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Abstract

We calculate the massive two—loop pure singlet Wilson coefficients for heavy quark production in the
unpolarized case analytically in the whole kinematic region and derive the threshold and asymptotic ex-
pansions. We also recalculate the corresponding massless two—loop Wilson coefficients. The complete
expressions contain iterated integrals with elliptic letters. The contributing alphabets enlarge the Kummer-
Poincaré letters by a series of square-root valued letters. A new class of iterated integrals, the Kummer-
elliptic integrals, are introduced. For the structure functions F> and F7 we also derive improved asymptotic
representations adding power corrections. Numerical results are presented.
© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The complete massive two—loop Wilson coefficients for deep—inelastic scattering correspond-
ing to the structure functions F»(x, 0?) and Fr(x, 0%) were only available in numerical form
[1-3]" for a long time. Later the flavor non-singlet Wilson coefficients have been calculated an-
alytically in [5] in the tagged-flavor case and recalculated for the inclusive case [6] to obtain a
representation consistent with the associated sum rules.
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In the present paper we calculate the massive pure singlet two—loop Wilson coefficients ana-
lytically. Due to the corresponding graphs, the formulae are structurally the same for the charm
and the bottom contributions. In the numerical illustrations we will concentrate on the charm
contributions, considering the first three quarks as massless. The knowledge of the complete an-
alytic expressions allows to derive important limiting cases such as the limit of large virtualities
0? > m?, m being the heavy quark mass, or the threshold expansion in a direct way. In the for-
mer case it is possible to derive systematic expansions in m?/Q? with coefficients represented
in terms of harmonic polylogarithms, while the complete result depends on much more general
functions. Harmonic polylogarithms can be easily calculated numerically [7-9]. Furthermore,
they can be directly transformed to Mellin space [10,11]. It has been observed numerically in
Ref. [5] that the limit of large virtualities is approached beyond some process-dependent scale
Q%. The Wilson coefficient in this limit can be calculated with the help of massive operator matrix
elements (OMEs) and massless Wilson coefficients, cf. [5]. It is important to prove this analyt-
ically. At three-loop order the massive Wilson coefficients are only known in the asymptotic
region [12-23]. We also recalculate the corresponding massless two—loop Wilson coefficients
given in [24-31] before and compare to these results.

The analytic calculation of the massive pure singlet Wilson coefficient has been envisaged by
W.L. van Neerven and one of the authors (J.B.) 20 years ago, after the non-singlet contribution
had been obtained in [5]. In retrospect, however, adequate mathematical techniques to perform
this task have only become available very recently. This includes the elimination of all func-
tional relations in the final result and techniques to obtain a relatively compact representation.
The massive Wilson coefficient is given by a four-fold non-trivial phase space integral. Three
of the integrals can be carried out using standard techniques. The integrand of the last integral
is obtained as a polynomial of algebraic terms, logarithms and polylogarithms [32,33] with an
involved argument structure. Therefore, the last integral is performed after determining the con-
tributing irreducible structure of letters of the contributing iterated integrals, using the techniques
described in [34,35]. The Wilson coefficient can finally be obtained as a d’ Alembertian integral
over a finite alphabet. The analytic results allow to perform expansions in m?/Q? including
power corrections, which is of particular importance for the structure function Fy (x, Q%). Here
the corresponding expansion coefficients are then harmonic polylogarithms. Such a representa-
tion is easily envisaged for the two—loop non-singlet Wilson coefficients given in [5,6], since
there the whole Wilson coefficient depends at most on classical polylogarithms.

We also consider the limit Q% > m? of the Wilson coefficient and compare with the results
given in Refs. [5,19,36]. Furthermore, the threshold expansion of the Wilson coefficients are
derived and numerical results are presented. In the present calculations, the packages FORM [37],
Sigma [38,39], EvaluateMultiSums [40,41] and HarmonicSums [10,11,35,42—-47] have
been used.

The paper is organized as follows. In Section 2 we first illustrate the asymptotic factorization
using the example of the O («y) calculation. The corresponding scattering cross sections will be
used in the two—loop massless and massive calculation later. In Section 3 the massless two—loop
pure singlet Wilson coefficients are calculated. The mathematical method used to prepare for the
last analytic integral in the massive case is described in Section 4 and in Section 5 we present
the analytic results for the massive Wilson coefficients. The asymptotic and threshold expansions
are derived in Section 6 and numerical results are presented in Section 7. Section 8 contains the
conclusions. Some technical aspects of the calculation are given in the Appendix.
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Fig. 1. Diagrams of the O (ay) contributions to scattering cross section y* + g — ¢ +q.

2. Asymptotic cross section factorization

The massive Wilson coefficients are calculated by factorizing the massless initial states
(quarks and gluons). In the unpolarized case and for longitudinal polarization the factorization is
longitudinal, i.e. by setting p =z P, z € [0, 1]. Here P denotes the incoming hadron momentum
and p the quark momentum. In the transversal polarized case one has to use the covariant parton
model [48], see [49-52]. As an illustrative example we consider the unpolarized one—loop heavy
flavor contribution to deep—inelastic scattering [53—57]. As for all the massive Wilson coeffi-
cients, it can be written in three parts: the massive operator matrix element, the massless Wilson
coefficient and a remainder part. The last one vanishes in the limit Q%/m? — oo in the case of
asymptotic factorization. A simple prediction on the structure of this term is not easily possible,
but usually requires the calculation of the whole process followed by the expansion in m?/ Q2.
This term depends on the structure of the phase space and it is a process-dependent quantity. In
Fig. 1 the contributing Feynman diagrams are shown.

The massive Wilson coefficients have the following series representation

Q2 m2 o k ® Q2 m2
Hyp,i (Z, =, | = H Z,—,— |, (D
L w2’ 2 ]; 2(L),i W

where i denotes the incoming parton and 2(L) refer to the associated structure functions and
as =as(UR) = gs2 / (471)2 denotes the strong coupling constant at the renormalization scale pg.
We work in d = 4 + ¢ space-time dimensions. Since we also need the O (¢) term of the LO result
later on, we further define

Q> m? (1) F(1)
2(L),i (Z’ W2 02 =hy)i Tebyy i )
where we dropped the arguments of the coefficient functions for brevity.

Let us consider the leading order contribution for the process y* 4+ g — QQ as an example,
cf. [53-57]. In the following we use the variable

_ 4m?  z 3
P @

The Wilson coefficients H él) and Hz(l) are given by

2 —
ns, <z, 5—) = 16T [ﬂz(l —2)+ 2@z In G - g)} 0(a—72). @)
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2

2
ns) (z, %) =8TF {ﬁ [—% +4z(1—2z) — Z%Z(l - z)}
m?

| m2\? 1-p
+[—5 +z—z2+2Q2z(3z—l)+4<@> Zz}“(wﬂ)}

x0 (a—1z), 5

with 6 (x) the Heaviside function, a = 1/(1 +4m?/Q?) and Tr = 1/2 for SU(N¢). The coeffi-
cients at O (¢g) read

E(Ll}g =Trz(1 —z){2(1 — 8% [Hg <i ;2) — 2H, (1 ;2) [1+Ho+H, _zHo(ﬂ)]}

1+8

1—
—Hl(ﬂ)]HO<l+§> —Cz]“G(a—z), 6)

- 1— 1 1-
By, = TF{za — (=) [ 23+ %) | Ho (ﬁ) — SH} (1 +g>

1—
—3[/3(3 +Ho +H; — 2Ho(B)) + (1 — %) |:Ho,1 (—ﬂ) + [In(2) + Ho(B)

x [3 — Bt —2e(5—2p7 — ) + 2 (9— 4B — ﬂ4)] 42815 — 282

+27%2(12 — %) —22(13 — 28%)] - 2[3 — Bt —2z(5-28% - %)

JFZ2(9 — 4,32 _ ﬁ4)] |:_H0,1 (%)

—[In(2) + Ho(B) — Ho(1 + B)1Hy (ﬁ) + Qi|

+[2,3(2 —B+2O-BH-22(5-8)) + [3 — Bt —2z(5-28* - B4

1 —
+22(9 - 4p% — ) [Ho (ﬁ)] [H; +Hy — 2Ho(ﬁ>]}e(a - 2). @)

Here we refer to the harmonic polylogarithms [58] defined by
Z
Hy2(2) :/dyfb@)Ha(y), Hp=1. b.aje(~1.0.1), ®)
0
and the letters f, are
1 1 1

fo(z)=? fl(z)=:, f_l(Z):1——|-z' ©))

Here and in the following we use the abbreviation H;(z) = H;.
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The expansion for large virtualities Q2 > m? is given by

2 ) ) o
i (v ) =m0 2 () 1] o () )
(10)
2N _arel-148:0 2ol (2) _w n
2.0 | & =
s\ 2 F—+z(—z)+[z+(—z)]nﬁ_l_0

m2 QZ
+4@ —z(14+2z2)+ (1 —3z)z| In (W) —H; —Hy
m2\?
+0 <@> (11D

for z € [0, a].
In the asymptotic case, one has [5]
o (, 22\ _zm
Hi (o~ ) = CorNr + 1), (12)
o (, & ) A (1)
H,, Zo3 =Ape(NF+ 1D +C, r(Np+ 1), (13)
using the definition
z S (NF) 2
J(Np) = Ny FINF+1)=f(Nrp+1)— f(NF). (14

Note that Egs. (12), (13) hold for z € [0, 1]. Here Cg;( L) denote the massless two—loop Wilson

coefficients and A(QI;, the massive one—loop operator matrix element (OME) with external gluons
[5,19,36]

2
m
A(Qli, = —ATp[2> + (1 —2)%]In (ﬁ) . (15)
The massless one—loop Wilson coefficients read [59—-01]
Cop = 16Trz(1 - 2), (16)
~(1) 2 2 0*
Cor=4Tp[z"+ (1 —2)"]In (?) )
HATE |1+ 8201 = 2) = [22 + (1 = 22| [H) + Hol |, (17

where

Pyo(z) =8Tr[2> + (1 —2)°] (18)

is a one—loop splitting function [62,63].”

2 For earlier references in QED, see [64].
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It can now be seen that the massive Wilson coefficients can be decomposed in terms of the part
obtained at large virtualities Q2 > m?2, Egs. (12), (13), consisting of massive OMEs and massless
Wilson coefficients, and a remainder part vanishing in the limit Q%/m? — oo. Whenever this
is the case one calls the respective process asymptotically factorizing. The factorization scale
w cancels in the cross sections (12), (13) since they are free of collinear singularities. As a
peculiarity in this case, the massive OME only contributes to the pure logarithmic term. This,
however, is due to its vanishing constant part and is generally not the case.

Numerically it is interesting to see from which value of Q(z) /m? onward the asymptotic repre-
sentation holds, say at the accuracy of O(2%) or better, cf. [5,6] and Section 7.

3. The massless Wilson coefficients

The massless pure singlet Wilson coefficients obey the expansion

8 (2 L) 25— s cctors (2
2(L) IL_ - ( _Z) 2+Z CZ(L) ’F s (19)

with 6, = 1 for C, and 8, = 0 for Cy. Throughout this paper we will identify the factorization
scale wr and the renormalization scale wg.

In the following we also recalculate the massless Wilson coefficients C; and C,
a limiting case of the present massive calculation. They have been computed in Refs. [24—30]
before.

The unrenormalized Wilson coefficients F o) 4 are related to the hadronic tensor of deeply

PS,(2) PS.2)

inelastic scattering in the partonic sub-system, W, by

2q2 A

L,g = ( C])2 p;l.va;uu (20)
2 2 N

fz,q_—m[W“Jr(d—l)( q)zp“p”Ww] 1)

Here p denotes the incoming parton momentum and ¢ the space-like momentum of the virtual
photon with g% = — Q2.
In the massive case we will also consider the Wilson coefficient

Frq=—2WH (22)

as a subsidiary function in order to avoid redundancies in the calculation. Note that this Wilson
coefficient does not correspond to the structure function Fp, cf. [64].

The following expressions will be given in Mellin-N space. They are obtained from the mo-
mentum fraction z-space by a Mellin transform

1

ML f(2)I(N) = f A2V F () (23)

0

The unrenormalized Wilson coefficients F, 22()2)}) 2 are given by [61]

2 &
),Ps (@ Lo, @.Pps 0) (1)
FioS =Nrpa; s, <F> [ PQ)cp) +e )+ PQa Lg} (24)
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2\ ¢
FOFs _ 00 (QN | L opo L1 paes | po o
2, Fagog P q 2q €2

2 ) | e22tag Tea 2t .8
2),PS 1
5y +P;§2)“§,§}’ (25)

with d, the unrenormalized coupling constant, the spherical factor

Se =exp |5 (ve — In(4m))], (26)

and yg the Euler—Mascheroni constant. We work in the MS-scheme and set S, = 1 at the end of
the calculation. Here the factors of 1/2 in Eq. (25) emerge since for the splitting into the upper
quark-antiquark pair, the quarks are produced correlated. Since the pure singlet contributions start

at O(asz) only, the renormalized Wilson coefficients C(L2)(’21;S are obtained after mass factorization

2),PS _ ~(2),PS 0 2),PS
Fila =Cly TTwCly - @7)
1
@.pS _ ~2.PS | 1 1) ps ~(2).PS | ~0) ~(D)
Fa =Cy, + 5T Cog T Cog (28)
with
2 e/2
O_~o(HE) 1,0
ng —aXSS (W) gpgq s (29)
2\ 11 |
D.PS _ ~2a2 [ HF 0) p(0 1),PS
r{-PS =a7s? <ﬁ> |:8—2Pq(g)ngq)+qu(q) } (30)

In z-space the functions in Egs. (24), (25) read
aj) =—=8Tpz(1 — 2)[3+ H + Hol, 3
oy = Tr{[22 + (1 = D?1(H) + Ho)® +2(1 = 82(1 = 2) () +Ho) = 32> + (1 - 221¢2
+6— 4421 - ), (32)

see as well Egs. (16), (17) for ,u2 = Qz. The splitting functions are

Py} = NPy, (33)
1+ (1—2)?

P4{)§2)=4CF—+(Z 2) , (34)

201 8 56

PDPS _6C TpNp| == —2+67 —4Hy+ 72 ~Hy — —

qq FIFNF 97 + 6z 0+z 3 0 5
+(1+2) (SHo - Hg)] (35)

PS,(2) PS,(2)

The massless Wilson coefficients C; and C, are thus given by
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X 2
1 1
o, Q_2 — _32C;Tp Ny [zHo + 3 (3 — 27— _>] In Q2
K ’ Z N

(1—2)(1—2z+102%)
9z
+(1 —2)(1 =2z -27%)
3z

2 4 4 -

e . Q_ = CrTrNF [8(1 +z)Ho + = <3 — 472 37 4 —>:| In? Q_
2 2 2

) 3 < Mg

8
—|—|:16(1 + 2)[—Ho,1 + & — Hjl + 322°Ho — 3 (3 — 472

4 16 5 13 0?
—3z+ - )JHi— —(39+4z"-30z— — ) |In|{ =
Z 9 z W

4(1 — 2)(172 4 409z — 22472
X 2)(172 4409z Z)+§(63—33z—1612)H0

— (1+2)(1 —2z)Hp — zH]

H; —zHo +z§2}, (36)

27z
32(1+2)°H_1Hy 2 20
SR 2545z 4320 HE + 220+ o))
3z 3 3
16(1 —2)(13 - 262 +42%)  8(4+3z - 6% —42%)
B Ho [H
+|: 9Z + 3Z 0 1

4(4+3z —47%)H} 8(1 +22)(4 — 5z +42%)
+ 3z T 3z

+16(1 +Z)H0:|H0,l

32(1 4322 - 32%)
3z

32(1 +z)3Hg _
+%+16<1 +Ho —[

+32(1 + z)Ho:| o —16(1 + z)g]. (37)

We agree with the results given in [30,31] and note a typo in [27], Eq. (13), where the next-to-
last term should read (448/27)x2. In Appendix A.l we present details of the calculation in the
massless case.

The massless two-loop pure singlet contribution to the structure functions ;) for pure vir-
tual photon exchange is given by

Q2
FAPS(x, 0%) = a2(0%) 0% xCES P (;, x) ® T(r, 1), (38)

where  denotes the factorization scale, Q y = 2/3 for charm and Q y = —1/3 for bottom, and

3

B0 = Y [ar wd) +Gilx i) (39)
k=1
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denotes the quark singlet distribution for three light quarks.
4. Systematic integration in the massive case

We will express the scattering cross sections in terms of a minimal number of special func-
tions. In the case of single scale quantities, various methods have been worked out in the past
to achieve this; for a recent survey see [65]. In the present case, we deal with a two-scale pro-
cess, since the cross sections depend on z and m?/Q? in a non-factorizing way. The complete
massive Wilson coefficients are represented in terms of four non-trivial integrals. The first three
integrations are evaluated in terms of logarithms and polylogarithms at various complex argu-
ments involving square-roots and trigonometric functions. What remains is a one-fold integral
with respect to an angular variable ¢ of a function that also depends on the parameters z and .
The overall aim is to write this integral in terms of nested integrals. To this end, we first write its
integrand in terms of nested integrals. First, we apply the change of integration variables

t =sin(g). 40)

As a result, we get rid of the trigonometric functions in the integrand. In addition, we introduce
the quantity

N
VI—(1—-7)p%

which satisfies \/z < k < 1. We use it to express S as

k= (41)

Vii—z
. kvl-z . : .
an expression in terms of z, k, and ¢ as well as logarithms and dilogarithms with arguments

expressed in terms of square-roots involving these quantities.

Next, we eliminate redundancies among square-root expressions to express the integrand us-
ing only the roots v/1 — k2, +/1 — 2, and +/1 — k2¢2. In order to facilitate the conversion of
the logarithms and dilogarithms appearing in the integrand to nested integrals, we exploit the
argument relations

. Altogether, the integrand is then

In(z) =In(—z) +im forz <0 (42)
Liz(z) = —Lis(1) — 1In(2)*> — im In(z) +2£(2) forz > 1 (43)

to avoid arguments on branch cuts.

After these pre-processing steps, all the following steps for computing the integral are done by
our code [66] in Mathematica, which also uses the routine DSolveRational of the pack-
age HolonomicFunctions [67]; see [34,68] for the general theory underlying [66]. We also
refer to [69] for the simpler case when no singularities are present at the endpoints of integration,
which, however, does not apply here.

First, the logarithms and dilogarithms are converted to nested integrals, which is based on re-
peated differentiation followed by expressing the integrands of these nested integrals in the form
developed in (3.16)—(3.19) of [35]. In fact, a generalized version of those forms is used to avoid
the necessity of introducing new square-roots in terms of z and k in addition to +/1 — k2 above.
Then, a normal form of the integrand is computed. This affects all parts of the representation,
also those that do not depend on ¢. For the nested integrals we use the shuffle relations and also
for their coefficients we compute normal forms in terms of the logarithms and square-roots.

As a result, we obtain a representation of the integrand as a linear combination of nested
integrals evaluated at r whose integrands also depend on z and k. Their coefficients only contain
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2k, 1,1 =12, /1 — k262, 1n(z), In(1 — 2), In(k+z), and In(k — z). The root ~/1 — k2, as well as
all other logarithms and dilogarithms depending on z and k, do not appear in this representation
anymore. Moreover, since both the integrand as a whole and all integrands of the nested integrals
in its representation are real, all complex expressions drop out of the coefficients as well and
we have a completely real representation. This is ensured since the integrands in (3.16)—(3.19)
of [35], and also their generalization used here, were designed so that the corresponding nested
integrals all are linearly independent.

Finally, the integral over ¢ from O to § is computed as a linear combination of nested integrals
evaluated at $, again in normal form. Like before, their integrands also depend on z and k and
their coefficients only contain z, k, ¢, v/1 — 12, +/1 — k22, In(z), In(1 — z), In(k + z), and In(k —
2).

The following letters contribute in the present case:

fin == )
fur) = < ik;’ (45)
Fun(0) = #, (46)
Fug(0) = ﬁ%, “7)
Fus(0) = m (48)
Fug) = m (49)
Fun () = m (50)
fwg(t)zm, (51)
0= G (]t_zz)) — (52)
Fun () = m\t/m (54)
o) = s R (A=) ) )
The set of letters
%:{t_laae(C} (56)
span the Kummer-Poincaré iterated integrals [70] defined as
Kp(2) = f Ay (MK, Kp=1, fee (57)

0
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The letter fy,, can be rewritten into Kummer-Poincaré letters [70], which we, however, avoid
here. Some of the above letters contain the elliptic letter

1 1
VI—2 J1-k72

as a factor. Therefore, one expects that in iterated integrals the incomplete elliptic integrals of the
1st, 2nd, and 3rd kind

(58)

X

1
F(x;k)= [ dt , (59
, V1 =121 — k22
X
V1 —k2t?
E(x;k):fdti, (60)
J V1 —12
X
1 V1 —kt?
H(n;x|k)=fdt—7, (61)
1—nt?2 /12
0

cf. [71], are emerging, over which further Kummer-Poincaré letters are iterated. We call iterated
integrals of this type Kummer-elliptic integrals. Their alphabet is

o — L 1 t V1—k212
h VI 21— k22 V1= 21— k22 112
1
U C\ {%1,+1L } 62
{(t—a)«/l—tzx/l—kzﬂ acCid ) (62)

Note that integrals of depth 1 over the letters f,, to fy,, are (poly)logarithmic, since one may
change variables t — /7, cf. Egs. (52-55).

Yet Kummer-elliptic integrals appear in the iterated case. Therefore, iterated integrals of depth
2 formed out of some of these letters will form results containing incomplete elliptic integrals in
part. These iterative integrals cannot be reduced to the Kummer-Poincaré iterated integrals for
general values of k. As also the incomplete elliptic integrals, they belong to the d’ Alembert class,
unlike the complete elliptic integrals [71], which also appear in various higher order calculations,
cf. e.g. [72], as letters in other iterated integrals.

5. The massive Wilson coefficients

The unrenormalized two—loop massive pure singlet Wilson coefficients H; , withi =1,2, L,
see also Eq. (22), are given in Mellin space by

2 &
@.ps _ (@ 1 0,0 | ~@.P5Q |, 07
M2 =als? (ﬁ) [EPM hig+Ciy +POb) | (63)

The functions h(lli, and Eig are given by
1 1 1
Moy =2y =3hiy (64)
(1 1 ~ =
o
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Since the two heavy quarks do not induce collinear divergences the mass factorization in the
massive case reads

(2),PS _ ;;(2),PS )
Hl.’q = Hl.’q +Tg ® Hi’g . (66)
Therefore, we find

2 £
@.ps _ 2] (£ 1 0,1 | ~2.psQ 0 ()
H'Y 252 {(ﬁ) [—qu)hi’g+ci’q +Pg(q)bl.1g]

g/2
()" () T

Identifying the renormalization and factorization scale, u = u , we finally obtain

1 0?
2,ps _ (0) 5, (1) (2),PS,Q
Hi,q |:2quh In <E> +Ci,q :|+0(8)

1 m? 1
_ 2l 0,0 I o, m (2) PS,Q
=da’ [ngq hiyIn <_u%> 2qu h; ln<Q2> +C; ] +0(). (68)

Note that in the pure singlet case the coupling constant is not renormalized at two—loop order.
To express our final result in terms of iterated integrals we refer to the letters given in Section 4,
supplemented by the letters spanning the harmonic polylogarithms (9); for Egs. (69) and (70) we
use the shorthand notation H; (8) = H;. One obtains

2),PS &P
Hg’; =CFTF{—¥{I<[H§” H2 + (1 — 2) (Hus,w; + Hug,w, — Hug

~Hug w; — HusHyyy + HypgHyyy — Hyp Hyyy + HWHwZ)}

+2(leqw4 + sz,w4 + HU)S»UJI
+Hy; w,) — (2Hy, — 6In(k) +In (1 — k%) — In(k* — z%)
16(1 —2)8P> 16(1 — 2)B P
+21n (k* — 2))[Hu, + HwQ]} e G — 22) — Ll
8(1—kH)(1—2)Py
3k4z

[HWSVO - Hwﬁ,o + HU)7,0 - ng,O

16(1 — k%) P
( )4H

—(Huys — Hyg + Hyy — wa)Ho} + e (Hu,

32P 2P
+Hu,)Ho + =5 (H-1Hy — 2H 1 1) + S (Hu, 0 + Huy 0)

3k2 3k4z
16P; 16 Pg 64 Py
+— (HiHu, —HoHup) + —57 *(HiHy, —H_Hy,) — 3522 s
16(1 — k*)(1 —z%) Pyo
— 32 ng,l + ng,fl -1 - Z)k(ng,w5 +Hw97w6
16P
+Hu, uy +Hw9,w8)] - (H 1)
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_(I=2)Ppp
35972153

_leosws - k(stgwn + Hw(),w” + Hw7,w11

|:HW10,w5 - leo,wﬁ + leo,uw

+Hw8,w11) +k(Hw5 +Hw6 +Hw7 +Hw8)lel - 1

2
TZ(leo,wl + leo,wz)
+4(1 +k)(1—2)Pi3
3k4
40 -k —2) P14
+ 3k4

(le,l - sz,—l) -

(Flug,—1 — Hug 1 + HypgHy — Hyy Hy)

(HuJ5,71 - Hw7,l + Hw7H1 - HUJ5H71)

8Pi5

4(1 —=2) P16
3k4z

3k4
41 —=2)P17
T(st’l —Hy,, -1
2(1 — k3 Pg
3/zk3
+(1 - Z)k(HWstlz + Hugwi, + Huywp, + waywlz)
8 P9
3k4z

+ (Hwﬁ,l _ng,—l

—HyHi +HygHop) —

—HwSHl +Hw7H_1) |:Hw|2,1 +Hw|2,—l

—(1- Z)k(st + HUJG + Hw7 + ng)Hw12i| (Hw|,—1

2Py 2P
_sz,l) + 9k2Z(1 _ kﬁ)le - 9k22(1 +kﬂ) sz
(1—2)Px» H,. + 2P
3K32(k(z —2) + (1 —kB) " 9kz(k2(z — 2)2 — 22)
_ 2Py _ (1—=2)P»s H
Ui (k222 —22) | ek —2) — (I +kp)
(1 —2)Px n (I —2)Pxy
33z(k(z =2 +2) (1 +kB) "7 3Kz(k(z —2) —2)(1—kB) *
—32(1 - 2)*z(In(z) + In(1 — 2))(28 — Hy —H_)
16(—1+2)B
3z
—4z —42%)(61In(k) — In (1 — k%) — 21In (k* — z) — 2Hy)
64z((z—3) —2)
3k2

H;

—642(3 = 2+ 5) In(o) (Hy + Ho1) + (3 - K2

[H1H0+H—1,0—H0,1
1
—Hj w, —H_1,w, —Hy;,1 —Huyy -1+ <5 1n(1 — kZ) +1n (kz _ Z) +Hw3)
32z 2 2 2 2
x(Hi+H_y) | - m(z+k (6 — 7z +3z%)) In(k* — 2°)(H; + H_)

I . 0 -
iy J (V) ) 2 | _pO (¢))
+5 Py ®hyIn (u«%) Poy ®by %, (69)
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(Hw(,,—l - ng,l + Hleg — H—le(,)

4(1 —z) P
@.ps
Hig = CFTF{—T

8P29
3k3

4(1 —2)P3 8P|, 2 2
+T(Hw5’_1 - Hw7’1 +H]Hw7 - H_lHWS) + ? k(le sz)

+2(Huy,wg + Hun g + Hug g + Hus )
+(Huy, + Hy, ) [610(k) + In(k% — 23]
+k(1 - Z)(st,wl +Hw6,w2 - HW7,w2 - ng,wl - leHw5 - szHl,U5

k* —z)P
T (G L TN

(Hlel —H—1Hw2) - m w)

+Hy, Hy,y + Huy, Hug) — (Hw, +Hy, )[In (1 = 4%) +21In (k2 — 2) + 2Hw3]]

16(1 — 2)BPy;  32Ps4
+ 2 4
Ok*z 3k

+Hl,w4 + Hw3,1 +Hw3,—l +H—l,w4

1 32(1—z2)P
—(Hi+H.)(5In(1 — k) +In(k* —2) +Hw3)] — %[ng,l

|:H0,1 —H_,0—HoH,

+Hw9,—1 - (l - Z)k(ng,ws + ng,w6 + ng,w7 + ng,wg):|

4(1 —z2) P36

+T(Hw5,l _Hw7,_1 —Hle5 +H—1Hw7)
4(1 —z) P37

55— (Hug1 = Huy 1 = HiHug + Ho 1 Huy)

16 P: 16(1 — z)B P39

+738(H71H1 —2H_1,)— Tzzﬂ In(k? — z2)
8Py 8 P41

_W(le,l - sz,fl) - m
16(1 — Z),3P42 )

e, | In(1 — &%) +21In (k* — z) — 61In(k) + 2Ho + 4H,,
16 Py3 8Pay , 5 2 16 Pys

S (Hu0 + Hun0) = = (HT —HZ,) + W(H“’l +H,,)Hy
8(1 —2) Pys

+T [st,o — Huyg,0 + Huy,0 — Hug,0

4 Pyq
—(st - Hw6 + Hw7 - ng)H0:| 3z 3/2k3 [Zleo w Tt 2Hw|o w)
—(1 - Z) (leo,ws - leo,w6 + HW10,W7 - leO»WS - k(HWvall + walm
+Hug,wy, + Hug,wyy) +k (Hus + Hug + Huy + HwS)lel)

+2k(1 — k*)z(1 - 2) <Hw5,w.2 + Hug.wis + Hugwy + Hugowpa
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_(Hw5 + Hys + Hy, + st)ku)

+2(1 — k)2 (Hyyp1 + lez’l)] + #ﬁrkﬁ) "
8 Py 4(1 —2)2 Pyo 41— 2" Pso
TUE( kB kG- -0 " kG -2+
4(1 —2)%Psy 41— 2)*Psy s
k=240 T 3Wzkz—2 -2 " A —gzp? T
8 Ps3 8 Psa

H_;

- H
ok z(1+ B)(k2(z — 2)2 —22) * 9%k4z(1 — B)(k2(z —2)2 — 22)
_[16(1 +£2)(1 — 3k?)2?

o In(k? — z%) + 16(1 — 2)(In(1 — 2) + In(2))

1+ k%) (1 —3k2)z2
+32<3(1 -2+ ( )(k4 ) >1n(k):|(H1 +H_))
2k* 4+ (3k* — 1)z
_8k—2 4Ho,1,1 +4Ho,—1,1 — 20H1,1,1 —4H1,1,w, — 4H1, -1,y
+4Hyy, 1,1 — 4Hyy 1,1 +4Hyy, 1,0 —4Hyy, 1,1 —4H 1,10 — 16H_ 1
+4H 1 1w, —4H-1 10— 16H_1 11 +4H_1 1w, —20H_1 1 -

+2(H} — 2H_y,1)Ho +2(—4H_y 1 + H] — H | + 2HH_;)H,,
+(4H_1,1 — SH?, + 5H? — 4Hp | — 4Ho 1 — 4Hy,,1 — 4H,, 1) H;
+(4HoH; — Hi +4H,, 1 +4H,, 1 + 12H_;
+5H2 | )H_| — [In (1 — &%) —In(k* — z%) +21In (k* — z) — 6In(k)]

16(1 — 2)(z — k(2 + 32))

k |:H1,w4,w5

FH1 wgw + Hiwgwy +Hiwgwg — Huws 1.1 4+ Huws 1,-1 = Hus ws 1
FHus.ws.~1 = Hug. 1.1 + Hug 1.1 = Hugws.1 4 Huwgws. 1 = Huwgws 1
+Hu;,wy,—1 + Huwy —1,1 — Huwy —1,—1 — Hug w1 + Huwg,ws,—1 + Hug,—1,1

X(4H—1,1 +H2,1 —H% - ZH_lHl)] —

—Hug,—1,—-1 = Hot,wy,ws = Ho1,ws,ws = H-1,ws,w7 — H—1,wy,wg
+k(Hw2,w4,w5 + Huy wg ws + Huwgwgwr + Huwgwgowg = Hupwgws

—Huy wswe = Hwyowgwr = Huwyowg wg +Huws, 1w = Huws 1wy + Hus ws,wy
—Hus,ws.wy +Hug, 1,01 = Hug 1wy +Hugws.wy = Hugws,wy - Hugws.wy
—Hu;ws.wy = Huwy —1,wy + Hug 1wy + Hug ws wy — Huwg,wg wy = Huwg,—1,0)
+Hug,~1,w;) + {Huws.1 = Hus,—1 + Ho11 + k[Hu 1 — Huyt — Husouy
+Hus,w, |} (Hws + Hug) + {Hus,1 —Huy,—1 —H_11 —H_y

+k[Huy,—1 — Huy,—1 — Hug,w, + Husw, |} (Huy + Hug)

+(Hw5’1 + Hus.wy +Hug,1 +Hugws +Hug ws —Huwy —1 + Hug u;

—Hupg,—1 — [HWS + Hug + Huy + HW8]HW3)(H1 o H—l) - k(st,l + Hus,w;
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+Hw6,l +Hw6,w3 +Hw7,w3 - Hw7,—1 + ng,w3 - ng,—l - [Hw5 +Hw6
1
+Hy, + st]Hw3)(Hw1 - sz) + (Hw7 + st)HlH—l - E(st + Hwe)H%]

+16(z — k*2 +32))[Huy 1 + Huy,—1 — Hup 1 — Hup 1] (Huy — Hu)
32(k*(2 4 37) — 2)
_l’_
k
+Hw],71,] _le,fl,wz; _le,fl,fl _sz,l,o _sz,l,l +Hw2,1,w4
+Hu,, 1,1 — Huy,—1,0 = Huy, 1,1 + Huy,—1,wq + Huy,—1,-1

|:Hw1,1,0 +Hw|,1,l - le,l,w4 _le,l,fl +Hw1,71,0

1
+Hw3,l,w1 - Hw3,l,w2 +Hw3,—l,w1 - Hw3,—l,w2 + E[le,l +Hw1,—l
1 2
—Hy,,1 — Hup,—1](2Hu; + Hi —H_y) + Z[H1 —4Hyy
5 1
—4H,;,1 —4H_1 ) —HZ | 4+ 2H_H;|(Hy, — Hu,) + E[sz,fl —Hy; 1

—Huy,,—1 +Hy, 1] (6In(k) — In (1 — k%) + In(k* — %) — 2In (k* — z))]

+32(1 —2)B(In(1 —2) + ln(z))} + %Pg(;’) ®h{)In (%)
PO 5, (70)
with the polynomials

Py =k* +K*(2 — 62) — 122% + 67 — 3, (71)
Py=—k* +122° — 162> — 4z + 3, (72)
Py = 8k* + K2 (—25z2 287+ 12) +922, (73)
Py=ko+k* (3-622) -4t (74)
P5=k2<zz—31—1)—z2—31+1, (75)
Po=kS + k0 (=322 =3z+2) — 34 (22— 2+ 1) - 2634 4 2%, (76)
Pr=3k0(z — 1) — 2k52 (3Z2 . 6) LRG3 = 97) — 2k322 + 2353 — 223, 77)
Py=3K0(z — 1) + 22 (322 = 724 6) + KB = 99 + 202 + 230 — 228, (78)
Po=kt + k2 (427 + 32— 3) 2 (—422 — 42 43), (79)
Plo=Kk* (522 =2) +32%, (80)
Py = k2 <5z2—151+1>—512+3z—1, 81)

P =k* (—80z3 435722+ 30z — 9) +2k2; (1922 — 10z — 9)

4372 (5z2 t2r 4 1) : (82)



Pz =

Py =

Pis =

Pig =

Py =

Py =

P9 =

Py =

Py =

Py =
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6k5(z — 1) + k* (—413 +2122 — 30z + 8) e (4z3 — 2122+ 127 — 2)
+3k22% + kz* (47 — 3) — 423,

6k3(z — 1)+ k* (413 — 2122 430z — 8) + i3 (4z3 212 4127 — 2)
—3k27% 4+ kz% (47 — 3) + 42°,

38— 6k° (2 +22 = 1) + k%2 (122 = 2522 4+ 6) — 3k* (622 — 42 +3)
—2k37(2% — 67 + 3) — 4k + 3k2® + 42,

6kO(z — 1) + &3 (20z3 —35.2 4247 + 2) K46 — 182)

+2k7 (228 = 527 + 62— 1) + 432} = 3k2? — 42,

—6kS(z — 1) + & (20z3 — 3577 + 24z + 2) +6k*(3z — 1)

213 (2z3 —572 4+ 67— 1) — 4K — 3k + 42,

K (802% = 3522 =302 4 9) + 2k%2 (—192% + 10z +9)

32 (sz2 +2+ 1) ,

3k5 — 6k (ZZ +27— 1) e (—122,4 12553 - 61) — 3k <6z2 — 4z 4 3)
+2k%7 (22 = 62 +3) — 4% — 3ka’ +42*,

168k” — 40K° + 88K° (18z2 37— 5) 8kt (36z3 — 662% — 152+ 17)
13Bk3 (1925‘ 34473 + 6972 4+ 827 — 31)

_3k2 (192Z4 24873 — 5922 4507 — 7)

+3pkz (252 — 62— 3) +32 (~252° + 62 +3),

168k + 40k° + 88K° (18z2 37— 5) — 8k (36z3 —667% — 157 + 17)
+3pk3 (192z4 — 3447 + 697% 4+ 827 — 31)

13k2 (19214 — 24873 — 5922 4+ 507 — 7)

+3Bkz (25z2 — 67— 3) +3z (25z2 — 67— 3) ,

8k3(z —2)(Bz — 1) + 1) — 8K (—2/3 F B+ (1 -8B + (98 — 4z + 2)
+k6(—66ﬂ + (688 — 96)z* + (328 — 1868)2° + (178 — 288)7>
+(1678 — 24)7 + 48) +K°(=308 — 19287°

+4(2078 — 41)z* + (314 — 9358)2° + 3478 + 5)2 +

17

(83)

(84)

(85)

(86)

87)

(88)

(89)

(90)

oD

(1888 — 199)z + 66) + k*(—192(8 — 1)2° +4(94B — 183)z* — 15(98 — 41)°
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P =

Py =

Pys =

Py =

Py =

Py =
Py =
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+(83 = 528)2% + (3B — 100)z — 18) + k>z(—6p + 192z* +7(8 — 40)z>
+(7—188)22 + (176 +20)z +21) + k*(z — 1)z ((4,3 D+ BB+ 1)z — 6)

—k(z = DZ2(BB+Hz+3) +3(z — D2, (92)
7268z — 2)2(B(z — 1) + 1) + k°(108(88 — 7) + 8(368 +29)2°

—2(576B + 539)z* + (576 + 1807)2° + 3(7688 — 563)z — 1440(28 — 1)z)
+k*z(—16(188 + 17)2* 4+ 2082° + (5048 + 95)z% — 3(72 + 145)z + 360)
+k?2%(432% 4 9927 — 150z + 36) — 3z*(z + 3), (93)
72k8(z — 22 (B(z — 1) — 1) + k%(108(88 +7) + 8(368 — 29)7°

—2(576 — 539)z* + (5768 — 1807)2° + 3(7688 + 563)z* — 144028 + 1)z)
—k*z(16(188 — 17)z* +208z* + (95 — 5048)z% + 3(728 — 145)z + 360)

k222 (432 + 9922 — 150z + 36) + 3z*(z + 3), (94)
8k%(z —2)(Bz— D+ 1) + 8k (=28 + B> + (1 = 88)2% + (98 — 4z +2)
+k8(—668 + (688 — 96)z* + (328 — 1866)2°

+(178 — 288)z% + (1678 — 24)z + 48)

+K°(308 4+ 19282° + (164 — 8288)z* + (9358 — 314)z° — 3478 + 5)7*

+(199 — 1888)z — 66) + k*(—192(8 — 1)z2° +4(94p — 183)z* — 15098 — 41)2°
+(83 = 528)2* + (3B — 100)z — 18) — kz(—6f + 192z* +7(8 — 40)z>
+(7—188)22 + (178 +20)z +21) + k*(z — Dz(4p — 1)z> + BB + 1)z — 6)
+k(z = D22 (BB + Dz +3) +3(z — D2, (95)
—8k8(z = 2)(B(z — 1) = 1) + 8k"(=2(B + 1) + 2> — (88 + 1)z* + (98 + 4)z2)
—kO(=6(11B +8) + (688 +96)z* — 2(938 + 164)z° + (178 +288)z2

+(1678 +24)z) 4+ k> (308 + 19282° — 42078 +41)z* + (9358 + 314)2°
—3(478 — 5)2% — (1888 + 199)z + 66) + k*(192(8 + 1)z° — 4(948 + 183)*
+15(98 +41)2° + (528 + 83)z% — 3B + 100)z — 18) + k>z(6p + 1927*
—7(B+40)2> + (188 + 7)2% + (20 — 178)z 4+ 21) — k> (z — D)z((4B + 1)*
+BB— 1Dz +6) +k(z— D* (BB —4)z—3)+3( — D2, (96)
8k8(z —2)(Bz — 1) — 1) + 8k (=2(B + 1) + B> — (88 + 1)z* + (98 + 4)2)
+kO(—6(118 +8) + (688 +96)z* —2(93B + 164)2> + (17 + 288)z*

+(1678 +24)z2) + k> (308 + 19282° — 42078 + 41)z* + (9358 + 314)2°
—3(47B — 5)2% — (1888 + 199)z + 66) + k*(—192(8 + 1)z° + 4(94p + 183)z*
—15(98 +41)2> — (528 + 83)z* + (38 + 100)z + 18) + k7z(68 + 192z*
—7(B+40)2° + (188 + 12% + (20 — 178)z 4+ 21) + k*(z — D)z((4B + 1)

+(3B — 11Dz +6) +k(z — DZ2(BB —Hz—3) =3z — D (97)
3k*(z —2) + k320 — 14z) + 6k*(z + 1) + 2kz — 2, (98)
9% (z —2) — 6k*z> + 18k> (2 + 1) — 4k>2% — 3kz 4 222, (99)
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P30 =9k (z — 2) + 6k*2% + 18k3 (z + 1) + 4k>2% — 3kz — 222,

Py =3k*(z —2) + 2k (72 — 10) + 6k*(z + 1) — 2kz — 2,

Py =3k* —2k*(92 +2) 4+ 182 — 7,

P33 =30k* + k*(—602* + 63z + 28) + 1627,

P3y = 3k4(22 +z— 1) + 2k222 — Z2,

P3s =3k (22 +3) + k2 (222 +3) — 2%,

P36 = —9k(z — 2) + 6k*(22% — Tz +10) — 18k (z + 1) + 2k*z(4z + 3)
+3kz — 42,

P37 =9k (z — 2) + 6k* (227 — 7z 4 10) + 18k>(z + 1) + 2k%z(4z + 3)
—3kz — 422,

P = 3k*(z — 8)z + k(222 + 92 — 3) — 22,

Py = 3k* —k*(62% +7) + 222,

Pyo = 9k" — 3k (327 + 12z +4) — 6k*22(2z + 11) — 3k (62% — 122 +7)
—2k?7(42% — 97+ 6) + 3kz® 4 42°,

Py = 9k7 — 3k (32% + 122 +4) + 6k*22 (22 + 11) — 3k3 (627 — 122+ 7)
+2k*z(42% — 92 + 6) + 3kz* — 427,

Py = —3k* + k? (627 + 62 + 7) — 22%,

Py3 = 6k® — k*(92% + 182 + 8) — 2k%(92% — 92 +7) + 32%,

Pyy = 3k* (522 + 14z — 6) + k*(102* — 9z + 3) — 527,

Pys = 3k® — k*(92% +4) — k2(182% +7) + 32%,

Pio = 3k*(62° + 922 — 2 +2) + k*2(32> + 82 +9) — 223z + 1),

Py7 = 6Bk” +24Kk° + 28k (272 + 27z + 28) + 2k* (9% + 27z — 2)
—BK3(362° +272% — 93z + 52) + k*(—362° + 212% + 93z — 10)
+3Bkz (42> + 72— 1) +3z(42% -3z - 1),

Pyg = 6k — 24k° + 2Bk (272 + 27z + 28) — 2k* (92 + 27z — 2)

— Bk (362° + 2727 — 937 4 52) + k(362> — 212 — 93z + 10)
+3Bkz (422 + 2 — 1) +3z(—42% + 3z + 1),

19

(100)
(101)
(102)
(103)
(104)
(105)

(106)

(107)
(108)
(109)

(110)

(111)
(112)
(113)
(114)
(115)
(116)

(117)

(118)

Pag = —6(B — Dk"(z —2) + 6k°2(B +z — 6) + k°(—288 + 3(4B — 3)2° — 3(88 — 5)2°

+2(78 — 22)z +40) + k*((9 — 128)z° — 822 + (30 — 14B)z + 12)

—i—2k3z(—2ﬁz2 +@B+2z+7)+ 2k21(2ﬂ12 +z—1)+k(z— 32 —2°, (119)
Pso=—6(8 — Dk’ (z —2) — 6k°2(B +z — 6) + k°(—288 + 3(4B — 3)2° —3(88 — 5)z°

+2(7B = 22)z +40) + k*(3(4B — 3)2° + 822 +2(78 — 15)z — 12)

+2k32(—2B2 + 4B +2)2 +7) — 2k%2(2B2% +z — 1) + k(z = 3> +2°,  (120)
Psi =6(B+ Dk’ (z —2) — 6k%2(—B + 2 — 6) + k(288 — 3(4B +3)2° +3(88 + 5)z°

—2(7B +22)z +40) — k*(3(4B +3)2° — 822 +2(7B + 15)z + 12)
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12632227 + 2 = 4B)z +T) + 2k%2(2B2% —z + 1) +k(z =D +2°,  (12])
Ps; =6(B + Dk7(z —2) + 6kS2(—B + 2 —6) + k> (288 — 3(4B +3)z° +3(88 + 5)7

—2(7B +22)z +40) + k* (3(4B +3)2> — 822 +2(7B + 15)z + 12)

12322822 + 2 = 4B)z +7) — 2k* (2B — 2+ 1) +k(z =3 =2, (122)
Ps3 = 54Bk"(z = 2)’z = 3k°(=24(B + 1) + (B — 35)2° + (58 + 113)z*

— (7B 4 125)2° 4+ 6(158 + 31)z% — 240z) + k*2(72(38 — 4) + (598 — 193)z*

+(187 — 1738)2° + 2(828 — 143)z% — 6(178 + 5)z) — k*2*(12(B + 1)

+3(238 = 37)2° + (11 — 258)z% + (1038 — 167)2)

+2*(3B + 138z — 232+ 3), (123)
Psy = 54Bk5(z — 2)%2 — 3k°(=24(8 — 1) + (B +35)2° + (58 — 113)z*

+(125 — 478)2° + 6(158 — 31)22 + 240z2) + k*2(72(3B +4) + (5398 + 193)*

— (1738 + 187)2° +2(828 + 143)z* — 6(178 — 5)z) — k*2*(12(B — 1)

+3(238 +37)z° — 258 + 1)z + (1038 + 167)z)

+z*3B 4+ 13824+ 232 - 3), (124)
Pss =987k (z — 1) + k' (127 + (9 — 54B%) 2% + 6(78* — 3)z) + 6k°2* (— 1187

+38%2% + 8%z +2) + k2 (217 — 921 + 18(38% +2)22 + (18 — 758%)2)

+2k*z(—6p% + (68% — 3)2> + (2 — 158%)2* + 158%2)

—3K32%(62 +7) — 2223 (=37 + (387 +2)z + 1) + 3kz” + 22, (125)

The remaining Mellin convolutions in Egs. (69), (70) are given in Appendix B, with
1 1
A(x) ® B(x) = /dxl /dxz(S(x —x1x2)A(x1)B(x?). (126)
0 0

The Wilson coefficient Hz(zq) PS s given by

By =5 (7T 4 3H ) 1
In summary, the two—loop massive Wilson coefficients are represented in terms of iterated in-
tegrals over the alphabets given in Section 4. The integrals can be arranged such that only the
last integral contains elliptic letters and all other integrals can be expressed in terms of classi-
cal polylogarithms with involved arguments. Some details are discussed in Appendix C. Similar
structures are expected also for other physical processes depending on two scales, z and m?/Q?2,
in a non-factorizing manner. Even more involved structures will emerge in the case of more
scales. The two—loop heavy flavor contributions to the structure functions F>(;,) are given by

2
2),PS, heav. ps.2) [ O
Fygy > (x, 01 = a2(Q%) @ x Hy ) (F x) ® T(x, u?). (128)
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6. The asymptotic and threshold expansions

The complete expressions calculated in Section 5 allow now to perform the asymptotic ex-
pansion for Q2 > m? and the threshold expansion for 8 < 1. In the asymptotic limit Q% > m?
the massive pure singlet Wilson coefficient have the following representations [5,36]

2
H2PS (z, Q—2>— COPS(NE +1), (129)
’ m
2),PS 0? 2),PS ~(2),PS
Hy™ (255 ) = AG S N+ D+ RS + ). (130)

Here the massless Wilson coefficients 66(122135 (NF +1) are the ones given in Section 3 normalized

by Nr + 1. The massive two—loop operator matrix element A(QZ;’PS in Mellin space in the MS
scheme [5,36] reads

1 A 2 1 A l
).PS _ ©) p(0) 1.2 (1),PS ©) p(©0) (2) PS
AG, —gPag Pig In ( 2) 5 Pag P ( )+8qu PO +ay (131)

The constant part of the unrenormalized OME a(QZ;’PS is given by

4(1 — 2)(112 4 121z + 40022
(2) PS(Z) CrTri— ( )
27z
8 2
— | 5(21+332+562°) +8(1 +2)¢2 | Ho

8(1 —2)(4+7z +42%)
3z

2 2 2 4 3
+§(3+15z+8z )H0—§(1+Z)H0+ HoH;

8(1—2)(4+7z+42%)
B 3z

—16(1 + Z)Ho]Ho,l

41 —2)(4+ 7z +422)
3z

=32(1 +2)Ho,0.1 — £ +32(1 +Z)§3} (132)

in z-space.
Expanding the fully massive result given in Section 5 in the asymptotic limit Q% > m? and
setting u? = Q% we find

(1—2)(1 =2z + 1022
HP = —32Ck TF{ ( o )—(1+z)(1—2z)Ho—zH%
(1—2)(1 =2z —272
+ ( 5 )H1 —zHo1 + 28
m? [ (1-2)(2-z+27) 2 m*
02 3z 0?

(1 —2)(— 2244z +2927) <(1—Z)(20—7z—2512)
+ —
9z 9z
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2 2 2
+3(3 62— 2z2)H0> In (%) + <§( —6+3z+137%)

2(1 +Z)(—2+z+2z2+2z3)
+ 3z H

2 1-22(14+137) 4(1—2)(2—-z+27°
xH0—§z3H%+<—( 2 )+ ( )Ho Hj

9z 3z
- — 2 —3z—47°
+(1 (2 Z+2Z)H%—2(4 z Z)HO1
3z 3z '
2(14+2)(2—z—272-273 2(1-2)(2—z+22+22°
LX 2)( 3zz z Z)HO,—I—( 2)( 3zz z Z)§2:|

m22 1 2 3 4\ 1.2 m? 3
— —(4—-27—27"-2 4z7)1 — 2(2 —-3z+4z°)H
+(Q2) |:2z( 7—7 z+z)n<Q2>+<( z+4z°)Hy

1 —2)(28 — 20z + 13z% 42123 m?
+( ( o )+(2—3z—212+4z3)H1 In o

(16027 — 13011z — 6267z% + 7571z° + 4320z%)

+11521

4(1-22+22+274
( Z+Z+Z)H_1>Ho

1
+<§(24 —2lz+167% - 212%) +
<

—~ (61—Z(4 — 1527 — 162° +21z%)

4(2-2z+722
—i—&HO)Hl - %(4 —6z+522 427 — 414)H%
Z

2(4 -2z — 22 +47%) 41— 22422 +22%)
+ - Ho,1 — . Ho,—1

2(2 — 27 2 23 2
220 o (3w ()
4(1 —2) (44 7z + 42* 2
Hz(?;,PSZCFTF{_< (1—2)( ! z Z)+8(1+Z)H0>ln2 (%)

_(16(1 —2)(10+z +282%) 4 §(3 + 15z +82z%)Ho
3

9z
2\ 16(1 —2)(5 + 24z — 522%)
2 m
8 32(1+2)°
+<§(105 — 99z — 887%) — %H_OHO
e

2 16 3
+82(5 — 20Hj + — (1 + 9

16(1 —2)(13 =26z +42%)  16(1 —2)(4 + 7z + 42?)
_ 5 — 3 Ho |H;
Z Z
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LAa- Z)(434Z- 7z 4 42%) i (_ 16(4 + 32 ;:zz +22°)

32(1 4+ 2)3

3 Ho,—1 — 32(1 + z)Ho,0,1 + 16(1 + z)Ho 1,1

+32(1 + Z)H0> Hop,1 +

32(14+3z2-323
—< (143 Z)+32(1+Z)H0)C2+16(1+z)§3

3z

m2 [ (16(1 —2)(1422?) 5 (m?

+@[( ; +16zHo> In (@)
64(1 —2)(2 —z — 42%) m?

+< " +32(1 — 3z — 22%)Hy — 16zH(2)) In <@>

8(76 — 24z — 10272 + 592° 32(1 +2)(1 — z — 272 — 273
L8 ) (e D

9z b4

16 32
+5(6+272 - 20z2)>Ho +32z(1+2%)Hj — ?zHg

16(1 —2)(14222) , (16(4 — 6z —9z% +82%)
B z Hi+ 3z

64(1 —2)(1 4222 32(2— 2473

64( Z)Z(+Z)H0)H1+< (2—z+2*-42°)

R0 +9(1-z-22-27)
Z

+<32(1+Z)(1—22+2z2—2z3)
4

m2 2 4P(,1 m2 4P65 16
) 2 =) - (2 (9337 — 1622 + 722°)H
+<Q2) [ 3 (Qz) <9(1—Z)zjL 3( @162+ 72 Ho

— 64ZH()> HO,l
Z

Hoy,—1 + 64zHo, 0,1 — 32zHo,1.1

+ 64ZH0) o — 3214’3]

2
m 64 P59 4 Pgo
8(3—11z— 1222 +2473)H, | In | — Ho_| — ——H?
+38( z—122° + z)1>n<Q2> 3, Ho-1———H
16 P, Pes 64 Pso 16 Pg3 -
- Hoi — - H |+ ——"|Hy + 647°H
3 0T -0k ( 32 gy Jre o
4P, 32(16 — 97 — 372 + 873
N
9(1 —2)z 3z
16(16 — 9z — 372 + 2423 2y? 2
S o ((G) () o
Z
with the polynomials
Pso =182 +77° — 972 + 4, (135)
Poo =727 —527° — 2772 +277 - 32, (136)
P =727 —207° — 3972 — 97 + 32, (137)

Pep =727 — 87 —3972 — 974+ 32, (138)



24 J. Bliimlein et al. / Nuclear Physics B 945 (2019) 114659

Pg3 = 180z% — 39173 4265z — 111z + 66, (139)
Pey = 36077 — 8982% + 6677> — 1327% + 1187 — 88, (140)
Pgs =360z — 826z* + 5297 + 180z% — 362z + 128, (141)
Pgs = 128162° — 6615z° — 51371z* + 621782> + 7650z> — 43867z + 17673 . (142)

We note that the asymptotic terms are exactly reproduced, cf. [5,12,36], proving the asymptotic
factorization in this process. The additional power suppressed terms can be used to obtain fast
numerical implementations for the heavy quark Wilson coefficients which are valid for lower
values of Q2. The reach of these approximations is discussed in Section 7.

The threshold expansion of the Wilson coefficients for § < 1 is given by

m(, 2\ oL B BB 1
H, (z, m2) =32Trz(1 - 2)B {3 + T + T + 2 +0(B ), (143)
(1 0? . 2 2 . 2
Y (z, W) —4TF,6<1 +36-20p = S (3-10:+427) B4 (542
+82%) 8% + %(21 —22z+36z2)ﬂ8} + 08", (144)
, 0? 9856 128
HP ( =5 ) =CrTrz(l - z)ZﬂS[—E + <5 [In(1 = 2) = In@) +41n(2p) ]
_g2 26 _ _ 265 _
B <11025 (2785 — 21867) 05 (5 —4z)[In(1 —2)
—In(z) +41n(2,3)]) - ,34(297675 (93721 — 162830z + 7388827)
128 5
—%( 21 — 200z + 88z°)[In(1 — 2) — In(z) + 41n(2B)]
+o(s', (145)
2
H{S (z, % CrTr(1—2)8° [—zgﬁ + 13—6[ln(1 —2) —In(z) +4In(2p)]
(28 817 —4962) — L 11 -3 )[In(1 — z) — In(z)
225 Y715 ot m ok
+41n(2,3)]> - ,3‘(%( 0649 — 119427 + 235827 + 12607°)

_%( 9—112¢ +48z2)[ln(1 —2) —In(2) +4ln(2ﬁ)])

6 32 2 3
—B°( 5775 (673297 — 13615202 + 93447627 — 13048z
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Fig. 2. The Wilson coefficients H @ ) PS (upper panel) and H;’ (2) PS

of Q2 and the scale choice p, = ,u Q2 Lower full hne (Blue) Q2 104 GeV2 lower dashed line (Orange):

0?2 =103 GeV?Z; lower dotted line (Magenta): Q% = 500 GeV?; dash-dotted line (Blue): 02 = 100 GeV?2; upper full
line (Red): Q2 =50 GeV2 upper dashed line (Gray): Q2 25 GeV2 upper dotted line (Brown): Q2 10 GeV2 (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(lower panel) as a function of z for different values

16
—120960z*) — = (817 — 1800z + 15362

—4482°)[In(1 — 2) — In(2) + 41n(2p)] ] +0@B'"). (146)

7. Numerical results

Let us now illustrate the analytic results numerically. In Fig. 2 the two—loop heavy flavor
Wilson coefficients are illustrated as a function of z for different values of Q2 € [10, 10*] GeV?,
setting the charm quark mass to m. = 1.59 GeV, cf. [15]. For large values of Q2 these results
compare to Ref. [16] for Hz(i])‘Ps.

Next we study the ratios

(2),PS
m_ g

i ‘I
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Fig. 3. The ratios RS; (left) and R(Ll)q (right), Eq. (147), as a function of x = Q2/m2. Solid line: z = 10~%; dotted line:
z=10"2; dashed line: z = 1/2.

cf. also [5], comparing the full (69), (127) and the asymptotic results, H, (129), (130) in Fig. 3.
For Hz(?{;’PS the asymptotic expansion agrees with the full calculation up to Q?/m? = x = 100 to

about 2% for the small values of z = 10~%, 1072, Extending the asymptotic representation down
to x = 10 does not introduce an error larger than 5% in this region. At larger z (here z = 1/2)
the asymptotic representation begins to deviate significantly from the full calculation beginning
at x ~ 1000. However, the Wilson coefficients are very small in this region. As it was already
noted earlier [5] the asymptotic representation for H; 2).PS 3¢ only valid for much higher values
of x. Demanding an agreement of < 2% requires x > 900 for the small values of z and even
higher values for larger z. Similar to the ratio of the full and asymptotic Wilson coefficient we
define the ratio

FO.PS

RF; = I;{z),PS’
i,q

(148)
where F; (2-PS i the structure function obtained by using the expansion of the respective Wil-
son coefﬁc:1ent up the desired level. The corresponding results are depicted in Fig. 4. We
use the parameterization of the parton distribution [73] at NNLO to better compare previ-
ous numerical results [16]. We used the LHAPDF interface [74]. Demanding an agreement
within £2% for F in the range z € [1074,1072,1/2] leads to values Q3/m? € [8,9, 15]
of the O((m?/0%)?3) improved result, Q%/m2 € [10, 12, 30] of the O(m?/Q?) improved re-
sult, and Q%/m2 € [70, 80, 300] for the asymptotic result. For F; the corresponding values
are Q3/m?* € [15,15,30] of the O((m*/Q?)?) improved result, Q3/m? € [15, 18,40] of the
0((m?/0?%) improved result, and Q% /m? € [200, 200, 700] for the asymptotic result. The values
of Q(z) for Fy, are thus larger than those for F.

In Figs. 5 we show the complete results for the two—loop pure singlet contributions to F, and
Fy as a function of x for a series of Q%-values. At large values of Q2 the corrections are negative
and turn to positive values around Q2 ~ 10 GeV?. In the small x region the corrections are large
and grow with Q2. The absolute corrections to F;, are smaller in size than those to F5.

In Fig. 6 we illustrate the ratios Eq. (148) as a function of x for different values of 0? for
F, and F1 comparing the asymptotic result to the full result. The corrections behave widely flat
in x, turning to lower values in the large x region. For F, the ratios are larger than 0.96 for
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improved with x suppressed terms. Dotted lines: asymptotic result; dashed lines: 0(m? / Q2) improved; solid lines:

0((m?/Q%)?) improved.
0% > 500 GeV?2. At Q% = 100 GeV?, values of ~ 0.85 are obtained. For lower values of O the

ratio is even smaller.

For Fy the corrections are generally larger. At Q% = 10* GeV? one obtains a ratio of 0.96,
for Q2 =103 GeV? 0.85, and for Q2 =500 GeV2 ~ 0.75, with even larger deviations from one

for lower values of Q2.
results for F, and F; as a function of x for a series of Qz—values. In the region x < 0.1 the ratios

for F, are larger than 0.98 for Q2 > 50 GeV? and grow for larger values of x. Stronger deviations
are observed for lower Q2 values. For Fy the corrections are larger. In the region x < 0.3 and

In Fig. 7 we depict the ratio of the full result over the O((m?/Q?)?) improved asymptotic
0? > 100 GeV? the ratio is larger than 0.97, while for lower scales Q? the deviations are larger.
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We limited the expansion to terms of ~ O ((m?/Q?)?) in the present paper, but higher order terms
can be given straightforwardly. The expanded expressions do also allow direct Mellin transforms
and provide a suitable analytic basis for Mellin-space programmes.’

8. Conclusions

We have calculated the massless and massive two—loop unpolarized pure singlet Wilson coef-
ficients of deep-inelastic scattering for the structure functions F> and Fy . In the massless case,
we confirmed earlier analytic results in the literature, which can be expressed by harmonic poly-
logarithms. In the massive case, the Wilson coefficients are calculated analytically for the first
time. They are also given in terms of iterative integrals, including now, however, Kummer-elliptic
integrals. The corresponding alphabets contain also elliptic letters. All integrals can be repre-
sented by classical (poly)logarithms with involed arguments with partly one more (elliptic) letter
iterated upon. This representation is very well suited to obtain numerical results.

We have studied systematic expansions in the ratio m?/Q? in the asymptotic region and the
velocity parameter § in the threshold region. In the former case the leading asymptotic result
has been recovered, known from calculations based on massive OMEs and massless Wilson
coefficients, proving asymptotic factorization in the present case. We have obtained a series of
power corrections. Here the expansion coefficients are also spanned by harmonic polylogarithms.
Retaining these terms extends the validity of the cross sections to lower scales of 02, which
is relevant for experimental analyses. In particular, the predictions for the structure function
Fr (x, Q%) are significantly improved. In general, the Kummer-elliptic integrals, also obeying
shuffling relations, span a wide class of iterative integrals which play a role as well in other
multi-scale calculations.
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Appendix A. Details of the calculation

Our calculation closely follows classical calculations in the literature, cf. e.g. [61,76-78].
Although these calculations are typically well documented, we encountered subtleties at several
points of our calculation. Therefore, we provide a more detailed discussion of our calculation
in the massless and massive case in this Appendix. First we will give the parametrization of the
phase space we used in the massless and massive case, then we will proceed by explaining the
angular integration and give explicit results for the angular integrals in d dimensions. In the end,
we will comment on our resolution of the poles in & and subtleties encountered in the massless
case.

3 In[75] precise numerical N-space implementations were given.
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A.l. Phase space parametrization

The 2 — 2 process Inthe 2 — 2 case in Fig. | we refer to the invariants

s=(q+p)? t=@—k)? u=(q—k)? (149)

with
s+t4+u=—-0>+2m? and Q0>=—¢>. (150)

We will also use the notation 8 = /1 — 4m?/s. In the cms of the outgoing particles, ki+ky =0,

the scattering angle 6 is defined by

2 Q21 6 151
_Z( — Bcos(9)), (151)

t =—0%+m?—2¢°%) + |k111G| cos(0) = m

with
S — 2 N S — 2
050 5 _s=C (152)

q_zﬁfq_2ﬁ7

Vs s s
K=" k=X 153
1= k1 5 B (153)
and
Aa,b,c)=(a —b—c)> —4dbc. (154)
The phase space integral is given by
T
(155)

a1-d/2

/ dPS, =242 —_gd/2-2pd=3 / dosin?=3(0).
r(s-1 J

The limit m — 0 is easily obtained by setting m =0 and 8 = 1.

The 2 — 3 process is slightly more involved. The contributing Feynman

The 2 — 3 process
diagrams are shown in Fig. 8. We use

d p, dk A% N r (2 N er (422
fdPSF a1 ami 1] i1’ (”2)5 (kl - )8 <k2_m )
x 2m)48D (p1 4+ g — pr — ki — k)

1
= 7(27[)2‘1_3 fdslz{/ddpzfddK8+ (p%)
x 8% (K2 = 512) 8 (p) +q—pz—1<)}

x {/ddkl /ddk28+ (k12 - m2> 5+ (kg - mz) 8D (ky +ky — K)}.

(156)

Here
1= /dm/d"m* <K2 —slz)(s(") (ki +kr — K) (157)
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Fig. 8. Diagrams of the O(ag) contributions to the pure singlet scattering cross section y* + ¢ — Q + 0+gq.

was introduced to factorize the 2 — 3 phase space into a (2 — 2) x (1 — 2) phase space. Both
can now be calculated in the most appropriate system independent from each other. Integrating
the first factor in the cms system of the process and the second in the cms of the two heavy quarks
one obtains

s T
/ dps;= =49 / dsia / dt f d6 / dé [sin(6)]1%3 [sin(¢)]**
= 0 0

(@m)d T'(d-3)

512
B A2 Y232 422
« Sii2/2 2 [1 _ si] [(S — P _qzt] 44122, (158)
12
where we have chosen the kinematic invariants
t=2p1p2.  u=2prq. s=(p1+q°.  sn=s—t—u (159)
The phase space boundary is given by
s =4m?, sih=s, (160)
1
t7=0, tT==(s—¢)s—s10). (161)
S
We can use the following explicit parameterization of the vectors
k= (ko, 0,..., |k|sin(¢)sin(8), |k| cos(¢) sin(0), |k| cos(e)) , (162)
k= (ko, 0,...,—k|sin(¢) sin(@), —|k| cos() sin(d), —|k| cos(e)) , (163)
S_t_qz(l 0,0,1) (164)
1= —FF—F 3 ey Uy Uy )
P 2./512
s =512 .
2= (1,0,...,sin(x), cos(x)), (165)
p 2./812
1 < 2 . 2
- Fsiadt,..0,0, (s —s512)$in(x), g2 41 —5 + (5 — 512) cos(X)> :
q ST q q

(166)
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2512t
=T ey aen
k0= AIP! (168)

2 9
- NIV 4m2

In the limit m — 0, we recover the parameterization given in [61].

In a next step we want to introduce dimensionless variables with support over the unit cube.
Here it is advantageous to distinguish between the massless and the massive case. In the massless
case, we follow [61] and introduce the new variables

X =— qz
N _q2’
u=[1—-x—y—(1—x)(1—=yzlts — g,
t=y(s—q?). (170)

The massless three-particle phase space then reads

LG
4m)d 1 -3)

/ dPS3(m =0) = / do / d¢ (sin(0))? 3 (sin(¢))?*
0 0

s s d/2-2
X / dt / du S;i2/2—2[d/2—2 [(s —qHu— q2t]

0 1q%/(s—q%)
_ 1 (S _ q2)3—d
T @4m)d T'(d-3)

(1—x)42 / a6 / dg (sin(9))" (sin(¢))**
0 0

1 1
x /dy/dzyd/2_2(1 — 3 21— 2192, (171)
0 0
In the massive case the change to the following variables is useful
oL <1 _ %) sy — 4m? (172)
B? si2 )’ 1— B2z
y o O (173)

T —g)—s) 1— g%

The new parameterization then reads

fdPS3 :L Lﬂ3d—7(l _ /32)d/2—1
@) T3 —d)

1 1 T T
y f dz / dy / a6 / dg [sin(9)192 [sin(¢) 19~
0 0 0 0

R U e R e e (M (174)
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The limit m — 0 is not easily recovered, because of the mass dependent transformation.
A.2. Angular integrals

The massless case There are four angle dependent denominator structures appearing for the
pure singlet process:

Ni=(p1 —kD)? = =2prki =a (1 —cos(6)),

N2 = (p1 —k2)* = =2p1ha =a (1 +cos(0)),

N3 =(q —k1)*> =q* —2q.k; = A+ B cos(8) + C cos(¢) sin(8),

Ny=(q —k2)>=¢*>+2q.k; = A — Bcos(8) — C cos(¢) sin(6), (175)
with
s—t—q?
a=— ,
2
1
-]
> 512
1
B=2[a—s+1+6-smeosto].
C= _2‘“2 sin(x). (176)
Using partial fractioning we can express all angular integrals via
FE - d-3 -4
0
Iy = /de / dp—0 @ sin”(¢) . 177)
; , al[1 —cos(9)]' [A + Bcos(@) + C sin(@) cos(¢)]

We only encounter integrals with k < 0, however, it is possible to find closed form solutions for
k <0 and [ <0 in the massless case. In the following we will list the result for these angular
integrals in d-dimensions.

I negative:
EE (1 [~k —m 2d 1/ p2 20/2 —l=m=n
_ -7,- /R2 2
Iz,k—EO Eo<m>< ; >2 a ' (B*+C?) (B+ B +C)
m=0 n=

— 2 _ _ _

T(d—3) d—3
@21 tntm/OrE/2 -1 4+m/2)
I(d—2+m+n)
oo | B d2=T+nt+m/2 2V B? 4 C?
20 d—2+m+n ' A_JBrc2|

For [ = 0 this reduces to

_ —kT2(d/2—3/2) T2(d/2—1)
_n2d-7 _ /B2 2
=274~ VB4 2 rd—3) TWd—-2
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— 2/ B? 4+ C?
x 2 F) k.d/2 1,——+ ) (178)
d-2 A—+B2+C?
k negative:
—k 2d—7-1 2
—k\2 L I2d/2—3/2) —m,dj2—3/2
L= A—B)y ko= 17 F ’ 2
" mz_o(m> e 7 R B
XF(d/2—1+m/2)F(d/2—1+m/2—l) g [mtkd/2=14m/2 2B
Td—2+m—1) 20 d—24+m—1 ' A_B|
For k = 0 this reduces to
22=T-l (/2 -1 —=DI(d/2 — 1) T2(d/2 - 3/2
fo= d/ '/ ) =(d/ /2) (179)

al Td—2—1) T(d—3)

Expanding these results around ¢ = d — 4 dimensions we recover the integrals given in [76].

The massive case In the massive case the four denominator structures read

Ny = (p1 —ki)> = =2p1.ki =a + bcos(H),
N2 = (p1 —k2)* = —2p1.ka = a — beos(h),
N3=(q —k)?>=¢>—2q.ki = A+ Bcos(d) + C cos(¢) sin(9)

Ni=(q —k»)>=¢*—2q.ko = A — Bcos(8) — C cos(¢) sin(6), (180)
with
2
s—t—q
- i 181
a 3 (181)
1 4m?
b=—J1- (g —s5—1), (182)
2 S12
2
—spp—t
A d ;12 ’ (183)

1 am? / ,

B=— 1——<q —s—}—t—i—(s—slz)cos(x)), (184)
2 512
1 4m? .

C=—[1———(s—s12)sin(x). (185)
2 S12

Therefore, we have to consider the more general angular integral

PR . d-3 - d—d4
Ik =/d9/d¢ sin“~7(0) sin® " (¢) (186)
0 0

[a + bcos(0)] [A + Bcos(8) + Csin(8) cos(¢) |

in the following. For [ > 0 and arbitrary k (the only case we encounter), we find:
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=X S (00 ()

bB m —k
n—m . _ 2 2
X a ( B2+c2) (A VB +C)
w 22T n—lti (_ |y =n—ltm— ;T2(d/2-3/2)
I'id—-23)
T(d/2—1—n/2—1/2+)T(d/2—1—n/2—1/2)
) Fd—2-n+l+i)

n+l,d/2—3/2 k,dj2—1—n/2—1/2+i  2VB2Z+C?
x 2k 2|21 .

d-3 d—2-n—Il+i ' A_JBZxCZ

(187)

A.3. Regularization

In order to perform the g-expansion of the functions we use a simple subtraction term for
y = 0. However, there is a subtlety hiding in this limit. The hypergeometric functions of interest
are all of the argument

2/ 2 2
X:_B—"'C. (188)
_,/BZ_|_C2

Inserting the coefficients from Eqgs. (176), we see that
X=14+0(), (189)

which means that there is a potential logarithmic singularity for y — O in the massless case. This
divergence can be made explicit by transforming the » F1’s from argument x to (1 — x) [79]

a,b _ c,c—a—>b a,b
2F1|: c ’Z]_F[c—a,c—b]zFl |:a+b—c+1’1_zi|

cabp|catb— —a,c—b
+(1—z)””r[c “:b C}ZFI[CC_a"_CbH,l—z] (190)

The new hypergeometric functions have Taylor expansions around y = 0. The only singular
behavior can now occur for y — 0. This means that we can resolve the divergences via

1
F(x):/dz
0
=/dz
0

1
/dz
0
(A

) — (B), (192)

dyy 2 f(x,y,2) (191)

dyy e [f(X, v.2) = O 0,2) =y 0, Z)]

O O O~ _

dyy R 1O,0,2) + yf D (x,0,2)]
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where we used the notation

fy, =y fPx,0,2. (193)

i=0

In the massive case we have

X=—

vB?+C? 2847

= +0(©), (194)

A—VBZ+C?2 1+Byz
which means that this divergence is regulated by the quark mass. The subtraction term (B) can
be trivially integrated over y, which will lead to poles in €. In the massless case the expansion in
& can be performed afterwards and the last integration over z can be carried out. In the massive
case there can be additional singularities hiding in the z — 1 limit. Therefore, term (B) has to
be regularized accordingly. Term (A) is not singular in the limit y — 0 and can be expanded in
& and then integrated over y and z.

Appendix B. Contributing expressions due to renormalization

In the following we list some Mellin-convolutions, which occurred in Egs. (69), (70). These
are convolutions with leading order splitting functions, using the parameter x = m?>/ Q2.

(0) 1 _
qu ®hL,g -

0) o (D _
qu ®bL,g -

14 6k — (8k +2)z — (8k 4+ 2)z>

CFTF{64,3(1 —2)

3z(1 +4«k)
64 1-8
—?2(3 +4KZ)11'1 (m)
+6_44K(1+3K)—6K(1+4K)Z+3(1+4K)2Z21n V1+dec—p
3 2(1 + 4k)3/2 Vi+de+p]]°
(195)
32(1 — 2)(3 — 4z — 672 8 1—
CFTF{— - 3 2= 62)p +§Z(3+42K)1n2 (%)
64 —
= 23 + 420 [Lia( By —Lia(1 - )~ Lin(~p)]
8

- 2% — 3z (144
32014052 | k“(14+«) zk“(1 4+ 4k)

+322(1 +41)* (i + VT +4k) + 42 (1 + 4;<)5/2] In>(1 —z)

8k R3 ‘2<«/1+4K—1) 2(~/1+4;<—,3>
In +In

3z(1 +4k)32 VTt e+ 1 Ny
JT+dc—1 1
—41n () 1In vita—l —8Liz(7)
V144 +1 1 —+1+4+4«
1 JT ¥k —1
+8Li2<7)+8Li2 vitd -1
1+ T+« JT+ak+1
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—81In(2)1n Vitde—1 + 8Li B—v1tdk
JT+ac+1 AV e
el (VT+4k —1)(VT+4x — B)
P\ +VT+46)(p+ V1 +4k)
VT+4dK—1 64
—2In(1 —z)In (mﬂ + 320 +420) In(8) In(2)
16Ry In V144 —1 In V1+4k — B
3z(1 442\ J/T+4dc+1 V1+4kc+ B
32Rs |:i V1+4e— B Li V44 —1 ]
321 +402 P\ Trac + 1 A\ VT+ac+p
3Ry (VAP
3z(1+4k)32  \/T+dc+ B

32Ry |:2Li <—7ﬂ )
3201+ 4032 |77\ Trae

—2Li( B )+Li VI+de—1 L VI+dc+8
N+ a) P\ Vitae-p) " P\ Vitak+1
V1+4k— B } 32 [ )
- . 6k (1
21n(ﬂ)ln< 1+4K+ﬂ> 0T 45 i”(1+«)
92k (1 + 4ic) + 322 (1 +41)? (3 — T+ k) — 42k (1 + 4K)5/2}¢2
32BR) 16Rg VI+dc -8
— _In(l1— — % _In(l-7ph|Xt——=L
s +a0 " TP S ran M Z“(mﬂ%)
16 - B -
—?2(3 +4ZK)|:1n <1 +,3> —In(z) +2In(B) — ln(K):| In(1 —z)
328R; 16 1-8
—m In(z) + ?ZG + 4zk) |:1n <1 n ﬂ) +2In(B) — ln(K):| In(z)
8 5 648 R,
—323+420In%(2) + 2140 In(B)
32 -8
—?1(3 + 4zk) |:ln<1 +,3) - 111(K):| In(B)
32 5 1+ 6k 16 1-8
—[?<3—6z—4z K_Z(1+4K)>+?Z(3+4ZK)IH(K{|IH<]+/3)
—§Z(3+4zx>1n2<x)} , (196)

where we introduced the polynomials
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Ry =6k + 8k +2)z° — (14 +3)z + 1, (197)
Ry =41+ 3k) + 3(1 + 4x)?2% — 6k (1 4 i)z, (198)
=2(1+x)+3(1+46)%*22 = 3 (1 + 4K)z , (199)
Ry =24K% + 12k — 3(1 4+ 4x)%z + 6(1 +46)?2% +1, (200)
= 4k (11K2 + 6k + 1) — 6 (12;<2 T P 1) 24+ 3(1 + 26)(1 + 4K)222 (201)

Re =2« (23/<2 + 13k + 2) — 3k (28K2 156 4+ 2) 2430430+ 4022, (202)
Ry =2k (25K2 + 156 + 2) — 3k (36K2 176 + 2) c+30 4500 +40)%2% . (203)

For Fj the corresponding quantities read

1-8 (1-8
Py h(“—c Tr{ (1 4z —2zx)| —321In? [ —= | — 64Lis [ ——
® FTry (1 42z —2zk) (7 5 2| —

+p . B+1 . B—1
+64L12( > >—64L12<71_ —1+4/()+64L12<7—1+4K—1>

: 1-p : 1+8
Alip (———F ) —64Lip (——L
o L12<1+\/1+4K> 6L12(1+«/_1+_4K>
+(—64ln(1+ﬂ)—1281n<1+x/1+4/c)

+1281H(ﬂ+m> —641n (@) +641n (m_ﬂ)

V1+dic+1 V1+dic+p
1-B\]_640-28 24
+641n(2)) 1n(1 +ﬂ>} 320740 (3z(1+4K) +227(1 — 2k) (1 +4k)

+2(1+7K)) — 33—2(3 =32 =422(1 = 20)(1 4 20)) In G ;ﬁ)

128 V144 -
- (1490 -2k +2(7—=18)k?)In [ Y—"=—n—"—
S a0 k20 - 1897 (N/—1+4x+ﬂ)}
(204)
_ 2(1 +k)*R
PO @by = CFTF{4( 3k4i : [kle — kHy, +In(1 — k%) = In(1 —z):|H0
32R9 R0
_Z(le +Hy,) — s In(1 — k)Hy,
SR>
+W[I n(l = )Hy, +In(l +0Ha, | + ==
X|:Hw],—1 _sz,l +Hw2,—l +21n(k)(Hw1 +Hw2)]
96kz(1 + z)
+T(Hw1,—l - sz,l _sz,—l)
—16R |, 1 96kz(1+ z)
+ 3z (Hw|,0 + sz,O + Ele l) Tle,l
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(] _3k2)R13 2 2

—In(1 — z){ln(l — k) —1In(1 +k)}j|

6R15 16R 16

1
b In( 4 O Y, + 1 THH 4o

2Hp 1 —2H_

6k2z [ 0,1 1.0

—2H _ 16(1 —2)BR
2HHyp [ln(l k2) — 21n(k)](H1 +H_1)} + %ﬁ”

SR
3k4181 (2)[1 (1—2) —In(1 — k%) — k(Hy, —sz)}

16R 9 201 0
m(z K- z)ﬂ))[ln(l k)
32(1 —z2) BRao 8RRy 8RRy
_21n(k)] — e 0— T 1+ s
8 14+ k%) (1 = 3k?)z?
—§|:3+9z—( )(k4 ) }(H%—Hﬂ)
(1+&%)(1—3k%)z2
7 i|H—1,1
k

32
16z

+(T - 16k(2+ 3Z)) |:_2Hw1,1,0 - le,l,l +Hw1,l,—l - 2le,—l,0

—Hy, 1,1 +Hyy,—1,—1 +2Hy, 1,0 + Huy 1,1 — Huy, 1,1 +2Hyy 100
+Hw27_191 - sz,—l,—l - (;2 - lnz(z))(le - sz) - (le,l + le,—l

—HwJ—Hw,oﬂm1—Hy—mmmq

1 8
+(2+(3- k—z)z)[—g(Hi1 +Hj) —32H_ {H_; +32H_; oy

+64H_110+64H_111+32H_1 10+ 64H_1 1.1 —32Hp 1.1
+16[In(1 — z) — In(1 — k)] (In*(2) — &) + 8(H_1 — 2Ho)H} + 8(H2,
+4Ho,1 —4H_1 0 — 4H,1)1)H] - 8[111(1 — kz) - Zln(k)]{ZHle]

39

—4H_1 4 +H%—H2_1}“, (205)

with the polynomials
Rg = 99k® — 297k° + 270k* — 18k — 77k + 39k — 8, (206)
Ro=k*+k>(3z+2) + 6z — 3, (207)
Rio = 9k® + 48k0(37 — 2) + k* (214 — 5527) + 48k*(97 — 5) — 247 + 17, (208)
Rip = 9k% +48k°(3z — 4) + 6k* (42 + 57) — 16k>(9z + 1) — 247 + 17, (209)
Rip =3k* —2k>(9z7 +2) + 18z — 7, (210)

Ri3 =3k® 4+ k* (487 — 47) + k(77 — 722) + 247 — 17, 21

1y
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Ris = —9k% — 48k%(3z — 2) + k*(5527 — 214) — 48k>(97 — 5) + 247 — 17, (212)
Ris =3k*( — 2 = 3) +2k%22 - 22, (213)
Rig=3k*(* +z— 1) +2k*2* - 22, 214)
Ri7 = 2k* + k* (222 + 9z + 12) — 222, (215)
Rig = 9k*z(z +3) +2k*(32% — 9z +5) — 322 + 3z - 2, (216)
Rig = 3k* — k*(62% + 62 +7) + 222, 217)
Ryo = —3k* + k(622 + 62 +7) — 22, (218)
Rt =6k°(B(z = 1) + D) +k*(14(8 = 1) = 2(68 — 5)2° +32° = 2(8 — 15)z)
+k*ZH(—4B +4(B — D)z +3) +22°, 219)
Ry =6k(B(z— 1) — 1) —k*(—=14(B+ 1) +2(68 + 52> + 322 +2(B + 15)z)
+k2Z2(—4B +4(B+ 1)z —3) —27°. (220)

Appendix C. Remarks on the encountered iterated integrals

In this calculation a large number of generalized iterated integrals appear. If no elliptic letter
is present, it is possible to represent them using harmonic polylogarithms when the letters do not
involve kinematic variables or polylogarithms at involved arguments. The expressions become
large already in simple situations. In total about 1050 logarithms, di- and trilogarithms contribute.
In a series of cases a further elliptic letter is integrated over these structures.

A few examples are given in the following. Let us refer to the letters f,, and f,,. The corre-
sponding iterated integral reads

1- g2 -2) {_Liz[ Vi Itk +2) }
2k(1 —2)%2(z + 1) WEF T+ ((1 - Ve + 1+ VaH )

ng,IU6(:B) =

- vi+1((z—DBk+k+2z)
+L12
LeVZF T+k (1= DV +1+vZFT) ]
| VEF Tk +2) 1
RNES —k((l — VB + _m)_
—|—Li2_ Vit (@-Dpk+k+2) |
LeveF Tk (1= Vep?+ 1 - V2 +1) |

+1n(k+z){—ln(1 —fﬂ)

k(z—1)y/p?z+1
k(—e/Bz+ T4V 1+ V2T 1) + Vot Iz

_ 2
k(z = Dy/BZ+ 1 +ln<ﬁzz+1)}
k(—(l—z)\/m+\/z+l)+m/z+l

_ln —

—In
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+In(Bk(z—= 1) +k+2)

{ k(z—1) (\/ﬂ% T14+BvViT 1)
xiIln| —
k((l—z)\/,32z+1+«/z+1>+z«/z+l

ke—1) (VA +1-pva+) ”

+In (221)
k(=0 = VBz+ 1+ VZF 1) +2Vz+ 1
Examples of the contributing functions are
V1 k
Li, +ak+o) , (222)
zV/1 +z+k(¢1 +z—1+2824+2/1 +z,32)
. kv1—=22(—z+ k(1 + (1 —2)B)
Lip , (223)
—zkv/1— 22+ k(kv/1 — 22+ VK2 — 22(1 — 2))

Lis <_ 2(1 —k)zp ) (224)
I=pe—k(d+1-2)8)

and logarithms of similar arguments.

Finally, we expand one of the iterated integrals, containing an elliptic letter, in the ratio
m?/(Q?. While the asymptotic expansion of the functions in Appendix B is straight forward
after the integration into polylogarithmic expressions, the asymptotic expansion of the Kummer-
elliptic integrals is more involved. Here we rely heavily on the techniques developed in the
context of Ref. [80] for the expansion of massive iterative integrals in the Drell-Yan process.
The main idea is to perform the first integration analytically and then regularize the integrand in
the limit Q2 > m? before the expansion. Since we aim for a deeper expansion in this paper, the
term for the regularization turns out to be a power series in «. For example, we find

1

1
leo,w7(,3) = —{_1n2 (

m? 1 m2
213 )+§(ln(1—z)—1n(2)—21n(1—«/E))ln( )

0? 0?
+<21n(1 —7)— %ln(z)) In(1—-47)— Zln2 (1-z) —In*(1 —2)

+% In(1 - 2)In(z) — %ln%) —Lix(1 — /z) — Li2 (V)

1. 2 A

St (30) 1 (30-9)

1 1=yz\ 11 1

—ELIZ(— NG )+Z§2+Z<61H(1—Z)

61n (1 — V3) — Inz) ) In2) — ~ 122 m 1o (m
—61In(1— z)—n(z))n()—zn()—f-a §n<@>

5— 1047 3z ,
_<ﬂ +2In (1= z) —In(l - 2) + ln(2)> In <@)
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1-8z+z 5+64z—-3z 5 ) ~
4(1-2) ( 2(1—2) +4In(1 —z) 2ln(z) In(1—/7z)

—%lnz(l—ﬁ)— (5+22ﬁ—3z

— — — 2 —
H(1-2) ln(z)>ln(1 7) —2In"(1 - 2)

)

—2Li,» <%(1 - ﬁ)) —Liz (—1 - ﬁ) + ( 2 VzIn(z) + %52

\/2 l—z)
341047z |
+<ﬂ —=3In(1-+z)+3In(1-2) - 51n(z)> In(2)
2\ 2

1 m 1 m2
Swol() [ (5)

—% In*(z) — 2Li>(1 — v/z) — 2Lix(v/z) — Liz (

2 — —
+(_15(1 +z°) -6z 1()20ﬁ(1 +72) +21n(1 —ﬁ)
32(1 —z)
2 — 2 3/2
_ln(l—z)—l—ln(2))1n(m_2)+<15 6z + 15z +28;/E+28z
Q 16(1 —z)

—4In(1 —z) + gln(z)> In(1—-2)+ gln2 (1-+v7)

( 3(5 =2z + 522 + 52/z + 522°/3)

- ln(z)> In(1 —z)

32(1—2)°

1 1-

+210°(1 = 2) + 2 In*(2) + 2Lz (1 = VZ) + Liz (— \/f)
2 1 2(1

+2Li2(\/2) + Lip (1 —i—\/\Z/E) + 2Lip <§(1 — ﬁ)) + (1( :;;zﬁln(z)
L 97 —2022+ 3372 — 324.,/7 4 3167°/2

64(1—z)°
+<7(1 +72) 4 10z + 60.,/z(1 + 2)

16(1 - z)°

+3In(1 —z) =3In(1 —2) + %ln(z)> In(2) — %Cz + %ln2(2)j|}

+0 @3 In*(k)), (225)

and similar expressions for the other Kummer-elliptic integrals. When calculating the complete
expansion all dependence on /z drops out of the Wilson coefficients. We did not exploit here
the well-known relations for the dilogarithm of different arguments [33].
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