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ABSTRACT: In this work, for the first time in literature, we study the predictions of non-
minimally coupled Natural and Coleman-Weinberg potentials in the ngs — r plane, and an
extended ACDM model where we include non-standard self-interactions among massive
neutrinos, mediated by a heavy scalar or vector boson. Constraints were derived using
the Planck 2018 + BICEP /Keck 2018 datasets along with other data. For the inflationary
potentials, we consider two different formulations in gravity that are non-minimally coupled
to the scalar field of the inflaton: Metric and Palatini. We only consider the self-interaction
to be present among T-neutrinos and only at moderate strengths. This is because strong
interactions among 7-neutrinos, or any strength self-interaction among electron- and muon-
neutrinos, as well as any strength flavor-universal interactions, are strongly disfavoured from
particle physics experiments.

In terms of cosmological data, we use the latest public CMB datasets from Planck 2018
and BICEP /Keck 2018 collaborations, along with other data from CMB lensing, BAO, RSD,
and SNe Ia luminosity distance measurements. We find that there are some situations where
predictions from the inflationary models are ruled out at more than 20 by the minimal
ACDM+r model, but they are allowed in the self-interacting neutrino scenario.
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1 Introduction

A well-established model for the early universe is the inflationary scenario that explains very
well the horizon and flatness problems, as well as provides very precise predictions of the
primordial density fluctuations, which can be verified by cosmological observations [1-4].
A slow-rolling scalar field (¢) known as the inflaton with a flat potential V(¢), ensures a
straightforward mechanism for how inflation can happen. In literature, the majority of the
inflationary models that have been examined up to now, are based on inflaton [5]. In addition,
the inflationary parameters, ng, r, can be computed and compared with constraints, which are
obtained from measurements of the cosmic microwave background (CMB) anisotropies [6-8].
For instance, the observational parameters, such as the scalar spectral index, ng is constrained
by Planck data to 0.965 £ 0.004 [8] in the 68% confidence level region in the ACDM model,
and the amplitude of tensor perturbations that is the tensor-to-scalar ratio, r has just recently
constrained by BICEP /Keck data to r < 0.036 [7] in the 95% CL.

Furthermore, there have been many proposed inflationary models so far, but a large
number of them have already been ruled out by the cosmological observations, such as ¢? and
#* potential models in which the inflaton is minimally coupled [6]. In fact, in curved space-time,
the renormalizable scalar field theory necessitates the non-minimal coupling term, which is
£¢°R, between the inflaton and Ricci scalar [9-11]. This term makes most inflationary models
more compatible with the observations, such as the Starobinsky (R? inflation) model [12],
which gives the best consistency for all current existing data. Furthermore, it is pivotal to
mention that refs. [13-18] considered and calculated with details the quantum corrections
to scalar potential with the existence of non-minimal scalar-curvature term. Moreover, in
literature, inflation with a non-minimally coupled scalar field has been studied for two different



formulations in gravity [19-44], Metric and Palatini formulations. In the Einstein-Hilbert
Lagrangian, equations of motion are the same for both formulations. This means that two
formalisms correspond to the same physics theories. On the one hand, these two formulations
explain two different theories of gravity on the condition that there is a non-minimal coupling
between matter and gravity [22]. In this case, these two formulations are not equivalent at
all. Also, the inflationary predictions of the two formulations are different for the potential
models that are taken into account. For instance, in particular, the Starobinsky model is
lost in the Palatini formulation, and in the Palatini formulation, » can take much smaller
values than the Metric one for large values of the coupling parameter between the inflaton
and gravity [22, 45]. However, in the minimal coupling scenario, both metric and Palatini
formulations are basically same and yield similar predictions of inflationary parameters.

In addition, neutrinos play an important role in the evolution of the universe. Neutrinos
contribute to the radiation energy density in the early universe, but in the late universe when
they become non-relativistic (as the temperature falls below their masses) they contribute to
the matter budget. Neutrino mass (total mass, > m,) and energy density (parameterized
with Neg, the effective number of relativistic degrees of freedom other than photons) are
known to affect the inflationary parameters like the scalar spectral index, ng (while bounds
on the r are usually almost model-independent). Compared to the vanilla ACDM-+r model,
both neutrino parameters are known to expand the allowed ns — r parameter space, with
the dominant effect coming from Neg [46]. The effects of possible non-standard interactions
in the neutrino sector on the inflationary parameters were previously studied in [47] with
the latest Planck 2018 likelihoods [48] and CMB B-mode BICEP /Keck likelihoods [7]. See
also [49] for a study with the older Planck 2015 likelihoods [50]. These previous works looked
at the viability of Natural inflation and Coleman-Weinberg inflation in the minimal coupling
scenario (§ = 0) in the presence of non-standard neutrino self-interactions mediated by a
heavy scalar (with mass > 1keV). For the modes probed by the CMB, the scalar particle
can be considered to have decayed away, and the interaction can be approximated by a
4-fermion interaction with an effective coupling strength Geg.! One of the main effects of
such an interaction on the inflationary parameters is the preference for lower ng values which
brings the predictions from the minimal coupling versions of Natural and Coleman-Weinberg
inflation models within 20 of the allowed ngs — r region, even though these models are ruled
out at more than 20 in the vanilla ACDM+r model.

Inflationary models assure a highly motivated explanation for the large scale isotropy,
homogeneity, and flatness of our universe, as well as the CMB anisotropies and large-scale
structure of our universe [1-5]. In particular, the origin of the universe, the inflation dynamics
and evolution, and the origin of primordial density perturbations can be understood very
clearly with the Coleman-Weinberg mechanism [2, 3, 96-100]. In addition, the combination
of CW mechanism with the BSM physics can help differentiate between various models of
inflationary potentials [5]. Also, the Coleman-Weinberg mechanism is a quantum correction to

1See [47, 49, 51-64] for previous studies on cosmological constraints on Geg. There are however other
scenarios, i.e., when mae ~ T or smaller there is a significant change in the phenomenology of the model: the
system undergoes recoupling instead of decoupling, and thus the effect of the ® particles in the background
evolution cannot be ignored. We refer the reader to e.g. refs. [54, 65-73] for a more detailed discussion. See
also [74-95] for discussions in the related fields.



the effective potential in the QFT framework [96]. It is essential to comprehend how mass is
created and how spontaneous symmetry breaking occurs in the elementary particles [10, 101].
Beyond the Standard Model’s Higgs mechanism, BSM theories mostly propose new scalar fields
and symmetry-breaking mechanisms. A framework to analyze and understand the dynamics
of these new fields and their interactions is provided by the Coleman-Weinberg mechanism,
which may lead to new phenomena and new windows in particle physics [99, 100]. On the
other hand, Natural inflation is an important inflationary potential model, which causes an
inflationary period in the early universe [5]. Also, it has a very simple form and doesn’t
have the eta problem that corresponds to fine-tuning problems pertaining to the steepness of
the inflationary potential, and does not affect Natural inflation, if compared with the other
inflationary potential models [5, 102, 103]. In this inflationary model, the inflaton field causes
the potential to be naturally flat, negating the requirement for parameter fine-tuning. Thus,
investigating Natural inflation can provide important information about the early universe. In
particular, the important models in particle physics, especially the models involving axion-like
particles, can ensure good motivation for Natural inflation itself. In addition to this, in
Natural inflation the inflaton field naturally arises as a pseudo-Nambu-Goldstone boson and
the field is the axion-like inflaton [102]. Furthermore, axion-like particles could be part of the
scalar field that drives inflation in the early universe. Importantly, axions are hypothetical
particles that appear in theories to solve QCD strong CP problems [104], as well as axions
are the serious candidates of dark matter with strong theoretical motivations [105]. It can be
mentioned that the particle physics models naturally occur in supersymmetry, unification,
string theory, and cosmology, which makes Natural inflation an attractive way to investigate
the relationship between them. As a result, Natural inflation provides a useful theoretical
framework that combines cosmology and elementary particles in physics within the BSM
context, and this provides a very important perspective in terms of building a bridge to
physics beyond the standard model [106, 107].

While the metric formulation of gravity corresponds to the standard general relativity,
the motivation to study the Palatini formulation of gravity comes from the fact that it
creates new opportunities for the solutions of modified gravity models and their cosmological
implications [22]. For instance, to understand the origin, evolution and nature of dark matter,
dark energy, etc, BSM theories are very good alternatives to probe changes in gravity models.
Now, while the minimal coupling scenarios of Natural and CW inflation are ruled out at
more than 20 in the ACDM model, with the presence of non-minimal coupling to gravity
can have important consequences on the predicted inflationary parameters depending on the
coupling strength [21, 32, 108-110]. The Palatini formulation of gravity ensures a noteworthy
path to examine these alterations and how they affect cosmological models (especially the
inflationary observable parameters) in the case when there is a presence of non-minimal
coupling between the inflaton and gravity [22, 33, 111]. And thus, it is important to take
into account both metric and Palatini formulations of gravity, especially while investigating
the cosmological parameters because these parameters have different values for these two
formulations of gravity [22, 111].

As for neutrinos which are the most abundant massive particles in the universe, if they
have self-interactions, it might have significant outcomes from the BSM perspectives as



well [52, 112]. Because of their mass squared differences, they oscillate during their travel
through space. The nature and dynamics of these neutrino oscillations, neutrino propagation
in high energy astrophysical phenomena, and large-scale structure of the universe could all be
impacted by self-interacting neutrinos themselves [112]. Furthermore, the role of neutrinos is
also pivotal in the Grand Unified Theories (GUT) [113-115]. Because neutrinos generally
take part in these theories [116], their features could ensure experimental consequences
that might be consistent or ruled out by particular theoretical models in GUT. In addition,
self-interacting neutrinos are significant in BSM physics because they have the potential
to provide important explanations for some still unknowns in neutrino physics, such as
neutrino mass generation [117].

As aresult, it can be concluded that the study of the Natural and CW inflation considering
two different formulations of gravity: namely, metric and Palatini (especially in the non-
minimal coupling to gravity scenario where the two formulations differ) are highly motivated
in cosmological models with self-interacting neutrinos which substantially affect the bounds
on the inflationary parameter ns (i.e., the scalar spectral index) from cosmological data.

In this work, we, for the first time, study the predictions of non-minimally coupled
Natural and Coleman-Weinberg inflation potentials in metric and Palatini formulations and
the predictions of non-standard neutrino self-interactions in an extended ACDM model in the
ns — r plane, together. In this work, we consider only moderate strength interactions among
T-neutrinos, v,. This moderately interacting mode is denoted by MIv. The reason to consider
only the interaction among v, and that too only the moderate strength interaction, is that
there are strong constraints from particle physics on other possible kinds of such neutrino
self-interactions with a heavy mediator, like flavor-universal neutrino self-interactions, or
interaction among electron neutrinos or muon neutrinos, and even on strong interactions
among T-neutrinos [118-121], and such interactions are essentially ruled out by particle physics
experiments. However, moderate strength interactions among tau neutrinos are not ruled
out by particle physics experiments and they provide similar goodness-of-fit (and Bayesian
evidence) to the data as the ACDM model with non-interacting massive neutrinos [47]. Thus,
there is no particular reason to favour the vanilla. ACDM model over an extended cosmology
incorporating moderately interacting tau neutrinos.

We emphasize here that our cosmological data analysis involves assumption of a general
primordial scalar power spectrum of the following form: Pj(k) = A(k/k.)" ! and a general
tensor power spectrum of the following form P;(k) = A;(k/k.)™, where A; and A; are the
amplitudes of the primordial scalar and tensor fluctuations, and ng and n; are the primordial
scalar and tensor spectral indices. We also impose the single-field slow-roll inflation consistency
relation ny = —r/8. So apart from the single-field slow-roll assumption, our cosmological
model involves no other information about a particular inflationary model. Thus the bounds
on ng and r = A;/As from the cosmological data analysis are applicable to inflationary
models of all types of potentials (and with or without non-minimal coupling) as long as
they adhere to the single-field and slow-roll condition. This is a standard practice that is
followed by the Planck collaboration as well [122] (see Fig 8 of this paper). It is only after
generating the ng — r contour plots in the neutrino self-interaction model that we compare
the contour plots with the ny, — r predictions from particular inflationary models (Natural



and Coleman-Weinberg inflations in this case) with various non-minimal coupling values
in metric and Palatini formulations. Thus, treatment of the inflationary models are not
clubbed together with cosmological analysis.

The Standard Model describes the three types of neutrinos — v, v, and v,, and their
weak interactions; nevertheless, it does not explain why these three types exist, why neutrinos
have mass, and why their masses differ. A method to construct a UV complete model only
with tau neutrino self-interactions should consider the concepts beyond the Standard Model,
such as extensions involving new particles, forces, or dimensions. We note here that, as
described in section 3, we motivate the neutrino self-interactions from the majoron model of
neutrino mass generation, where the majoron appears as a Goldstone boson as the U(1)p_p,
symmetry is spontaneously broken and the majoron couples to the neutrinos via the Yukawa
interaction. In general, the cosmological results presented in this paper are also valid if
the mediator is a heavy gauge boson instead of a scalar (the majoron) (see [112, 123] for
detailed discussions on model-building in this field).

However, if one only couples a single generation of neutrinos to a gauge boson, one would
generate anomalies [124-126]. Such anomalies will lead to infinities in various processes. The
way to get around this is to postulate that such models are effective in nature, and a UV
complete model will take care of the infinities at the higher scales. One also requires that
the additional particles generated by these UV complete models will have no imprint on
the Cosmology. For example, suppose there is a gauge boson, V', coupling only to the tau
neutrino. In this case, the decay rate of W boson will include the process W — 7v,.V [124].
In this case, one can show that the decay rate goes as (energy/my )%, where my is the mass of
the gauge boson [125, 126]. Now, a decay rate which goes as (energy/my-)? is anomalous since
it will diverge as energy increases. Thus, this model can only be valid upto a certain energy
scale. One possible method to cancel this divergence is to introduce some new physics which
will cancel the divergence; say for example there is another heavy particle which is emitted
from the charged lepton which will compensate for this divergence [125]. In our scenario,
we assume that this extra heavy particle does not affect cosmology and other experimental
constraints. From cosmological perspective, this extra particle must be heavy and very short
lived, so that various constraints do not affect it. Thus, it is quite possible to build realistic
particle physics models of self-interactions among a single neutrino species. Building such
a model is, however, beyond the scope of this work.

The paper is organized as follows: we first describe the non-minimally coupled inflation
in section 2 for Metric and Palatini formulations, and inflationary parameters in section 2.1.
Afterward, the considered potentials in this work, Coleman-Weinberg (CW) and Natural
inflation potentials are discussed in sections 2.2 and 2.3, respectively. In section 3, we present
the cosmological model and analysis methodology including perturbation equations, datasets,
and parameter sampling as the subsections, and show our numerical results in section 4.
Finally, in section 5, we discuss our results and conclude the paper.



2 Non-minimally coupled inflation

Assuming we have a non-minimally coupled scalar field ¢ with a canonical kinetic term, and a
potential V;(¢), the form of Jordan frame action is described with the following form [127, 128]

Sy = [ dtov=g( 5P @9 RulD) - 59" 0,00,6 = Vi(9)), (21)

where J illustrates that the action is written in the Jordan frame. F'(¢) describes a non-
minimal coupling function, and ¢ indicates the inflaton. In addition, Vj(¢) is the potential
term, which is given in the Jordan frame. Also, R, corresponds to the Ricci tensor, which
has the following form

Ry = 0517, — 0,10, + 17, g, =T8T, (2.2)

By using a metric tensor function, in the Metric formulation one can describe the connection
called the Levi-Civita connection, I = I'(g""), with the following form

= 1
F;j\u = igAp(a,ugl/p + 8ugp,u - 3;)9;“/)- (2.3)

Contrary to Metric formulation, in the Palatini formalism, the connection I" and g, are
described as independent variables, as well as with the presumption of torsion-free connection,
ie. I /1\'/ =1 lf‘u. If one solves the equations of motion, the following form can be acquired [22]

=A
Ty = Doy + 0,0000(6) + 6,0,0(6) — g0 w(9), (2.4)
here, w(¢) has the form in terms of F'(¢), and it is given by

F(¢)

w((b):ln M}Q) )

(2.5)

where Mp = (87G)~/2, where G is the gravitational constant.

After an inflationary epoch, F(¢) — 1 or ¢ — 0. In this work, two different types of
inflationary potentials are considered. One of them is the well-known inflation potential,
which is related to the symmetry-breaking in the early universe, it is the Coleman-Weinberg
inflation potential. Another one is Natural inflation which gives a plausible explication of
the flatness of the inflationary potential, and it is described as the axion-like potential, thus
this type of potential is very important from the particle physics viewpoint since from the
spontaneously broken global symmetry, it comes out as a pseudo-Nambu-Goldstone boson. In
this work, we present the inflationary predictions for both of these potentials in non-minimal

coupling in the light of massive neutrino interactions.

2.1 Inflationary parameters

The inflationary predictions can be calculated in the Einstein frame (E). Using Weyl rescaling,
g = g" F(¢), it is possible to switch from the Jordan frame to the Einstein frame. The
Einstein frame action has the following form [129]

S — / Ao/ 75 (;gg”RE,W(F) - 22104» 9 0,00,6 — VE<¢)>, (2.6)



here, the Z(¢) term in the kinetic part of this action has different forms for the Metric and
Palatini formulations. These forms can be defined separately as follows

3 F'(¢)? 1 1 1
= — + —— = Metric, Z ' (¢) = —— — Palatini, 2.7
2 F0 T F(0) 9= Fo) 27
where, F' = dF/d¢. In addition to this, the Einstein frame potential, Vg (¢) is described
in terms of F'(¢) and this has the following form

Z7Y(¢)

V()
Ve(o) = . 2.8
One can make the field redefinition with the usage of the following expression
d
dy = 9 (2.9)
Z(¢)

applying this to the field redefinition, the Einstein frame action can be written in terms
of the minimally coupled scalar field y and the canonical kinetic term. By using eq. (2.9),
FEinstein frame action with regard to y can be found with the following form

1 1
Sp = /d4:n\/—gE (29%”]%}3(1“) - ig%yaux&,x - VE(X))- (2.10)
Once the Einstein frame potential is written with the canonical scalar field y, by operating
the slow-roll parameters, inflationary predictions, ns,r can be described accordingly [130].
The slow-roll parameters regarding y take the following forms

]23 X 2 2 VXX
Mp (V L 2.11
‘T (V) T 211)

where the subscripts x’s represent the derivatives. Within the slow-roll approximation,
inflationary parameters, ng,r are as follows

ng=1—6e+2n, r=16e, (2.12)

here, ng is the spectral index, r is the tensor-to-scalar ratio. Also, using the slow-roll
approximation, the expression of the number of e-folds is in the form

1 /X* Vdx

N, = ,
M3 Vy

(2.13)
Xe
where, the subscript “,” indicates the quantities at the scale, which corresponds to k, that
exited the horizon. In addition to this, y. is the inflaton value at the end of the inflationary
era, one can find its value by using this equation, €(x.) = 1. The number of e-folds takes
the value, which equals approximately 60.

In terms of y, the curvature perturbation amplitude has the following form

A2 I

= s 2.14
R 12mME VY (2.14)



which should be matched with the value from the Planck outcomes [8], A% ~ 2.1 x 1077,
considering the pivot scale, k, = 0.05 Mpc~L.

Besides that, we also present the slow-roll parameters with regard to the original field, ¢.
For this, we need to modify the form of slow-roll parameters, which are given in terms of x
above. In our numerical calculations, we use the new forms of slow-roll parameters with ¢ to
be able to compute easily the inflationary potentials in terms of ¢ for general values of free
parameters, such as &, within the inflation potential forms. Otherwise, it is not simple to
compute the inflationary predictions in a wide range of free parameters. By using eq. (2.9),

eq. (2.11) can be written in terms of ¢ [131] as follows

e=Zey, 1=2Ins+sgn(V)Z' %, (2.15)

where we describe

1/V'\? v
_1/v _ 2.1
=5 () « m= (216)

Moreover, equations (2.13) and (2.14) are written as to ¢ in the following forms

N, = sgn(V') _dp (2.17)
’ v L(0)\/264" '
/
Ag = 1LV (2.18)

2v/37 \/2\V’|'

Throughout this work, we suppose the standard thermal history after the inflationary era.
Concerning this, the inflationary predictions for the considered potentials will be calculated.
With this consideration, N, takes the form [132, 133] as follows

L. ps 1 Pe 1 1 Pr
N*%61'5+21nMj43_3(1+wr)1nMj§+<3(1+W_4)1n]\4j‘57 (2.19)
for the pivot scale k. = 0.05 Mpc~!. In addition, within the form of N, p. = (3/2)V (¢.)
indicates the energy density at the end of inflation. p, = (72/30)g.T* represents the energy
density at the end of reheating, here 7). indicates the reheating temperature, as well as
px = V(¢4) is the energy density at which the scales coincide with k., which exited the
horizon, and p, can be defined by applying eq. (2.18), then it has the following form

2702

py = LQART (2.20)
Furthermore, w, corresponds to the equation-of-state parameter during reheating. In this
work, we use w, = 1/3, which defines the assumption of instant reheating. With the
selection of w, = 1/3, we eliminate the dependence of the reheating temperature in the N,
definition, which is given in eq. (2.19). In our numerical analysis, for the number of e-folds,
we use eq. (2.19) with w, = 1/3, as well as we use the units in the reduced Planck scale
Mp = 1/v/87G = 2.43 x 10'® GeV and it will be taken as equal to 1.



2.2 Coleman-Weinberg inflation

Since new inflation models were proposed in the early eighties, the Coleman-Weinberg
mechanism has been related to symmetry-breaking in the very early universe [2, 3, 96-100].
In the Jordan frame, the form of effective Coleman-Weinberg potential is as follows

Vi(o) = Ag? {m <f> — ﬂ + Af, (2.21)

where v indicates the vacuum expectation value (VEV) of the inflaton. This form of potential
can be described in the Einstein frame by using the non-minimal coupling function, F(¢).

In this work, for the Coleman-Weinberg potential, we use the form of F(¢) by following
the ref. [21] as follows

F(¢) =1+&(¢* —v?). (2.22)
Thus, we take into account the Coleman-Weinberg potential for two different cases:
e Above the VEV: ¢ > v,
e Below the VEV: ¢ < v.

Using eq. (2.22), the form of Coleman-Weinberg potential in the Einstein frame can
be obtained as follows

s un(d) 1] ¢

VE(¢) 2
[1+&(¢* - 0?)]

(2.23)

This potential with minimal coupling, £ = 0, is already taken into account in the refs. [134—
140]. The potential form in equation (2.23) for both Metric and Palatini formalism was
considered previously, for instance ref. [21] for Metric, ref. [108] for Palatini with details. Also,
this form of Einstein frame Coleman-Weinberg potential with non-minimal coupling to gravity
for w, = 0 and different reheating temperature values was considered with detail in [133], they
use Metric formulation of gravity. On the other hand, in this work, we present our results for
the non-minimally coupled Coleman-Weinberg potential, which is defined in eq. (2.23), in both
Metric and Palatini formulations for w, = 1/3 in the light of massive neutrino interactions.
It is important to note that here, ref. [47] examined the Coleman-Weinberg potential in the
light of massive neutrino interactions in a minimal coupling case, so by taking £ = 0.

2.3 Natural inflation

Natural inflation was introduced for the first time to find the key to fine-tuning of inflation [5].
Besides that, Natural inflation gives a plausible elucidation to the inflaton potentials’ flatness,
which is essential for the smooth form of inflationary potential. Also, this potential is very
crucial because it can be described by the axion-like inflaton [102, 103, 109], and it makes
this potential such an attractive archetype in particle physics because of the spontaneously
broken global symmetry, the inflaton field, ¢ naturally appears as a pseudo-Nambu-Goldstone
boson [102]. In Natural inflation models, ¢ is the axion-like inflaton, as well as the model,
has a cosine-type periodic potential.



The potential form of Natural inflation in the Jordan frame is as follows

Vi(¢) =Wo {1 + cos (?)} , (2.24)

where f is the symmetry-breaking scale. In literature, many studies have examined the
Natural Inflation potential for minimal (£ = 0) and non-minimal couplings (£ # 0), such
as [32, 141-146]. In this work, we investigate the non-minimally coupled Natural inflation
potential by using a non-minimal coupling function, which is in the form

F(¢) =1+ &6°. (2.25)

Thus, the non-minimally coupled Natural inflation in the Einstein frame can be written
as follows

ot o ()
Ve(¢) = TETZoa (2.26)

In this work, we demonstrate our results for the Natural inflation, which is defined in the

Einstein frame in eq. (2.26), for both Metric and Palatini formulations by taking w, = 1/3 in
the light of massive neutrino interactions. In ref. [47], Natural inflation was also studied in
the light of massive neutrino interactions but in a minimal coupling case (£ = 0).

3 Cosmological model and analysis methodology

Neutrinos are massless in the Standard Model of particle physics, but terrestrial neutrino
oscillation experiments have confirmed that at least two out of the three active neutrino mass
eigenstates are non-zero. There are a plethora of models for neutrino mass generation. For
this particular work, we incorporate the majoron model where the neutrinos are Majorana
particles, and the U(1)p_r [147-151] symmetry is spontaneously broken. This leads to
a new Goldstone boson, the majoron, denoted by ®. It couples to the neutrinos via the
Yukawa interaction [53, 152],

Lint = gijvivj® + hijviysv;®. (3.1)

Here v; is a left-handed neutrino Majorana spinor, and g;; and h;; are the scalar and pseudo-
scalar coupling matrices, respectively. The indices i,j are labels for the neutrino mass
eigenstates. In general, interactions of this kind are not limited to only the majoron-like
model of neutrino mass generation. For instance, ¢ can be linked to the dark sector [49].
In this paper, we consider a flavor-specific interaction scenario (only 1 neutrino species
interacting), specifically the 7—neutrino. This is because other scenarios, like the flavor-
universal interaction scenario or flavor-specific interactions among v, and v, are strongly
constrained by particle physics experiments, and self-interactions among only the v, are
allowed, that too only the moderately interacting mode (denoted by MIrv) [118-121]. Here
we have a diagonal g;; = gdxid;j, where k is either 1, 2, or 3 (no sum over k is implied)
in the mass basis, where only one diagonal term is non-zero. Note that a diagonal g;; in
the flavor basis with only one non-zero component g, does not imply a diagonal g;; in the

,10,



mass basis with only one non-zero component. Nonetheless, the non-diagonal terms or other
diagonal terms in the mass-basis g;; are expected to be small given that the bound on the
sum of neutrino masses from cosmology is quite strong even in the presence of neutrino
self-interactions [51], i.e., we are essentially dealing with quite small neutrino masses. Thus we
expect this approximation to be reasonable. Also, since we are only interested in a still-viable
particle physics model, we only include the logy, {GegMeVﬂ parameter range for the MIv
mode in our analysis. We denote this model as “lv—interacting, MIv.”

In this work, the mass of the scalar, mg, is considered to be much larger than the energies
of neutrinos during the CMB epoch. This allows us to reasonably regard the interaction to
be an effective 4-fermion interaction for the CMB epoch and later. A mass of mg > 1keV
is enough to ensure this [118], and the & particles would have decayed away when the
temperature falls below 1keV. However, to avoid constraints from Big Bang Nucleosynthesis,
one might consider mg > 1MeV. We note here that such a scenario is not restricted to
a scalar particle. In fact, all the results and conclusions in this paper will be applicable
for a heavy vector-boson as well, since neutrino self-interactions with a heavy vector-boson
can also be cast as a 4-fermion interaction when the temperature drops below the mass
of the vector-boson [54, 153].

Now the interaction Lagrangian in equation (3.1) can be written as a vv — vv self-
interaction. The self-interaction rate per particle I' ~ ¢T3/ m‘é = Ggﬂ»TE, where Geg = g%/ mi
is the effective self-coupling [53]. In this given scenario, the neutrinos decouple from the
primordial plasma, as usual, at a temperature of 7' ~ 1 MeV, when the weak interaction rate
falls below the Hubble rate, i.e. I'wy < H, with 'y ~ G%VTE. Here Gy ~ 1.166 x 10~ 11 MeV 2
is the standard Fermi constant. But even after this decoupling, the neutrinos continue to
scatter among themselves if Geg > Gw. This self-scattering continues until the self-interaction
rate I" falls below the Hubble expansion rate H, and only after this, the neutrinos will free-
stream, unlike the standard case where they start free-streaming right after decoupling
from the primordial plasma. Thus, by increasing Geg, one can further delay the neutrino
free-streaming. Very strong interactions like Geg ~ 109Gy can impede free-streaming till
matter radiation equality.

3.1 Cosmological model and perturbation equations

The cosmological model of interest here is an extended ACDM model that includes the
tensor-to-scalar ratio rg.g5, and sum of neutrino masses > m,, effective number of relativistic
species Neg, and the logarithm of the interaction strength log;, [GGHMQVQ}.

Since only one of the neutrinos is interacting, we denote it as the lv-interacting model.
This cosmological model can be represented by the same following parameter vector:

0 = {Qch®, Qh?, 100000, 7, 1n(10"0 Ay), g, m0.05, Y mu, Negr, logyg [GeﬁMevﬂ oo (3.2)

Here, the first six parameters are associated with the standard ACDM model. Q.h? and
Qph? are the physical densities at present (z = 0) for cold dark matter (CDM) and baryons
respectively, 1000,,¢ is a parameter used by CosmoMC [154, 155] as an approximation for
the angular size of the sound horizon, 6;. We have 7 as the optical depth of reionization and
In(10'°A,) and n, are the amplitude and spectral index of the primordial scalar fluctuations,
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Parameter Prior

Oph? 0.019 — 0.025
Qch? 0.095 — 0.145
10005 /¢ 1.03—1.05
T 0.01—0.1
N 0.885 — 1.04
In (10194;) 2.5—3.7
0.05 0—0.3
> my [eV] 0.005—1
Neg 25

logyp |GerMeV?| 5.5 -2.3

Table 1. Uniform priors for all the cosmological model parameters.

respectively, at a pivot scale of ky = 0.05 Mpc~!. Apart from A, and ng, the tensor-to-scalar
ratio r is another important parameter for inflationary models. We also use a pivot scale
of k, = 0.05 Mpc~! for r, and hence we denote it as 79.s.

In our analyses, we use the degenerate hierarchy of neutrino masses, i.e., all the neutrino
masses are equal. One can write: m, = %Zm,,, where m,, is the mass of each neutrino.
Presently, the 95% bound on >_m,, is close to 0.1eV [156-162], but there is no conclusive
evidence for a preference for the normal or inverted hierarchy of the masses of neutrinos [158,
163-167], and thus the degenerate hierarchy is okay to be used. This is actually true even
for near-future cosmological datasets [168-170]. Also, we use a flat prior on log, [GeﬁMeVﬂ
instead of Geg because it enables us to vary the parameter over multiple orders of magnitude.

We emphasize here that while doing the numerical analyses, we distribute the N.g
equally among the 3 neutrinos. So in the lv-interacting model, only Neg/3 corresponds to
the self-interacting neutrino species, and the rest is associated with free-streaming neutrinos.

The priors on the model parameters are listed in table 1. Since we are only interested in
the Moderately Interacting Mode (MIr) we use the following prior range: —5.5 — —2.3.

We also perform our analysis in the ACDM + 7405 model, as we want to analyze
the predictions of the inflationary models against both the ACDM —+ rg 95 model and the
“lv—interacting, MIv” model.

We modify the cosmological perturbation equations of neutrinos in the CAMB code [171].
The modifications to the perturbation equations apply only to one of the three species. The
background equations remain the same as the non-interacting case because the neutrinos are
only self-interacting, i.e., there is no energy transfer between the neutrino sector and any
other sector. Also, the heavy mediator decays away much before photon decoupling.

To include the self-interaction in the neutrino perturbation equations in CAMB, we use
the relaxation time approximation (RTA) that was first introduced in this context in [172] (and
first used for the treatment of self-interactions in light neutrinos in [173]). RTA was shown
to be very accurate in comparison to the exact collisional Boltzmann equations, in [53]. Note
that we have incorporated the modifications to both scalar and tensor perturbation equations.
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In the scalar perturbation equations of neutrinos, these self-interactions cause damping
in the Boltzmann hierarchy for multipoles ¢ > 2 due to the scattering. In the synchronous
gauge, the collisional Boltzmann hierarchy for massive neutrino scalar perturbations is given
by (following the notation in [174]),

qk‘ 1-dlnf0

o = _?\Pl * gh dlng’

Uy = %’z(% —2Wy)

b B vy (L 2) e
U, = (2;551)6 W = (I +D)Va] + ¥y, 1>3,

where a7, ¥; are the damping terms for [ > 2. Here, 7, = —aGgﬁT  is the opacity for
the neutrino self-interactions with a heavy mediator, and o; (I > 1) are coefficients of order
unity that depend on the interaction model. We use a; values from equation 2.9 in [53] for
the scalar mediator, i.e., we use ag = 0.40, oz = 0.43, oy = 0.46, a5 = 0.47, o> = 0.48. For
neutrino tensor perturbation equations we go through a similar procedure and incorporate
similar damping terms to the perturbation equations in the CAMB code [171]. However, we
use oy = 1 (I > 1), instead of including model-specific values, since these model-dependent
coefficients for tensor perturbation equations require separate elaborate calculations. We
have verified that when we vary «; from 0.4 to 1, the CMB B-mode spectrum sourced by the
primordial tensor perturbations goes through only a small change. Thus, fixing all oy = 1
in the neutrino tensor perturbation equations is only going to produce very minor shifts in
the value of log; [GQHMQV2:| and thus, is not of any major concern.

We also incorporate a tight coupling approximation (TCA) in our code, in the very early
universe. In TCA, only the two lowest moments are non-zero. We use TCA because the
collisional Boltzmann equations for neutrinos are difficult to solve in the very early universe.
This approximation is switched off quite early (when |7,|/H < 1000, where H is the conformal
Hubble parameter) so that it does not bias our results.

3.2 Datasets

We make use of the full CMB temperature and polarisation data (i.e. TT, TE, EE + lowE)
from the Planck 2018 public data release [48]. Here, TT signifies the low-I and high-I
temperature power spectra, TE signifies the high-I temperature and E-mode polarisation
cross-spectra, EE signifies the high-I/ E-mode polarisation spectra, and lowE the low-I E
mode polarisation spectra. Additionally, we also include the B-mode CMB power spectra
data from the BICEP2/Keck array public data release [7] that includes observations up
to 2018. In addition to the CMB data, we include Planck 2018 CMB lensing [175], BAO
and RSD measurements from SDSS-III BOSS DR12 [176], additional BAO measurements
from MGS [177] and 6dFGS [178], and SNe Ia luminosity distance measurements from the
Pantheon sample [179].
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Figure 1. The left panel shows the primordial CMB B-mode power spectrum C’IBB (appropriately
scaled for better visualisation) for different values of Geg for all 3 neutrinos interacting, where other
cosmological parameters remain fixed to suitable values (particularly, tensor-to-scalar ratio is fixed to
70.05 = 0.03). The right panel shows the ratio AClBB/ClBB, where the denominator is the B-mode
power spectrum for Geg = 0, and ACPB = CI/BB — CPPB, where CZIBB are the B-mode power spectra
for values of Geg as specified by the legends in the top right corner.

3.3 Parameter sampling

We use the public nested sampling package Polychord [180, 181] added to CosmoMC [154, 155],
known as CosmoChord [182]. We use 2000 live points and boost__posterior = 0 to properly
sample the parameter space. We use HMcode [183] (included with the CosmoChord package)
to handle the non-linear part of the cosmological evolution. We use GetDist [184] to generate
the bounds on the parameters and the posterior plots.

3.4 Effect of neutrino self-interactions on the CMB BB spectrum

The effect of neutrino self-interactions (similar to the heavy mediator case studied here) on
the CMB B-mode (primordial) spectrum has been previously studied in [185]. The effect of
DM-neutrino interactions on the primordial B-mode of CMB are expected to be similar to
the neutrino self-interactions [186]. In figure 1, we show the effect of neutrino self-interactions
for various different values of the coupling strength Geg for the case where all 3 neutrinos are
interacting. Similar to the previous studies, we find that strong neutrino self-interactions can
enhance the CMB B-mode of the power-spectrum by as much as 50% in the [ > 100 regime.
The effect of only one neutrino species interacting will be proportionately smaller. To detect
these effects in the CMB B-mode, there will be a need of not only precise measurement of
the CMB B-mode power spectrum, but also very advanced delensing techniques [187], since
the [ > 100 region is expected to be dominated by CMB lensing B-modes which are sourced
at low redshifts from lensing of primordial E-modes by the matter structure.

As far as the sensitivity of the current datasets is concerned (especially BICEP /Keck [7]),
we find that introduction of neutrino self-interactions has negligible effects on the bounds
on r9.05.- Thus, as far as inflationary parameters are concerned, the main effect of neutrino
self-interactions is through the effect on the scalar spectral index ng, as we had also seen
previously in [47].
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Figure 2. The predictions of the inflationary parameters in the ny, — r plane for the Natural inflation
potential in the Metric (left panel) and Palatini (right panel) formulations for various values of £ and
the 68% and 95% C.L. contour plots for the 1v-interacting MIr model (shaded red) and the ACDM+r
model (shaded blue).

4 Numerical results

In this section, we discuss the non-minimally coupled Natural and Coleman-Weinberg po-
tentials in the light of massive neutrino interactions and show our numerical results. In
our numerical analysis, we use the potential forms which are given in equations. (2.23)
and (2.26) for the non-minimally coupled Coleman-Weinberg and Natural inflation potentials,
respectively. In addition, in our analysis, we use the e-fold number that is presented in
eq. (2.19), it provides us with an assumption of the standard thermal history after the end
of inflation. It is good to mention that we set w, = 1/3, which corresponds to the instant
reheating, with this assumption we ignore the dependence of reheating temperature in our
analysis. In our numerical calculations for predictions from inflationary models and also in
our analysis of cosmological data, we take a pivot scale k, = 0.05 Mpc~!. Also, we present
our results considering an MIr model in the lv-interacting scenario, this indicates that the
self-interaction is constrained to solely one flavor of neutrinos (specifically, 7 neutrinos). The
details about the models and datasets are given in section 3.

First, we begin discussing our results for the inflationary predictions of the non-minimally
coupled Natural inflation potential in Metric and Palatini formulations, the related outcomes
are shown in the figure 2. According to our results, ns — r predictions for the selected &
values in this study, except & = —1072, of both formulations, are ruled out at 2o for the MIv
model in the lv-interacting scenario. It can be concluded that aside from & = —1072, the
inflationary predictions of the non-minimally coupled Natural inflation potential for both
formulations cannot enter into either 1o or 20 confidence regions in 1v-interacting MIr model
for the & values we choose in this study. Also, ns — r predictions for ¢ < 1, such as £ = 1076
overlap with the results of { = 0 (minimal coupling case), thus we can say that the ng —r
predictions of £ < 1 are not able to accommodate at confidence regions for our neutrino
interaction scenario. On the other hand, for ¢ = —1072, the inflationary predictions can
be inside the 1o region for the f values, f ~ 3.5 for Metric, f ~ 3.05 for Palatini in the
lv-interacting MIv model. Except ¢ = —1072, for each selected ¢ value in this study, we
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Figure 3. The predictions of the inflationary parameters in the ny, —r plane for the Coleman-Weinberg
inflation potential in the Metric formulation for various values of £ in the ¢ > v case, and the 68%
and 95% C.L. contour plots for the lv-interacting MIv model (shaded red) and the ACDM+r model
(shaded blue).
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Figure 4. The predictions of the inflationary parameters in the ny —r plane for the Coleman-Weinberg
inflation potential in the Metric formulation for various values of £ in the ¢ < v case, and the 68%
and 95% C.L. contour plots for the lv-interacting MIr model (shaded red) and the ACDM+r model
(shaded blue).

can emphasize that the inflationary predictions of two formulations are very close to each
other for the non-minimally coupled Natural inflation potential, and none of these results
are in the confidence regions for the lv-interacting MIr model. For & = —1072, on the other
hand, for the large f values, the inflationary predictions have different patterns for the Metric
and Palatini formulations, for instance, the inflationary predictions stay in 1o at f ~ 3.5
for Metric formulation, while for the Palatini, the results are outside the confidence regions
for f ~ 3.2 with the increase of ng, reaching ngy ~ 0.987.

Secondly, we present our results for the non-minimally coupled Coleman-Weinberg
inflation potential in Metric formulation. Figures 3 and 4 present the results of ¢ > v
and ¢ < v cases, respectively. In the Metric formulation, for ¢ > v case, the inflationary
predictions for ¢ = 1072 and &€ = 10 can be inside the confidence regions for the MIr model
in the lv-interacting scenario but for ¢ = 0 and € = —107%, the predictions are ruled out
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Figure 5. The predictions of the inflationary parameters in the ny, —r plane for the Coleman-Weinberg
inflation potential in the Palatini formulation for various values of £ in the ¢ > v case, and the 68%
and 95% C.L. contour plots for the lv-interacting MIv model (shaded red) and the ACDM+r model
(shaded blue).
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Figure 6. The predictions of the inflationary parameters in the ns —r plane for the Coleman-Weinberg
inflation potential in the Palatini formulation for various values of £ in the ¢ < v case, and the 68%
and 95% C.L. contour plots for the lv-interacting MIr model (shaded red) and the ACDM+r model
(shaded blue).

according to this scenario. Furthermore, for ¢ < v case, the predictions of £ = 1072 are
also ruled out in this scenario, on the other hand, for £ = 1073, ¢ = 10~* and & = 0 values,
the ngy — r can enter into 1o confidence region. Similarly, for £ < 0 values, we show the
results of £ = —1074, ¢ = —1073 and € = —1072, the inflationary predictions can be also
inside the 1o of this scenario.

Lastly, we show the results for the non-minimally coupled Coleman-Weinberg potential
in the Palatini formulation. Figures 5 and 6 present the results of ¢ > v and ¢ < v cases,
respectively. In the Palatini formulation, for the ¢ > v case, the inflationary predictions for
¢ = 107! can be accommodated in the 1o for lv-interacting MIv scenario but for £ = 1073,
the results are only within the 20 confidence region for this scenario. However, for & = 10,
£=10"2 ¢ = —10"* and ¢ = 0, the predictions cannot enter into even the 20 confidence
regions of this scenario at all. For ¢ < v values, the predictions for all selected £ values in
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this work can be inside the 1o confidence region for the 1v-interacting MIv model.

e For ¢ > v case: — For the Coleman-Weinberg potential, we show that the inflationary
predictions saturate the linear potential limit for ¢ > 107! values in the Palatini
formulation, this result is consistent with the studies [37, 108]. This limit can be
accommodated in the 1o confidence region for the 1v-interacting case in the MIr model.

e For ¢ < v case: — The pattern of the inflationary predictions for the non-minimally
coupled Coleman-Weinberg inflation potential is almost the same for both Metric and
Palatini formulations for each selected |£| value in this work. Thus, the situations for
entering the confidence interval for the 1v-interacting MIr model are almost similar for
these £ values. Also, the results in Metric formulation show that ns values have large
shift (ng ~ 0.92) for & = 1072, thus the ny — r predictions of ¢ = 1072 are outside the
confidence regions in the lv-interacting MIr model.

5 Conclusions

In this work, we have analyzed the inflationary predictions of the Coleman-Weinberg and
Natural inflation potentials with non-minimal coupling and the inflationary parameter
predictions of the cosmological model 1v-interacting Mlv, i.e., an extended ACDM model
with one neutrino species having a moderate strength self-interaction. We have presented
the predictions of these potentials for both the Metric and Palatini formulations of gravity.
It is important to remind here that for the symmetry-breaking related Coleman-Weinberg
potential, we have considered that the inflaton takes a non-zero v after the inflationary era,
therefore we have shown our results of this potential for two different cases: ¢ > v and ¢ < v.

After reviewing our theoretical background, as well as the cosmological model, analysis
methodology, and datasets in this work, we presented our numerical results in the paper. For
both of the considered inflationary potentials, by taking neutrino interactions into account,
we have shown whether the inflationary predictions (ns and r) are compatible or not with
the recent cosmological data. We studied the predictions of the inflationary potentials and
the predictions of both the ACDM + rg 05 model and the “lyv—interacting, MIv” model,
which we previously explained.

We have found that the predictions of non-minimally coupled Natural inflation potential
can be inside the confidence regions only for & = —1072 of both Metric and Palatini
formulations in our 1v—interacting, MIr model (and also in the minimal ACDM+r( g5 model).
Moreover, we have shown that the inflationary predictions for £ < 1 overlap with the results
of the minimal coupling case, and these results are ruled out at more than 20 for our neutrino
interaction scenario. The inflationary predictions of & = —1072 are inside the 1o region at
f ~ 3.5 (~ 3.05) for Metric (Palatini) formulations in the lv-interacting MIr model. Also,
for £ = —1072, for the large f values, the inflationary predictions have different forms for the
Metric and Palatini formulations, for example, the inflationary predictions remain in 1o at
f ~ 3.5 for the Metric formulation, while for the Palatini, the results cannot be inside the
confidence regions for f ~ 3.2 with the increment of ng, approaching ns ~ 0.987. It is worth
mentioning here that excluding £ = —1072, the inflationary parameters of two formulations
for chosen £ values in this study are very close to each other for the Natural inflation potential,
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therefore the inflationary predictions (ns — r) for these & values are almost similar, and these
predictions are outside of the 20 confidence limits for the 1v—interacting, MIr model.

Furthermore, for the non-minimally coupled Coleman-Weinberg potential in Metric
formulation, the inflationary parameters for &€ = 1072 and ¢ = 10 can be within the 20 region
in the lv-interacting MIv scenario, but for the predictions of ¢ = 0 and ¢ = —107%, the
predictions are ruled out at 20 according to the lv-interacting MIv model. In addition, for
the ¢ < v case, the predictions of & = 1072 are ruled out in this scenario. On the other hand,
for € = 1073, ¢ =107% and ¢ = 0, the ny — r can be inside the 1o region. Similarly, for & < 0
values that we have displayed, i.e., the inflationary predictions of € = —107%, ¢ = —1072 and
¢ = —1072 can also be within the 1o confidence region for the 1v—interacting, MIr model.

Lastly, for the non-minimally coupled Coleman-Weinberg inflation potential in the
Palatini formulation, we have shown that the inflationary predictions for £ = 10! can remain
within the 1o region in the lv-interacting scenario. It is good to mention here that for the
Palatini Coleman-Weinberg inflation potential, the inflationary predictions saturate the linear
potential limit for &€ > 10~! values, at which the parameters stay within 1o for lv-interacting
MIrv model. On the other hand, the inflationary parameters for & = 1073 are inside the
20 of lv—interacting, MIr model but for ¢ = 10, ¢ = 1072, ¢ = —107% and ¢ = 0, the
predictions do not enter into the 20 confidence region for our neutrino interaction scenario,
at all. For the ¢ < v case, the predictions for all the selected ¢ values in this study, £ = 1073,
£=10"% ¢ =—-1073, ¢ = —10~* and the minimal coupling case (¢ = 0), can be inside the
1o confidence region for the lv-interacting Mlv scenario.

While we use cosmological data to constrain the inflationary parameters in a cosmological
model that has self-interaction among neutrinos, a detection of neutrino self-interactions
is yet to be confirmed by particle physics experiments. However, if such an interaction is
detected in the future by experiments like DUNE [188-190] and IceCube [191, 192], then it
would imply that inflationary models like Natural inflation and Coleman-Weinberg inflation
(which are considered ruled out by the data in the minimal ACDM model) will remain afloat
as viable inflationary theories. Additionally, certain values of non-minimal coupling studied
in this paper, which are ruled out by the data in the minimal ACDM model, will also remain
viable in the event of detection of such self-interactions among neutrinos.
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