 3.1 and 3.2 after fuzzy-K algo-
rithm has been performed. The blue, green and red regions
represent the reconstructed prongs and the red cross is the
elastic arms vertex. Retrieved from [70]. . . . . . . . . . 59

11 of 165



List of Figures

3.4 An example of 3D prong reconstruction using fuzzy-K al-
gorithm for a simulated νe CC quasi-elastic interaction in
the FD. One can see the same track in both XZ and YZ
views and the labels demonstrate how the 2D prongs are
matched in 3D. Retrieved from [78]. . . . . . . . . . . . . 59

3.5 Mean energy loss rate calculated via Bethe Bloch formula
in different materials for muons, pions and protons. Re-
trieved from [10]. . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Diagram of a tricell hit (dark red). The cell is counted
as a tricell hit when each of its neighbour cells (light red)
is also hit. Using trigonometry and track angle, the path
length is found to be Ly/cy . C stands for cell, L for length,
and x and y refer to a position in the detector. Retrieved
from [83] . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Relative calibration schematic. The left plot shows PE/cm
for tricell hits in cosmic data relative to distance from the
centre of the cell in a single horizontal cell in FD. The solid
lines shows the best fit to the cosmic data. The right plot
shows the hit position along the length of the cell, W, in
the x-axis against ratio of reconstructed and true energy
on the y-axis with uncalibrated (red) and calibrated (blue)
cases. Retrieved from [83]. . . . . . . . . . . . . . . . . . 63

3.8 A diagram describing the absolute calibration procedure.
Each histogram entry is from a tricell hit on a stopping
muon track, with distance to the stopping point of the
muon track shown on the x-axis and the path normalised
attenuation corrected detector response shown on the y-
axis. The black line shows the mean of a fit to the peak of
the attenuation corrected detector response at particular
distances from the track end. Hits between 100 cm and
200 cm form the track window that is used for absolute
calibration. Retrieved from [85]. . . . . . . . . . . . . . . 64

3.9 Figures describing νµ CC CVN. A true νµ CC interaction
is seen on the bottom left figure. The bottom right figure
includes the feature maps extracted from the bottom left
event. Green, blue and purple highlighted plots above are
feature maps that represent muon tracks, electron showers
and hadronic activity respectively. Retrieved from [72]. . 66

12 of 165



List of Figures

3.10 Left: νµ CC classifier output distribution for the CVN
training using FD simulation. Appearing νe CC interac-
tions, surviving νµ CC, NC interactions, and NuMI beam
νe CC interactions are showed in purple, green, blue and
magenta respectively. Retrieved from [72]. Right: νe CC
classifier output distribution for the CVN training using
FD simulation. Appearing νe CC interactions, surviving
νµ CC, NC interactions, and NuMI beam νe CC inter-
actions are showed in purple, green, blue and magenta
respectively. Retrieved from [72]. . . . . . . . . . . . . . 67

3.11 dE
dx

LLH for FD FHC simulation. . . . . . . . . . . . . . 67

3.12 Fraction of planes used in the dE
dx

LLH calculation for FD
FHC simulation. . . . . . . . . . . . . . . . . . . . . . . 67

3.13 Scattering LLH for FD FHC simulation. . . . . . . . . . 68

3.14 Track Length for FD FHC simulation. . . . . . . . . . . 68

3.15 Current νµ selection flowchart, retrieved from [91]. . . . . 69

3.16 Current νe selection flowchart, retrieved from [91]. . . . . 69

3.17 The cosmic BDT classification results (blue) and the share
of νµ CC events for FD FHC simulation. . . . . . . . . . 72

3.18 The cosmic BDT classification results (blue) and the share
of νe CC events (not including peripheral) for FD FHC
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.19 CVN and ReMID scores for νµ CC for FHC ND simulation
to demonstrate the cuts applied for νµ sample. . . . . . . 73

3.20 CVN and ReMID scores for νµ CC for FHC ND simulation
to demonstrate the cuts applied for νµ sample, log scale
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.21 Final expected sample numbers for νµ FHC after each
cut for signal and various backgrounds using 2020 anal-
ysis simulation. Retrieved from [92]. . . . . . . . . . . . . 74

3.22 Final expected sample numbers for νµ RHC after each
cut for signal and various backgrounds using 2020 anal-
ysis simulation. Retrieved from [92]. . . . . . . . . . . . . 74

3.23 Final expected sample numbers for νe FHC after each cut
for signal and various backgrounds using 2020 analysis
simulation. The core sample is shown on the first five rows
and the peripheral sample on the last two rows. Retrieved
from [92]. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13 of 165



List of Figures

3.24 Final expected numbers for νe RHC after each cut for sig-
nal and various backgrounds using 2020 analysis simula-
tion. The core sample is shown on the first five rows and
the peripheral sample on the last two rows. Retrieved from
[92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.25 Ehad/Eν vs. reconstructed neutrino energy showing the
quartile subsample limits for FHC (blue lines, left) and
RHC (pink lines, right). Retrieved from [93]. . . . . . . . 75

3.26 The νµ FD predicted reconstructed neutrino energy spec-
tra based on simulation for the 2020 oscillation analysis
split into quartiles based on hadronic energy fraction in
FHC mode. Retrieved from [94]. . . . . . . . . . . . . . . 75

3.27 The νµ FD predicted reconstructed neutrino energy spec-
tra based on simulation for the 2020 oscillation analysis
split into quartiles based on hadronic energy fraction in
RHC mode. Retrieved from [94]. . . . . . . . . . . . . . . 76

3.28 The νe FD predicted reconstructed neutrino energy spec-
tra based on simulation used in the 2020 oscillation anal-
ysis split into two PID samples and a peripheral sample
in FHC mode. WS is an abbreviation of wrong sign. Re-
trieved from [95]. . . . . . . . . . . . . . . . . . . . . . . 77

3.29 The νe FD predicted reconstructed neutrino energy spec-
tra based on simulation used for the 2020 oscillation anal-
ysis split into two PID samples and a peripheral sample
in RHC mode. WS is an abbreviation of wrong sign. Re-
trieved from [95]. . . . . . . . . . . . . . . . . . . . . . . 77

3.30 The extrapolation process for νµ data. First, the ND re-
constructed energy is converted to true energy using a ma-
trix. Using oscillation probabilities and ND/FD ratios a
true far detector energy spectrum is obtained. Then, us-
ing both true energy spectras, the spectra to give final
predictions at the FD are obtained. Retrieved from [98]. 78

3.31 FHC Distribution of the fraction of selected events for each
bin of reconstructed pT for ND data (black), ND simula-
tion (red) and FD simulation (blue). Retrieved from [99]. 79

3.32 RHC Distribution of the fraction of selected events for each
bin of reconstructed pT for ND data (black), ND simula-
tion (red) and FD simulation (blue). Retrieved from [99]. 79

14 of 165



List of Figures

3.33 Summary of systematics at NOvA for the three measured
oscillation variables. Red is the uncertainty level without
and orange with pT extrapolation. Retrieved from [12]. . 80

3.34 νµ ND spectra for the 2020 3-flavour oscillation analysis.
Retrieved from [12]. . . . . . . . . . . . . . . . . . . . . . 85

3.35 νµ FD spectra for the 2020 3-flavour oscillation analysis.
Retrieved from [12]. . . . . . . . . . . . . . . . . . . . . . 85

3.36 νe ND spectra for the 2020 3-flavour oscillation analysis.
Retrieved from [12]. . . . . . . . . . . . . . . . . . . . . . 85

3.37 νe FD spectra for the 2020 3-flavour oscillation analysis.
Retrieved from [12]. . . . . . . . . . . . . . . . . . . . . . 85

3.38 The best fit and 90% confidence level region for oscillation
parameters ∆m2

32 and sin2θ23. Results from other exper-
iments measuring the same oscillation parameters are in-
cluded for comparison. The contours include a Feldman-
Cousin correction. Retrieved from [12]. . . . . . . . . . . 86

3.39 The upper plot: the best fit as well as 90% and 68% con-
fidence level regions for δCP and sin2θ23 for normal mass
ordering for both NOvA as well as T2K. All confidence
level regions include FC corrections. The lower plot:
Inverted mass ordering, 90% and 68% confidence level re-
gions, T2K results included for comparison. All confidence
level regions include FC corrections. Retrieved from [12]. 87

4.1 Daily POT (protons on target) recorded by NOvA from
the start of data taking in 2014 to 2022 with neutrino
beam (FHC, orange) and antineutrino beam (RHC, blue).
Total accumulated POT is marked in grey. The plot also
shows the point of up to which the current analysis uses
data. Retrieved from [107]. . . . . . . . . . . . . . . . . . 89

4.2 The current NOvA 3-flavour oscillation analysis selection
for νµ CC disappearance using FD FHC decaf files (quality
and containment cuts applied). In blue is the number of
simulated events before selection and in black dashed line
events after cosmic rejection and PID cuts. Red and red
dashed line are the same for background. This plot is
made with no oscillations applied. . . . . . . . . . . . . . 90

4.3 The same figure as 4.2 expect oscillations are applied. . . 91
4.4 Ratio of oscillated to non-oscillated for νµ CC 2020 oscil-

lation analysis events using FD FHC simulation. The plot
clearly shows a dip at the oscillation maximum of 1.8 GeV . 91

15 of 165



List of Figures

4.5 A plot showing how much signal is discarded by cosmic re-
jection and PID cuts separately using FD FHC simulation.
No oscillations applied. . . . . . . . . . . . . . . . . . . . 92

4.6 Same as figure 4.5 expect oscillations are applied. . . . . 93
4.7 FD FHC signal efficiency as well as mis-identification effi-

ciency for NC and νe CC events for 2020 3-flavour disap-
pearance analysis. . . . . . . . . . . . . . . . . . . . . . . 93

4.8 FD FHC mis-identification efficiency for NC and νe CC
events for 2020 3-flavour disappearance analysis. . . . . . 93

4.9 FD FHC Signal efficiency and purity for 2020 3-flavour
disappearance analysis. . . . . . . . . . . . . . . . . . . . 94

4.10 The reconstructed energy spectrum for events rejected by
the current analysis cuts, non-oscillated. . . . . . . . . . 95

4.11 The reconstructed energy spectrum for events rejected by
the current analysis cuts, oscillated. . . . . . . . . . . . . 96

4.12 Ratio of oscillated to non-oscillated for νµ CC for the signal
rejected by the current cuts. The plot shows a dip at the
oscillation maximum of 1.8 GeV . . . . . . . . . . . . . . 96

4.13 The true energy spectrum for events rejected by the cur-
rent analysis cuts, non-oscillated. . . . . . . . . . . . . . 97

4.14 The true energy spectrum for events rejected by the cur-
rent analysis cuts, oscillated. . . . . . . . . . . . . . . . . 97

4.15 2020 selected FD FHC signal broken down by the type of
neutrino interactions: deep inelastic scattering (DIS), res-
onant pion production (RES) and quasi-elastic scattering
(QE), non-oscillated. . . . . . . . . . . . . . . . . . . . . 98

4.16 2020 selected FD FHC signal broken down by the type of
neutrino interactions: deep inelastic scattering (DIS), res-
onant pion production (RES) and quasi-elastic scattering
(QE), oscillations applied. . . . . . . . . . . . . . . . . . 98

4.17 Events rejected from the current disappearance analysis
for FD FHC, divided into three types of neutrino interac-
tions: deep inelastic scattering (DIS), resonant pion pro-
duction (RES) and quasi-elastic scattering (QE), non-oscillated. 99

4.18 Events rejected from the current disappearance analysis
for FD FHC, divided into three types of neutrino interac-
tions: deep inelastic scattering (DIS), resonant pion pro-
duction (RES) and quasi-elastic scattering (QE), oscilla-
tions applied. . . . . . . . . . . . . . . . . . . . . . . . . 99

16 of 165



List of Figures

4.19 Background in the rejected sample by component: νe CC
and NC events. All other events only contribute negligible
amount. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.20 Muon energy for signal and background for the events re-
jected from the 2020 analysis, non-oscillated. . . . . . . . 101

4.21 Calorimetric energy of the slice for signal and background
for the events rejected from the 2020 analysis, non-oscillated.101

4.22 Hadronic energy for signal and background for the events
rejected from the 2020 analysis, non-oscillated. . . . . . . 102

4.23 Hadronic energy fraction for signal and background for the
events rejected from the 2020 analysis, non-oscillated. . . 102

4.24 X vertex position (width) for signal and background for
the events rejected from the 2020 analysis. The zero is
defined in the middle of the detector in terms of width,
non-oscillated. . . . . . . . . . . . . . . . . . . . . . . . . 103

4.25 Y vertex position (height) for signal and background for
the events rejected from the 2020 analysis. The zero is
defined in the middle of the detector in terms of height,
non-oscillated. . . . . . . . . . . . . . . . . . . . . . . . . 103

4.26 Z vertex position (depth) for signal and background for the
events rejected from the 2020 analysis. The zero position
is the starting point of the detector, non-oscillated. . . . 104

4.27 The CVN muon score for events rejected from the 2020 dis-
appearance analysis, non-oscillated. The y-axis has been
normalised by area to show probability. . . . . . . . . . . 104

4.28 The ReMID score for events rejected from the 2020 dis-
appearance analysis, non-oscillated. The y-axis has been
normalised by area to show probability. . . . . . . . . . . 105

4.29 Theoretical upper bound improvement in sensitivity to
oscillation parameters if all the currently rejected signal
events could be added back into the analysis. These events
are equivalent to an improvement of 14% in effective POT.
Blue contour is the original fit and red the fit when the
cut events are added back to the analysis as an additional
sample. For both cases contours of 1σ, 2σ and 3σ are
drawn. The best fit points appears equal in the plot but
do differ to a degree too small to be seen in the figure. . 106

5.1 A schematic of an artificial neuron with inputs xi and
weights wi giving the output (z) zi . . . . . . . . . . . . 108

5.2 Example of a feed forward ANN with one hidden layer. . 108

17 of 165



List of Figures

5.3 Schematic demonstrating under- and overtraining. The
first plot describes good training, second one overtraining
and the last one undertraining. . . . . . . . . . . . . . . 110

5.4 RemID variable dE
dx

LLH (see section 3.2.3) comparison
plot for ND MC and data including background. . . . . . 113

5.5 RemID variable scattering LLH (see section 3.2.3) com-
parison plot for ND MC and data including background. 113

5.6 RemID variable of fraction of planes used in dE
dx

LLH cal-
culation (see section 3.2.3) comparison plot for ND MC
and data including background. . . . . . . . . . . . . . . 114

5.7 FD FHC simulation: reconstructed invariant mass for events
rejected from 2020 disappearance analysis, non-oscillated. 117

5.8 FD FHC simulation: reconstructed muon transverse mo-
mentum for events rejected from 2020 disappearance anal-
ysis non-oscillated. . . . . . . . . . . . . . . . . . . . . . 118

5.9 FD FHC simulation: number of hits in a hadronic kalman
track for events rejected from 2020 disappearance analysis
non-oscillated. . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 FD FHC simulation: reconstructed transverse muon mo-
mentum divided by the total momentum (Muon Pt/P)
for events rejected from 2020 disappearance analysis non-
oscillated. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 Neural network model architecture for the network with 7
input variables. The input layer is connected to a dense
layer of size 700, which is connected to 3 dense layers of size
1500. The final layers is using a softmax function to turn
the results into two numbers between 0 and 1 describing
how signal and background like an event is. . . . . . . . 119

5.12 Classification score plot from training classifying events
into signal and background. 7 variables and 20 epochs
were used in the training. The y-axis has been area nor-
malised by area to show a probability instead of absolute
event numbers. . . . . . . . . . . . . . . . . . . . . . . . 120

5.13 Plot showing loss and accuracy from training classifying
events into signal and background. 7 variables and 20
epochs were used in the training . . . . . . . . . . . . . . 120

5.14 PID score for events above 1.5 GeV using NOvA FD FHC
simulation for the network with 7 variables and 20 epochs.
The y-axis has been normalised by area to show a proba-
bility instead of absolute event numbers . . . . . . . . . 121

18 of 165



List of Figures

5.15 PID score for events below 1.5 GeV using NOvA FD FHC
simulation for the network with 7 variables and 20 epochs.
The y-axis has been normalised by area to show a proba-
bility instead of absolute event numbers . . . . . . . . . 121

5.16 PID score for QE signal events only using NOvA FD FHC
simulation for the network with 7 variables and 20 epochs.
The y-axis has been normalised by area to show a proba-
bility instead of absolute event numbers . . . . . . . . . 121

5.17 PID score for RES signal events only using NOvA FD
FHC simulation for the network with 7 variables and 20
epochs. The y-axis has been normalised by area to show
a probability instead of absolute event numbers . . . . . 121

5.18 PID score for DIS signal events only using NOvA FD FHC
simulation for the network with 7 variables and 20 epochs.
The y-axis has been normalised by area to show a proba-
bility instead of absolute event numbers . . . . . . . . . 122

5.19 Classification score plot from the training classifying events
into signal and background using 5 variables and 20 epochs.
The y-axis has been normalised by area to show a proba-
bility instead of absolute event numbers. . . . . . . . . . 124

5.20 Plot showing loss and accuracy from the training classi-
fying events into signal and background using 5 variables
and 20 epochs. . . . . . . . . . . . . . . . . . . . . . . . 124

5.21 Loss vs. learning rate for the 5 variables model when learn-
ing rate is varied according to equation 5.2.3 . . . . . . . 126

5.22 Loss and accuracy for the 5 variables model when learning
rate is varied according to equation 5.2.3 . . . . . . . . . 126

5.23 Classification score plot from training with 5 variables us-
ing early stopping. The y-axis has been normalised by area
to show a probability instead of absolute event numbers. 127

5.24 Accuracy and loss for the last 5 variable training with early
stopping based on loss. . . . . . . . . . . . . . . . . . . . 127

5.25 Classification score plot from training with 5 variables us-
ing early stopping and standard scaling for variables. The
y-axis has been normalised by area to show a probability
instead of absolute event numbers. . . . . . . . . . . . . 128

5.26 Accuracy and loss for the last 5 variable training with early
stopping and a standard scaler applied. . . . . . . . . . . 129

19 of 165



List of Figures

5.27 Classification score plot from training that includes events
with energy above 5 GeV . The y-axis has been normalised
by area to show a probability instead of absolute event
numbers. 5 variables and 5 epochs were used in the training.129

5.28 Plot showing loss and accuracy for training splitting the
final results into signal and background when events with
neutrino energy higher than GeV are included. 5 variables
and 5 epochs were used in the training. . . . . . . . . . . 130

5.29 PID score for only events above 5 GeV . The y-axis has
been normalised by area to show a probability instead of
absolute event numbers. 5 variables 5 epochs were used in
training. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.30 Classification score plot training only events that have
neutrino energy above 5 GeV . The y-axis has been nor-
malised by area to show a probability instead of absolute
event numbers. 5 variables 5 epochs were used in the train-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.31 Model architecture for the 3 variable network. The input
layer is connected to a dense layer of size 700, which is
connected to 2 additional dense layers of size 700. The
final layer uses a softmax activation function. . . . . . . 132

5.32 Classification score plot from training using 3 variables
for 20 epochs. The y-axis has been normalised by area to
show a probability instead of absolute event numbers. . . 133

5.33 Plot showing loss and accuracy, using 3 variables and train-
ing for 20 epochs . . . . . . . . . . . . . . . . . . . . . . 134

5.34 PID score for events above 1.5 GeV using NOvA FD FHC
simulation using 3 variables and training for 20 epochs.
Blue line indicates signal and red background. The y-axis
has been normalised by area to show a probability instead
of absolute event numbers. . . . . . . . . . . . . . . . . . 134

5.35 PID score for events below 1.5 GeV using NOvA FD FHC
simulation using 3 variables and training for 20 epochs.
Blue line indicates signal and red background. The y-axis
has been normalised by area to show a probability instead
of absolute event numbers. . . . . . . . . . . . . . . . . . 134

5.36 Loss vs. learning rate for the 3 variables model when learn-
ing rate is varied according to 5.2.3 . . . . . . . . . . . . 135

5.37 Loss and accuracy for the 3 variables model when learning
rate is varied according to 5.2.3 . . . . . . . . . . . . . . 135

20 of 165



List of Figures

5.38 Classification score plot from training with 3 variables us-
ing early stopping. The y-axis has been normalised by area
to show a probability instead of absolute event numbers. 136

5.39 Accuracy and loss for the last 3 variable training with early
stopping based on loss applied. . . . . . . . . . . . . . . 136

5.40 Classification score plot from training with 3 variables us-
ing early stopping and a standard scaler. The y-axis has
been normalised by area to show a probability instead of
absolute event numbers. . . . . . . . . . . . . . . . . . . 137

5.41 Accuracy and loss for the last 3 variable training with early
stopping and standard scaling. . . . . . . . . . . . . . . . 137

5.42 Final energy spectrum after 0.8 cut on classification score
using 3 variable model trained for 20 epochs. . . . . . . . 138

5.43 Final energy spectrum after 0.5 cut on classification score
using 3 variable model trained for 20 epochs. . . . . . . . 138

5.44 Final energy spectrum after 0.8 cut on classification score
using 3 variable model with early stopping applied. . . . 139

5.45 Final energy spectrum after 0.5 cut on classification score
using 3 variable model with early stopping applied. . . . 139

5.46 Reconstructed neutrino energy spectrum after applying a
PID cut of 0.5 using 3 variable network for events between
energies of 1 and 5 GeV . . . . . . . . . . . . . . . . . . . 140

5.47 The sensitivity contour for 3-flavour oscillation parameters
for the 2020 3-flavour analysis sample as well as the new
sensitivity after the extra sample has been added to the
fit. 3 variables with early stopping applied, 0.5 cut on
classification score. . . . . . . . . . . . . . . . . . . . . . 141

5.48 1D fit to sin2(θ23) before and after adding events from 3
variable early stopping model with 0.5 cut on classification
score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.49 1D fit to ∆m2
32 before and after adding events from 3 vari-

able early stopping model with 0.5 cut on classification
score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.50 Reconstructed neutrino energy spectrum before and after
changing the current PID cuts to RemID > 0.05 and Nu-
muID > 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.51 Reconstructed energy spectrum of events added to the
analysis after changing the current PID cuts to RemID
> 0.05 and NumuID > 0.5. . . . . . . . . . . . . . . . . . 144

21 of 165



List of Figures

5.52 The sensitivity contours for 3-flavour oscillation parame-
ters for the 2020 analysis sample as well as the new sensi-
tivity after adding a sample of variables given by changing
current PID cuts to RemID > 0.05 and NumuID > 0.5 . 144

5.53 1D fit to ∆m2
32 before and after adding events by changing

the PID cut to RemID > 0.05 and NumuID > 0.5 . . . . 145
5.54 1D fit to sin2(θ23) before and after adding events by chang-

ing the PID cut to RemID > 0.05 and NumuID > 0.5 . . 145

A.1 FD FHC simulation track calorimetric energy for events
rejected from disappearance analysis. . . . . . . . . . . . 159

A.2 FD FHC simulation reconstructed 4-momentum transfer
for events rejected from 2020 disappearance analysis. . . 160

A.3 FD FHC simulation slice duration for events rejected from
2020 disappearance analysis. . . . . . . . . . . . . . . . . 160

A.4 FD FHC simulation slice time for events not rejected from
2020 disappearance analysis. . . . . . . . . . . . . . . . . 161

B.1 MC-data comparison for ND FHC data, reconstructed
hadronic energy. . . . . . . . . . . . . . . . . . . . . . . . 162

B.2 MC-data comparison for ND FHC data, reconstructed in-
variant mass. . . . . . . . . . . . . . . . . . . . . . . . . 163

B.3 MC-data comparison for ND FHC data, hadronic energy
fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.4 MC-data comparison for ND FHC data, reconstructed
muon transverse momentum. . . . . . . . . . . . . . . . . 164

B.5 MC-data comparison for ND FHC data, number of hits in
the hadronic kalman Track. . . . . . . . . . . . . . . . . 164

B.6 MC-data comparison for ND FHC data, calorimetric energy.165
B.7 MC-data comparison for ND FHC data, reconstructed

transverse muon momentum divided by the total momen-
tum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

22 of 165



List of Tables

List of Tables

2.1 The composition of the NOvA liquid scintillator, values
from [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 NOvA 2020 analysis basic quality cuts for νµ, values from
[90] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 NOvA 2020 analysis basic quality cuts for νe, values from
[90]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 NOvA 2020 analysis νµ containment cuts in the ND, values
from [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 NOvA 2020 analysis νµ containment cuts in the FD, values
from [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 NOvA 2020 analysis νe containment cuts at the ND, values
from [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 NOvA 2020 analysis νe containment cuts at the FD, values
from [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Parameters used in the latest oscillation parameter fits,
values from [12]. . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 NOvA 2020 oscillation analysis results, all values from [12].
NO stands for normal ordering, IO for inverted ordering,
UO for upper octant and LO for lower octant. Values from
[12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Variables and their KS test values tested for neural net-
work training. . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 7 variables used in the first network. . . . . . . . . . . . 117
5.3 Network tests performed with excluding each variable and

their FOM values with 0.8 cut on classification score. . . 123
5.4 5 variables for the network after testing the performance

of each of the original 7 variables. . . . . . . . . . . . . . 123
5.5 The 3 variables trained in the network. . . . . . . . . . . 132
5.6 Number of signal and background as well as FOM for var-

ious 3 variable training models with different cuts on clas-
sification score. . . . . . . . . . . . . . . . . . . . . . . . 139

23 of 165



List of Tables

5.7 Parameters used in the oscillation fits. . . . . . . . . . . 141
5.8 Number of signal and background as well as FOM after

changing the current analysis cuts. The first section de-
scribes changing the RemID cut but keeping NumuID the
same, second section changing NumuID but not RemID
and the last section changing both RemID and NumuID
as well as changing CosmicID. . . . . . . . . . . . . . . . 143

24 of 165



1. Neutrinos

Chapter 1

Neutrinos

1.1 Introduction

Neutrinos are amongst the most abundant particles in the Universe. First
postulated by Pauli in the 1930s [1], they were introduced as a way to
solve the continuous energy of the final state electron in beta decays.
If only one particle would be emitted in the decay, the energy of the
final state electron should not be continuous but discrete to follow all
principles of energy conservation. Pauli introduced the idea that as well
as an electron, a chargeless fermion is emitted in the decay. Due to the
lack of electric charge, Pauli thought neutrinos could never be detected
and described his theory as a desperate remedy to help solve the problem.

Despite Pauli’s doubts, neutrinos were experimentally discovered in
1956 [2]. This first discovery was that of an electron antineutrino, the
first of the three neutrinos. The experiment was looking to record a
signal of neutrinos reacting via an inverse beta decay.

p + νe −−→ n + e+. (1.1.1)

The experiment consisted of a large interaction volume filled with water
and cadmium working as a liquid scintillator close to a nuclear reactor.
The signal recorded consisted of two parts: rapidly annihilating positron
signal and a capture of a neutron in the cadmium, which caused a photon
signature from the nuclear de-excitation.

As with other leptons in the Standard Model (SM), neutrinos come in
three flavours: electron, muon and tau. The muon neutrino was discov-
ered in 1962 by the Brookhaven Experiment [3] and the tau neutrino in
2001 by the DONUT experiment [4]. The Brookhaven experiment used a
10-ton aluminium spark chamber to measure pions decaying to neutrinos
and muons, and DONUT experiment used emulsion cloud chambers to
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measure tau neutrinos from leptonic decays of mesons, (mostly from DS

mesons).
The original description in the SM did not make a statement about

the mass of the neutrinos so they were conventionally assumed to be
massless in the SM. However due to the phenomenon of neutrino oscil-
lations, neutrinos are now proven to have mass. Neutrino oscillations
are a quantum mechanical interference phenomenon where the observed
flavour of a neutrino differs from that measured earlier due to the mass
(ν1, ν2, ν3) and flavour states (νe, νµ, ντ ) mixing. They will be explained
more in section (1.3).

1.2 Neutrino Interactions

!!""

#!

!! "" !! !!

""""

##

Figure 1.1: Feynman diagram for charged current (left) and neutral cur-
rent (right) electron neutrino interaction.

Neutrinos are never directly observed, but only detected indirectly in
particle interactions. Neutrino interactions are described in detail in the
SM. Neutrinos only interact via weak force, which is a force mediated by
three bosons: W+, W−, and a neutral Z0 boson.

In weak interactions, W± mediate a charged current (CC) interac-
tions, in which a neutrino changes into a corresponding lepton (νe with
e etc.) with W boson sign chosen so that electric charge is conserved in
the interaction. An example of this type of decay in neutrinos is seen on
the left in figure 1.1 [5].

There exists three different types of CC neutrino interactions describ-
ing how the neutrino interacts with the target nucleus in the interac-
tion. These are quasi-elastic scattering (QE), resonant pion production
(RES) and deep inelastic scattering (DIS). In QE, neutrinos scatter quasi-
elastically off an entire nucleon and liberate a nucleon from the target.
It is the dominant type of interaction in low energies (energy less than 1
GeV ). When moving to higher energies, the neutrino has enough energy
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Figure 1.2: Types of CC interactions for different energies. QE (red) is
for quasi-elastic scattering, dominating in low energies. RES (blue) is for
resonant pion production and DIS (green) for deep inelastic scattering,
the most prominent in high energies. The total cross-section taking into
account all interaction types is also marked in black. Retrieved from [5].

to excite a nucleon to a resonance state, such as ∆++. When the nucleon
decays back to its normal state additional mesons (such as pions) are
emitted [5].

With enough momentum transferred by the boson in an interaction,
a neutrino can resolve individual quark constituents of the target nucleus
resulting in a break up of the nucleon leading to a hadronic shower. This
DIS interaction is the most dominant in the highest neutrino energies [5].

All of these interactions in terms of energy and cross-section are seen
in figure 1.2. This illustrates what type of interaction dominates at which
energy and what is the total cross-section [5].

Another type of weak interaction is a neutral current interaction me-
diated by a Z0 boson. A Feynman diagram example of this interaction
is seen on the right of figure 1.1. Since neutrinos are not detectable, all
that is known about the interaction is what is detected from the inter-
action nucleus. That is why distinguishing between neutrino flavours in
NC interactions is not possible [5].

27 of 165



1.3. Neutrino Oscillations 1. Neutrinos

1.3 Neutrino Oscillations

Neutrino oscillations were proposed first by Pontecorvo who created the
first theory of neutrino oscillations in the 1950s [6]. Since at the time
only one flavour of neutrinos was known, his first paper was not complete
to describe neutrino oscillation theory as it is known now. Oscillations
between 3-flavours were first considered by Maki, Nakagawa and Sakata
in 1962 [7]. In the 70s, the oscillation theory was then shaped to a theory
more like what it is now understood to be [8] [9].

1.3.1 Neutrino Mixing

The basic principle behind neutrino oscillations is mixing between neu-
trino flavour states (νe, νµ, ντ ) and mass states (ν1, ν2, ν3). Mathemati-
cally one can write [8]:

|να〉 =
∑
k

U∗
αk |νk〉 . (1.3.1)

With α describing the three neutrino flavour states α = (e, µ, τ) and
k the mass states k = (1, 2, 3). U is the weight describing the mixing
between flavours and masses.

In matrix form, the oscillations are described in Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [8]:


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (1.3.2)

Usually in neutrino physics, the quantities that are used to describe
the oscillations include three mixing angles (θ12, θ23, θ13), mass splittings
(∆m12, ∆m23) and a CP violation phase (δCP ). These are derived from
the PMNS matrix such that [10]:

sin2θ12 ≡ |U2
e2|

1 − |U2
e3|

(1.3.3)

sin2θ23 ≡
|U2

µ2|
1 − |U2

e3|
(1.3.4)

sin2θ13 ≡ |U2
e3| (1.3.5)

δCP ≡ − arg(Ue3). (1.3.6)
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It is then possible to write the weight U in terms of these oscillation
parameters as [8] [9]:

U =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13



c12 s12 0

−s12 c12 0
0 0 1


(1.3.7)

where sab = sin(θab) and cab = cos(θab) with a, b ∈ [1, 3], a 6= b. δCP
is a CP-violation term, which is discussed in more detail in section 1.5
[8] [9].

1.3.2 Two-Flavour Oscillations

This section and its equations were written using [8] [9] throughout.
For simplicity, only oscillations between two neutrino states will be

considered in this section. Starting with an electron neutrino, considering
a mix of the two mass eigenstates one gets

|νe〉 = Ue1 |ν1〉 + Ue2 |ν2〉 . (1.3.8)

The mass eigenstates evolve in time according to free-particle solu-
tions to the wave equation

|ν1〉 (t) = |ν1〉 exp{i(P 1 − E1t)},

|ν2〉 (t) = |ν1〉 exp{i(P 2r − E2t)}.
(1.3.9)

Relating the mass and flavour eigenstates in a 2x2 unitary matrix|νe〉
|νµ〉

 =
 cos θ sin θ

− sin θ cos θ

|ν1〉
|ν2〉

 . (1.3.10)

Thus the expression for the electron neutrino can be written as

|νe〉 (t) = cos θ |ν1〉 exp{i(P 1r − E1t)} + sin θ |ν2〉 exp{i(P 1 − E1t)}.
(1.3.11)

At time T along positive z-axis at distance L the expression changes
to

|νe〉 (L, T ) = cos θ |ν1〉 exp{iφ1} + sin θ |ν2〉 exp{iφ2}, (1.3.12)

where
φi(L, T ) = EiT − |Pi|L. (1.3.13)

Then one can express the mass eigenstates in terms of the weak eigen-
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states

|ψ(L, T )〉 = cos θ(cos θ |νe〉 − sin θ |νµ〉) exp{−iφ1}

+ sin θ(sin θ |νe〉 + cos θ |νµ〉) exp{−iφ2}.
(1.3.14)

Rearranging the equation gives:

|ψ(L, T )〉 = |νe〉 (cos2 θ exp{−iφ1} + sin2 θ exp{−iφ2})

+ |νµ〉 (− sin θ cos θ exp{−iφ1} + sin θ cos θ exp{−iφ2}).
(1.3.15)

Next, making an assumption that |P1|= |Pe|= P [11] and using an
expression for kinematics E2 = m2 + p2, φ1 − φ2 can be written as

φ1 − φ2 = (E1 − E2)T

= ((p2 +m2
1)1/2 − (p2 +m2

2)1/2)

= (m2
1 −m2

2)L
2E ,

(1.3.16)

where in the last step an assumption that p ∼= E was made. For os-
cillations, the important quantity to find is a probability of |νe〉 changing
to |νµ〉.

P (νe → νµ) = |〈νµ|Ψ(L, T )〉 |2

= sin2 2θ sin2 φ1 − φ2

2
(1.3.17)

Finally, an expression for the two flavour transformation probability
is obtained

Pνe−>νν = sin2(2θ12) sin2(1.27∆m2
21L

E
) (1.3.18)

where ∆m2
21 = m2

2 − m2
1. A survivor probability for an electron

neutrino can then be expressed as:

Pνe−>νe = 1 − Pνe−>νν = 1 − sin2(2θ12) sin2(1.27∆m2
21L

E
). (1.3.19)

The prefix of 1.27 is added so in these equations L is measured in
kilometers and E in GeV , which is easier for experimental consideration.
When planning experiments, it is important that the variables that one
has control over are chosen such that the oscillation probability is at a
maximum. Looking at a version of an equation such that

1.27∆m2
21L

E
= π

2 (1.3.20)

one can perform calculations to optimise the length of the baseline (L) as
well as the energy (E) of the neutrino beam to get the maximum amount
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of oscillations for best results.

1.3.3 Three-Flavour Oscillations

This section and its equations were written using [8] [9] throughout.

The full 3-flavour oscillations are analogues to the 2-flavour case, how-
ever using the full PMNS matrix (equation 1.3.2). Considering an elec-
tron neutrino created in a CC interaction:

|ψ(0)〉 = |νe〉 = U∗
e1 |ν1〉 + U∗

e2 |ν2〉 + U∗
e3 |ν3〉 . (1.3.21)

The time evolution of the mass eigenstates is as follows:

|ψ(L, T )〉 = U∗
e1 |ν1〉 e−iψ1 + U∗

e2 |ν2〉 e−iψ2 + U∗
e3 |ν3〉 e−iψ3 . (1.3.22)

As before using equation 1.3.13 and writing in terms of weak eigen-
states

|ψ(L, T )〉 = U∗
e1(Ue1 |νe〉 + Uµ1 |νµ〉 + Uτ1 |ντ 〉)e−iψ1

+U∗
e2(Ue2 |νe〉 + Uµ2 |νµ〉 + Uτ2 |ντ 〉)e−iψ2

+U∗
e3(Ue3 |νe〉 + Uµ3 |νµ〉 + Uτ3 |ντ 〉)e−iψ3 .

(1.3.23)

Using the unitarity condition of the PMNS, i.e. UU † = 1,

|ψ(L, T )〉 = (U∗
e1Ue1e

−iψ1 + U∗
e2Ue2e

−iψ2 + U∗
e3Ue3e

−iψ3) |νe〉

+(U∗
µ1Uµ1e

−iψ1 + U∗
µ2Uµ2e

−iψ2 + U∗
µ3Uµ3e

−iψ3) |νµ〉

+(U∗
τ1Uτ1e

−iψ1 + U∗
τ2Uτ2e

−iψ2 + U∗
τ3Uτ3e

−iψ3) |ντ 〉 .

(1.3.24)

Thus the 3-flavour oscillation probability for νe to νµ is:

P (νe → νµ) = |〈νµ|Ψ(L, T )〉 |2

= |U∗
e1Uµ1e

−iψ1 + U∗
e2Uµ2e

−iψ2 + U∗
e3Uµ3e

−iψ3|.
(1.3.25)

Using complex number identities one gets:

P (νe → νµ) = 2 Re
{
U∗
e1Uµ1Ue2U

∗
µ2[ei(ψ2−ψ1) − 1]

}
2 Re

{
U∗
e1Uµ1Ue3U

∗
µ3[ei(ψ3−ψ2) − 1]

}
2 Re

{
U∗
e2Uµ2Ue3U

∗
µ3[ei(ψ3−ψ2) − 1]

}
.

(1.3.26)
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Using identities:

Re
{
ei(ψj−ψ1) − 1

}
= cos(ψj − ψi) − 1

= −2 sin2 ψj − ψi
2 = −2s sin2(∆ji)

(1.3.27)

∆ji = ψj − ψi
2 =

(m2
j −m2

i )
4Eν

. (1.3.28)

The final 3-flavour probability can thus be written as:

P (νe → νµ) = 1 − 4|Ue1|2|Ue2|2sin2(∆21)

−4|Ue1|2|Ue3|2sin2(∆31)

−4|Ue2|2|Ue3|2sin2(∆32).

(1.3.29)

1.4 Neutrino Oscillation Experiments

Multiple neutrino experiments over the years have managed to provide
measurements of all three mixing angles, both mass differences as well as
the sign of ∆m12. The least constrained neutrino oscillation parameter
currently is δCP , which has not been measured to 5σ precision. The sign
of ∆m23 is also unknown, leaving the question of mass ordering open
[12]. The last two are discussed in more detail in section 1.5.

The earliest neutrino oscillation experiments measured natural neu-
trino sources such as neutrinos from the Sun and the cosmic rays decay-
ing to neutrinos in the atmosphere. Today, a lot of experiments focus on
man-made neutrino sources such as neutrino beams and nuclear reactors,
all of which will be discussed in this section.

1.4.1 Solar Neutrino Experiments

The earliest neutrino experiments all measured neutrinos from the Sun.
From the beginning, these experiments showed a deficit in the number
of observed solar neutrinos compared to what was predicted by the solar
models describing the nuclear reactions in the Sun. The first experiment
of this kind was conducted by Ray Davis, who discovered solar neutrinos
via chlorine capture reaction in the Homestake mine [8]:

37Cl + νe −−→ e− + 37Ar. (1.4.1)

The experiment discovered about one third of the expected rate of
interactions [13]. Similar results were then recorded at other solar neu-
trinos experiments such as SAGE [14], GALLEX [15] and Kamiokande
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[16].
The first measurements to confirm oscillations were from an experi-

ment Super-Kamiokande (SK) [17] and the Sudbury Neutrino Observa-
tory (SNO) [18]. Super-Kamiokande is a successor experiment to the
Kamiokande experiment. It is a water Cherenkov detector, which mea-
sure light created when particles travel faster than the speed of light
in the medium (water in this case). It is located at the Kamioka mine
in Japan and it identifies neutrino flavours by the lepton created in the
interaction that produces the Cherenkov light measured. Both its mea-
surements from the Sun [19] and atmospheric neutrinos [17] (see section
1.4.2) showed evidence for oscillations. SK is not, however, sensitive to
NC interactions since there are no leptons emitted in the final interaction
state.

Figure 1.3: µ and τ solar neutrino flux vs e flux from the three types
of neutrino interactions (NC, CC and elastic scattering, ES) measured
by the SNO detector. Dashed lines show the flux predicted by a solar
model and solid lines what is measured at the SNO detector. The bands
intercept at the best fit value indicating that the results are consistent
with neutrino oscillations and no distortion in the solar model. The limit
of the bands represent ±1σ errors. Retrieved from [20].

SNO was a heavy-water (D2O) Cherenkov detector at Sudbury in
Ontario, Canada. It had an advantage over Super-Kamiokande by be-
ing able to measure neutral current events as well as charged current
events due to the use of heavy water. Thus, SNO measured both the
total amount of neutrino interactions for all flavours via NC as well as
the amount of νe CC interactions. The results are seen in figure 1.3,
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which show that the measured flux of all the flavours was consistent with
measurements from the Sun. This then proves that the lack of νe was
due to oscillations instead of an inaccurate solar model [8] [21].

The combination of results from SK and SNO proved the existence
of neutrino oscillations and were awarded a Nobel Prize in physics in
2015 [22]. In terms of oscillation parameters, solar neutrino experiments
measure θ12 and ∆m2

12. The current best values for these parameters are
sin2θ12 = 0.307 ± 0.013 and ∆m2

12 = (7.53 ± 0.18) × 10−5 eV 2 [10].

1.4.2 Atmospheric Neutrino Experiments

Atmospheric neutrino experiments measure neutrinos from decays of cos-
mic rays that collide with nuclei in the Earth’s atmosphere. The most
common decays of cosmic rays producing neutrinos are [21]:

π+ → µ+ + νµ

µ+ → e+ + νe + νµ.
(1.4.2)

The relative fluxes of νµ and νe can be predicted to 5% accuracy. Early
atmospheric neutrinos saw a deviation from the predicted fluxes, includ-
ing Kamiokande [23] and IMB [24]. This was a similar effect seen in
solar neutrinos and explained similarly by oscillations. Since, atmo-
spheric experiments have provided measurements of oscillation param-
eters θ23 and ∆m2

32 as well as limits on the mass ordering [25]. The
current best values for these parameters are sin2θ23 = 0.534 ± 0.021 and
∆m2

32 = (−2.519±0.033)×10−3 eV 2 assuming inverted mass ordering and
sin2θ23 = 0.547+0.021−0.024 and ∆m2

32 = (2.437+0.018−0.024)×10−3

eV 2 assuming normal mass ordering (normal and inverted ordering are
explained in detail in 1.5.2) [10].

Examples of experiments measuring atmospheric neutrino parame-
ters include Soudan 2 [26], MACRO [27] and Super-Kamiokande, which
has provided by far the most statistics from atmospheric measurements:
[17], [28] and [29]. IceCube experiment has also measured atmospheric
neutrino oscillations. Primarily built to detect PeV-scale astrophysical
neutrinos, the detector also has neutrino oscillations measurement capa-
bilities [30].

1.4.3 Long-Baseline Experiments

The basic idea behind long-baseline experiments is simple: compare the
neutrino spectrum measurements at a detector near the source of the
neutrinos to the spectrum measured at a far detector. Equation 1.3.20
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Figure 1.4: The proposed location of the DUNE detectors, retrieved from
[32].

shows the relationship between the length of the baseline and the energy
of the neutrinos, which is optimised in experiments so that the oscilla-
tions are maximal. Two currently running long-baseline experiments are
introduced here: T2K and NOvA.

T2K is a long-baseline neutrino experiment with near detector located
at JPARC (Japan Proton Accelerator Research Complex) and SK, which
was mentioned earlier in section 1.4.1, used as a far detector. NOvA
is a long-baseline experiment with a near detector located at Fermilab
in Illinois and far detector at Ash River in Minnesota. Both of these
experiments are sensitive to oscillation parameters ∆m2

32 and θ23. Both
experiments can also set limits to δCP and the mass hierarchy. Especially
NOvA’s long baseline is an advantage when looking at the mass hierarchy
using matter effects. More on NOvA and the long-baseline technology
will be discussed in chapter 2 [31].

The next generation of long-baseline experiments are aiming to ad-
dress the unknowns of neutrino physics, namely the δCP parameter and
the mass hierarchy. The Super-Kamiokande experiment is upgrading to
Hyper-Kamiokande, which is going to be a larger version of the SK with
improved technology. Also, the T2K near detector is being upgraded
alongside HyperK to get better oscillation results. Hyper-K is looking
to start taking data in 2027, and its key goal is to measure δCP . The
estimates on how long it is going to take to get an accurate measurement
depend on the improvement on systematics but the estimates approxi-
mate that the non-zero value of δCP will be discovered in about 5 years
[33].

Deep Underground Neutrino Experiment (DUNE), is another future
long-baseline neutrino oscillation experiment currently under construc-
tion in the USA. The near detector will be located at Fermilab and the
far detector at Sanford Underground Research Facility (SURF) in South
Dakota. Both of the detector locations are seen in figure 1.4. Based on
simulations, DUNE will be able to establish the neutrino mass ordering
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to a 5σ level in two to three years for all values of δCP . Determining δCP
is a harder process requiring more data taking, with current estimates
stating that to measure it to a level of 5σ can take anything between
seven and fifteen years depending on what the exact value is [32] [33].

1.4.4 Reactor Experiments

Figure 1.5: Expected oscillated spectra of JUNO experiment for both
mass orderings: normal (blue) and inverted (red) as well as unoscillated
spectra in black with assumptions of an average baseline of 52.5 km and
a data-taking time of 6 years. Retrieved from [34].

Reactor neutrino experiments measure neutrinos coming from nuclear
reactors. Nuclear reactors produce νes isotropically from β-decays, which
can then be measured via inverse β-decay in a detector some distance
away from the source and compared to the expected number of νes hence
measuring the disappearance of νe. Reactor experiments are sensitive to
oscillation angle θ13, ∆m2

13, ∆m2
23 and the mass hierarchy [35].

Reactor neutrinos experiments include RENO [36], DoubleCHOOZ
[37], Daya Bay [38] and KamLAND [39]. KamLAND is a liquid scintilla-
tor detector at the Kamioka mine in Japan measuring reactor neutrinos
from various sources coming from an average of 180 km away from the
detector. Due to the fairly long baseline, KamLAND is also sensitive to
θ12 oscillation angle as well as θ13, ∆m2

13 and ∆m2
23. RENO, Double-
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CHOOZ and Daya Bay were all similar experiment with similar baseline
lengths all using gadolinium doped liquid scintillator as a detector ma-
terial measuring θ13 and ∆m2

12. Double Chooz stopped taking data in
2018, Daya Bay in 2020 and RENO in 2021 [25] [35] [40].

Jiangmen Underground Neutrino Observatory (JUNO) is going to be
a liquid scintillator reactor neutrino experiment in China near Jiangmen
city. It is bigger and more sensitive to neutrino oscillation parameters
than previous reactor experiments. JUNO is going to start data taking in
2024 and it is estimated that JUNO will be able to determine the neutrino
mass ordering before the two future long-baseline begin operations [33].
JUNO’s expected oscillation spectra is seen in figure 1.5 showing all the
neutrino oscillation parameters JUNO will be measuring.

1.5 CP Violation and Neutrino Mass

1.5.1 CP Violation

CP symmetry is a combined expression for two symmetries in the Uni-
verse: charge conjugation and parity. Charge conjugation switches par-
ticles for antiparticles and parity mirrors the spatial coordinates of a
particle when changing to its antiparticle. Thus, these two symmetries
together ensure that the laws of physics are the same when interchanging
a particle to its antiparticle. When this symmetry is broken the process
is called CP violation (CPV) [41].

The violation of the charge conjugation and parity symmetry was
discovered in kaon decays in the 1960s [42]. Since the discovery, CPV
has been well established in the quark sector and is described in the
CKM matrix. One can thus make an assumption that a similar effect is
present in the lepton sector, however no evidence for CPV in the lepton
sector has been found. In the PMNS matrix (equation 1.3.2), one of the
variables is δCP . If δCP 6= 0, π (and assuming no U parameter is zero)
that means PMNS matrix has a complex phase and the CP-invariance
is present in neutrino oscillations. In practice, this means that the oscil-
lation probabilities between two flavours are not the same for particles
and anti-particles, i.e. P (νe → νµ 6= P (νe → νµ)) [43].

Defining δCP is central for providing an explanation to the matter -
antimatter imbalance in the Universe through leptogenesis. Leptogenesis,
if proven, would have resulted in the imbalance between leptons and
antileptons in the early universe. All evidence points to this imbalance
since no significant source of antimatter has been found. When coming
in contact with ordinary matter, antimatter and matter annihilate but
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no substantial signal of this happening has been found [43] [44] [45].
Eventually, leptogenesis results in an imbalance in baryon/antibaryon

number via partial conversion of leptons to baroyns on the electroweak
scale. Baryogenesis in the Universe is one of the Sakharov conditions
for creating a matter-antimatter imbalance in the Universe [46]. Thus
the combination of CPV in neutrinos leading to leptogenesis and out of
thermal equilibrium interactions in the early Universe could provide an
answer to the matter/antimatter imbalance [43] [44] [45].

1.5.2 Neutrino Mass

Normal Inverted
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Figure 1.6: Illustration of the neutrino mass hierarchy.

As well as the existence of CP violation, there is another unanswered
question in neutrino physics: the nature of neutrino mass. Since the
existence of neutrino oscillations is proven, at least two of the mass states
have to be non-zero. Neutrino oscillation experiments only measure the
differences in neutrino masses but not the absolute mass. There are
experimental measurements for both of the differences (∆m12 and ∆m23),
but the sign is only known for ∆m12 [47]. This means that the order of
the masses of neutrino states v1, v2 and v3 is not known, and this is known
as the mass hierarchy problem, illustrated in figure 1.6. A model where
v3 is the biggest mass is called Normal Hierarchy (NH) (left side of figure
1.6) and other case where v3 is the smallest is named Inverted Hierarchy
(IH) (right side of figure 1.6). No experiment so far has managed to
measure to prove it either way, but a lot of ongoing research is taking
place [48] [49].

The question whether particles are their own anti-particles is rele-
vant for neutrinos, since they are the only known fermions which are
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neutral with respect to both electric and colour charge. All current mat-
ter particles (fermions) described in the SM are Dirac particles, meaning
they are not their own anti-particles and acquire their mass through in-
teractions with the Higgs boson. The mass term in the SM is of form
mψLψR + h.c with L and R annotating the left and right handed com-
ponents (and h.c the hermitian conjugate of the term). This "handness",
also referred to as chirality, is an intrinsic quantum mechanical property
of a particle describing the mirror symmetry of the particles. In the SM,
only left-handed particles (and right-handed anti-particles) take part in
CC weak interactions. Since those interactions are the only way neutri-
nos are created, all neutrinos are left-handed and all anti-neutrinos are
right-handed. It is hence not possible for a neutrino to acquire mass in
the same way other particles due to the lack of right-handed neutrino
component [9] [45] [48] [49] [50].

In contrast, according to Majorana’s theory particles and antiparti-
cles are indistinguishable from each other. One of the most researched
theory for neutrino mass is the seesaw mechanism, which requires neu-
trinos to be Majorana in nature. The theory combines Majorana and
Dirac mass terms, and requires there to exist a heavy partner to a neu-
trino, which is a Majorana particle so massive that it cannot have been
seen in experiments. It gives neutrinos non-zero mass and also provides
an explanation to the smallness of neutrino masses compared to other
fermions in the SM [9] [48] [50].

1.5.3 Matter Effects

When neutrinos travel through matter, their oscillations are modified by
the surrounding material. The effect was first considered by L. Wolfestein
[51] and named matter effects, sometimes also called Mikheyev-Smirnov-
Wolfestein (MSW) effect. This is due to the excess of electrons compared
to muons or taus in matter (such as the Earth or the Sun), which causes
coherent forward scattering of electrons. The Feynman diagrams for this
scattering for both CC and NC are seen on figure 1.7. This effect is
crucial in measuring the signs of the mass differences, and the matter
effects in the Sun was central when measuring the sign of ∆m12 [47].

The matter effect increases the oscillation probability for NH and
decreases it for IH. The matter effect is also opposite for νe and νe and can
thus be confused with the CP-violating effect [49] [54]. Mathematically,
the matter electrons add a potential term [52]:

Ve = ±
√

2GFNe, (1.5.1)
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Figure 1.7: Coherent scattering of neutrinos for CC (left and middle) and
NC (right) interactions. X in NC plots indicates that the interactions
happens equally often for all three neutrino flavours. Reproduced from
[52].

Figure 1.8: Illustration of matter effects for oscillation probability in the
NOvA experiment. Black line describes the probability for oscillations in
vacuum, blue line in matter for normal hierarchy and orange for inverted
hierarchy assuming δCP = 0. Upper plot describes the probability for
neutrinos and lower plot for anti-neutrinos. The error bans in blue and
orange illustrate the allowed range for δCP values. Retrieved from [53].
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where GF is the Fermi constant and Ne the electron number density. The
sign depends on whether neutrinos or anti-neutrinos are considered [52]
[55].

This then leads to a modification for the oscillation probability as:

P (νµ −→ νe) = sin2(θ23) sin2(2θ13)
sin2(∆(1 − A)

(1 − A)2)

+αJ̃ cos(∆ ± δCP )sin(∆A)
A

sin(∆(1 − A))
1 − A

+α2 cos2(θ23) sin2(2θ12)
sin2(∆A)

a2 ,

(1.5.2)

where A = 2
√

2GFNeE

∆m2
31

, J̃ = cos(θ13) sin(2θ13) sin(2θ12) sin(2θ23), ∆ =
∆m2

31L

4E and α = ∆m2
21

∆m2
32

. The sign is set as positive for neutrinos and
negative for antineutrinos [55] [56].

Current efforts to measure the sign of ∆m23 and to solve the mass
hierarchy problem are focusing on measuring this difference in matter
effects in the Earth in long-baseline and reactor neutrino experiments.
An example of how matter effects oscillation probabilities in the NOvA
experiment is seen in figure 1.8 for both normal and inverted hierarchy
for both neutrinos (first plot) and anti-neutrinos (second plot).
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Chapter 2

NOvA

2.1 Introduction

NuMI Off-Axis νe Appearance Experiment, NOvA, is a long-baseline neu-
trino oscillation experiment devoted to studying neutrino oscillations. It
consists of two functionally identical, finely granulated tracking calorime-
ter detectors. The NuMI facility at Fermilab in Illinois creates a neutrino
beam, which is aimed at the near detector (ND) located 1 km from the
beam target approximately 100 m underground. The neutrinos then
travel 810 km to the far detector (FD) placed on the surface at Ash
River, Minnesota near International Falls under a rock bed with a back-
ground cosmic ray flux of about 130 kHz. Both NOvA detectors are
placed 14.6 mrad off the beam axis to help to obtain a narrow energy
peak at 1.8 GeV , where the oscillations are maximal. The detectors
are functionally identical with the same design but differ only in size to
reduce systematic errors and achieve more accurate results [54] [57].

2.2 NuMI Beam

Figure 2.1: Schematic of the NuMI beamline components, not to scale.
Protons from the main injector strike a target, then the created particles
are focused onto a decay pipe with two magnetic horns. At the end of
the pipe, the remaining particles (mostly muons) are absorbed leaving a
beam of neutrinos or anti-neutrinos. Retrieved from [57].
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Figure 2.2: NuMI horn focusing effect for hadrons arriving in different
angles. The solid red line is for a particle passing straight through. The
red dashed line is where horn 2 focus the particles. The red dotted line
describes particles that are underfocused by horn 1 and corrected by 2.
Solid blue line is particles that are overfocused by both first horn and
corrected by the second one, and blue dotted line is for particles focused
by horn 1. Retrieved from [57].

The Neutrinos at the Main Injector (NuMI) beam is located at Fer-
milab and provides neutrinos for multiple research uses. A schematic of
the beamline components is shown in figure 2.1. The beam is formed by
first striking 120 GeV protons from the Fermilab Main Injector onto a
graphite target of approximately 1 m in length. The interactions in the
target produce pions and kaons, which are in turn focused into a 675 m
decay pipe with two magnetic horns where they decay into muons and
neutrinos [57]:

π+ → µ+ + νµ

π− → µ− + νµ.
(2.2.1)

K+ → µ+ + νµ

K− → µ− + νµ.
(2.2.2)

The two 3-metre-long magnetic horns keep the charged hadrons in
the pipe and focuses them into a beam. This focusing effect is illustrated
in figure 2.2. All the hadrons are produced in differing angles, which
is shown by different line styles in the figure. Those along the beam
axis pass the horns unaffected. At some angles, hadrons are well focused
by the first horn and sometimes the first horn over- or underfocuses, in
which case the second horn corrects the issue. The horns can also select
the sign of the neutrino beam by reversing the power supply current.
When neutrinos are selected, the horns are said to be in forward horn
current (FHC) and when anti-neutrinos are selected, the horns are in
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Figure 2.3: The composition of the
NuMI beam at the NOvA near de-
tector for neutrino (FHC) mode,
produced using NOvA simulation.
Retrieved from [59].
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Figure 2.4: The composition of
the NuMI beam at the NOvA near
detector for anti-neutrino (RHC)
mode, produced using NOvA sim-
ulation. Retrieved from [59].

Figure 2.5: The composition of the
NuMI beam at the NOvA far de-
tector for neutrino (FHC) mode,
produced using NOvA simulation.
Retrieved from [59].

Figure 2.6: The composition of
the NuMI beam at the NOvA far
detector for anti-neutrino (RHC)
mode, produced using NOvA sim-
ulation. Retrieved from [59].

reverse horn current (RHC).
Most of the selected hadrons decay according to equation 2.2.1 and

equation 2.2.2 in the decay pipe, but there is also a hadron monitor and
an absorber to remove of any residual hadrons after the decay pipe [57]
[58].

At the end of the decay pipe, the beam made of muons and neutrinos
is lead to a series of muon monitors in between large sections of rock
to absorb the muons leaving only neutrinos (plus a small percentage of
other particle contaminants). The created neutrino beam is highly pure
with 96 percent νµ for FHC mode and 83 percent νµ for RHC mode.
The difference between the purity and the width of the beam stems from
the difference in cross-sections for νµ and νµ. The simulated composition
of the beam at the NOvA ND is shown in figures 2.3 and 2.4 for FHC
and RHC respectively. Similarly, for FD the compositions are shown in
figures 2.5 and 2.6. The narrow energy peak for the neutrinos is due
to NOvA detectors being placed off-axis of the NuMI beam, explained
more in the next section 2.2.1. It is evident that the majority of the
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contamination is from wrong sign neutrinos (νµ for FHC and νµ for RHC).
There is also a small background contribution from electron neutrinos
and anti-neutrinos, which result from decays of K0 produced in small
numbers, as well as decays of tertiary muons. Charged kaons also have
an electron decay mode but it is highly suppressed compared to the muon
decay mode. It is, however, responsible for some of the electron neutrino
background contribution [12] [54] [57] [60].

2.2.1 Off-Axis Concept

Figure 2.7: The off-axis effect in the NuMI beam for different axis angles
with neutrino energy on the x-axis and a (scaled) number of CC muon
neutrino events on the y-axis. Retrieved from [58].

The NuMI beam can be configured to produce a beam ranging from
peaking at 3 GeV to 15 GeV . However, The NOvA experiment was
designed to be off-axis leading to a narrow energy peak at 1.8 GeV,
where the oscillations are maximal. As well as maximal neutrino mix-
ing, this narrow energy spectrum helps with background rejection. Some
NC events, which are treated as background in the NOvA analysis, pro-
duce showers that look very similar to electron showers and they can be
mistaken for νe CC events. In NC events there is no outgoing charged
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lepton so the outgoing neutrino tends to carry away a large portion of
the energy, hence there are fewer NC events at lower energies [12] [54].

The concept for off-axis can be explained by considering pions in
their rest frame producing mono-energetic and isotropic neutrinos. The
4-momentums for a pion, a muon and a neutrino in the interaction can
be written as follows [56]:

pπ+ = (Eπ+ , 0)

pµ+ = (Eµ+ , P µ+)

pνµ = (Eνµ , P νµ)

(2.2.3)

One can then write the momentum of the muon as:

p2
µ+ = p2

π+ + p2
νµ

− 2p2
π+p2

νµ
. (2.2.4)

Using identities p2
µ+ = p2

π+ − p2
νµ

and E2 = m2 + p2:

m2
µ+ = m2

π+ − 2Eπ+Eνµ+ (2.2.5)

and so the energy of the neutrino in the rest frame is:

ERest
νµ

= mπ+ 2 −mµ+ 2

2Eπ+
(2.2.6)

Boosting from the rest frame to lab frame changes the energy such that:

ERest
νµ

= γELab
νµ

(1 − β). (2.2.7)

Rearranging:
Eνµ = Eπ+(1 − mµν

mπ+
) 1
1 + θ2γ2 (2.2.8)

Here θ is the angle between pion and neutrino directions and γ the
Lorentz factor, i.e. γ = Eπ

mπ
. Since the masses of the particles are un-

changeable, the energy of neutrinos as well as their flux decreases as the
θ increases. The width of the neutrino energy spectrum also decreases
as it is less dependant on the energy of the pion [52] [56].

2.3 NOvA Detectors

2.3.1 The NOvA Cell

The basic constituent unit of both NOvA detectors is a rectangular PVC
plastic cell that contains liquid scintillator and a wavelength shifting fiber
looping around the cell, seen on the right in figure 2.8. Charged particles
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Figure 2.8: A schematic showing the scale between the two NOvA detec-
tors. The zoomed-in part illustrates the placement of the two alternating
orientations of the cell planes. On the right is pictured NOvA’s basic
building block, cell. Each cell has a wave length sifting fibre looping
around and is connected to an APD to record the signal from the fibre.
Retrieved from [61].

produce scintillator light in the cell, which is light emitted when material
is exited by high energy particles. The light bounces around the cell until
captured by the fibre or absorbed by the plastic or the scintillator. Each
cell has an internal width of 3.8 cm in the beam direction (W), internal
depth of 5.9 cm along beam direction (D) and an internal length of 15.5
m (L) in the far detector and 3.9 m in the near detector. The PVC walls
of the cell are about 2.0 to 4.5 mm thick (see figure 2.8) [52] [54].

A set of 16 of cells are joined together to form an extrusion, two
of which are then connected together to form a module. These planes
of cells are placed alternating vertical and horizontal directions (see the
zoomed in insert of figure 2.8) to get two orthogonal views of particle
interactions in the detector to enable reconstruction of full 3D particle
tracks [62] [63].

2.3.2 Liquid Scintillator

The components of the liquid scintillator are summarised in table 2.1.
Most of the scintillator consists of mineral oil and pseudocumene [1,2,4 -
Trimethybenzene] with trace concentrations of wavelength shifting fluors
(PPO [2,5 - diphenyloxazone] and bis-MSB [1,4 - de(methylstyryl) ben-
zene]). Pseudocumene is a scintillator that produces light which peaks
at 360-390 nm and with the wavelength shifting fluors, the peak lighting
wavelength is brought to 400-450 nm to match with the absorption spec-
trum of the fiber used. The resulting composition of the NOvA detectors
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Component Purpose Mass Fraction
Mineral oil solvent 95%

Pseudocumene scintillant 4.1%
PPO waveshifter 0.091%

bis-MSB waveshifter 0.0031%
topocherol antioxidant 0.0010%
Stadis-425 antistatic agent 0.0003%

Table 2.1: The composition of the NOvA liquid scintillator, values from
[54].

is about 70% PVC and 30% scintillator [54].

2.3.3 Wavelength Shifting Fibre

Each cell in NOvA contains about 33.5 meters of 0.77 mm diameter
wavelength shifting fiber with a core of polystyrene mixed with R27 dye
to attain the wavelength shifting properties. The fibre captures the blue
light produced by the scintillator (400-450 nm) and shifts it to a range
of 490-550 nm. When the light attenuates in the fibre, the red light at
about 520-550 nm survives and is recorded by the avalanche photo diodes
[54].

2.3.4 Avalanche Photo Diodes (APDs)

At the top of the cell the fibre is connected to an avalanche photodiode
(APD), seen in figure 2.9, temperature monitoring and a thermoelectric
cooler that keep the temperature of the APD at about -15 degrees celsius
to reduce noise. The APD is also connected to a dry gas system to remove
moisture. Each of these APDs has a quantum efficiency of 85% at the
520-550 nm light that it is collecting [54].

In the APD, the light that is collected generates electron-hole pairs
which propagate at the p-n junction in a 425 V reverse bias electric
field. The electrons drift past the junction, where an avalanche effect
multiplying electrons takes place. At each APD, the temperature is set
and monitored carefully to keep a consistent amplification across all of
the detector [54] [64].

2.3.5 NOvA Data Acquisition System

The main task for the data acquisition system (DAQ) is to record the
data by concentrating it from the huge number of APDs into a single
stream for analysis and storage.
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Figure 2.9: NOvA APD: the end of the scintillator cells where the fibres
mount to the APD (left) and the front of the APD (right). Photo courtesy
of Kevin Mulder.

Figure 2.10: NOvA FEB up close. Photo courtesy of Kevin Mulder.

After the signal is collected at the APD, each APD is connected to a
front-end board (FEB), pictured in figure 2.10, which digitises the signal
from light to an electronic signal as well as separates and time tags the
signal. The data is delivered to data concentrator modules (DCMs) and
organised into 50 µs time blocks (micro-slices). In the DCM, the data
is then organised into 5 ms intervals (milli-slices) which are routed to
buffer nodes. All the DCMs send the data from across all the regions of
the detector in the same pattern to the same DCM in each milli-slice to
give each buffer node a full picture of the detector. In the buffer nodes,
the events are built based on time tags and archived for storage. They
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Figure 2.11: View from the top of the far detector, showing FEBs con-
necting to DCMs (grey boxes with yellow lights in the middle).

are also capable of performing real time analysis using a data driven
trigger. A photo showing the FEBs connecting to DCMs on top of the
far detector is seen in figure 2.11 [54] [64] [65].

The trigger in NOvA can be divided into two categories: clock based
and data driven. The clock based ones get information about the NuMI
beam spill, and select a time window when a beam spill occurs in Fermi-
lab. This is primarily used to get rid of cosmic rays in the far detectors.
NOvA also has data driven triggers, which looks at topologies in the
data stream and make selections based on it. An example trigger is the
supernova trigger that is looking for intense spills of neutrinos not from
the NuMI beam [52] [65].

2.3.6 Near Detector

NOvA near detector, seen in figure 2.12, is located 105 meters under-
ground 1,015 meters away from the NuMI beam target hall. The de-
tector is 14.5 metres long, 4.1 metres tall and 2.8 metres wide weighing
approximately 300 tons. The detector consists of 20,192 cells grouped
in planes alternating in horizontal and vertical directions. The timing
resolution of the near detector is 5 ns. An example event display with
a beam spill is seen in figure 2.13, showing multiple potential neutrino
events [40] [52] [67].

The first 12.5 meters are the actual detector volume and the last 2
meters form a muon catcher. The purpose of the catcher is to tag muons
from νµ CC events and increase the quality of the muon energy recon-
struction. It is made of two PVC module planes (one in both vertical
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Figure 2.12: NOvA near detector at Fermilab, Illinois. Retrieved from
[66].

Figure 2.13: An event display of the ND during a NuMI beam spill.
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and horizontal direction) interspersed with 10 cm thick steel planes [54]
[63].

2.3.7 Far Detector

Figure 2.14: NOvA far detector at Ash River, Minnesota. Retrieved from
[68].

The far detector, seen in figure 2.14, is located at Ash River approx-
imately 810 km away from the near detector. It has the same design as
the near detector albeit much bigger, weighing around 14 kilotons. The
far detector has a width of 15.6 m, height of 15.6 m and length of 60 m
in the beam direction [54] [63] [69].

The far detector is located on the surface but has a 122 cm concrete
and 15 cm barite shielding on top to reduce the amount of recorded
cosmic rays in the detector. Also, an accurate timing for the readout
electronics is essential to decrease the amount of cosmogenic background,
since the NuMI beam operates in 10 µs spills. The timing resolution of
the FD is slightly higher than that of the near detector at 15 ns. This
is due to FEBs sampling the APDs at four times the rate at the ND
compared to FD. This is done because ND gets a much higher flux of
neutrinos near the source [52] [54] [63] [69].

An event display including one 550 µs time window in the FD includ-
ing all cosmic events is seen in 2.15. Figure 2.16 shows a neutrino event
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Figure 2.15: An event display of the FD with all cosmic events included
in a 550 µs time window. Retrieved from [70].
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Figure 2.16: A neutrino candidate event from the previous event display
in figure 2.15 after cosmic filtering has been applied. Retrieved from [70].

candidate after removing cosmics, ready for reconstruction (explained in
the next chapter in section 3.2).

2.3.8 Neutrino Interactions in NOvA Detectors

The different interactions can be distinguished from each other in NOvA
depending on the signatures the final state particles leave in the detec-
tors. Examples of the three types of interactions measured in NOvA are
shown in figure 2.17. νµ CC interactions (top of the figure 2.17) are dis-
tinguished by the long track created by a muon alongside a shorter track
created by the final state nucleon, which deposits its energy much quicker
compared to the electron. νe interactions (middle of the figure 2.17) are
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Figure 2.17: Examples of the three neutrino interactions in NOvA: νµ
CC, νe CC and NC, showing the different signals left in the detectors.
Retrieved from [71].

differentiated from νµ by the less defined and shorter electron track. This
is due to the fact that electrons interact in the detector electromagneti-
cally more than muons because of their lower mass. The neutral current
interactions (bottom of the figure 2.17) cannot distinguish between neu-
trino flavours, and they are differentiated from CC interactions by the
characteristic hadronic shower and a single pion track instead of two long
tracks created by νµ CC event.

NOvA also has few ντ events, although the threshold for the events is
3.4 GeV which is on the upper end of the NOvA energy scale. τ is very
short lived so only its decay products like pions, electrons and muons
are visible in the detector [72]. For most NOvA analysis, including this
thesis, ντ events are not relevant.

2.4 NOvA Oscillation Channels

There are two main oscillation channels in NOvA: electron neutrino ap-
pearance and muon neutrino disappearance. First, focusing on the dis-
appearance, one can write down a simplified version for the oscillation
probability for this channel. θ13 is known to be small and ∆m12 is much

54 of 165



2.4. NOvA Oscillation Channels 2. NOvA

smaller than ∆m23, so a 2-flavour approximation for this oscillation chan-
nel can thus be used (analogous to equation 1.3.18) [52]:

Pνµ−>νµ = 1 − sin2(2θ23) sin2(1.27∆m2
32L

E
). (2.4.1)

Hence, NOvA can provide measurements of the oscillation parameters
sin2(2θ23) and ∆m2

32 using disappearance analysis alone. However, NOvA’s
sensitivity to νe appearance gives opportunities to also measure the mass
hierarchy via matter effects, described in section 1.5.3, and CPV in neu-
trino oscillations, as described in section 1.5.1. The oscillation probability
for the appearance can be written as [73]:

Pνµ−>νe = Patm + Psol +
√
Patm

√
Psolcos(∆23 + δCP ), (2.4.2)

where
∆ij = 1.27∆mijL

E
(2.4.3)

with i, j = (1, 2, 3). The subscripts atm and sol correspond to atmo-
spheric and solar, which refer to the experiments types that these prob-
abilities are the dominant components in. The expressions for these
probabilities are [73]:

Patm = sin(θ23) sin(2θ13) sin
(

sin(∆31 − aL)
∆13 − aL

)
(2.4.4)

and
Psol = cos(θ23) sin(2θ12) sin

(
sin(aL)
aL

)
∆12, (2.4.5)

where a = GFNe

√
2, analogues to equation 1.5.1 and stems from matter

effects. δCP is the CP-violation phase, which in NOvA can be measured
comparing the oscillations for νe and νe in this oscillation channel [52]
[69].

NOvA can also measure the octant of θ23, and it is considered that
θ23 <

π
4 is the lower octant and θ23 >

π
4 the upper octant. Unfortunately,

the disappearance analysis is invariant under θ23 → 2
π

− θ23 so it is not
sensitivity to the octant of the θ23 but only the value of sin(θ23). Hence,
the constraint measurements for the octant is made for the appearance
channel [52].
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Chapter 3

NOvA 3-Flavour Analysis

The latest NOvA 3-flavour neutrino oscillation results were produced in
2020 and presented in [12]. The data used included a 50% beam exposure
increase with improved analysis techniques and better simulation com-
pared to earlier oscillation results from NOvA. The data included data
taken with a neutrino beam from February 6th 2014 to March 20th 2020
with exposure of 13.6×1020 protons on target (POT), combined with an-
tineutrino beam data taken from June 29th 2016 to February 26th 2019
with exposure 12.5 × 1020 POT. The average power of the proton source
was 650 kW with a peak hourly-averaged power of 756 kW. The analysis
included all NOvA neutrino channels producing a joint fit to neutrino
oscillation parameters of νµ → νe, νµ → νµ as well as the correspond-
ing anti-neutrino channels [12] [74]. This chapter explains the analysis
methods used as well as highlights the latest results.

3.1 Simulation

NOvA uses a Monte-Carlo (MC) simulation to describe the NuMI beam,
neutrino interactions and NOvA detectors. The simulation is analogues
to the data extracted from the detectors. Accurate simulation is essen-
tial in the analysis, it is used for the development and testing of analysis
methods and tools, estimating systematics and predicting the distribu-
tion of events in the detectors [52] [62].

3.1.1 Beam Simulation

The neutrino flux from the NuMI beam is predicted using a GEANT4
[75] based simulation named G4NuMI. The full production of hadrons
from protons in the graphite target, decays of these hadrons to muons
and neutrinos and muon absorption in the rock are run through the
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simulation. An accurate description of targets, horns and the decay pipe
are all included in the simulation [52] [67].

The results are re-weighted using PPFX (package to predict the flux)
to predict and estimate the uncertainties from the beam flux. This was
first developed by the MINERvA collaboration [76]. The corrections are
based on the hadronic spectrum attained from hadron production data
that includes details of all the different interactions leading to neutrino
production [52] [62] [67].

3.1.2 Event Generation

Neutrino interactions are simulated using a custom version of GENIE
software [77] and tuned using NOvA ND data. The simulation uses
nuclear physics models to predict the neutrino interactions and cross-
sections in the detectors and surrounding material. It predicts the type
of interaction, kinematics and outgoing particles and a full topology for
each simulated event [12].

3.1.3 Detector Simulation

The detector simulation is using both GEANT4 [75] and NOvA spe-
cific software modules. Particle propagation and energy deposition in
the materials is simulated using GEANT4, similar to beam simulation.
Scintillator light production and transport in the cell, and conversion to
electronic signal is done using NOvA specific software modules. The al-
gorithm takes into account factors such as scintillator response in NOvA
detectors, PVC reflectivity and absorption of the fibre to calculate how
the light reaches the photodiode. The electronic readout simulation mod-
els how the signal is transported from raw signal to digitised data. It
takes into account the response in the APDs by calculating noise simula-
tion and a triggering firmware effect on data. Cosmic rays are included
alongside beam neutrinos in the simulation [12] [52] [67].

3.2 Reconstruction

Reconstruction is a term for algorithms used to construct objects such
as events, tracks, and showers using the hits from individual cells in the
detector. In NOvA, the reconstruction chain is in three parts: event
reconstruction, particle identification and energy estimation.
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Figure 3.1: An example event from FD after hit finding and slicing. The
clustered area of hits found by the algorithm is marked in red. Retrieved
from [70].
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Figure 3.2: The same example event as seen in figure 3.1 after Hough
transform has been performed to find straight lines, represented here in
gold. The red cross indicates the elastic arms vertex. Retrieved from
[70].

3.2.1 Event Reconstruction

Event reconstruction starts by hit finding. If light produced in a cell is
above a set threshold, then it is recorded as a cell hit. The production of
cell hits is followed by slicing, in which hits coincident in time and space
are grouped to form a slice. Hits not part of any slice are considered as
noise. An example event after slicing has been applied is seen in figure
3.1, where the red area indicates where the cluster of hits has been found
[52] [62].

After slicing, a modified Hough transform [79] is applied to search
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Figure 3.3: The same event as figures 3.1 and 3.2 after fuzzy-K algorithm
has been performed. The blue, green and red regions represent the recon-
structed prongs and the red cross is the elastic arms vertex. Retrieved
from [70].

Figure 3.4: An example of 3D prong reconstruction using fuzzy-K algo-
rithm for a simulated νe CC quasi-elastic interaction in the FD. One can
see the same track in both XZ and YZ views and the labels demonstrate
how the 2D prongs are matched in 3D. Retrieved from [78].

for prominent straight line features. This is a commonly used technique
in image processing to identify straight lines. Then, to find primary
neutrino interaction intersections, the elastic arms [80] algorithm is used.
The results from Hough transform are used as a seed for the algorithm
and the output of this algorithm is a 3D vertex point. The same example
event as seen in figure 3.1 after Hough transform and elastic arms have
been applied is seen in figure 3.2. The golden lines represent the found
Hough lines and red cross the vertex point [52] [72].

The next step in the reconstruction chain is to form prongs, which are
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hit clusters with a start point and a direction. Prongs are found using a
fuzzy-k algorithm, which is used to separate noise hits from actual tracks.
The "fuzzy" part of the algorithm allows hits to belong to more than one
prong, since prongs are separated in XZ and YZ views due to detector
geometry. Using cell hits in a slice and starting from a 2D view, two
views are matched into a full 3D picture. Prongs are then formed into
tracks using Kalman and break point fitter, which are discussed in the
next section. The same example event as was seen in figures 3.1 and 3.2,
is presented in figure 3.3 after prong finding. To further demonstrate
the matching of 2D to 3D, figure 3.4 shows a simulated νe CC event in
two views with the prongs named and marked to demonstrate the view
matching [52] [72].

Break Point Fitter

The break point fitter takes 3D prongs created by fuzzy-k and elasticated
arms vertex (as described in the previous section), and constructs the
particle’s trajectory using multiple Coulomb scattering. The Coulomb
scattering is determined from a straight line fit, and the energy loss along
the prong path is also calculated. This energy loss if summed from the
end of the track to the vertex [81].

Kalman Tracks

Kalman tracks, based on Kalman filter routine [82], are used to find
muons and anti-muons, which helps with identifying νµ (and νµ) CC
events that are mostly characterised by long muon (and anti-muon)
tracks, as seen in figure 2.17. The Kalman filter uses hit clusters from
slices as inputs and forms track in two views: XZ and YZ. Each 2D view
is matched to a full 3D track. To form 2D tracks, a seed is formed from
a segment of a track that is from a pair of hits separated by less than 4
cells. Hits, which describe the energy deposit per cell, are added itera-
tively based on the seed’s position and gradient. A new hit is included
if the χ2 value of the track is changed by an acceptable value, and it is
repeated until no new hits are available [62] [67] [72].

Cosmic Tracks

The cosmic tracks are separated by directions of the tracks of incoming
particles. Cosmics arrive to the detectors from above whereas beam
particles are arriving from the direction of the beam. This algorithm is
called a window tracker, and it takes into account the fact that cosmic
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muons undergo multiple Coulomb scattering in the detector that can
change their direction. However, these tracks can still be assumed to
follow a straight line trajectory over small portions of the track in Z-
direction [67].

The algorithm works by first choosing a set of n planes in the Z-
direction covering a chosen narrow range at the most upstream side of
a slice. A straight line fit to that window is used to evaluate which hits
belong to that specific 2D track. Following the window in the Z plane,
hits that are consistent with the line corresponding to the first window
are accepted to be part of the track. A new fit is then done with n-1
number of planes extrapolating the fit into the next window along Z-
direction. Again, it is evaluated whether these hits belong to the line.
The process is repeated until all planes in one slice have been considered.
Like in Kalman tracks, the 2D tracks are matched to form full 3D tracks
[52] [67].

3.2.2 Energy Estimation

Calorimetric Energy Calibration

To be able to meaningfully compare recorded deposited energy in the
detectors, one must perform calorimetric energy calibration. This allows
different recorded activities in the detector be comparable on both a
relative and on an absolute scale. The calibration is divided into two
parts: relative and absolute calibration [52] [62] [67].

In the FD, cosmic muons can be used for calibration as their energy
loss by ionisation is well described by the Bethe-Bloch formula that can be
expressed as (neglecting small corrections for highly relativistic particles)
[84]:

−dE

dx
= Dq2ne

β2

[
ln(2mec

2β2γ2

I
) − β2

]
, (3.2.1)

where E is the energy, x is the distance travelled through a medium,
q charge, D = 4πα2h̄

me
= 5.1 × 10−25 MeV cm2, me the electron mass,

β = v/c, γ = (1 − β2)−1/2, ne the electron density, and I mean ionisa-
tion potential of the atoms averaged over all electrons. To demonstrate,
the mean energy loss rate described by Bethe-Bloch formula for three
different particles in different media is seen in figure 3.5.

There is also a selection applied to the cells to make sure the ones
used for calibration have a well defined path length meaning a muon
deposited energy by ionisation is withing the cell. The selected cells are
called tricells, and for each of them a hit has to be between two cells
which also have hits. This is because cells not surrounded by other cells
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Figure 3.5: Mean energy loss rate calculated via Bethe Bloch formula in
different materials for muons, pions and protons. Retrieved from [10].

.

with hits cannot be guaranteed to have been caused by a muon passing
through both upper and lower horizontal boundaries of the cell. This
requirement makes it possible for the track angle to be measured well
as the enter and leave points are well known. A diagram showing an
example of a tricell is seen in figure 3.6. Track angle combined with a
trigonometric calculation gives an accurate path length that is shown in
the figure [52] [67].

Relative calibration removes any dependence on a position in the
detector response due to for example changes in light attenuation in the
cell or distance from the readout electronics. Hits further away from the
readout will be more attenuated when travelling compared to hits close
to the readout. This appears as though hits close to the readout have
higher energy compared to those further away, which relative calibration
corrects for. This is done by performing a fit to the distribution of mean
recorded number of photoelectrons per centimeter (PE/cm) from tricell
hits relative to the distance from the readout. This is demonstrated in
figure 3.7 on the right, which shows how these values change before and
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yL

yc

xc

1

Figure 3.6: Diagram of a tricell hit (dark red). The cell is counted as a
tricell hit when each of its neighbour cells (light red) is also hit. Using
trigonometry and track angle, the path length is found to be Ly/cy .
C stands for cell, L for length, and x and y refer to a position in the
detector. Retrieved from [83]
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Figure 3.7: Relative calibration schematic. The left plot shows PE/cm
for tricell hits in cosmic data relative to distance from the centre of the
cell in a single horizontal cell in FD. The solid lines shows the best fit to
the cosmic data. The right plot shows the hit position along the length of
the cell, W, in the x-axis against ratio of reconstructed and true energy on
the y-axis with uncalibrated (red) and calibrated (blue) cases. Retrieved
from [83].

after calibration. The figure also shows how the number of PE/cm drops
at near the detector edges (left plot). The mean values of the energy per
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cm are divided with the corrected number of photoelectrons per cm in the
cell to obtain the calorimetric energy scale. The value is calculated for
each detector for each data taking period separately. Separate numbers
are calculated for reconstructed data and simulation [52] [62] [67].

Figure 3.8: A diagram describing the absolute calibration procedure.
Each histogram entry is from a tricell hit on a stopping muon track, with
distance to the stopping point of the muon track shown on the x-axis
and the path normalised attenuation corrected detector response shown
on the y-axis. The black line shows the mean of a fit to the peak of the
attenuation corrected detector response at particular distances from the
track end. Hits between 100 cm and 200 cm form the track window that
is used for absolute calibration. Retrieved from [85].

Absolute calibration gives an energy scale (in NOvAs case the most
convenient is GeV ) independent from the recorded number of photo-
electrons (PE) to the hits from tricells. This is calculated using the
Bethe-Bloch equation (equation 3.2.1) that describes an energy loss for a
particle when travelling through a medium, which gives a scale factor for
calculating an energy in GeV from the attenuation-calibrated detector
output. Hits between 100 cm and 200 cm from the track end, a track
window, are used because their detector response is known to be uniform
within 1.8% [86]. Hits within that track window correspond to hits with
minimum ionising region for muons. Figure 3.8 shows the distance from
the track end and the corrected response per cm alongside the best fit to
the peak of the attenuation corrected detector response [52] [62] [67].

Calibration also corrects for detector aging. It is known that both
the overall light response and the number of hits observed decreases as a
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function of time but the underlying cause for detector aging is not known.
Its effects are, however, taken into account by doing the calibration in
small periods of time [52] [62] [67].

Even with the most careful consideration, some discrepancies exist
between data and simulation in the calibration. This uncertainty is
accounted as a calibration systematic uncertainty, described in section
3.6.1.

νµ Energy

The energy estimation is performed based on the charge deposited by
the final state particles. The energy of νµ and νµ CC events can simply
be defined as [52]:

Eνµ(νµ) = Eµ(µ) + Ehad (3.2.2)

where Eµ(µ) is the energy of the outgoing (anti)muon calculated from the
length of the track. Ehad is the hadronic energy estimated by adding up
all the energy from visible hits not attributed to the muon. The visible
energy is then corrected using a spline based fit made using simulation.
In the end, the energy resolution of Ehad is about 30% and 4% for the
Eµ(µ), which ends up giving the final neutrino energy a resolution of 9%
for neutrinos and 8% for antineutrinos in the latest analysis. The slight
difference is due to the fractional energy of the hadronic shower being
higher for neutrinos compared to antineutrinos [52] [67].

3.2.3 Particle Identification

Convolutional Visual Network

For particle identification, NOvA uses a convolutional visual network
(CVN), which is a convolutional neural network (CNN) deep learning
method. The CVN is trained on the reconstructed tracks to identify the
type of interaction: νµ CC, νe CC, ντ CC, NC and cosmogenic back-
ground [72].

One type of misidentification in NOvA is mistaking NC interactions
as CC interactions. This is because NC interactions can produce pions
that can look like leptonic activity. The only difference between these
tracks is a spike in energy deposition at the end of the pion track. Also,
a neutral pion decaying into a pair of photons producing electromagnetic
showers can appear very similar to an electromagnetic shower produced
by electrons other than the gap between the shower and the vertex in
neutral pions. The CVN is trying to minimise these misidentifications.
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Figure 3.9: Figures describing νµ CC CVN. A true νµ CC interaction
is seen on the bottom left figure. The bottom right figure includes the
feature maps extracted from the bottom left event. Green, blue and
purple highlighted plots above are feature maps that represent muon
tracks, electron showers and hadronic activity respectively. Retrieved
from [72].

A convolutional neural network is an image recognition technique
using images as input. In NOvA’s case these are reconstructed event
slices in XZ and YZ views, which are called pixel maps. Each of these
pixels is assigned an intensity proportional to deposited charge. The
input is formed by first clustering energy deposits recorded together in
space and time into slices. These grids of 100 planes deep and 20 cells
wide contain the slice and they effectively separate neutrino interactions
from cosmic rays and other noise. The size and placement was chosen so
that the majority of neutrino events are fully contained. An example of
a pixel map is seen in figure 3.9 on the bottom left [52] [72].

The architecture of the CVN model is complicated: the input layer
is followed by 13 hidden layers of four types (convolution, pooling, local
response normalisation (LRN) and inception model). The final output
is formed by a softmax layer. These layers perform a series of linear
operations on the original output images to extract key features and form
them into feature maps. Each map represents a variable or a strength of
response to a certain condition in the underlying image. An example of
feature maps can be seen in figure 3.9 in the bottom right with examples
of three feature maps highlighted above. These three images can be
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interpret as responses to muon tracks, electron showers and hadronic
activity [52] [72].

Figure 3.10: Left: νµ CC classifier output distribution for the CVN
training using FD simulation. Appearing νe CC interactions, surviving
νµ CC, NC interactions, and NuMI beam νe CC interactions are showed
in purple, green, blue and magenta respectively. Retrieved from [72].
Right: νe CC classifier output distribution for the CVN training using
FD simulation. Appearing νe CC interactions, surviving νµ CC, NC
interactions, and NuMI beam νe CC interactions are showed in purple,
green, blue and magenta respectively. Retrieved from [72].

The CVN was trained using NOvA simulation for both FHC and
RHC separately. The outputs are variables between 0 and 1 that are
interpreted as a probability of how νµ CC, νe CC, ντ CC, NC or cosmic-
like the particle is. The results from this training using FD simulation
are seen in figure 3.10 for νµ CC and νe CC outputs [12] [52] [72].

NOvA also has a another CVN training called ProngCVN for particle
identification, whose goal is to classify individual reconstructed prongs
within a slice. The architecture is similar to that of the original CVN
with output of XZ and YZ pixel maps containing individual prongs. The
output of the network describes how likely a prong is to originate from
an electron, a proton, a photon, a pion or a muon [52].
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Figure 3.13: Scattering LLH for
FD FHC simulation.
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Figure 3.14: Track Length for FD
FHC simulation.

Reconstructed Muon Identifier (ReMID) is a Boosted Decision Tree
(BDT) based algorithm to identify muon-like tracks in a slice. A decision
tree is a machine learning algorithm which loops over the chosen training
variables performing a one dimensional split of the data by maximising
the chosen figure of merit (FOM). Boosting, which combines a set of
weak classifiers into a one final powerful classifier, is applied to help with
misclassification. ReMID is specifically trying to combat the misiden-
tification of pion and muon track similarities, mentioned earlier in this
section [87] [88].

ReMID uses simulated νµ CC as signal and all other events (mostly
NC) as background in its training. The input consists of 4 different vari-
ables from the Kalman track algorithm (section 3.2.1): dE

dx
log-likelihood

(LLH), scattering LLH, track length and fraction of planes used in the
dE
dx

LLH calculation (MeasFrac). All of these variables for simulated FD
data are shown in figures 3.11, 3.12, 3.13 and 3.14. These plots show how
the variables differ when νµ CC is considered as signal with all of them
showing good separation between signal and background [89].

The simulation used includes the processes that describe the de-
posited energy (dE

dx
), which is determined by the the Bethe-Bloch formula

(see equation 3.2.1). Determining the LLH of dE
dx

is done by comparing dE
dx

values to distribution against the muon hypotheses. dE
dx

for muon tracks
is different from pion track dE

dx
that usually loses energy via hadronic

scattering as well as ionisation unlike muon that mainly lose energy via
ionisation. Scattering LLH, in turn, describes how much each track de-
viates from a straight line. Muon tracks only negligibly differ from a
straight line so they are good input variables to use. Hadronic show-
ers usually contain more than one short track rather than a single long
track, which is why variable track length is useful. The last variable,
non-hadronic plane fraction, counts the planes that have energy outside
of the track excluded from dE

dx
LLH calculations [52] [67] [89].
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Cosmic Rejection BDT

Cosmic Rejection BDT is an additional algorithm to remove cosmogenic
background. Both νµ and νe have separately trained BDTs, and the
results are a value for each event that describes how likely the event is to
be cosmic-like with score of 0 for a cosmic-like and 1 for a neutrino-like
event. The inputs are a wide range of kinematic variables from simulated
beam and cosmic events. [90].

For νe events, the BDT is trained separately for RHC and FHC as
well as for core and peripheral samples. A peripheral sample is a special
sample for νe events that contains highly electron neutrino like events
according to the CVN, but these events do not pass containment cuts
[52].

3.3 Event Selection

DATA

Containment cuts

Cosmic Rejection BDT

PID cut

Basic Quality cuts

selection
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⌫eµ 

⌫eµ 

Figure 3.15: Current νµ selection
flowchart, retrieved from [91].
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Figure 3.16: Current νe selec-
tion flowchart, retrieved from
[91].

NOvA’s event selection ensures that a minimum amount of back-
ground particle interactions are in the analysis. Event selection for νµ
consists of 4 steps, illustrated in figure 3.15. The selection for νe is seen
in figure 3.16, and it is slightly more complicated than the νµ selection
as there are two different νe samples: core and peripheral. The focus in
the next sections is on νµ selection for the purpose of the topic of this
thesis, although some information of νe selection is included for clarity.
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νµ Basic Quality Cuts
0 GeV < νµ Energy < 5 GeV

ReMID PID Value > 0
Number of Hits > 20

Number of Continuous Planes > 4
Number of tracks found by a cosmic tracker > 0

Table 3.1: NOvA 2020 analysis basic quality cuts for νµ, values from [90]
.

νe Basic Quality Cuts in ND FD
20 ≤ Number of hits ≤ 200 1 GeV < νe Energy < 4 GeV

0 GeV ≤ νe Energy < 4.5 GeV 30 < Number of Hits < 150
100 cm < Longest Prong < 500 cm 100 cm < Longest Prong < 500 cm

Peripheral
0 GeV ≤ νe Energy < 4.5 GeV
νe cosmic hits per plane ≥ 8

Number of prongs 6= 0
Valid result from elastic arms

Table 3.2: NOvA 2020 analysis basic quality cuts for νe, values from [90].

3.3.1 Basic Quality Cut

The first stage of event selection is applying basic quality cuts to remove
unambiguously poor quality events. For νµ this includes no zero energy
events as well as an upper energy limit of 5 GeV (due to constraints of the
detector), at least one Kalman track with assigned ReMID value (ReMID
PID value > 0), at least one straight line track is present (track found
by tracker called cosmic tracker), enough hits (> 20) are produced to
register as an event, and enough continuous planes are present to make
sure no vertical tracks are chosen. The basic quality cut is summarised
in table 3.1 [90].

The basic quality cut for νe is seen in table 3.2. A different cut is
applied for ND and FD, unlike in the case of νµ selection. In the ND,
the number of hits is constrained between 20 and 200, and the energy
is between 0 and 4.5 GeV . Also the length of the longest prong is set
between 100 and 500 pixels. In the FD, the energy is set between 1
and 4 GeV , number of hits is set between 30 and 150, and the longest
prong length is set between 100 and 500. The peripheral sample also has
different cuts, energy is set between 0 and 4.5, there are enough hits per
plane, and that the reconstruction is sufficient (no zero prong results,
valid elastic arms result) [90].
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3.3.2 Containment Cut

νµ ND Containment Cuts
Shower Min X,Y > -180 cm
Shower Max X,Y < 180 cm

Shower Min Z > 40 cm
Shower Max Z < 1525 cm

Only one track in the muon catcher
Slice first plane > 1

Slice last plane < 212
Kalman tack start Z < 1100 cm

Kalman tack stop Z < 1275 cm or
Kalman Y position at mucat boundary < 55 cm

Kalman track projected forward cells > 5
Kalman track projected backward cells > 10

Table 3.3: NOvA 2020 analysis νµ containment cuts in the ND, values
from [90].

νµ FD Containment Cuts
Prong Cuts Containment Cuts

Prong distance to top > 60 cm Kalman track projected
forward cells > 6

Prong distance to bottom > 12 cm Kalman track projected
backward cells > 6

Prong distance to east > 16 cm Cosmic track projected
forward cells > 5

Prong distance to west > 12 cm Cosmic track projected
backward cells > 7

Prong distance to front > 18 cm Planes to front > 2
Prong distance to back > 18 cm Planes to back > 3

Table 3.4: NOvA 2020 analysis νµ containment cuts in the FD, values
from [90].

The next stage of the event selection is containment, which provides
assurance that charged particles deposit their energy within the detector.
This helps to choose events where the total energy can be accurately
calculated and removes obvious backgrounds such as rock muons in the
near detector and cosmic rays in the far detector [90].

The containment cuts for νµ in both ND and FD are seen in tables
3.3 and 3.4 respectively [90].

The containment cuts for νe are seen in tables 3.5 and 3.6 for ND and
FD respectively. The cuts are very similar as for νµ, although slightly
simpler.
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νe ND Containment Cuts
Shower Min X,Y > -150 cm
Shower Max X,Y < 150 cm

Shower Min Z > 100 cm
Shower Max Z < 1225 cm

-100 cm < Vertex X < 160 cm
-160 cm < Vertex Y < 100 cm
150 cm < Vertex Z < 900 cm

Planes to front > 10

Table 3.5: NOvA 2020 analysis νe containment cuts at the ND, values
from [90].

νe FD Containment Cuts
Prong distance to top > 63 cm

Prong distance to bottom < 12 cm
Prong distance to east > 12 cm
Prong distance to west > 12 cm
Prong distance to front > 18 cm
Prong distance to back > 18 cm

Table 3.6: NOvA 2020 analysis νe containment cuts at the FD, values
from [90].

3.3.3 Cosmic Rejection
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Figure 3.17: The cosmic BDT clas-
sification results (blue) and the
share of νµ CC events for FD FHC
simulation.
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Figure 3.18: The cosmic BDT clas-
sification results (blue) and the
share of νe CC events (not including
peripheral) for FD FHC simulation.

Cosmic rejection BDT cut is applied next, using the algorithm that
was described in section 3.2.3. For νµ selection, the cut was determined
to be that Cosmic Rejection PID > 0.45. Results from the cosmic BDT
are seen in figure 3.17 showing the total cosmic BDT score and the share
of νµ signal. The y-axis was normalised to show the distributions of both
on the same scale, even though there were more events in total compared
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to signal [90].
For νe events, the BDT is optimised separately for FHC and RHC

modes and for core and peripheral sample. For the core sample, the cut
for the FHC sample is set at PID score ≥ 0.49 and for RHC the PID
score limit is ≥ 0.47. Figure 3.18 demonstrates the cosmic BDT scores
for FHC νe simulation. Similar normalisation was also applied to these
plots as the similar νµ plots. The cosmic BDT and PID cuts are linked
to each other for the peripheral sample and will be explained in the next
section [90].

3.3.4 PID Cut
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Figure 3.19: CVN and ReMID
scores for νµ CC for FHC ND simu-
lation to demonstrate the cuts ap-
plied for νµ sample.
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Figure 3.20: CVN and ReMID
scores for νµ CC for FHC ND simu-
lation to demonstrate the cuts ap-
plied for νµ sample, log scale plot.

The PID cut is the last cut applied before retrieving the final en-
ergy spectra and selected events for the NOvA analysis. The PID cuts
were optimised by using an FOM of S√

(S+B)
, where S is signal and B

is background. This formula gives the most amount of signal whilst not
compromising on the quality by giving as little background as possible.

The plot showing the scores for both ReMID and CVN are seen in
figures 3.19 and 3.20 (the latter having a logarithmic y-axis). The final
PID cut for νµ sample is set as ReMID > 0.3 and CVN score > 0.8 [90].

Similar analysis is performed for νe, separately for core and peripheral
samples. The FOM is the same as for νµ, but there are different cuts for
FHC and RHC samples. For FHC the νe CVN score is set to ≥ 0.84 and
for RHC as ≥ 0.85 [90].

For the peripheral sample, the νe CVN cut is set as ≥ 0.97 if cosmic
BDT is > 0.62 and 0.6 for FHC and RHC respectively, and ≥ 0.995 if
the cosmic BDT score is > 0.57 for FHC and 0.56 for RHC.
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Figure 3.21: Final expected sample numbers for νµ FHC after each cut for
signal and various backgrounds using 2020 analysis simulation. Retrieved
from [92].

Figure 3.22: Final expected sample numbers for νµ RHC after each cut for
signal and various backgrounds using 2020 analysis simulation. Retrieved
from [92].

Figure 3.23: Final expected sample numbers for νe FHC after each cut
for signal and various backgrounds using 2020 analysis simulation. The
core sample is shown on the first five rows and the peripheral sample on
the last two rows. Retrieved from [92].

Figure 3.24: Final expected numbers for νe RHC after each cut for signal
and various backgrounds using 2020 analysis simulation. The core sample
is shown on the first five rows and the peripheral sample on the last two
rows. Retrieved from [92].

3.3.5 Final Event Samples

The final expected number of events after all cuts for both FHC and RHC
are seen in figures 3.21 and 3.22 respectively. The numbers are shown
for both νµ and νµ and the numbers are shown for each cut individually.
For νe the same numbers are seen in figures 3.23 and 3.24. All of these
plots were made using simulation.
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3.4 Binning
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Figure 3.25: Ehad/Eν vs. reconstructed neutrino energy showing the
quartile subsample limits for FHC (blue lines, left) and RHC (pink lines,
right). Retrieved from [93].
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Figure 3.26: The νµ FD predicted reconstructed neutrino energy spectra
based on simulation for the 2020 oscillation analysis split into quartiles
based on hadronic energy fraction in FHC mode. Retrieved from [94].

As mentioned in section 3.2.2, the energy of νµ is the sum of the energy
of the muon and hadronic components. The hadronic energy resolution
is worse than that for the muon, hence νµ events with a smaller hadronic
energy fraction have a better energy resolution compared to events with
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Figure 3.27: The νµ FD predicted reconstructed neutrino energy spectra
based on simulation for the 2020 oscillation analysis split into quartiles
based on hadronic energy fraction in RHC mode. Retrieved from [94].

a large hadronic component. This is why the νµ events are split into
four different subsamples called quartiles all containing 25% of the total
number of events. The split is based on the hadronic energy fraction:
Ehad/Eν , where Ehad is the hadronic energy and Eν the total energy.
Quartile 1 has the best resolution containing the events with the smallest
hadronic energy fraction and the smallest background, while quartile 4
has the opposite. The limits are demonstrated in figure 3.25, and the
reconstructed neutrino energy spectra for each quartile are seen in figures
3.26 and 3.27 for νµ FD simulation data for FHC and RHC respectively
[67].

3.4.2 νe Binning

The νe sample is divided into core and peripheral samples as explained in
section 3.2.1. Based on the CVN scores (also called PID values) given for
the final selected events, the events are put into two different bins in the
core sample: those with high PID values and those with low PID values.
Thus there are three different νe bins: low and high PID as well as the
peripheral bin. The spectra of reconstructed neutrino energy for each bin
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Figure 3.28: The νe FD predicted reconstructed neutrino energy spectra
based on simulation used in the 2020 oscillation analysis split into two
PID samples and a peripheral sample in FHC mode. WS is an abbrevi-
ation of wrong sign. Retrieved from [95].

Figure 3.29: The νe FD predicted reconstructed neutrino energy spectra
based on simulation used for the 2020 oscillation analysis split into two
PID samples and a peripheral sample in RHC mode. WS is an abbrevi-
ation of wrong sign. Retrieved from [95].

in 2020 oscillation analysis are seen in figures 3.28 and 3.29 for FHC and
RHC respectively. The plots show how the high PID bin has more signal
compared to background than the low PID bin, and also that most of
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the background in the high PID bin is beam νes, which are irreducible.
In turn, the low PID sample has more NC background compared to the
high PID sample [52].

It is also notable that as the peripheral events failed the contain-
ment cut, their energy information is not used in the fit to the oscillation
parameters as their full energy may have not been deposited in the detec-
tor. This sample has the most cosmic events as these events are mostly
located near the detector edges [52].

3.5 Decomposition and Extrapolation

3.5.1 Decomposition

Decomposition is a technique used to predict the events seen at the FD
using information from the ND. Thus, it is necessary to estimate the
composition of each ND sample. For νµ ND sample, BEN (Beam Electron
Neutrino) decomposition [96] is used to predict the number of νe beam
events from decays of muon and kaons, which is a major background
in the νe appearance analysis. νµ sample is also used to predict the
number of survived νµ events as well as appeared νe events. Michel
decomposition [97] uses Michel electrons, which are electrons produced
in a muon decay. It is used for NC and νµ samples to calculate the
number of Michel electrons in bins of reconstructed neutrino energy and
CVN, which is used to rescale the νµ CC component in simulation to
comply with the data [52] [62].

3.5.2 FD Extrapolation
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Figure 3.30: The extrapolation process for νµ data. First, the ND re-
constructed energy is converted to true energy using a matrix. Using
oscillation probabilities and ND/FD ratios a true far detector energy
spectrum is obtained. Then, using both true energy spectras, the spec-
tra to give final predictions at the FD are obtained. Retrieved from [98].
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Figure 3.31: FHC Distribution of
the fraction of selected events for
each bin of reconstructed pT for
ND data (black), ND simulation
(red) and FD simulation (blue).
Retrieved from [99].
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Figure 3.32: RHC Distribution of
the fraction of selected events for
each bin of reconstructed pT for
ND data (black), ND simulation
(red) and FD simulation (blue).
Retrieved from [99].

NOvA uses a method called extrapolation, where unoscillated spec-
trum at the ND is used to get predictions of the spectra at the FD, to
reduce systematics that are correlated between the two detectors [12] [52]
[67].

The extrapolation process starts with calculating predicted rates of
neutrino events as well as background in the ND using simulation. The
reconstructed neutrino energy spectrum is transformed to match with the
true energy spectrum using a matrix method. The true ND spectrum is
multiplied by FD / ND event ratio of the simulated samples in bins of
true neutrino energy. This step takes into account differences in beam
(ND closer to the source leading to wider range of beam axis angles),
differences in selection efficiency and acceptance between ND and FD,
and the differences between cross-sections of νµ and νe. Using oscillation
probabilities, the predicted disappearance or appearance spectra can be
obtained for FD. The oscillation probabilities include the matter effects
with Earth’s crust density assumed to be uniformly 2.84 g/cm3. The
predicted spectra can then be converted back to obtain reconstructed
neutrino energy for FD. This process is illustrated in figure 3.30, and it
is performed to all 4 quartile bins separately [12] [52] [67].

To further reduce systematics, extrapolation is performed separately
for other variables than neutrino energy. Extrapolation was performed
in bins of transverse momentum of the final-state lepton (pT ) in the
latest NOvA 3-flavour analysis, which is especially useful for lowering
the impact of cross-section uncertainties. In both ND and FD, the bin
with the lowest pT values will have events that are closer to each other
kinematically compared to the bin with highest pT values. In the FD,
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pT is divided into 3 bins and summed over and thus not used separately
for the oscillation fit. The fraction of events for each value of pT is seen
in figures 3.31 and 3.32 for FHC and RHC respectively, showing how the
values for pT differ in ND and FD [12] [52] [67].

3.6 Systematic Uncertainties
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Figure 3.33: Summary of systematics at NOvA for the three measured
oscillation variables. Red is the uncertainty level without and orange
with pT extrapolation. Retrieved from [12].

NOvA’s 3-flavour oscillation analysis has over 60 individual system-
atic uncertainties. They can be grouped into 7 main groups: detector
calibration, detector response, beam flux, lepton reconstruction, neutrino
cross-section, neutron uncertainty and near-far differences. Systematics
can also be grouped into correlated and uncorrelated. Correlated system-
atics apply to both detectors and uncorrelated are different for the two
detectors. FD extrapolation, explained in section 3.5, helps to minimise
detector correlated systematics like beam flux and neutrino cross-sections
[67].

Systematic uncertainties are evaluated with different methods includ-
ing varying the simulation via event re-weighting, repeating extrapola-
tion as described in section 3.5, or simulating extra event samples. Re-
weighting is used in estimating beam flux and cross-sections. Systematic
uncertainties dealing with neutron uncertainties are an example of sys-
tematics using recalculating via extrapolation. Simulating extra events
is required for uncertainties such as calibration and light level (part of
detector response) [12] [67].

3.6.1 Detector Calibration

The main source of systematic uncertainty in NOvA is detector calibra-
tion, the primary source being calorimetric energy scale uncertainty. It is
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determined using protons in the ND that describe the difference in data
and MC. Whether this difference between data and simulation exists in
the FD cannot be confirmed due to the lack of statistics leading to two
energy scale uncertainties, absolute (the ND and the FD shifted in the
same direction) and relative (shifted in opposite directions) [67].

The absolute energy scale can be improved by studying how the de-
tector performs in a charged particle beam. Such a test beam programme
was conducted with a scaled down NOvA near detector 1/5th of the size
of the original detector. Results from this test run will improve the fu-
ture analyses by decreasing the dominant NOvA systematics, and are
currently being analysed [40].

Other detector calibration systematics are calibration shape and cal-
ibration drift. Uncertainty in calibration shape stems from differences in
calibration in the middle and the end of the cell, which the calibration
cannot account for perfectly. It highlights the differences between recon-
structed and true energies for events close to the detector edges. The
calibration drift systematic is due to the number of hits decreasing in the
detectors, most likely due to the aging scintillator. This is corrected by
reducing the number of light hits created in the simulation to match the
decrease in number of hits [67].

3.6.2 Detector Response

The uncertainty in detector response includes light response in the cells
in both detectors. When light is produced in the NOvA cell (see section
2.3.1), two types are produced: scintillation light and Cherenkov light
(created when particles are moving faster than the speed of light in that
particular medium). This is described in NOvA’s light production model,
which is tuned using ND simulation. The light model uncertainties de-
scribe the systematic uncertainties related to the production of both of
these light types and how they are transmitted in the scintillator liquid
and collected by the fibres [67] [74].

3.6.3 Beam Uncertainties

Flux uncertainties mostly arise from differences between data and sim-
ulation in the production of hadrons in the NuMI facility. Things like
target position, beam spot size and position, and current of the horns are
the causes of systematic uncertainties. As mentioned in section 3.1.1, a
package called PPFX is used to constrain and predict uncertainties aris-
ing from beam flux [52] [67].
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3.6.4 Neutron Uncertainties

Neutron uncertainties arise from the poor modelling of fast neutrons,
(kinetic energy of 1 MeV or more) which especially affects νµ samples.
This is due to νµ interactions frequently containing neutrons. Also, a
deficit of low energy (less than 20 MeV) neutrons are observed in the
data compared to the simulation in previous NOvA analyses. The cause
for this discrepancy has not yet been found. This is modelled by scaling
the contribution of these low energy neutrons to the hadronic energy to
calculate the neutron systematic uncertainty [67] [74] [100].

3.6.5 Cross-section Uncertainties

Cross-section uncertainties are calculated from cross-section models, us-
ing GENIE event re-weighting framework in the calculations. The differ-
ent models are described in greater detail in [12].

3.6.6 Lepton Reconstruction

Lepton reconstruction mostly consists of uncertainty in the muon energy
scale. There are uncertainties arising from the use of GEANT and the
Bethe-Bloch equation (see equation 3.2.1) relevant to both detectors’
muon energy scale. There are also muon energy uncertainties that arise
from differences between the detectors, such as from the ND muon catcher
(described in section 2.3.6) that is not present in the FD [74].

3.6.7 Near-Far Differences

This uncertainty is due to differences in the detectors, the main one being
the size difference. Even though these systematics are mostly cancelled
between the detectors because of the use of extrapolation, especially the
method of pT extrapolation, some uncertainties remain. This uncertainty
especially affects the νe signal since the extrapolation is done using the νµ
ND sample. νµ and νe have different containment and PID performances
resulting in kinematic differences between the samples.

This systematic effect is estimated by re-weighting the muon neutrino
samples in ND data and MC to match the FD electron neutrino sample
for four kinematic variables. These are true four momentum transfer
squared, reconstructed angle of the primary lepton with respect to the
beam and, the total reconstructed transverse momentum of the event.
The re-weighted ND spectra are then passed through the extrapolation
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procedure and the resulting FD distributions are compared to the nom-
inal spectra [52] [74].

3.7 Oscillation Fits

NOvA performs a fit to the oscillation parameters using frequentist sta-
tistical methods. The predicted energy is fit to the observed data from
the FD assuming each analysis bin i is described by Poisson statistics.
The probability Pi of observing Oi events with expectation Ei for an
oscillation parameter θi can be written as [52] [101]:

P (Oi|Ei(θi)) = EOi
i e

Ei

Oi!
. (3.7.1)

The Poisson likelihood is an expression of joint probability across all bins,
which is expressed as [101]:

L(θ) =
∏

i∈bins
P (Oi|Ei(θi)) =

∏
i in bins

e−EiEOi

Ei!
(3.7.2)

The oscillation parameters are calculated as best fit values that maximise
this likelihood ratio. Maximum likelihood is a common technique in
statistics used to estimate values of parameters for a given data sample
[102]. Likelihood ratio λ can be used as a goodness-of-fit check and is
defined as [52]:

λ(θ) =
∏

i∈bins

e−EiEOi

Ei!
−

∏
i∈bins

e−OiOOi

Oi!
(3.7.3)

The likelihood ratio can be written in terms of −2lnλ which follows the
chi-square distribution when data can be considered to have Gaussian
errors [52]:

−2lnλ(−→θ ) = 2
∑
i∈bins

Ei(−→θ ) −Oi +Oiln( Oi

Ei(
−→
θ

)]
 (3.7.4)

This equation does not take into account an extra degree of freedom
stemming from the systematic degrees of freedom −→

δ . Adding it the
equation gives [74]:

χ2 = −2lnλ(−→θ ,−→δ ) = 2
∑
i∈bins

Ei(−→θ ,−→δ ) −Oi +Oiln( Oi

Ei(
−→
θ ,

−→
δ )

)
+

N∑
j=1

δ2
j

σ2
j

(3.7.5)
where σj values describe 1σ ranges used to assign nuisance parameter
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penalty terms for each systematic [62]. The values of the parameters −→
θ

and −→
δ that minimise the equation 3.7.5 gives the best fit values for the

oscillation parameters [67]:

∆χ2 = χ2 − χ2
min. (3.7.6)

The confidence intervals for each oscillation parameter are also defined
using equation 3.7.6. For 2D oscillation fits, these are 1σ (68%) con-
fidence contour defined as ∆χ2 < 2.3, 2σ as ∆χ2 < 6.18 and 3σ as
∆χ2 < 11.38 for the number of parameters NOvA is fitting.

All of the oscillations fits use Feldman-Cousins (FC) unified technique
[103] [104] to determine the confidence integrals. It is widely used in
Poissonian processes to limit boundaries [12] [74].

3.8 Latest 3-Flavour Oscillation Results

As mentioned in the beginning of the chapter, the latest analysis included
all NOvA neutrino channels producing a joint fit of νµ → νe, νµ → νµ and
corresponding anti-neutrino channels. Improvements compared to earlier
analyses included 50 % beam exposure increase and better simulation and
analysis techniques [12].

Fit Parameter Value
Baseline length L 810 km

Average matter density ρ 2.84 g/cm3

∆m2
21 7.53 × 10−5eV 2 [10]

sin2(θ12) 0.307 [10]
sin2(θ13) 0.0210 ± 0.0011 [10]

Table 3.7: Parameters used in the latest oscillation parameter fits, values
from [12].

The constrained parameters that were used in the fit are listed in
table 3.7. The parameters ∆m2

32, sin2(θ23) and δCP were varied with no
constraints, and all the systematic uncertainties were assigned penalty
terms equal to the square of the number of standard deviations by which
they vary from the assigned nominal value. As mentioned in section 2.4,
NOvA is sensitive to sin2(θ13) but it is more accurately measured by
reactor experiments so it is constraint in the analysis [12] [52].
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Figure 3.34: νµ ND spectra for the
2020 3-flavour oscillation analysis.
Retrieved from [12].
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2020 3-flavour oscillation analysis.
Retrieved from [12].

0

1

2

3

4

1 2 3 4 1 2 3 4

-beamν
0

2

4

6

8

10

12 evtLow CNN
evt

High CNN

-beamν

ND Data

Uncorr. MC

NC   

 CCeν/eν

 CCµν/µν

 energy (GeV)eν / eνReco. 

 E
ve

nt
s

3
10

Figure 3.36: νe ND spectra for the
2020 3-flavour oscillation analysis.
Retrieved from [12].

5

10

15

C
or

e
P

er
ip

he
ra

l

1 2 3 4 1 2 3 4

-beamν

10

20

30

40

50
evtLow CNN

evt
High CNN

C
or

e
P

er
ip

he
ra

l

-beamν

FD Data

WS bkg.

bkg.
Beam

bkg.
Cosmic

pred.
Best-fit

range
 syst.σ1-

 energy (GeV)eν / eνReco. 

E
ve

nt
s

Figure 3.37: νe FD spectra for the
2020 3-flavour oscillation analysis.
Retrieved from [12].

85 of 165



3.8. Latest 3-Flavour Oscillation Results 3. NOvA 3-Flavour Analysis

0.4 0.5 0.6

23θ2sin

2.0

2.5

3.0
)2

 e
V

-3
 (

10
322

m∆

Best fit

Normal Ordering 90% CL
NOvA                                   MINOS+ 2020
T2K Nature 580 IceCube 2018
SK 2018

Figure 3.38: The best fit and 90% confidence level region for oscillation
parameters ∆m2

32 and sin2θ23. Results from other experiments measur-
ing the same oscillation parameters are included for comparison. The
contours include a Feldman-Cousin correction. Retrieved from [12].

3.8.1 Final Data Samples

Figures 3.34 and 3.35 show the total reconstructed neutrino energy spec-
tra for selected νµ event for ND and FD respectively. The same spectra
for νe is seen in figures 3.36 and 3.37 for both ND and FD. For νe the
energy is shown for all three bins separately: low and high PID as well
as the peripheral bin. Even though the fit is done in four quantiles for
νµ (as explained in 3.4.1), the final plots are put into one energy spectra.

3.8.2 Results

The final contours for oscillation parameters ∆m2
23 and sin2θ23 is seen

in figure 3.38 (assuming normal mass ordering). The best fit point and
confidence intervals were calculated using maximum likelihood technique
described in section 3.7. Other experiments measuring the same oscilla-
tion parameters are also included for comparison. The final fit for δCP
against sin2θ23 for both normal and inverted mass ordering (see section
1.5.2) is seen in figure 3.39. Results from T2K are included for compari-
son.

All of the results from the analysis are summarised in table 3.8 in-
cluding all versions of upper and lower octants for sin2(θ23), and normal
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Figure 3.39: The upper plot: the best fit as well as 90% and 68%
confidence level regions for δCP and sin2θ23 for normal mass ordering
for both NOvA as well as T2K. All confidence level regions include FC
corrections. The lower plot: Inverted mass ordering, 90% and 68%
confidence level regions, T2K results included for comparison. All confi-
dence level regions include FC corrections. Retrieved from [12].

and inverted mass ordering. The results show a preference for normal
ordering and upper octant for sin2(θ23). Assuming these conditions, the
neutrino oscillations parameters are measured as (2.41±0.07)×10−3eV 2

and 0.57 + 0.03 − 0.04 for ∆m2
32 and sin2(θ23) respectively.

The results disfavour combinations leading to strong asymmetry in
νe vs. νe appearance in inverted ordering with δCP = π/2 excluded with
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Parameter NO, UO NO, LO IO, UO IO, LO
∆m2

32 10−3eV 2 +2.41 ± 0.07 +2.39 −2.45 −2.44
sin2θ23 0.57+0.03

−0.04 0.46 0.56 0.46
δCP (π) 0.82+0.27

−0.87 0.07 1.52 1.41
Rejection Significance - 1.1σ 0.9σ 1.1σ

Table 3.8: NOvA 2020 oscillation analysis results, all values from [12].
NO stands for normal ordering, IO for inverted ordering, UO for upper
octant and LO for lower octant. Values from [12].

confidence of more than 3σ and δCP = 3π/2 being disfavoured at 4σ
level. However, the 90% confidence level regions cover all δCP values for
all combinations of octant and mass ordering. Hence, the data cannot
prove whether neutrino oscillations exhibit CP-violation at 5σ level [12].

As it is seen in figure 3.39, both T2K and NOvA slightly prefer nor-
mal ordering, however together in the NO space T2K’s best fit point
is in the area that NOvA disfavours with only a very small region of
overlap. This is mostly due to T2K having observed a more pronounced
asymmetry in νe and νe appearance. It does, however, seem that the
experiments have overlapping contours in inverted ordering, meaning a
joint fit between these experiments would prefer inverted ordering [12]
although individually they prefer normal ordering. It has been suggested
that these differences are due to additional nonstandard matter effects,
explained more in [105] [106]. In these nonstandard interaction (NSI)
models there are additional matter effects in neutrino oscillations that
stem from additional interactions with e.g. sterile neutrinos or unknown
heavy particles. It is also possible that the discrepancy in the results is
due to statistical fluctuations or an unknown systematic error [105] [106].
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Chapter 4

νµ Event Selection

This chapter describes in more detail the event selection used in the
2020 3-flavour analysis in NOvA, paying particular attention to where
improvement could be made. The events that are rejected from the
disappearance analysis are introduced, describing some of their properties
in an effort to understand why they are not selected and how they could
be recovered back into the analysis.

4.1 Improvements to the Current Analysis
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Figure 4.1: Daily POT (protons on target) recorded by NOvA from the
start of data taking in 2014 to 2022 with neutrino beam (FHC, orange)
and antineutrino beam (RHC, blue). Total accumulated POT is marked
in grey. The plot also shows the point of up to which the current analysis
uses data. Retrieved from [107].

Multiple improvements to the next 3-flavour analysis are underway
in NOvA, covering many areas in the analysis chain. The main improve-
ment to the analysis will come from the extra collected data. The total
recorded protons on target (POT) for NOvA is seen in figure 4.1. The
plot shows all the collected POT in both FHC and RHC modes since the
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start of data taking in 2014 and the point up to which the data has been
analysed. This year, NOvA is predicted to collect enough data in neu-
trino mode to add 13.6 × 1020 POT to the analysis, doubling the current
FHC data set. After this has been achieved, a switch to RHC mode is
planned, but the timeline of this remains uncertain.

One of the ways the future results will be improved is using new fitting
techniques or upgrading the existing ones for better ones. There will also
be updates to how the energy is estimated for events, and systematics
will be reviewed and potentially changed. Also, the selection for both νe
and νµ will be re-optimised to account for new data.

NOvA has been taking data since 2014 and has published 6 itera-
tions of 3-flavour oscillation analyses. Many of the steps in the analysis
chain have been optimised to a very precise level. Large upgrades to
the analysis are difficult to achieve at this stage, however many small
improvements together with new recorded data can bring significant im-
provement to the results.

4.2 Current νµ Selection
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Figure 4.2: The current NOvA 3-flavour oscillation analysis selection for
νµ CC disappearance using FD FHC decaf files (quality and containment
cuts applied). In blue is the number of simulated events before selection
and in black dashed line events after cosmic rejection and PID cuts. Red
and red dashed line are the same for background. This plot is made with
no oscillations applied.

The goal of this analysis is to investigate how many more νµ CC
events could be added into the disappearance analysis from events that
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Figure 4.3: The same figure as 4.2 expect oscillations are applied.
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Figure 4.4: Ratio of oscillated to non-oscillated for νµ CC 2020 oscillation
analysis events using FD FHC simulation. The plot clearly shows a dip
at the oscillation maximum of 1.8 GeV .

are currently rejected by the analysis cuts. Hereafter, signal refers to νµ
CC events and background to all other events unless otherwise specified.

This analysis focuses on the last two cuts and starts with simulation
files that already have the first two cuts (basic quality and containment,
see section 3.3) applied, as well as a loose cosmic rejection cut to remove
some cosmic-like events. The loose cosmic cut is defined as Cosmic BDT
score > 0.4 (see figures ?? and 3.17). These files are called decafs, and
will be referred as such going forward.
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Figure 4.5: A plot showing how much signal is discarded by cosmic rejec-
tion and PID cuts separately using FD FHC simulation. No oscillations
applied.

The use of decafs both speeds up the analysis due to their smaller size
and makes sure the added events are of better quality. Events removed
by the basic quality are of poor quality and have unwanted features such
as having too few hits in a track or vertical tracks. For events that
fail containment cuts, reconstructed neutrino energy cannot be defined.
These events would have to have similar treatment to the νe peripheral
sample, which is not the goal of this analysis.

Figures 4.2 and 4.3 show the reconstructed neutrino energy spectrum
before and after the current 2020 3-flavour cuts are applied for FD FHC
decafs. The oscillations were calculated using the same values as for the
latest 3-flavour analysis (see table 3.7), and parameters θ23, ∆m2

32 and
δCP were defined as π

4 , 2.44 × 10−3 and 0 respectively.

A plot showing the ratio of oscillated to non-oscillated events is also
included at figure 4.4 demonstrating clearly the oscillation dip at ap-
proximately 1.8 GeV . From these figures, it is clear that the cuts remove
almost all the background but also some signal. For the oscillated case,
there are 250 events in the decaf files, out of which 200 are chosen. The
number of background is 356, out of which 3 are chosen. So it is found
that 20% of signal events are removed from the analysis by the cuts.

To investigate the events further, figures 4.5 and 4.6 show how many
signal events are rejected by both cosmic rejection and PID cuts sepa-
rately. These plots clearly show that a larger number of signal is cut by
the PID cuts. This can be interpreted that most of the signal that could
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Figure 4.6: Same as figure 4.5 expect oscillations are applied.

be gained are events that are misidentified as something else than νµ CC
signal instead of cosmic events.

It is also evident from these plots that more events are discarded at
the lower energies. It would be particularly useful to try to recover some
of these events back, since currently for events with energy less than 1
GeV more than 50% of signal is lost.

4.2.1 Efficiency and Purity
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Figure 4.7: FD FHC signal effi-
ciency as well as mis-identification
efficiency for NC and νe CC events
for 2020 3-flavour disappearance
analysis.
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Figure 4.8: FD FHC mis-
identification efficiency for NC
and νe CC events for 2020 3-
flavour disappearance analysis.

To further describe the selected 2020 sample, one can evaluate purity
and efficiency. Purity is defined as the percentage of desired neutrino
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Figure 4.9: FD FHC Signal efficiency and purity for 2020 3-flavour dis-
appearance analysis.

events in the full selected sample, i.e. for νµ CC events it is defined as:

νµ CC events that pass the cuts
all events that pass the cuts . (4.2.1)

Efficiency is a percentage of how well the selection chooses the wanted
neutrino events, so for νµ CC events the definition is:

selected νµ CC events
all νµ CC events . (4.2.2)

Figures 4.7 and 4.8 show the efficiencies for three samples: signal and
two mis-identification efficiencies: ND and νe CC (number of selected NC
and νe CC events out of all of those events). The efficiency for select-
ing signal is worse for low energies and increases to the highest value at
around the oscillation maximum. There is also a small dip in efficiency
just before 5 GeV , but this is much smaller than the difference in the
lower energy region. One reason for this is that high energy muons are
easier to detect, and thus lower energy events are missed disproportion-
ately. Also, the dip at around 5 GeV is due to only the sample of events
between 0 and 5 GeV being trained on the CVN, which causes a drop in
efficiency in these high energy events.

Both the background mis-identification efficiencies are very low which
is expected from figure 4.3 as it has almost no background after cuts. The
mis-identification efficiency is higher for NC events, which is due to the
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Figure 4.10: The reconstructed energy spectrum for events rejected by
the current analysis cuts, non-oscillated.

majority of the background expected to be NC events. The difference is
small, as can be seen in figure 4.8.

The purity along with efficiency is seen in figure 4.9. Purity is al-
most 100% for the whole sample, which is expected from having such a
small background. The sample used for fitting to evaluate the oscillation
parameters is thus effectively all signal.

4.3 Rejected Events

The reconstructed neutrino energy spectrum of only the events not se-
lected by the current analysis is seen in figure 4.10 for the non-oscillated
and in figure 4.11 for the oscillated case. This shows that a maximum of
50 events is the limit that can be recovered into the analysis (from the
oscillated version), although it is expected to be lower since achieving
100% recovery rate is not possible. The number of background events in
this sample is 353. Figure 4.11 also clearly shows that low energy events
(energy less than 1.5 GeV ) are cut out proportionally more than higher
energy events as it was predicted by plots shown previously.

A plot showing a ratio of oscillated to non-oscillated is seen in figure
4.12 for the rejected events. If compared to the version of the plots for the
2020 analysis (see figure 4.4), the oscillation dip stays the same, however
there are some differences in the lower energy events.
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Figure 4.11: The reconstructed energy spectrum for events rejected by
the current analysis cuts, oscillated.
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Figure 4.12: Ratio of oscillated to non-oscillated for νµ CC for the signal
rejected by the current cuts. The plot shows a dip at the oscillation
maximum of 1.8 GeV .

True Energy

The true neutrino energy spectrum of the events rejected by the current
cuts is seen in figure 4.13 for non-oscillated and in figure 4.14 for the
oscillated case. Reconstructed neutrino energy is measured by the de-
tectors, whereas neutrino oscillations happen in the true neutrino energy
space. The difference between the true and reconstructed energy comes
from the energy resolution of NOvA detectors. The main difference is in
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Figure 4.13: The true energy spectrum for events rejected by the current
analysis cuts, non-oscillated.
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Figure 4.14: The true energy spectrum for events rejected by the current
analysis cuts, oscillated.

the background, which stems mostly from under-estimation of the energy
of NC events.

4.3.1 Event Properties

Looking more closely into the types of events that are rejected from
the analysis, there are aspects that can be learned and possibly used to
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Figure 4.15: 2020 selected FD FHC signal broken down by the type
of neutrino interactions: deep inelastic scattering (DIS), resonant pion
production (RES) and quasi-elastic scattering (QE), non-oscillated.
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Figure 4.16: 2020 selected FD FHC signal broken down by the type
of neutrino interactions: deep inelastic scattering (DIS), resonant pion
production (RES) and quasi-elastic scattering (QE), oscillations applied.

aid with recovering the events. Figures 4.15 and 4.16 show the events
broken into three types of neutrino events: quasi-elastic scattering (QE),
resonant pion production (RES) and deep inelastic scattering (DIS) (see
section 1.2) for 2020 selection (both oscillated and not oscillated). For
the rejected events, the same figures are seen in figures 4.17 and 4.18 for
non-oscillated and oscillated respectively. From the oscillated plots, the
2020 sample has 43 QE, 79 RES and 52 DIS, plus 26 events not belonging
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Figure 4.17: Events rejected from the current disappearance analysis
for FD FHC, divided into three types of neutrino interactions: deep
inelastic scattering (DIS), resonant pion production (RES) and quasi-
elastic scattering (QE), non-oscillated.
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Figure 4.18: Events rejected from the current disappearance analysis
for FD FHC, divided into three types of neutrino interactions: deep
inelastic scattering (DIS), resonant pion production (RES) and quasi-
elastic scattering (QE), oscillations applied.

to any of these categories. After the cuts, there are 7 QE, 14 RES, 23
DIS and 6 other (non-categorised) events remaining.

The non-categorised events can either be QE, RES or DIS that were
poorly reconstructed and not correctly identified, or they can be so called
meson exchange current (MEC) events. When neutrinos interact with a
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Figure 4.19: Background in the rejected sample by component: νe CC
and NC events. All other events only contribute negligible amount.

nucleus, the nucleons also interact with each other according to the un-
derlying substructure. In MEC, pairs of nucleons exchange a virtual
meson, such as π0, and the neutrino interacts with one of the nucleons.
Both nucleons are ejected from the nucleus leaving two holes, hence why
the interaction is also sometimes called the 2p2h (2 particle 2 hole) inter-
action. The modelling of MEC is difficult and thus is not being included
as its own category in the simulation. It is also not included in figure 1.2
[56] [52].

From these plots, it seems that most quasi-elastic scattering events are
selected, whereas deep inelastic scattering is more prominent in the event
spectrum for rejected events. There are also more RES events chosen
compared to DIS. This is due to quasi-elastic scattering events having
the least energy in the hadronic system, which is harder to estimate
accurately. This makes reconstruction easier and hence more of them are
chosen for the analysis. RES events have energy in the hadronic system
between DIS and QE, so they are chosen more than DIS but less than
QE.

The background sample broken down by neutrino event type is shown
in figure 4.19. These show that most non-νµ CC events are from neutral
current events with a small contribution from νe beam neutrinos (see
section 2.2). In total, there are 330 NC and 23 νe events.

As well as looking at the events in the reconstructed and true neutrino
energy space, other variables were reviewed with the goal of finding fea-
tures that connect the rejected events. These include variables describing
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Figure 4.20: Muon energy for signal and background for the events re-
jected from the 2020 analysis, non-oscillated.
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Figure 4.21: Calorimetric energy of the slice for signal and background
for the events rejected from the 2020 analysis, non-oscillated.

properties such as event energies and the number of hits, lengths, etc. of
tracks.

Examples of two different energies, muon energy and calorimetric
energy of the slice are seen in figures 4.20 and 4.21 respectively. Muon
energy does not appear to differ much between signal and background
whereas calorimetric one does. For events where no muon is present, the
muon energy is defined as the energy of the longest prong in the event.
Since most of the background is NC, for these events the muon energy
can be assumed to be the energy of the pion in most cases instead of
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Figure 4.22: Hadronic energy for signal and background for the events
rejected from the 2020 analysis, non-oscillated.
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Figure 4.23: Hadronic energy fraction for signal and background for the
events rejected from the 2020 analysis, non-oscillated.

zero, which is why the distributions are very similar. For calorimetric
energy, there are two signal peak in the distribution. This is because in
NC events most energy is released via hadronic shower whereas for QE
CC events most of the energy is carried out by the muon and equal to
less total energy in the system. There are, however, also νµ CC events
with a higher portion of hadronic energy corresponding to RES and DIS
events.

Another variables that shows a difference between signal and back-
ground is the hadronic energy, shown in figure 4.22, and the fraction of
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hadronic energy of the total energy: Ehad/Eν (see section 3.4.1), shown
in figure 4.23. The hadronic energy is generally smaller for signal than
background, but the signal also displays a second peak at 1.1 GeV . The
hadronic energy fraction also has two signal peaks, at about 0.1 and at
0.7, whereas the background only peaks at 0.7. The shape is similar to
the shape of the calorimetric energy and is due to the distribution of
energy in different event types (QE vs. RES and DIS).
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Figure 4.24: X vertex position (width) for signal and background for the
events rejected from the 2020 analysis. The zero is defined in the middle
of the detector in terms of width, non-oscillated.
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Figure 4.25: Y vertex position (height) for signal and background for the
events rejected from the 2020 analysis. The zero is defined in the middle
of the detector in terms of height, non-oscillated.
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Figure 4.26: Z vertex position (depth) for signal and background for the
events rejected from the 2020 analysis. The zero position is the starting
point of the detector, non-oscillated.

Figures 4.24, 4.25 and 4.26 show the distribution of events in the far
detector by vertex position in X, Y and Z views. The distribution of
events is highly uniform in all views. For example, there is no excess of
signal or background events at the back of the detector.
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Figure 4.27: The CVN muon score for events rejected from the 2020
disappearance analysis, non-oscillated. The y-axis has been normalised
by area to show probability.

Finally, variables that are useful to investigate for rejected events are
their CVN muon and RemID scores. These two are the variables that
form the final PID cut for the last analysis (see section 3.3.4). These
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Figure 4.28: The ReMID score for events rejected from the 2020 dis-
appearance analysis, non-oscillated. The y-axis has been normalised by
area to show probability.

two variables for the rejected events are seen in figures 4.27 and 4.28 for
CVN and RemID respectively. The CVN muon score has a drop at 0.8
and ReMID a similar one at 0.3, since those are the two cut limits used
in the last analysis. Many signal events in this sample have a ReMID
and CVN score close to 0 as well as 1. Thus it is clear that for both of
them that there are a lot of signal events very similar to background due
to the overlap with background close to the score value of 0.

Several other variables not highlighted here were also studied. Most of
them having similar distributions to the vertex positions or muon energy,
where there was no clear distinction between signal and background. It
thus seems that most variables do not show clear distinction between
signal and background, and including multiple variables to form a cut to
recover signal would be the best approach. Some variables highlighted
here, like hadronic energy, show a difference and could potential be used
to form a cut to recover events. However, there is more potential to
include multiple variables to form a cut rather than rely on one variable.

This suggests suggests that there is no clear type of event that is
dismissed by the analysis that could be used to recover these events
back. Obviously some variables, like hadronic energy, show a difference
between signal and background and could potential be used to form a cut
to recover events. However, there is more potential if multiple variables
are included to form a cut rather than rely on one variable.
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Figure 4.29: Theoretical upper bound improvement in sensitivity to os-
cillation parameters if all the currently rejected signal events could be
added back into the analysis. These events are equivalent to an improve-
ment of 14% in effective POT. Blue contour is the original fit and red the
fit when the cut events are added back to the analysis as an additional
sample. For both cases contours of 1σ, 2σ and 3σ are drawn. The best
fit points appears equal in the plot but do differ to a degree too small to
be seen in the figure.

As mentioned earlier (section 4.2), 20% of all signal events are rejected
by the current cuts. If all of these extra signal events (and none of the
background) could be added, the maximum amount of extra sensitivity
to oscillation parameters gained is shown in figure 4.29.

From this plot, it can calculated that the maximum increase in ef-
fective POT is approximately 14% which is equivalent to running the
detector for an additional 6 months. This calculation was conducted as-
suming that the detector is running 24 hours a day every day. This is a
theoretical maximum value and in the end the real world improvement
will be less. However, this demonstrates that a meaningful improvement
is possible and can be made if these events are added to the analysis.
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Chapter 5

Improvements to Event
Selection

This chapter describes the methods used to attempt to recover the νµ
events currently rejected from the NOvA disappearance oscillation anal-
ysis. The analysis uses neural networks, which are introduced first to
outline some key concepts. Then, the process of choosing the right train-
ing is discussed, and results are shown describing the extent to which
signal can be added back into the analysis and how much it increases
the sensitivity to neutrino oscillation parameters. Finally, a section on
how changing the current cuts could improve the results is included for
comparison to the use of neural network training.

5.1 Neural Networks

Artificial neural networks (ANN or simply NN) model the behaviour of
real biological neural network systems, such as the human brain. Actual
biological systems are very effective at processing large amounts of in-
formation simultaneously, i.e. they are excellent at parallelism, which is
beneficial for information processing in particle physics. Many particle
detectors, including NOvA, gather large amounts data and need ways
to process this information in an efficient way, hence neural networks
are regularly used. No artificial system is close to the effectiveness and
complexity of biological systems but they are constantly improving [108]
[109] [110].

Figure 5.1 shows a schematic of a neuron (or a node), which is a basic
element of ANNs. A neuron’s inputs (x) are multiplied by weights (w)
described by the output (z) of the neuron:

zi =
∑
i

wijxj − si. (5.1.1)
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Figure 5.1: A schematic of an artificial neuron with inputs xi and weights
wi giving the output (z) zi
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Figure 5.2: Example of a feed forward ANN with one hidden layer.

In equation (5.1.1) wij are the weights of a neuron i, xj the inputs and
si the bias (sometimes also called threshold or offset) set for the network
training. The output signal is calculated using an activation function,
dependant on the value of the net signal and the bias. Many options for
activation functions are available depending on the application, including
linear, non-linear, step, sigmoid and gaussian functions [108] [109].

Almost all neural networks consist of multiple interconnected neurons,
which are organised into layers resulting in multi-layer ANNs. The input
layer consists of a number of neurons which maps on to an output layer
with a number of hidden layers in between. The architecture of an ANN
with one hidden layer is seen in figure 5.2.
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If the signal in an ANN is always sent to the layer above the next
one, a feed forward network is formed. This is a common type of neu-
ral network used in particle physics, especially in classification problems
which are relevant to the work in this thesis [108] [109] [110].

5.1.1 Neural Network Learning Processes

The learning process of an ANN determines the optimal weights used
for the network. The learning types can be classified into three main
categories: supervised learning, unsupervised learning, and reinforcement
learning. In unsupervised learning, the network is given only an input
and the network is trained to respond to patterns that are statistically
significant in the training set. Similarly, in reinforcement learning only
the input is feed to the network and the weights are adjusted according
to a criteria to reward certain parts whilst others are penalised. This
analysis uses supervised learning, and it is explained below in more detail
[109] [110].

In supervised learning, the network is given a training data set as
well as a target, which is the desired output. The weights are adjusted
to minimise the difference between the actual output of the ANN and
the target. A common usage for supervised learning is a classification
network. In these networks, all data are assigned to a class found by
the network by training with events of known classification. The event
is given a value between 0 and 1, 1 describing the event belonging to
a class and 0 if not. For example, in the context of events classified as
signal or background, 1 would represent a perfect signal-like event and 0
a perfect background-like event. This can be interpreted as a probability
distribution of how likely a particular event belongs to a desired category
[108] [109] [110].

5.1.2 Network Performance

The performance of ANNs can be determined in multiple ways. One
common approach is to calculate the error for another data set not used
in the training, in which case the error is called the generalisation error.
For the best performance of the network, the generalisation error needs
to be as low as possible, which means the accuracy is highest possible. In
classification problems, the accuracy is typically the percentage of data
being correctly classified to the correct group [109].

Initialising the network and choosing the correct number of variables
like epochs, hidden layers and the right activation function is complex
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Figure 5.3: Schematic demonstrating under- and overtraining. The first
plot describes good training, second one overtraining and the last one
undertraining.

and must be uniquely optimised for each problem. For example, having
many hidden neurons will ensure good learning but may compromise the
ability of the ANN to generalise to other data samples. With too few
hidden layers, the network might not learn the patterns in the data and
will not be able to classify events correctly [109] [110].

Another problem that can occur if an initial network is not prepared
correctly right is over-training. Illustrated in figure 5.3, an overtrained
network gets too familiar with the training sample and starts to memorise
patterns in it. This kind of network will not be capable of classifying
samples outside the training input set. In this case, the generalisation
error is higher than the error of the data set. The opposite can also occur,
in which case a network is undertrained. In this situation the network
does not learn the patterns in the data. This is also illustrated in figure
5.3, and can often be resolved with additional training time [109] [110].

5.1.3 Neural Networks in Particle Physics

In particle physics, neural networks can be used for both offline data
analysis as well as online triggering, to select the best events to record
when taking data. A review of different ways neural networks are used
in particle physics reserach can for example be found in [111].

5.2 Neural Network Training

In this study, events currently rejected by the NOvA 3-flavour disappear-
ance analysis cuts are trained in a neural network. The spectra of the
events is seen in figure 4.10 for the non-oscillated case. This figure was
scaled to show how many events are expected in real data, however the
MC sample used was much larger.

The MC sample used was an upgraded version of that used in the
last 3-flavour analysis in 2020. The previous analysis used data from
production5 (which refers to the number of productions of simulation
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files), which was also the starting point of the analysis. Later, it was
moved to the next generation of MC files called prod5.1. This included
a larger sample and some bug fixes as well as changes to systematics.
The sample included approximately 1.4 million signal and 2.3 million
background (2.15 million NC and 150 000 νe CC) events that did not
pass the current cuts.

These events were compressed into a csv file from NOvA datafiles con-
taining multiple parameters describing event energies, momentum and
track information that is provided by the NOvA reconstruction. This
network uses supervised learning (see section 5.1.1) so the file also in-
cluded a variable that gives a value of 0 to background and 1 to νµ CC
signal to be used as a target for the learning.

The training was done using TensorFlow (TF) [112], a free and open-
source software that can be used in machine learning. Because of its wide
use, good documentation and support is available making it relatively
easy to use. It has also been used in NOvA before in reconstruction
(section 3.2). Version 1.12.0 of TF was used as it is compatible with
NOvA software.

5.2.1 Training Variable Selection

The first trainings included all the variables in the files, which were then
removed based on their performance. These trainings were done with the
old prod5 data but not when moving to prod5.1 data, since these were
expected to yield the same results. The main goal of the training was to
demonstrate general proof of concept and learn about the behaviour of
the network.

A statistical test called the Kolmogorov-Smirnov (K-S) test was used
on initial selection of training variables. It is a test to check for goodness-
of-fit by determining how much two distributions differ. The test checks
whether a single sample could have been sampled from another given ref-
erence distribution, a low test score indicating that the two distributions
are similar and the sample follows the chosen distribution. In a case
of choosing variables for network training, the more different the distri-
butions for signal and background are, the better it can be expected to
perform in the training, and thus the higher the K-S test value should be.
Variables that have very similar distributions for signal and background
will not help the network to learn the differences between them [113].

Another way to test variables is to draw spectra for each variable (as
mentioned in section 4.3.1), and just from a spectrum it can be inves-
tigated if some variables have similar distributions for signal and back-
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ground, and thus should not be used in the training. The downside of
this method is the amount of time it takes, especially if a lot of variables
are tested.

The process of picking the best variables was started by choosing the
highest K-S test scores for 18 variables (all shown on table 5.1). For all
of these variables, a spectrum showing the distribution between signal
and background was drawn, choosing the ones with the best separation
power. Based on these tests, 10 variables were selected. Those not chosen
are seen in appendix A and in the last chapter (figures 4.20, 4.24, 4.25,
and 4.26), demonstrating that they have similar distributions for signal
and background.

Variable K-S test score
RemID:dE/dx LLH 0.409

Reconstructed Muon Transverse Momentum: Pt 0.319
Reconstructed Invariant Mass (W) 0.317
Number Hits in the Hadronic Track 0.310

Hadronic Energy Fraction 0.291
RemID: Non-hadronic Plane Fraction 0.288

Hadronic Energy 0.251
Muon Energy 0.211

Track Calorimetric Energy 0.174
Reconstructed 4-Momentum Transfer 0.171

Reconstructed Muon Pt/P 0.141
Calorimetric Energy 0.131

RemID: Scattering Log-likelihood 0.111
Vertex Y position 0.0504

Slice Duration 0.0337
Slice Time 0.0254

Vertex X position 0.0252
Vertex Z position 0.0215

Table 5.1: Variables and their KS test values tested for neural network
training.

After the 10 variables were chosen, all of their distributions for ND
data and simulation were drawn. This is to check if there are any dis-
agreements between data and simulation. There were three variables
that do not match between data and MC, and so to avoid biased results
in data those were cut out. Examples of those variables are seen in fig-
ures 5.4, 5.5 and 5.6. These are three of the variables used in the RemID
training (see section 3.2.3), and it is clear that they do not agree between
MC and data even within the uncertainty limits (purple shading). Thus,
those were not used in training.
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Figure 5.4: RemID variable dE
dx

LLH (see section 3.2.3) comparison plot
for ND MC and data including background.
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Figure 5.5: RemID variable scattering LLH (see section 3.2.3) comparison
plot for ND MC and data including background.

5.2.2 Network Structure

TF offers many options for network structure, although most of those
are only useful for image recognition and require 3D images to be used.
However, for the uses of this study, simple connected layers should be
sufficient. Also, the easier and faster the training is, the better the re-
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Figure 5.6: RemID variable of fraction of planes used in dE
dx

LLH calcu-
lation (see section 3.2.3) comparison plot for ND MC and data including
background.

producability and fit with other parts of the NOvA 3-flavour analysis
will be. Although, the expected limiting factor in this study will likely
be how similar the signal and background events are to each other, not
necessarily the computing power, considering the events that are trained.

The activation function used in the network was exponential linear
unit (ELU). ELU is defined as [114]:

f(x) =

x if x > 0

α(ex − 1) if x ≤ 0,
(5.2.1)

with 0 < α, which is the hyperparameter that controls how ELU satu-
rates negative net inputs. This is an improvement compared to RELU
(rectified linear units) activation function, which gives negative argu-
ments an activation of zero. This can sometimes lead to bias in training,
but ELU does not have this problem [114]. When tested, ELU performed
the best with RELU performing very similarly. Other tested activation
functions included sigmoid, tanh and exponential but they did not give
results as good as ELU.

For the output layer, a softmax function was used. Softmax is a
probability that describes whether the input value belongs to a desired
category. The outputs are values between 0 and 1, which sums to 1.
This can be interpreted as a probability distribution for the input values.
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Mathematically, softmax calculates the value for a vector x as [115]:

f(xi) = exi∑N
j=1 e

xj
(5.2.2)

where i = 1, 2, .., N , xN describes the input value of the network and
f(xi) is the probability of input belonging to a ith category. Softmax is
easy to use when visualising the classification probability of a network as
it can be interpret as how effective a network is at separating between
signal and background [115] [116].

The optimiser used was Adam, which implements the Adam (adaptive
moment estimation) algorithm. The Adam algorithm is a gradient-based
optimisation of stochastic objective functions. It aims to adapt the learn-
ing rate to each parameters in the network from estimates of first and
second moments of the gradient based on the statistics of the gradient.
It is efficient and uses little memory, and is also powerful for training
that includes large data sets or many parameters. In this study, the data
sample is large and many parameters were tested so Adam was a well-
suited option. Other options for optimisers are available in TF and they
were also tested briefly, but Adam performed the most successfully or to
a very similar level as the others [117] [118].

A loss function is used in training to keep track of the goodness of
the classification as well as define the gradients that are used in training
the network [119]. The loss function in this training was calculated by
sparse categorical cross-entropy. This is commonly used to calculate
loss functions for networks where the output has two label classes, like
signal and background. Another variable to describe the performance in
the network is accuracy. In TF, accuracy is a variable that calculates
how often predictions equal labels, i.e. how often an event is correctly
matched with its true value. This describes the network’s ability to
correctly identify events [120].

The data used in the training was divided to train, test and validation
data sets, 80% is allocated to train, 10% to test, and 10% to validate.
The network is first fully trained on the train set, then validated on
the validation set to observe how well the training generalises to data
outside the training test set. Finally, a test set is used to quantify how
the network performs and what the final distribution provided by the
softmax corresponds to.

The biggest issue in setting an ideal number of layers and their size
was the networks tendency to categorise all events into one category
(usually as 0, i.e. background). This was prevalent when using many
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layers, and consequently the number of layers was decreased whilst their
size was increased.

5.2.3 Tuning

To correct the imbalance of different amounts of signal and background in
the training data, class weights were used. These describe the percentage
of each category in the data set, which are assigned as weights in the
training. This is especially helpful if one of the data sets is very small,
since there are fewer of those events for the network to learn from.

Over-training is a common problem in classification networks (as ex-
plained in section 5.1.2). One way that over-training can be mitigated
in TF is dropout layers. These layers limit the amount of events trained
in the next level, preventing the network from getting too used to the
training set. These were tested and were ready to use in the event of
over-training, but ultimately those were not needed in the training.

In addition, an early stopping was implemented to the training. This
callback is used to stop the training when a chosen variable has stopped
improving. This variable can be loss or accuracy for either train or val-
idation set, and the number of epoch after which the improvement has
stopped can also be chosen.

A learning rate optimiser was also set to further test the training in an
order to evaluate if any improvement could be achieved from changing
the learning rate, despite using the Adam algorithm. Another tested
feature on the training was the use of a scaler, which standardises the
input variables based on their mean values to improve training.

5.2.4 7 Variable Training

A version of a training that uses seven variables and assigns two values
to each event is first introduced. The two values were how signal-like
(pure signal 1) and how background-like (pure background 0) the event
is.

Variables and Model Architecture

For this training seven variables were chosen (method explained in section
5.2.1), all of them listed in table 5.2. Three of them were introduced in
the last chapter, and their spectra are seen in figures 4.21, 4.22 and 4.23.
The rest are seen in figures 5.7, 5.8, 5.9 and 5.10. Appendix B shows the
data-simulation comparison plots for all the listed variables. They show
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Training variables
Hadronic Energy

Reconstructed Invariant Mass
Hadronic Energy Fraction

Transverse Muon Momentum
Number of Hits in a Hadronic Track

Calorimetric Energy
Reconstructed Muon Pt/P

Table 5.2: 7 variables used in the first network.
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Figure 5.7: FD FHC simulation: reconstructed invariant mass for events
rejected from 2020 disappearance analysis, non-oscillated.

that all the variables have an agreement between simulation and data
within the uncertainty limits.

The model architecture used for this training is seen in figure 5.11.
The input layer consist of 7 input variables connected to a dense layer
of size 700. That is connected to 3 dense layers of size 1500 and finally
to the softmax output layer. The architecture was chosen based on trial
and error, tests changing the number and the size of the layers were
done to investigate different options. This model ensured that enough
complexity is introduced by adding 4 hidden layers but also their size
is big enough for the data set. No more complexity was introduced,
since when testing adding more layers or changing their size lead to the
network not converging but rather identifying all events as background.
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Figure 5.8: FD FHC simulation: reconstructed muon transverse momen-
tum for events rejected from 2020 disappearance analysis non-oscillated.
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Figure 5.9: FD FHC simulation: number of hits in a hadronic kalman
track for events rejected from 2020 disappearance analysis non-oscillated.

Results

Figure 5.12 shows the classification score (also called the PID) which are
the results from the two output variables from the final softmax layer
using test data. A figure showing the accuracy and loss per epoch for the
training is seen in figure 5.13. As it is expected, the loss is decreasing
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Figure 5.10: FD FHC simulation: reconstructed transverse muon mo-
mentum divided by the total momentum (Muon Pt/P) for events rejected
from 2020 disappearance analysis non-oscillated.

Input layer: 
7 variables

Dense 700, elu

Softmax Output

Dense 700, elu

Dense 1500, elu

Dense 1500, elu

Dense 1500, elu

Figure 5.11: Neural network model architecture for the network with 7
input variables. The input layer is connected to a dense layer of size 700,
which is connected to 3 dense layers of size 1500. The final layers is using
a softmax function to turn the results into two numbers between 0 and
1 describing how signal and background like an event is.

and the accuracy increasing, although it seems that both improve only
for the first few epochs and only marginally change for the rest of the
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Figure 5.12: Classification score plot from training classifying events into
signal and background. 7 variables and 20 epochs were used in the train-
ing. The y-axis has been area normalised by area to show a probability
instead of absolute event numbers.
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Figure 5.13: Plot showing loss and accuracy from training classifying
events into signal and background. 7 variables and 20 epochs were used
in the training

training.
In the PID distribution (figure 5.12) there are a few values where

signal and background both have peaks, which most likely resulted from
a certain type of event or misidentification of events. As it is evident
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Figure 5.14: PID score for events
above 1.5 GeV using NOvA FD
FHC simulation for the network
with 7 variables and 20 epochs.
The y-axis has been normalised by
area to show a probability instead
of absolute event numbers
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Figure 5.15: PID score for events
below 1.5 GeV using NOvA FD
FHC simulation for the network
with 7 variables and 20 epochs.
The y-axis has been normalised by
area to show a probability instead
of absolute event numbers
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Figure 5.16: PID score for QE sig-
nal events only using NOvA FD
FHC simulation for the network
with 7 variables and 20 epochs.
The y-axis has been normalised by
area to show a probability instead
of absolute event numbers
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Figure 5.17: PID score for RES sig-
nal events only using NOvA FD
FHC simulation for the network
with 7 variables and 20 epochs.
The y-axis has been normalised by
area to show a probability instead
of absolute event numbers

from the distrubution plots of the training variables, a lot of them have
a structure in the signal events. For example, figures 4.21 and 4.22 both
show two signal peaks. As it was discussed in section 4.3.1, these arise
from the differences in QE and DIS/RES events. In QE events most of
the energy is carried out by the muon emitted and no energy is carried by
hadrons. In QE/RES the energy is distributed between hadronic system
and the muon. Variables such as hadronic energy fraction (figure 4.23)
and number of hits in a hadronic track (figure 5.9) show the two peaks
as well as they depend on the hadronic energy. The muon momentum is
more uniform (figure 5.8), but its fraction of the total momentum (5.10)
shows this difference once again as in QE events all momentum is carried
out by the muon. It looks like that the network is learning these patterns
and it is seen in the final PID plots.

To better understand the shape of the PID classification plot for this
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Figure 5.18: PID score for DIS signal events only using NOvA FD FHC
simulation for the network with 7 variables and 20 epochs. The y-axis
has been normalised by area to show a probability instead of absolute
event numbers

network, some additional plots were created. Separate PID plots for high
energy (more than 1.5 GeV ) and for low energy (less than 1.5 GeV ) are
seen in figures 5.14 and 5.15. These figures were created after the network
results were downloaded to NOvA software, so they were not produced
using the same test data. Based on these figures, most of the signal that
is assigned a PID score of 1 is high energy events, and the peak on signal
at 0.3 PID consists of low energy events. The background is focused more
on 1 in both of these plots, possibly because these plots were run for the
whole data set whereas the original PID plot is only shown for the test
data.

Furthermore, separating the signal score for three different event
types, QE, RES and DIS, was performed. The figures are seen in 5.16,
5.17 and 5.18 for QE, RES and DIS respectively. The events with PID
score of 1 consist mostly of QE and DIS events, whereas at lower PID
scores a mix of all events is observed. The peak at 0.3 appears in all of
the plots, but it is proportionally the biggest for the low energy events
and the QE spectrum.

As mentioned in section 5.2.3, the differences between the amount of
signal and background were corrected by class weights in the network.
This was not, however, done for the different signal categories (QE, RES,
DIS) discussed here. As it can be seen from plot 4.17 there are a lot less
QE events compared to DIS and RES. A future improvement to this
analysis would be to test class weights to these event categories, and
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whether it would improve the results.

5.2.5 5 Variable Training

Missing Variables FOM ( S√
(S+B)

)

All variables 2.47
Hadronic Energy 2.45

Reconctructed Invariant Mass (W) 2.46
Hadronic Energy Fraction 2.41

Muon Pt/P 2.48
Calorimetric Energy 2.48

Number of Hits in Hadronic Track -
Reconstructed Transverse Momentum -

Table 5.3: Network tests performed with excluding each variable and
their FOM values with 0.8 cut on classification score.

To further optimise the variables used in the training, the network was
run separately without each variable to investigate whether leaving them
out changes the training. For each one of these trainings, a FOM was
calculated using the same formula as was used for the 2020 cut optimi-
sation: S/

√
(S +B) (see section 3.3.4) using a cut of 0.8 in classification

score. The results can be seen in table 5.3. The two variables with no
FOM result caused the network to converge into a situation where all
events were assigned as background, i.e. 0, so there are no results for
those two networks. Thus it can be concluded that those two variables
are essential for the network to converge and generate results.

Based on these results two variables were left out of the training:
calorimetric energy and Muon Pt / P, because without them the training
improved. One can assume that without these variables the training
should improve. The new training variables are listed in table 5.4 and
the model architecture was kept the same as for the 7 variable training
(see figure 5.11).

Training variables
Hadronic Energy

Reconstructed Invariant Mass
Hadronic Energy Fraction

Transverse Muon Momentum
Number of Hits in a Hadronic Track

Table 5.4: 5 variables for the network after testing the performance of
each of the original 7 variables.
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Figure 5.19: Classification score plot from the training classifying events
into signal and background using 5 variables and 20 epochs. The y-axis
has been normalised by area to show a probability instead of absolute
event numbers.
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Figure 5.20: Plot showing loss and accuracy from the training classifying
events into signal and background using 5 variables and 20 epochs.

The results from this new training are seen in figures 5.19 and 5.20
for PID as well as loss and accuracy respectively. The accuracy decreases
and the loss increases for the third epoch, but after that the training falls
back into the expected behaviour, so that particular epoch is assumed to
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be an anomaly and no further action was taken. Interpreting the PID,
the results appear slightly improved that for the 7 variable training as
expected.

The shape of the PID distribution for this network is very different
than that for the 7 variables. The background does not peak at 0 but
rather at 0.7, and there are three signal peaks at 0.7, 0.9 and 1. It is
once again most likely that this plot is showing the internal structure of
some of the variables, as discussed previously. The 0.7 peak has both
signal and background events, so these events would then be RES and
DIS events, and the two other signal peaks mostly consists of QE events
as less background is present in those peaks.

When producing PID plots for only high or low energy events, as was
done for the 7 variable training, no such shape was found. The same
was discovered for dividing to QE, RES and DIS events, or dividing
background into NC and νe categories. This could be due to the test
sample (that the PID plots are produced with) having fewer events than
included on the separate PID plots using simulation. It is possible that
only a small subset of events is the cause of this behaviour, which cannot
be reproduced when all data is included. As this behaviour cannot be
fully explained, using this network to obtain final results should be done
with caution. Some conclusions can be draws from the structure of the
variables in regards the shape of the PID plot, but not all features are
satisfactorily understood. To further investigate this behaviour, the input
of this network with different cuts on PID could be drawn for different
variables to learn more.

As discussed earlier, two variables, number of hits in a hadronic track
and reconstructed transverse momentum, clearly demonstrated that they
are essential for the network to converge (see table 5.3). Given more
time, just training these two variables could be tested to see what kind
of network would be obtained. The results could provide more insight
into the behaviour of the network and explain better the shapes present
in the PID plots.

Training Optimasation

To further improve the results and optimise the network training, two
callbacks were added to the training: early stopping and learning rate
scheduler (as discussed in section 5.2.3). Also, the use of a standard
scaler was tested to standardise the training variables.

The learning rate in Adam optimiser assigns each individual param-
eter a learning rate separately (as explained in section 5.2.3), but it was
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investigated if manually setting an learning rate optimiser as:

Learning rate = 10−3 ∗ 10
epoch

30 (5.2.3)

would change the results. In this equation the learning rate starts at
approximately 0.01, which is the default learning rate for Adam in TF.
The training is run for 50 epochs, resulting in the last training having a
learning rate of approximately 0.05.

The early stopping callback stops training when a certain variable
does not improve any further. In this case, loss was set as an early
stopping variable and set to stop if it does not improve for 1 epoch.
Others variables were also tested, but the valuation loss and accuracy
fluctuated slightly causing the training to stop very quickly, and were
thus not used. Accuracy also stopped improving with loss in all tests, so
the use of accuracy would have provided identical results.

In an attempt to improve the shape of the PID distribution, a stan-
dard scaler [121] from scikit-learn library [122] was added to the training.
This standardises the input variables in the training by removing the
mean value and scaling each variable to be between 0 and 1. This should
remove any proportional dependency on variables with higher mean val-
ues or different distributions of values.
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Figure 5.21: Loss vs. learning
rate for the 5 variables model when
learning rate is varied according to
equation 5.2.3
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Figure 5.22: Loss and accuracy
for the 5 variables model when
learning rate is varied according to
equation 5.2.3

The results from the learning rate test are seen in figures 5.21 and
5.22. The first plot has loss plotted against the learning rate. The
plot is clearly increasing logarithmically, indicating that increasing the
learning rate is detrimental to the training performance. This is also
evident from the second plot, showing the accuracy and loss, especially at
approximately 20 epochs when the loss increases dramatically to above
8. As discussed in section 5.2.2, Adam changes the learning rate for
different parameters so it is possible that changing it manually removes
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its ability for effective optimasation. Therefore, it was decided that the
learning rate was kept as the default.
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Figure 5.23: Classification score plot from training with 5 variables us-
ing early stopping. The y-axis has been normalised by area to show a
probability instead of absolute event numbers.
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Figure 5.24: Accuracy and loss for the last 5 variable training with early
stopping based on loss.

After optimising the learning rate, the early stopping was applied to
the training to identify the ideal number of epochs for the best training
results. The result are seen in figures 5.23 and 5.24. It is difficult to
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say confidently how much impact applying early stopping has on the
number of events that can be recovered. Again, the shape of the PID
plot has unexplained features that were not seen when running on NOvA
software, consistent with the previous training with these variables. As
discussed, the training variables show underlying structures that can be
seen in the results, but it does not explain all the features.
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Figure 5.25: Classification score plot from training with 5 variables using
early stopping and standard scaling for variables. The y-axis has been
normalised by area to show a probability instead of absolute event num-
bers.

The next improvement implemented to the training was used to stan-
dardises the input variables in the training. This should remove any pro-
portional dependency on variables with higher mean values, and could
potentially explain the PID shape, if one of the variables with higher
mean skews the results. The PID score for this training is seen in fig-
ure 5.25, and the loss and accuracy in figure 5.26. The shape of the
distribution is notably different than before applying the scaler, how-
ever the signal and background still do not peak at 1 and 0 respectively,
and it cannot be determined whether the scaler provided any additional
improvement to the network.

5.2.6 Network Including Events Above 5 GeV

The events above 5 GeV are not used in the NOvA analysis, since these
events are far from the oscillation maximum. However, it was tested if
including these in the training would improve the results. The variables
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Figure 5.26: Accuracy and loss for the last 5 variable training with early
stopping and a standard scaler applied.
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Figure 5.27: Classification score plot from training that includes events
with energy above 5 GeV . The y-axis has been normalised by area to
show a probability instead of absolute event numbers. 5 variables and 5
epochs were used in the training.

and the network architecture was kept the same as for the previous net-
work. The results are seen in figures 5.27 and 5.28 showing the PID plot
as well as loss and accuracy respectively.

The separation between signal and background improves significantly
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Figure 5.28: Plot showing loss and accuracy for training splitting the
final results into signal and background when events with neutrino energy
higher than GeV are included. 5 variables and 5 epochs were used in the
training.
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Figure 5.29: PID score for only events above 5 GeV . The y-axis has
been normalised by area to show a probability instead of absolute event
numbers. 5 variables 5 epochs were used in training.

compared to other trainings. To check which events this additional sepa-
ration affects, the PID score was only plot for events above 5 GeV , seen
in figure 5.29. Unfortunately, the improvement appears to only be for
events above 5 GeV and this training is not expected to bring any ad-
ditional events that could be recovered below 5 GeV . The two peaks at
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Figure 5.30: Classification score plot training only events that have neu-
trino energy above 5 GeV . The y-axis has been normalised by area
to show a probability instead of absolute event numbers. 5 variables 5
epochs were used in the training.

about PID score 0.7 seem to account for all the events less than 5 GeV ,
whereas the good separation is only for the higher energy events.

This was further tested on training only the events above 5 GeV , and
the PID score plot is seen in figure 5.30. This plot has a similar separation
between signal and background as in figure 5.29 and has no peaks at PID
score of 0.7. The only notable difference is that the background peak is
less pronounced at 0, but that could be due to low number of epochs.
This further proves all actual gains in separation was for events above 5
GeV , so this network was not used for any further testing.

As have been discussed previously, there is a structure to the vari-
ables stemming from the differences between QE and DIS/RES events.
From this, a working hypothesis can be constructed that assumes that
dividing the events to two categories, those events with reconstructed
neutrino energy of less than 1.5. GeV and those events above, could give
interesting results. Events with low energy have disproportionately lot
of QE events (as well as some RES and DIS events) whereas the higher
energy events are almost all DIS and RES events. These networks could
get rid some of the structures present in the previous PID plots and to
provide more insight to the results of the networks described. This test
was done by using the 5 variables and the same architecture as used in the
previous models. However, these results did not give any improvement
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but rather produced worse results. There are multiple explanations for
this, one possible is that the variables and the architecture do not work
for these networks but rather would have to be specifically optimised
which there was no time for. Also, especially the sample of events below
1.5 GeV was much smaller. Much more time would have had to be spent
on optimising this network if better results were wanted.

5.2.7 3 Variable Network

Training variables
Hadronic Energy

Transverse Muon Momentum
Number of Hits in a Hadronic Track

Table 5.5: The 3 variables trained in the network.

Input layer: 
3 variables

Dense 700, elu

Softmax Output

Dense 700, elu

Dense 700, elu

Figure 5.31: Model architecture for the 3 variable network. The input
layer is connected to a dense layer of size 700, which is connected to
2 additional dense layers of size 700. The final layer uses a softmax
activation function.

A training with only three variables was tested to compare to the
earlier 5 variable model. The three chosen variables were hadronic energy,
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transverse muon momentum and number of hits in a hadronic track.
These are all also used in the earlier trainings, their spectra seen in
figures 4.22, 5.8 and 5.9, and the MC-data comparison plots in appendix
B as before. The variables were chosen based on testing combinations of
the earlier 5 variables, and the chosen three were found to produce the
most separation. The model architecture is slightly different than for the
5 variable model, and is seen in figure 5.32. A similar procedure of trial
and error was used to find the best option. The main difference is that
the size of the hidden layers was reduced, as the number of variables was
reduced.
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Figure 5.32: Classification score plot from training using 3 variables for
20 epochs. The y-axis has been normalised by area to show a probability
instead of absolute event numbers.

Results from the training with 3 variables for 20 epochs are seen in
figures 5.32 and 5.33. The results look promising, so they were tested fur-
ther to see how much signal could be gained alongside the earlier training
with 5 variables. The reason for the better performance of the 3 vari-
able network could be due to multiple factors, for example the removal
of highly correlated variables. Correlations between the training vari-
ables were not considered in this study, but it is known that some of the
variables are dependent on each other. For example the hadronic energy
fraction is dependent on the total hadronic energy, which can impact the
behaviour of the network. Also, the architecture of the network was cho-
sen on trial and error basis, and thus it is possible that the architecture
found for 3 variables was better than that used for 5 variables.
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Figure 5.33: Plot showing loss and accuracy, using 3 variables and train-
ing for 20 epochs
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Figure 5.34: PID score for events
above 1.5 GeV using NOvA FD
FHC simulation using 3 variables
and training for 20 epochs. Blue
line indicates signal and red back-
ground. The y-axis has been nor-
malised by area to show a probabil-
ity instead of absolute event num-
bers.
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Figure 5.35: PID score for events
below 1.5 GeV using NOvA FD
FHC simulation using 3 variables
and training for 20 epochs. Blue
line indicates signal and red back-
ground. The y-axis has been nor-
malised by area to show a probabil-
ity instead of absolute event num-
bers.

To further understand the shape of the classification score seen in
figure 5.32, two additional PID plots were created. Figures 5.34 and 5.35
show the PID distribution for events above 1.5 GeV and below 1.5 GeV
respectively. As previously discussed, the low energy events have most
of the QE events and the higher energy events are mostly DIS and RES
events. Based on these results, it appears that the background peak at a
PID score of 0.7 is mostly a contribution from low energy events and the
signal peak at the same value are high energy events. The purest signal
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at 1 seems to be a contribution from both low and high energy events.
The peak at 0.2 is more complicated, since these plots peak closer to 0.3
than 0.2. If this is assumed to be the effects of calculating the PID in
test data, then it can be assumed that the peak is mostly high energy
background events.
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Figure 5.36: Loss vs. learning
rate for the 3 variables model when
learning rate is varied according to
5.2.3

0 10 20 30 40 50
Epoch

0

2

4

6

8

 

Loss

Accuracy

NOvA Preliminary N
O

vA
 S

im
ulation

Figure 5.37: Loss and accuracy for
the 3 variables model when learn-
ing rate is varied according to 5.2.3

The same training optimasation tests were performed for this training
as for the previous 5 variable network (see section 5.2.5). The learning
rate test was performed first, and the results are seen in figures 5.36 and
5.37. It was also clear that there was no need to change the learning
rate for this model as the standard learning rate produces the lowest loss
during the test.

Results from training after early stopping is applied are seen in figures
5.38 and 5.39. Applying early stopping appears to bring improvement,
but this has to be tested against the training without early stopping
to verify. The difference in PID plot compared to the training with 20
epoch (figure 5.32) is that a higher peak at PID score of 0.7 is seen, which
makes the background peak at 0.2 and the signal peak above 0.8 appear
smaller.

Adding a standard scaler to the 3 variable model produces a network
described in figures 5.40 for PID and 5.41 for loss and accuracy. The
only difference for this network compared to the network with no scaling
(figure 5.38) is that the peak at 0.7 shifts to lower classification score
to approximately 0.58. Also, the less prominent background peak moves
from 0.3 closer to PID score of 0.2. This is not expected to bring any
change compared to the version of the training with no standard scaler,
so it was not used in any further analysis.
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Figure 5.38: Classification score plot from training with 3 variables us-
ing early stopping. The y-axis has been normalised by area to show a
probability instead of absolute event numbers.
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Figure 5.39: Accuracy and loss for the last 3 variable training with early
stopping based on loss applied.

5.3 Sensitivity Improvement

After the trainings were completed and the networks saved to a h5 file
format, they were converted to protobuf (pb) file format to be integrated
into NOvA software. Prod5.1 FD FHC simulation data is used and run
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Figure 5.40: Classification score plot from training with 3 variables using
early stopping and a standard scaler. The y-axis has been normalised by
area to show a probability instead of absolute event numbers.
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Figure 5.41: Accuracy and loss for the last 3 variable training with early
stopping and standard scaling.

through the training. Using the results from this run, a cut based on the
classification score is applied to investigate how much signal (and back-
ground) can be recovered to the oscillation analysis. These events can
then be used to test how much sensitivity to the oscillation parameters
is gained by adding the events as a separate sample to the fitting.
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As was discussed in section 5.2.5, it was clear that the behaviour
of the 5 variable network cannot be fully explained. It was still tested
whether the results could be used to extract the number of signal events
that could be added to the analysis using this network. However, the
PID distributions (figures 5.19, 5.24 and 5.25) did not correspond to
what the spectrum looks like when running the network through NOvA
software. Integrals showing the number of events using two cuts on PID
distribution (0.6 and 0.8) were also calculated from both the original
PID distribution as well as those produced from NOvA software, and
they did not agree. Possible explanations include something changing in
the behaviour of the file when converting from h5 to pb, or some other
incompatibilities with the NOvA software with this network. Even after
long and rigorous testing no feasible explanation was found, and thus it
was decided only the results from the 3 variable network were used in
this final part of the analysis.

5.3.1 Reconstructed Neutrino Energy
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Figure 5.42: Final energy spectrum
after 0.8 cut on classification score
using 3 variable model trained for
20 epochs.
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Figure 5.43: Final energy spectrum
after 0.5 cut on classification score
using 3 variable model trained for
20 epochs.

The reconstructed neutrino energy spectra for the 3 variable network
for PID cuts 0.8 and 0.5 are seen in figures 5.42 and 5.43. All of these plots
are for the networks before learning rate test, early stopping or standard
scaler. All of the plots in this section include the effect of oscillations,
since those figures give the best estimate on how much signal is gained
when data is used. The same plots using early stopping are seen in
figures for 3 variable model in figures 5.44 and 5.45 for 0.8 and 0.5 cuts
respectively.

From these plot, it can be investigated that there is a clear cut be-
tween 0.5 and 0.8, where most signal (and also more background) is
gained with the smaller cut value. Also, applying early stopping im-
proved the distribution for this network by introducing more signal.
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Figure 5.44: Final energy spectrum
after 0.8 cut on classification score
using 3 variable model with early
stopping applied.
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Figure 5.45: Final energy spectrum
after 0.5 cut on classification score
using 3 variable model with early
stopping applied.

5.3.2 Figure of Merit

To properly evaluate the effect of adding these events into the analysis,
a figure of merit (FOM) was used to compare the results. The FOM
used in these calculations was defined as FOM = S√

S+B , where S is the
number of signal events and B the number of background events between
reconstructed neutrino energy of 0 and 5 GeV . This is the same that
was used in the optimisation of cuts in the last analysis 3.3.4, and earlier
in this chapter in section 5.2.4.

Model PID Cut Signal Background FOM
3 var model 20 epoch 0.8 1.13 0.535 0.875
3 var model 20 epoch 0.7 4.41 4.04 1.52
3 var model 20 epoch 0.65 16.7 57.02 1.94
3 var model 20 epoch 0.6 21.1 82.4 2.07
3 var model 20 epoch 0.5 28.3 136 2.21
3 var model 20 epoch 0.4 34.9 204 2.26
3 var model early stop 0.8 3.28 1.71 1.27
3 var model early stop 0.7 6.74 9.39 1.86
3 var model early stop 0.65 21.5 68.4 2.26
3 var model early stop 0.6 24.5 90.9 2.28

3 var model early stop 0.5 31.4 148 2.34
3 var model early stop 0.4 cut 35.9 212 2.28

Table 5.6: Number of signal and background as well as FOM for various
3 variable training models with different cuts on classification score.

The FOM calculated for 3 variable models are seen in table 5.6. The
model with standard scaler applied was not included since the results
are expected to be identical to those with only early stopping applied as
discussed. The best performing network out of these was with a cut of
0.5 giving an FOM of 2.34. The model with 20 epochs appears to give
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lower values for all the cuts included here, and it can be expected that
cuts lower than 0.35 will not improve the results as primarily background
will be added. The clear cut between the peak at 0.7 and 0.65 is apparent
from these results, which was also seen in the PID distributions.
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Figure 5.46: Reconstructed neutrino energy spectrum after applying a
PID cut of 0.5 using 3 variable network for events between energies of 1
and 5 GeV .

One can also calculate FOM for a certain limit for a chosen model.
For example, including only events between 0 and 1.5 GeV for 3 variable
model with early stopping and a cut of 0.5, spectrum seen in figure 5.46,
gives an FOM of:

11.6√
11.6 + 45.8

= 1.22. (5.3.1)

This is obviously lower in terms of FOM but gains back the low energy
events with less background so those could be a beneficial addition to the
analysis.

5.3.3 Sensitivity Contours

The improvement to the sensitivity to oscillation parameters is evaluated
by adding the recovered events as a separate sample using the cut on the
PID score to the fit. The theoretical upper maximum improvement to
sensitivity is seen in figure 4.29, but much lower improvement is expected
from the results from the network. All of the fits were made without FC
corrections (see section 3.7) in the interest of time and simplicity. Table
5.7 shows the starting values for oscillation parameters used in the fit as
well as parameters kept constant in the fit. All of these were the values

140 of 165



5.3. Sensitivity Improvement 5. Improvements to Event Selection

Fitting Parameters
∆m2

23 = 2.41 × 10−3eV 2

θ23 = 0.568
δCP = 0.82 ×π

∆m2
21 = 7.53 × 10−5eV 2 [10]
sin2(θ12) = 0.307 [10]

sin2(θ13) = 0.0210 ± 0.0011 [10]

Table 5.7: Parameters used in the oscillation fits.

also used in the 2020 oscillation fits and the same as used when producing
figure 4.29.
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Figure 5.47: The sensitivity contour for 3-flavour oscillation parameters
for the 2020 3-flavour analysis sample as well as the new sensitivity after
the extra sample has been added to the fit. 3 variables with early stopping
applied, 0.5 cut on classification score.

0.4 0.45 0.5 0.55 0.6

23θ2sin
0

2

4

6

8

10

2 χ∆

2020 Best Fit
2020 + New Sample Best Fit

Figure 5.48: 1D fit to sin2(θ23) be-
fore and after adding events from 3
variable early stopping model with
0.5 cut on classification score.
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Figure 5.49: 1D fit to ∆m2
32 be-

fore and after adding events from 3
variable early stopping model with
0.5 cut on classification score.
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The improved sensitivity contour when events from the 3 variable
early stopping model with a cut of 0.5 on PID are added as a separate
sample, is seen in figure 5.47. There is a minor difference in the contours
shrinking at 2 and 3 σ levels when the new sample is added to the fit.
The increase in sensitivity is equivalent to 4.3% increase in effective POT
which is equivalent to approximately 33 days of extra data taking (as-
suming that NOvA is collecting data 24 hours per day). Similarly, plots
showing a 1D fit to the two oscillations parameters, sin2(θ23) and ∆m2

32,
were produced and are presented in figures 5.48 and 5.49 respectively.
From these plots, it appears that the best fit point is approximately the
same and the improvement occurs at higher values of ∆χ2.

The results from these plots show that most of the sensitivity is gained
at the highest σ level and the change is minor. However, there are other
ongoing improvements to the analysis, which together with adding this
extra sample could bring more significant improvement.

5.4 Changing Current Cuts

As seen in figure 4.6, most of the rejected signal used in the trained are
those that failed the PID cuts. The effect of relaxing these cuts was
investigated, to study what would be the gain in signal and how much
background would be introduced to the analysis. This provides useful
information and a point of comparison to the improvement from the
network training.

Figure of Merit

The FOM used in these calculations was defined as FOM = S√
S+B as

before. This ensures these results are comparable to the results from the
network. For comparison, the current PID cuts are set as RemID > 0.3
and NumuID > 0.8 (see section 3.3.4), and the cosmic cut as > 0.45 (see
section 3.3.3).

All the signal and background numbers as well as FOM values for
different changes to current cuts are seen on table 5.8. The best score
of the tested combinations is changing the cuts to RemID > 0.05 and
NumuID > 0.5. Figures 5.50 and 5.51 show the total spectrum after
adding the events on top of the current selected events and the spectrum
for only the added events respectively.

The only value to change for cosmic cuts is to lower from > 0.45 to
> 0.4 to be equivalent to the loose cosmic rejection cut applied to decaf
files. The effect of adding these cosmic cuts gives an FOM of 0.094, which
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Cut Change Signal Background FOM ( S√
(S+B)

)

RemID > 0.2 1.47 0.19 1.14
RemID > 0.1 3.05 0.41 1.64
RemID > 0.05 3.66 0.5 1.80
Cut Change Signal Background FOM ( S√

(S+B)
)

NumuID > 0.7 3.87 0.84 0.39
NumuID > 0.6 6.29 0.41 2.22
NumuID > 0.5 8.08 2.65 2.47
NumuID > 0.4 9.57 3.80 2.62

Cut Change Signal Background FOM ( S√
(S+B)

)

RemID > 0.2, NumuID > 0.7 5.73 1.18 2.18
RemID > 0.1, NumuID > 0.6 11.1 2.95 2.96

RemID > 0.05, NumuID > 0.5 15.12 5.17 3.36
CosmicID > 0.4 3.704 1.19 0.094

Table 5.8: Number of signal and background as well as FOM after chang-
ing the current analysis cuts. The first section describes changing the
RemID cut but keeping NumuID the same, second section changing Nu-
muID but not RemID and the last section changing both RemID and
NumuID as well as changing CosmicID.
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Figure 5.50: Reconstructed neutrino energy spectrum before and after
changing the current PID cuts to RemID > 0.05 and NumuID > 0.5.

is much lower than that for PID cut, so no further testing was done.

Sensitivity Contours

The sensitivity plots after adding the additional events from changing
the PID cuts as a separate sample are seen in figures 5.52 (2D fit), 5.53
(1D ∆m2

23 fit) and 5.54 (1D sinθ23 fit). Based on these improved sen-
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Figure 5.51: Reconstructed energy spectrum of events added to the anal-
ysis after changing the current PID cuts to RemID > 0.05 and NumuID
> 0.5.
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Figure 5.52: The sensitivity contours for 3-flavour oscillation parameters
for the 2020 analysis sample as well as the new sensitivity after adding a
sample of variables given by changing current PID cuts to RemID > 0.05
and NumuID > 0.5

sitivities the increase in effective POT is 3.7% which is equivalent to
approximately 28 days of data taking. These values are very close to
results from the sensitivity improvement using the neural network, al-
though slightly smaller. This is probably due to this sample having less
signal, even though the number of background is smaller and the FOM
is higher.
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Figure 5.53: 1D fit to ∆m2
32 before

and after adding events by chang-
ing the PID cut to RemID > 0.05
and NumuID > 0.5
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Figure 5.54: 1D fit to sin2(θ23)
before and after adding events by
changing the PID cut to RemID
> 0.05 and NumuID > 0.5

5.5 Summary and Further Work

Multiple neural network trainings were tested to find the most efficient
way to recover events that are currently rejected from the NOvA 3-flavour
disappearance analysis back into the oscillation analysis to gain some
additional FOM and increase the sensitivity to oscillation parameters.
The best results were for a network with 3 variables after applying early
stopping based on loss with a cut of 0.5 on classification score. This gave
an additional FOM of 2.34 for all energies and FOM of 1.22 for events
between 0 and 1.5GeV . The change in sensitivity is very small (4.3% gain
in effective POT, about 33 days of extra data taking), but together with
other improvements applied to the current oscillation analysis, adding
these events as en extra sample could be beneficial.

These values can be compared to results from changing the current
analysis PID cuts. Unfortunately, the FOM value was smaller than
changing the current PID cut to RemID > 0.05 and NumuID > 0.5,
which gave an additional FOM of 3.36. However, the number of signal
events is much higher using networks than changing the current cuts, and
the network brings more events at the lower energy range that is is re-
jected most. Also, the change in sensitivity is slightly smaller after these
cut changes, equating to a 3.7% increase in effective POT and about 28
days of extra data taking.

There was no time to run this analysis using NOvA data, since the
release of new NOvA oscillation analysis was pushed back to 2024 due to
issues with gathering enough data to double the collected FHC POT that
was planned for the new analysis. There was a shut down due to Covid-19
pandemic and hardware issues in the beamline that slowed down the data
taking. Otherwise, the results could have been checked with data and
possibly be added into the new oscillation analysis as separate sample to
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the fit to bring a small improvement to the sensitivity.
Given more time, statistical uncertainties could have been taken into

account and tested how the different variables used in the training are
susceptible to the effects of systematics. Another improvement would
be to check for correlations between the training variables. As it was
discussed in section 5.2.7, this is possibly the explanation for the im-
provement on the training with reduced variables, and it could further
the understanding of the behaviour of the network.

Also, additional testing on the behaviour of the 5 variable model could
bring some insight into how it could be improved and why it behaves so
differently on the small test sample when calculating the classification
score. Some explanations, like the shape of the training variables or er-
rors when converting the h5 network file to pb file, were discussed but a
more in depth analysis would further improve the understanding. Fur-
ther improvements could include plotting the output for various variables
using different PID cuts and better optimasation of the network archi-
tecture. This might allow for this network to be used in further analysis
to see its impact on the sensitivity, as in this thesis it was not included
on the sensitivity testing.

In section 5.2.5, it was suggested that training with just the two
variables, number of hits in hadronic track and reconstructed transverse
momentum, could be constructed to further the understanding of the
training variables and the unexplained behaviour of the constructed net-
works. Later, in section 5.2.6, it was briefly discussed that dividing the
events into two categories: events with reconstructed neutrino energy
more than 1.5 GeV and less than 1.5 GeV , could be trained separately.
As mentioned, this was briefly tested using previously used variables and
network architecture, and it did not improve results. With more, this
training could have been optimised better in terms of variables and ar-
chitecture, possibly given a better improvement in gained events into the
analysis. Also, using class weights to balance the number of QE, RES
and DIS events in the training sample could be tested to see if it benefits
teh results.

Another study similar to this analysis would be to construct a training
using a completely different machine learning method. BDTs are used
in NOvA in the construction of the cosmic rejection cut (see section
3.3.3), so they seem like the most interesting method to test. This could
bring meaningful insight and a point of comparison to these results. It
can especially improve the integration to NOvA software, since these
methods are already used in the analysis.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis a new way to improve the sensitivity to oscillation param-
eters ∆m2

23 and sinθ23 in NOvA νµ disappearance analysis was intro-
duced. Using neural networks, signal rejected from the previous analysis
was trained to look at effects of recovering these events.

The current NOvA oscillation analysis selection has an efficiency of
80% for selecting νµ CC events for the disappearance analysis. Most of
the rejected events are those that failed the particle identification cut,
and the events are not all one type but have different properties. It was
found that slightly more QE events are selected compared to RES and
DIS νµ CC events, and a lot more events with low energy (less than 1.5
GeV) are not selected.

Multiple different networks using different architectures and variables
were tested. In the end, the impact on the sensitivity was studied us-
ing a network that trained 3 variables (hadronic energy, transverse muon
momentum and hadronic energy per hits) using all events that have re-
constructed neutrino energy between 1 and 5 GeV . These variables were
chosen based on their K-S test scores as well as their distributions be-
tween signal and background trying to find variables with the most sep-
aration power. The final training included early stopping applied to loss
for optimal number of epochs. The use of a standard scaler and chang-
ing the learning rate were also tested, but those did not bring additional
improvements to the network.

When run through NOvA software testing different cuts on the clas-
sification (PID) score, the highest value of added FOM ( S√

(S+B)
) (2.34)

was achieved with a cut of 0.5 on the classification score. The sensi-
tivity improvement after adding this sample was also tested, although
changes to the sensitivity were marginal. The increase in effective POT
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was 4.3 % which is equivalent to approximately 33 days of extra data
taking. Comparing this to changing the current PID analysis cuts, the
FOM using the neural networks was smaller. The sensitivity was tested
on changing the current PID cut to RemID > 0.05 and NumuID > 0.5
(FOM 3.36) which gave an increase in effective POT of 3.7% equal to
28 days of additional data taking, which is smaller than the increase in
sensitivity using neural networks most likely due to a smaller number of
signal events.

Some improvement for the analysis were discussed, including taking
into account correlations and effects of systematic uncertainties in the
chosen training variables, additional training on just two most important
variables, using class weights to balance different types of events (QE,
RES and DIS) in the signal sample, and having two training samples
based on the value of the reconstructed neutrino energy. Constructing
a similar study using BDTs and the possible improvement compared to
neural network was also discussed briefly.
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A. Variables Not Used in Training

Appendix A

Variables Not Used in
Training
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Figure A.1: FD FHC simulation track calorimetric energy for events
rejected from disappearance analysis.
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Figure A.2: FD FHC simulation reconstructed 4-momentum transfer for
events rejected from 2020 disappearance analysis.
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Figure A.3: FD FHC simulation slice duration for events rejected from
2020 disappearance analysis.
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Figure A.4: FD FHC simulation slice time for events not rejected from
2020 disappearance analysis.
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B. ND MC-Data Comparison Plots for Training Variables

Appendix B

ND MC-Data Comparison
Plots for Training Variables
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Figure B.1: MC-data comparison for ND FHC data, reconstructed
hadronic energy.
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Figure B.2: MC-data comparison for ND FHC data, reconstructed in-
variant mass.
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Figure B.3: MC-data comparison for ND FHC data, hadronic energy
fraction.
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Figure B.4: MC-data comparison for ND FHC data, reconstructed muon
transverse momentum.
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Figure B.5: MC-data comparison for ND FHC data, number of hits in
the hadronic kalman Track.
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Figure B.6: MC-data comparison for ND FHC data, calorimetric energy.
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Figure B.7: MC-data comparison for ND FHC data, reconstructed trans-
verse muon momentum divided by the total momentum.
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