
2.738

Article

Coarse-Grained Effective
Hamiltonian via the Magnus
Expansion for a Three-Level
System

Nicola Macrì, Luigi Giannelli, Elisabetta Paladino and Giuseppe Falci

Special Issue
Selected Feature Papers from Italian Quantum Information Science Conference 2022

Edited by

Prof. Dr. Francesco Ciccarello, Prof. Dr. Rosario Lo Franco and Prof. Dr. Gioacchino Massimo Palma

https://doi.org/10.3390/e25020234

https://www.mdpi.com/journal/entropy
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com/journal/entropy/special_issues/X97LEL6815
https://www.mdpi.com
https://doi.org/10.3390/e25020234


Citation: Macrì, N.; Giannelli, L.;

Paladino, E.; Falci, G. Coarse-Grained

Effective Hamiltonian via the

Magnus Expansion for a Three-Level

System. Entropy 2023, 25, 234.

https://doi.org/10.3390/e25020234

Academic Editor: Vladimir I. Manko

Received: 15 December 2022

Revised: 18 January 2023

Accepted: 25 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Coarse-Grained Effective Hamiltonian via the Magnus
Expansion for a Three-Level System

Nicola Macrì 1,2,* , Luigi Giannelli 1,3 , Elisabetta Paladino 1,2,3 and Giuseppe Falci 1,2,3

1 Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, 95123 Catania, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, 95123 Catania, Italy
3 CNR-IMM, UoS Università, 95123 Catania, Italy

* Correspondence: nicola.macri@dfa.unict.it

Abstract: Quantum state processing is one of the main tools of quantum technologies. While real

systems are complicated and/or may be driven by non-ideal control, they may nevertheless exhibit

simple dynamics approximately confined to a low-energy Hilbert subspace. Adiabatic elimination is

the simplest approximation scheme allowing us to derive in certain cases an effective Hamiltonian

operating in a low-dimensional Hilbert subspace. However, these approximations may present

ambiguities and difficulties, hindering a systematic improvement of their accuracy in larger and

larger systems. Here, we use the Magnus expansion as a systematic tool to derive ambiguity-free

effective Hamiltonians. We show that the validity of the approximations ultimately leverages only

on a proper coarse-graining in time of the exact dynamics. We validate the accuracy of the obtained

effective Hamiltonians with suitably tailored fidelities of quantum operations.

Keywords: low-energy Hamiltonian; leakage; adiabatic elimination

1. Introduction

In the last decade, research in quantum physics is experiencing a second quantum
revolution [1,2]. Huge efforts have been and are being made in developing and engineering
quantum hardware and control [3], allowing novel quantum tasks to be performed in
computation [4], communication [5,6], and sensing [7,8]. When dealing with real-life
quantum hardware, one possibly has to take into account the presence of states that are
not populated during the dynamics but still affect it via virtual processes. They form a
subspace whose dimensions may become exponentially large with the size of the system,
and they may produce various phenomena from the renormalization of coupling constants
to leakage [9] from the relevant “computational” Hilbert subspace. These non-relevant
sectors can be removed or “sterilized” if an effective Hamiltonian Ĥeff is determined that
describes the same dynamics of the original Ĥ for relevant cases, and it is of course much
simpler than the original one. Effective models are key tools in the study of complex
quantum systems [10] since a simpler Hamiltonian [11] may allow for analytical solutions
or for faster convergence of numerical calculations [12].

Adiabatic elimination (AE) is perhaps the simplest and still successful state-based
method to determine Ĥeff, eliminating states that are mostly not populated from the
dynamics. However, this approach presents ambiguities and limitations (see Section 3.1)
pointed out, for instance, in Refs. [13,14], where they have been tackled using various
techniques such as Green’s functional formalism [13] and exploiting Markov approximation
in a Lippman–Schwinger approach [14]. A canonical Hamiltonian-based method for
computing low-energy effective Hamiltonians relies on the Schrieffer–Wolff transformation
technique [15,16], i.e., searching for a suitable unitary transformation that approximately
decouples the relevant and the non-relevant subspaces.

Here, we propose a derivation of an effective coarse-grained Hamiltonian, which is
naturally free from the ambiguities and limitations mentioned above. The method is based
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on the Magnus expansion (ME), which expresses the solution of a differential equation
in an exponential form [12,17]. Applied to the time-evolution operator U in a suitable
coarse-graining time τ, it yields an approximation whose logarithm gives an effective
Hamiltonian. In general, the result depends on τ which must be chosen, if possible, in
a proper way depending on the values of the system parameters and the significance of
the relevant dynamics obtained a posteriori. As a benchmark, we apply the method to a
three-level system in Lambda configuration. We discuss the systematic improvement of the
approximation and compare it with other strategies. We check the validity of the results by
using various figures of merit, the long-time fidelity of quantum evolution being the most
informative one.

2. Methods

2.1. Effective Hamiltonian by the Magnus Expansion

The Magnus expansion is a mathematical tool that allows one to express the solution
of a differential equation in an exponential form. We apply that to the time-evolution
operator U(t, t0) of a quantum system that solves the Schrödinger equation U̇(t, t0) =
−i H(t)U(t, t0) for initial condition U(t0, t0) = 1. The Magnus expansion allows us to
write the logarithm of U(t, t0) as a series, or, likewise,

U(t, t0) = e−i ∑i Fi(t,t0)

The two lowest-order terms of the expansion are given by (h̄ = 1)

F1 =
∫ t

t0

ds H(s),

F2 = − i

2

∫ t

t0

∫ s1

t0

ds1 ds2 [H(s1), H(s2)]

(1)

with s1 > s2. The term F1 yields the so-called average Hamiltonian [18], while F2 provides
already an excellent approximation in most cases. Higher-order terms involve time-ordered
integrals of higher-order nested commutators [12,17,19] and are reported in Appendix A.1.

Coarse-graining of the dynamics is operated by first splitting the evolution operator
into time slices τ = (t − t0)/N

U(t, t0) = ∏
j

U
(

tj +
τ

2
, tj −

τ

2

)

=: ∏
j

Uj.

Then we consider the ME in the j-th sub-interval and truncate the series at a given
order n

i ln Uj ≈ i
n

∑
i=1

Fi(tj +
τ

2
, tj −

τ

2
) =: Heff(tj|τ) τ

obtaining an effective Hamiltonian (for a brief discussion about convergence, see
Appendix A.2). The structure of the ME suggests that accuracy is related to the smallness
of the commutator [H(t), H(t′)] at different times, and it may be increased by choosing
a small enough τ. At the same time, if a τ that is large enough can be chosen, then the
fast dynamics in the integrals defining Fi is averaged out. When successful, this procedure
defines a coarse-grained Hamiltonian Heff(tj) whose explicit dependence on τ can be
neglected. We finally obtain the approximate time-evolution operator as

U(t, t0) ≈ ∏
j

e−iHeff(tj)τ ≈ T exp
{

− i
∫ t

t0

ds Heff(s)
}

=: Ueff(t, t0)
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2.2. Validation of the Effective Hamiltonian

Our main goal is to find a relatively simple Heff that accurately describes the dynamics
in a suitable “relevant” subspace. The dynamics taken outside this subspace is not im-
portant, so Heff needs not to be accurate there. Since we are interested in the dynamics,
it is natural to compare the exact population histories and coherences for the low-energy
dynamics with those obtained with Heff.

More compact and effective quantifiers can be defined by adapting to our standard
problem metrics for operators in the Hilbert space, as the operatorial spectral norm or
trace norm [20–25]. We anticipate that the effective Hamiltonian we will derive has a
block diagonal structure, Heff = P0 Heff P0 + (1− P0) Heff (1− P0), where the projection
operator P0 defines the relevant subspace. Since [Heff, P0] = 0 both the relevant subspace
and its orthogonal complement are invariant under the effective dynamics. Then a suitable
quantifier is defined as a fidelity

F = min
|ψ0〉

{

|〈ψ0|U †Ueff|ψ0〉|2
}

(2)

where |ψ0〉 = P0|ψ0〉 is a vector belonging to the relevant subspace. This subspace fidelity
can be smaller than one, either because Heff is not accurate in describing the dynamics in
the relevant subspace or because the exact dynamics determines leakage from the relevant
subspace, with probability L =

〈

ψ0

∣

∣U†(t) [1− P0]U(t)|ψ0

〉

. Therefore, we could define
another figure of merit characterizing procedures where leakage from the subspace has
been excluded by post-selection

F′ = min
|ψ0〉

{

∣

∣

∣

∣

〈ψ0|U †P0√
1 − L

Ueff|ψ0〉
∣

∣

∣

∣

2
}

= min
|ψ0〉

{ |〈ψ0| U †Ueff|ψ0〉|2
1 − L

}

(3)

which is the subspace fidelity between the effective dynamics and the post-selected vector.
The impact of leakage will be quantified by approximating F′ ≈ F′

m := F + Lm, where
Lm is the probability of leakage evaluated for the initial state that enters the minimization
determining F in Equation (2). This approximation is justified if both the infidelity and
the leakage are small, I := 1 − F ≪ 1 and L ≪ 1, and arguing that while F′

m is not a lower
bound as F′ in Equation (3), the worst-case error may be a significant overestimate for
many initial states [20,21].

3. Application to Adiabatic Elimination

We now apply the procedure outlined to a three-level system in Lambda configuration
modelled by the Hamiltonian

Ĥ = − δ

2
|0〉〈0|+ δ

2
|1〉〈1|+ ∆|2〉〈2|+ 1

2 ∑
k=0,1

[

Ω∗
k |k〉〈2|+ h.c.

]

. (4)

which describes a quantum network with on-site energies (±δ/2, ∆/2) and tunnelling
amplitudes Ωk (see Figure 1a). The same Hamiltonian provides the standard description in
a rotating frame of a three-level atom driven by two near-resonant corotating semiclassical
AC electromagnetic fields. In this case, Ωk values represent the amplitudes of the fields
while the single-photon detunings between the atomic level splitting Ei − Ej quasi-resonant
with the frequencies ωk of the fields, δ0 := E2 − E0 − ω0 and δ1 := E2 − E1 − ω1, enter the
diagonal elements as δ := δ2 − δ1 and ∆ = (δ2 + δ1)/2. This model describes several three-
level coherent phenomena used in quantum protocols from Raman oscillations [26,27],
stimulated Raman adiabatic passage [28–30], and hybrid schemes [30,31].

The dynamics is governed by the Schrödinger equation i ċi(t) = ∑
2
j=0〈i|Ĥ|j〉 cj(t) for

i, j = 0, 1, 2. The system is prepared in the subspace spanned by the two lowest energy
states, i.e., |ψ0〉 = c0|0〉+ c1|1〉, which is defined as the “relevant” subspace. We want to
understand under which conditions the dynamics is confined to the relevant subspace, and
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to determine a Hamiltonian operator Ĥeff whose projection onto this subspace effectively
generates the confined dynamics.

3.1. Adiabatic Elimination: Ambiguities and Limitations

AE offers a simple and handy solution to this problem [26]. The standard proce-
dure [13,14,26] relies on the observation that if ∆ ≫ δ, |Ωk| for k = 0, 1, transitions from the
lowest energy doublet and the state |2〉 are suppressed. Then, assuming that ċ2(t) can be

neglected in the Schrödinger equation, we find c2 = −Ω0
2∆

c0 − Ω1
2∆

c1. Substituting in the
equations for {c0, c1} we obtain an effective two-level problem i∂t|φ〉 = Ĥeff|φ〉 where

Ĥeff = −
( δ

2
− S0

)

|0〉〈0|+
( δ

2
+ S1

)

|1〉〈1|+
( Ω̃

2
|1〉〈0|+ h.c.

)

where Sk = −|Ωk|2/(4 ∆), k = 0, 1 are energy shifts and Ω̃ = −Ω0 Ω∗
1/(2 ∆) is the

normalized coupling. Since Ĥeff is defined in the relevant subspace, the state |2〉 is not
involved in the problem anymore. This procedure may be generalized to d > 3-level
systems yielding an effective Hamiltonian in an n < d-dimensional relevant subspace.

It has been pointed out in the literature [13,14] that standard AE suffers from a number
of ambiguities and limitations, which we summarize here.

1. If we add to H a term η1 that is an irrelevant uniform shift of all the energy levels, the
procedure yields an Heff that depends on η in a non-trivial way. Thus, the procedure
is affected by a gauge ambiguity. By comparing the exact numerical result with an
analytic approximation based on the resolvent method a "best choice", η = 0 has been
proposed [13].

2. AE completely disregards the state |2〉. However, although apparently confining the
dynamics to the relevant subspace, the procedure yields that c2(t) 6= 0 and depend
on time. Thus, on the one hand, the approximation misses leakage to |2〉; on the
other, it does not guarantee that the normalization of states of the relevant subspace
is conserved. In Ref. [14], the problem of normalization is overcome by writing
separated differential equations in the relevant and in non-relevant subspaces.

3. The residual population in |2〉 as given by the approximate |c2(t)|2 may undergo very
fast oscillations with angular frequency ∼ ∆. This is not consistent with the initial
assumption that ċ2 ≈ 0. In Ref. [14], the assumption is supported by arguing that it
holds at the coarse-grained level, which averages out the dynamics at time-scales of
∼ ∆−1 or faster.

4. Standard AE is not a reliable approximation for larger two-photon detunings or larger
external pulses, and it is not clear how to systematically improve its validity.

We will show how the methodology outlined in Section 2.1 yields an effective formula-
tion that overcomes the whole criticism above, leveraging only on coarse-graining of the
dynamics.

3.2. Magnus Expansion in the Regime of Large Detunings

We now turn to coarse-graining via the ME. Keeping in mind the regime where
∆ ≫ |Ωk| we first transform the Hamiltonian Equation (4) to the interaction picture,

H̃(t) = U†
0 (H − H0)U0 =

Ω∗
0

2
|0〉〈2| e−i(∆+δ/2)t +

Ω∗
1

2
|1〉〈2| e−i(∆−δ/2)t + h.c.

where U0(t) := e−iH0t and H0 is the diagonal part of H. The first two terms of the ME in
Equation (1) are evaluated using the integrals reported in the Appendix B



Entropy 2023, 25, 234 5 of 14

H̃
(1)
eff (t) =

Ω∗
0

2
e−i(∆+δ/2)t sinc

(

(∆+δ/2)τ
2

)

|0〉〈2|+

+
Ω∗

1

2
e−i(∆−δ/2)t sinc

(

(∆−δ/2)τ
2

)

|1〉〈2|+ h.c.

H̃
(2)
eff (t) = S0|0〉〈0|+ S1|1〉〈1| − (S0 + S1)|2〉〈2|+

Ω̃

2
|1〉〈0|eiδt + h.c.

where the coefficients are given by

Sk = − |Ωk|2
4
(

∆ + (−1)kδ/2
)

[

1 − sinc
(

∆+(−1)kδ/2
2 τ

)]

, (5)

Ω̃ = −Ω0Ω∗
1

2

∆

(∆2 − δ4/4)

[

sinc δτ
2 − sinc ∆τ

2

]

, (6)

for k = 0, 1. The first-order H̃
(1)
eff is an averaged version of H̃. The second-order H̃

(2)
eff

contains shifts of the diagonal entries and an off-diagonal term coupling directly |0〉 and

|1〉. At this order, that state |2〉 is energy-shifted but not coupled to other states.
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Figure 1. (a) The three-level model Equation (4) describes, for instance, electronic levels confined

in quantum dots Ωk (on the left), representing tunnelling amplitudes and δi gate voltages to the

ground; alternatively, it is the Hamiltonian in a rotating frame of a three-level atom (on the right)

driven in Λ configuration, Ωk and δi being amplitudes and detunings of the external fields. (b–d)

Comparison between exact dynamics and effective dynamics obtained by ME (magenta) and standard

AE (blue) for the parameters values δ = 0.3 ∆, Ω0 = 0.3 ∆ and Ω1 = 0.5∆. (b) Population histories

|〈ψ0|Ui(t)|ψ0〉|2 (curve starting from 1), |〈ψ1|Ui(t)|ψ0〉|2 (starting from 0) and |〈2|Ui(t)|ψ0〉|2 (grey

dashed). The smooth grey lines refer to the exact evolution. (c) The two-level fidelity F Equation (2) at

larger times. The black line refers to values of (δ, Ωk) four times smaller. (d) The fidelity for protocols

with post-selection F′
m = F + Lm.
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We now focus on the regime ∆ ≫ δ, |Ωk| where we can choose a coarse-graining time
such that 2π/∆ ≪ τ ≪ 2π/δ. Then all the sinc(x) functions appearing in the terms of

Heff above are nearly vanishing except for sinc(δτ/2) ≈ 1. As a result first-order H̃
(1)
eff (t)

averages out while the coefficients of H̃
(2)
eff (t) become

Sk = − |Ωk|2
4
(

∆ + (−1)kδ/2
) ; Ω̃ = −Ω0Ω∗

1

2

∆

(∆2 − δ4/4)
(7)

Transforming back to the laboratory frame, we finally obtain

Heff =−
(

δ

2
− S0

)

|0〉〈0|+
(

δ

2
+ S1

)

|1〉〈1| + (∆ − S0 − S1)|2〉〈2|+

+
Ω̃

2
|1〉〈0| + h.c. (8)

Before discussing the results in detail, we make some general comments. As antic-
ipated, we obtain a block-diagonal effective Hamiltonian. In the relevant subspace, it is
similar to the result of standard AE. Concerning the criticism of the standard AE mentioned
in Section 3, we first observe that our result is not affected by the gauge ambiguity emerging
for H → H + η1, where the “best choice” rule η = 0 of Ref. [13] is set naturally. Indeed,
the uniform shift only changes trivially U0 and does not enter H̃ where only level splittings
appear. Secondly, the state |2〉 is not eliminated but the block diagonal structure consistently
preserves normalization in each subspace. Thus, there is no need to assume that ċ2 = 0.
Rather, Equation (8) may also describe three-level dynamics where all coherences oscillate.
Finally, the ME obviously allows for systematic improvement in the result of AE, which,
moreover, can be extended significantly, as we will argue in the next sections.

While for δ = 0 our Heff is identical to the “best choice” result of the standard AE,
differences emerge for δ 6= 0. Anticipating the quantitative analysis of Section 3.2.1, we
here point out that our Heff reproduces correctly the shifts Sk as given by second-order
perturbation theory (If H describes a three-level atom under the action of corotating external
fields Sk are the perturbative Stark shifts), including the correct shift of the “eliminated”
state |2〉. This feature is important for three-level of quantum operations, and an example
will be discussed later.

Coming back to coarse-graining, there is still another time scale to take into account.
The solution may describe Raman oscillations of the populations in the relevant subspace
with a period ∼ 2π/|Ω̃|. Thus, τ must be chosen that is small enough not to average
out this dynamics while operating coarse-graining, which implies that ∆ ≫ max(δ, |Ω̃|).
In particular, for small δ, we need ∆ ≫ |Ω̃|, implying that |Ω0 Ω1|/(2 ∆2) ≪ 1. Hence,
in order for the approximation to work, we do not need both amplitudes Ωk to be small
separately, provided their product is small. Notice, finally, that if δ increases, say δ ≫
|Ω̃|, but we still may choose the coarse-graining time as τ ≫ max

(

2π/∆, 2π/δ
)

, then
Equation (6) yields Ω̃ ≈ 0. Differently from the standard AE, the three-level Heff resulting
by ME correctly decreases in this limit to the diagonal energy-shifted form obtained by
perturbation theory.

3.2.1. Comparison of the Results at the Second-Order Level

Besides overcoming the criticism raised to the standard AE, the ME approach gives
a good approximation already at the second-order level even when |Ω0 Ω1|/(2 ∆2) is not
very small. We here discuss the case δ 6= 0 where results of the second-order ME differ
from those obtained by standard AE. We first look at the population histories considering

the dynamics from an initial state of the relevant subspace |ψ0〉 = cos θ′
2 |0〉+ sin θ′

2 |1〉 with
θ′ = θ + π

2 . For the curves in Figure 1b, the mixing angle θ′ is chosen such that |ψ0〉 is
an eigenstate of an observable orthogonal to the effective Hamiltonian of the standard
AE according to the Hilbert–Schmidt inner product defined in the Liouville vector space
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associated with the two-dimensional relevant subspace. In other words, if the effective
AE Hamiltonian is proportional to a Pauli spin matrix forming an angle θ with σz, then we
take a state with Bloch vector forming an angle θ′ = θ + π/2. This choice is expected to
nearly maximize the differences between the various cases.

Figure 1b shows that coarse-graining by ME yields population histories that better
approximate the exact dynamics in the relevant subspace. Notice that the discrepancy
between ME and standard AE is very significant since it indicates a systematic error in
the energies that accumulate over time. This clearly emerges from the fidelities F defined
in Equation (2) and shown in Figure 1c where the minimization has been performed
numerically. Indeed, F becomes small for the standard AE, while the discrepancies between
the ME result and the exact dynamics have a much smaller impact than what appears from
the population histories. Actually, infidelity for the ME result is almost entirely due to
leakage from the relevant subspace. These latter errors seem not to accumulate over time
(magenta curve), as confirmed by the corresponding curve in Figure 1d, which shows that
leakage errors can be corrected by post-selection. The residual error in the phase of the ME
curves is remarkably small despite the exceedingly large value of

√

|Ω0 Ω1|/(2 ∆2) ≈ 0.27
we used, and it is correctable by extending the analysis to the fourth order as we will
show in the next section. Errors due to leakage in Figure 1c almost disappear for values
√

|Ω0 Ω1|/(2 ∆2) ≪ 0.1 (black curve in Figure 1c), and smaller values are even routinely
used for control of solid-state artificial atoms. It is anyhow remarkable how accurate
the ME coarse-grained second-order Heff is in describing the protocol supplemented by
post-selection for values of δ and Ωk much beyond the perturbative regime.

3.2.2. Higher-Order Effective Hamiltonian

We now exploit the systematic improvement of the approximation. For the sake
of simplicity, we will consider δ = 0. In this case, the exact eigenvalues can be cal-
culated analytically, with the two splittings ǫij := ǫi − ǫj being ǫ10 = ∆

2

(√
1 + 4 x − 1

)

and ǫ21 = ∆
2

(√
1 + 4 x + 1

)

, where x :=
(

|Ω0|2 + |Ω1|2
)

/(4 ∆2). The second-order Heff in
Equation (8) reproduces the lowest-order expansion, ǫ10/∆ ≈ x and ǫ21/∆ ≈ 1+ x, and we
now evaluate higher-order terms. Due to the algebra of the operators (see Appendix A.3),

the important property holds that terms of odd orders have the same structure as H̃
(1)
eff ,

while at even orders they have the structure of H̃
(2)
eff . In particular, the third-order term in

the laboratory frame reduces to

H
(3)
eff = α(τ) x

(

|2〉〈0|Ω0

2
+ |2〉〈1|Ω1

2

)

+ h.c.

where α(τ) = 1 + 1
3 sinc ∆ τ

2

[

1 − 8 cos(∆ τ/2)
]

up to an irrelevant factor of modulus one
depending on the detailed coarse-graining procedure (see Appendix B).

After coarse-graining over a time τ ≫ 2 π/∆ we are left with α(τ) ≈ 1. The resulting

term triggers transitions between the relevant and the not relevant subspaces. While H
(3)
eff

is ∼ x3/2, being off-diagonal contributes at order x3 to the correction of the splittings, as
can be shown by ordinary non-degenerate perturbation theory.

We turn to the fourth order of the ME, whose full expression is reported in Appendix B.
After coarse-graining, the contribution to the effective Hamiltonian in the laboratory frame
reduces to

H
(4)
eff = S

(4)
0 |0〉〈0|+ S

(4)
1 |1〉〈1|+ (∆ − S

(4)
0 − S

(4)
1 )|2〉〈2|+ 1

2

[

Ω̃(4) |1〉〈0|+ h.c.
]

(9)

where S
(4)
k = x |Ωk|2/(4∆) and Ω̃(4) = x Ω0 Ω∗

1/(2∆). This term reproduces the expan-

sion of the exact splitting up to order x2, providing a more relevant correction to H
(2)
eff
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Equation (8) than the third-order H
(3)
eff . Therefore, we can neglect this latter term and

approximate Heff ≈ H
(2)
eff + H

(4)
eff .

The above effective Hamiltonian reproduces both the exact energy splittings to order

x2. Being block-diagonal, it admits no leakage. We may wonder if including H
(3)
eff may

yield useful information on leakage, but the answer is negative. Indeed, we checked that
its impact on population histories is small. In particular, the ME yields a coarse-grained
version of the population in |2〉, which is much smaller than the exact one, since this latter
oscillates on a time scale of ∼ 2π/∆.

3.2.3. Validation of the Results at Fourth-Order

We now validate our result using the same quantifiers as in Section 3.2.1. Population
histories are shown in Figure 2 for two different sets of parameters. It is seen that the
fourth-order ME (black dashed line) yields a coarse-grained version of the exact result
(full grey line), which is accurate in reproducing the Raman oscillations between levels
of the relevant subspace. On the contrary, the second-order ME (dashed magenta line)
clearly shows a discrepancy in the oscillation frequency. This error appears clearly in
the long-time fidelity F, shown in Figure 3a,b, and the fidelity of post-selected protocols,
shown in Figure 3c,d. In the same figures, we also compare the fourth-order ME with
the approximation scheme proposed in Ref. [14] (green curves), and the two approaches
are seen to coincide. Therefore, the ME provides a systematic approximation scheme,
overcoming the last point of the criticism to standard AE mentioned in Section 3.1.
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Figure 2. (a,b) Population histories |〈ψ0|Ui(t)|ψ0〉|2 (curve starting from 1), |〈ψ1|Ui(t)|ψ0〉|2 (starting

from 0), and |〈2|Ui(t)|ψ0〉|2 (grey dashed) for δ = 0. We compare for the exact dynamics (grey curves)

and the higher-order approximate effective dynamics obtained by the second-order (magenta dashed)

and fourth-order (black dashed) ME. This latter coincides with the first-order Markov approximation

of Ref. [14] (light green curve).

In particular for the symmetric choice |Ω0| = |Ω1| = 0.3 ∆ (Figure 3a,c) the fourth-
order fidelity oscillates between one and 0.8 (black dashed curve), whereas the second-order
result (magenta dashed curve) decays to lower values because the error in frequencies
accumulates in time. The same behaviour is obtained for the asymmetric configuration
of the drive amplitudes shown in Figure 3b,d. For these time scales, the error in the
fourth-order F in Figure 3a,b does not accumulate in time, and Figure 3c,d show that it is
entirely due to leakage since it can be corrected by post-selection. Again, we notice that
in Figures 2 and 3, we used parameters with values far beyond the perturbative regime
to magnify the errors. Still, errors are not so large, and in particular, they are remarkably
small for the post-selected dynamics. As in Figure 1c, errors due to leakage in Figure 3b
(black curve) almost disappear already for values

√

|Ω0 Ω1|/(2 ∆2) ≪ 0.1.
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Figure 3. (a,b) Subspace fidelities F for the parameters indicated. The curves refer to the second-order

ME (magenta) and to the fourth-order ME (black dashed), which practically coincides with the

Lippmann–Schwinger approach in Markov approximation of Ref. [14] (green line). The second-order

ME is affected by phase errors accumulating in time, whereas the error in the other two curves does

not accumulate since it is due to leakage. In this latter case, F is still large, considering the values

of the parameters are well beyond the perturbative regime. The black solid line in panel (b) refers

to values of (δ, Ωk) that are four times smaller, and the leakage error also disappears. (c,d) The

fidelity for protocols with post-selection F′
m = F + Lm. The fourth-order ME (black dashed) and the

approximation of Ref. [14] (green line) are remarkably accurate also for values of the parameters well

beyond the perturbative regime.

Finally, we stress the agreement of the ME result with the results of the approach of
Ref. [14]. This latter achieves a high-level accuracy using an iterated Lippmann–Schwinger
equation in a special gauge defining the interaction picture and supplementing the problem
by an ad hoc assumption of Markovianity of the dynamics. Our approach based on the ME
shows that the correct result only leverages coarse-graining.

4. Discussion and Conclusions

We introduced a technique based on the Magnus expansion that allows deriving a
coarse-grained effective Hamiltonian and yielding a simplified model for the low-energy
dynamics of the system. We applied the technique to the problem of the three-level lambda
system clarifying ambiguities and inconsistencies of standard AE, which have been raised
in the literature [13,14].

Results from ME accurately interpolate all the limiting cases obtained by standard
approximations. For instance, the second-order ME yields a result reducing to the usual
AE for δ ≪ |Ωk| but reproducing the perturbative Stark shifts for δ ≫ |Ωk|. Moreover,
the accuracy of the ME can be systematically increased, reaching a full agreement with
other accurate approximation schemes such as the one developed in Ref. [14]. Since the
ME-based approximation we propose only relies on coarse-graining, this latter is identified
as the key ingredient underlying all the approximations.
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Coarse-grained approximations yield effective Hamiltonians that accurately reproduce
the dynamics in the relevant subspace for a wide range of parameters, much beyond the
perturbation regime. In particular, the accuracy achieved for protocols supplemented by
post-selection is is remarkably large. It would be interesting to complement our approach
with improved convergence methods as the Magnus–Taylor expansion method [32] de-
veloped for the stroboscopic dynamics of two-state systems to understand whether an
eternal [33,34] effective Hamiltonian can be determined.

Notice that the ME approach we described yields a block-diagonal effective Hamilto-
nian that does not cancel the not-relevant subspace but treats it consistently. In particular,
for the Lambda system, we obtain the correct perturbative energy shift for the level |2〉.
This result allows non-trivial applications to problems involving multiphoton processes
in three-level dynamics [27,35], which are relevant for newly developed quantum hard-
ware [36–38].

Finally, the approach can be extended to the design of effective control Hamiltonians
in time-dependent problems. The extension is simple if the parameters of the Hamiltonian
are slowly varying on time scales of the order of the coarse-graining time τ as in Ref. [39].
Providing simpler and “slower” effective Hamiltonians, the ME can be used in numerical
approaches [12], especially with intensive algorithms such those based on optimal control
theory [3] or reinforcement learning [40,41].
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Appendix A. More on the ME

Appendix A.1. Third and Fourth-Order Terms

We report here the higher-order terms we use in this work; see [12] for more details.
The third-order term is

F3 =
(−i)2

6

∫ t

t0

∫ s1

t0

∫ s2

t0

ds1 ds2 ds3 {[H(s1), [H(s2), H(s3)]] + [[H(s1), H(s2)], H(s3)]},

while at the fourth order we have

F4 =
(−i)3

12

∫ t

t0

∫ s1

t0

∫ s2

t0

∫ s3

t0

ds1 ds2 ds3 ds4

{

[[[H(s1), H(s2)], H(s3)], H(s4)]+

+ [H(s1), [[H(s2), H(s3)], H(s4)]] + [H(s1), [H(s2), [H(s3), H(s4)]]]+

+ [H(s2), [H(s3), [H(s4), H(s1)]]]
}

.

Appendix A.2. Convergence

The convergence of the Magnus expansion depends on the necessary condition

∫ τ

0
‖H̃‖ds < π

where the spectral norm is intended [12,42]. This limit is a more precise version of
τ‖H̃‖ ≪ 1 [43] and it may be rather conservative. Indeed, the radius of convergence
of the series may be larger [12]. For instance, for the Hamiltonian

H̃ (t) =
Ω

2
e−i ∆ t ∑

j<2

|j〉〈2|+ h.c,

the above sufficient convergence condition becomes τ < 2π/Ω, and it gives a rather
conservative bound on the coarse-graining time τ. Actually, for practical purposes, one
might consider large values of τ yielding an asymptotic ME, which can be proved to work
up to a time increasing with the order [34].

Appendix A.3. Structure of the Series for the Lambda Hamiltonian

The Lambda Hamiltonian we study has the structure

H̃(s) = ∑
i=0,1

Vi(s)|i〉〈2|+ h.c.

with Vi(s) = Ωi e−i ǫ2i s/2. The second-order term of ME contains the commutator

CII(s, s′) =
[

H(s), H(s′)
]

= ∑
i,j=0,1

fi,j(s, s′)
(

|2〉〈2| δi,j − |j〉〈i|
)

(A1)

where fi,j(s, s′) = V∗
i (s)Vj(s

′)− Vj(s)V∗
i (s

′). These terms come from [|2〉〈i|, |j〉〈2|]. This
structure yields shifts on the diagonal elements of the Hamiltonian and connects the states
of the relevant subspace (see Equation (8)).

Continuing with the third order, we encounter the nested commutator

CIII(s, s′, s′′) =
[[

H(s), H(s′)
]

, H(s′′)
]

= ∑
i=0,1

gi(s, s′, s′′)|i〉〈2|+ h.c. (A2)

where gi(s, s′, s′′) = −∑j=0,1

[

fi,i(s, s′)Vj(s
′′) + fi,j(s, s′)Vi(s

′′)
]

. This quantity has the

same structure of H̃(s) and comes from [|2〉〈2|, |i〉〈2|] = −|i〉〈2| and [|i〉〈j|, |k〉〈2|] = δj,k |i〉〈2|.
This argument can be iterated by showing that even (odd) nested commutators have the
structure of Equation (A1) (Equation (A2)).
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Appendix B. Integrals

In this work, the ME at order n requires the evaluation of time-ordered integrals of
the form

∫ t+τ/2

t−τ/2
dtn . . .

∫ s2

t−τ/2
dt1 e

i ∑
n
j=1 ωj tj = e

i ∑
n
j=1 ωj t

∫ τ/2

−τ/2
dsn . . .

∫ s2

−τ/2
ds1 e

i ∑
n
j=1 ωj sj

If we shift the origin of the interval by τ/2, the integral becomes

e
i ∑

n
j=1 ωj (t−τ/2)

∫ τ

0
dsn . . .

∫ s2

0
ds1 e

i ∑
n
j=1 ωj sj . (A3)

The integral can be calculated at all orders, and we find

∫ τ

0
dsn . . .

∫ s2

0
ds1 e

i ∑
n
j=1 ωj sj = (−i)n

n

∑
k=1

An
k

(

eiΩn
k−1 τ − 1

)

(A4)

Ωn
k−1 =

n

∑
j=n−(k−1)

ωj, Ωn
0 = ωn

An
k =

An−1
k−1

Ωn
k−1

, An
0 = −

n

∑
k=1

Ak
n, A1

1 = 1
ω1

We notice that the factor e
−i ∑

n
j=1 ωj τ/2

in the integral Equation (A3) depends on the
choice of time slicing for coarse-graining. Indeed, if we choose to integrate between [t, t+ τ]
instead of [t − τ/2, t + τ/2], this factor does not appear. We expect that this dependence is
irrelevant in most cases. Indeed, in our case, this dependence appears only in the third-
order term of the ME, which we must consistently neglect in the order of accuracy of our
calculations.

Using the integrals above, we can calculate the fourth-order term of the ME, which is
given by

H̃
(4)
eff = β(τ)

{

Ω̃(4)

2
|0〉〈1|+ h.c. +

1

∑
k=0

S
(4)
k |k〉〈k| − (

1

∑
k=0

S
(4)
k )|2〉〈2|

}

β(τ) =

(

1 − 2

3
cos

∆ τ

2
sinc

∆ τ

2
− 1

3
cos ∆ τ sinc∆ τ

)

;

Ω̃(4) =
Ω0 Ω∗

1

2∆
x;

S
(4)
k =

|Ωk|2
4∆

x.

where x = |Ω0|2+|Ω1|2
4 ∆2 is the small parameter. After choosing τ > 2π/∆, β(τ) → 1.
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