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UDK 514.7 THE PETROV CLASSIFICATIONAND VACUUM DARK FLUIDI. DymnikovaAbstra
tThe Petrov 
lassi�
ation of stress-energy tensors makes it possible to introdu
e a uni�eddes
ription of dark energy and dark matter as a va
uum dark �uid based on the spa
e-timesymmetry. In this approa
h a va
uum dark energy is des
ribed by a variable 
osmologi
al termwhose symmetry is redu
ed as 
ompared with the Einstein 
osmologi
al term whi
h allowsa va
uum energy to be evolving and 
lustering. The relevant 
lass of solutions to the Einsteinequations implies also the existen
e of 
ompa
t va
uum obje
ts generi
ally related to a darkenergy: regular bla
k holes, their remnants and self-gravitating va
uum solitons with de Sitterva
uum interior � whi
h 
an be responsible for observational e�e
ts typi
ally related to a darkmatter. The mass of obje
ts with de Sitter interior is generi
ally related to va
uum dark energyand to breaking of spa
e-time symmetry.Key words: dark energy, dark matter, regular bla
k holes and solitons with de Sitter 
ore.Introdu
tionQuantum �eld theory in 
urved spa
e-time does not 
ontain a unique spe
i�
ationfor the quantum state of a system, and the symmetry of a va
uum expe
tation valueof a stress-energy tensor does not always 
oin
ide with the symmetry of a ba
kgroundspa
e-time [1℄. In the 
ase of the de Sitter spa
e the renormalized expe
tation value of
〈Tµν〉 for a s
alar �eld with an arbitrary mass m and 
urvature 
oupling ξ is provedto have a �xed point attra
tor behavior at late times ( [1℄ and referen
es therein) ap-proa
hing, dependently on m and ξ , or the Bun
h �Davies de Sitter-invariant va
uumeither, for the massless minimally 
oupled 
ase (m = ξ = 0) the de Sitter invariantAllen �Fola

i va
uum. The last 
ase is pe
uliar sin
e the de Sitter invariant two-pointfun
tion is infrared divergent, and the va
uum states, free of this divergen
e, are O(4)-invariant Fo
k va
ua; the va
uum energy density in the O(4)-invariant 
ase is not thesame (larger) than in de Sitter-invariant 
ase [2℄.The Petrov 
lassi�
ation of stress-energy tensors provides opportunity to 
onsiderva
uum in a model-independent way, as a medium spe
i�ed by the algebrai
 stru
ture ofits stress-energy tensor [3�5℄. The Einstein 
osmologi
al term Λgµν 
orresponds to thede Sitter va
uum presented by the stress-energy tensor of maximal symmetry, with allthree spa
elike eigenvalues equal to the timelike eigenvalue. As a result it has an in�niteset of 
o-moving referen
e frames, so that an observer 
annot in prin
iple measurehis velo
ity with respe
t to it [3℄. The maximal symmetry of a va
uum stress-energytensor 
an be redu
ed to the 
ase when less than three spa
elike eigenvalues are equalto the timelike eigenvalue [4, 5℄. This leads inevitably (by the Bian
hi identities) todynami
al va
uum energy represented by anisotropi
 va
uum dark �uid whi
h 
an bothbe distributed and form 
ompa
t obje
ts [6℄. It generates regular spa
e-time with thede Sitter interior whose existen
e follows from requirements of regularity and 
ertainenergy 
onditions on a sour
e term in the Einstein equations [7℄.
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uum dark �uid provides a uni�ed des
ription of dark energy and dark matter.The key point is that astronomi
al data testify in favor of a 
osmologi
al va
uum darkenergy des
ribed by the Einstein 
osmologi
al term (see [8℄ and referen
es therein). Theproblem is that density of de Sitter va
uum must be 
onstant by the 
ontra
ted Bian
hiidentities, while the in�ationary paradigm requires its mu
h bigger value for the earlieststage of the Universe evolution. Va
uum dark �uid represents a 
osmologi
al va
uumby a variable spheri
ally symmetri
 
osmologi
al term whi
h 
onne
ts smoothly twode Sitter va
ua at r → 0 and r → ∞ . Its symmetry is redu
ed as 
ompared withthe Einstein 
osmologi
al term whi
h allows a va
uum energy to be evolving and 
lus-tering. Time-evolving and spa
e-inhomogeneous 
osmologi
al term [5℄ des
ribes regular
osmologi
al models dominated by va
uum dark energy [9℄.The relevant 
lass of solutions to the Einstein equations implies the existen
e of
ompa
t va
uum obje
ts generi
ally related to a dark energy through their de Sitterva
uum interiors: regular bla
k holes [4, 10℄, their remnants [11, 12℄ and self-gravitatingva
uum solitons [7, 11, 13℄, whi
h 
an be responsible for observational e�e
ts typi
allyrelated to a dark matter [6℄.The question of the origin of dark matter still remains open [14℄. The most popularhypothesis is that dark matter 
onsists of neutral weakly intera
ting parti
les 
reated inthe hot early Universe. However, re
ently gathered results lead to the 
on
lusions thatknown elementary parti
les 
an not a

ount for a dark matter, at least in the frame ofthe Standard Model [15℄. Dark energy parti
les as quanta of the 
osmologi
al 
onstant
λ (
onsidered as the fundamental 
onstant) were proposed in [16℄ for a wide range ofmasses up to 1055 g in
luding thus also observable Universe. In models of a uni�eddark �uid with s
alar �elds, a dark energy is treated as a remnant density of a 
omplexs
alar �eld and dark matter as parti
les of this �eld [17℄, although the form of the s
alar�eld potential 
an not be dire
tly derived from high energy theories.Va
uum dark �uid provides a model-independent dark energy-dark matter uni�-
ation based on the spa
e-time symmetry. Va
uum gravitational solitons 
alled G-lumps [7℄ (they are bounded by their own gravity balan
ed at the surfa
e where thestrong energy 
ondition is violated) 
an be responsible for lo
al e�e
ts related to a darkmatter in a way similar to λ-parti
les of [16℄ and 
omplex s
alar �eld parti
les of [17℄.Bla
k holes (espe
ially primordial) are re
ognized as good dark matter 
andidates[18℄. Bla
k hole remnants (�nal produ
ts of Hawking evaporation) have been 
onsid-ered as a sour
e of dark matter for more than two de
ades [19℄ (for a review see [14℄).The open question dis
ussed in the literature 
on
erns the existen
e of remnants: In the
ase of a singular bla
k hole it would be a Plan
k size bla
k hole; however, no evidentsymmetry or quantum number exists whi
h would prevent 
omplete evaporation. Char-a
ter and s
ale of un
ertainty 
on
erning an endpoint of the Hawking evaporation ofa singular bla
k hole are 
learly evident in the 
ase of a multihorizon spa
e-time [20℄.The fate of a regular bla
k hole is unambiguous: it leaves thermodynami
ally stabledouble-horizon remnant with the positive spe
i�
 heat [11, 12℄.Mass of obje
ts is related to interior de Sitter va
uum and breaking of spa
e-timesymmetry from the de Sitter group at the origin [7℄. This has been tested by evaluatingthe gravito-ele
troweak uni�
ation s
ale from the measured mass-squared di�eren
esfor solar and atmospheri
 neutrinos [21℄. Nonlinear ele
trodynami
s 
oupled to gravityprovides a non-trivial example of a matter obje
t with dark energy interior [22, 23℄whi
h we dis
uss in Se
tion 2. In Se
tion 1 we present the va
uum dark �uid in generalsetting, and in Se
tion 2 we show how it 
an provide a uni�ed des
ription of dark energyand dark matter.



156 I. DYMNIKOVA1. Va
uum dark �uidThe Einstein 
osmologi
al term Λgµν with Λ = const , 
orresponds to a va
uumstress-energy tensor of the maximal symmetry
Λδµν = 8πGT µν

vac. (1)In the Petrov 
lassi�
ation, stress-energy tensors are 
lassi�ed on the basis of theiralgebrai
 stru
ture. When eigenvalues of Tµν are real, the eigenve
tors of Tµν are non-isotropi
 and form a 
omoving referen
e frame with a timelike eigenve
tor representinga velo
ity.In this 
lassi�
ation an anisotropi
 �uid is spe
i�ed by [IIII℄ and [II(II)℄, and anisotropi
 �uid by [I(III)℄. The �rst symbol denotes the eigenvalue related to the timelikeeigenve
tor. Parentheses 
ombine degenerate eigenvalues. A 
omoving referen
e frame isde�ned uniquely if and only if none of spa
elike eigenvalues λk(k = 1, 2, 3) 
oin
ides witha timelike eigenvalue λ0 . Otherwise there exists an in�nite set of 
omoving referen
eframes.The maximally symmetri
 de Sitter va
uum (1), spe
i�ed by [(IIII)℄ in the Petrov
lassi�
ation s
heme (all eigenvalues equal, all referen
e frames 
omoving), representsthe isotropi
 va
uum �uid. The high symmetry of a va
uum stress-energy tensor (1) 
anbe redu
ed to the 
ase when one (or two) of the spa
elike eigenvalues of Tµν 
oin
ideswith its timelike eigenvalue
pk = −ρ. (2)A va
uum stress-energy tensor with a redu
ed symmetry is invariant under Lorentzboosts in the k -dire
tion. This makes impossible to single out a preferred 
omovingreferen
e frame and thus �x the velo
ity with respe
t to a va
uum �uid whi
h is intrinsi
property of a va
uum [24℄.A va
uum de�ned by the symmetry of its stress-energy tensor must be evidentlyanisotropi
 (ex
ept the maximally symmetri
 de Sitter va
uum (1)). The Petrov 
las-si�
ation s
heme suggests three types of anisotropi
 va
uum �uid: [(II)(II)℄, [(II)II℄,[(III)I℄ [6℄.A spheri
ally symmetri
 va
uum �uid 
orresponds to [(II)(II)℄ and is spe
i�ed by [4℄
T t

t = T r
r . (3)It satis�es the equation of state (following from T µ

ν;µ = 0) for anisotropi
 perfe
t �uid
pr = −ρ; p⊥ = −ρ − r

2

dρ

dr
(4)and generates spa
e-time with the de Sitter 
enter whose existen
e follows from require-ments of regularity and the weak energy 
ondition on a sour
e term in the Einsteinequations [7℄.The Einstein equations with a sour
e term spe
i�ed by (3) admit the 
lass of regularsolutions asymptoti
ally de Sitter as r → 0 and r → ∞ [5, 7℄

(8πG)−1Λδµ
ν ⇐= T µ

ν =⇒ (8πG)−1λδµ
ν (5)with λ < Λ . The metri
 of a spa
e-time is given by

ds2 = g(r) dt2 − dr2

g(r)
− r2dΩ2 (6)
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Fig. 1. Metri
 fun
tion in the 
ase of three horizonswith the metri
 fun
tion [10℄
g(r) = 1 − 2GM(r)

r
− λ

3
r2; M(r) = 4π

r
∫

0

ρ(x)x2 dx, (7)whi
h evolves from the de Sitter metri
 fun
tion g(r) = 1 − (Λ + λ)r2/3 as r → 0 ,to the Kottler �Tre�tz metri
 fun
tion g(r) = 1− rg/r − λr2/3, rg = 2GM , for r ≪ r∗where r∗ = (r2
0rg)

1/3 with r2
0 = 3/Λ , is the 
hara
teristi
 length s
ale in geometry withde Sitter 
enter ( [4℄ and referen
es therein). The mass parameter (gravitational mass)

M =

∞
∫

0

ρ(r)r2dr (8)is related to interior de Sitter va
uum and breaking of spa
e-time symmetry from thede Sitter group at the origin [7℄. Spa
e-time 
an have not more than three horizons [9℄,the 
osmologi
al horizon rc , the bla
k bole horizon rb < rc , and the internal horizon
ra < rb (see Fig. 1).The internal horizon r = ra is the 
osmologi
al horizon for a stati
 observer in the
R -region 0 ≤ r < ra . A stati
 observer in the R -region rb < r < rc observes T−region ra < r < rb as a regular 
osmologi
al bla
k hole. Its mass is limited within
Mcr1 ≤ M ≤ Mcr2 . The value M = Mcr1 
orresponds to a double-horizon (ra = rb )state whi
h appears as an end-point of the Hawking evaporation. For M < Mcr1 themetri
 (6) des
ribes a G-lump in asymptoti
ally de Sitter spa
e (the upper 
urve inFig. 2). Se
ond 
riti
al mass Mcr2 
orresponds to the double horizon rb = rc andrepresents a regular modi�
ation of the Nariai solution.This behavior is generi
 for the 
lass of regular solutions spe
i�ed by (3) and sat-isfying the weak energy 
ondition [7, 9℄. The pi
tures are plotted with the densitypro�le [4℄

ρ(r)=ρ0 exp(−r3/r2
0rg); r0 =

√

3/8πGρ0; ρ0 =ρ(r → 0) = (8πG)−1Λ; rg =2GM (9)whi
h des
ribes va
uum polarization e�e
ts leading to de Sitter interior in the simplesemi-
lassi
al model for va
uum polarization in the gravitational �eld [11℄.2. Regular 
osmologies with va
uum dark energyIn the 
oordinates of 
omoving observers, the metri
 (6) des
ribes regular va
uumdominated 
osmologies (va
uum density evolves smoothly from a big initial value to
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Fig. 2. Metri
 fun
tion for double-horizon and one-horizon 
on�gurations
r
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Fig. 3. Spheri
ally symmetri
 va
uum spa
e-time with one horizona small value) of the Lemaitr�e 
lass and Kantowski � Sa
hs type whose dynami
s dependson the number of horizons.In the va
uum 
osmologies of the Lemaitr�e 
lass, evolution starts from a nonsingularnon-simultaneous de Sitter bang followed by an anisotropi
 stage at whi
h most of themass is produ
ed [25℄. For 
osmologies of Kantowski � Sa
hs type, evolution starts witha null bang from a horizon, but information about pre-bang history is available for KSobserves [9℄.Two simplest 
ases of one-horizon 
on�gurations are shown in Fig. 3; the globalstru
ture of spa
e-time is the same as for de Sitter geometry but with dynami
al va
uumdark energy.In the Lemaitr�e 
oordinates this 
on�guration represents va
uum anisotropi
 modelsof the Lemaitr�e 
lass, in whi
h evolution starts with a nonsingular non-simultaneousde Sitter bang from the regular time-like surfa
e r(R, τ) = 0 for the model with zeroand negative spatial 
urvature, and from r = ri for the models with the positive spatial
urvature [9℄.In the Kantowski � Sa
hs region it 
orresponds to the 
lass of regular homogeneous
T -models with va
uum dark energy [26℄. Typi
al features of homogeneous regular T -models are: the existen
e of a Killing horizon; beginning of the 
osmologi
al evolutionfrom a null bang at the horizon; the existen
e of a regular stati
 pre-bang region visibleto 
osmologi
al observers; 
reation of matter from anisotropi
 va
uum, a

ompaniedby very rapid isotropization. Detailed 
al
ulations of the spheri
ally symmetri
 regular
T -model based on the general exa
t solution for a mixture of the va
uum �uid and dust-like matter, have shown the ability of 
osmologi
al T -models to satisfy the observational
onstraints [26℄.
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osmology it is possible, in frame of the minisuperspa
e model, to adapt
osmologi
al 
onstant Λ for des
ription of a va
uum dark energy density jumping fromthe big initial value to the small value suggested by observations [27℄. The gauge-non-invarian
e of quantum 
osmology leads to a 
onne
tion between a 
hoi
e of the gaugeand quantum spe
trum for a 
ertain physi
al quantity whi
h 
an be spe
i�ed in theframework of the minisuperspa
e model. There exists a parti
ular gauge in whi
h the
osmologi
al 
onstant Λ is quantized [27℄, so that making a measurement of Λ todayone 
an �nd its small value with the biggest probability, while at the beginning of theevolution, the biggest probability 
orresponds to its biggest value. Transitions betweenquantum levels of dark energy Λ in the 
ourse of the Universe evolution 
an be relatedto several s
ales of symmetry breaking [27℄.3. Dark matter 
andidates3.1. Regular bla
k hole remnants. The quantum temperature of a horizon rhdetermined by its surfa
e gravity κh is given by the Gibbons �Hawking formula:
kTh =

~

2πc
κh =

~

4πc
|g′(rh)|. (10)In spa
e-time with three horizons, an observer in the R -region rb < r < rc 
andete
t the Hawking radiation from a bla
k hole horizon rb and from a 
osmologi
alhorizon rc , and an observer in the R -region 0 ≤ r < ra 
an dete
t radiation from the
osmologi
al horizon ra .Thermodynami
s is studied by applying the Padmanabhan approa
h relevant fora multihorizon spa
e with non-zero pressure and based on a 
anoni
al ensemble ofmetri
s (6) at the 
onstant temperature of the horizon determined by the periodi
ityof the Eu
lidean time in the Eu
lidean 
ontinuation of the Einstein a
tion [28℄. Withthis approa
h we �nd temperature Th , thermodynami
al energy Eh , entropy Sh , freeenergy Fh , and spe
i�
 heat written below in the units c = G = ~ = 1 [12℄:on bla
k hol horizon

kTb =
1

4π

(

1

rb
− λ

3
rb − 8πρ(rb)rb

)

; Eb =
1

2
rb; (11)on internal and 
osmologi
al horizons

kTh =
1

4π

(

8πρ(rh)rh +
λ

3
rh − 1

rh

)

; Eh = −1

2
rh; (12)on any horizon

Sh = 4πr2
h; Fh = Eh − ThSh; (13)

Ch = dEh/dTh; C−1
h = − 1

2π

[

8πρ′(rh)rh + 8πρ(rh) + λ +
1

r2
h

]

. (14)Dependen
e of temperature on the bla
k hole horizon radius is shown in Fig. 4.Fig. 4 is plotted with the density pro�le (9), but this 
urve is generi
. Independentof a parti
ular form of the density pro�le ρ(r) , Tb → 0 as ra → rb , and as rc → rb ,sin
e surfa
e gravity vanishes in the extrema of the metri
 fun
tion g(r) . Hen
e thetemperature 
urve should have a maximum, Tb(rm) = Tb max . It follows that spe
i�
heat on the bla
k hole horizon Cb is negative for r > rm and positive for r < rm .At the maximum C−1
b = 0 , hen
e a spe
i�
 heat is broken and 
hanges its sign in the
ourse of quantum evaporation [11, 12℄. For the 
ase of the density pro�le (9), maximal
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Fig. 4. Temperature of a regular bla
k hole in de Sitter spa
etemperature 
orresponding to the phase transition is Tb max = Ttr ≃ 0.2TPl

√

ρ0/ρPl .For ρ0 = ρGUT and MGUT ≃ 1015 GeV it gives Ttr ≃ 0.2 · 1011GeV .The answer to the question what is an endpoint of evaporation, depends on wheremove horizons. For a metri
 fun
tion (7) with de Sitter asymptoti
s at the 
enter andKottler �Tre�tz asymptoti
s for r ≫ r∗ = (r2
0rg)

1/3 , a density pro�le involves s
aling
r/r∗ , and for zeros of a metri
 fun
tion (7) we obtain drb/dM > 0 , dra/dM < 0 ,
drc/dM < 0 . In the region 0 ≤ r ≤ ra , whi
h is the whole manifold for a stati
observer, dra ≥ 0 by the se
ond law of thermodynami
s for horizons. The horizon ramoves outwards and dra/dM < 0 , hen
e M de
reases; sin
e drb/dM > 0 , a bla
k holehorizon rb shrinks. Spe
i�
 heat Ca is positive near the double horizon, dTa/dEa > 0and dTa/dra < 0 , hen
e Ta de
reases with in
reasing ra . With dTa/dM > 0 and
dTa/dra < 0 this leads to monotoni
 de
reasing M and Ta until Ta vanishes on thedouble horizon ra = rb = rd where Cd > 0 [12℄.The spe
i�
 heat C−1

h 
an be written as
C−1

h =
1

2π

(

g′(rh)

rh
+ g′′(rh)

)

. (15)This formula tells unambiguously that an extreme state with a double horizon
(g′ = 0) is thermodynami
ally stable when it appears in a minimum of the met-ri
 fun
tion g(r) , and thermodynami
ally unstable when it appears in its maxi-mum [12℄. We 
on
lude that a regular bla
k hole leaves behind a thermodynami-
ally stable double-horizon remnant. For the 
ase of the density pro�le (9), its massis Mremnant ≃ 0.3MPl

√

ρPl/ρ0 .3.2. Va
uum gravitational solitons � G-lumps. This name is owing to Cole-man's lumps whi
h are non-singular non-dissipative solutions of �nite energy holdingthemselves together by their own self-intera
tion [29℄. The idea of lumps 
an be tra
edba
k to the Einstein idea to des
ribe an elementary parti
le by a regular solution ofnonlinear �eld equations as a �bun
hed �eld� lo
ated in the 
on�ned region where �eldand energy are parti
ularly high [30℄. Va
uum soliton G-lump was proposed in 1996in a model-independent way as a regular solution to the Einstein equations with thede Sitter interior without horizons [11℄. In terms of the proposed in 2001 gravastar modelwith de Sitter 
ore [31℄, a G-lump 
orresponds to a model-independent gravastar with
ontinuous density and pressures.The 
riterion of stability of G-lumps to external polar perturbations given by [6℄
r(p⊥ + ρ)′ ≤ ρ + (p⊥ + ρ) (16)is satis�ed for a wide 
lass of density pro�les.
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rFig. 5. Potential Vγ(r) for G -lump with rg/r0 = 1.5 (L = 4)In the �eld of G-lump and of the double-horizon remnant, there exist nontrivialgeodesi
 orbits [32℄ whi
h 
an be used in sear
h for their observational signatures asdark matter 
andidates. Geodesi
s are des
ribed by
(

dr

dσ

)2

+ V(p,γ)(r) = E2; Vp(r) = g(r)

(

1 +
L2

r2

)

; Vγ(r) =
L2

r2
g(r), (17)where σ is the a�ne parameter along geodesi
, Vp is the potential for time-likegeodesi
s, and Vγ for the null geodesi
s. For a G-lump and extreme bla
k hole thepotential 
urves di�er essentially from that for a bla
k hole and evidently depend onthe mass M . Potentials Vp have, in a 
ertain range of masses, three extrema and, hen
e,two bran
hes of stable 
ir
ular orbits separated by a gap. Potential Vγ shown in Fig. 5reveals the most striking feature of geodesi
s in the �eld of G-lump: the existen
e ofstable bound photon orbits in
luding 
ir
ular orbits!3.3. Ele
tromagneti
 soliton. Nonlinear ele
trodynami
s 
oupled to gravity isdes
ribed by the a
tion

S =
1

16π

∫

d4x
√−g(R − L(F )); F = FikF ik (18)with an arbitrary gauge invariant lagrangian L(F ) with the Maxwellian asymptoti
s inthe weak �eld regime. A stress-energy tensor of a spheri
ally symmetri
 ele
tromagneti
�eld has the symmetry (3). For a �eld satisfying the weak energy 
ondition a spher-i
ally symmetri
 ele
tri
ally 
harged ele
trova
uum stru
ture has obligatory de Sitter
enter in whi
h the ele
tri
 �eld vanishes while the energy density of ele
tromagneti
va
uum a
hieves its maximal value [22℄. By the G�urses-G�ursey algorithm based onthe Trautman �Newman te
hnique [33℄, spheri
ally symmetri
 ele
trova
uum solutionis transformed into a spinning ele
trova
uum solution asymptoti
ally Kerr �Newmanfor a distant observer. De Sitter 
enter be
omes de Sitter equatorial disk whi
h hasboth perfe
t 
ondu
tor and ideal diamagneti
 properties and displays super
ondu
t-ing behavior within a single spinning soliton. This behavior is generi
 for the 
lass ofregular spinning solutions des
ribing ele
trova
uum bla
k holes and solitons [23℄. De Sit-ter va
uum supplies a parti
le with the �nite positive ele
tromagneti
 mass related tobreaking of spa
e-time symmetry. These results apply to the 
ases when the energys
ale is less than the Plan
k s
ale. Re
ently they found a 
ertain 
on�rmation in theexisten
e of minimal length s
ale (�
losest approa
h� of parti
les) in the annihilationrea
tion e+e− → γγ(γ) , whi
h 
an be explained by the existen
e of the 
hara
teristi




162 I. DYMNIKOVAsurfa
e at whi
h ele
tromagneti
 attra
tion is balan
ed by the gravitational repulsiondue to de Sitter interior [34℄.This work was supported by the Polish Ministry of S
ien
e and Edu
ation for the re-sear
h proje
t �Globally regular 
on�gurations in General Relativity in
luding 
lassi
aland quantum 
osmologi
al models, bla
k holes and parti
le-like stru
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16. Böhmer C.G., Harko T. Does the cosmological constant imply the existence of a minimum

mass? // Phys. Lett. B. – 2005. – V. 630, No 3–4. – P. 73–77.

17. Arbey A. Dark fluid: A complex scalar field to unify dark energy and dark matter //

Phys. Rev. D. – 2006. – V. 74, No 4. – P. 043516-1–043516-7.

18. Ellis J. Dark matter and dark energy: summary and future directions // Phil. Trans. R.

Soc. Lond. A . – 2003. – V. 361. – P. 2607–2627.

19. MacGibbon J.H. Can Planck-mass relics of evaporating black holes close the Universe? //

Nature. – 1987. – V. 329. – P. 308–309.

20. Dymnikova I. Regular Black Hole Remnants // AIP Conf. Proc. – 2010. – V. 1241. –

P. 361-368.

21. Ahluwalia D.V., Dymnikova I. A theoretical case for negative mass-square for sub-eV

particles // Int. J. Mod. Phys. D. – 2003. – V. 12, No 9. – P. 1787–1794.

22. Dymnikova I. Regular electrically charged vacuum structures with de Sitter centre in

nonlinear electrodynamics coupled to general relativity // Class. Quant. Grav. – 2004. –

V. 21, No 18. – P. 4417–4428.

23. Dymnikova I. Spinning superconducting electrovacuum soliton // Phys. Lett. B. – 2006. –

V. 639, No 3–4. – P. 368–372.

24. Landau L.D., Lifshitz E.M. The classical theory of fields. – Oxford: Pergamon Press,

1975. – 402 p.

25. Dymnikova I., Dobosz A., Filchenkov M., Gromov A. Universes inside a black hole //

Phys. Lett. B. – 2001. – V. 506, No 3–4. – P. 351–361.

26. Bronnikov K., Dymnikova I. Regular homogeneous T-models with vacuum dark fluid //

Class. Quant. Grav. – 2007. – V. 24, No 23. – P. 5803–5817.

27. Dymnikova I., M. Fil’chenkov Gauge-noninvariance of quantum cosmology and vacuum

dark energy // Phys. Lett. B. – 2006. – V. 635, No 4. – P. 181–185.

28. Padmanabhan T. Classical and quantum thermodynamics of horizons in spherically sym-

metric spacetimes // Class. Quant. Grav. – 2002. – V. 19, No 21. – P. 5387–5408.

29. Coleman S. Classical Lumps and Their Quantum Descendants // New Phenomena in

Subnuclear Physics / Ed. A. Zichichi. – N. Y.: Plenum Press, 1977. – P. 297–421.

30. Einstein A. On the Generalized Theory of Gravitation // Sci. Amer. – 1952. – V. 182,

No 4. – P. 13–17.

31. Mazur P.O., Mottola E. Gravitational Condensate Stars: An Alternative to Black Holes. –

arXiv:gr-qc/0109035v5. – 2002. – 4 p. – URL: http://arxiv.org/pdf/gr-qc/0109035v5.pdf.



164 I. DYMNIKOVA

32. Dymnikova I., Poszwa A., So ltysek B. Geodesic Portrait of de Sitter – Schwarzschild

Spacetime // Grav. Cosmol. – 2008. – V. 14, No 3. – P. 262–275.
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