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Abstract: The deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) has garnered

significant attention for its ability to describe the properties of nuclei across the entire nuclear chart,

from light to heavy nuclei, including both stable and exotic ones. As part of ongoing efforts to

construct a mass table using the DRHBc theory, determining the ground states of nuclei is a crucial

task in the systematic studies of deformed nuclei. In this work, a strategy for identifying the ground

state in the superheavy nuclei region is proposed and evaluated, by taking Z = 134 and 135 isotopes as

examples. First, we examine how the step size of the initial quadrupole deformation parameter, ∆β2,

affects the pattern of the potential energy curves (PECs) and the determination of the ground state.

Our findings indicate that ∆β2 = 0.05 producing smooth and well-defined PECs while maintaining

an acceptable numerical cost. Next, we explore the convergence of PECs with respect to the angular

momentum cutoff, Jmax. Based on the results, we recommend using Jmax = 31/2h̄, especially for

nuclei with competing oblate and prolate minima. Finally, we conclude that the accurate identification

of the ground state can be achieved by performing unconstrained calculations around the minima of

the PECs.

Keywords: superheavy nuclei; deformed relativistic Hartree–Bogoliubov theory in continuum;

potential energy curve; deformation

1. Introduction

The importance of nuclear mass cannot be overstated in the realm of nuclear
physics [1,2]. It serves as a fundamental property that influences various phenomena,
including nuclear stability, decay processes, and the structure of atomic nuclei. Accu-
rate knowledge of nuclear masses is essential for understanding the underlying nucleon–
nucleon interactions and for predicting the behavior of isotopes in astrophysical environ-
ments, such as nucleosynthesis in stars [3,4] and stellar neutrino emission [5].

The nuclear mass of superheavy nuclei [6] with Z ≥ 104 is particularly interesting,
in the sense that the exploration of charge and mass limits of atomic nuclei and the synthesis
of long-lived or stable superheavy nuclei are at the frontier of modern nuclear physics [7–9].
Determining the ground states of superheavy nuclei is exceptionally challenging due to
their short-lived nature and the complexities associated with their production. Nevertheless,
advancements in experimental techniques, such as the use of gas-filled separators [10] and
advanced detection systems [11,12], have enabled significant progress in identifying and
characterizing these elusive nuclei. The insights gained from these studies are crucial for
understanding the limits of nuclear stability and exploring the location of the island of
stability [13,14]. Experimentally, the element Og with proton number Z = 118 is the highest
Z element observed so far [15]. Although we have witnessed the prosperous development
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of new generations of radioactive ion beam facilities, most neutron-rich nuclei far from the
stability valley will remain beyond experimental access in the foreseeable future.

A reliable theoretical nuclear mass table is highly desired to further understand the
nuclear landscape. Lots of efforts towards precise descriptions of nuclear masses have
been made with various macroscopic–microscopic models [16–18], nonrelativistic density
functional theories (DFTs) with Skyrme [19,20] and Gogny [21] interactions, and relativis-
tic DFTs [22–31]. Among them, the deformed relativistic Hartree–Bogoliubov theory in
continuum (DRHBc) [32,33] with the PC-PK1 [34] density functional has shown its remark-
able ability on the satisfactory description of the ground-state properties with powerful
explorations [35], due to the self-consistent consideration of the nuclear superfluidity, de-
formation, and continuum effects. In particular, the DRHBc Mass Table Collaboration [36]
represents a concerted effort not only to calculate masses for stable and unstable nuclei
but also to provide a more complete picture of the nuclear landscape.

Systematic numerical convergence checks from light to heavy nuclei for the DRHBc
calculations have been justified in refs. [33,37]. Following the strategy and techniques presented
in those articles, the nuclear mass table calculated by the DRHBc theory with PC-PK1 has been
constructed for even–even nuclei [28] and even-Z nuclei with 8 ≤ Z ≤ 120 [29]. Recently, this
collaboration has extended its research scope to heavier nuclei.

In this work, we focus on the application of the DRHBc theory in the superheavy region
with Z > 120, especially the determination of the ground state. In the literature, those
nuclei with Z > 126 are also called hyperheavy nuclei [38–40]. This paper is organized as
follows: Section 2 provides a brief overview of the theoretical framework, while Section 3
presents the numerical details. The results and discussions are presented in Section 4, and a
summary is given in Section 5.

2. Theoretical Framework

For the sake of completeness, we lay out some key elements of the DRHBc theory with
point-coupling density functionals. For details on the theoretical framework, we refer the
reader to refs. [32,33,37,41].

The relativistic Hartree–Bogoliubov (RHB) equation describing the motion of nucleons
in nuclei reads

(

ĥD − λτ ∆̂

−∆̂∗ −ĥ∗D + λτ

)(

Uk

Vk

)

= Ek

(

Uk

Vk

)

, (1)

where ĥD is the Dirac Hamiltonian, ∆̂ is the pairing field, λτ is the Fermi energy for
neutron or proton (τ = n, p), Uk, Vk are the quasiparticle wave functions, and Ek is the
quasiparticle energy.

In a nuclear system with time-reversal symmetry, the Dirac Hamiltonian in the coordi-
nate space is written as

hD(r) = α · p + V(r) + β[M + S(r)]. (2)

Here, M is the nucleon mass, α and β are Dirac matrices, and S(r) and V(r) are the
scalar and vector potentials. In the point-coupling framework [34], the scalar potential S(r)
and vector potential V(r) are defined as follows

S(r) = αSρS + βSρ2
S + γSρ3

S + δS∆ρS, (3a)

V(r) = αVρV + γVρ3
V + δV∆ρV + eA0 + αTVτ3ρ3 + δTVτ3∆ρ3, (3b)

where A0 is the electric potential, τ3 = ±1 for neutron and proton. The coupling constants
α’s, β’s, γ’s, and δ’s are adjustable parameters in the point-coupling Lagrangian and can
be determined by fitting the binding energies and charge radii of a set of spherical nuclei
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as in ref. [34]. The local densities ρS, ρV , and ρ3 are calculated with the quasiparticle
wave functions

ρS(r) = ∑
k>0

V†
k (r)γ

0Vk(r), (4a)

ρV(r) = ∑
k>0

V†
k (r)Vk(r), (4b)

ρ3(r) = ∑
k>0

V†
k (r)τ3Vk(r). (4c)

Note that the no-sea approximation is adopted in Equation (4), i.e., the summations
are performed only over the quasiparticle states in the Fermi sea.

The pairing field in the RHB Equation (1) is expressed as [32,33]

∆(r1, r2) = Vpp(r1, r2)κ(r1, r2), (5)

where the spin and isospin indexes are not shown for simplicity. The quantity κ is the
pairing tensor and Vpp is the density-dependent zero-range pairing force

Vpp(r1, r2) = V0
1

2
(1 − Pσ)δ(r1 − r2)[1 − ρ(r1)/ρsat]. (6)

In Equation (6), V0 is the pairing strength, ρsat = 0.152 fm−3 is the saturation den-
sity of nuclear matter, (1 − Pσ)/2 is the projector for the spin-zero component in the
pairing channel.

A deformed model is employed here because it enables us to determine the shape of nuclei,
whether they are spherical or axially deformed, based on the total energies. This is definitely
important because most studies on hyperheavy nuclei within DFTs [38,39,42,43] have been
performed only for spherical shapes, while there is no guarantee that spherical minimum
in potential energy surface exists for those nuclei. For an axially deformed nucleus with
spatial reflection symmetry, the potentials in Equation (3) and densities in Equation (4) can
be expanded in terms of the Legendre polynomials

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, · · · , λmax (7)

with

fλ(r) =
2λ + 1

4π

∫

dΩ f (r)Pλ(Ω). (8)

In practical calculations, the deformed RHB Equation (1) is solved in a spherical Dirac
Woods–Saxon basis, which is obtained by solving a Dirac equation with spherical scalar
and vector potentials in Woods–Saxon forms [44]. Both the positive- and negative-energy
states for the solution of Dirac equations are considered. In recent years, the completeness
of the full Dirac space is crucial also for ab initio studies of nuclear structure [45] and
nuclear matter [46,47]. The solution of the RHB equations provides us with the expansion
coefficients of quasiparticle wave functions, from which new densities and potentials can
be obtained. These quantities are iterated in the RHB equations until the convergence
is achieved.

3. Numerical Details

The numerical details for constructing the DRHBc mass table have been examined
thoroughly in refs. [33,37]. For nuclei with 8 ≤ Z ≤ 120, according to ref. [37], the box
size and the mesh size are Rbox = 20 fm and ∆r = 0.1 fm; the energy cutoff for the levels
in the Fermi sea is E+

cut = 300 MeV; the number of states in the Dirac sea is taken to be
the same as that in the Fermi sea; The angular momentum cutoff is Jmax = 23/2h̄; the
Legendre expansion truncation in Equation (7) is chosen as λmax = 6, 8, 10 for nuclei with
8 ≤ Z ≤ 70, 72 ≤ Z ≤ 100, and 102 ≤ Z ≤ 120, respectively. For the pairing channel,
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the pairing strength V0 = −325.0 MeV · fm3 and the sharp pairing window of 100 MeV
are used. A detailed examination of the numerical details for nuclei with Z ≥ 122 is in
progress. In this work, we will discuss the convergence of potential energy curves (PECs)
with respect to the Jmax in the region of superheavy nuclei. Other numerical details are
aligned with the suggestions in Refs. [33,37], including typically the Legendre expansion
truncation λmax = 10 and the box size Rbox = 20 fm.

The point-coupling density functional PC-PK1 is used in this work. Uncertainty quan-
tification of DRHBc calculations from parameters can be obtained with thorough analysis
of parameter fitting [48,49] and/or using machine learning techniques [50,51], which are
beyond this scope and can be considered in future work. Regarding the extrapolation relia-
bility of the theoretical framework and density functional adopted in this work, ref. [35]
has shown that the DRHBc theory with PC-PK1 has an impressive performance.

In addition, for the following discussions, we temporarily adopt a systematic IUPAC
name for nuclei with Z > 100 [52]. Specifically, nuclei with Z = 134 and Z = 135 are
named by Utq and Utp, respectively.

4. Results and Discussion

Firstly, we investigate how the pattern of PECs changes as the step size of the initial
quadrupole deformation parameter ∆β2 is varied. Here, β2 has a standard meaning
of deformations of the ellipsoid-like density distributions. One can easily expect that
for too small ∆β2 the calculation costs cannot be ignored, while for too large ∆β2 the PECs
are not smooth though to locate the local minimum. In Figure 1, we show the PECs of
384
134Utq250 with three different initial deformation step sizes, i.e., ∆β2 = 0.1, 0.05, and 0.01.
For clarity, the values for ∆β2 = 0.1 and 0.05 have been shifted by adding up 20 and 10 MeV.
Obviously, constrained calculations with ∆β2 = 0.01 lead to an overly dense PEC, which
is not necessary since there are 200 times calculations in the range of −1.0 ≤ β2 ≤ 1.0.
On the other hand, ∆β2 = 0.1 provides a loose PEC which is dangerous for possible missing
of local minimum. Choosing ∆β2 = 0.05 is a very appropriate compromise considering
both the computational cost and smoothness, as can be seen in Figure 1. We also show
the unconstrained results, which is consistent with the constrained calculations. In the
discussions below, if there is no explicit statement, the PECs are obtained with an initial
deformation step size ∆β2 = 0.05.

In Figure 1, one finds that the ground state results from the competition between
two local minima. One has an oblate deformation with β2 ≃ −0.2, the other one has
a prolate deformation with β2 ≃ 0.42, which is much larger than the deformation for
most nuclei [53]. According to the conventional deformed shell model, a larger prolate
deformation causes a greater downward shift in single-particle levels with high angular
momentum. Besides, the PECs in Figure 1 do not show fission possibilities even for β2 = 1.0,
which is unusual for such a superheavy nucleus. These two facts imply that the present
cutoff of the angular momentum Jmax = 23/2h̄ might not be enough to contain high-order
orbits for the superheavy nuclei.

Figure 2 shows how the PECs evolve with the increasing Jmax. The nucleus 388
134Utq254

is chosen as an example because, for the normal cutoff Jmax = 23/2h̄, the ground state is
located at β2 = 0.44, which has a large prolate deformation that needs to be checked. As ex-
pected, with the increase in Jmax, the total energies with extreme deformations decrease
and a fission pattern is found. For deformation β2 in the range of [−0.3, 0.3], as highlighted
with two pink vertical dashed lines, Jmax = 23/2h̄ has already provided a large enough
cutoff. In contrast, for a larger deformation with |β2| > 0.3, Jmax = 31/2h̄ is a better cutoff
not only to obtain converged results but also to find the correct ground state. Notice that in
these calculations, the pairing effects are neglected for simplicity as conducted in ref. [33].
Furthermore, increasing the Legendre expansion truncation λmax from 10 to 12 does not
alter the conclusion here.

The observations from the previous two figures inspire us the following three steps in
the determination of the ground state:
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• Choose the initial deformation step size ∆β2 = 0.05 with Jmax = 23/2h̄ to obtain a
smooth enough PEC with acceptable computational costs.

• Check the total energies for large deformation with |β2| > 0.3 by calculations with
Jmax = 31/2h̄.

• Perform unconstrained calculations in the vicinity of local minima in PEC. The config-
uration with the lowest total energy is the ground state.

Following the above strategy, we study the total energies of 388
134Utq254 as a function of

deformation and present the results in Figure 3. In this case, we consider the pairing through
the Bogoliubov theory, where the pairing strengths are fixed at V0 = −325.0 MeV · fm3 for
Jmax = 23/2h̄ [33] and V0 = −300.0 MeV · fm3 for Jmax = 31/2h̄. Both combinations can
reproduce the experimental odd–even mass differences in Ca and Pb isotope chains as in
ref. [33]. It should be mentioned that a weaker pairing strength is required for a higher
angular momentum cutoff because the zero-range pairing force adopted in Equation (6)
needs to be renormalized to the enlarged model space.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

∆E
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V
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 Constrained ∆β2 = 0.05

 Constrained ∆β2 = 0.01
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384
134Utq250

+20 M
eV

+10 M
eV

Figure 1. Potential energy curves of 384
134Utq250 in constrained DRHBc calculations with initial de-

formation step size ∆β2 = 0.1 (upper), 0.05 (middle), and 0.01 (lower). The unconstrained results

are also shown with pink empty triangles. The energy for the ground state has been shifted to

zero, while the values for ∆β2 = 0.1 and 0.05 have been additionally shifted by adding up 20 and

10 MeV, respectively.

From the PEC shown in Figure 3, the modification on total energy from Jmax = 23/2h̄
to Jmax = 31/2h̄ becomes more evident for larger deformation. Moreover, it is evident
that there is competition between the two minima. This indicates that ∆β2 = 0.05 in-
deed provides a PEC with smoothness and clarity. Since the right minimum is around
β = 0.42, it is necessary to perform examinations with a larger cutoff of angular momentum.
By increasing Jmax to 31/2h̄, the total energies around the prolate minimum decrease by
2–3 MeV, prohibiting a more advantageous stability in comparison with its competitor with
oblate deformation. For the oblate side, we also perform calculations with Jmax = 31/2h̄,
while no new minimum is found in addition to the one with β = −0.2. After the uncon-
strained calculations, we come to the conclusion that the ground-state energy of 388

134Utq254

is −2516.952 MeV with deformation β2 = 0.461.
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Figure 2. Potential energy curves of 388
134Utq254 with the angular momentum cutoff Jmax ranging from

23/2h̄ to 33/2h̄. The pairing correlation is neglected. Two pink vertical dashed lines at |β2| = 0.3 are

used to guide the eye.
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Figure 3. Potential energy curves of 388
134Utq254 in constrained DRHBc calculations with the angular

momentum cutoff Jmax = 23/2h̄ and initial deformation step size ∆β2 = 0.05. The results for

constrained calculations with higher Jmax = 31/2h̄ for |β2| ≥ 0.3 and unconstrained calculations are

also shown.

The strategy for determining the ground state is applied to three additional nuclei
in the Utq (Z = 134) isotope chain with N = 218, 288, and 320. These three nuclei are
chosen as representatives considering that the proton and neutron drip lines in this isotope
chain are at N = 202 and N = 350, respectively. As depicted in Figure 4, ∆β2 = 0.05 is a
good choice to obtain smooth and clear PECs, for both Jmax = 23/2h̄ and Jmax = 31/2h̄.
For N = 218, the candidate for ground state at the oblate side has a deformation of
β2 = −0.5, while the candidate at the other side is less deformed. By increasing the cutoff of
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angular momentum, the ground state is confirmed with an oblate deformation with a lower
total energy. For N = 288, the situation is reversed and it is the prolate candidate that has
large deformation and needs to be checked. Interestingly, calculations with Jmax = 31/2h̄
find a more stable minimum with larger oblate deformation β2 = −0.563, which does not
show up with Jmax = 23/2h̄. This indicates that the examination with a larger cutoff is of
high necessity even for cases where the oblate and/or prolate deformation of ground-state
candidates is not larger than 0.3. For N = 320 shown in the lower panel in Figure 4, the PEC
is rather simple with Jmax = 23/2h̄, showing a softness around the spherical configuration.
However, with Jmax = 31/2h̄, an oblate minimum shows up, which is found to be the
ground state.

-2370

-2360

-2350

-2340

-2610

-2600

-2590

-2580

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
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Z = 134, N = 218

 Jmax = 23/2 h  Jmax = 31/2 h

E
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t [
M

e
V

]

Z = 134, N = 288

β2

Z = 134, N = 320

Figure 4. Potential energy curves of Utq nucleus (Z = 134) with N = 218 (upper), 288 (middle),

and 320 (lower) in constrained DRHBc calculations with initial deformation step size ∆β2 = 0.1.

Results with Jmax = 23/2h̄, |β2| ≤ 0.8 as well as the ones with Jmax = 31/2h̄, |β2| ≥ 0.3 for N = 218,

288, and 320 are shown. The unconstrained results are also shown with pink empty triangles and

red stars.

All the aforementioned discussions are for even–even nuclei. The three steps are
further applied to odd-A nuclei, where the time-reversal invariance is retained by blocking
the quasiparticle configurations within the equal-filling approximation [37]. In Figure 5,
the PECs of three nuclei in the Utp (Z = 135) isotope chain with N = 218, 288 and 320 are
given. Despite the difficulties in a quite demanding computational procedure, a smooth
and clear PEC can be obtained with initial deformation step size ∆β2 = 0.05. Besides,
by increasing Jmax from 23/2h̄ to 31/2h̄, one can identify the correct ground state, no matter
if it is oblate or prolate with a deformation parameter |β| smaller or larger than 0.3.

In Table 1, we tabulate the ground-state properties of several nuclei shown from
Figures 3–5, including the binding energy Ecal

b ≡ −Etot from the DRHBc calculations,

the binding energy plus rotational correction energy Ecal
b+rot, the binding energy per nucleon

Ecal
b+rot/A, and the quadrupole deformation β2.
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Figure 5. Similar to Figure 4, but for Utp nucleus (Z = 135).

Table 1. Ground-state properties of several nuclei from Figures 3–5 calculated by the DRHBc theory.

A N Ecal
b (MeV) Ecal

b+rot (MeV) Ecal
b+rot/A (MeV) β2

Z = 134 (Utq)

352 218 2360.01 2363.23 6.714 −0.511
388 254 2516.95 2518.84 6.492 0.461
422 288 2600.77 2603.71 6.170 −0.563
454 320 2639.96 2642.49 5.821 −0.518

Z = 135 (Utp)

353 218 2361.76 2364.88 6.700 −0.515
423 288 2609.93 2612.71 6.177 −0.554
455 320 2651.20 2653.72 5.832 −0.529

5. Summary

Determining the ground states of superheavy nuclei is particularly challenging but
important for both experimental and theoretical studies. Starting from the PC-PK1 point-
coupling density functional, we studied the properties of superheavy nuclei with Z = 134
and 135 within the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc).
By investigating how the pattern of potential energy curves (PECs) varies with the changes
in the step size for the initial quadrupole deformation parameter ∆β2 and its conver-
gence with respect to the cutoff of angular momentum Jmax, we propose three steps for
determining the ground state, in balancing the computational complexity and accuracy:

• Choose the initial deformation step size ∆β2 = 0.05 with Jmax = 23/2h̄ to obtain a
smooth enough PEC with acceptable computational costs.

• Check the total energies for large deformation with |β2| > 0.3 by calculations with
Jmax = 31/2h̄.
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• Perform unconstrained calculations in the vicinity of local minima in PEC. The config-
uration with the lowest total energy is the ground state.

These three steps are then applied to three representative nuclei in the Z = 134 isotope
chain with N = 218, 288, and 320. The ground states for the first two nuclei arise from
the competition between oblate and prolate configurations which are already observed
with Jmax = 23/2h̄, while the ground state for N = 320 is obtained only after performing
calculations with Jmax = 31/2h̄. The validation of the strategy is also confirmed for odd-A
nuclei with Z = 135 and N = 218, 288 and 320. This work provides guidance for large-scale
calculations of superheavy nuclei as a new extension of the DRHBc mass table.
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