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Abstract

We calculate the massive two–loop pure singlet Wilson coefficients for heavy quark production in the 
unpolarized case analytically in the whole kinematic region and derive the threshold and asymptotic ex-
pansions. We also recalculate the corresponding massless two–loop Wilson coefficients. The complete 
expressions contain iterated integrals with elliptic letters. The contributing alphabets enlarge the Kummer-
Poincaré letters by a series of square-root valued letters. A new class of iterated integrals, the Kummer-
elliptic integrals, are introduced. For the structure functions F2 and FL we also derive improved asymptotic 
representations adding power corrections. Numerical results are presented.
© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The complete massive two–loop Wilson coefficients for deep–inelastic scattering correspond-
ing to the structure functions F2(x, Q2) and FL(x, Q2) were only available in numerical form 
[1–3]1 for a long time. Later the flavor non-singlet Wilson coefficients have been calculated an-
alytically in [5] in the tagged-flavor case and recalculated for the inclusive case [6] to obtain a 
representation consistent with the associated sum rules.

* Corresponding author.
E-mail address: Johannes.Bluemlein@desy.de (J. Blümlein).

1 Numerical results were also presented in [4].
https://doi.org/10.1016/j.nuclphysb.2019.114659
0550-3213/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2019.114659
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:Johannes.Bluemlein@desy.de
https://doi.org/10.1016/j.nuclphysb.2019.114659
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2019.114659&domain=pdf


2 J. Blümlein et al. / Nuclear Physics B 945 (2019) 114659
In the present paper we calculate the massive pure singlet two–loop Wilson coefficients ana-
lytically. Due to the corresponding graphs, the formulae are structurally the same for the charm 
and the bottom contributions. In the numerical illustrations we will concentrate on the charm 
contributions, considering the first three quarks as massless. The knowledge of the complete an-
alytic expressions allows to derive important limiting cases such as the limit of large virtualities 
Q2 � m2, m being the heavy quark mass, or the threshold expansion in a direct way. In the for-
mer case it is possible to derive systematic expansions in m2/Q2 with coefficients represented 
in terms of harmonic polylogarithms, while the complete result depends on much more general 
functions. Harmonic polylogarithms can be easily calculated numerically [7–9]. Furthermore, 
they can be directly transformed to Mellin space [10,11]. It has been observed numerically in 
Ref. [5] that the limit of large virtualities is approached beyond some process-dependent scale 
Q2

0. The Wilson coefficient in this limit can be calculated with the help of massive operator matrix 
elements (OMEs) and massless Wilson coefficients, cf. [5]. It is important to prove this analyt-
ically. At three-loop order the massive Wilson coefficients are only known in the asymptotic 
region [12–23]. We also recalculate the corresponding massless two–loop Wilson coefficients 
given in [24–31] before and compare to these results.

The analytic calculation of the massive pure singlet Wilson coefficient has been envisaged by 
W.L. van Neerven and one of the authors (J.B.) 20 years ago, after the non-singlet contribution 
had been obtained in [5]. In retrospect, however, adequate mathematical techniques to perform 
this task have only become available very recently. This includes the elimination of all func-
tional relations in the final result and techniques to obtain a relatively compact representation. 
The massive Wilson coefficient is given by a four-fold non-trivial phase space integral. Three 
of the integrals can be carried out using standard techniques. The integrand of the last integral 
is obtained as a polynomial of algebraic terms, logarithms and polylogarithms [32,33] with an 
involved argument structure. Therefore, the last integral is performed after determining the con-
tributing irreducible structure of letters of the contributing iterated integrals, using the techniques 
described in [34,35]. The Wilson coefficient can finally be obtained as a d’Alembertian integral 
over a finite alphabet. The analytic results allow to perform expansions in m2/Q2 including 
power corrections, which is of particular importance for the structure function FL(x, Q2). Here 
the corresponding expansion coefficients are then harmonic polylogarithms. Such a representa-
tion is easily envisaged for the two–loop non-singlet Wilson coefficients given in [5,6], since 
there the whole Wilson coefficient depends at most on classical polylogarithms.

We also consider the limit Q2 � m2 of the Wilson coefficient and compare with the results 
given in Refs. [5,19,36]. Furthermore, the threshold expansion of the Wilson coefficients are 
derived and numerical results are presented. In the present calculations, the packages FORM [37],
Sigma [38,39], EvaluateMultiSums [40,41] and HarmonicSums [10,11,35,42–47] have 
been used.

The paper is organized as follows. In Section 2 we first illustrate the asymptotic factorization 
using the example of the O(αs) calculation. The corresponding scattering cross sections will be 
used in the two–loop massless and massive calculation later. In Section 3 the massless two–loop 
pure singlet Wilson coefficients are calculated. The mathematical method used to prepare for the 
last analytic integral in the massive case is described in Section 4 and in Section 5 we present 
the analytic results for the massive Wilson coefficients. The asymptotic and threshold expansions 
are derived in Section 6 and numerical results are presented in Section 7. Section 8 contains the 
conclusions. Some technical aspects of the calculation are given in the Appendix.



J. Blümlein et al. / Nuclear Physics B 945 (2019) 114659 3
Fig. 1. Diagrams of the O(as) contributions to scattering cross section γ ∗ + g → q + q .

2. Asymptotic cross section factorization

The massive Wilson coefficients are calculated by factorizing the massless initial states 
(quarks and gluons). In the unpolarized case and for longitudinal polarization the factorization is 
longitudinal, i.e. by setting p = zP, z ∈ [0, 1]. Here P denotes the incoming hadron momentum 
and p the quark momentum. In the transversal polarized case one has to use the covariant parton 
model [48], see [49–52]. As an illustrative example we consider the unpolarized one–loop heavy 
flavor contribution to deep–inelastic scattering [53–57]. As for all the massive Wilson coeffi-
cients, it can be written in three parts: the massive operator matrix element, the massless Wilson 
coefficient and a remainder part. The last one vanishes in the limit Q2/m2 → ∞ in the case of 
asymptotic factorization. A simple prediction on the structure of this term is not easily possible, 
but usually requires the calculation of the whole process followed by the expansion in m2/Q2. 
This term depends on the structure of the phase space and it is a process-dependent quantity. In 
Fig. 1 the contributing Feynman diagrams are shown.

The massive Wilson coefficients have the following series representation

H2(L),i

(
z,

Q2

μ2 ,
m2

μ2

)
=

∞∑
k=1

ak
s H

(k)
2(L),i

(
z,

Q2

μ2 ,
m2

μ2

)
, (1)

where i denotes the incoming parton and 2(L) refer to the associated structure functions and 
as ≡ as(μR) = g2

s /(4π)2 denotes the strong coupling constant at the renormalization scale μR. 
We work in d = 4 + ε space-time dimensions. Since we also need the O(ε) term of the LO result 
later on, we further define

H
(1)
2(L),i

(
z,

Q2

μ2 ,
m2

μ2

)
= h

(1)
2(L),i

+ εb̄
(1)
2(L),i

, (2)

where we dropped the arguments of the coefficient functions for brevity.
Let us consider the leading order contribution for the process γ ∗ + g → QQ as an example, 

cf. [53–57]. In the following we use the variable

β =
√

1 − 4m2

Q2

z

1 − z
. (3)

The Wilson coefficients H(1)
L,g and H(1)

2,g are given by

h
(1)
L,g

(
z,

Q2

2

)
= 16TF

[
βz(1 − z) + 2

m2

2 z2 ln

(
1 − β

)]
θ (a − z) , (4)
m Q 1 + β
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h
(1)
2,g

(
z,

Q2

m2

)
= 8TF

{
β

[
−1

2
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m2
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[
−1

2
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(
m2
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)2
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]
ln

(
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1 + β

)}

×θ (a − z) , (5)

with θ(x) the Heaviside function, a = 1/(1 + 4m2/Q2) and TF = 1/2 for SU(NC). The coeffi-
cients at O(ε) read

b̄
(1)
L,g = TF z(1 − z)

{
2(1 − β2)

[
H2

0

(
1 − β

1 + β

)
− 2H0

(
1 − β

1 + β

)
[1 + H0 + H1 − 2H0(β)]

]

−8

[
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[
H0,1

(
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)
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)
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θ(a − z), (6)
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(1)
2,g = TF
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(
3 + β2)]H0

(
1 − β

1 + β

)
− 1

2
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)

×
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(
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(
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(
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)

−[ln(2) + H0(β) − H0(1 + β)]H0

(
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1 + β

)
+ ζ2

]

+
[

2β
(
2 − β2 + z2(9 − β2) − 2z

(
5 − β2))+ [3 − β4 − 2z

(
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(
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}
θ(a − z). (7)

Here we refer to the harmonic polylogarithms [58] defined by

Hb,�a(z) =
z∫

0

dyfb(y)H�a(y), H∅ = 1, b, ai ∈ {−1,0,1}, (8)

and the letters fc are

f0(z) = 1

z
, f1(z) = 1

1 − z
, f−1(z) = 1

1 + z
. (9)

Here and in the following we use the abbreviation H�a(z) ≡ H�a .
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The expansion for large virtualities Q2 � m2 is given by

H
(1)
L,g

(
z,

Q2

m2

)
= 16TF

{
z(1 − z) − 2

m2

Q2 z2
[

ln

(
Q2

m2

)
+ 1−H1 −H0

]
+O

((
m2

Q2

)2)
,

(10)

H
(1)
2,g

(
z,

Q2

m2

)
= 4TF

{
−1 + 8z(1 − z) + [z2 + (1 − z)2]

[
ln

(
Q2

m2

)
− H1 − H0

]

+4
m2

Q2

[
−z(1 + 2z) + (1 − 3z)z

[
ln

(
Q2

m2

)
− H1 − H0

]]

+O

((
m2

Q2

)2)}
(11)

for z ∈ [0, a].
In the asymptotic case, one has [5]

H
(1)
L,g

(
z,

Q2

m2

)
= C̃

(1)
g,L(NF + 1), (12)

H
(1)
2,g

(
z,

Q2

m2

)
= A

(1)
Qg(NF + 1) + C̃

(1)
g,2(NF + 1), (13)

using the definition

f̃ (NF ) = f (NF )

NF

, f̂ (NF + 1) = f (NF + 1) − f (NF ). (14)

Note that Eqs. (12), (13) hold for z ∈ [0, 1]. Here C(1)
g,2(L) denote the massless two–loop Wilson 

coefficients and A(1)
Qg the massive one–loop operator matrix element (OME) with external gluons 

[5,19,36]

A
(1)
Qg = −4TF [z2 + (1 − z)2] ln

(
m2

μ2

)
. (15)

The massless one–loop Wilson coefficients read [59–61]

C̃
(1)
g,L = 16TF z(1 − z), (16)

C̃
(1)
g,2 = 4TF [z2 + (1 − z)2] ln

(
Q2

μ2

)
,

+4TF

{
−1 + 8z(1 − z) − [z2 + (1 − z)2] [H1 + H0]

}
, (17)

where

P̂qg(z) = 8TF [z2 + (1 − z)2] (18)

is a one–loop splitting function [62,63].2

2 For earlier references in QED, see [64].
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It can now be seen that the massive Wilson coefficients can be decomposed in terms of the part 
obtained at large virtualities Q2 � m2, Eqs. (12), (13), consisting of massive OMEs and massless 
Wilson coefficients, and a remainder part vanishing in the limit Q2/m2 → ∞. Whenever this 
is the case one calls the respective process asymptotically factorizing. The factorization scale 
μ cancels in the cross sections (12), (13) since they are free of collinear singularities. As a 
peculiarity in this case, the massive OME only contributes to the pure logarithmic term. This, 
however, is due to its vanishing constant part and is generally not the case.

Numerically it is interesting to see from which value of Q2
0/m2 onward the asymptotic repre-

sentation holds, say at the accuracy of O(2%) or better, cf. [5,6] and Section 7.

3. The massless Wilson coefficients

The massless pure singlet Wilson coefficients obey the expansion

CPS
2(L)

(
z,

Q2

μ2

)
= δ(1 − z)δ2 +

∞∑
k=1

ak
s C

(k),PS
2(L)

(
z,

Q2

μ2

)
, (19)

with δ2 = 1 for C2 and δ2 = 0 for CL. Throughout this paper we will identify the factorization 
scale μF and the renormalization scale μR .

In the following we also recalculate the massless Wilson coefficients CPS,(2)
L and CPS,(2)

2 as 
a limiting case of the present massive calculation. They have been computed in Refs. [24–30]
before.

The unrenormalized Wilson coefficients FL(2),q are related to the hadronic tensor of deeply 
inelastic scattering in the partonic sub-system, Ŵμν , by

FL,q = − 2q2

(p.q)2 pμpνŴμν, (20)

F2,q = − 2

d − 2

[
Ŵμ

μ + (d − 1)
q2

(p.q)2 pμpνŴμν

]
. (21)

Here p denotes the incoming parton momentum and q the space-like momentum of the virtual 
photon with q2 = −Q2.

In the massive case we will also consider the Wilson coefficient

F1,q = −2Ŵμ
μ (22)

as a subsidiary function in order to avoid redundancies in the calculation. Note that this Wilson 
coefficient does not correspond to the structure function F1, cf. [64].

The following expressions will be given in Mellin-N space. They are obtained from the mo-
mentum fraction z-space by a Mellin transform

M[f (z)](N) =
1∫

0

dzzN−1f (z) . (23)

The unrenormalized Wilson coefficients F (2),PS
L(2),q are given by [61]

F (2),PS
L,q = NF â2

s S
2
ε

(
Q2

2

)ε [
1
P (0)

gq c
(1)
L,g + c

(2),PS
L,q + P (0)

gq a
(1)
L,g

]
, (24)
μ ε
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F (2),PS
2,q = NF â2

s S
2
ε

(
Q2

μ2

)ε
[

1

ε2

1

2
P (0)

qg P (0)
gq + 1

ε

(
1

2
P (1),PS

qq + P (0)
gq c

(1)
2,g

)

+c
(2),PS
2,q + P (0)

gq a
(1)
2,g

]
, (25)

with âs the unrenormalized coupling constant, the spherical factor

Sε = exp
[

ε
2 (γE − ln(4π))

]
, (26)

and γE the Euler–Mascheroni constant. We work in the MS-scheme and set Sε = 1 at the end of 
the calculation. Here the factors of 1/2 in Eq. (25) emerge since for the splitting into the upper 
quark-antiquark pair, the quarks are produced correlated. Since the pure singlet contributions start 
at O(a2

s ) only, the renormalized Wilson coefficients C(2),PS
L,(2) are obtained after mass factorization

F (2),PS
L,q = C

(2),PS
L,q + �(0)

gq C
(2),PS
L,q , (27)

F (2),PS
2,q = C

(2),PS
2,q + 1

2
�(1),PS

qq C
(2),PS
2,q + �(0)

gq C
(1)
2,g, (28)

with

�(0)
gq = âsSε

(
μ2

F

μ2

)ε/2
1

ε
P (0)

gq , (29)

�(1),PS
qq = â2

s S
2
ε

(
μ2

F

μ2

)ε [
1

ε2 P (0)
qg P (0)

gq + 1

ε
P (1),PS

qq

]
. (30)

In z-space the functions in Eqs. (24), (25) read

a
(1)
L,g = −8TF z(1 − z) [3 + H1 + H0] , (31)

a
(1)
2,g = TF

{
[z2 + (1 − z)2](H1 + H0)

2 + 2(1 − 8z(1 − z))(H1 + H0) − 3[z2 + (1 − z)2]ζ2

+6 − 44z(1 − z)
}
, (32)

see as well Eqs. (16), (17) for μ2 = Q2. The splitting functions are

P (0)
qg = NF P̂ (0)

qg , (33)

P (0)
gq = 4CF

1 + (1 − z)2

z
, (34)

P (1),PS
qq = 16CF TF NF

[
20

9

1

z
− 2 + 6z − 4H0 + z2

(
8

3
H0 − 56

9

)

+(1 + z)
(

5H0 − H2
0

)]
. (35)

The massless Wilson coefficients CPS,(2) and CPS,(2) are thus given by
L 2
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C
PS,(2)
L

(
z,

Q2

μ2
F

)
= −32CF TF NF

{[
zH0 + 1

3

(
3 − 2z2 − 1

z

)]
ln

(
Q2

μ2
F

)

(1 − z)
(
1 − 2z + 10z2

)
9z

− (1 + z)(1 − 2z)H0 − zH2
0

+ (1 − z)
(
1 − 2z − 2z2

)
3z

H1 − zH0,1 + zζ2

}
, (36)

C
PS,(2)
2

(
z,

Q2

μ2
F

)
= CF TF NF

{[
8(1 + z)H0 + 4

3

(
3 − 4z2 − 3z + 4

z

)]
ln2

(
Q2

μ2
F

)

+
[

16(1 + z)[−H0,1 + ζ2 − H2
0] + 32z2H0 − 8

3

(
3 − 4z2

−3z + 4

z

)
H1 − 16

9

(
39 + 4z2 − 30z − 13

z

)]
ln

(
Q2

μ2
F

)

+4(1 − z)
(
172 + 409z − 224z2

)
27z

+ 16

9

(
63 − 33z − 16z2)H0

−32(1 + z)3H−1H0

3z
− 2

3

(
3 − 45z + 32x2)H2

0 + 20

3
(1 + z)H3

0

+
[
−16(1 − z)

(
13 − 26z + 4z2

)
9z

+ 8
(
4 + 3z − 6z2 − 4z3

)
3z

H0

]
H1

+4
(
4 + 3z − 4z3

)
H2

1

3z
+
[
−8(1 + 2z)

(
4 − 5z + 4z2

)
3z

+16(1 + z)H0

]
H0,1

+32(1 + z)3H0,−1

3z
+ 16(1 + z)H0,1,1 −

[
32
(
1 + 3z2 − 3z3

)
3z

+32(1 + z)H0

]
ζ2 − 16(1 + z)ζ3

}
. (37)

We agree with the results given in [30,31] and note a typo in [27], Eq. (13), where the next-to-
last term should read (448/27)x2. In Appendix A.1 we present details of the calculation in the 
massless case.

The massless two-loop pure singlet contribution to the structure functions F2(L) for pure vir-
tual photon exchange is given by

F
(2),PS
2(L) (x,Q2) = a2

s (Q
2)Q2

H xC
PS,(2)
2(L)

(
Q2

μ2 , x

)
⊗ �(x,μ2), (38)

where μ denotes the factorization scale, QH = 2/3 for charm and QH = −1/3 for bottom, and

�(x,μ2) =
3∑[

qk(x,μ2) + qk(x,μ2)
]

(39)

k=1
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denotes the quark singlet distribution for three light quarks.

4. Systematic integration in the massive case

We will express the scattering cross sections in terms of a minimal number of special func-
tions. In the case of single scale quantities, various methods have been worked out in the past 
to achieve this; for a recent survey see [65]. In the present case, we deal with a two-scale pro-
cess, since the cross sections depend on z and m2/Q2 in a non-factorizing way. The complete 
massive Wilson coefficients are represented in terms of four non-trivial integrals. The first three 
integrations are evaluated in terms of logarithms and polylogarithms at various complex argu-
ments involving square-roots and trigonometric functions. What remains is a one-fold integral 
with respect to an angular variable ϕ of a function that also depends on the parameters z and β . 
The overall aim is to write this integral in terms of nested integrals. To this end, we first write its 
integrand in terms of nested integrals. First, we apply the change of integration variables

t = sin(ϕ). (40)

As a result, we get rid of the trigonometric functions in the integrand. In addition, we introduce 
the quantity

k :=
√

z√
1 − (1 − z)β2

, (41)

which satisfies 
√

z < k < 1. We use it to express β as 
√

k2−z

k
√

1−z
. Altogether, the integrand is then 

an expression in terms of z, k, and t as well as logarithms and dilogarithms with arguments 
expressed in terms of square-roots involving these quantities.

Next, we eliminate redundancies among square-root expressions to express the integrand us-
ing only the roots 

√
1 − k2, 

√
1 − t2, and 

√
1 − k2t2. In order to facilitate the conversion of 

the logarithms and dilogarithms appearing in the integrand to nested integrals, we exploit the 
argument relations

ln(z) = ln(−z) + iπ for z < 0 (42)

Li2(z) = −Li2( 1
z
) − 1

2 ln(z)2 − iπ ln(z) + 2ζ(2) for z > 1 (43)

to avoid arguments on branch cuts.
After these pre-processing steps, all the following steps for computing the integral are done by 

our code [66] in Mathematica, which also uses the routine DSolveRational of the pack-
age HolonomicFunctions [67]; see [34,68] for the general theory underlying [66]. We also 
refer to [69] for the simpler case when no singularities are present at the endpoints of integration, 
which, however, does not apply here.

First, the logarithms and dilogarithms are converted to nested integrals, which is based on re-
peated differentiation followed by expressing the integrands of these nested integrals in the form 
developed in (3.16)–(3.19) of [35]. In fact, a generalized version of those forms is used to avoid 
the necessity of introducing new square-roots in terms of z and k in addition to 

√
1 − k2 above. 

Then, a normal form of the integrand is computed. This affects all parts of the representation, 
also those that do not depend on t . For the nested integrals we use the shuffle relations and also 
for their coefficients we compute normal forms in terms of the logarithms and square-roots.

As a result, we obtain a representation of the integrand as a linear combination of nested 
integrals evaluated at t whose integrands also depend on z and k. Their coefficients only contain 
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z, k, t , 
√

1 − t2, 
√

1 − k2t2, ln(z), ln(1 −z), ln(k+z), and ln(k−z). The root 
√

1 − k2, as well as 
all other logarithms and dilogarithms depending on z and k, do not appear in this representation 
anymore. Moreover, since both the integrand as a whole and all integrands of the nested integrals 
in its representation are real, all complex expressions drop out of the coefficients as well and 
we have a completely real representation. This is ensured since the integrands in (3.16)–(3.19) 
of [35], and also their generalization used here, were designed so that the corresponding nested 
integrals all are linearly independent.

Finally, the integral over t from 0 to β is computed as a linear combination of nested integrals 
evaluated at β , again in normal form. Like before, their integrands also depend on z and k and 
their coefficients only contain z, k, t , 

√
1 − t2, 

√
1 − k2t2, ln(z), ln(1 − z), ln(k + z), and ln(k −

z).
The following letters contribute in the present case:

fw1(t) = 1

1 − kt
, (44)

fw2(t) = 1

1 + kt
, (45)

fw3(t) = 1

β + t
, (46)

fw4(t) = 1

β − t
, (47)

fw5(t) = 1

k − z − (1 − z)kt
, (48)

fw6(t) = 1

k + z − (1 − z)kt
, (49)

fw7(t) = 1

k − z + (1 − z)kt
, (50)

fw8(t) = 1

k + z + (1 − z)kt
, (51)

fw9(t) = t

k2
(
1 − t2

(
1 − z2

))− z2
, (52)

fw10(t) = 1

t
√

1 − t2
√

1 − k2t2
, (53)

fw11(t) = t√
1 − t2

√
1 − k2t2

, (54)

fw12(t) = t√
1 − t2

√
1 − k2t2

(
k2
(
1 − t2

(
1 − z2

))− z2
) . (55)

The set of letters

A=
{

1

t − a

∣∣∣∣a ∈C

}
(56)

span the Kummer-Poincaré iterated integrals [70] defined as

Kb,�a(z) =
z∫
dyfb(y)K�a(y), K∅ = 1, fc ∈A. (57)
0
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The letter fw9 can be rewritten into Kummer-Poincaré letters [70], which we, however, avoid 
here. Some of the above letters contain the elliptic letter

1√
1 − t2

1√
1 − k2t2

(58)

as a factor. Therefore, one expects that in iterated integrals the incomplete elliptic integrals of the 
1st, 2nd, and 3rd kind

F(x; k) =
x∫

0

dt
1√

1 − t2
√

1 − k2t2
, (59)

E(x; k) =
x∫

0

dt

√
1 − k2t2

√
1 − t2

, (60)

�(n;x|k) =
x∫

0

dt
1

1 − nt2

√
1 − kt2

√
1 − t2

, (61)

cf. [71], are emerging, over which further Kummer-Poincaré letters are iterated. We call iterated 
integrals of this type Kummer-elliptic integrals. Their alphabet is

A′ =A∪
{

1√
1 − t2

√
1 − k2t2

,
t√

1 − t2
√

1 − k2t2
,

√
1 − k2t2

√
1 − t2

}

∪
{

1

(t − a)
√

1 − t2
√

1 − k2t2

∣∣∣∣a ∈C \ {±1,± 1
k
}
}

. (62)

Note that integrals of depth 1 over the letters fw1 to fw12 are (poly)logarithmic, since one may 
change variables t → √

t , cf. Eqs. (52–55).
Yet Kummer-elliptic integrals appear in the iterated case. Therefore, iterated integrals of depth 

2 formed out of some of these letters will form results containing incomplete elliptic integrals in 
part. These iterative integrals cannot be reduced to the Kummer-Poincaré iterated integrals for 
general values of k. As also the incomplete elliptic integrals, they belong to the d’Alembert class, 
unlike the complete elliptic integrals [71], which also appear in various higher order calculations, 
cf. e.g. [72], as letters in other iterated integrals.

5. The massive Wilson coefficients

The unrenormalized two–loop massive pure singlet Wilson coefficients Hi,q with i = 1, 2, L, 
see also Eq. (22), are given in Mellin space by

H(2),PS
i,q = â2

s S
2
ε

(
Q2

μ2

)ε [
1

ε
P (0)

gq h
(1)
i,g + C

(2),PS,Q
i,q + P (0)

gq b̄
(1)
i,g

]
. (63)

The functions h(1)
1,g and b̄(1)

1,g are given by

h
(1)
1,g = 2h

(1)
2,g − 3h

(1)
L,q (64)

b̄
(1) = h

(1) − h
(1) + 2b̄

(1) − 3b̄
(1)

. (65)
1,g 2,g L,q 2,g L,q
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Since the two heavy quarks do not induce collinear divergences the mass factorization in the 
massive case reads

H(2),PS
i,q = H

(2),PS
i,q + �gq ⊗ H

(1)
i,g . (66)

Therefore, we find

H
(2),PS
i,q = â2

s S
2
ε

{(
Q2

μ2

)ε [
1

ε
P (0)

gq h
(1)
i,g + C

(2),PS,Q
i,q + P (0)

gq b̄
(1)
i,g

]

−
(

μ2
F

μ2

)ε/2(
Q2

μ2

)ε/2 [
1

ε
P (0)

gq h
(1)
i,g + P (0)

gq b̄
(1)
i,g

]}
. (67)

Identifying the renormalization and factorization scale, μ = μF , we finally obtain

H
(2),PS
i,q = a2

s

[
1

2
P (0)

gq h
(1)
i,g ln

(
Q2

μ2
F

)
+ C

(2),PS,Q
i,q

]
+ O(ε)

= a2
s

[
1

2
P (0)

gq h
(1)
i,g ln

(
m2

μ2
F

)
− 1

2
P (0)

gq h
(1)
i,g ln

(
m2

Q2

)
+ C

(2),PS,Q
i,q

]
+ O(ε) . (68)

Note that in the pure singlet case the coupling constant is not renormalized at two–loop order. 
To express our final result in terms of iterated integrals we refer to the letters given in Section 4, 
supplemented by the letters spanning the harmonic polylogarithms (9); for Eqs. (69) and (70) we 
use the shorthand notation H�a(β) ≡ H�a . One obtains

H
(2),PS
L,q = CF TF

{
−8P1

3z

{
k

[
H2

w1
− H2

w2
+ (1 − z)

(
Hw5,w1 + Hw6,w2 − Hw7,w2

−Hw8,w1 − Hw5Hw1 + Hw8Hw1 − Hw6 Hw2 + Hw7Hw2

)]
+2
(
Hw1,w4 + Hw2,w4 + Hw3,w1

+Hw3,w2

)− (2Hw3 − 6 ln(k) + ln
(
1 − k2)− ln(k2 − z2)

+2 ln
(
k2 − z

))[
Hw1 + Hw2

]}− 16(1 − z)βP2

3z
ln(k2 − z2) − 16(1 − z)βP3

9k2z

+8(1 − k2)(1 − z)P4

3k4z

[
Hw5,0 − Hw6,0 + Hw7,0 − Hw8,0

−(Hw5 − Hw6 + Hw7 − Hw8

)
H0

]
+ 16(1 − k2)P4

3k4z

(
Hw1

+Hw2

)
H0 + 32P5

3k2

(
H−1H1 − 2H−1,1

)+ 32P6

3k4z

(
Hw1,0 + Hw2,0

)
+16P7

3k4

(
H1Hw1 − H−1Hw2

)+ 16P8

3k4

(
H1Hw2 − H−1Hw1

)− 64P9

3k2zβ
Hw3

−16(1 − k2)(1 − z2)P10

3k2

[
Hw9,1 + Hw9,−1 − (1 − z)k

(
Hw9,w5 + Hw9,w6

+Hw9,w7 + Hw9,w8

)]− 16P11
2

(
H2

1 − H2−1

)

3k
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− (1 − z)P12

3z3/2k3

[
Hw10,w5 − Hw10,w6 + Hw10,w7

−Hw10,w8 − k
(
Hw5,w11 + Hw6,w11 + Hw7,w11

+Hw8,w11

)+ k
(
Hw5 + Hw6 + Hw7 + Hw8

)
Hw11 − 2

1 − z

(
Hw10,w1 + Hw10,w2

)]

+4(1 + k)(1 − z)P13

3k4

(
Hw6,−1 − Hw8,1 + Hw8H1 − Hw6H−1

)
+4(1 − k)(1 − z)P14

3k4

(
Hw5,−1 − Hw7,1 + Hw7H1 − Hw5H−1

)
+8P15

3k4z

(
Hw1,1 − Hw2,−1

)− 4(1 − z)P16

3k4

(
Hw6,1 − Hw8,−1

−Hw6H1 + Hw8H−1
)− 4(1 − z)P17

3k4

(
Hw5,1 − Hw7,−1

−Hw5H1 + Hw7H−1
)− 2(1 − k2)P18

3
√

zk3

[
Hw12,1 + Hw12,−1

+(1 − z)k
(
Hw5,w12 + Hw6,w12 + Hw7,w12 + Hw8,w12

)
−(1 − z)k

(
Hw5 + Hw6 + Hw7 + Hw8

)
Hw12

]
− 8P19

3k4z

(
Hw1,−1

−Hw2,1
)+ 2P20

9k2z(1 − kβ)
Hw1 − 2P21

9k2z(1 + kβ)
Hw2

+ (1 − z)P22

3k3z(k(z − 2) + z)(1 − kβ)
Hw5 + 2P23

9k4z
(
k2(z − 2)2 − z2

)H1

− 2P24

9k4z
(
k2(z − 2)2 − z2

)H−1 − (1 − z)P25

3k3z(k(z − 2) − z)(1 + kβ)
Hw6

+ (1 − z)P26

3k3z(k(z − 2) + z)(1 + kβ)
Hw7 + (1 − z)P27

3k3z(k(z − 2) − z)(1 − kβ)
Hw8

−32(1 − z)2z(ln(z) + ln(1 − z))
(
2β − H1 − H−1

)
−64z

(
3 − z + z

k2

)
ln(k)

(
H1 + H−1

)+ 16(−1 + z)β

3z

(
3 − k2

−4z − 4z2)(6 ln(k) − ln
(
1 − k2)− 2 ln

(
k2 − z

)− 2H0
)

−64z
(
k2(z − 3) − z

)
3k2

[
H1H0 + H−1,0 − H0,1

−H1,w4 − H−1,w4 − Hw3,1 − Hw3,−1 +
(

1

2
ln
(
1 − k2)+ ln

(
k2 − z

)+ Hw3

)

×(H1 + H−1
)]− 32z

3k2

(
z + k2(6 − 7z + 3z2)) ln(k2 − z2)

(
H1 + H−1

)}

+1

2
P (0)

gq ⊗ h̄
(1)
L,g ln

(
Q2

μ2

)
− P (0)

gq ⊗ b̄
(1)
L,g , (69)
F
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H
(2),PS
1,q = CF TF

{
−4(1 − z)P28

k2

(
Hw6,−1 − Hw8,1 + H1Hw8 − H−1Hw6

)

−8P29

3k3

(
H1Hw1 − H−1Hw2

)− 8P30

3k3 H1Hw2 + 8
(
k2 − z

)
P30

3k5(1 − z)β2
Hw1H−1

+4(1 − z)P31

k2

(
Hw5,−1 − Hw7,1 + H1Hw7 − H−1Hw5

)+ 8P32

3z

[
k
(
H2

w1
− H2

w2

)
+2
(
Hw1,w4 + Hw2,w4 + Hw3,w1 + Hw3,w2

)
+(Hw1 + Hw2

)[
6 ln(k) + ln(k2 − z2)

]
+k(1 − z)

(
Hw5,w1 + Hw6,w2 − Hw7,w2 − Hw8,w1 − Hw1Hw5 − Hw2Hw6

+Hw2Hw7 + Hw1Hw8

)− (Hw1 + Hw2

)[
ln
(
1 − k2)+ 2 ln

(
k2 − z) + 2Hw3

]]

+16(1 − z)βP33

9k2z
+ 32P34

3k4

[
H0,1 − H−1,0 − H0H1

+H1,w4 + Hw3,1 + Hw3,−1 + H−1,w4

−(H1 + H−1
)(1

2
ln
(
1 − k2)+ ln

(
k2 − z

)+ Hw3

)]− 32(1 − z2)P35

3k2

[
Hw9,1

+Hw9,−1 − (1 − z)k
(
Hw9,w5 + Hw9,w6 + Hw9,w7 + Hw9,w8

)]

+4(1 − z)P36

3k3

(
Hw5,1 − Hw7,−1 − H1Hw5 + H−1Hw7

)
+4(1 − z)P37

3k3

(
Hw6,1 − Hw8,−1 − H1Hw6 + H−1Hw8

)
+16P38

3k4

(
H−1H1 − 2H−1,1

)− 16(1 − z)βP39

3k2z
ln(k2 − z2)

−8P40

3k3z

(
Hw1,1 − Hw2,−1

)− 8P41

3k3z
Hw2,1

−16(1 − z)βP42

3k2z

[
ln
(
1 − k2)+ 2 ln

(
k2 − z

)− 6 ln(k) + 2H0 + 4Hw3

]

−16P43

3k2z

(
Hw1,0 + Hw2,0

)− 8P44

3k4

(
H2

1 − H2−1

)+ 16P45

3k2z

(
Hw1 + Hw2

)
H0

+8(1 − z)P45

3k2z

[
Hw5,0 − Hw6,0 + Hw7,0 − Hw8,0

−(Hw5 − Hw6 + Hw7 − Hw8

)
H0

]
+ 4P46

3z3/2k3

[
2Hw10,w1 + 2Hw10,w2

−(1 − z)

(
Hw10,w5 − Hw10,w6 + Hw10,w7 − Hw10,w8 − k

(
Hw5,w11 + Hw6,w11

+Hw7,w11 + Hw8,w11

)+ k
(
Hw5 + Hw6 + Hw7 + Hw8

)
Hw11

)

+2k(1 − k2)z(1 − z)

(
Hw5,w12 + Hw6,w12 + Hw7,w12 + Hw8,w12
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−(Hw5 + Hw6 + Hw7 + Hw8

)
Hw12

)

+2(1 − k2)z
(
Hw12,1 + Hw12,−1

)]+ 8P47

9k2z(1 + kβ)
Hw2

− 8P48

9k2z(1 − kβ)
Hw1 − 4(1 − z)2P49

3k3z(k(z − 2) − z)
Hw6 − 4(1 − z)2P50

3k3z(k(z − 2) + z)
Hw5

− 4(1 − z)2P51

3k3z(k(z − 2) + z)
Hw7 − 4(1 − z)2P52

3k3z(k(z − 2) − z)
Hw8 − 8P55

3k5(1 − z)zβ2
Hw1,−1

− 8P53

9k4z(1 + β)
(
k2(z − 2)2 − z2

)H1 + 8P54

9k4z(1 − β)
(
k2(z − 2)2 − z2

)H−1

−
[

16
(
1 + k2

)(
1 − 3k2

)
z2

3k4 ln(k2 − z2) + 16(1 − z)
(
ln(1 − z) + ln(z)

)

+32

(
3(1 − z) +

(
1 + k2

)(
1 − 3k2

)
z2

k4

)
ln(k)

](
H1 + H−1

)

−8
2k2 + (3k2 − 1

)
z

k2

[
4H0,1,1 + 4H0,−1,1 − 20H1,1,1 − 4H1,1,w4 − 4H1,−1,w4

+4Hw3,1,1 − 4Hw3,1,−1 + 4Hw3,−1,1 − 4Hw3,−1,−1 − 4H−1,1,0 − 16H−1,1,1

+4H−1,1,w4 − 4H−1,−1,0 − 16H−1,−1,1 + 4H−1,−1,w4 − 20H−1,−1,−1

+2
(
H2

1 − 2H−1,1
)
H0 + 2

(−4H−1,1 + H2
1 − H2−1 + 2H1H−1

)
Hw3

+(4H−1,1 − 5H2−1 + 5H2
1 − 4H0,1 − 4H0,−1 − 4Hw3,1 − 4Hw3,−1

)
H1

+(4H0H1 − H2
1 + 4Hw3,1 + 4Hw3,−1 + 12H−1,1

+5H2−1

)
H−1 − [ln (1 − k2)− ln(k2 − z2) + 2 ln

(
k2 − z

)− 6 ln(k)
]

×(4H−1,1 + H2−1 − H2
1 − 2H−1H1

)]− 16(1 − z)
(
z − k2(2 + 3z)

)
k

[
H1,w4,w5

+H1,w4,w6 + H1,w4,w7 + H1,w4,w8 − Hw5,1,1 + Hw5,1,−1 − Hw5,w3,1

+Hw5,w3,−1 − Hw6,1,1 + Hw6,1,−1 − Hw6,w3,1 + Hw6,w3,−1 − Hw7,w3,1

+Hw7,w3,−1 + Hw7,−1,1 − Hw7,−1,−1 − Hw8,w3,1 + Hw8,w3,−1 + Hw8,−1,1

−Hw8,−1,−1 − H−1,w4,w5 − H−1,w4,w6 − H−1,w4,w7 − H−1,w4,w8

+k
(
Hw2,w4,w5 + Hw2,w4,w6 + Hw2,w4,w7 + Hw2,w4,w8 − Hw1,w4,w5

−Hw1,w4,w6 − Hw1,w4,w7 − Hw1,w4,w8 + Hw5,1,w1 − Hw5,1,w2 + Hw5,w3,w1

−Hw5,w3,w2 + Hw6,1,w1 − Hw6,1,w2 + Hw6,w3,w1 − Hw6,w3,w2 + Hw7,w3,w1

−Hw7,w3,w2 − Hw7,−1,w1 + Hw7,−1,w2 + Hw8,w3,w1 − Hw8,w3,w2 − Hw8,−1,w1

+Hw8,−1,w2

)+ {Hw3,1 − Hw3,−1 + H−1,1 + k
[
Hw1,1 − Hw2,1 − Hw3,w1

+Hw3,w2

]}(
Hw5 + Hw6

)+ {Hw3,1 − Hw3,−1 − H−1,1 − H−1,−1

+k
[
Hw2,−1 − Hw1,−1 − Hw3,w1 + Hw3,w2

]}(
Hw7 + Hw8

)
+(Hw5,1 + Hw5,w3 + Hw6,1 + Hw6,w3 + Hw7,w3 − Hw7,−1 + Hw8,w3

−Hw ,−1 − [Hw + Hw + Hw7 + Hw

]
Hw

)(
H1 − H−1

)− k
(
Hw ,1 + Hw ,w
8 5 6 8 3 5 5 3
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+Hw6,1 + Hw6,w3 + Hw7,w3 − Hw7,−1 + Hw8,w3 − Hw8,−1 − [Hw5 + Hw6

+Hw7 + Hw8

]
Hw3

)(
Hw1 − Hw2

)+ (Hw7 + Hw8

)
H1H−1 − 1

2

(
Hw5 + Hw6

)
H2

1

]
+16

(
z − k2(2 + 3z)

)[
Hw1,1 + Hw1,−1 − Hw2,1 − Hw2,−1

](
Hw1 − Hw2

)
+32(k2(2 + 3z) − z)

k

[
Hw1,1,0 + Hw1,1,1 − Hw1,1,w4 − Hw1,1,−1 + Hw1,−1,0

+Hw1,−1,1 − Hw1,−1,w4 − Hw1,−1,−1 − Hw2,1,0 − Hw2,1,1 + Hw2,1,w4

+Hw2,1,−1 − Hw2,−1,0 − Hw2,−1,1 + Hw2,−1,w4 + Hw2,−1,−1

+Hw3,1,w1 − Hw3,1,w2 + Hw3,−1,w1 − Hw3,−1,w2 + 1

2

[
Hw1,1 + Hw1,−1

−Hw2,1 − Hw2,−1
](

2Hw3 + H1 − H−1
)+ 1

4

[
H2

1 − 4Hw3,−1

−4Hw3,1 − 4H−1,1 − H2−1 + 2H−1H1
](

Hw1 − Hw2

)+ 1

2

[
Hw2,−1 − Hw1,1

−Hw1,−1 + Hw2,1
](

6 ln(k) − ln
(
1 − k2)+ ln(k2 − z2) − 2 ln

(
k2 − z

))]

+32(1 − z)β
(
ln(1 − z) + ln(z)

)}+ 1

2
P (0)

gq ⊗ h̄
(1)
1,g ln

(
Q2

μ2
F

)

−P (0)
gq ⊗ b̄

(1)
1,g , (70)

with the polynomials

P1 = k4 + k2(2 − 6z) − 12z2 + 6z − 3, (71)

P2 = −k2 + 12z3 − 16z2 − 4z + 3, (72)

P3 = 8k4 + k2
(
−25z2 − 28z + 12

)
+ 9z2, (73)

P4 = k6 + k4
(

3 − 6z2
)

− 4z4, (74)

P5 = k2
(
z2 − 3z − 1

)
− z2 − 3z + 1, (75)

P6 = k8 + k6
(
−3z2 − 3z + 2

)
− 3k4

(
z2 − z + 1

)
− 2k2z4 + 2z4, (76)

P7 = 3k6(z − 1) − 2k5z
(

3z2 − 7z + 6
)

+ k4(3 − 9z) − 2k3z2 + 2k2z3 − 2z3, (77)

P8 = 3k6(z − 1) + 2k5z
(

3z2 − 7z + 6
)

+ k4(3 − 9z) + 2k3z2 + 2k2z3 − 2z3, (78)

P9 = k4 + k2
(

4z2 + 3z − 3
)

+ z
(
−4z2 − 4z + 3

)
, (79)

P10 = k2
(

5z2 − 2
)

+ 3z2, (80)

P11 = k2
(

5z2 − 15z + 1
)

− 5z2 + 3z − 1, (81)

P12 = k4
(
−80z3 + 35z2 + 30z − 9

)
+ 2k2z

(
19z2 − 10z − 9

)
+3z2

(
5z2 + 2z + 1

)
, (82)
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P13 = 6k5(z − 1) + k4
(
−4z3 + 21z2 − 30z + 8

)
+ k3

(
4z3 − 21z2 + 12z − 2

)
+3k2z2 + kz2(4z − 3) − 4z3, (83)

P14 = 6k5(z − 1) + k4
(

4z3 − 21z2 + 30z − 8
)

+ k3
(

4z3 − 21z2 + 12z − 2
)

−3k2z2 + kz2(4z − 3) + 4z3, (84)

P15 = 3k8 − 6k6
(
z2 + 2z − 1

)
+ k5z

(
12z3 − 25z2 + 6

)
− 3k4

(
6z2 − 4z + 3

)
−2k3z

(
z2 − 6z + 3

)− 4k2z4 + 3kz3 + 4z4, (85)

P16 = 6k6(z − 1) + k5
(

20z3 − 35z2 + 24z + 2
)

+ k4(6 − 18z)

+2k3
(

2z3 − 5z2 + 6z − 1
)

+ 4k2z3 − 3kz2 − 4z3, (86)

P17 = −6k6(z − 1) + k5
(

20z3 − 35z2 + 24z + 2
)

+ 6k4(3z − 1)

+2k3
(

2z3 − 5z2 + 6z − 1
)

− 4k2z3 − 3kz2 + 4z3, (87)

P18 = k4
(

80z3 − 35z2 − 30z + 9
)

+ 2k2z
(
−19z2 + 10z + 9

)
−3z2

(
5z2 + 2z + 1

)
, (88)

P19 = 3k8 − 6k6
(
z2 + 2z − 1

)
+ k5

(
−12z4 + 25z3 − 6z

)
− 3k4

(
6z2 − 4z + 3

)
+2k3z

(
z2 − 6z + 3

)
− 4k2z4 − 3kz3 + 4z4, (89)

P20 = 16βk7 − 40k6 + 8βk5
(

18z2 + 3z − 5
)

+ 8k4
(

36z3 − 66z2 − 15z + 17
)

+3βk3
(

192z4 − 344z3 + 69z2 + 82z − 31
)

−3k2
(

192z4 − 248z3 − 59z2 + 50z − 7
)

+3βkz
(

25z2 − 6z − 3
)

+ 3z
(
−25z2 + 6z + 3

)
, (90)

P21 = 16βk7 + 40k6 + 8βk5
(

18z2 + 3z − 5
)

− 8k4
(

36z3 − 66z2 − 15z + 17
)

+3βk3
(

192z4 − 344z3 + 69z2 + 82z − 31
)

+3k2
(

192z4 − 248z3 − 59z2 + 50z − 7
)

+3βkz
(

25z2 − 6z − 3
)

+ 3z
(

25z2 − 6z − 3
)

, (91)

P22 = 8k8(z − 2)(β(z − 1) + 1) − 8k7
(
−2β + βz3 + (1 − 8β)z2 + (9β − 4)z + 2

)
+k6

(
−66β + (68β − 96)z4 + (328 − 186β)z3 + (17β − 288)z2

+(167β − 24)z + 48
)

+ k5(−30β − 192βz5

+4(207β − 41)z4 + (314 − 935β)z3 + 3(47β + 5)z2 +
(188β − 199)z + 66

)+ k4(−192(β − 1)z5 + 4(94β − 183)z4 − 15(9β − 41)z3
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+(83 − 52β)z2 + (3β − 100)z − 18
)+ k3z

(−6β + 192z4 + 7(β − 40)z3

+(7 − 18β)z2 + (17β + 20)z + 21
)+ k2(z − 1)z

(
(4β − 7)z2 + (3β + 11)z − 6

)
−k(z − 1)z2((3β + 4)z + 3) + 3(z − 1)z3, (92)

P23 = 72k8(z − 2)2(β(z − 1) + 1) + k6(108(8β − 7) + 8(36β + 29)z5

−2(576β + 539)z4 + (576β + 1807)z3 + 3(768β − 563)z2 − 1440(2β − 1)z
)

+k4z
(−16(18β + 17)z4 + 208z3 + (504β + 95)z2 − 3(72β + 145)z + 360

)
+k2z2(43z3 + 99z2 − 150z + 36

)− 3z4(z + 3), (93)

P24 = 72k8(z − 2)2(β(z − 1) − 1) + k6(108(8β + 7) + 8(36β − 29)z5

−2(576β − 539)z4 + (576β − 1807)z3 + 3(768β + 563)z2 − 1440(2β + 1)z
)

−k4z
(
16(18β − 17)z4 + 208z3 + (95 − 504β)z2 + 3(72β − 145)z + 360

)
−k2z2(43z3 + 99z2 − 150z + 36

)+ 3z4(z + 3), (94)

P25 = 8k8(z − 2)(β(z − 1) + 1) + 8k7(−2β + βz3 + (1 − 8β)z2 + (9β − 4)z + 2
)

+k6(−66β + (68β − 96)z4 + (328 − 186β)z3

+(17β − 288)z2 + (167β − 24)z + 48
)

+k5(30β + 192βz5 + (164 − 828β)z4 + (935β − 314)z3 − 3(47β + 5)z2

+(199 − 188β)z − 66
)+ k4(−192(β − 1)z5 + 4(94β − 183)z4 − 15(9β − 41)z3

+(83 − 52β)z2 + (3β − 100)z − 18
)− k3z

(−6β + 192z4 + 7(β − 40)z3

+(7 − 18β)z2 + (17β + 20)z + 21
)+ k2(z − 1)z

(
(4β − 7)z2 + (3β + 11)z − 6

)
+k(z − 1)z2((3β + 4)z + 3) + 3(z − 1)z3, (95)

P26 = −8k8(z − 2)(β(z − 1) − 1) + 8k7(−2(β + 1) + βz3 − (8β + 1)z2 + (9β + 4)z
)

−k6(−6(11β + 8) + (68β + 96)z4 − 2(93β + 164)z3 + (17β + 288)z2

+(167β + 24)z
)+ k5(30β + 192βz5 − 4(207β + 41)z4 + (935β + 314)z3

−3(47β − 5)z2 − (188β + 199)z + 66
)+ k4(192(β + 1)z5 − 4(94β + 183)z4

+15(9β + 41)z3 + (52β + 83)z2 − (3β + 100)z − 18
)+ k3z

(
6β + 192z4

−7(β + 40)z3 + (18β + 7)z2 + (20 − 17β)z + 21
)− k2(z − 1)z

(
(4β + 7)z2

+(3β − 11)z + 6
)+ k(z − 1)z2((3β − 4)z − 3) + 3(z − 1)z3, (96)

P27 = 8k8(z − 2)(β(z − 1) − 1) + 8k7(−2(β + 1) + βz3 − (8β + 1)z2 + (9β + 4)z
)

+k6(−6(11β + 8) + (68β + 96)z4 − 2(93β + 164)z3 + (17β + 288)z2

+(167β + 24)z
)+ k5(30β + 192βz5 − 4(207β + 41)z4 + (935β + 314)z3

−3(47β − 5)z2 − (188β + 199)z + 66
)+ k4(−192(β + 1)z5 + 4(94β + 183)z4

−15(9β + 41)z3 − (52β + 83)z2 + (3β + 100)z + 18
)+ k3z

(
6β + 192z4

−7(β + 40)z3 + (18β + 7)z2 + (20 − 17β)z + 21
)+ k2(z − 1)z

(
(4β + 7)z2

+(3β − 11)z + 6
)+ k(z − 1)z2((3β − 4)z − 3) − 3(z − 1)z3 (97)

P28 = 3k4(z − 2) + k3(20 − 14z) + 6k2(z + 1) + 2kz − z, (98)

P29 = 9k5(z − 2) − 6k4z2 + 18k3(z + 1) − 4k2z2 − 3kz + 2z2, (99)
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P30 = 9k5(z − 2) + 6k4z2 + 18k3(z + 1) + 4k2z2 − 3kz − 2z2, (100)

P31 = 3k4(z − 2) + 2k3(7z − 10) + 6k2(z + 1) − 2kz − z, (101)

P32 = 3k4 − 2k2(9z + 2) + 18z − 7, (102)

P33 = 30k4 + k2(−60z2 + 63z + 28
)+ 16z2, (103)

P34 = 3k4(z2 + z − 1
)+ 2k2z2 − z2, (104)

P35 = 3k4(z2 + 3
)+ k2(2z2 + 3

)− z2, (105)

P36 = −9k5(z − 2) + 6k4(2z2 − 7z + 10
)− 18k3(z + 1) + 2k2z(4z + 3)

+3kz − 4z2, (106)

P37 = 9k5(z − 2) + 6k4(2z2 − 7z + 10
)+ 18k3(z + 1) + 2k2z(4z + 3)

−3kz − 4z2, (107)

P38 = 3k4(z − 8)z + k2(2z2 + 9z − 3
)− z2, (108)

P39 = 3k4 − k2(6z2 + 7
)+ 2z2, (109)

P40 = 9k7 − 3k5(3z2 + 12z + 4
)− 6k4z2(2z + 11) − 3k3(6z2 − 12z + 7

)
−2k2z

(
4z2 − 9z + 6

)+ 3kz2 + 4z3, (110)

P41 = 9k7 − 3k5(3z2 + 12z + 4
)+ 6k4z2(2z + 11) − 3k3(6z2 − 12z + 7

)
+2k2z

(
4z2 − 9z + 6

)+ 3kz2 − 4z3, (111)

P42 = −3k4 + k2(6z2 + 6z + 7
)− 2z2, (112)

P43 = 6k6 − k4(9z2 + 18z + 8
)− 2k2(9z2 − 9z + 7

)+ 3z2, (113)

P44 = 3k4(5z2 + 14z − 6
)+ k2(10z2 − 9z + 3

)− 5z2, (114)

P45 = 3k6 − k4(9z2 + 4
)− k2(18z2 + 7

)+ 3z2, (115)

P46 = 3k4(6z3 + 9z2 − z + 2
)+ k2z

(
3z2 + 8z + 9

)− z2(3z + 1), (116)

P47 = 6βk7 + 24k6 + 2βk5(27z2 + 27z + 28
)+ 2k4(9z2 + 27z − 2

)
−βk3(36z3 + 27z2 − 93z + 52

)+ k2(−36z3 + 21z2 + 93z − 10
)

+3βkz
(
4z2 + z − 1

)+ 3z
(
4z2 − 3z − 1

)
, (117)

P48 = 6βk7 − 24k6 + 2βk5(27z2 + 27z + 28
)− 2k4(9z2 + 27z − 2

)
−βk3(36z3 + 27z2 − 93z + 52

)+ k2(36z3 − 21z2 − 93z + 10
)

+3βkz
(
4z2 + z − 1

)+ 3z
(−4z2 + 3z + 1

)
, (118)

P49 = −6(β − 1)k7(z − 2) + 6k6z(β + z − 6) + k5(−28β + 3(4β − 3)z3 − 3(8β − 5)z2

+2(7β − 22)z + 40
)+ k4((9 − 12β)z3 − 8z2 + (30 − 14β)z + 12

)
+2k3z

(−2βz2 + (4β + 2)z + 7
)+ 2k2z

(
2βz2 + z − 1

)+ k(z − 3)z2 − z3, (119)

P50 = −6(β − 1)k7(z − 2) − 6k6z(β + z − 6) + k5(−28β + 3(4β − 3)z3 − 3(8β − 5)z2

+2(7β − 22)z + 40
)+ k4(3(4β − 3)z3 + 8z2 + 2(7β − 15)z − 12

)
+2k3z

(−2βz2 + (4β + 2)z + 7
)− 2k2z

(
2βz2 + z − 1

)+ k(z − 3)z2 + z3, (120)

P51 = 6(β + 1)k7(z − 2) − 6k6z(−β + z − 6) + k5(28β − 3(4β + 3)z3 + 3(8β + 5)z2

−2(7β + 22)z + 40
)− k4(3(4β + 3)z3 − 8z2 + 2(7β + 15)z + 12

)
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+2k3z
(
2βz2 + (2 − 4β)z + 7

)+ 2k2z
(
2βz2 − z + 1

)+ k(z − 3)z2 + z3, (121)

P52 = 6(β + 1)k7(z − 2) + 6k6z(−β + z − 6) + k5(28β − 3(4β + 3)z3 + 3(8β + 5)z2

−2(7β + 22)z + 40
)+ k4(3(4β + 3)z3 − 8z2 + 2(7β + 15)z + 12

)
+2k3z

(
2βz2 + (2 − 4β)z + 7

)− 2k2z
(
2βz2 − z + 1

)+ k(z − 3)z2 − z3, (122)

P53 = 54βk8(z − 2)2z − 3k6(−24(β + 1) + (β − 35)z5 + (5β + 113)z4

−(47β + 125)z3 + 6(15β + 31)z2 − 240z
)+ k4z

(
72(3β − 4) + (59β − 193)z4

+(187 − 173β)z3 + 2(82β − 143)z2 − 6(17β + 5)z
)− k2z2(12(β + 1)

+3(23β − 37)z3 + (11 − 25β)z2 + (103β − 167)z
)

+z4(3β + 13βz − 23z + 3), (123)

P54 = 54βk8(z − 2)2z − 3k6(−24(β − 1) + (β + 35)z5 + (5β − 113)z4

+(125 − 47β)z3 + 6(15β − 31)z2 + 240z
)+ k4z

(
72(3β + 4) + (59β + 193)z4

−(173β + 187)z3 + 2(82β + 143)z2 − 6(17β − 5)z
)− k2z2(12(β − 1)

+3(23β + 37)z3 − (25β + 11)z2 + (103β + 167)z
)

+z4(3β + 13βz + 23z − 3), (124)

P55 = 9β2k9(z − 1) + k7(12β2 + (9 − 54β2)z2 + 6
(
7β2 − 3

)
z
)+ 6k6z2(−11β2

+3β2z2 + 8β2z + z
)+ k5(21β2 − 9z3 + 18

(
3β2 + 2

)
z2 + (18 − 75β2)z)

+2k4z
(−6β2 + (6β2 − 3

)
z3 + (2 − 15β2)z2 + 15β2z

)
−3k3z2(6z + 7) − 2k2z3(−3β2 + (3β2 + 2

)
z + 1

)+ 3kz3 + 2z4. (125)

The remaining Mellin convolutions in Eqs. (69), (70) are given in Appendix B, with

A(x) ⊗ B(x) =
1∫

0

dx1

1∫
0

dx2δ(x − x1x2)A(x1)B(x2). (126)

The Wilson coefficient H(2),PS
2,q is given by

H
(2),PS
2,q = 1

2

(
H

(2),PS
1,q + 3H

(2),PS
L,q

)
. (127)

In summary, the two–loop massive Wilson coefficients are represented in terms of iterated in-
tegrals over the alphabets given in Section 4. The integrals can be arranged such that only the 
last integral contains elliptic letters and all other integrals can be expressed in terms of classi-
cal polylogarithms with involved arguments. Some details are discussed in Appendix C. Similar 
structures are expected also for other physical processes depending on two scales, z and m2/Q2, 
in a non-factorizing manner. Even more involved structures will emerge in the case of more 
scales. The two–loop heavy flavor contributions to the structure functions F2(L) are given by

F
(2),PS,heav.
2(L) (x,Q2) = a2

s (Q
2)Q2

H xH
PS,(2)
2(L)

(
Q2

μ2 , x

)
⊗ �(x,μ2). (128)
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6. The asymptotic and threshold expansions

The complete expressions calculated in Section 5 allow now to perform the asymptotic ex-
pansion for Q2 � m2 and the threshold expansion for β � 1. In the asymptotic limit Q2 � m2

the massive pure singlet Wilson coefficient have the following representations [5,36]

H
(2),PS
L,q

(
z,

Q2

m2

)
= C̃

(2),PS
q,L (NF + 1), (129)

H
(2),PS
2,q

(
z,

Q2

m2

)
= A

(2),PS
Qq (NF + 1) + C̃

(2),PS
q,2 (NF + 1). (130)

Here the massless Wilson coefficients C̃(2),PS
q,L (NF +1) are the ones given in Section 3 normalized 

by NF + 1. The massive two–loop operator matrix element A(2),PS
Qq in Mellin space in the MS

scheme [5,36] reads

A
(2),PS
Qq = −1

8
P̂ (0)

qg P (0)
gq ln2

(
m2

μ2

)
− 1

2
P̂ (1),PS

qq ln

(
m2

μ2

)
+ 1

8
P̂ (0)

qg P (0)
gq ζ2 + a

(2),PS
Qq . (131)

The constant part of the unrenormalized OME a(2),PS
Qq is given by

a
(2),PS
Qq (z) = CF TF

{
−4(1 − z)

(
112 + 121z + 400z2

)
27z

−
(

8

9

(
21 + 33z + 56z2)+ 8(1 + z)ζ2

)
H0

+2

3

(
3 + 15z + 8z2)H2

0 − 4

3
(1 + z)H3

0 + 8(1 − z)
(
4 + 7z + 4z2

)
3z

H0H1

−
[

8(1 − z)
(
4 + 7z + 4z2

)
3z

− 16(1 + z)H0

]
H0,1

−32(1 + z)H0,0,1 − 4(1 − z)
(
4 + 7z + 4z2

)
3z

ζ2 + 32(1 + z)ζ3

}
(132)

in z-space.
Expanding the fully massive result given in Section 5 in the asymptotic limit Q2 � m2 and 

setting μ2 = Q2 we find

H
(2),PS
L,q = −32CF TF

{
(1 − z)

(
1 − 2z + 10z2

)
9z

− (1 + z)(1 − 2z)H0 − zH2
0

+ (1 − z)
(
1 − 2z − 2z2

)
3z

H1 − zH0,1 + zζ2

+m2

Q2

[
− (1 − z)

(
2 − z + 2z2

)
3z

ln2
(

m2

Q2

)

+ (1 − z)
(− 22 + 4z + 29z2

)
−
(

(1 − z)
(
20 − 7z − 25z2

)

9z 9z
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+2

3

(
3 − 6z − 2z2)H0

)
ln

(
m2

Q2

)
+
(

2

9

(− 6 + 3z + 13z2)

+2(1 + z)
(− 2 + z + 2z2 + 2z3

)
3z

H−1

)

×H0 − 2

3
z3H2

0 +
(

− (1 − z)2(14 + 13z)

9z
+ 4(1 − z)

(
2 − z + 2z2

)
3z

H0

)
H1

+ (1 − z)
(
2 − z + 2z2

)
3z

H2
1 − 2

(
4 − 3z − 4z3

)
3z

H0,1

+2(1 + z)
(
2 − z − 2z2 − 2z3

)
3z

H0,−1 − 2(1 − z)
(
2 − z + 2z2 + 2z3

)
3z

ζ2

]

+
(

m2

Q2

)2 [
1

2z

(
4 − 2z − z2 − 2z3 + 4z4) ln2

(
m2

Q2

)
+
(

2
(
2 − 3z + 4z3)H0

+ (1 − z)
(
28 − 20z + 13z2 + 21z3

)
6z

+ (2 − 3z − 2z2 + 4z3)H1

)
ln

(
m2

Q2

)

+ 1

1152z

(
16027 − 13011z − 6267z2 + 7571z3 + 4320z4)

+
(

1

3

(
24 − 21z + 16z2 − 21z3)+ 4

(
1 − z2 + z3 + 2z4

)
z

H−1

)
H0

−
(

1

6z

(
4 − 15z2 − 16z3 + 21z4)

+4
(
2 − 2z + z2

)
z

H0

)
H1 − 1

2z

(
4 − 6z + 5z2 + 2z3 − 4z4)H2

1

+2
(
4 − 2z − z2 + 4z4

)
z

H0,1 − 4
(
1 − z2 + z3 + 2z4

)
z

H0,−1

+2
(
2 − 2z + z2

)
z

ζ2

]}
+ O

((
m2

Q2

)3

ln2
(

m2

Q2

))
, (133)

H
(2),PS
2,q = CF TF

{
−
(

4(1 − z)
(
4 + 7z + 4z2

)
3z

+ 8(1 + z)H0

)
ln2
(

m2

Q2

)

−
(

16(1 − z)
(
10 + z + 28z2

)
9z

+ 8

3

(
3 + 15z + 8z2)H0

−8(1 + z)H2
0

)
ln

(
m2

Q2

)
+ 16(1 − z)

(
5 + 24z − 52z2

)
9z

+
(

8

9

(
105 − 99z − 88z2)− 32(1 + z)3

3z
H−1

)
H0

+8z(5 − 2z)H2
0 + 16

3
(1 + z)H3

0

−
(

16(1 − z)
(
13 − 26z + 4z2

)
− 16(1 − z)

(
4 + 7z + 4z2

)
H0

)
H1
9z 3z



J. Blümlein et al. / Nuclear Physics B 945 (2019) 114659 23
+4(1 − z)
(
4 + 7z + 4z2

)
3z

H2
1 +

(
−16

(
4 + 3z − 3z2 + 2z3

)
3z

+32(1 + z)H0

)
H0,1 + 32(1 + z)3

3z
H0,−1 − 32(1 + z)H0,0,1 + 16(1 + z)H0,1,1

−
(

32
(
1 + 3z2 − 3z3

)
3z

+ 32(1 + z)H0

)
ζ2 + 16(1 + z)ζ3

+m2

Q2

[(
16(1 − z)

(
1 + 2z2

)
z

+ 16zH0

)
ln2
(

m2

Q2

)

+
(

64(1 − z)
(
2 − z − 4z2

)
3z

+ 32
(
1 − 3z − 2z2)H0 − 16zH2

0

)
ln

(
m2

Q2

)

+8
(
76 − 24z − 102z2 + 59z3

)
9z

+
(

32(1 + z)
(
1 − z − 2z2 − 2z3

)
z

H−1

+16

3

(
6 + 27z − 20z2))H0 + 32z

(
1 + z2)H2

0 − 32

3
zH3

0

−16(1 − z)
(
1 + 2z2

)
z

H2
1 +

(
16
(
4 − 6z − 9z2 + 8z3

)
3z

−64(1 − z)
(
1 + 2z2

)
z

H0

)
H1 +

(
32
(
2 − z + z2 − 4z3

)
z

− 64zH0

)
H0,1

−32(1 + z)
(
1 − z − 2z2 − 2z3

)
z

H0,−1 + 64zH0,0,1 − 32zH0,1,1

+
(

32(1 + z)
(
1 − 2z + 2z2 − 2z3

)
z

+ 64zH0

)
ζ2 − 32zζ3

]

+
(

m2

Q2

)2 [
−4P61

3z
ln2
(

m2

Q2

)
−
(

4P65

9(1 − z)z
+ 16

3

(
9 − 33z − 16z2 + 72z3)H0

+8
(
3 − 11z − 12z2 + 24z3)H1

)
ln

(
m2

Q2

)
+ 64P59

3z
H0,−1 − 4P60

3z
H2

1

−16P62

3z
H0,1 − P66

72(1 − z)2z
−
(

64P59

3z
H−1 + 16P63

9(1 − z)

)
H0 + 64z2H2

0

−
(

4P64

9(1 − z)z
− 32

(
16 − 9z − 3z2 + 8z3

)
3z

H0

)
H1

−16
(
16 − 9z − 3z2 + 24z3

)
3z

ζ2

]}
+ O

((
m2

Q2

)3

ln2
(

m2

Q2

))
, (134)

with the polynomials

P59 = 18z4 + 7z3 − 9z2 + 4 , (135)

P60 = 72z4 − 52z3 − 27z2 + 27z − 32 , (136)

P61 = 72z4 − 20z3 − 39z2 − 9z + 32 , (137)

P62 = 72z4 − 8z3 − 39z2 − 9z + 32 , (138)
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P63 = 180z4 − 391z3 + 265z2 − 111z + 66 , (139)

P64 = 360z5 − 898z4 + 667z3 − 132z2 + 118z − 88 , (140)

P65 = 360z5 − 826z4 + 529z3 + 180z2 − 362z + 128 , (141)

P66 = 12816z6 − 6615z5 − 51371z4 + 62178z3 + 7650z2 − 43867z + 17673 . (142)

We note that the asymptotic terms are exactly reproduced, cf. [5,12,36], proving the asymptotic 
factorization in this process. The additional power suppressed terms can be used to obtain fast 
numerical implementations for the heavy quark Wilson coefficients which are valid for lower 
values of Q2. The reach of these approximations is discussed in Section 7.

The threshold expansion of the Wilson coefficients for β � 1 is given by

H
(1)
L,g

(
z,

Q2

m2

)
= 32TF z(1 − z)β3

{
1

3
+ β2

15
+ β4

35
+ β6

63

}
+O(β11), (143)

H
(1)
2,g

(
z,

Q2

m2

)
= 4TF β

{
1 + 2

3
(3 − 2z)β2 − 2

15

(
3 − 10z + 4z2

)
β4 + 2

105

(
5 + 2z

+8z2)β6 + 2

315

(
21 − 22z + 36z2)β8

}
+ O(β11), (144)

H
(2),PS
L,q

(
z,

Q2

m2

)
= CF TF z(1 − z)2β5

[
−9856

225
+ 128

15

[
ln(1 − z) − ln(z) + 4 ln(2β)

]

−β2
(

256

11025
(2785 − 2186z) − 256

105
(5 − 4z)

[
ln(1 − z)

− ln(z) + 4 ln(2β)
])− β4

(
256

297675

(
93721 − 162830z + 73888z2)

−128

945

(
121 − 200z + 88z2)[ln(1 − z) − ln(z) + 4 ln(2β)

])]

+O(β11) , (145)

H
(2),PS
2,q

(
z,

Q2

m2

)
= CF TF (1 − z)β3

[
−208

9
+ 16

3

[
ln(1 − z) − ln(z) + 4 ln(2β)

]

−β2
(

16

225
(817 − 496z) − 16

15
(11 − 8z)

[
ln(1 − z) − ln(z)

+4 ln(2β)
])− β4

(
64

11025

(
10649 − 11942z + 2358z2 + 1260z3)

− 16

105

(
79 − 112z + 48z2)[ln(1 − z) − ln(z) + 4 ln(2β)

])

−β6

(
32

297675

(
673297 − 1361520z + 934476z2 − 13048z3
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Fig. 2. The Wilson coefficients H(2),PS
2,q

(upper panel) and H(2),PS
L,q

(lower panel) as a function of z for different values 
of Q2 and the scale choice μ2 = μ2

F
= Q2. Lower full line (Blue): Q2 = 104 GeV2; lower dashed line (Orange): 

Q2 = 103 GeV2; lower dotted line (Magenta): Q2 = 500 GeV2; dash-dotted line (Blue): Q2 = 100 GeV2; upper full 
line (Red): Q2 = 50 GeV2; upper dashed line (Gray): Q2 = 25 GeV2; upper dotted line (Brown): Q2 = 10 GeV2. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

−120960z4)− 16

945

(
817 − 1800z + 1536z2

−448z3)[ln(1 − z) − ln(z) + 4 ln(2β)
])]+ O(β11) . (146)

7. Numerical results

Let us now illustrate the analytic results numerically. In Fig. 2 the two–loop heavy flavor 
Wilson coefficients are illustrated as a function of z for different values of Q2 ∈ [10, 104] GeV2, 
setting the charm quark mass to mc = 1.59 GeV, cf. [15]. For large values of Q2 these results 
compare to Ref. [16] for H(2),PS

2,q .
Next we study the ratios

R
(1)
i,q = H

(2),PS
i,q

H̃
(2),PS

(μ = μF = m) , (147)

i,q



26 J. Blümlein et al. / Nuclear Physics B 945 (2019) 114659
Fig. 3. The ratios R(1)
2,q

(left) and R(1)
L,q

(right), Eq. (147), as a function of χ = Q2/m2. Solid line: z = 10−4; dotted line: 
z = 10−2; dashed line: z = 1/2.

cf. also [5], comparing the full (69), (127) and the asymptotic results, H̃ , (129), (130) in Fig. 3. 
For H(2),PS

2,q the asymptotic expansion agrees with the full calculation up to Q2/m2 ≡ χ = 100 to 

about 2% for the small values of z = 10−4, 10−2. Extending the asymptotic representation down 
to χ = 10 does not introduce an error larger than 5% in this region. At larger z (here z = 1/2) 
the asymptotic representation begins to deviate significantly from the full calculation beginning 
at χ ∼ 1000. However, the Wilson coefficients are very small in this region. As it was already 
noted earlier [5] the asymptotic representation for H(2),PS

L,q is only valid for much higher values 
of χ . Demanding an agreement of ≤ 2% requires χ > 900 for the small values of z and even 
higher values for larger z. Similar to the ratio of the full and asymptotic Wilson coefficient we 
define the ratio

RFi
= F

(2),PS
i,q

F̃
(2),PS
i,q

, (148)

where F̃ (2),PS
i,q is the structure function obtained by using the expansion of the respective Wil-

son coefficient up the desired level. The corresponding results are depicted in Fig. 4. We 
use the parameterization of the parton distribution [73] at NNLO to better compare previ-
ous numerical results [16]. We used the LHAPDF interface [74]. Demanding an agreement 
within ±2% for F2 in the range z ∈ [10−4, 10−2, 1/2] leads to values Q2

0/m2 ∈ [8, 9, 15]
of the O((m2/Q2)2) improved result, Q2

0/m2 ∈ [10, 12, 30] of the O(m2/Q2) improved re-
sult, and Q2

0/m2 ∈ [70, 80, 300] for the asymptotic result. For FL the corresponding values 
are Q2

0/m2 ∈ [15, 15, 30] of the O((m2/Q2)2) improved result, Q2
0/m2 ∈ [15, 18, 40] of the 

O((m2/Q2) improved result, and Q2
0/m2 ∈ [200, 200, 700] for the asymptotic result. The values 

of Q2
0 for FL are thus larger than those for F2.

In Figs. 5 we show the complete results for the two–loop pure singlet contributions to F2 and 
FL as a function of x for a series of Q2-values. At large values of Q2 the corrections are negative 
and turn to positive values around Q2 ∼ 10 GeV2. In the small x region the corrections are large 
and grow with Q2. The absolute corrections to FL are smaller in size than those to F2.

In Fig. 6 we illustrate the ratios Eq. (148) as a function of x for different values of Q2 for 
F2 and FL comparing the asymptotic result to the full result. The corrections behave widely flat 
in x, turning to lower values in the large x region. For F2 the ratios are larger than 0.96 for 



J. Blümlein et al. / Nuclear Physics B 945 (2019) 114659 27
Fig. 4. The ratios R(1)
2,q

(left) and R(1)
L,q

(right), Eq. (147), as a function of χ = Q2/m2 for different values of z gradually 
improved with κ suppressed terms. Dotted lines: asymptotic result; dashed lines: O(m2/Q2) improved; solid lines: 
O((m2/Q2)2) improved.

Q2 ≥ 500 GeV2. At Q2 = 100 GeV2, values of ∼ 0.85 are obtained. For lower values of Q2 the 
ratio is even smaller.

For FL the corrections are generally larger. At Q2 = 104 GeV2 one obtains a ratio of 0.96, 
for Q2 = 103 GeV2 0.85, and for Q2 = 500 GeV2 ∼ 0.75, with even larger deviations from one 
for lower values of Q2.

In Fig. 7 we depict the ratio of the full result over the O((m2/Q2)2) improved asymptotic 
results for F2 and FL as a function of x for a series of Q2-values. In the region x < 0.1 the ratios 
for F2 are larger than 0.98 for Q2 > 50 GeV2 and grow for larger values of x. Stronger deviations 
are observed for lower Q2 values. For FL the corrections are larger. In the region x < 0.3 and 
Q2 > 100 GeV2 the ratio is larger than 0.97, while for lower scales Q2 the deviations are larger. 
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Fig. 5. The pure singlet contributions F(2),PS
2,q

(upper panel) and F(2),PS
L,q

(lower panel) for different values of Q2 and 
the scale choice μ2 = μ2

F
= Q2. Full line (Blue): Q2 = 104 GeV2; dashed line (Orange): Q2 = 103 GeV2; dotted line 

(Magenta): Q2 = 500 GeV2; dash-dotted line (Blue): Q2 = 100 GeV2; full line (Red): Q2 = 50 GeV2; dashed line 
(Gray): Q2 = 25 GeV2; dotted line (Brown): Q2 = 10 GeV2, using the parameterization of the parton distribution [73].

Fig. 6. The ratios of the structure functions F(2),PS
2,q

(left) and F(2),PS
L,q

(right) in the full calculation over the asymptotic 
approximation for different values of Q2 and the scale choice μ2 = μ2

F
= Q2. Full line (Black): Q2 = 104 GeV2; 

dashed line (Gray): Q2 = 103 GeV2; dotted line (Brown): Q2 = 500 GeV2; lower dashed line (Blue): Q2 = 100 GeV2; 
dash-dotted line (Red): Q2 = 50 GeV2, using the parameterization of the parton distribution [73].

Fig. 7. The ratios of the structure functions F 2,PS
2,q

(left) and F 2,PS
L,q

(right) in the full calculation over the O((m2/Q2)2)

improved approximation for different values of Q2 and the scale choice μ2 = μ2
F

= Q2. Full lines (Black): Q2 =
104 GeV2; dashed lines (Gray): Q2 = 103 GeV2; dotted lines (Brown): Q2 = 500 GeV2; lower dashed lines (Blue): 
Q2 = 100 GeV2; dash-dotted lines (Red): Q2 = 50 GeV2; lower dotted lines (Green): Q2 = 25 GeV2, using the param-
eterization of the parton distribution [73].
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We limited the expansion to terms of ∼ O((m2/Q2)2) in the present paper, but higher order terms 
can be given straightforwardly. The expanded expressions do also allow direct Mellin transforms 
and provide a suitable analytic basis for Mellin-space programmes.3

8. Conclusions

We have calculated the massless and massive two–loop unpolarized pure singlet Wilson coef-
ficients of deep-inelastic scattering for the structure functions F2 and FL. In the massless case, 
we confirmed earlier analytic results in the literature, which can be expressed by harmonic poly-
logarithms. In the massive case, the Wilson coefficients are calculated analytically for the first 
time. They are also given in terms of iterative integrals, including now, however, Kummer-elliptic 
integrals. The corresponding alphabets contain also elliptic letters. All integrals can be repre-
sented by classical (poly)logarithms with involed arguments with partly one more (elliptic) letter 
iterated upon. This representation is very well suited to obtain numerical results.

We have studied systematic expansions in the ratio m2/Q2 in the asymptotic region and the 
velocity parameter β in the threshold region. In the former case the leading asymptotic result 
has been recovered, known from calculations based on massive OMEs and massless Wilson 
coefficients, proving asymptotic factorization in the present case. We have obtained a series of 
power corrections. Here the expansion coefficients are also spanned by harmonic polylogarithms. 
Retaining these terms extends the validity of the cross sections to lower scales of Q2, which 
is relevant for experimental analyses. In particular, the predictions for the structure function 
FL(x, Q2) are significantly improved. In general, the Kummer-elliptic integrals, also obeying 
shuffling relations, span a wide class of iterative integrals which play a role as well in other 
multi-scale calculations.
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Appendix A. Details of the calculation

Our calculation closely follows classical calculations in the literature, cf. e.g. [61,76–78]. 
Although these calculations are typically well documented, we encountered subtleties at several 
points of our calculation. Therefore, we provide a more detailed discussion of our calculation 
in the massless and massive case in this Appendix. First we will give the parametrization of the 
phase space we used in the massless and massive case, then we will proceed by explaining the 
angular integration and give explicit results for the angular integrals in d dimensions. In the end, 
we will comment on our resolution of the poles in ε and subtleties encountered in the massless 
case.

3 In [75] precise numerical N -space implementations were given.
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A.1. Phase space parametrization

The 2 → 2 process In the 2 → 2 case in Fig. 1 we refer to the invariants

s = (q + p)2, t = (q − k1)
2, u = (q − k2)

2 (149)

with

s + t + u = −Q2 + 2m2 and Q2 = −q2. (150)

We will also use the notation β =√1 − 4m2/s. In the cms of the outgoing particles, �k1 + �k2 = 0, 
the scattering angle θ is defined by

t = −Q2 + m2 − 2q0k0
1 + |�k1||�q| cos(θ) = m2 − Q2

2x
(1 − β cos(θ)), (151)

with

q0 = s − Q2

2
√

s
, |�q| = s − Q2

2
√

s
, (152)

k0
1 =

√
s

2
, |�k1| =

√
s

2
β (153)

and

λ(a, b, c) = (a − b − c)2 − 4bc. (154)

The phase space integral is given by

∫
d PS2 = 24−2d π1−d/2

�
(

d
2 − 1

) sd/2−2βd−3

π∫
0

dθ sind−3(θ). (155)

The limit m → 0 is easily obtained by setting m = 0 and β = 1.

The 2 → 3 process The 2 → 3 process is slightly more involved. The contributing Feynman 
diagrams are shown in Fig. 8. We use∫

d PS3 =
∫

ddp2

(2π)d−1

∫
ddk1

(2π)d−1

∫
ddk2

(2π)d−1 δ+ (p2
2

)
δ+ (k2

1 − m2
)

δ+ (k2
2 − m2

)
× (2π)dδ(d) (p1 + q − p2 − k1 − k2)

= 1

(2π)2d−3

∫
ds12

{∫
ddp2

∫
ddKδ+ (p2

2

)

× δ+ (K2 − s12

)
δ(d) (p1 + q − p2 − K)

}

×
{∫

ddk1

∫
ddk2δ

+ (k2
1 − m2

)
δ+ (k2

2 − m2
)

δ(d) (k1 + k2 − K)

}
. (156)

Here

1 =
∫

ds12

∫
ddKδ+ (K2 − s12

)
δ(d) (k1 + k2 − K) (157)
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Fig. 8. Diagrams of the O(a2
s ) contributions to the pure singlet scattering cross section γ ∗ + q → Q + Q + q .

was introduced to factorize the 2 → 3 phase space into a (2 → 2) × (1 → 2) phase space. Both 
can now be calculated in the most appropriate system independent from each other. Integrating 
the first factor in the cms system of the process and the second in the cms of the two heavy quarks 
one obtains

∫
d PS3 = 1

(4π)d

(s − q2)3−d

�(d − 3)

s+
12∫

s−
12

ds12

t+∫
t−

dt

π∫
0

dθ

π∫
0

dφ [sin(θ)]d−3 [sin(φ)]d−4

× s
d/2−2
12

[
1 − 4m2

s12

]d/2−3/2 [
(s − q2)u − q2t

]d/2−2
td/2−2, (158)

where we have chosen the kinematic invariants

t = 2p1.p2, u = 2p2.q, s = (p1 + q)2, s12 = s − t − u. (159)

The phase space boundary is given by

s−
12 = 4m2, s+

12 = s, (160)

t− = 0, t+ = 1

s
(s − q2)(s − s12). (161)

We can use the following explicit parameterization of the vectors

k1 =
(
k0,0, . . . , |�k| sin(φ) sin(θ), |�k| cos(φ) sin(θ), |�k| cos(θ)

)
, (162)

k2 =
(
k0,0, . . . ,−|�k| sin(φ) sin(θ),−|�k| cos(φ) sin(θ),−|�k| cos(θ)

)
, (163)

p1 = s − t − q2

2
√

s12
(1, . . . ,0,0,1) , (164)

p2 = s − s12

2
√

s12
(1,0, . . . , sin(χ), cos(χ)) , (165)

q = 1

2
√

s12

(
q2 + s12 + t, . . . ,0,0, (s − s12) sin(χ), q2 + t − s + (s − s12) cos(χ)

)
,

(166)
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cos(χ) = 1 − 2s12t

(s − t − q2)(s − s12)
, (167)

k0 =
√

s12

2
, (168)

|�k| =
√

s12

2

√
1 − 4m2

s12
. (169)

In the limit m → 0, we recover the parameterization given in [61].
In a next step we want to introduce dimensionless variables with support over the unit cube. 

Here it is advantageous to distinguish between the massless and the massive case. In the massless 
case, we follow [61] and introduce the new variables

x = − q2

s − q2 ,

u = [1 − x − y − (1 − x)(1 − y)z](s − q2),

t = y(s − q2). (170)

The massless three-particle phase space then reads

∫
dPS3(m = 0) = 1

(4π)d

(s − q2)3−d

�(d − 3)

π∫
0

dθ

π∫
0

dφ (sin(θ))d−3 (sin(φ))d−4

×
s−q2∫
0

dt

s−t∫
tq2/(s−q2)

du s
d/2−2
12 td/2−2

[
(s − q2)u − q2t

]d/2−2

= 1

(4π)d

(s − q2)3−d

�(d − 3)
(1 − x)d−3

π∫
0

dθ

π∫
0

dφ (sin(θ))d−3 (sin(φ))d−4

×
1∫

0

dy

1∫
0

dzyd/2−2(1 − y)d−3 [z(1 − z)]d/2−2 . (171)

In the massive case the change to the following variables is useful

z = 1

β2

(
1 − 4m2

s12

)
, s12 = 4m2

1 − β2z
, (172)

y = st

(s − q2)(s − s12)
, t = (s − q2)β2y

1 − z

1 − β2z
. (173)

The new parameterization then reads∫
dPS3 = 1

(4π)d

sd−3

�(3 − d)
β3d−7(1 − β2)d/2−1

×
1∫

0

dz

1∫
0

dy

π∫
0

dθ

π∫
0

dφ [sin(θ)]d−3 [sin(φ)]d−4

× yd/2−2(1 − y)d/2−2zd/2−3/2(1 − z)d−3(1 − β2z)3−3d/2. (174)
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The limit m → 0 is not easily recovered, because of the mass dependent transformation.

A.2. Angular integrals

The massless case There are four angle dependent denominator structures appearing for the 
pure singlet process:

N1 = (p1 − k1)
2 = −2p1.k1 = a (1 − cos(θ)) ,

N2 = (p1 − k2)
2 = −2p1.k2 = a (1 + cos(θ)) ,

N3 = (q − k1)
2 = q2 − 2q.k1 = A + B cos(θ) + C cos(φ) sin(θ),

N4 = (q − k2)
2 = q2 + 2q.k1 = A − B cos(θ) − C cos(φ) sin(θ), (175)

with

a = − s − t − q2

2
,

A = 1

2

(
q2 − s12 − t

)
,

B = 1

2

[
q2 − s + t + (s − s12) cos(χ)

]
,

C = s − s12

2
sin(χ). (176)

Using partial fractioning we can express all angular integrals via

Il,k =
π∫

0

dθ

π∫
0

dφ
sind−3(θ)

al [1 − cos(θ)]l
sind−4(φ)

[A + B cos(θ) + C sin(θ) cos(φ)]k
. (177)

We only encounter integrals with k ≤ 0, however, it is possible to find closed form solutions for 
k ≤ 0 and l ≤ 0 in the massless case. In the following we will list the result for these angular 
integrals in d-dimensions.
l negative:

Il,k =
k∑

m=0

−l−m∑
n=0

(−l

m

)(−k − m

n

)
22d−7a−l (B2 + C2)l/2

(
B +

√
B2 + C2

)−l−m−n

× (−2B)n
(
A −

√
B2 + C2

)−k

(2C)m
�2(d/2 − 3/2)

�(d − 3)
2F1

[−m,d/2 − 3/2
d − 3

,2

]

× �(d/2 − 1 + n + m/2)�(d/2 − 1 + m/2)

�(d − 2 + m + n)

× 2F1

[
k, d/2 − 1 + n + m/2

d − 2 + m + n
,− 2

√
B2 + C2

A − √
B2 + C2

]
.

For l = 0 this reduces to

I0,k = 22d−7
[
A −

√
B2 + C2

]−k �2(d/2 − 3/2) �2(d/2 − 1)
�(d − 3) �(d − 2)
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× 2F1

[
k, d/2 − 1

d − 2
,− 2

√
B2 + C2

A − √
B2 + C2

]
. (178)

k negative:

Il,k =
−k∑

m=0

(−k

m

)
22d−7−l

al
(A − B)−k−m(−2z)m

�2(d/2 − 3/2)

�(d − 3)
2F1

[−m,d/2 − 3/2
d − 3

,2

]

× �(d/2 − 1 + m/2)�(d/2 − 1 + m/2 − l)

�(d − 2 + m − l)
2F1

[
m + k, d/2 − 1 + m/2

d − 2 + m − l
,− 2B

A − B

]
.

For k = 0 this reduces to

Il,0 = 22d−7−l

al

�(d/2 − 1 − l)�(d/2 − 1)

�(d − 2 − l)

�2(d/2 − 3/2)

�(d − 3)
. (179)

Expanding these results around ε = d − 4 dimensions we recover the integrals given in [76].

The massive case In the massive case the four denominator structures read

N1 = (p1 − k1)
2 = −2p1.k1 = a + b cos(θ),

N2 = (p1 − k2)
2 = −2p1.k2 = a − b cos(θ),

N3 = (q − k1)
2 = q2 − 2q.k1 = A + B cos(θ) + C cos(φ) sin(θ)

N4 = (q − k2)
2 = q2 − 2q.k2 = A − B cos(θ) − C cos(φ) sin(θ), (180)

with

a = − s − t − q2

2
, (181)

b = −1

2

√
1 − 4m2

s12
(q2 − s − t), (182)

A = q2 − s12 − t

2
, (183)

B = 1

2

√
1 − 4m2

s12

(
q2 − s + t + (s − s12) cos(χ)

)
, (184)

C = 1

2

√
1 − 4m2

s12
(s − s12) sin(χ). (185)

Therefore, we have to consider the more general angular integral

Il,k =
π∫

0

dθ

π∫
0

dφ
sind−3(θ)

[a + b cos(θ)]l
sind−4(φ)

[A + B cos(θ) + C sin(θ) cos(φ)]k
(186)

in the following. For l ≥ 0 and arbitrary k (the only case we encounter), we find:
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Il,k =
−l∑

n=0

n∑
m=0

m∑
i=0

(−l

n

)(
n

m

)(
m

i

)(
bC√

B2 + C2

)−l−n

× an−m

(
bB√

B2 + C2

)m (
A −

√
B2 + C2

)−k

× 22d−7−n−l+i (−1)−n−l+m−i �
2(d/2 − 3/2)

�(d − 3)

× �(d/2 − 1 − n/2 − l/2 + i)�(d/2 − 1 − n/2 − l/2)

�(d − 2 − n + l + i)

× 2F1

[
n + l, d/2 − 3/2

d − 3
,2

]
2F1

[
k, d/2 − 1 − n/2 − l/2 + i

d − 2 − n − l + i
,− 2

√
B2 + C2

A − √
B2 + C2

]
.

(187)

A.3. Regularization

In order to perform the ε-expansion of the functions we use a simple subtraction term for 
y = 0. However, there is a subtlety hiding in this limit. The hypergeometric functions of interest 
are all of the argument

X = − 2
√

B2 + C2

A − √
B2 + C2

. (188)

Inserting the coefficients from Eqs. (176), we see that

X = 1 +O(y), (189)

which means that there is a potential logarithmic singularity for y → 0 in the massless case. This 
divergence can be made explicit by transforming the 2F1’s from argument x to (1 − x) [79]

2F1

[
a, b

c
, z

]
= �

[
c, c − a − b

c − a, c − b

]
2F1

[
a, b

a + b − c + 1
,1 − z

]

+ (1 − z)c−a−b�

[
c, a + b − c

a, b

]
2F1

[
c − a, c − b

c − a − b + 1
,1 − z

]
. (190)

The new hypergeometric functions have Taylor expansions around y = 0. The only singular 
behavior can now occur for y → 0. This means that we can resolve the divergences via

F(x) =
1∫

0

dz

1∫
0

dyy−2+ε/2f (x, y, z) (191)

=
1∫

0

dz

1∫
0

dyy−2+ε/2
[
f (x, y, z) − f (0)(x,0, z) − yf (1)(x,0, z)

]

−
1∫

0

dz

1∫
0

dyy−2+ε/2
[
f (0)(x,0, z) + yf (1)(x,0, z)

]

≡ (A) − (B), (192)
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where we used the notation

f (x, y, z) =
∞∑
i=0

yif (i)(x,0, z). (193)

In the massive case we have

X = −
√

B2 + C2

A − √
B2 + C2

= 2β
√

z

1 + β
√

z
+O(y), (194)

which means that this divergence is regulated by the quark mass. The subtraction term (B) can 
be trivially integrated over y, which will lead to poles in ε. In the massless case the expansion in 
ε can be performed afterwards and the last integration over z can be carried out. In the massive 
case there can be additional singularities hiding in the z → 1 limit. Therefore, term (B) has to 
be regularized accordingly. Term (A) is not singular in the limit y → 0 and can be expanded in 
ε and then integrated over y and z.

Appendix B. Contributing expressions due to renormalization

In the following we list some Mellin-convolutions, which occurred in Eqs. (69), (70). These 
are convolutions with leading order splitting functions, using the parameter κ = m2/Q2.

P (0)
gq ⊗ h

(1)
L,g = CF TF

{
64β(1 − z)

1 + 6κ − (8κ + 2)z − (8κ + 2)z2

3z(1 + 4κ)

−64

3
z(3 + 4κz) ln

(
1 − β

1 + β

)

+64

3

4κ(1 + 3κ) − 6κ(1 + 4κ)z + 3(1 + 4κ)2z2

z(1 + 4κ)3/2 ln

(√
1 + 4κ − β√
1 + 4κ + β

)}
,

(195)

P (0)
gq ⊗ b̄

(1)
L,g = CF TF

{
−32(1 − z)

(
3 − 4z − 6z2

)
β

3z
+ 8

3
z(3 + 4zκ) ln2

(
1 − β

1 + β

)

−64

3
z(3 + 4zκ)

[
Li2
(1 − β

2

)− Li2(1 − β) − Li2(−β)
]

− 8

3z(1 + 4κ)5/2

[
2κ2(1 + κ) − 3zκ2(1 + 4κ)

+3z2(1 + 4κ)2(κ + √
1 + 4κ

)+ 4z3κ(1 + 4κ)5/2
]

ln2(1 − z)

− 8κR3

3z(1 + 4κ)5/2

[
ln2

(√
1 + 4κ − 1√
1 + 4κ + 1

)
+ ln2

(√
1 + 4κ − β√
1 + 4κ + β

)

−4 ln
(
κ
)

ln

(√
1 + 4κ − 1√
1 + 4κ + 1

)
− 8Li2

(
1

1 − √
1 + 4κ

)

+8Li2

(
1

1 + √
1 + 4κ

)
+ 8Li2

(√
1 + 4κ − 1√
1 + 4κ + 1

)
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−8 ln(2) ln

(√
1 + 4κ − 1√
1 + 4κ + 1

)
+ 8Li2

(
β − √

1 + 4κ

β + √
1 + 4κ

)

−8Li2

((√
1 + 4κ − 1

)(√
1 + 4κ − β

)
(
1 + √

1 + 4κ
)(

β + √
1 + 4κ

)
)

−2 ln(1 − z) ln

(√
1 + 4κ − 1√
1 + 4κ + 1

)]
+ 64

3
z(3 + 4zκ) ln(β) ln(2)

+ 16R7

3z(1 + 4κ)5/2
ln

(√
1 + 4κ − 1√
1 + 4κ + 1

)
ln

(√
1 + 4κ − β√
1 + 4κ + β

)

+ 32R5

3z(1 + 4κ)5/2

[
Li2

(√
1 + 4κ − β√
1 + 4κ + 1

)
+ Li2

(√
1 + 4κ − 1√
1 + 4κ + β

)]

− 32R4

3z(1 + 4κ)3/2 ln

(√
1 + 4κ − β√
1 + 4κ + β

)

− 32R2

3z(1 + 4κ)3/2

[
2Li2

(
− β√

1 + 4κ

)

−2Li2

(
β√

1 + 4κ

)
+ Li2

(√
1 + 4κ − 1√
1 + 4κ − β

)
+ Li2

(√
1 + 4κ + β√
1 + 4κ + 1

)

−2 ln(β) ln

(√
1 + 4κ − β√
1 + 4κ + β

)]
+ 32

3z(1 + 4κ)5/2

[
6κ2(1 + κ)

−9zκ2(1 + 4κ) + 3z2(1 + 4κ)2(3κ − √
1 + 4κ

)− 4z3κ(1 + 4κ)5/2
]
ζ2

+ 32βR1

3z(1 + 4κ)
ln(1 − z) + 16R6

3z(1 + 4κ)5/2
ln(1 − z) ln

(√
1 + 4κ − β√
1 + 4κ + β

)

−16

3
z(3 + 4zκ)

[
ln

(
1 − β

1 + β

)
− ln(z) + 2 ln(β) − ln(κ)

]
ln(1 − z)

− 32βR1

3z(1 + 4κ)
ln(z) + 16

3
z(3 + 4zκ)

[
ln

(
1 − β

1 + β

)
+ 2 ln(β) − ln(κ)

]
ln(z)

−8

3
z(3 + 4zκ) ln2(z) + 64βR1

3z(1 + 4κ)
ln(β)

−32

3
z(3 + 4zκ)

[
ln

(
1 − β

1 + β

)
− ln(κ)

]
ln(β)

−
[

32

3

(
3 − 6z − 4z2κ − 1 + 6κ

z(1 + 4κ)

)
+ 16

3
z(3 + 4zκ) ln(κ)

]
ln

(
1 − β

1 + β

)

−8

3
z(3 + 4zκ) ln2(κ)

}
, (196)

where we introduced the polynomials



38 J. Blümlein et al. / Nuclear Physics B 945 (2019) 114659
R1 = 6κ + (8κ + 2)z3 − (14κ + 3)z + 1 , (197)

R2 = 4κ(1 + 3κ) + 3(1 + 4κ)2z2 − 6κ(1 + 4κ)z , (198)

R3 = 2κ(1 + κ) + 3(1 + 4κ)2z2 − 3κ(1 + 4κ)z , (199)

R4 = 24κ2 + 12κ − 3(1 + 4κ)2z + 6(1 + 4κ)2z2 + 1 , (200)

R5 = 4κ
(

11κ2 + 6κ + 1
)

− 6κ
(

12κ2 + 7κ + 1
)

z + 3(1 + 2κ)(1 + 4κ)2z2 , (201)

R6 = 2κ
(

23κ2 + 13κ + 2
)

− 3κ
(

28κ2 + 15κ + 2
)

z + 3(1 + 3κ)(1 + 4κ)2z2 , (202)

R7 = 2κ
(

25κ2 + 15κ + 2
)

− 3κ
(

36κ2 + 17κ + 2
)

z + 3(1 + 5κ)(1 + 4κ)2z2 . (203)

For F1 the corresponding quantities read

P (0)
gq ⊗ h

(1)
1,g = CF TF

{
(1 + z − 2zκ)

[
−32 ln2

(
1 − β

1 + β

)
− 64Li2

(
1 − β

2

)

+64Li2

(
1 + β

2

)
− 64Li2

(
β + 1

1 − √
1 + 4κ

)
+ 64Li2

(
β − 1√

1 + 4κ − 1

)

+64Li2

(
1 − β

1 + √
1 + 4κ

)
− 64Li2

(
1 + β

1 + √
1 + 4κ

)

+
(

−64 ln (1 + β) − 128 ln
(

1 + √
1 + 4κ

)

+128 ln
(
β +√

1+4κ
)

−64 ln

(√
1+4κ −1√
1+4κ +1

)
+64 ln

(√
1+4κ −β√
1+4κ +β

)

+64 ln(2)

)
ln

(
1 − β

1 + β

)]
− 64(1− z)β

3z(1+4κ)

(
3z(1+4κ)+2z2(1−2κ)(1+4κ)

+2(1 + 7κ)
)− 32

3

(
3 − 3z − 4z2(1 − 2κ)(1 + 2κ)

)
ln

(
1 − β

1 + β

)

− 128

3z(1 + 4κ)3/2

(
1 + 9(1 − z)κ + 2(7 − 18z)κ2) ln

(√
1 + 4κ − β√
1 + 4κ + β

)}
,

(204)

P (0)
gq ⊗ b̄

(1)
1,g = CF TF

{
2(1 + k)3R8

3k4z

[
kHw1 − kHw2 + ln(1 − k2) − ln(1 − z)

]
H0

+32R9

3z

(
Hw1 + Hw2

)− R10

6k2z
ln(1 − k)Hw2

+ R11

6k2z

[
ln(1 − k)Hw1 + ln(1 + k)Hw2

]+ 8R12

3z

×
[

Hw1,−1 − Hw2,1 + Hw2,−1 + 2 ln(k)
(
Hw1 + Hw2

)]

+96kz(1 + z)

3z

(
Hw1,−1 − Hw2,1 − Hw2,−1

)
+−16R12

(
Hw1,0 + Hw2,0 + 1

Hw1,1

)
+ 96kz(1 + z)

Hw1,1
3z 2 3z
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−
(
1 − 3k2

)
R13

6k3z

[
ln2(1 − k) − ln2(1 + k)

− ln(1 − z)
{
ln(1 − k) − ln(1 + k)

}]

+ R14

6k2z
ln(1 + k)Hw1 + 16R15

3k4 H1H−1 + 16R16

3k4

[
2H0,1 − 2H−1,0

−2H1H0 − [ln(1 − k2) − 2 ln(k)
](

H1 + H−1
)]+ 16(1 − z)βR17

3k2z

−8R18

3k4z
ln(2)

[
ln(1 − z) − ln(1 − k2) − k

(
Hw1 − Hw2

)]

+ 16R19

3k4z(1 − β)

(
z − k2(1 − (1 − z)β)

)[
ln(1 − k2)

−2 ln(k)

]
− 32(1 − z)βR20

3k2z
H0 − 8R21

3k4z
H1 + 8R22

3k4z
H−1

−8

3

[
3 + 9z −

(
1 + k2

)(
1 − 3k2

)
z2

k4

](
H2

1 − H2−1

)

+32

3

[
9 + 3z +

(
1 + k2

)(
1 − 3k2

)
z2

k4

]
H−1,1

+(16z

k
− 16k(2 + 3z)

)[−2Hw1,1,0 − Hw1,1,1 + Hw1,1,−1 − 2Hw1,−1,0

−Hw1,−1,1 + Hw1,−1,−1 + 2Hw2,1,0 + Hw2,1,1 − Hw2,1,−1 + 2Hw2,−1,0

+Hw2,−1,1 − Hw2,−1,−1 − (ζ2 − ln2(2)
)(

Hw1 − Hw2

)− (Hw1,1 + Hw1,−1

−Hw2,1 − Hw2,−1
){

ln(1 − k2) − 2 ln(k)
}]

+(2 + (3 − 1

k2

)
z
)[−8

3

(
H3

−1 + H3
1

)− 32H−1,1H−1 + 32H−1,0,1

+64H−1,1,0 + 64H−1,1,1 + 32H−1,−1,0 + 64H−1,−1,1 − 32H0,1,1

+16
[
ln(1 − z) − ln(1 − k2)

](
ln2(2) − ζ2

)+ 8
(
H−1 − 2H0

)
H2

1 + 8
(
H2−1

+4H0,1 − 4H−1,0 − 4H−1,1
)
H1 − 8

[
ln(1 − k2) − 2 ln(k)

]{
2H−1H1

−4H−1,1 + H2
1 − H2−1

}]}
, (205)

with the polynomials

R8 = 99k6 − 297k5 + 270k4 − 18k3 − 77k2 + 39k − 8, (206)

R9 = k4 + k2(3z + 2) + 6z − 3, (207)

R10 = 9k8 + 48k6(3z − 2) + k4(214 − 552z) + 48k2(9z − 5) − 24z + 17, (208)

R11 = 9k8 + 48k6(3z − 4) + 6k4(4z + 57) − 16k2(9z + 1) − 24z + 17, (209)

R12 = 3k4 − 2k2(9z + 2) + 18z − 7, (210)

R13 = 3k6 + k4(48z − 47) + k2(77 − 72z) + 24z − 17, (211)
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R14 = −9k8 − 48k6(3z − 2) + k4(552z − 214) − 48k2(9z − 5) + 24z − 17, (212)

R15 = 3k4(z2 − z − 3
)+ 2k2z2 − z2, (213)

R16 = 3k4(z2 + z − 1
)+ 2k2z2 − z2, (214)

R17 = 2k4 + k2(2z2 + 9z + 12
)− 2z2, (215)

R18 = 9k4z(z + 3) + 2k2(3z2 − 9z + 5
)− 3z2 + 3z − 2, (216)

R19 = 3k4 − k2(6z2 + 6z + 7
)+ 2z2, (217)

R20 = −3k4 + k2(6z2 + 6z + 7
)− 2z2, (218)

R21 = 6k6(β(z − 1) + 1) + k4(14(β − 1) − 2(6β − 5)z3 + 3z2 − 2(β − 15)z
)

+k2z2(−4β + 4(β − 1)z + 3) + 2z3, (219)

R22 = 6k6(β(z − 1) − 1) − k4(−14(β + 1) + 2(6β + 5)z3 + 3z2 + 2(β + 15)z
)

+k2z2(−4β + 4(β + 1)z − 3) − 2z3 . (220)

Appendix C. Remarks on the encountered iterated integrals

In this calculation a large number of generalized iterated integrals appear. If no elliptic letter 
is present, it is possible to represent them using harmonic polylogarithms when the letters do not 
involve kinematic variables or polylogarithms at involved arguments. The expressions become 
large already in simple situations. In total about 1050 logarithms, di- and trilogarithms contribute. 
In a series of cases a further elliptic letter is integrated over these structures.

A few examples are given in the following. Let us refer to the letters fw9 and fw6 . The corre-
sponding iterated integral reads

Hw9,w6(β) = 1 − β2(1 − z)

2k(1 − z)2z(z + 1)

{
−Li2

[ √
z + 1(k + z)

z
√

z + 1 + k
(
(1 − z)

√
zβ2 + 1 + √

z + 1
)
]

+Li2

[ √
z + 1((z − 1)βk + k + z)

z
√

z + 1 + k
(
(1 − z)

√
zβ2 + 1 + √

z + 1
)
]

−Li2

[ √
z + 1(k + z)

z
√

z + 1 − k
(
(1 − z)

√
zβ2 + 1 − √

z + 1
)
]

+Li2

[ √
z + 1((z − 1)βk + k + z)

z
√

z + 1 − k
(
(1 − z)

√
zβ2 + 1 − √

z + 1
)
]

+ ln(k + z)

{
− ln

(
1 − β2

)

− ln

⎛
⎝− k(z − 1)

√
β2z + 1

k
(
−z
√

β2z + 1 +√β2z + 1 + √
z + 1

)
+ √

z + 1z

⎞
⎠

− ln

⎛
⎝ k(z − 1)

√
β2z + 1

k
(
−(1 − z)

√
β2z + 1 + √

z + 1
)

+ z
√

z + 1

⎞
⎠+ ln

(
β2z + 1

)}
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+ ln(βk(z − 1) + k + z)

×
{

ln

⎛
⎝−

k(z − 1)
(√

β2z + 1 + β
√

z + 1
)

k
(
(1 − z)

√
β2z + 1 + √

z + 1
)

+ z
√

z + 1

⎞
⎠

+ ln

⎛
⎝ k(z − 1)

(√
β2z + 1 − β

√
z + 1

)
k
(
−(1 − z)

√
β2z + 1 + √

z + 1
)

+ z
√

z + 1

⎞
⎠}}. (221)

Examples of the contributing functions are

Li2

⎛
⎝ √

1 + z(k + z)

z
√

1 + z + k
(√

1 + z −√1 + zβ2 + z
√

1 + zβ2
)
⎞
⎠ , (222)

Li2

(
k
√

1 − z2(−z + k(1 + (1 − z)β)

−zk
√

1 − z2 + k(k
√

1 − z2 + √
k2 − z2(1 − z))

)
, (223)

Li3

(
− 2(1 − k)zβ

(1 − β)(z − k(1 + (1 − z)β))

)
(224)

and logarithms of similar arguments.
Finally, we expand one of the iterated integrals, containing an elliptic letter, in the ratio 

m2/Q2. While the asymptotic expansion of the functions in Appendix B is straight forward 
after the integration into polylogarithmic expressions, the asymptotic expansion of the Kummer-
elliptic integrals is more involved. Here we rely heavily on the techniques developed in the 
context of Ref. [80] for the expansion of massive iterative integrals in the Drell–Yan process. 
The main idea is to perform the first integration analytically and then regularize the integrand in 
the limit Q2 � m2 before the expansion. Since we aim for a deeper expansion in this paper, the 
term for the regularization turns out to be a power series in κ . For example, we find

Hw10,w7(β) = 1

1 − z

{
1

4
ln2
(

m2

Q2

)
+ 1

2

(
ln(1 − z) − ln(2) − 2 ln

(
1 − √

z
))

ln

(
m2

Q2

)

+
(

2 ln(1 − z) − 5

4
ln(z)

)
ln
(
1 − √

z
)− 3

4
ln2 (1 − √

z
)− ln2(1 − z)

+1

2
ln(1 − z) ln(z) − 1

16
ln2(z) − Li2

(
1 − √

z
)− Li2

(√
z
)

−1

2
Li2

(
2
√

z

1 + √
z

)
− Li2

(
1

2

(
1 − √

z
))

−1

2
Li2

(
−1 − √

z

2
√

z

)
+ 11

4
ζ2 + 1

4

(
6 ln(1 − z)

−6 ln
(
1 − √

z
)− ln(z)

)
ln(2) − 1

4
ln2(2) + m2

Q2

[
1

2
ln2
(

m2

Q2

)

−
(

5 − 10
√

z − 3z

4
(
1 − z

) + 2 ln
(
1 − √

z
)− ln(1 − z) + ln(2)

)
ln

(
m2

Q2

)
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+1 − 8
√

z + z

4
(
1 − z

) +
(

5 + 6
√

z − 3z

2
(
1 − z

) + 4 ln(1 − z) − 5

2
ln(z)

)
ln
(
1 − √

z
)

−3

2
ln2 (1 − √

z
)−(5 + 22

√
z − 3z

4
(
1 − z

) − ln(z)

)
ln(1 − z) − 2 ln2(1 − z)

−1

8
ln2(z) − 2Li2

(
1 − √

z
)− 2Li2

(√
z
)− Li2

(
2
√

z

1 + √
z

)

−2Li2

(
1

2

(
1 − √

z
))− Li2

(
−1 − √

z

2
√

z

)
+ 2(

1 − z
)√z ln(z) + 11

2
ζ2

+
(

3 + 10
√

z − z

2
(
1 − z

) − 3 ln
(
1 − √

z
)+ 3 ln(1 − z) − 1

2
ln(z)

)
ln(2)

−1

2
ln2(2)

]
+
(

m2

Q2

)2 [
−1

2
ln2
(

m2

Q2

)

+
(

−15(1 + z2) − 6z − 100
√

z(1 + z)

32
(
1 − z

)2 + 2 ln
(
1 − √

z
)

− ln(1 − z) + ln(2)

)
ln

(
m2

Q2

)
+
(

15 − 6z + 15z2 + 28
√

z + 28z3/2

16
(
1 − z

)2
−4 ln(1 − z) + 5

2
ln(z)

)
ln
(
1 − √

z
)+ 3

2
ln2 (1 − √

z
)

+
(

−3
(
5 − 2z + 5z2 + 52

√
z + 52z3/2

)
32
(
1 − z

)2 − ln(z)

)
ln(1 − z)

+2 ln2(1 − z) + 1

8
ln2(z) + 2Li2

(
1 − √

z
)+ Li2

(
−1 − √

z

2
√

z

)

+2Li2
(√

z
)+ Li2

(
2
√

z

1 + √
z

)
+ 2Li2

(
1

2

(
1 − √

z
))+ 2(1 + z)(

1 − z
)2 √

z ln(z)

+97 − 202z + 33z2 − 324
√

z + 316z3/2

64
(
1 − z

)2
+
(

7(1 + z2) + 10z + 60
√

z(1 + z)

16
(
1 − z

)2
+3 ln

(
1 − √

z
)− 3 ln(1 − z) + 1

2
ln(z)

)
ln(2) − 11

2
ζ2 + 1

2
ln2(2)

]}
+O(κ3 ln2(κ)), (225)

and similar expressions for the other Kummer-elliptic integrals. When calculating the complete 
expansion all dependence on 

√
z drops out of the Wilson coefficients. We did not exploit here 

the well-known relations for the dilogarithm of different arguments [33].
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