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ABSTRACT: Accurate redshift calibration is required to obtain unbiased cosmological in-
formation from large-scale galaxy surveys. In a forward modelling approach, the redshift
distribution n(z) of a galaxy sample is measured using a parametric galaxy population
model constrained by observations. We use a model that captures the redshift evolution of
the galaxy luminosity functions, colours, and morphology, for red and blue samples. We
constrain this model via simulation-based inference, using factorized Approximate Bayesian
Computation (ABC) at the image level. We apply this framework to HSC deep field images,
complemented with photometric redshifts from COSMOS2020. The simulated telescope
images include realistic observational and instrumental effects. By applying the same pro-
cessing and selection to real data and simulations, we obtain a sample of n(z) distributions
from the ABC posterior. The photometric properties of the simulated galaxies are in good
agreement with those from the real data, including magnitude, colour and redshift joint
distributions. We compare the posterior n(z) from our simulations to the COSMOS2020
redshift distributions obtained via template fitting photometric data spanning the wavelength
range from UV to IR. We mitigate sample variance in COSMOS by applying a reweighting
technique. We thus obtain a good agreement between the simulated and observed redshift
distributions, with a difference in the mean at the 1o level up to a magnitude of 24 in the
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1 band. We discuss how our forward model can be applied to current and future surveys
and be further extended. The ABC posterior and further material will be made publicly
available at https://cosmology.ethz.ch/research/software-lab /ufig.html.
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1 Introduction

Cosmological probes allow us to investigate the structure and components of our Universe,
by posing constraints on a cosmological model. The standard model of cosmology, known as
ACDM, comprises of three main components: dark energy, dark matter and baryons. These
components can be traced in a large-scale galaxy survey, by measuring the positions and
shapes of galaxies and their correlations. In recent years, state-of-the-art experiments such
as the Dark Energy Survey! (DES; [1]), the Kilo-Degree Survey? (KiDS; [2]) and the Hyper
Suprime-Cam Subaru Strategic Program® (HSC; [3]) have reported their constraints resulting
from galaxy clustering, cosmic shear and galaxy-galaxy lensing and their combination, known
as 3 x 2 point analysis [4-6]. Precise determination of the redshift distribution n(z) of
samples of galaxies is critical for obtaining cosmological constraints from galaxy surveys.

http:/ /www.darkenergysurvey.org/.
http://kids.strw.leidenuniv.nl/.
3https://hsc.mtk.nao.ac.jp/ssp/survey/.
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Redshift information allows the separation of source and lens sample, and the computation
of cosmological observables. Spectroscopy is prohibitively time-consuming as a technique
to provide accurate redshifts of all galaxies in a wide survey, and is furthermore subject to
selection biases, especially for faint samples. Surveys thus rely on integrated measurements
in a limited number of broad-bands in order to determine the redshift distribution of the
sample of interest (for review, see [7, 8]). This has proven to be a challenging task, especially
since the relationship between redshift and colour in a limited wavelength range is subject to
degeneracies [8]. The characterization of photometric redshift (photo-z) distributions is one
of the key systematics affecting cosmic shear measurements since errors in the calibration of
redshift distributions and their uncertainties can lead to biases in the retrieved cosmological
parameters [8-15]. Traditional photo-z approaches include template fitting (for example
LePhare [16, 17], BPZ [18], ZEBRA [19] and EAZY [20]) and machine learning methods
(for example ANNz [21], ANNz2 [22, 23] and DNF [24]).

In a cosmological survey it is common to employ methods to constrain the overall redshift
distribution of the sample of interest rather than the redshifts of single objects, either by
an empirical reweighting of a well measured redshift sample [25-27], by using spatial cross-
correlations [28], or by a combination of the two [29, 30]. Another approach, which has
been introduced in recent years, is simulation-based inference (SBI) [31-33]. SBI relies on
forward modelling the survey of interest: the redshift distribution of a sample of galaxies
is the result of the statistical properties of the observed galaxy population, the observing
conditions and limitations of the detector, and the selection applied to define the target
sample. Accurate modelling of magnitude, colour and (at second-order) size distributions
of galaxies as a function of redshift, taking into account the observational and instrumental
effects, enables robust determination of the redshift distribution of the sample, as well as
a straightforward estimation of its uncertainty. Furthermore, the constraints on the galaxy
population model provide some insights on the statistical nature of galaxies and allow a
robust treatment of complicated selection functions. The methodology used in this paper
has been developed in [31] and further extended and applied in [32] and [34, 35]. We refer to
this forward modelling framework as Monte Carlo Control Loops (MCCL) [36]. The method
relies on an empirical galaxy population model to describe the intrinsic properties of galaxies
and stars. We render the objects with photon shooting methods using an image simulator
called Ultra Fast Image Generator (UF1G [37]) in a set of broad-bands described by the filter
throughputs of the telescope used. Moreover, we simulate observational and instrumental
effects such as sky and detector noise, point spread functions (PSF), reddening and saturation.
In this way, we can post-process the simulations and the real images in the same way. We
run SEXTRACTOR [38] on both to obtain catalogs of objects and apply the same selection
functions to both the simulated and the real catalog, which simplifies the treatment of selection
biases. The model parameters are constrained using the observed data via Approximate
Bayesian Computation (ABC), using distance measures that ensure that the photometric
properties of the objects in simulations statistically agree with real data. The method has
been used to simulate and perform a cosmic shear measurement of the Dark Energy Survey
Year 1 [32, 39, 40], for redshift calibration on Subaru data [31], and to obtain the luminosity
functions of blue and red galaxies at different redshifts with Canada-France-Hawaii Telescope
Legacy Survey (CFHTLS [41]) data [34]. Furhermore, it has been applied to simulate the



narrow band imaging of Physics of the Accelerating Universe survey (PAUS [42]) [35, 43] and
galaxy spectra from the Sloan Digital Sky Survey (SDSS [44]) CMASS sample [45, 46].

In this work, we use HSC Deep/UltraDeep (DUD) data [47] and accurate many-band
photometric redshifts from COSMOS2020 [48] in order to obtain tight constraints on the
model parameters at high redshift. Previous constraints to the model parameters extended
to a redshift of z ~ 1, whereas in this work we explore the regime of Stage IV surveys. [49]
suggests that HSC data is the most powerful for constraining the Schechter parameters of
the luminosity function and thus the redshift distribution of galaxies, because of its exquisite
depth. As done in previous work, we use an ABC framework, with several important practical
improvements. After tuning the model, we use the obtained posterior parameters to simulate
HSC DUD data in the COSMOS field and validate the n(z) for different magnitude cuts.
While the HSC DUD fields are deeper than current and upcoming wide-field surveys, the
magnitude cuts that we consider in this work are consistent with the weak lensing source
samples of current (¢ band magnitude cut between 23 and 24) and upcoming surveys (expected
i band magnitude cut between 24.5 and 25.5). Using our ABC posterior directly to calibrate
the redshift distributions of these survey would entail running image simulations of the survey
of interest using the parameters from the ABC posterior obtained in this work. The resulting
n(z) distribution would include errors propagated from the ABC posterior constraints and
due to selection effects. Calibrating the model with deeper data has the advantage that
objects above the magnitude cut are constrained, which is necessary to include noise and
source confusion, thus making the sample selection realistic.

The paper is structured as follows. Section 2 describes the HSC DUD data and the
COSMOS2020 catalog used both to tune the model and validate our results. In section 3, we
describe the methodology and introduce the changes compared to previous work. Section 4
reports the results of our analysis. We conclude the paper in section 5. We assume a standard
ACDM cosmology with h=0.7, ,,=0.3, and 2,=0.7 throughout the paper.

2 Data

In this section, we present the data used to constrain our model of the galaxy population
and to validate the obtained redshift distributions. We rely on data from the Deep and
Ultradeep layers of the third data release (PDR3) of the Hyper Suprime-Cam Subaru Strategic
Program (HSC) [47]. In order to provide our model with additional redshift information
and validate the n(z), we complement the HSC data with accurate photo-z estimates from
the COSMOS2020 panchromatic photometric catalog [48].

2.1 Deep/UltraDeep data from HSC PDR3

HSC is a large multi-band imaging survey conducted with the 8.2-metre Subaru telescope.
It comprises of three layers: Wide, Deep and UltraDeep. The Wide layer covers 1470 deg?,
considering partially observed areas in five broad-band filters (g,r,i,z,y). The Deep/UltraDeep
(DUD) layers cover ~ 36 deg? in the five broad-band filters and four additional narrow-band
filters. In this work, we use the publicly available coadded broad-band DUD images with



local sky subtraction from PDR3.* There are four different fields: COSMOS, DEEP2-3,
SXDS+XMM-LSS and ELAIS-N1. Each field is separated in tracts which are equi-area
rectangular regions on the sky, divided in 9x9 patches comprising of 12 arcmin per side
corresponding to 4200 pixels and overlapping by 100 pixels. We use all the available DUD
patches for tuning the model. The dataset consists initially of roughly 1500 patches. We
blacklist patches where:

o more than 30% of the image area is flagged as NO_DATA,
o more than 50% of the image area is covered by the BRIGHT _OBJECT mask,
o the image overlaps for more than 30% of the area with another patch.

NO_DATA and BRIGHT_OBJECT masks correspond to flags 8 and 9 in the mask layer of the
data. The overlap, on the other hand, is computed using the footprint of the images and by
masking the pixels on the top or upper edge of each coadd that are also covered by another
patch. After blacklisting, we retain a total of 746 patches.

2.2 COSMOS2020 catalog

The COSMOS2020 catalog [48] consists of nearly 1 million high quality photometric redshifts
derived via template fitting of many broad and narrow band observations ranging from UV to
IR wavelengths. There are four different publicly available catalogs, which differ in the method
used for extracting photometry (SEXTRACTOR, used in CLASSIC, and THE FARMER) and for
the photometric redshift template fitting code (LePhare [16, 17] and EAZY [20]). Since we
use SEXTRACTOR for the photometric measurement on the HSC data in our pipeline, we also
work with the COSMOS2020 CrAssIC catalog. We use both LePhare and EAZY photo-zs.
We remove areas where the photometry is unreliable or with partial coverage by means of
the FLAG_COMBINED parameter thus reducing the area to 1.27deg?. We select objects that
have MAG_AUTO < 99, LePhare (1p_zBEST) or EAZY (ez_z_phot) photo-z between 0 and 8
(removing Nan values), LePhare object type galaxy (1p_type=0) and SEXTRACTOR FLAGS < 4.
The COSMOS2020 catalog is used both for providing redshift information while constraining
the model and for validation. The validation sample is explained in the following section,
while the reweighting procedure used during the ABC analysis is detailed in section 3.4.

2.3 Validation sample

In order to build our validation sample, we compare the COSMOS2020 COMBINED footprint
with the HSC DUD data in the COSMOS field and find 63 overlapping patches, out of which 56
are almost fully covered. We perform SEXTRACTOR forced photometry on these coadds using
the ¢ band for detection and match the obtained catalog with objects in the COSMOS2020
catalog by position and magnitude (using the magnitude MAG_APER measured in a circular 3"
diameter apeture). The BRIGHT_OBJECT masks from HSC PDR3 are very conservative and
cause a loss of roughly one third of the COSMOS2020 objects, since COSMOS2020 uses the
less conservative HSC PDR2 masks. We compare the simulated final redshift distributions

“https://hsc-release.mtk.nao.ac.jp/doc/index.php/available-data__ pdr3/.
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Value 1 band mag cut 23 | ¢ band mag cut 24 | ¢ band mag cut 25
Az sample variance LePhare 0.014 +£0.012 0.001 £ 0.019 0.002 + 0.019
Az sample variance EAZY 0.015 £ 0.012 0.001 £0.019 0.003 £ 0.018
Az=(zgAzY) — (?LePhare) 0.014 0.018 0.0006

Table 1. Shifts in photometric redshift due to sample variance and difference between the two photo-z
codes used in COSMOS2020.

in the COSMOS field to both LePhare and EAZY photo-zs at three different magnitude
cuts and with the selection defined in appendix B. We describe our procedure to account
for sample variance in COSMOS in the next subsection.

2.3.1 Sample variance in COSMOS

The COSMOS field only spans 2 deg? of the sky. This means that, while the volume spanned
by COSMOS observations is large due to the considerable depth [50], there are notable sample
variance effects at low redshifts. In order to estimate the impact of sample variance, we assign
COSMOS2020 photo-zs to all galaxies in the other deep fields as described in section 3.4 and
look at the offset in mean redshift. This ensures that we span a larger area and the difference
in depth is negligible when only considering galaxies with i band magnitude below 25.° In
order to also measure the scatter due to sample variance, we produce 10 sub-fields the size
of COSMOS (56 images) and measure the standard deviation of the 10 mean redshifts. We
prefer this approach to a standard Bootstrap in order to preserve the locality of the effect,
which is due to the inhomogeneity of large-scale structure on small scales. The redshift offsets
are reported in table 1. We observe a mean redshift offset between the COSMOS field and
the other deep fields of Az = (2cosmos) — (Zdecp) = 0.015 when we cut at ¢ band magnitude
of 23, meaning that sample variance causes a bias for the brightest sample.

2.3.2 Offset between EAZY and LePhare

We notice that, when applying a simple magnitude cut in the ¢ band and the selection described
in appendix B, there is a systematic offset between EAZY and LePhare photometric redshifts
from COSMOS2020. Similarly to sample variance, this effect has a stronger impact on the
brightest sample where EAZY predicts systematically higher redshifts than LePhare. The
systematic offset is Az = (zgazy) — (2LePhare) = 0.014 for a magnitude cut at MAG_APER3_i=23
and 0.018 for a magnitude cut at MAG_APER3_i=24. The offset is negligible when cutting
at MAG_APER3_i=25. We report these offsets in table 1.

3 Method

The backbone of our forward modelling framework is an empirical parametric model of the
galaxy population, used to generate distributions of intrinsic properties of galaxies. Once a
galaxy catalog is generated given a set of model parameters, we simulate an image of the
survey of interest, in our case the HSC DUD fields. In order to obtain a realistic simulation,

5We use the i band aperture magnitude in a 3" circular aperture MAG_APER3_i, as described in section 3.3.



we include the effects of the instrument and the known observational systematics that impact
the photometric measurement. The end-to-end process from a set of model parameters to
a realistic telescope image is implemented in the Ultra Fast Image Generator (UF1G [37]).
UFIG has been developed as a simulator for MCCL, with speed as one of the primary features.
Computational speed is critical for this task, since a large number of simulations is required
to tune the parameters of the model. The inference is performed by running an Approximate
Bayesian Computation (ABC), where the realism of our simulated images is increased by
minimizing a set of distance measures. Despite the optimized simulator, the computational
cost of performing a full ABC inference amounts to roughly a million CPU hours on the Euler
HPC cluster of ETH Zurich. In the following, we describe the galaxy population model, how
we extend UFIG to reproduce realistic HSC DUD images, how we include redshift information
from COSMOS2020 reducing the impact of cosmic variance and the details of our ABC
scheme. We focus on the novelties introduced in this work.

3.1 Galaxy population model

We include in our model two different populations of galaxies: red and blue, often referred
to as quiescent and star-forming galaxies. The separation between red and blue galaxies is
intrinsic: we have separate sets of parameters in our model for the two galaxy populations.
We sample absolute magnitudes M and redshifts z from Schechter luminosity functions

d(z, M) = gln 106" (2)105 (M (172Dl e (105 (M ()=0D), (3.1)

where M*(z) and ¢*(z) are functions of redshift and have separate parameters for blue and
red galaxies. We then assign a spectral energy distribution (SED) to each galaxy as a linear
combination of 5 spectral templates from KCORRECT [44]

4
SED(A) = > aiTi(A).
i=0

The coeflicients of the templates are also different for blue and red galaxies and evolve with
redshift. We show the five KCORRECT template spectra for reference in figure 1. We assign
sizes to galaxies using a log-normal distribution for the half light radius and a Sersic light
profile. The ellipticities are sampled from a Beta distribution. As explained in the following
subsections, in this work all galaxy population parameters are constrained separately for red
and blue galaxies. Furthermore, we add stars to our simulations using the Besancon model
of the Milky Way [51]. The magnitudes from the catalog of pseudo-stars are sampled with
replacement, and the positions are assigned randomly within the HEALPIX pixel (nside=8,
see [31, 32] for more details). The positions of the bright end of the star distribution is taken
from the Gaia DR3 catalog [52, 53] and abundance-matched to the Besancon model. For
an extensive description of the galaxy population model, see [31, 34].

In the following, we highlight the modifications to the galaxy population model compared
to [31, 32, 34]: (i) modification of the luminosity function parametrization, (ii) addition of
new parameters in the morphology sector to allow different characteristics for blue and red
galaxies, (iii) small changes to the parametrization of ellipticities and Sersic indices, (iv)
modification of parametrization for template coefficients of the SED.
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energy distributions of galaxies. They are renormalized so that f(A) =1 at A = 5500(A4).

3.1.1 Luminosity function parametrization

We modify the redshift evolution of the luminosity function parameters, in accordance with
galaxy evolution models [55]. In the Pure Luminosity Evolution (PLE) scenario, massive
galaxies assemble and form most of their stars at high redshifts. They then evolve without
merging. This results in the functional form

M*(2) = Miptept + Mope log(1 + 2) (3.2)

*
intcpt

for blue and red galaxies. In the Pure Density Evolution (PDE) scenario, galaxies

for the evolution of the characteristic absolute magnitude with different parameters

*
slope

undergo mergers so that they are more massive but less numerous at lower redshifts. This

and

scenario can be modelled through the evolution of the normalization of the luminosity
function as

¢*(2) = Grmpr(1 + 2)%» (3.3)

where ¢ 1 and ¢y, also depend on the galaxy population. We vary these 8 parameters
during the ABC. Furthermore, apjue and ayeq, describing the steepness of the faint-end slope
of the luminosity function, are also varied in this analysis, differently from previous work.

3.1.2 Updated galaxy morphology

We added new parameters in the morphology section. The relation between galaxy half light

radius 50 and absolute magnitude is described by three parameters: log riy ", log rglé’pe and

log r$id [31]. We sample log s from a normal distribution with mean

. 4
log rig™® = log 72 M + log rg%tht



and standard deviation logrik!, where M is the absolute magnitude of the galaxy. The

distribution of 75 is thus log-normal (as found in e.g. [56, 57]). In our updated model we
have a separate set of these parameters for red and blue galaxies. We also constrain the

log rggd parameter during the ABC inference, which was fixed in previous work.

3.1.3 Ellipticity and Sersic indices

The parameterization of ellipticity p(e) using a Beta distribution is slightly modified; pa-
rameters emode, €spread COrrespond to the mode and concentration of the Beta distribution
respectively. They are related to the parameters of the Beta distribution « and S through
€spread — & + /8 and €mode = eﬂj;ﬁ‘
and allows for designing simpler priors. We also modified the prescription for modelling

This change makes the parameters easier to interpret

the distribution of Sersic indices. We use a Betaprime distribution with free parameter ng,
which is the mode of the distribution. It is related to parameters o and § of the Betaprime

distribution as ny = 2=L. Parameter § is responsible for the scatter, and fixed throughout

= B
the analysis, to the following values: fpue = 5 and Breq = 50. These values were chosen so

that the distributions of Sersic indices match that of [58].

3.1.4 Spectral templates parametrization

In our model, the coefficients of the SED templates are drawn from a five-dimensional Dirichlet
distribution separately for blue and red galaxies, similarly to [31, 32, 34]. The Dirichlet
distribution is used because the samples drawn from it sum to 1 and the spectrum can then
be rescaled to match the absolute magnitude of the galaxy. The parameters of the Dirichlet
distribution evolve with redshift: we use two separate sets of parameters for z=0 and z=3,
with parameters for other redshifts being an interpolation between them

a;i(2) = (i) 73 x (0u3)5 .

In previous work the a; were constrained at redshifts z = 0 and z = 1; we now use z = 3
since the functional form is fixed (so that we do not need to have a large sample of galaxies
at z = 3 to pose limits on the parameters’ values) and this allows us to enforce prior bounds
at higher redshifts.

Previously, the prior on this distribution was also a Dirichlet variable with unity weights,
multiplied by a uniform number between [5,15], which accounted for the variance. This way,
the «; parameters were affecting both the mean and variance of the Dirichlet variable. We
change the model to capture the mode and variance in separate parameters. Furthermore, [31]
derived weights to apply to each template using the New York University Value-Added
Galaxy Catalog [54] thus effectively using different template spectra for blue and red galaxies.
We removed the weights and reparametrized the template spectra to be normalized to 1
at wavelength 5500 A. We use a redundant parametrization with modes of the Dirichlet
distributions &;, ¢ = 0,...,4 and two new agq,/3 parameters. The parameters agiq0/3
correspond to the standard deviation of the 5-dimensional Dirichlet coefficients with equal
concentrations at redshifts z = 0 and z = 3 and evolve in redshift the same way as the
template coefficients «;. We enforce the normalization ), a; = 1, and the final Dirichlet



coefficients are calculated as

o =14+ ;- |:]1[ (1—&)@;3—]\7—1}

with N=5. This new parametrization reduces the number of local minima in the problem and
makes the a; variables more interpretable. Finally, the template spectra are the same for red
and blue galaxies and we encapsulate the information about the different galaxy populations
in the ABC prior on the template coefficients. The ABC prior on template coefficients was
obtained in a preprocessing step where we performed an ABC on catalog level using the
COSMOS2015 catalog [59], as described in appendix A. The final model has 46 parameters,
out of which 4 are redundant (see table 3 in appendix A).

3.2 Image simulations of HSC DUD fields

The catalogs of intrinsic galaxy properties are used to create simulated HSC DUD images.
The image generation procedure, including realistic observational and instrumental effects,
is as follows. We input the metadata provided by the HSC database® about size of the
image in pixels, pixel scale (0.168” /pixel) and sky coordinates of the images. We perform our
simulations using the g, 7, i, z and y broad-bands. HSC replaced the r and 4 filters with more
uniform filters 72 and ¢2 which have been coadded together with r and ¢. In our simulations,
we use the filter throughputs from 72 and 42, after checking that the magnitude shifts are
small. In order to compute the apparent magnitude of a galaxy in a specific broad-band,
we integrate over its SED and the filter throughput taking into account k-corrections and
reddening due to galactic extinction. The computation of arbitrary magnitudes in the AB
system is described in section 3.2.3 of [31] and the wavelength dependent extinction to
account for reddening in appendix D of the same paper. The magnitude zeropoint is set
to 27 mag/ADU for the HSC coadds.

We simulate PDR3 coadded images directly, as introduced in section 2.1. In order to
simulate the coaddition process, we use systematic maps derived from the metadata. We
create a map of the exposure times and number of exposures per pixel for each patch. The
CCD gain of a single exposure multiplied by the number of exposures per pixel gives us a rough
estimate of the effective gain to convert between ADUs and number of photons. Galaxies are
randomly distributed on the image and rendered by sampling individual photons according
to the galaxy’s Sersic profile. This procedure naturally includes Poisson noise [37, 39]. The
Point Spread Function (PSF) is rendered as a distortion to the light profile of the galaxy. In
order to estimate the impact of the PSF in the real images, we use a Convolutional Neural
Network (CNN) as presented in [60] and updated in [32]. The PSF is estimated at the
position of stars matched with Gaia DR3 [52, 53] with magnitudes included between 18 and
22 in the ¢ band, which have SEXTRACTOR FLAGS 0 or 16 and are not at the image boundary.
We perform this selection because stars with apparent magnitudes lower than 18 in the ¢
band are included in the bright objects masks of HSC. The matching is done with a Balltree
with a maximum distance of 1.5 pixels. We reserve 15% of the selected stars for validation.
Each PSF parameter is then interpolated across the coadd using a Chebyshev polynomial
basis of maximum order 4 (see appendix C of [32] for details).

Shttps://hsc-release.mtk.nao.ac.jp/datasearch/.
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Figure 2. Example of pixel histogram around the background values from tract 9813 patch 702.
The simulated background is shown from 5 different ABC configurations.

In order to simulate the background noise in an image, we first derive a map of the
root-mean-square of the noise from the real data using the Background2D function with
SExtractorBackground estimator and 30 sigma-clipping from photutils [61]. This map
is derived from the data individually for each patch. We then add Gaussian noise to the
simulation with mean read off from the image header and standard deviation taken from the
map (different for each pixel). Since the standard deviation of the noise that we apply is
already different in each pixel and is estimated from background subtracted images, we do not
need to perform any background subtraction, including local background subtraction which
has the most impact in the surroundings of bright objects, which are anyway masked. The
resulting simulated background is in good agreement with the background in the real data.
We show an example of the pixel histogram of an image for real data and simulations for low
pixel values in figure 2. We observe that there is a slight overestimation of the background
level due to the lack of background subtraction.

An alternative approach to background estimation would amount to adding a Gaussian
background using the parameters in the image headers (both mean and standard deviation)
and then applying global and local background subtraction. In our tests this procedure
worsened the agreement between data and simulations. We create masks of the areas with
no data and surrounding bright stars using the bit flags 8 and 9 from the second layer
of the fits files.

The final steps of the simulation process convert photons to ADUs by dividing out the
effective gain and saturate pixels that are above the maximum value of the real data. This
is a simplistic estimate of the saturation limit, which is good enough in practice since the
saturated areas are always masked. We show an example of a simulated image compared
to real data in figure 3. The most noticeable difference between the real image and the
simulation is the presence of some large galaxies in the simulation. These are not ruled
out by our distance measures and need further investigation. The lack of local background
subtraction in the simulated image is noticeable around bright objects.
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Figure 3. A comparison between a real and a simulated coadd for tract 9813, patch 702 in the HSC
COSMOS field is shown. The bright star mask, as derived from the data, is applied to both the real
data and simulation.

3.3 Source extraction and matching

In order to proceed in our analysis, we run SEXTRACTOR in dual-image mode with the same
settings (reported in appendix C) on real images and simulations. We use the i band image
as detection image. In the simulations, the SEXTRACTOR detections are matched by position
and magnitude to the true properties of the injected galaxies. This procedure can have an
impact on the resulting photometric properties of galaxies, on the ABC posterior and on the
redshift distribution since not all SEXTRACTOR detections are matched to an injected galaxy
or matched correctly. We use the segmentation map produced by SEXTRACTOR and find, for
each detection, the overlapping simulated object that minimizes the sum of the differences
Amag between MAG_AUTO and true magnitude in all bands

Amag = Z |magy, — MAG_AUTO_D|. (3.4)
beg,rizyy

This matching procedure improves on our previous technique of matching each detected
object to the closest detected object below a predefined magnitude difference, especially
in the case of a crowded field. Nevertheless, the procedure to match true and detected
objects and the impact of blending will need further investigation in the future. While in the
matching procedure we use MAG_AUTO (which is closest to the UFIG true magnitude), in the
following we always use MAG_APER in a 3" aperture (referred to as MAG_APER3 from here on,
with related quantities MAGERR_APER3, FLUX_APER3 and FLUXERR_APER3), unless otherwise
specified. This induces photometric biases for bright large objects (which are larger than the
fixed 3” aperture) but provides more reliable colours and reduces photometric biases for faint
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objects. FLUX_AUTO is the sum of the pixel values assigned to the object and thus depends on
the adaptive determination of the object’s size. By injecting the same catalog in a deep and
ultradeep image, we observed a dependence of MAG_AUTO on exposure time, since more pixels
of an object rise above the background. A selection in MAG_AUTO is undesirable in our case,
since we calibrate the model on deep images and then extrapolate it to ultradeep images.

3.4 COSMOS2020 redshift assignment to HSC deep fields

Before describing our ABC scheme, we show how we incorporate redshift information from
COSMOS2020 in the SEXTRACTOR catalogs obtained from other deep fields. We apply the
reweighting technique described in section 4.2 of [13]. We start from the validation sample
introduced in section 2.3 where we have galaxy photometry from our own SEXTRACTOR
run in the HSC COSMOS field overlapping with COSMOS2020 and LePhare and EAZY
photo-zs derived from position matching the COSMOS2020 catalog. In order to assign a
redshift estimate to a target galaxy in another deep field, we first add Gaussian noise to
the COSMOS galaxies’ fluxes until the noise level is equal to that of the target galaxy (the
images in the COSMOS field are UltraDeep and thus less noisy than in the other fields).
We discard COSMOS galaxies that have larger flux errors than the target galaxy. We then
match a COSMOS2020 galaxy to the target galaxy by minimizing the flux y?

2=y (fb—fz?OSMOS)2 (3.5)

b b

where b € g, 7,1, 2,y and f3 is the FLUX_APER3 of an object in band b and ¢}, its FLUXERR_APER3.
In this way, we reweight the COSMOS2020 n(z) to match the colour distribution of galaxies
in the image we are considering. We verify that a COSMOS2020 galaxy is never matched
more than 5 times in the same image (multiple matches only happen for very bright galaxies).
In the following subsections, we present two contributions to the uncertainties of the redshift
distributions from COSMOS2020, beyond the photo-z errors on individual objects. These are
taken into account when validating the n(z) derived from our forward modelling approach
against COSMOS2020 photo-zs.

3.5 Factorised ABC inference

We constrain the 46 parameters of our galaxy population model using the HSC deep data
and the COSMOS2020 catalog described in section 2. This data combination constitutes a
unique sample to precisely constrain our galaxy population model at high redshift, given
its completeness up to high magnitudes. We perform simulation-based inference (SBI) to
derive a posterior distribution of the parameters of the model, since the likelihood of the
observables is unknown, but we have the ability to sample from it through simulations. Our
ABC scheme is similar to the one used in [34], and involves prior-to-posterior iterations. The
base idea behind ABC is that the model posterior p(f|x), where x is the observed data and 6
the parameters of the model, can be approximated by p(0|p(z,y) < €), where p is a distance
metric, y is the simulated data and € is a threshold.

The unique property of our problem is that the dataset comprises of a large number of
images, which can be considered as semi-independent. We divide our full dataset d into N
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smaller parts d = dy,...,dy. This way we can factorize the posterior on the full dataset
into posterior from its parts

N
p(91d) ~ T p(6]d:)- (3.6)
i=1
Then we use the posterior of one part of the data as prior for another part

p(0ld1) ~ p(d1]0)p(0),
p(0|dit1) ~ p(di+110)p(0]d;),

where p(#) is the prior on the model parameters 6. This factorization allows for efficient
application of the simple rejection ABC algorithm, which allows for very low complexity of
our high performance computing implementation. In practice, we begin by sampling 10000
points from the model’s prior p(f) and using each model parameter configuration to simulate
a part of the data di. We accept the parameters 8 where the combined distance metric
computed from the simulations falls in the 20th percentile. We then resample the obtained
distribution and iterate the procedure. The details of the factorized ABC are discussed at
the end of this section and in appendix B.

We modify the ABC inference engine compared to [31, 32, 34] as follows: (i) updated
distance metrics, (ii) modifications to the ABC iteration engine and posterior modelling,
(iii) modification of model’s priors.

3.5.1 Distance metrics

We use the Maximum Mean Discrepancy (MMD), a kernel two-sample test for high dimensional
probability distributions [62], as our primary distance measure

1

d =——
MMD = NN

> k(wi xg) + k(yi, y5) — k@i, y5) — k(yi, ) (3.9)
,J

where x; is a property of the ith object in the real data and y; is a property of the jth object
in the simulated data. The kernel we use is Gaussian

2
k(x;,y;) = exp <—W> (3.10)
with free parameter 0. We describe how we choose the value of ¢ in appendix B. We
extend the input vector of the MMD compared to previous work to include magnitudes
MAG_APERS3, sizes FLUX_RADIUS, the two photo-z estimates assigned as described in section 3.4,
ellipticities calculated from windowed moments **_WIN_IMAGE, and a new variable called
the flux fraction fy, calculated as:

_ FLUX_APER3_b
), FLUX_APER3_j

o (3.11)

where FLUX_APER_b is the SEXTRACTOR flux in band b in a circular 3” aperture. Flux
fractions capture similar information as colours. This information is technically also present
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in the magnitudes, but these mostly impact constraints on the luminosity function parameters.
We found that the addition of the flux fractions improved our capacity to constrain the &;
parameters of the SED template coefficients distribution. Since our main goal is redshift
calibration, we decide to mostly focus on colours, magnitudes and redshifts. For this reason,
we include MAG_APER3 and f; in all 5 bands, but only include the ellipticity and FLUX_RADIUS
in the reference ¢ band. Our model does not account for colour gradients in the galaxy size,
so it is a reasonable approximation to only constrain the size model in the reference band.
The addition of information about the galaxy profile, for instance the concentration index
of galaxies (the ratio between the semi-major axes containing 50% and 90% of the elliptical
Petrosian flux, see e.g. [63, 64]), in the MMD distance could help to constrain the size model.
In our experiments, we found little correlation between the observed concentration indices
and morphological parameters from our model, probably due to the faintness of the selected
galaxy sample, in which shapes are dominated by the point spread function.

The MMD input vector is 14-dimensional. Before calculating the MMD distance, each
column is scaled, so that its mean is close to zero and its standard deviation to 1. The scaling
is obtained from the real data and used throughout the analysis for both real and simulated
data. Since the fraction of outliers in the COSMOS2020 catalog for galaxies above magnitude
25 is extremely large (~ 25%), we only select objects with MAG_APER3 < 25 in the ¢ band.
The galaxy sample is dominated by faint galaxies. In order to increase the weight assigned to
galaxies that are the target of current wide-field surveys, we include an MMD distance with
magnitude cut MAG_APER3_i=23. This choice ensures that the photometric properties of the
bright end of the galaxy population are well reproduced by our ABC posterior. Omitting
this distance worsens the fit slightly. Other selection cuts to remove stars and objects with
bad measurements are described in appendix B.

As the MMD does not capture the differences in number counts, which has an important
impact on the normalization of the luminosity function, we combine it with a fractional
difference in number of objects

Q= |Nstm — Nusc|

— 3.12
" Nusc (312)

where Ngpy is the number of objects in the simulation and Nyggc in the real data. This distance
is also included for both magnitude cuts at MAG_APER3_i < 23 and MAG_APER3_i < 25.
The distance metrics in an iteration n are computed for all patches that are included in
that iteration (|d,|). We aggregate each distance using the median, which is robust to outliers,
so that we have four distances (dng25,dng 23, dvmvp,25 and dyvp,23) for each parameter
configuration. We then rescale the distribution of each distance across ABC points so that it
has minimum equal to zero and median equal to 1 and finally add the distances with weights:

deomp = 0.1 - dng,25 +0.1- dng,23 + 0.6 - dMMD,25 +0.2- dMMD,23- (3.13)
The weights are chosen to rebalance the sample and upweight bright galaxies (below i

magnitude of 23), which are the target of Stage III cosmological surveys, and would otherwise
only account for 20% of the sample.
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3.5.2 [Iteration engine and posterior modelling

We use sets of HSC patches randomly selected without replacement and increase their number
in each iteration: the first set has |di| = 10 patches. Using fewer images at the beginning
of the ABC allows us to eliminate very unlikely areas of parameter space without wasting
computing time. We then add 1 patch at every subsequent iteration. If the sets of patches
are representative of the full sample, then our factorized ABC procedure corresponds to a
standard rejection ABC, with reduced computational costs. If the sub-sample of images
in one iteration is biased or has local properties, then the resulting ABC posterior could
be biased. We consider the probability that more than 10 randomly selected images would
present a systematic bias very unlikely and aggregate the distance measures computed from
the different images using a median, which is robust to outliers. This way, even if some of
the patches have local effects, we still obtain reliable ABC posteriors at each iteration.

In each iteration, we simulate the |d,| patches for 10000 parameter samples and keep the
2000 samples with the lowest combined distance as the posterior. Then, we perform a density
estimation for the posterior using a Gaussian Mixture Model (GMM) with 20 components.
We draw the new 10000 samples from this GMM to create a resampled posterior, and pass it
as a prior to the next iteration. The GMM fitting is performed in a transformed space to
make it easier for the GMM to capture non-Gaussian distributions. We check that the GMM
fitting accurately resamples the posterior and monitor the evolution of the distance measures
at each iteration. When there is no more improvement in any of the distance metrics, we
stop iterating the algorithm. This stopping condition is similar to that of [34], where we
look at the evolution of each distance separately because the combined distance is rescaled
differently at each iteration. We ran 23 iterations of the algorithm. The details of these
iterations are summarised in table 6 in appendix B. Appendix A introduces the prior that we
used for the ABC run, gives an overview of all model parameters and reports the resulting
mean and standard deviation of each parameter in the posterior.

4 Results

In this section, we present the results obtained from tuning our galaxy population model. We
iteratively performed ABC inference on randomly selected batches of images taken from the
HSC deep fields and complemented with reweighted COSMOS2020 many-band photometric
redshifts as described in sections 3.4, 3.5 and appendix B. We show the resulting posterior
distribution of the model parameters in the following section. Then, we use samples from the
posterior to run simulations in the COSMOS field and compare the photometric properties
obtained by running SEXTRACTOR with the same settings on simulations and real data. We
choose to use these patches as validation set, since we have redshift information for individual
objects from the photo-z codes LePhare and EAZY. We conclude with a comparison of the
obtained redshift distributions with the COSMOS2020 catalog at different magnitude cuts.

4.1 ABC posterior

Figures 4, 5, and 6 show the posterior distribution obtained after 23 iterations of the ABC
algorithm, where we fulfill our stopping condition (see section 3.5). The model has 46
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Figure 4. ABC posterior for the luminosity function parameters. The parameters for blue and red
galaxies are shown in light blue and red, respectively. The ABC prior is shown in grey.

parameters, that we show divided into three categories for clarity: luminosity function
parameters, SED template coefficients and galaxy morphology parameters.

The luminosity function parameters are the most relevant for determining the redshift
distribution. In figure 4 we show the parameters for blue galaxies in the lower left triangle and
for red galaxies in the upper right triangle. We also plot the prior distribution in grey. We

notice that the parameters for blue galaxies are better constrained than those for red galaxies,

*
intcp

very well constrained by the ABC, and we notice several strong correlations between the

possibly because blue galaxies are more abundant. The parameters . are generally

*
slope

and ¢g,,.The parameter apue We obtain is very close to the fiducial value of —1.3 whereas
Qred &~ —0.35 is slightly higher than the fiducial —0.5.

luminosity function parameters, most notably between M, .. and and between ¢,

In figure 5 we show the constraints on the SED templates coefficients. We show the
prior, obtained from the catalog level ABC run described in appendix A.1, in grey. The
posterior distribution of the parameters controlling the blue galaxy population is shown in
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Figure 5. ABC posterior for the parameters controlling the spectral energy distributions. The
parameters for blue galaxies at redshift 0 are displayed in light blue and in dark blue at redshift 3.
Similarly, the parameters controlling red galaxies at redshift 0 are in red and at redshift 3 in dark red.
The modes of the Dirichlet coefficients are encoded in the first five parameters and one final parameter
controls the standard deviation of the Dirichlet distribution. The ABC prior is shown in grey.

the lower triangle of figure 5 (in dark blue at redshift z=0 and light blue at redshift z=3)
and that controlling red galaxies in the upper triangle (in dark red for redshift z=0 and
light red for redshift z=3). The &; parameters are non-negative, since a template cannot
contribute less than zero to the galaxy SED. The fact that the posterior of some coefficients
is very close to the lower bound of the prior is thus a sign of that coefficient not contributing
to the SED of a galaxy type at redshift 0 or 3. We notice that the red galaxies are less
constrained, especially at high redshift. The passive galaxy template (73) is dominating the
SED of red galaxies, as imposed by the prior and there is a significant contribution of the
dusty red template (Tp), more prominent at z = 3. The contribution of the ELG template
(T3) increases with redshift, whereas that of the ELG with strong star formation template
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Figure 6. ABC posterior for the parameters controlling galaxy morphology. In light blue we show
the parameters for blue galaxies and in red for red galaxies. The ABC prior is shown in grey.

(T1) decreases with redshift. This contamination indicates that our galaxy population coming
from the red luminosity function is not completely passive (probably includes galaxies from
the green valley). The post-startburst template (7y) contributes little and decreases with
redshift. The blue galaxies are better constrained and dominated by the ELG template
(T3). The post-starburst template (7}) is also present in the blue galaxy population at all
redshifts, whereas the contribution of the ELG template with strong star formation (77)
slightly decreases with redshift. The contribution of the dusty red template (7j) increases
with redshift, whereas that of the passive red template (73) decreases with redshift. We
should not overinterpret the mixture of modes of the template coefficients, since our model
allows large freedom due to the scatter parameters and the mixture of templates with redshift
evolving coefficients. The KCORRECT templates (shown in figure 1) are derived from SDSS
data [65] and do not provide an accurate characterization of galaxies at high redshifts. We
also need to consider that there is a smooth transition between red and blue galaxies and
that these two categories might not provide a good description of high redshift galaxies.
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In figure 6, we show the parameters describing galaxy morphology. These are considerably
more difficult to constrain for our distance metrics, since the effects of the parameters are
often degenerate and describe the full intensity profile of the galaxies, which is not sufficiently
captured by ellipticity and radius alone. We again show the prior in grey and the posterior

distributions for blue and red galaxies in red and blue respectively. We note that the best

constrained parameter is log 7y " for both blue and red galaxies, whereas other parameters

red
spreas

due to a prior volume effect: the Beta distribution becomes uniform when eggfead = 2 thus
red red

mode spread — 2, since this would

correspond to U-shaped distributions of the intrinsic ellipticities which are unphysical. The

posterior on log ré%d’sm is also close to the prior boundary. We plan to extend the prior in

are less constrained. The posterior on e q is close to the prior boundary. This is probably

making e irrelevant. We do not extend the prior below e

future work. We test the impact on mean redshift of changing this parameter outside the
prior range and obtain a negligible shift. The distribution of Sersic indices for red galaxies
remains very broad, encompassing values between 1.5 and 3, whereas the distribution for
blue Sersic indices is centered at =~ 1. Sersic indices lack redshift evolution in our model,
which is observationally measured (high redshift galaxies have smaller Sersic indices [66]).

4.2 Comparison of simulations and real data

We sample 30 parameter configurations from the ABC posterior at random and simulate
the 56 HSC images overlapping with the COSMOS2020 COMBINED footprint. We run
SEXTRACTOR consistently in dual-image mode using the ¢ band image for detection on the
30 simulations and the real data and compare the obtained photometric properties of galaxies.
We show 2D contours and 1D histograms of selected photometric properties of simulated
galaxy samples and HSC real data up to MAG_APER3_i of 25 in figure 7. In the lower triangle
we show MAG_AUTO in the 7,4, z bands and FLUX_RADIUS in the ¢ band. The magnitudes
show excellent agreement both in the 1D projections and in the 2D contours. The sizes,
on the other hand, are more discrepant: there is a tail of large galaxies in the simulations
and also a population of galaxies smaller than the smallest galaxies in the data. This is an
indication of limitations in the modelling of galaxy morphology. Our model does not include
size evolution with redshift at fixed absolute magnitude, which can cause a model bias in
the size distribution. We do not expect the lack of size evolution with redshift to impact the
redshift distributions, since our sample selection in size is very broad. We plan to explore
extensions of the size model in future work. The upper triangle of figure 7 shows the colours
of galaxies and their correlations. Colours are very important, since they strongly correlate
with redshift. We observe a rather good agreement of the colour distributions between the
simulations and the real data, with some differences in the tails of the distributions.

In order to highlight the agreement and the discrepancies between colours, sizes and
magnitudes, and also display their evolution with redshift, we include a scatter plot in figure 8.
We show the relation between 7 band MAG_AUTO and FLUX_RADIUS, r —¢ and ¢ — z colours and
redshift (from the LePhare photo-z code for the real data). We observe that many trends
are present both in the data and simulations: in particular the colour-redshift degeneracies
are well reproduced by the simulations up to z &~ 4. Since simulating realistic galaxy colours
is generally a challenging task, this highlights the effectiveness and precision of this method.

,19,



—— Simulations

—— HSC data
g-r -1 -7 z-y
16
0.7 Z;;
02
14
—
@) 08 7
S —
< 0.2
U
<
-~
1.0
o 20 05 N
g —
<€, 220
- 0.0
E 200
N
o 27 s
F N
2 25
U
; 203 L
'(2 10.0
=
A _
é 70
>
3 10
[
MAG AUTO r MAG AUTO i MAG AUTO z FLUX RADIUS i

Figure 7. Comparison of selected photometric properties (MAG_AUTO in r, ¢ and 2z band, FLUX_RADIUS
in the ¢ band and colours) of HSC real data (in dark blue) and 30 simulations (in teal) in the
COSMOS field.

— 20 —



FLUX RADIUS i

1-i

0.6

02

redshift

1.0
0
0
0
0.2
08
A
0.2
0.2
0.6

N}AGJ\UTOJ FLUX_RADIUS i T-i iz

(a) Scatter plot of selected photometric properties of the data in the COSMOS field. Redshift refers
to LePhare photo-zs.

redshift

FLUX RADIUS i

©

-4

IAG.

UTO FLUX_RADIUS i

02
02
06

-
1-i

-
2 210

-7

(b) Scatter plot of selected photometric properties of one simulation in the COSMOS field.

Figure 8. Scatter plots of real data and one of the simulations in the COSMOS field. We include
MAG_AUTO and FLUX_RADIUS in the ¢ band, » — i and ¢ — z colours and redshift (from COSMOS2020

CLASSIC LePhare in the case of the real data). Each point corresponds to a randomly selected galaxy
from the catalog.
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We note that the simulations include an excess of galaxies at very high redshifts (z > 4.5)
that are not observed in the data. Due to the relation between absolute magnitude and
size (and the evolution of angular diameter distances with redshift), these objects are large
enough to be detected. This heavy high-z tail is likely to bias the redshift distribution. The
current parametrization of the luminosity function implies that the characteristic absolute
magnitude M*(z) becomes brighter at higher redshifts (with a log(1+ z) redshift dependence).
In a Universe that grows hierarchically, this is not the case at high enough redshifts. One
possibility would be to truncate the growth of M*(z) at a redshift zyax so that M*(z) = const
for z > zmax but constraining this parameter would be difficult since it would affect only a
small fraction of the objects. We also observe an abundance of large objects in the simulations
at all redshifts (as already observed in the 1D FLUX_RADIUS histogram and in the comparison
between real and simulated images). Our model does not account for the evolution of galaxy
sizes with redshift at fixed absolute magnitude, which is seen in observations where high
redshift galaxies are up to five times smaller than local galaxies (see [66] and references
therein). We leave high redshift model refinements for future work.

4.3 Redshift distributions

Since the photometric properties of the simulations are in statistical agreement with the
data, we derive the posterior redshift distributions. In figure 9 we show the n(z)s from 30
simulations in the COSMOS field together with those from the COSMOS2020 photometric
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Figure 9. Redshift distributions in the COSMOS field, from 30 simulations from the ABC posterior
(in orange), from COSMOS2020 photo-zs and from the COSMOS mocks generated by reweighting the
COSMOS2020 photo-zs based on HSC deep fields photometry (as explained in section 3.4) in 10 sets
of 56 patches. The top row shows LePhare photo-zs (in dark grey for COSMOS and sea green for the
mocks) and the bottom row EAZY photo-zs (in dark blue for COSMOS and purple for the mocks).

— 922 —



redshift catalog in the same field. We also include the redshift distributions obtained by
assigning COSMOS2020 photo-zs to 10 sets of 56 continuous patches selected at random in
the HSC deep fields, using the reweighting procedure presented in 3.4 to reduce the impact
of sample variance. We show three different magnitude cuts in the i band MAG_APER3 in
the three columns (MAG_APER3_i < 23, 24, 25) and the two different photo-z codes used in
COSMOS2020 (LePhare and EAZY) in the two rows. We notice that the redshift distributions
obtained from MCCL are smooth due to the absence of clustering in the simulations.

We report mean redshift errors for our simulations, corresponding to the standard
deviation of the means of the 30 simulations. We estimate an error on the mean redshift
of 0.002 at all magnitude cuts from COSMOS2020 using Bootstrap. Considering sample
variance and the systematic offsets between the two photo-z estimates in COSMOS2020
reported in section 2.3.1 and 2.3.2, we expect a minimum error of 0.02 in the mean redshift
from COSMOS2020. By summing this in quadrature with the MCCL errors, we obtain a
rough estimation of the combined errors oa3 ~ 0.02, 094 = 0.025 and 094 ~ 0.03 for the three
magnitude cuts at MAG_APER3_i= 23, 24,25. We report the mean redshifts and errors in
table 2. Our estimated redshift distribution for ¢ band magnitude cut of 23 has low mean
and is more concentrated around the mean than the n(z) of COSMOS2020, especially when
compared to EAZY photo-zs. This can be partly explained by the fact that the simulations
are only affected by shot noise due to the limited number of objects, but do not include
sample variance, since the objects are randomly distributed in space without accounting
for clustering. When considering the n(z) distributions reweighted according to deep field
photometry in figure 9, we observe the shift of &~ 0.015 towards lower redshift reported in
table 1. To make sure that the systematic offset is not due to the reweighting methodology, we
also create mocks from the simulations by assigning the redshifts from a simulated COSMOS
field to equal area sets of patches from other simulated HSC deep fields. The obtained redshift
shifts are negligible (Az ~ 0.001 at all magnitude cuts). The sample variance reduction
procedure leads to a 1o agreement between the redshift distribution of the simulations and the
COSMOS2020 data at magnitude cut of 23 in the ¢ band. The redshift distribution for objects
below ¢ band magnitude of 24 is in excellent agreement with COSMOS2020. The presence
of heavier high redshift tails in the simulations, originating from the extrapolated redshift
growth of M*(z) in the luminosity function parametrization, as explained in section 4.2,
reduces the mean redshift agreement for the MAG_APER3_i < 25 sample to 20. Removing
all simulated objects at z > 4.5 reduces the MCCL mean redshift estimate of this sample
to Zmccorn,2s = 1.131 £ 0.014, in better agreement with COSMOS2020.

5 Conclusions

Redshift calibration is one of the key systematics affecting cosmic shear measurements. Shifts
in the mean of the n(z) lead to biased cosmological constraints from large-scale structure
surveys [8-15]. It is therefore important to explore and combine a wide range of different
methodologies to infer accurate photometric redshift distributions.

In this work, we presented a simulation-based inference approach to obtain redshift
distributions from coadded telescope images, extending the result from [31] to deep HSC
data and increasing the accuracy of the method. This choice of dataset enables us to test
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MAG_APER3_i < 23 | MAG_APER3_i < 24 | MAG_APER3_i < 25

ZMCCL 0.596 0.826 1.168
Z1ePhare 0.618 0.824 1.110
ZLePhare, mocks 0.604 0.823 1.109
ZEAZY 0.632 0.842 1.110
ZEAZY, mocks 0.617 0.841 1.108
OMCCL 0.006 0.013 0.022

O combined 0.02 0.025 0.03

Table 2. We report the mean redshifts obtained from MCCL in the COSMOS field, together
with the LePhare and EAZY mean redshifts from COSMOS2020 at three different magnitude cuts
(MAG_APER3_i < 23, 24, 25). We also report the LePhare and EAZY mean redshifts obtained when
reweighting according to HSC deep photometry 10 sets of 56 images (mocks), the MCCL errors and a
rough estimation of the combined errors.

our method in the regime of Stage IV surveys. We developed several extensions of the
methodology, both in terms of modelling and inference. We calibrated the parameters of our
galaxy population model using photometric properties from galaxies in the HSC deep fields
and accurate photometric redshifts from COSMOS2020, and obtained realistic simulations.
We report the resulting parameters of the model in table 3. We compared our results with
photometric properties and photo-zs from the COSMOS2020 catalog, simulating the same
area with the Subaru telescope in five broad bands, and found good agreement. We showed
how sample variance in COSMOS has a strong impact on bright magnitude limited samples.
We found a systematic redshift offset in the COSMOS field for objects below magnitude 23
in the HSC 7 band, common to both photometric redshift methods (LePhare and EAZY).
Previous work [14, 29] found that the use of the COSMOS field high quality photo-zs alone
for redshift calibration could bias low the mean retrieved redshift. This is not in contrast with
our results, since redshift calibration strongly depends on the selection function and we are
only estimating the sample variance in the COSMOS field itself, and not assessing the impact
of using COSMOS2020 as a calibration sample within a methodology. Once this effect is taken
into account, our simulations achieve 1o agreement with the mean of the redshift distribution
of COSMOS2020 up to MAG_APER3_i=24, and 20 agreement up to MAG_APER3_i=25. The
overall shape of the n(z) agrees well. The presence of a high redshift tail at z > 4.5 requires
further investigation and is an indication of model bias in the luminosity function.
Forward modelling has several advantages that can benefit cosmological large-scale
structure surveys in different ways. On one hand, realistic simulations can be used to
optimize the survey strategies and model the selection function to the needed level of accuracy.
On the other hand, as done in this work, simulations can be used for calibration and to
study effects that are difficult to model otherwise, for example the impact of blending and
how unrecognized blends can affect the shear measurement. The MCCL method has good
prospects of applicability to data from upcoming Stage IV surveys such as the Legacy Survey
of Space and Time (LSST) [67] and Euclid [68, 69], which will have depths comparable to
the HSC deep fields. The error on the mean redshift per tomographic bin required by these
surveys is Az < 0.001(1 + z), about an order of magnitude tighter than the current work. In
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order to make this possible, a number of extensions and improvements are desirable. First
of all, imaging of wider deep fields with many band photometry in order to reduce sample
variance or deeper spectroscopy with clean selection cuts would greatly benefit photometric
redshift calibration in general and forward modelling methods in particular. Secondly, it
will be necessary to investigate the evolution of the luminosity function at high redshifts
and find a suitable parametrization in order to avoid an excess of high redshift galaxies.
This also includes designing good distance metrics to constrain the tail of the distribution
using simulation-based inference. It would be beneficial to extend our galaxy population
model to include effects that are well understood but not currently modelled, for example the
size evolution of galaxies with redshift at fixed absolute magnitude and a relation between
the absolute magnitude and colour of red galaxies (more massive galaxies are redder [70]).
Another possible improvement of the model of morphologies is the inclusion of bulges and
disks instead of a single Sersic profile, as well as the redshift evolution of the Sersic index. A
very promising path to a more physically motivated modelling is the use of stellar population
synthesis (SPS) models instead of spectral templates to model the galaxies’ SEDs. This entails
sampling a stellar mass function rather than two luminosity functions and constructing SEDs
directly from physical properties of galaxies (such as star formation rates, metallicities and
gas properties). This has become feasible in terms of computing time through the emulation
of SPS models [33, 71-73]. Emulators can also be used to speed up the UFIG simulations,
by mapping the transfer function between catalogs obtained from the galaxy population
model and realistic detections. This requires a more detailed understanding of selection
effects and the impact of blending. Faster simulations would allow us to test extensions of
the model more extensively. Finally, we have discussed how sample variance can impact
redshift distributions, when the area considered is limited. In order to obtain realistic sample
variance in our simulations, we need to distribute galaxies following the underlying large-scale
structure. This can be achieved with the required computational speed by using Subhalo
Abundance Matching (SHAM) and approximate simulations as described in [74].
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A Galaxy population model priors

We use a similar model as [31, 34, 36], with a number of modifications, described in section 3.
We summarize the model with a description of model parameters, prior distributions and
allowed ranges in table 3. The model has 46 parameters, but 4 of them are redundant: modes
of the template coefficients a; are always forced to sum to > a; = 1. The luminosity function
parameters use the same prior as [34], with standard deviation scaled by a factor of x3. The
prior column in table 3 shows the distribution (Normal, Uniform, or Dirichlet) of the prior,
as well as the additional bounds applied. For all variables using the Uniform distribution,
a joint Sobol sequence was used to generate the prior. A suitable prior for the template
coefficients ; is obtained through a catalog level ABC using the COSMOS2015 catalog [59].
We describe this procedure in the next subsection. Table 3 also lists the mean and standard
deviation of each parameter’s 1D posterior distribution.

A.1 Template coefficient priors from COSMOS2015 catalog

As mentioned in section 3.1, we do not rely on the weights derived in [31] using the New
York University Value-Added Galaxy Catalog to differentiate the SED between red and
blue galaxies, but impose different priors on the Dirichlet &; parameters for the two galaxy
types. This is motivated by the changes to the spectral energy distribution modelling
described in section 3.1, that make the model more interpretable. To capture redshift-colour
dependencies of higher redshift galaxies, we derive these priors from a comparison with
the COSMOS2015 catalog [59].

First, we select galaxies from this catalog using the following cuts: z € [0.3,4], mag;, €
[10,24.5], TYPE == 0. The comparison between the simulated and observed galaxies is
performed using their redshift and colours, defined with respect to the reference band. We use
colour and redshift to avoid constraining the luminosity function, and exploit just the colour-
redshift information. We use the reference band ip and compute the colours as a difference
with bands NUV,u,B,V,r,zpp,Y,J,H, Ks. For the simulated galaxies, these magnitudes
are calculated using UF1G up to catalog generation, with the use of filters provided in the
COSMOS2015 dataset. The comparison is performed for red and blue galaxies separately. In
the real data we use the CLASS provided by COSMOS2015 to separate between star-forming
and quiescent galaxies (classified using NUV-r /r — J diagram). We use the nearest-neighbour
estimator of Universal Divergence [81] as a distance metric between simulations and real data.

We do not intend to create a posterior on the template coefficient values, but rather find
the upper and lower limits on the Dirichlet modes of template coefficient values o;. We then
perform an iterative procedure of progressively narrowing down the ranges for all coefficients.
Starting with a uniform range for &; € [0, 1], we generate 10000 samples from the luminosity
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Parameter Meaning ‘ Prior ‘ Posterior
My Gope Slope of the redshift evolution of the parameter | Prior from [34] x3, | —4.0 £ 0.3
M* in the Schechter LF for blue galaxies, see | € [—6,1.5]
equation (3.2)
— b intept Intercept of the redshift evolution of the parame- | Prior from [34] x3, | —19.9+0.1
8 ter M* in the Schechter LF for blue galaxies, see | € [—23,—16]
% equation (3.2)
b5 My slope Slope of the redshift evolution of the parameter | Prior from [34] x3, | —0.3 £0.3
E M* in the Schechter LF for red galaxies, see equa- | € [—4, 3]
=) tion (3.2)
0
_g r*intcpt Intercept of the redshift evolution of the parame- | Prior from [34] x3, | —21.0 + 0.1
% ter M* in the Schechter LF for red galaxies, see | € [—23, —17]
= equation (3.2)
B exp Exponent of the redshift evolution of the parame- | Prior from [34] x3, | —0.31 £ 0.09
ter ¢* in the Schechter LF for blue galaxies, see | € [—2,1.5]
equation (3.3)
[ amp Amplitude of the redshift evolution of the param- | Prior from [34] x3, | 0.0044 + 0.0004
eter ¢* in the Schechter LF for blue galaxies, see | € [l.le—5,1.2e—2]
equation (3.3)
r exp Exponent of the redshift evolution of the param- | Prior from [34] x3, | —1.7+0.2
eter ¢* in the Schechter LF for red galaxies, see | € [—11,7]
equation (3.3)
&5 amp Amplitude of the redshift evolution of the param- | Prior from [34] x3, | 0.009 £ 0.001
eter ¢* in the Schechter LF for red galaxies, see | € [2e—8,2.5e—2]
equation (3.3)
Qplue Steepness of the faint-end slope in the Schechter | U[—1.5, —1.1] —1.29 +0.02
LF for blue galaxies, see equation (3.1)
Qred Steepness of the faint-end slope in the Schechter | U[—0.7,—0.1] —0.36 +0.05
LF for red galaxies, see equation (3.1)
log r5osll;:e/red Slope of the evolution of the average intrinsic | U[—0.4,—0.1] b: —0.15 4+ 0.01
. physical size of galaxies with absolute magnitude r: —0.21 £0.02
~
—
\; log r502}::p/:m Intercept of the evolution of the average intrinsic | [0, 2] b: 0.84 +£0.02
E? physical size of galaxies with absolute magnitude r: 0.81 +0.05
S
@ log r50:tlsc/'°d Standard deviation of the normal distribution we | 2/[0.4,0.75] b: 0.56 +0.03
g use to sample intrinsic physical galaxy sizes r: 0.44 +0.02
% nblue Mode of the Sersic index distribution of blue galax- | ¢/[0.2, 2] 1.0£0.2
7‘3 ies
O
nted Mode of the Sersic index distribution of red galax- | U[1, 4] 20£04
ies
}:zzged Ellipticity distribution mode for blue/red galaxies | 1/[0.01,0.99] b: 0.83+0.04
r: 0.69 +0.08
;)ll)l:Zé(l;Ed Ellipticity distribution spread for blue/red galax- | U2, 4] b: 2.7+£0.1
ies r: 2.14 + 0.06
g _l;glféred Normalized Dirichlet concentration parameters | 5-dimensional See table 5
~ ' at z=0/3 from which the template coefficients | Dirichlet, see A.l
& for blue/red galaxies are sampled, i=0,...,4, | for details
o _
< Z . Ocizl
q bl d :
= %L:eo//r; Standard deviation of the normalized Dirichlet | U[le — 4, 0.16] See table 5
' concentration parameters at z=0/3 from which
the template coefficients for blue/red galaxies are
sampled
Table 3. Table with galaxy population model parameters, priors and resulting 1D posteriors.

Luminosity function is shortened as LF. The details of the prior ranges of the Dirichlet distributions
for the template coefficients are explained in subsection A.1. We briefly describe the model parameters
and report the type of prior and the its boundaries. The last column shows the resulting mean value
and standard deviation from the ABC posterior.
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~blue =~blue ~blue =~blue ~blue ~red ~red ~red ~red ~red
parameter Qp,z aj .z a3z asz .z QY 2 Aoz | A1z | Aoz | A3 | Oy

lower limit 0 0 0 0 0 0 0 0 0.6 0
upper limit | 0.25 | 0.25 1 0.7 1 03 ] 01 | 0.3 1 0.3

Table 4. Upper and lower limits on the modes of the Dirichlet coefficients a; for blue and red galaxies
derived from the catalog level ABC. The same boundaries are imposed at redshifts z = 0 and z = 3.
These are the upper and lower limits of the Dirichlet priors of the subsequent ABC run on HSC
DUD data.

type, z ag aq Qo a oy Qistd
blue, z = 00.021 £+ 0.005 0.09 £ 0.01 0.50+0.03 |0.14 £0.02| 0.25+0.03 |0.099 £ 0.005
blue, z = 3| 0.07 +0.02 0.06 4+ 0.01 0.55+0.03 |10.04 £0.02| 0.28£0.04 |0.075 4 0.009
red, z=0 | 0.08+0.02 0.07 £ 0.01 0.006 £ 0.004 | 0.80 = 0.02| 0.04 £+ 0.02 0.08 +0.02
red, z=3 | 0.13£0.02 |[le—5+2e—5| 0.104+0.03 |0.76 & 0.03|0.016 + 0.008 | 0.04 4+ 0.02

Table 5. ABC posterior means and standard deviations of the SED coefficients for red and blue
galaxies at redshift z = 0 and z = 3.

function prior described in section 3.1. We then calculate Universal Divergence between the
redshifts and colours from the simulated and COSMOS galaxies. The columns are scaled
before the comparison, using a robust scaler from the scikit-learn package. We select
2000 best points and calculate the lower and upper limits on &;. We then input these new
limits and generate another 10000 samples with them. We repeat this process 20 times. The
ranges for the coefficients obtained from this procedure define the prior in the main ABC
run and are shown in table 4, with coefficients rounded roughly to 0.1. The obtained ranges
agree with expectations for both blue and red galaxies, with as and &3 dominating for the
blue and red galaxies, respectively. We report the means and standard deviations of the
obtained posterior of the SED template coefficients in table 5.

B Details of the ABC runs

In this appendix, we describe the details of our ABC analysis that were omitted in section 3.5.
The ABC iteration engine is similar to the one presented in [34] and depends on a sequence
of prior-to-posterior iterations.

Iterations. We start by sampling 10000 parameter configurations from the prior defined in
table 3, with limits in the Dirichlet coefficients a; from table 4. We discard samples when
the simulation fulfills one of the rejection criteria: (i) having more than 1 million blue or red
galaxies (ii) having less than 300 or more than 20000 objects below magnitude 24 in the ¢ band.
These are considered extreme conditions, that no simulation that is similar to the real data
would fulfil and help us restrict to more likely parts of parameter space, without an excessive
use of computing time. For each of the 10000 configurations, we simulate 10 HSC patches
in the first iteration, as described in section 3.5. In the following iterations, we increase
the number of simulated patches by 1, whereas the number of parameter configurations
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iteration | Npsim | sky area
1 10 | 0.38 deg?
2 11 | 0.42 deg?®
3 12 | 0.46 deg?®
4 13 0.5 deg?
5 14 | 0.54 deg?
6 15 | 0.58 deg?
7 16 | 0.61 deg?
8 17 | 0.65 deg?
9 18 | 0.69 deg?®
10 19 | 0.73 deg?®
11 20 | 0.77 deg?
12 21 0.8 deg?
13 22 | 0.85 deg?
14 23 | 0.88 deg?
15 24 | 0.92 deg?
16 25 | 0.96 deg?
17 26 1 deg?
18 27 | 1.04 deg?
19 28 | 1.08 deg?
20 29 | 1.11 deg?
21 30 | 1.15 deg?
22 31 | 1.19 deg?
23 32 | 1.23 deg?

Table 6. Number of patches used in each iteration and corresponding sky area covered by the HSC
DUD patches.

is fixed to 10000. Table 6 shows the number of patches simulated per iteration and the
corresponding sky area in deg?.

Sample selection. The distance measures described in section 3.5.1 are computed using
the SEXTRACTOR catalogs, created in all grizy bands, based on the detection in the ¢ band.
We perform the PSF estimation using a Convolutional Neural Network [60], in the same way
as in [32]. We run SEXTRACTOR on the HSC data first, and then on the simulated images
during the ABC iterations. From the catalogs, we select galaxies with the following set of
cuts applied in all bands with strict and conditions:

FLAGS < 4, 14 < MAG_APER3 < 30, MAG_AUTO < 99, 0.1 < FLUX_RADIUS < 100,
FLUX_AUTO

—3<1 SNR) = 1 Sl

og10 (SNR) = logyg (FLUXERR_AUTO

N_EXPOSURES > 0, 0.5 < r50/PSF_FWHM, CLASS_STAR < 0.95

)<¢ 0 < ELL < 1,
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where ELL is the absolute ellipticity calculated from windowed moments **_WIN_IMAGE,
N_EXPOSURES is the number of exposures in the coadd at the position of the object, 759 is the
object size defined as r50 = 2-1n(2) - (X2_WIN_IMAGE 4 Y2_WIN_IMAGE)'/2, as in [32]. Both the
PSF size cut and the CLASS_STAR cut are applied to create a pure galaxy sample. In addition,
we impose MAG_APER3 < 25 in the ¢ band. Note that the SEXTRACTOR detections are matched
in the simulations to the true properties of the injected galaxies, as explained in section 3.2,
so that a further criterion for simulated objects to be selected for the MMD distances is
that the detection has been matched to a true simulated object. We additionally require
that the objects do not lie on the image mask. When computing dyvwp 23 we additionally
impose MAG_APER3_i < 23.

Optimization of the kernel radius parameter. To obtain the most sensitive MMD
distance, it is common to optimize the parameters of the kernel used to compute it [62]. We
use a Gaussian kernel with a single parameter o, corresponding to the correlation scale. We
compute o for the different MMD distances as the median distance between samples drawn
from the same probability distribution (the real data) [31, 62].

Modelling of posterior distributions. We create the posterior distribution at each
iteration by setting the 20th percentile as a threshold, thus selecting the 2000 out of 10000
samples with the smallest combined distance. We then create a model of this posterior using
a Gaussian Mixture Model (GMM), from the scikit-learn implementation.” We use 20
Gaussians to fit the distribution. Before fitting, we transform the model parameter samples to
a gaussianized space. This is done to make the GMM more suited for fitting the distribution,
especially for parameters with uniform priors. First we rescale the parameters to lie between
€ [le—8,1 — 1le—8], and then apply a Gaussian inverse-CDF transform. We draw 10000 new
samples in the gaussianized space using Sobol sampling and invert them back to the original
space. We verify that the GMM model in the transformed space is a good representation
of the posterior by comparing the 2D marginal projections of all parameter combinations
for the original 2000 samples and 10000 new GMM samples. The GMM samples from the
model posterior are passed as priors to the next iteration of the ABC algorithm.

"scikit-learn.org/stable/modules/generated /sklearn.mixture. GaussianMixture.html.
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C SExtractor settings

We report in table 7 the SEXTRACTOR configuration.

SExtractor parameter Value
CATALOG_TYPE FITS 1.0
DETECT TYPE CCD
DETECT_ MINAREA 5
THRESH_TYPE RELATIVE
DETECT_THRESH 1.5
ANALYSIS_THRESH 1.5
FILTER Y
FILTER NAME gauss_ 3.0__5x5.conv
DEBLEND NTHRESH 32
DEBLEND_MINCONT 0.00001
CLEAN Y
CLEAN_PARAM 1.0
MASK_TYPE CORRECT
MAG_ZEROPOINT 27
PIXEL_SCALE 0.168
STARNNW _ NAME default.nnw
BACK_SIZE 128
BACK_FILTERSIZE 3
BACKPHOTO_TYPE LOCAL
BACKPHOTO_THICK 24
WEIGHT_TYPE NONE

Table 7. SEXTRACTOR configuration used in this work both on real images and simulations. The
missing parameters change per patch and band and are described in the text.
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