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Abstract

This thesis explores the numerous relationships between the entropy of black hole so-

lutions in supergravity and the entanglement of multipartite systems in quantum infor-

mation theory: the so-called black hole/qubit correspondence.

We examine how, through the correspondence, the dyonic charges in the entropy of

supersymmetric black hole solutions are directly matched to the state vector coefficients

in the entanglement measures of their quantum information analogues. Moreover the U-

duality invariance of the black hole entropy translates to the stochastic local operations

and classical communication (SLOCC) invariance of the entanglement measures. Several

examples are discussed, with the correspondence broadening when the supersymmetric

classification of black holes is shown to match the entanglement classification of the

qubit/qutrit analogues.

On the microscopic front, we study the interpretation of D-brane wrapping config-

urations as real qubits/qutrits, including the matching of generating solutions on black

hole and qubit sides. Tentative generalisations to other dimensions and qubit systems

are considered. This is almost eclipsed by more recent developments linking the nilpo-

tent U-duality orbit classification of black holes to the nilpotent classification of complex

qubits. We provide preliminary results on the corresponding covariant classification.

We explore the interesting parallel development of supersymmetric generalisations of

qubits and entanglement, complete with two- and three-superqubit entanglement mea-

sures. Lastly, we briefly mention the supergravity technology of cubic Jordan algebras

and Freudenthal triple systems (FTS), which are used to: 1) Relate FTS ranks to three-

qubit entanglement and compute SLOCC orbits. 2) Define new black hole dualities

distinct from U-duality and related by a 4D/5D lift. 3) Clarify the state of knowledge

of integral U-duality orbits in maximally extended supergravity in four, five, and six

dimensions.
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Chapter 1

Introduction

1.1 An overview

The past four years have seen the development of a remarkable body of work linking

what are, at first glance, two strikingly different areas of theoretical physics: string

theory and the entropy of supersymmetric black hole solutions on the one hand, and

quantum information theory and the entanglement of multipartite qubit (two-level) and

qutrit (three-level) systems on the other.

The starting point is a 2006 paper by Mike Duff [1] in which he established the rela-

tionship between the entropy of black hole solutions of the so-called STU supergravity

model [2] and an an invariant known as Cayley’s hyperdeterminant [3]. In particular the

fact that the hyperdeterminant, which was first written down in 1845, finds modern use

as a measure of entanglement of three-qubit systems [4].

Having discovered that these disparate disciplines share the same mathematics the

race was on to find evidence of a more substantive physical underpinning or duality;

something to indicate that, underneath it all, the same physical phenomenon was being

described. Kallosh and Linde [5] responded with several important results, one being a

link between the classification of three qubits entanglement and whether STU black holes

have vanishing horizon areas and whether they preserve a fraction of supersymmetry. In

addition they showed that the most general black hole and black ring entropy in N = 8

supergravity/M-theory, given by Cartan’s quartic E7(7) invariant, can be written in a

canonical basis that reduces it to Cayleys hyperdeterminant.

These ideas were developed further in a collaboration between Duff and Ferrara [6–8]

in which the N = 8 generalisation was fleshed out by providing a tripartite-entangled

seven-qubit system with a proposed entanglement measure to correspond to the N = 8

17



18 CHAPTER 1. INTRODUCTION

Figure 1.1: Some of the links between black holes and qubits

entropy. Moreover they put forward a D = 5 generalisation connecting black hole/string

entropy to the bipartite entanglement of three qutrits, with Cartan’s cubic E6(6) invari-

ant playing the role of entropy and entanglement. Similar results in 4D and 5D were

outlined for the “magic” N = 2 supergravities. Meanwhile Levay [9–11] expanded the

scope further, relating the attractor mechanism on the black hole side with optimal

distillation protocols on the quantum information side, relating supersymmetric and

non-supersymmetric black holes to the suppression or non-suppression of bit-flip errors,

and providing an enlightening description of the seven-qubit tripartite entanglement in

terms of the Fano plane, opening the door to the octonions, which would play several

roles in future work within the correspondence.

This was the state of play at the outset of my involvement in the work done with

L. Borsten, M. J. Duff, and W. Rubens, at times in collaboration with H. Ebrahim, A.

Marrani, and S. Ferrara, and benefiting from helpful conversations with P. Levay. Since

then further papers have enriched the correspondence [12–20], feeding the ever growing

dictionary translating phenomena in one language to those in the other (see Figure 1.1).

Meanwhile we have continued its expansion along the following avenues:

1. A microscopic interpretation of the correspondence based on wrapped D-branes,

laying the foundations for the classification of entanglement based on intersecting
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D-branes [21].

2. A set of dictionaries to transform between the duality frames of the N = 8 entropy

and seven-qubit tripartite entanglement, in effect providing confirmation of this

correspondence. Broader links between entanglement classification and black hole

classification. A new outlook on the symmetries of M-theory based on imaginary

quaternions and octonions [22,23].

3. A new classification of three qubit entanglement using supergravity technology [24].

4. The discovery of a new symmetry of black holes called Freudenthal duality [25].

5. The introduction of the superqubit, a supersymmetric generalisation of the qubit,

with super-analogues of familiar entanglement measures [26].

6. An investigation of the integral U-duality orbits of black holes [27].

7. A derivation of the classification of four-qubit entanglement using string theory

[28].

1.2 Motivation and outline

Clearly then, in a short time the black hole/qubit correspondence has become a sprawl-

ing, multifaceted body of work. Nevertheless, there are a few loosely unifying themes

that can be picked out to lend more coherence to our review of recent developments.

One path is the recurring topic of supersymmetry, which plays an obvious role in the

superqubit construction, but is present throughout our work in the matching of entan-

glement classification to black hole classification, be it in the guise of our four qubit

discoveries or proposed generalisations to our brane wrapping perspective. Another

identifiable narrative is of course the use of the supergravity technology involving cubic

Jordan algebras and Freudenthal triple systems to classify entanglement, construct new

dualities, and inspect discrete U-duality orbits.

Since two of the co-authors of [21,23–28] are submitting their theses simultaneously,

let us make crystal clear that while both draw from [23], we here focus on the role of

supersymmetry and the papers [21,26,28]. The technological, algebraic developments of

the papers [24,25,27] are dealt with elsewhere, so we limit ourselves to a most rudimen-

tary discussion: a mere statement of the developments, including such definitions as are

necessitated by the highly interrelated nature of the research. In reviewing the role of

supersymmetry our two main motivations are
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• To survey the correspondences between the entanglement hierarchies of various

multipartite systems and the SUSY classification of black holes in several theories.

• To study the generalisation of quantum systems experiencing entanglement to their

superentangled, minimal supersymmetric extensions.

In beginning the exploration of the black hole/qubit correspondence, we require a

certain amount of prerequisite material as pertains to black holes in supergravity and

quantum information theory. In chapter 2 the necessary concepts such as U-duality,

extremality, etc are introduced, followed by the theories of interest. We then review the

basics of entanglement and entanglement classification in chapter 3, supported by some

elementary concepts in classical invariant theory in section 3.3. This is rounded off by

a discussion of the early correspondences in chapter 4, dealing with the STU model in

section 4.1, the N = 8 generalisation in section 4.2, and the D = 5 generalisation in

section 4.3.

Moving on to the main topic, we begin our review of newer material in chapter 5,

starting in section 5.1 with a brief outline of the explicit dictionaries through which we

translated between different black hole perspectives and the qubit perspectives. This

leads in to section 5.2 where we look at the alignment of black hole SUSY classification

in various theories with qubit and qutrit entanglement classifications. The octonions are

examined in section 5.3 as they play multiple distinct roles in the early correspondences.

Subsequently, we consider the wrapped brane perspectives in four and five dimensions

in chapter 6. In chapter 7 we discuss the recent derivation of a four-qubit entanglement

classification into 31 families by means of the SUSY distinguished U-duality orbits re-

sulting from timelike reduction of string theory from D = 4 to D = 3. We then dive

into full-on superlinear algebra with the supersymmetric generalisation of qubits and

entanglement in chapter 8. This thesis then concludes in chapter 9 with a summary

of the discoveries reviewed and avenues for future research. We have also provided in

Appendix A supporting material concerning the algebraic tools of cubic Jordan algebras

and Freudenthal triple systems.

As this is a review of aspects of our published body of work some chapters are closely

based on our existing papers, however, previously unpublished material is incorporated,

particularly in section 3.3.2, section 5.3, section 7.1, and section 9.2.



Chapter 2

Black holes

2.1 Black hole entropy

As discussed in chapter 1, the core of the black hole/qubit correspondence is an en-

tropy/entanglement relationship. We begin then with a brief note on black hole entropy.

Work done by Bekenstein and Hawking [29, 30] in the 1970s established that black

holes radiate energy and could be characterised as thermodynamic systems, with a set of

relationships known as the laws of black hole mechanics describing geometrical properties

of spacetime in a manner identical to the description of the properties of a statistical

system by the laws of thermodynamics [31].

For example, the analogue of the first law of thermodynamics describes the relation-

ship between the conserved quantities of a black hole when subject to small variations

δM =
κS
8π
δA+ µδQ+ ΩδJ, (2.1)

where M,κS , A, µ,Q,Ω, and J are respectively mass, surface gravity, event horizon area,

electric potential, charge, angular velocity and angular momentum. In particular, this

law relates quantities defined at the event horizon such as area and surface gravity to

quantities defined at infinity: mass, charge, and angular momentum.

Since the first law of thermodynamics contains a TdS term, one might hope to

identify the geometrical analogue of entropy, provided the black-body temperature of

radiation emitted by a black hole. This is of course the Hawking temperature TH, fixed

by treating the black hole in quantum field theory in a curved background, with gravity

21
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treated classically and matter fields quantum mechanically

TH =
~κS
2π

. (2.2)

Combining (2.1) and (2.2) suggests that the entropy of the black hole, the Bekenstein-

hawking entropy, is proportional to its horizon area:

SBH =
A

4~G4
, (2.3)

where G4 is the 4D Newton constant. In light of its semiclassical gravity origins it is

subject to higher order quantum corrections. The thermodynamic analogy is borne out

by the second law of black hole mechanics which states dA ≥ 0.

This is the macroscopic picture, but Boltzmann’s entropy formula S = kB logW

raises the question of the microscopic origin of the entropy, the understanding of which

was provided only in 1996 by string theory [32] for the class of extremal black holes.

The supergravities of the various string theories admit black hole solutions [13,33,34],

and one can compute their entropy. In the cases we consider it is expressed (solely, in

the extremal case) in terms of electric and magnetic black hole charges. We now turn

to the subject of extremality.

2.2 Extremal black holes

Even with no prior knowledge, it is reasonable to expect that quantum entanglement is

expressed in terms of state vector coefficients. Our concern here is to clarify why black

hole entropy should be expressed in terms of dyonic charges, knowing already that it is

given by the horizon area.

Consider the line element for a static, spherically symmetric 4D black hole

ds2 = −e2h(r)dt2 + e2k(r)dr2 + r2(dθ2 + sin2θdφ2). (2.4)

In Einstein-Maxwell theory, the most general static black hole solution is the Reissner-

Nordström solution

e2h(r) = e−2k(r) = 1− 2M

r
+
Q2

r2
, (2.5)

which yields two horizons

r± = M ±
√
M2 −Q2. (2.6)

For M ≥ |Q| the singularity is hidden behind the horizon (M < |Q| is excluded by
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the cosmic censorship hypothesis). In the special, extremal case M = |Q| the horizons

coincide at r+ = r− = |Q| and the area of the horizon reduces to 4πQ2. As a consequence

the entropy is fixed by (2.3) in terms of the charges. We note also that the surface gravity

also vanishes at M = |Q| and hence so does the Hawking temperature, leading one to

conclude that the extremal black hole is stable. These considerations easily generalise

to the case with nonzero magnetic charge P by replacing Q2 with Q2 + P 2.

The supergravity theories we concern ourselves with differ in having more than one

photon (four for the STU model, 28 forN = 8, D = 4, etc). Consequently there are more

electric and magnetic charges. Extremal black holes in these cases obey generalised mass

= charge relations, which also involve scalar moduli. This situation can be improved to

one in which the moduli dependence drops out by fixing them (freezing them) at their

horizon values - in this manner the entropy is ensured to be moduli independent [35].

As a simple example, consider the axion dilation extremal black hole [5,36]. It has four

charges p0, p1, q0, and q1, and its entropy is given by an SL2(R) invariant, determinant-

like expression:

S = π
∣∣p0q1 − q0p

1
∣∣ . (2.7)

An important point for our considerations is that a black hole preserving some unbroken

supersymmetries is called BPS (after Bogomol’nyi-Prasad-Sommerfield). Being BPS

implies extremality, but is not a necessary condition for it.

2.3 U-duality

The black hole entropies we consider are required to be U-duality invariants, with the

charges transforming in representations of the U-duality group [37–40]. As a result of

the correspondence, these invariants show up again on the qubit side. Consequently, a

brief discussion of U-duality is in order.

One can view string theory as a worldsheet sigma model with background space-

time as its target space [41,42]. While different backgrounds can correspond to different

quantum string theories, some can produce physically equivalent theories. Such back-

grounds can be mapped into each other by discrete transformations coming from the

symmetry groups of string dualities. The dualities that transform one theory to another

are classified into T, S, and U-dualities where U-duality subsumes the others.

Consider superstring theory compactified on a circle of radius R. T-duality [43]

sends the worldsheet theory with radius R to α′/R, where α′ is the string tension. This

generalises to toroidal compactification where the compact space is T k, a k-dimensional
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torus. Fields of dimensionally reduced theory transform as representations of T-duality

group. T-duality holds perturbatively order-by-order in the string coupling constant gs.

From the open string or D-brane perspective, T-duality transforms Dirichlet boundary

conditions into Neumann boundary conditions and vice versa [44]. S-duality [45–51],

on the other hand, is a generalisation of the electromagnetic duality of supersymmetric

Yang-mills theories [52] and acts non-perturbatively in contrast to T-duality.

For N = 2 compactifications the combined dualities give SL2(Z) × SO`,2(Z) where

the low energy limit is D = 4,N = 2 supergravity coupled to `+1 vector multiplets [53].

For N = 4 compactifications we have SL2(Z)× SO6,m(Z) where the low energy limit is

D = 4,N = 4 supergravity coupled to m vector multiplets [54].

Unifying S and T dualities yields U-duality. For M-theory on Rd × T k or string

theory on Rd×T k−1, where d+k = 11, the reduced theories are invariant under a global

symmetry group called the U-duality group. The reduced d-dimensional low energy

effective action, which is the d-dimensional supergravity theory, is invariant under a

continuous symmetry group and the discrete subgroup of it, the U-duality group, is the

symmetry of the full theory.

An analysis of the global symmetries of dimensionally reduced theories is accom-

plished through the consideration of the symmetries in their scalar sectors [55]. In

essence, the symmetry extends to higher valence fields and acts linearly, with the non-

linear realisation for the scalars only. Special care must be taken, since the scalars are

not merely dilatons and axions, but also arise from the Hodge dualisation of (D−1)-form

field strengths (i.e. (D − 2) form potentials) to 1-form field strengths of scalars. The

dualisation generally entails a flip in the sign of the field’s associated dilaton vector, and

an interchange of Chern-Simons and transgression terms. It is the dilation vectors that

hold the key to analysing the scalar manifold, specifically the vectors ~bi,i+1 and ~a123,

with i ∈ {1, . . . , 11−D} for a D-valent Lagrangian form (in the case of a torus reduction

from 11 dimensions). These are the simple roots of the global symmetry group G. A

brief aside: the generators in the Lie algebra of a group can be partitioned into the

Cartan subalgebra generators ~H and ladder operators E~α satisfying:[
~H,E~α

]
= ~αE~α[

E~α, E~β
]

= N(α, β)E
~α+~β

(2.8)

The ~α are root vectors, and these can be partitioned into positive and negative roots,

where the prescription for allocating signs is to take the sign of their first non-zero ele-

ments. Simple roots are obtained as the minimal subset of the positive vectors that can
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b12 b23 b34 b45 b56 b67 b78

a123

Figure 2.1: The Dynkin diagram for the global symmetry of a Lagrangian obtained via
T 8 reduction of D = 11 SUGRA. The roots are labelled with the corresponding dilaton
vectors. To obtain the diagram for Tn reduction, one only need restrict to the dilaton
vectors that appear in the reduction in question.

generate all of the positive roots via linear combinations of themselves with nonnegative

integer coefficients. The simple roots are sufficient to classify Lie algebras, and it is

the relative root lengths and angles that get encoded in Dynkin diagrams. The general

Dynkin diagram for a torus reduction from 11 dimensions is given in Figure 2.1 where

one specialises to the dimensionality under consideration by amputating the appropriate

root/dilaton vectors. Returning to the scalar manifold, one reads off G from the dilaton

vectors, and by assembling the exponentiations of the positive-root and Cartan gener-

ators with dilatons and axions, it is possible to write the scalar Lagrangian in a form

that makes the symmetries manifest. The procedure depends on whether dualisation of

field strengths can add to the scalar content of the reduced theory, but in either case the

object V can be constructed:

V = e1/2 ~φ· ~H
(∏
i<j

e
Aij

[0]
Eij
)

exp

( ∑
i<j<k

Aijk[0] E
ijk

)
(2.9)

where generators Eij and Eijk correspond to root/dilaton vectors ~bij and ~aijk respec-

tively, and terms are ordered with indices appearing in reverse-canonical order. It is here

that the transgression terms in the field strengths arises, since non-vanishing commu-

tators between positive root generators contribute then via Baker-Campbell-Hausdorf.

V constructed in this manner is in an upper triangular (or Borel) gauge. Defining

M := VTV allows one to write the scalar Lagrangian as 1
4 tr

(
∂M−1∂M

)
. The beauty

of this form of the Lagrangian is that a G transformation Λ on the scalars V → VΛ will

result in the transformationM→ ΛTMΛ, which clearly leaves the Lagrangian invariant,

thanks to trace cyclicity. In truth, the G transformation will generally break the Borel

gauge and a compensating transformation O needs to be made so that V → OVΛ, which

preserves the invariance. This O will lie in the maximal compact subgroup K ⊂ G by

virtue of the Iwasawa decomposition, which states that a general group element g can
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be written as gKgHgN with gK ∈ K, gN ∈ G and gH in the Cartan subalgebra. The fact

that points on the scalar manifold are then specified via G transformations modulo K

compensations indicates that the scalar manifold is the coset G/K. The trace form of

the Lagrangian is for this reason referred to as a coset space Lagrangian, with V being

a coset representative. The number of the scalar fields of the compactified theory is

equal to the dimension of the coset space, dimG− dimK. A classification of symmetry

groups of the supergravities with 32 supercharges in different dimensions has been given

in Table 2.1 [56].

For reduction past dimension 6, the scalars resulting from dualisation complicate

matters and a generalisation of the transpose is needed to replace theM = VTV relation

since USp8, SU8, and SO16 are not orthogonal. The Cartan involution does the trick by

operating at the generator level, flipping the signs of the noncompact ones; for example,

the involution is simply dagger, † when acting on unitaries. The En(n) groups are the

exceptional groups in their maximally noncompact form: whereas usually the ladder

operator generators provide, through linear combinations, equal numbers of compact and

noncompact generators, in this case the Cartan generators are also noncompact. (More

generally, the bracketed term corresponds to the number of non-compact generators less

the number of compact ones.) In fact, the general prescription for 3 ≤ k ≤ 8 is Ek(k) [57].

Of special interest to us of course is the compactification to four dimensions where

the U-duality group is the 133 dimensional exceptional Lie group E7(7), with 63 compact

and 70 non-compact generators. The resulting low-energy limit is (D = 4,N = 8)

supergravity with 28 abelian vector fields. The 28 electric and 28 magnetic black hole

charges transform as an irreducible 56 of E7(7) as shown in Table 2.2, taken from [58,59].

We will later encounter the SL7
2 subgroup in the context of a special 7-qubit system.

Table 2.1: The symmetry groups (G) of the low energy supergravity theories with 32
supercharges in different dimensions (D) and their maximal compact subgroups (K).

D scalars vectors G K

10A 1 1 SO1,1(R) −
10B 2 0 SL2(R) SO2(R)

9 3 3 SL2(R)× SO1,1(R) SO2(R)
8 7 6 SL2(R)× SL3(R) SO2(R)× SO3(R)
7 14 10 SL5(R) SO5(R)
6 25 16 SO5,5(R) SO5(R)× SO5(R)
5 42 27 E6(6)(R) USp8

4 70 28 E7(7)(R) SU8

3 128 - E8(8)(R) SO16(R)
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Figure 2.2: String/string/string triality. Red arrows are mirror transformations, grey
arrows are string/string dualities.

2.4 The STU model

The STU model, so named for it’s three complex scalar fields or moduli (the dila-

ton/axion, complex Kähler form, and complex structure fields), is the theory whose low

energy limit is a four dimensional N = 2 supergravity coupled to three vector multi-

plets interacting through the special Kähler manifold [SL2 / SO2]3 [15, 60–62]. It can

be obtained via dimensional reduction of type IIA supergravity on the Calabi-Yau K3

with D0, D2, D4, and D6 branes wrapping on the cycles. It can be usefully embedded

in an N = 4 theory obtained from compactification of the heterotic string on T 6 and

exhibits an SL2(Z)S strong/weak coupling duality and an SL2(Z)T × SL2(Z)U target

space duality. String/string duality furnishes an alternative view in which it is a trunca-

tion of an N = 2 theory obtained by compactifying Type IIA on K3× T 2 where S and

T exchange roles [48,63,64]. This is yet again equivalent through mirror symmetry to a

Type IIB string on the mirror manifold. Indeed it seems all roads lead to STU , but this

profusion is a symptom of D = 4 string/string/string triality [61] as shown in Figure 2.2.

Combined, the theory exhibits a full S-T -U triality symmetry and SL3
2 duality [61]. The
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black hole solutions have 8 charges, pi, qi with i ∈ {0, 1, 2, 3}. The action is as follows:

SSTU =
1

16πG

∫
e−η
[(
R+

1

4

(
tr
[
∂M−1

T ∂MT

]
+ tr

[
∂M−1

U ∂MU

] ))
? 1

+ ?dη ∧ dη − 1

2
? H[3] ∧H[3]

− 1

2
? FT

S[2] ∧ (MT ⊗MU )FS[2]

]
(2.10)

MS =
1

=(S)

(
1 <(S)

<(S) |S|2

)
etc, (2.11)

where the object FS[2] is a vector of field strengths for the 4 gauge fields: the gravipho-

ton and the three coupled vectors. The last term in (2.10) is understood as a typical

kinetic-style term, with matrix multiplication operative on the non-Lorentz indices; the

transpose also only operates on the non-Lorentz index on FS[2]. The invariant trace

terms tr[∂M−1∂M] were already discussed in section 2.3.

Crucially the model admits extremal black hole solutions carrying four electric and

four magnetic charges [2, 61, 65] denoted q0, q1, q2, q3, p0, p1, p2, p3. These may be

organised into a 2× 2× 2 hypermatrix with an associated hyperdeterminant, first intro-

duced by Cayley in 1845 [3]. However, the generating solution depends on just 8−3 = 5

parameters [66, 67], after fixing the action of the isotropy subgroup SO3
2. Whether the

solution is embedded in N = 4 with symmetry SL2×SO6,22 and charges transforming

in a (2,28) or N = 8 with symmetry E7(7) and charges transforming in the 56, in all

cases, remarkably, the same five parameters suffice to describe these 56-charge black

holes [66,67].

Calculating the area (with a view to calculate the entropy) requires evaluating the

moduli not asymptotically, but with their frozen horizon values which are fixed in terms

of the charges [35]. This ensures that the entropy is moduli-independent, as it should

be. This calculation for the model with the STU prepotential was carried out in [2] with

charges denoted (p0, q0), (p1, q1), (p2, q2), (p3, q3) and O2,2 scalar products

p2 = (p0)2 + (p1)2 − (p2)2 − (p3)2,

q2 = (q0)2 + (q1)2 − (q2)2 − (q3)2,

p · q = (p0q0) + (p1q1) + (p2q2) + (p3q3).

(2.12)
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In these variables, the entropy is given by the quartic polynomial expression

(S/π)2 = −(p · q)2

+4
[
(p1q1)(p2q2) + (p1q1)(p3q3) + (p3q3)(p2q2)

+q0p
1p2p2 − p0q1q2q3

] (2.13)

which is [SL2(Z)]3 invariant as required and symmetric under transformations: p1 ↔
p2 ↔ p3 and q1 ↔ q2 ↔ q3. It is in fact none other than the hyperdeterminant of the

charge hypermatrix.

2.5 N = 8 black holes

The most general class of black hole solutions in N = 8 supergravity/M-theory are

equipped with charges belong to the fundamental 56-dimensional representation of E7(7),

and the black hole entropy is a quartic polynomial in the 56 charges given by

S = π
√
|I4|, (2.14)

where I4 is Cartan’s quartic E7 invariant [57, 68–70], the singlet in 56× 56× 56× 56

given by

I4 = − tr(xy)2 + 1
4(trxy)2 − 4 (Pf x+ Pf y) , (2.15)

where xIJ and yIJ are 8×8 antisymmetric matrices and Pf is the Pfaffian. An alternative

expression has been provided by Cremmer and Julia [57]

I4 = tr(Z̄Z)2 − 1
4(tr Z̄Z)2 + 4

(
Pf Z + Pf Z̄

)
. (2.16)

Here

ZAB = − 1
4
√

2
(xIJ + iyIJ)(ΓIJ)AB, (2.17)

and

xIJ + iyIJ = −
√

2
4 ZAB(ΓAB)IJ . (2.18)

The matrices of the SO8 algebra are (ΓIJ)AB where (I, J) are the 8 vector indices and

(A,B) are the 8 spinor indices. The (ΓIJ)AB matrices can be considered also as (ΓAB)IJ

matrices due to equivalence of the vector and spinor representations of the SO8 Lie

algebra. The exact relation between the Cartan invariant in (2.15) and Cremmer-Julia

invariant [57] in (2.16) was established in [71,72]. Here ZAB is the central charge matrix
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and (x, y) are the quantised charges of the black hole (28 electric and 28 magnetic). The

relation between the entropy of stringy black holes and the Cartan-Cremmer-Julia E7(7)

invariant was established in [69]. The Cartan basis of (2.15) only displays a manifest

SO8 symmetry, whereas it was proved in [68] and [57] that the sum of all terms in (2.15)

is invariant under an SU8 symmetry. To address this, the central charge matrix ZAB

can be brought through an SU8 transformation to a canonical, antisymmetric matrix

format:

ZAB =


z1 0 0 0

0 z2 0 0

0 0 z3 0

0 0 0 z4

⊗
(

0 1

−1 0

)
, (2.19)

where zi = ρie
iϕi are complex. In this way the parameter count is reduced from 56 to 8.

The meaning of these parameters was clarified in a systematic treatment in [73]. Writing

the four complex parameters as zi = ρie
iϕi one can remove a further three phases by

an SU8 rotation, but the overall phase cannot be removed as it is related to an extra

parameter in the class of black hole solutions [66,74]. In this basis, the quartic invariant

takes the form [69]

I4 =
∑
i

|zi|4 − 2
∑
i<j

|zi|2|zj |2 + 4 (z1z2z3z4 + z̄1z̄2z̄3z̄4)

= (ρ1 + ρ2 + ρ3 + ρ4)

× (ρ1 + ρ2 − ρ3 − ρ4)

× (ρ1 − ρ2 + ρ3 − ρ4)

× (ρ1 − ρ2 − ρ3 + ρ4)

+ 8ρ1ρ2ρ3ρ4 (cosϕ− 1) .

(2.20)

Therefore a 5-parameter solution is called a generating solution for other black holes in

N = 8 supergravity/M-theory [67,75].

If the phase in (2.20) vanishes (which is the case if the configuration preserves at

least 1/4 supersymmetry [73]), I4 of (2.20) becomes

I4 = s1s2s3s4, (2.21)
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where si are given by the ρi of (2.20)

s1 = ρ1 + ρ2 + ρ3 + ρ4,

s2 = ρ1 + ρ2 − ρ3 − ρ4,

s3 = ρ1 − ρ2 + ρ3 − ρ4,

s4 = ρ1 − ρ2 − ρ3 + ρ4,

(2.22)

and we order the si so that s1 ≥ s2 ≥ s3 ≥ |s4|. The charge orbits [70,73,76] for the black

holes depend on the number of unbroken supersymmetries or the number of vanishing

eigenvalues as in Table 2.3. “Large” and “small” black holes are classified by the sign of

I4:

I4 > 0, (2.23a)

I4 = 0, (2.23b)

I4 < 0. (2.23c)

Non-zero I4 corresponds to large black holes, which are BPS for I4 > 0 and non-BPS

for I4 < 0, and vanishing I4 corresponds to small black holes. Case (2.23a) requires that

only 1/8 of the supersymmetry is preserved, while we may have 1/8, 1/4 or 1/2 for case

(2.23b). This situation is summarised in Table 2.3.

Table 2.3: Classification of N = 8, D = 4 black holes. The distinct charge orbits are
determined by the number of non-vanishing eigenvalues and I4, as well as the number
of preserved supersymmetries.

Orbit s1 s2 s3 s4 I4 Black hole SUSY

E7(7) /(E6(6) nR27) > 0 0 0 0 0 small 1/2

E7(7) /(O5,6 nR32 ×R) > 0 > 0 0 0 0 small 1/4

E7(7) /(F4(4) nR26) > 0 > 0 > 0 0 0 small 1/8

E7(7) /E6(2) > 0 > 0 > 0 > 0 > 0 large 1/8

E7(7) /E6(2) > 0 > 0 > 0 < 0 < 0 large 0

E7(7) /E6(6) > 0 > 0 > 0 < 0 < 0 large 0

When the xIJ and yIJ charge matrices are themselves SU8 transformed into the eight
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parameter canonical form of (2.19) we have

(xIJ + yIJ)can =


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

⊗
(

0 1

−1 0

)
. (2.24)

The Cartan invariant can be computed in this basis and rewritten again in terms of x

and y matrices to obtain

I4 =

−(x01y01 + x23y23 + x45y45 + x67y67)2

+ 4(x01x23y01y23 + x01x45y01y45 + x23x45y23y45

+ x01x67y01y67 + x23x67y23y67 + x45x67y45y67)

− 4(x01x23x45x67 + y01y23y45y67),

(2.25)

which is simply Cayley’s hyperdeterminant (2.13) under the identifications

λ1 = x01 + iy01 = q0 + ip0,

λ2 = x23 + iy23 = −p3 + q3,

λ3 = x45 + iy45 = p2 − iq2,

λ4 = x56 + iy56 = p1 − iq1.

(2.26)

This result for E7(7) also applies, mutatis mutandis, to E7(C). In other words the Cartan

invariant reduces to Cayley’s hyperdeterminant in this basis, permitting STU black holes

to be classified using the same eigenvalue notation as N = 8 black holes, which we do in

Table 2.4. In contrast to N = 8, cases (2.23a) and (2.23b) both require preservation of

1/2 of the supersymmetry. The orbits for the large N = 2 black holes were previously

found in [70,77] while those of the small black holes were more recently found in [24].

One can also consider N = 4 supergravity coupled to m vector multiplets (symmetry

SL2(Z)×SO6,m(Z)) andN = 2 supergravity coupled to `+1 vector multiplets (symmetry

SL2(Z)× SO`,2(Z)) and the entropies are again the square root of quartic invariants.
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Table 2.4: Classification of N = 2, D = 4 STU black holes, see section 2.4. The values
of I4 and the eigenvalues si distinguish the different charge orbits. Here, small black
holes have a vanishing horizon.

Orbit s1 s2 s3 s4 I4 Black hole SUSY

SL3
2 /(SO2

1,1 nR3) > 0 0 0 0 0 small 1/2

SL3
2 /(O2,1×R) > 0 > 0 0 0 0 small 1/2

SL3
2 /R

2 > 0 > 0 > 0 0 0 small 1/2
SL3

2 /U2
1 > 0 > 0 > 0 > 0 > 0 large 1/2

SL3
2 /U2

1 > 0 > 0 > 0 < 0 < 0 large 0 (Z = 0)
SL3

2 / SO2
1,1 > 0 > 0 > 0 < 0 < 0 large 0 (Z 6= 0)

2.6 D = 5 black holes

In five dimensions we might consider N = 8 supergravity where the symmetry is the

non-compact exceptional group E6(6)(Z) and the black holes carry charges belonging

to the fundamental 27-dimensional representation (all electric) [73]. The electrically

charged objects are point-like and the magnetic duals are one-dimensional, or string-like,

transforming according to the contragredient representation. The black hole entropy is

a cubic polynomial in the 27 charges given by

S = π
√
|I3(Q)|, (2.27)

where I3 is Cartan’s cubic E6(6) invariant [68,70,73,78,79] which may be written

I3(Q) = qijΩ
jlqlmΩmnqnpΩ

pi, (2.28)

where qij is the charge vector transforming as a 27 which can be represented as traceless

Sp8 matrix.

In five dimensions the compact group K is USp8 (with conventions chosen so that

USp2 = SU2). This time the commutator of the supersymmetry generators yields a

central charge matrix ZAB which can be brought to a normal form by a USp8 transfor-

mation. In the normal form the central charge matrix can be written as

ZAB =


s1 + s2 − s3 0 0 0

0 s1 + s3 − s2 0 0

0 0 s2 + s3 − s1 0

0 0 0 −(s1 + s2 + s3)

×
(

0 1

−1 0

)
,

(2.29)
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where the si can be ordered so that |s1| ≥ |s2| ≥ |s3|. The cubic invariant, in this basis,

becomes

I3 = s1s2s3, (2.30)

Which furnishes three distinct possibilities as shown in Table 2.5. Unlike the four-

Table 2.5: Classification of D = 5,N = 8 black holes. The distinct charge orbits are
determined by the number of non-vanishing eigenvalues and I3, as well as the number
of unbroken supersymmetries.

Orbit s1 s2 s3 I3 Black hole SUSY

E6(6) /(O5,5 nR16) > 0 0 0 0 small 1/2

E6(6) /(O5,4 nR16) > 0 > 0 0 0 small 1/4

E6(6) /F4(4) > 0 > 0 > 0 > 0 large 1/8

dimensional case where flipping the sign of I4 interchanges BPS and non-BPS black

holes, the sign of the I3 (2.30) has no effect since it changes under a CPT transformation.

There are no non-BPS orbits in five dimensions.

One can also consider N = 4 supergravity coupled to m− 1 vector multiplets (sym-

metry SO1,1(Z) × SOm−1,5(Z)) and N = 2 supergravity coupled to ` vector multiplets

(symmetry SO1,1(Z)×SO`−1,1(Z)) where the entropies are again the square root of cubic

invariants.

2.7 Magic supergravities

In both four and five dimensions one can consider N = 2, 4, 8 supergravities. In four

dimensions one has the maximal case, N = 4 coupled to m vector multiplets, and

N = 2 coupled to ` + 1 vector multiplets, where there exist quartic invariants giving

the black hole entropy in each case. The N = 8 case admits a quantum information

theoretic interpretation, which descends to the N = 4,m = 6 and N = 2, ` = 2 cases1 as

truncations. There is a similar story in five dimensions where one has cubic invariants

instead.

However, as suggested by Levay [9], one might also consider the “magic” super-

gravities [80–84]. In four dimensions these correspond to the R,C,H,O (real, complex,

quaternionic and octonionic) N = 2 supergravity coupled to 6, 9, 15 and 27 vector multi-

plets with symmetries Sp6(Z),SU3,3,SO∗12 and E7(−25), respectively. Once again, it has

been shown [85] in all cases that there are quartic invariants whose square root yields

1The ` = 2 case is of course the one we already knew [1].
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the corresponding black hole entropy. In five dimensions [80–82] the magic supergravi-

ties are the R,C,H,ON = 2 supergravity coupled to 5, 8, 14 and 26 vector multiplets

with symmetries SL3(R),SL3(C), SU∗6 and E6(−26) respectively, all with cubic invariants

whose square root yields the corresponding black hole entropy [85].



Chapter 3

Quantum information theory

3.1 Qubits and entanglement

Quantum entanglement is a phenomenon in which the quantum states of two or more

objects must be described with reference to each other, even though the individual ob-

jects may be spatially separated [86–92]. This leads to correlations between observable

physical properties of the systems that are classically forbidden. For example it is pos-

sible to prepare two particles in a single quantum state such that when one is observed

to be spin-up, the other one will always be observed to be spin-down and vice versa,

this despite the fact that it is impossible to predict, according to quantum mechan-

ics, which set of measurements will be observed. As a result, measurements performed

on one system seem to be instantaneously influencing other systems entangled with it.

Note, however, that quantum entanglement does not enable the transmission of classical

information faster than the speed of light.

On a more philosophical note, the correlations predicted by quantum mechanics, and

observed in experiment, reject the principle of local realism, which is that information

about the state of a system should only be mediated by interactions in its immedi-

ate surroundings and that the state of a system exists and is well-defined before any

measurement.

While a physical property, indeed a physical resource, entanglement is not exactly

an observable - much like the state itself. As a resource it is leveraged in the fields

of quantum computing and quantum cryptography and has been used to implement

quantum teleportation experimentally.

The prototypical physical systems experiencing entanglement are quantum bits or

37
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qubits: two-level quantum systems

|ψ〉 = a0|0〉+ a1|1〉 (3.1)

where aA ∈ C and 〈ψ|ψ〉 = 1 so that in marked contrast to classical bits the system

can exist in a complex superposition of states |0〉 and |1〉. Entanglement presupposes

multiple systems to compare with each other so we see no entanglement for a lone qubit.

To describe two qubits, one forms the tensor product of two single qubit states

|ψ〉 =
1∑

A,B=0

aAB|A〉 ⊗ |B〉 =:
1∑

A,B=0

aAB|AB〉

= a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉.

(3.2)

From the standpoint of this model, the physical phenomenon of entanglement is the

property of the state corresponding to the failure of the sum of tensor products (3.2) to

factorise: non-separability. When a two-level system doesn’t suffice, one has recourse to

qutrits: three-level quantum systems

|ψ〉 = a0|0〉+ a1|1〉+ a2|2〉, (3.3)

and more generally to qudits: d-level systems

|ψ〉 =
d−1∑
A=0

aA|A〉. (3.4)

Finally one can describe any number n of such systems as a linear aggregate of n-fold

tensor products

|ψ〉 =
∑

A1···An

aA1···An |A1〉 ⊗ · · · ⊗ |An〉 ≡
∑

A1···An

aA1···An |A1 · · ·An〉, (3.5)

where the sums can in general be of differing lengths to accommodate combinations of

qubit, qutrits, etc. The 2n coefficients aA1···An of an n qubit system can be arranged in

n-dimensional hypercubes as in Figure 3.1. Of particular significance to us is the n = 3

cube, which can be interpreted as a 2 × 2 × 2 hypermatrix sporting a generalisation of

a matrix determinant known as Cayley’s hyperdeterminant. These hypercubes famously

make an appearance in classical information theory, where the minimum number of edges

between nodes is the Hamming distance between them, a useful metric in error detection
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Figure 3.1: Two-dimensional projections of qubit coefficient hypercubes for one to four
qubits. The red edges in a projection correspond to the preceding hypercube.

and correction [93].

A little more formally, qudits occupy a complex Hilbert space H equipped with a

one-to-one map into its dual space H†,

† : H → H†,

|ψ〉 7→ (|ψ〉)† := 〈ψ|
(3.6)

which defines an inner product 〈ψ|φ〉 and satisfies

(α|ψ〉)† = 〈ψ|α∗,

(|ψ〉+ |φ〉)† = 〈ψ|+ 〈φ|,

}
(3.7a)

〈ψ|φ〉∗ = 〈φ|ψ〉, (3.7b)

〈ψ|ψ〉 ≥ 0, (3.7c)

for all |ψ〉, |φ〉 ∈ H, α ∈ C with saturation of the inequality for null |ψ〉 only.

In particular a qubit inhabits the 2-dimensional complex Hilbert space C2. An arbi-

trary n-qubit system is then simply a vector in the n-fold tensor product Hilbert space

C2⊗, . . .⊗ C2 = [C2]n.
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3.2 Entanglement classification

3.2.1 The (S)LOCC paradigm

Entanglement being a resource, one is compelled to quantify it and discriminate systems

by means of it, just as one does for more familiar classical resources such as energy or

entropy [94]. Non-separability is an easy to understand notion of entanglement, but

it is the more physical description of classically forbidden inter-state correlations that

furnishes a means of quantifying entanglement.

The general idea is to partition state space into orbits using classical-correlation re-

specting transformations. The appropriate transformations are supplied by the principle

of (stochastic) local operation and classical communication or (S)LOCC. In the LOCC

paradigm, a multipartite state may be split into its relevant subsystems which are dis-

tributed to different labs where they may be experimented upon, the results optionally

being disseminated by classical means. Classical correlations can be established using

LOCC, but since the protocol can only create separable states it is unable to establish

genuine quantum correlations: LOCC cannot create entanglement [95]. This of course

leads to the restriction that any putative entanglement measure be a monotonically de-

creasing function of any LOCC transformation: an entanglement monotone. The LOCC

method of transforming states forms a hierarchy through some states not being inter-

convertible. States that can be LOCC related should however be physically equivalent

with respect to their entanglement properties, a notion called LOCC equivalence. It was

shown in [96] that two states of a composite system are LOCC equivalent if and only

if they may be transformed into one another using the group of local unitaries (LU),

unitary transformations which factorise into separate transformations on the component

parts. In the case of n qudits, the LU group (up to a phase) is given by [SUd]
n. The LU

orbits carve the Hilbert space into equivalence classes. For a n-qudit system the space

of orbits is given by [97,98]:
[Cd]n

U1×[SUd]n
. (3.8)

As it happens however, this LU classification is very restrictive and fails to relate nomi-

nally equivalent states: even simple bipartite systems will not, in general, be related [99].

Furthermore, continuous parameters are required to describe the space of entanglement

classes [97,98,100,101]. Coarse graining this classification to one that is more physically

acceptable is what puts the S in SLOCC: rather than require that states be deter-

ministically related to each other by LOCC, instead we require only that they may be

transformed into one another with some non-zero probability of success, hence stochastic
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LOCC [96,99].

It is proved in [99] that for n qudits, the SLOCC equivalence group is (up to an

overall complex factor) [SLd(C)]n. Essentially, we may identify two states if there is

a non-zero probability that one can be converted into the other and vice-versa, which

means we get [SLd(C)]n orbits rather than the [SUd]
n kind of LOCC. This generalisation

may be physically motivated by the fact that any set of SLOCC equivalent entangled

states may be used to perform the very same non-classical, entanglement dependent,

operations, only with varying likelihoods of success. For a n-qudit state the space of

SLOCC equivalence classes is given by [99]:

[Cd]n

[SLd(C)]n
. (3.9)

Invariants of the quotient group (which are polynomials in the state vector coefficients)

may then act as discriminating polynomials - entanglement measures [95,96,98,101–113].

In the qubit case d = 2, the lower bound on the number of continuous variables needed

to parameterise the space of orbits is 2(2n−1)−6n so that for three qubits in particular

the space of orbits is finite and discrete giving the concise classification of entanglement

classes of [99].

3.2.2 Two qubits

The state norm, despite being fixed for normalised states, is generically a discriminating

polynomial of the simplest variety, serving to distinguish the trivial null class from all

others. This is all one has for one qubit (transforming as a 2 of SL2) since all non-null

states are separable. For two qubits transforming as a (2,2) of [SL2]2 the bipartite

measure is the concurrence CAB

CAB = 2
√

det ρA = 2
√

det ρB = 2|det aAB| = 2|a00a11 − a01a10| (3.10)

where ρA and ρB are reduced density operators formed as partial traces of the full pure

state density operator |ψ〉〈ψ|

(ρA)A1A2 = δB1B2aA1B1a
∗
A2B2

,

(ρB)B1B2 = δA1A2aA1B1a
∗
A2B2

.
(3.11)
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This is to be compared with the von Neumann entropy E (an extension of the Shannon

entropy):

E = − tr [ρA log2(ρA)] = − tr [ρB log2(ρB)] . (3.12)

CAB is a nonlinear function of E , but as Figure 3.2 shows, E increases monotonically

from 0 to 1 as C goes from 0 to 1,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

CAB

E
HC A

B
L

Figure 3.2: The von Neumann entropy as a function of concurrence

E(CAB) = h(1
2 [1 +

√
1− C2

AB])

h(x) := −x log2(x)− (1− x) log2(1− x),
(3.13)

making both acceptable as entanglement measures, though the concurrence becomes

more complicated for mixed states. Typically the relevant discriminating polynomial is

expressed as the two-qubit 2-tangle

τAB := C2
AB = 2[(tr ρ)2 − tr ρ2] (3.14)

where ρ is the total density operator. Exemplary states are

• Separable: |ψ〉 = 1√
2
(|00〉+ |01〉) for which τAB = 0

• Bell state/EPR state [87,89]: |ψ〉 = 1√
2
(|00〉+ |11〉) for which τAB = 1

3.2.3 Three qubits

For three qubits transforming as a (2,2,2) of [SL2]3 there are six SL2(C)3 invariant

polynomials that measure the entanglement and discriminate between the orbits. There
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is as always the quadratic norm, followed at quartic order by three local entropies SA,B,C

SA = 4 det ρA = 4 det trBC |ψ〉〈ψ|,

SB = 4 det ρB = 4 det trCA|ψ〉〈ψ|,

SC = 4 det ρC = 4 det trAB|ψ〉〈ψ|.

(3.15)

otherwise known as three-qubit 2-tangles and denoted τA(BC), τB(AC), and τC(AB). These

may be converted to an alternative set of three polynomials which are also referred to

as three-qubit 2-tangles [114]

τAB = C2
AB = 1

2

(
−τC(AB) + τA(BC) + τB(CA) − τABC

)
,

τBC = C2
BC = 1

2

(
−τA(BC) + τB(CA) + τC(AB) − τABC

)
,

τCA = C2
CA = 1

2

(
−τB(CA) + τC(AB) + τA(BC) − τABC

)
,

(3.16)

where CAB,CBC and CCA are the corresponding concurrences. These 2-tangles give

bipartite entanglements between pairs in 3-qubit system as shown in Figure 3.3.

ΤABC

ΤBC

ΤACΤAB

A

B C

A

B C

Figure 3.3: Tangles.

Next there is the sextic Kempe invariant [104]

K := aA1B1C1aA2B2C2aA3B3C3 āA1B2C3 āA2B3C1 āA3B1C2

= tr(ρA ⊗ ρBρAB)− tr(ρ3
A)− tr(ρ3

B)

= tr(ρB ⊗ ρCρBC)− tr(ρ3
B)− tr(ρ3

C)

= tr(ρC ⊗ ρAρCA)− tr(ρ3
C)− tr(ρ3

A).

(3.17)

It happens that this invariant is redundant for the purposes of classification. Neverthe-

less, in [115] the Kempe invariant was shown to vary continuously for a fixed orbit while

the other polynomials were held fixed, indicating that being an entanglement measure

is more restrictive than simply being an invariant and a monotone.
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Finally there is Cayley’s hyperdeterminant Det aABC or 3-tangle τABC

τABC = 4|Det aABC |, (3.18)

Det a := −1
2 ε

A1A2εB1B2εA3A4εB3B4εC1C4εC2C3

× aA1B1C1aA2B2C2aA3B3C3aA4B4C4 .
(3.19)

The 3-tangle, in contrast to the 2-tangles, is a measure of the genuine 3-way entan-

glement as depicted in Figure 3.3. The hyperdeterminant is compared to the ordinary

determinant in Figure 3.4. Unlike the two qubit array aAB, contraction with epsilon

a a

¶ ¶

a a a a

¶ ¶ ¶ ¶

¶ ¶

detHaL DetHaL

1�2 -1�2

Γ Γ

Figure 3.4: The hyperdeterminant (right) compared to the ordinary determinant (left)
in diagrammatic tensor notation. The encircled letters are tensors and the lines denote
index contractions. The hyperdeterminant can be viewed as the determinant of the
determinant-like quantity γ.

tensors in a determinant-like manner fails to saturate the indices of the three-qubit ar-

ray aABC . However the resulting object, which we call γ, does have two indices and

can be saturated with a determinant style epsilon contraction. There are three ways to

construct γ

(γA)A1A2 = aA1
BCaA2BC ,

(γB)B1B2 = aAB1
CaAB2C ,

(γC)C1C2 = aABC1aABC2 ,

(3.20)

but they satisfy

det γA = det γB = det γC = −Det a. (3.21)

The values of the five polynomials (recalling that K is redundant) carve the state

space into seven classes, with the entanglement classification complete with represen-
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tative states summarised in Table 3.1. The objects γA,B,C satisfy a complementary

Table 3.1: The values of the local entropies SA, SB, and SC and the hyperdeterminant
Det a are used to partition three-qubit states into entanglement classes.

Class Representative
Condition

ψ SA SB SC Det a

Null 0 = 0 = 0 = 0 = 0 = 0
A-B-C |000〉 6= 0 = 0 = 0 = 0 = 0
A-BC |010〉+ |001〉 6= 0 = 0 6= 0 6= 0 = 0
B-CA |100〉+ |001〉 6= 0 6= 0 = 0 6= 0 = 0
C-AB |010〉+ |100〉 6= 0 6= 0 6= 0 = 0 = 0

W |100〉+ |010〉+ |001〉 6= 0 6= 0 6= 0 6= 0 = 0
GHZ |000〉+ |111〉 6= 0 6= 0 6= 0 6= 0 6= 0

relationship with the local entropies SA,B,C : where in Table 3.1 SA = 0, SB,C 6= 0 we

would have γB,C = 0, γA 6= 0, etc. A visual representation of the SLOCC classes is

provided by the onion-like classification [4] of Figure 3.5.

GHZ

W

Null

A-B-C

B-AC

C-AB

A-BC

Figure 3.5: Onion-like classification of SLOCC orbits.

The classes and representatives

Null: The trivial zero entanglement orbit corresponding to vanishing states,

Null : 0. (3.22)
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Separable: Another zero entanglement orbit for completely factorisable product states,

A-B-C : |000〉. (3.23)

Biseparable: Three classes of bipartite entanglement

A-BC : |010〉+ |001〉,

B-CA : |100〉+ |001〉,

C-AB : |010〉+ |100〉.

(3.24)

W: Three-way entangled states that do not maximally violate Bell-type inequalities in

the same way as the GHZ class discussed below. However, they are robust in the

sense that tracing out a subsystem generically results in a bipartite mixed state

that is maximally entangled under a number of criteria [99],

W : |100〉+ |010〉+ |001〉. (3.25)

GHZ: Genuinely tripartite entangled Greenberger-Horne-Zeilinger [116] states. These

maximally violate Bell-type inequalities but, in contrast to class W, are fragile

under the tracing out of a subsystem since the resultant state is completely unen-

tangled,

GHZ : |000〉+ |111〉. (3.26)

These W and GHZ state definitions are readily generalised

|GHZN 〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
(3.27)

|WN 〉 =
1√
N

N∑
i=1

 i−1⊗
j=1

|0〉 ⊗ |1〉 ⊗
N⊗

j=i+1

|0〉

 (3.28)

however, there are multiple alternative W and GHZ states which do not conform to these

patterns, but respect the entanglement properties of the conventional definitions.

The seven listed entanglement classes are arranged in the entanglement hierarchy [99]

shown in Figure 3.6. Note that no SLOCC operations (invertible or not) relate the GHZ

and W classes; they are genuinely distinct classes of genuine tripartite entanglement.

However, from either the GHZ class or W class one may use non-invertible SLOCC

transformations to descend to one of the biseparable or separable classes and hence we



3.2. ENTANGLEMENT CLASSIFICATION 47

have a hierarchical entanglement structure.

GHZ

N = 4

W

N = 3

A-BC

N = 2a
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Bipartite

Tripartite

Entangled

Unentangled

Genuine

Degenerate

Figure 3.6: Three qubit entanglement hierarchy. The arrows are non-invertible SLOCC
transformations between classes that generate the stratification.

In anticipation of the brane wrapping interpretation of section 6.1 we present an

alternative parameterisation. For unnormalised three qubit states, the number of pa-

rameters [97] needed to describe inequivalent states is given by the dimension of the

space of orbits
C2 × C2 × C2

U1×SU2×SU2×SU2
, (3.29)

namely 16− 10 = 6. For subsequent comparison with the STU black hole, however, we

restrict our attention to states with real coefficients aABC . In this case one has

R2 ×R2 ×R2

SO2×SO2×SO2
, (3.30)

with dimension 8−3 = 5. Hence, the most general real three-qubit state can be described

by just five parameters [117], conveniently taken as four real numbers N0, N1, N2, N3 and

an angle θ 1:

|Ψ〉 = −N3 cos2 θ|001〉 −N2|010〉
+ N3 sin θ cos θ|011〉 −N1|100〉

− N3 sin θ cos θ|101〉+ (N0 +N3 sin2 θ)|111〉.
(3.31)

Representatives states in this parameterisation are provided in Table 3.2.

1This is obtained from the canonical form for real states, Eq. (11) of [117], by applying two different
SO(2) transformations on the second and third bits.
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Table 3.2: Entanglement class representatives for the five parameter state (3.31).

Class Entanglement Representative

A-B-C Separable N0|111〉
A-BC, AC-B, AB-C Biseparable N0|111〉 −N1|100〉

W Full bipartite −N1|100〉 −N2|010〉 −N3|001〉
GHZ Tripartite N0|111〉 −N1|100〉 −N2|010〉 −N3|001〉

3.2.4 Two qutrits

The bipartite entanglement of A and B is given by the 2-tangle [118–122]

τAB = 27 det ρA = 27 |det aAB|2, (3.32)

det aAB = 1
3!ε

A1A2A3εB1B2B3aA1B1aA2B2aA3B3

= a00(a11a22 − a12a21)

− a01(a10a22 − a12a20)

+ a02(a01a21 − a11a20),

(3.33)

where ρA is the reduced density matrix

ρA = TrB|Ψ〉〈Ψ|. (3.34)

The determinant is invariant under SL3,A×SL3,B, with aAB transforming as a (3,3),

and under a discrete duality that interchanges A and B. The only other discriminating

polynomial we require is C2, the sum of the principal minors of the density matrix:

C2 = |a00a11 − a01a10|2 + |a02a10 − a00a12|2 + |a01a12 − a02a11|2

+ |a01a20 − a00a21|2 + |a00a22 − a02a20|2 + |a10a21 − a11a20|2

+ |a12a20 − a10a22|2 + |a02a21 − a01a22|2 + |a11a22 − a12a21|2.

(3.35)

The entanglement classification for two qutrits is then summarised in Table 5.2.

Table 3.3: Two qutrit entanglement classification

Class ψ C2 τAB

Null 0 0 0
A-B > 0 0 0

Rank 2 Bell > 0 > 0 0
Rank 3 Bell > 0 > 0 > 0
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As was done in section 3.2.3, we present an alternative parameterisation in antici-

pation of comparison with the D = 5 black hole. This time restricting to unnormalised

states with real coefficients results in the space of orbits

R3 ×R3

SO3×SO3
, (3.36)

with dimension namely 9 − 6 = 3. Hence, the most general two-qutrit state can be

described by just three parameters, which may be conveniently taken to be three real

numbers N0, N1, N2:

|Ψ〉 = N0|00〉+N1|11〉+N2|22〉. (3.37)

3.3 Qubit covariants in classical invariant theory

3.3.1 Transvection and the Omega process

It is possible to systematically generate the discriminating polynomials of section 3.2.2

and section 3.2.3 (and more besides) using techniques from classical invariant the-

ory [110, 123–128]. The basic method was introduced by Cayley in 1845 [3] when he

introduced hyperdeterminant theory. Essentially, one operates on homogeneous polyno-

mials (forms) with differential operators to produce covariants. Covariants of a form in

this context are functions f(~a, ~x) of the form’s variables ~x and coefficients ~a that are

unchanged under general linear transformations, modulo factors of the determinant ∆

of the transformation

f(~a, ~x) = ∆wf ′(~a′, ~x′). (3.38)

where w is the weight of the covariant. Invariants are covariants with no ~x dependence.

When w = 0 the covariant or invariant is called absolute. The process by which covariants

are constructed from a base form is called transvection which is itself based upon the

Omega process. The mth order Omega process with respect to an m × m matrix of

variables V is a differential operator defined as

Ω :=

∣∣∣∣∣∣∣∣
∂

∂V11
· · · ∂

∂V1m
...

. . .
...

∂
∂Vm1

· · · ∂
∂Vmm

∣∣∣∣∣∣∣∣ ,
=
∑

π∈Sm(−)π
∏m
i=1

∂
∂Viπ(i)

.

(3.39)
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For example, a second order Omega process would be ∂
∂V11∂V22

− ∂
∂V12∂V21

. We will call

the matrix of which Ω is the determinant the Omega matrix Ω. The essential property

of the Omega matrix that permits the construction of covariants when acting on base

forms is the fact that it transforms with a factor of the inverse of the determinant of the

transformation, making it an example of an invariant process.

Defining P (
−→
Vi) := P (Vi1, . . . , Vip), we use the tensor product notation

⊗p
i=1 Pi to

denote P1(
−→
V1), . . . , Pp(

−→
Vp). A complete n-transvectant is then defined by

(P1, . . . , Pp)
(n) := tr Ωn⊗p

i=1 Pi, (3.40)

where tr sets all vectors of variables to be equal:
−→
V1 =

−→
V2 = · · · =

−→
Vp. Under the

exchange of any of the Pi, the transvectant picks up a factor of (−)n. For a complete

n-transvectant, the dimension v of the
−→
Vi vectors satisfies p = v = m. However more

generally, v can be any integer multiple of p: p = v/d. In such case, the polynomials

are expected to be multiforms; that is, while the polynomials accept p × d arguments,

they are homogeneous in each of the d sets of v variables. Separate Omega processes

can then operate on the d sets of variables to form a complete (n1, . . . , nd)-transvectant:

(P1, . . . , Pp)
(n1,...,nd) := tr Ωn1

1 · · ·Ω
nd
d

⊗p
i=1 Pi. (3.41)

When the Pi have multiweights (w11, . . . , w1d), . . . , (wp1, . . . , wpd) the resulting covariant

has multiweight (w11 + · · ·+wp1 +n1, . . . , w1d+ · · ·+wpd+nd). In the multidegree case,

transvectants satisfy p = v/d = m.

In the case of n qudits the base form is the state itself |ψ〉 =
∑d−1

i=0 aA1···An |A1 · · ·An〉
where the coefficients ~a are aA1···An and the variables ~x are the basis kets |A1 · · ·An〉. This

trivial covariant is a multiform of multidegree (1, . . . , 1︸ ︷︷ ︸
n

) which we will denote A1 · · · 1︸ ︷︷ ︸
n

.

Following [125] we then transvect in the following particular manner

(A1···1, · · · (A1···1, (A1···1, A1···1)s11···s1n)s21···s2n · · · )sq1···sqn (3.42)

so that we have a q × n transvectant specification matrix s. We restrict to
∑n

j=1 sij >

0 (where sij ≥ 0 by definition) to avoid transvectants that are merely products of

previously generated ones. The resulting transvectant can be systematically named

X(q+1−2
∑q
i=1 si1)···(q+1−2

∑q
i=1 sin) (3.43)

where X is the (q + 1)th letter of the alphabet. For example if we don’t transvect
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at all we have a 0 × n matrix s so that X is the first letter of the alphabet A and

q + 1− 2
∑q

i=1 sij = 1 for all 1 ≤ j ≤ n. In other words this notation is consistent with

calling the state A1···1. Transvecting once we have

(A1···1, A1···1)s11···s1n = B(2−2s11)···(2−2s1n). (3.44)

As an example, for two qubits the two nonvanishing covariants are A11 and B00 =

(A11, A11)11. This notation allows one to read off the form of the monomials of a covariant

from its name or transvection specification:

a
(q+1)
A1···An |A1〉⊗(q+1−2

∑q
i=1 si1) ⊗ |An〉⊗(q+1−2

∑q
i=1 sin). (3.45)

Naturally the sij must also be such that q+1−2
∑q

i=1 sij ≥ 0 for all 1 ≤ j ≤ n to prevent

negative tensor powers. Most acceptable covariant specifications s will actually result in

vanishing transvectants. In the case when all tensor powers are empty the covariant is

actually an invariant, such as the determinant B00. Though informative, this notation

will still assign the same name to different covariants with identical monomial structure

so, depending on the task at hand, one must keep track of the underlying polynomials.

For three qubits one obtains the degree 2 covariants B200, B020, B002 which are in fact

γA, γB, γC . At degree 3 one finds C111 which is related to the Kempe invariant K,and

at degree 4 there is the hyperdeterminant D000. If one is insensitive to permutations

of qubits, covariants collapse into multiweight classes: B200, B020, B002 → 3B200. While

∆ and 〈ψ|ψ〉 correspond directly to their LOCC class counterparts modulo numerical

factors, the local entropies Si and Kempe invariant obey the following

Si = 16
[∑

j〈Bj |Bj〉 − 〈Bi|Bi〉
]

〈Bi|Bi〉 = 1
32

[∑
j Sj − 2Si

] (3.46)

∑
i〈Bi|Bi〉 = 1

32

∑
i Si (3.47)

K = 〈A111|A111〉3 + 3
2 [〈C111|C111〉 − 1

16〈A111|A111〉
∑

i Si] (3.48)

where B1 = B200, B
2 = B020, B

3 = B002. There are however some additional three-qubit

covariants at order 4: 3D220 as shown in Figure 3.7. When one attempts a covariant

based entanglement classification including this added set of covariants it turns out that

they are redundant (i.e. generate no new classes), just as C111 already was. We note

that the trilinear form C111 has the same multiweight structure as the state itself, and

can be considered a transformed state. This perspective is employed in section A.2.2 in
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Figure 3.7: Three-qubit covariant tree down to degree 4 (numbers on the left indicate
degree).

which C111 is proportional to the triple product T .

3.3.2 Molecular notation

A rather instructive molecular notation for transvection was developed by Clifford,

Sylvester, Kempe, Olver, and others [123] which can provide some insight to the struc-

ture of the qubit covariants. We will explore the notation for the three qubit case, but

the definitions extend trivially to n qubits. First note that second order omega processes

can be denoted

Ωαβ := det

(
∂xα ∂yα

∂xβ ∂yβ

)
=: [αβ], (3.49)

Where the bracket factor [αβ] is antisymmetric. When written in this form,transvectants

are referred to as bracket polynomials. The three-qubit covariants can then be obtained

as

B200 = 1
2 tr ( )([12])([12])A111 ⊗A111,

B020 = 1
2 tr ([12])( )([12])A111 ⊗A111,

B002 = 1
2 tr ([12])([12])( )A111 ⊗A111,

(3.50)

C111 = tr ([12])([23])([23])A⊗3
111, (3.51)

D000 = 1
2 tr ([12][34])([14][23])([14][23])A⊗4

111. (3.52)
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The notation essentially keeps track of the antisymmetrisations between constituent

copies of the base form A111. With that in mind, one can view the basic triform as a

trivalent atom (though we distinguish between |A111〉 and 〈A111|):

|A111〉 = |ψ〉 = Ψ ,

and 〈A111| = 〈ψ| = Ψ .
(3.53)

One can introduce two types of bond between these atoms. The first represents a simple

overlap between bras and kets. For example, the norm is given by:

〈ψ|ψ〉 = Ψ Ψ . (3.54)

The overlap bond is strictly between atoms of distinct type. In contrast, the second

type of bond represents the action of an Omega process. The bonds are colour-coded to

distinguish between the partial transvection slots.

For example, the Bi are given by dimers:

2B200 = tr ( )([12])([12])ψ ⊗ ψ = Ψ Ψ ,

2B020 = tr ([12])( )([12])ψ ⊗ ψ = Ψ Ψ ,

2B002 = tr ([12])([12])( )ψ ⊗ ψ = Ψ Ψ .

(3.55)

Strictly speaking, these bonds are directed since [αβ] is antisymmetric

Ψ Ψ ≡ Ψ Ψ ≡ − Ψ Ψ . (3.56)

The fact that the Bi dimers are ionic corresponds to the fact that they are covariants.
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To form invariants, we may neutralise them with overlap bonds.

4〈B200|B200〉 =

Ψ Ψ

Ψ Ψ

4〈B020|B020〉 =

Ψ Ψ

Ψ Ψ

4〈B002|B002〉 =

Ψ Ψ

Ψ Ψ

(3.57)

Attempting to neutralise with omega bonds causes them to vanish.

Next there is the trimer C111

C111 = tr ([12])([23])([23])ψ3 (3.58)

Equality still holds under interchange of colours. Again C111 is ionic and we neutralise

with overlap bonds.

C111 =

Ψ

Ψ Ψ

〈C111|C111〉 =

Ψ

Ψ

Ψ Ψ

Ψ

Ψ
(3.59)

Finally, there is the hyperdeterminant, which is neutral without needing overlaps

D000 = 1
2 tr ([12][34])([14][23])([14][23])ψ⊗4, (3.60)
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D000 =

Ψ Ψ

Ψ Ψ

. (3.61)

By establishing rules to determine whether a molecule vanishes or is equivalent to an-

other, the generation and examination of covariants by hand is greatly simplified.
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Chapter 4

Preliminary analogies

4.1 Three-qubits and N = 2, D = 4 black holes

The black hole/qubit correspondence begins with the recognition that the entropy S of

STU black holes is simply the three-qubit entanglement measure τABC in a different

basis. That is,

S =
π

2

√
τABC (4.1)

with the “dictionary” between bases given by:(
p0 , p1 , p2 , p3 , q0 , q1 , q2 , q3

)
=
(
a000, −a001, −a010, −a100, a111, a110, a101, a011

)
,

(4.2)

where this is the convention of [5] and differs from [1] in that the signs of a000, a011, a100, a111

are flipped, though of course both satisfy (4.1). As a side note, in [5] a simpler example

of such a correspondence is made between the entropy of the axion dilaton black hole

and the two-qubit 2-tangle S = π det(aAB) = π
2

√
τAB.

Two important distinctions between the black hole and quantum information con-

texts are

• Qudit wavefunctions may be normalised but there is no analogous restriction on

black hole charges.

• The quantised charges of STU black holes are integers transforming under SL2(Z)3

rather than SL2(C)3 [1, 2, 5, 61]

The second point may be addressed1 by restricting to real qubits or rebits in which the

1More recently, the Kostant-Sekiguchi correspondence allows us to map real orbits of black holes to

57
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state vector coefficients are real. This results in three cases to consider

Det a < 0, (4.3a)

Det a = 0, (4.3b)

Det a > 0. (4.3c)

Case (4.3a) corresponds to the non-separable or GHZ class [116], for example,

|Ψ〉 = 1
2(−|000〉+ |011〉+ |101〉+ |110〉). (4.4)

Case (4.3b) corresponds to the separable (A-B-C, A-BC, B-CA, C-AB) and W classes,

for example

|Ψ〉 = 1√
3
(|100〉+ |010〉+ |001〉). (4.5)

Case (4.3c) is also GHZ, for example the state (4.4) with a sign flip

|Ψ〉 = 1
2(|000〉+ |011〉+ |101〉+ |110〉), (4.6)

however in this case we could just as well use the canonical GHZ state.

In [1], cases (4.3a) and (4.3b) were shown to correspond to BPS black holes, for

which half of the supersymmetry is preserved. Case (4.3a) has non-zero horizon area

and entropy (“large” black holes), and case (4.3b) has vanishing horizon area and entropy

(“small” black holes), at least at the semi-classical level2. This alignment of the classi-

fication of N = 2 supersymmetric STU black holes with the entanglement classification

of three qubits is summarised in Table 4.1.

4.1.1 Higher order corrections

The small black holes have a singular horizon with vanishing area and entropy at the

classical level, but may acquire nonvanishing area and entropy due to quantum cor-

rections, characterised by higher derivatives in the supergravity Lagrangian. One can

interpret this as consequence of the quantum stretching of the horizon conjectured by

Susskind [129] and Sen [130,131]. See also [132–137].

Kallosh and Linde [5] have noted that this quantum entropy also admits an interpre-

tation in terms of qubit entanglement measures. They propose a general formula that

the complex orbits of qubits and bypass rebits.
2However, small black holes may acquire a non-zero entropy through higher order quantum effects.
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Table 4.1: The values of the local entropies SA, SB, and SC and the hyperdeterminant
Det a (defined in section 3.2.3) are used to partition three-qubit states into entanglement
classes. The black hole/qubit correspondence relates these to D = 4,N = 2, STU model
black holes). Specifically, the to absence/presence of a horizon (small/large) and the
extent of supersymmetry.

Class SA SB SC Det a Black hole SUSY

A-B-C 0 0 0 0 small 1/2
A-BC 0 > 0 > 0 0 small 1/2
B-CA > 0 0 > 0 0 small 1/2
C-AB > 0 > 0 0 0 small 1/2

W > 0 > 0 > 0 0 small 1/2
GHZ > 0 > 0 > 0 < 0 large 1/2
GHZ > 0 > 0 > 0 > 0 large 0

correctly reduces to the known special cases. It is given by

Stotal =
π

2

√
τABC +

4c2

3
(CAB + CBC + CCA) +

8K2

3
|Ψ|, (4.7)

where c2 and K are constants that depend upon the compactification. Clearly this now

involves the bipartite entanglement of three qubits.

For completely separable states with only one nonzero charge, this reduces to

S = K
√

2
3 |Ψ| = πK

√
2
3 |q0|. (4.8)

For the bipartite and W-states at large values of the charges, the concurrences are much

greater than |Ψ| and the formula reduces to

Stotal = π

√
c2

3
(CAB + CBC + CCA) (4.9)

= 4π
√
|q0(p1 + p2)|. (4.10)

Finally, for the GHZ states the (unnormalised) 3-tangle is much greater than the con-

currences and we regain

S = π
2

√
τABC . (4.11)
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4.2 The N = 8 generalisation

4.2.1 Decomposing E7(7) ⊃ SL7
2

Just as the entropy of the STU model possesses an SL2(Z)3 symmetry which permits

a correspondence with the SL2(C)3 invariant three-way entanglement measure of three

qubits we seek a system whose entanglement corresponds to the E7(7)(Z) invariantN = 8

entropy. This despite the fact that we can only expect an SLd(C)n symmetry from n

qudits. Nevertheless E7(7)(Z) contains SL2(Z)7 as a subgroup:

E7(7)(Z) ⊃ SL2(Z)7,

E7(7)(C) ⊃ SL2(C)7.
(4.12)

This initially suggests a simple analogy with a seven qubit system, but this perception

is altered by the details of the decomposition of the fundamental 56. One begins by

decomposing under the maximal subgroup SL2×SO6,6

E7(7) ⊃ SL2,A × SO6,6,

56 → (2,12) + (1,32),
(4.13)

where the SL2 is labelled with an A in anticipation of a seven qubit interpretation. The

decomposition then proceeds as shown in Figure 4.1 down to

Figure 4.1: E7(7)(Z) ⊃ SL2(Z)7 decomposition

E7(7) ⊃ SL2,A×SL2,B ×SL2,D ×SL2,C ×SL2,G×SL2,F ×SL2,E , (4.14)
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Figure 4.2: Detailed decomposition of the 56 of E7(7)(Z) under E7 ⊃ SL7
2

with the detailed decomposition of the 56 shown in Figure 4.2 where the ordering of the

SL2 factors is the same as in Figure 4.1. This particular ordering of factors is chosen to

admit an interesting decomposition pattern upon the permutation (34)(57)

E7(7) ⊃ SL2,A×SL2,B ×SL2,C ×SL2,D ×SL2,E ×SL2,F ×SL2,G, (4.15)

so that

56→ (2,2,1,2,1,1,1)

+ (1,2,2,1,2,1,1)

+ (1,1,2,2,1,2,1)

+ (1,1,1,2,2,1,2)

+ (2,1,1,1,2,2,1)

+ (1,2,1,1,1,2,2)

+ (2,1,2,1,1,1,2).

(4.16)

An analogous decomposition holds for

E7(C) ⊃ SL2(C)7. (4.17)
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4.2.2 Interpretation

Instead of a straightforward seven qubits, which would have the wrong counting 56 6→
(2,2,2,2,2,2,2), we find the direct sum of seven copies of the (23 = 8)-dimensional

three qubit (2,2,2)s. That is, rather than

aABCDEFG|ABCDEFG〉, (4.18)

we have
|Ψ〉56 = aAB•D•••|AB •D • • • 〉

+ b•BC•E•• | •BC •E • • 〉
+ c••CD•F• | • •CD •F • 〉
+ d•••DE•G| • • •DE •G〉
+ eA•••EF• |A • • •EF • 〉
+ f•B•••FG | •B • • •FG〉
+ gA•C•••G |A •C • • •G〉,

(4.19)

which we abbreviate to
|Ψ〉56 = aABD|ABD〉

+ bBCE |BCE〉
+ cCDF |CDF 〉
+ dDEG|DEG〉
+ eEFA |EF A〉
+ fFGB |FGB〉
+ gGAC |GAC〉.

(4.20)

This state has the following properties

• Any pair of states has a qubit in common

• Each qubit is excluded from four out of the seven states

• Two given qubits are excluded from two out of the seven states

• Three given qubits are never excluded.

Despite not being a subsector of the seven qubit space there are seven qubits coupled

to each other in groups of three as shown in Figure 4.3. Consequently we refer to this

situation as the tripartite entanglement of seven qubits, though this phrase needs to be

carefully interpreted. One could in fact consider (4.20) to be a special 56-dimensional
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A

B

C

DE

F

G

A

B

C

DE

F

G

Figure 4.3: E7 entanglement diagram corresponding to the decomposition (4.16) and the
state (4.20). Each of the seven vertices A,B, . . . , G represents a qubit and each of the
seven triangles ABD,BCE, . . . , GAC describes a tripartite entanglement.

subspace of a 37 = 2, 187-dimensional seven qutrit space, where we decompose

SL7
3 ⊃ SL7

2, (4.21)

(3,3,3,3,3,3,3)→ 1 term like (2,2,2,2,2,2,2)

+ 7 terms like (2,2,2,2,2,2,1)

+ 21 terms like (2,2,2,2,2,1,1)

+ 35 terms like (2,2,2,2,1,1,1)

+ 35 terms like (2,2,2,1,1,1,1)

+ 21 terms like (2,2,1,1,1,1,1)

+ 7 terms like (2,1,1,1,1,1,1)

+ 1 term like (1,1,1,1,1,1,1) ,

(4.22)

so that the singlets originate from 3→ 2 + 1. Thus, our state (4.20) is indeed a seven

qubit subsector. Nevertheless the main point of interest is the hidden E7(7) symmetry

which must be respected by the entanglement measure. If we’re in the market for a

quartic E7(7) invariant, the sole possibility is Cartan’s I4. To express I4 in the basis of

the amplitudes a, b, . . . , g one writes the decomposition (4.16) in a more terse form with

singlets discarded and doublets appropriately labelled

56 = (ABD) + (BCE) + (CDF ) + (DEG) + (EFA) + (FGB) + (GAC), (4.23)

or schematically

56 = a+ b+ c+ d+ e+ f + g. (4.24)
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The invariant is then the singlet in 56× 56× 56× 56:

I4 = a4 + b4 + c4 + d4 + e4 + f4 + g4

+ 2
[
a2b2 + a2c2 + a2d2 + a2e2 + a2f2 + a2g2

+ b2c2 + b2d2 + b2e2 + b2f2 + b2g2

+ c2d2 + c2e2 + c2f2 + c2g2

+ d2e2 + d2f2 + d2g2

+ e2f2 + e2g2

+ f2g2
]

+ 8 [abce+ bcdf + cdeg + defa+ efgb+ fgac+ gabd] .

(4.25)

The terms like

a4 = (ABD)(ABD)(ABD)(ABD)

= 1
2ε
A1A2εB1B2εD1D4εA3A4εB3B4εD2D3

× aA1B1D1aA2B2D2aA3B3D3aA4B4D4 ,

(4.26)

are just seven hyperdeterminants (modulo sign), each excluding four qubits. Products

like

a2b2 = (ABD)(ABD)(BCE)(BCE)

= 1
2ε
A1A2εB1B3εD1D2εB2B4εC3C4εE3E4

× aA1B1D1aA2B2D2bB3C3E3bB4C4E4 ,

(4.27)

are 3× 7 = 21 cross entanglements excluding two qubits. A more compact definition is

afforded via the γ decomposition of the hyperdeterminant

− 1
2 tr[(γ2(a) · ε)T · ε · γ1(b)]. (4.28)

Finally, products like

abce = (ABD)(BCE)(CDF )(EFA)

= 1
2ε
A1A4εB1B2εC2C3εD1D3εE2E4εF3F4

× aA1B1D1bB2C2E2cC3D3F3eE4F4A4 ,

(4.29)
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are seven cross entanglements excluding one qubit. The full entanglement can then be

expressed as

I4 =
7∑
i=1

a4
i + 2

7∑
i=1

7∑
j=i+1

a2
i a

2
j + 8

7∑
i=1

aia|i+1|7a|i+2|7a|i+4|7 (4.30)

These results may be verified using the dictionary between amplitudes and the Cartan

basis charges discussed in section 5.1.

4.2.3 The Fano plane

The particular pattern of the decomposition (4.16) and the state (4.20) is encapsulated

in the Fano plane as shown in Figure 4.4. The Fano plane is a projective plane with

seven points and seven lines (the circle counts as a line). We may associate it to the

state (4.20) by interpreting the points as the seven qubits A-G and the lines as the

seven tripartite entanglements. This is consistent as there are three points on every

line and three lines through every point. We refer to the amplitudes of the state (4.20)

as the Fano basis of the Cartan invariant. If the plane is oriented like ours, one may

use the directed lines to read off a multiplication table for imaginary octonions. This

A

B C

D E

F

G

Figure 4.4: The Fano plane with nodes labelled with qubits A, . . . , G in a pattern that
matches the decomposition (4.16). Edges are oriented in a way that allows one to read
off a multiplication table for imaginary octonions.

is not the end of the story since the decomposition (4.16) can be tabulated against the

corresponding amplitudes a, . . . , g and qubits A, . . . , G as in Table 4.2 to reveal a dual
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description in which the Fano nodes and edges swap roles, resulting in a dual state

Table 4.2: The seven terms in decomposition (4.16) may be written in a grid such that
Fano lines and vertices are rows and columns. This permits easy identification of the
dual lines and vertices, which are simply given by columns and rows.

A B C D E F G

a 2 2 1 2 1 1 1
b 1 2 2 1 2 1 1
c 1 1 2 2 1 2 1
d 1 1 1 2 2 1 2
e 2 1 1 1 2 2 1
f 1 2 1 1 1 2 2
g 2 1 2 1 1 1 2

|Ψ̃〉56 = Aaeg |aeg〉
+ Bbfa|bfa〉
+ Ccgb |cg b〉
+ Ddac|dac〉
+ Eebd |e bd〉
+ Ffce |f c e〉
+ Ggdf |gdf〉,

(4.31)

and a dual Fano plane shown in Figure 4.5 which also furnishes a multiplication table

for the imaginary octonions.

4.2.4 Subsectors

Having discussed the correspondence between N = 8 black holes and the tripartite

entanglement of seven qubits using E7(7), we can obtain analogous correspondences in

the N = 4 and N = 2 cases by taking them as subsectors of the full N = 8 theory,

examining the SL2×SO6,6 subgroup for N = 4 and an SL2×SO2,2 subgroup for N = 2.

In the first case we restrict to N = 4 by retaining just the 24 NS-NS charges belong-

ing to the (2,12) part of the decomposition of the fundamental 56 under its maximal

subgroup. These can be read off of Figure 4.2 to give

|Ψ〉 = aABD|ABD〉+ eEFA|EFA〉+ gGAC |GAC〉. (4.32)

So only qubit A is shared. This corresponds to the three lines passing through A in
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a

b

c

d

e

f g

Figure 4.5: The dual Fano plane has nodes and edges swapped with the Fano plane of
Figure 4.4 and is associated with the dual seven qubit state (4.31). With the above
orientation applied to the edges the dual plane also yields an imaginary octonion multi-
plication table.

the Fano plane or the aeg line in the dual Fano plane, meaning that we reduce from

imaginary octonions to imaginary quaternions. Then the equation analogous to (4.23)

is

(2,12) = (ABD) + (EFA) + (GAC) = a+ e+ g, (4.33)

and the corresponding quartic invariant, I4, reduces to the singlet in (2,12)× (2,12)×
(2,12)× (2,12)

I4 ∼ a4 + e4 + g4 + 2[e2g2 + g2a2 + a2e2]. (4.34)

The 24 numbers (aABD, eEFA, gGAC) can be identified with (Pµ, Qν) with µ, ν = 0, . . . , 11

to yield the SL2×SO6,6 invariant [61,66,74]

I4 = P 2Q2 − (P ·Q)2. (4.35)

So

I4 = Iaeg ≡ det(γ1(a) + γ2(g) + γ3(e)). (4.36)

A different subsector which excludes qubit A is obtained by keeping just the R-R charges:

the 1,32 in (4.13), which can again be read off Figure 4.2

(1,32) = (BCE) + (CDF ) + (DEG) + (FGB) = b+ c+ d+ f, (4.37)
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and the corresponding quartic invariant, I4, reduces to the singlet in (1,32)× (1,32)×
(1,32)×(1,32)

I4 ∼ b4 + c4 + d4 + f4 + 2[b2c2 + c2d2 + d2e2 + d2f2 + c2f2 + f2b2] + 8bcdf. (4.38)

This is does not correspond to any N = 4 black hole but rather to an N = 8 black hole

with only the R-R charges switched on.

For N = 2, examining a SL2×SO2,2 subgroup simply reproduces the SL2)3 of the

STU model which we have already considered

(2,2,2) = (ABD) = a, (4.39)

so the corresponding quartic invariant

I4 ∼ a4, (4.40)

is just Cayley’s hyperdeterminant

I4 = −Det a. (4.41)

4.3 The D = 5 generalisation

4.3.1 Decomposing E6(6) ⊃ SL3
3

We saw in section 4.2.1 and section 4.2.2 that the E7(7) invariant 4D N = 8 entropy could

be decomposed under SL2(C)7 to yield an analogy with a tripartite entangled seven-

qubit system. Similarly, we seek an E6(6) 5D black hole/string entropy decomposition

to SLd(C)n. It so happens that E6 admits the following decompositions

E6(6) ⊃ SL3(R)3, (4.42)

and

E6(C) ⊃ SL3(C)3. (4.43)

This suggests a correspondence to a simple three qutrit system [126], but just as the

details of the decomposition of the 56 in 4D led to a more specialised system, so too

does the detailed decomposition of E6(6). Specifically, under

E6(6) ⊃ SL3,A×SL3,B ×SL3,C , (4.44)

the 27 decomposes as

27→ (3′,3,1) + (1,3′,3′) + (3,1,3). (4.45)
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An analogous decomposition holds for

E6(C) ⊃ SL3(C)3. (4.46)

Note the new feature of this decomposition: in contrast to (4.16) we see primed repre-

sentations alongside unprimed ones. This is not to be ignored and suitable allowances

must be made in the interpretation of any embedded qutrit system.

4.3.2 Interpretation

Instead of a straightforward three qutrits (which would this time have the correct count-

ing), we see from (4.45) that rather than

aABC |ABC〉, (4.47)

we have

|Ψ〉27 = aA′B•|A′B•〉+ b•BC |•BC〉+ cA′•C′ |A′ • C ′〉, (4.48)

which we abbreviate to

|Ψ〉27 = aA′B|A′B〉+ bB′C′ |B′C ′〉+ cCA|CA〉, (4.49)

where A,A′ = 0, 1, 2. Note that:

1. Any pair of states has a qutrit in common

2. Each qutrit is excluded from one out of the three states

Despite not being a subsector of the three qutrit space (3,3,3), there are three qutrits

coupled to each other pairwise as shown in Figure 4.6. The appearance of both primed

and unprimed representations is respected by having the upper and lower indices distin-

guished

aA = 1
2ε
AB1B2a[B1B2] (4.50)

in contrast to the qubit case where the ε symbol simply related the two aA = εABaB. The

antisymmetry of a[B1B2] allows the interpretation of the 3′ as a pair of indistinguishable

“fermions”. Just as we referred to the 4D situation as the tripartite entanglement of

seven qubits, we can refer to the present situation as the bipartite entanglement of three

qutrits, and once again this terminology requires some interpretation.
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A

B C

Figure 4.6: The D = 5 analogue of Figure 4.3 is the three qutrit entanglement diagram
corresponding to the decomposition (4.45) and the state (4.49). It is a triangle with
vertices A,B,C representing the qutrits and the lines AB,BC and CA representing the
entanglements.

This time, one must explain the primed representations as well as the singlets. This

is achievable under the embedding

SL7 ⊃ SL3 (4.51)

under which

7→ 3 + 3′ + 1, (4.52)

so that the qutrits are embedded in 7-dits. Under

SL7,A×SL7,B ×SL7,C ⊃ SL3,A×SL3,B ×SL3,C (4.53)

we have

(7,7,7)→ (3′,3′,3′) + (3 ,3 ,3 ) + (1,1 ,1 )

+ (3′,3′,3 ) + (3′,3 ,3′) + (3,3′,3′)

+ (3′,3 ,3 ) + (3 ,3′,3 ) + (3,3 ,3′)

+ (3′,3′,1 ) + (3′,1 ,3′) + (1,3′,3′)

+ (3 ,3 ,1 ) + (3 ,1 ,3 ) + (1,3 ,3 )

+ (3′,1 ,1 ) + (1 ,3′,1 ) + (1,1 ,3′)

+ (3 ,1 ,1 ) + (1 ,3 ,1 ) + (1,1 ,3 )

+ (3′,1 ,3 ) + (3′,3 ,1 ) + (1,3 ,3′)

+ (3 ,1 ,3′) + (3 ,3′,1 ) + (1,3′,3 ),

(4.54)

so that the state (4.49) is indeed a special 27-dimensional subspace of a 73 = 343-

dimensional three 7-dit space. The hidden E6(6) symmetry must now be respected by
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the entanglement measure, which must be given by the cubic Cartan invariant (2.28)

τ(ABC) = 27|I3|2. (4.55)

To express I3 in the basis of amplitudes a, b, c on starts by rewriting (4.45) with singlets

suppressed and triplets labelled

27 = (AB) + (BC) + (CA), (4.56)

or symbolically

27 = a+ b+ c. (4.57)

The invariant I3 is then the singlet in 27× 27× 27:

I3 = a3 + b3 + c3 + 6abc. (4.58)

Terms like

a3 = (AB)(AB)(AB)

= 1
6εA1A2A3ε

B1B2B3aA1
B1a

A2
B2a

A3
B3 ,

(4.59a)

b3 = (BC)(BC)(BC)

= 1
6εB1B2B3εC1C2C3b

B1C1bB2C2bB3C3 ,
(4.59b)

c3 = (CA)(CA)(CA)

= 1
6ε
C1C2C3εA1A2A3cC1A1cC2A2cC3A3 ,

(4.59c)

exclude one qutrit (C, A, and B respectively), and the products

abc = (AB)(BC)(CA)

= 1
6a

A
Bb

BCcCA,
(4.60)

exclude none. One can truncate to just the (3,3) in (4.45) which excludes B

|Ψ〉 = cCA|CA〉, (4.61)

which is described by just that line not passing through B in the ABC triangle,

(3,3) = (CA) = c, (4.62)
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and the corresponding cubic invariant, I3, reduces to the singlet in (3,3)× (3,3)× (3,3)

I3 = det cCA ∼ c3. (4.63)

4.4 Magic supergravities

The black hole/qubit correspondence continues to hold for the magic supergravities. The

essential point is that although the N = 8 black hole charges are real and the entropy is

invariant under E7(7)(Z), the amplitudes of (4.20) are complex, with entanglement mea-

sure invariant under E7(C) which contains both E7(7)(Z) and E7(−25)(Z) as subgroups.

Thus, one could equally well have chosen the magic octonionic N = 2 supergravity

rather than the conventional N = 8 supergravity. It is true that

E7(7)(Z) ⊃ SL2(Z)7, (4.64)

but

E7(−25)(Z) 6⊃ SL2(Z)7 (4.65)

but this is irrelevant, since all that matters is

E7(C) ⊃ SL2(C)7. (4.66)

This line of reasoning also holds for the magic real, complex and quaternionic N = 2

supergravities which are, in any case truncations ofN = 8 (in contrast to the octonionic).

With this in mind one may revisit the ordinary N = 2 and N = 4 cases. Conventionally

we give the seven qubit subsector an N = 4 supergravity interpretation with symmetry

SL2(R)×SO6,6 [6], but we could equally have given an interpretation in terms of N = 2

supergravity coupled to 11 vector multiplets with symmetry SL2(R) × SO10,2. Since

SO`−1,2 is contained in SO`+1(C) and SO6,m is contained in SO12+m(C) one can give a

qubit interpretation to more vector multiplets for both N = 2 and N = 4, at least in

the case of SO4n(C) which contains SL2(C)⊗2n.

The same argument applies for the D = 5 magic supergravities. This time the

crucial observation is that the E6(C) invariance of the entanglement (4.55) contains both

E6(6)(Z) and E6(−26)(Z) as subgroups, so that magic octonionic N = 2 supergravity is

an equally good black hole correspondence. Although

E6(6)(Z) ⊃ SL3(Z)3, (4.67)
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but

E6(−26)(Z) 6⊃ SL3(Z)3 (4.68)

the relevant fact is still

E6(C) ⊃ SL3(C)3. (4.69)

Again, this holds for the magic real, complex and quaternionic N = 2 supergravities

which are, in any case truncations of N = 8 (in contrast to the octonionic). When

revisiting the ordinary N = 2 and N = 4 cases one notes that SO`,1 is contained in

SO`+1(C) and SOm,5 is contained in SO5+m(C), so we can give a qutrit interpretation

to more vector multiplets for both N = 2 and N = 4, at least in the case of SO6n(C)

which contains SL3(C)n.
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Chapter 5

Deepening correspondences

5.1 The Cartan invariant in various duality frames

Cartan’s quartic invariant I4 can be written in several bases that manifestly display the

symmetries of subgroups of E7, with the three most useful subgroups for our consider-

ations being SO8, SL7
2, and E6. Black holes are more conveniently described in either

the SO8 or E6 bases, whereas the SL7
2 basis is tailored to the qubits. Hence the com-

putation of explicit dictionaries between these bases was an important milestone in the

black hole/qubit correspondence as it cemented the validity of the SL7
2 decomposition of

I4 and permitted easier comparisons between the very different perspectives. The SO8

basis is the first one we encountered, namely the Cartan basis with its electric-magnetic

split

E7 ⊃ SO8,

56→ 28 + 28,

I4(x, y) = − tr(xy)2 + 1
4(trxy)2 − 4(Pf x+ Pf y).

(5.1)

We recall that this can be SU8 transformed to a canonical form that reduces to the

hyperdeterminant. Secondly we have the Fano basis, in which is written in terms of the

Fano amplitudes a, . . . , g

E7 ⊃ SL7
2, (5.2)

75
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56→(2,2,1,2,1,1,1)

+ (1,2,2,1,2,1,1)

+ (1,1,2,2,1,2,1)

+ (1,1,1,2,2,1,2)

+ (2,1,1,1,2,2,1)

+ (1,2,1,1,1,2,2)

+ (2,1,2,1,1,1,2),

(5.3)

I4 = a4 + b4 + c4 + d4 + e4 + f4 + g4

+ 2
[
a2b2 + a2c2 + a2d2 + a2e2 + a2f2 + a2g2

+ b2c2 + b2d2 + b2e2 + b2f2 + b2g2

+ c2d2 + c2e2 + c2f2 + c2g2

+ d2e2 + d2f2 + d2g2

+ e2f2 + e2g2

+ f2g2
]

+ 8 [abce+ bcdf + cdeg + defa+ efgb+ fgac+ gabd] .

(5.4)

The dictionary between the Fano basis and the Cartan basis charges is

xij = ηilC
l
jka

k
φ(i,j), (5.5)

yij = ηilC
l
jka

k
φ̃(i,j)

. (5.6)

Where i, j, k, l ∈ {0, . . . , 7}, C is the dual Fano plane structure constant array (i.e. the

structure constants of the multiplication table defined by the dual Fano plane generalised

so that Cijk = 0 for j = 0 or k = 0), η is the 8-dimensional Minkowski matrix (negative

signature), (a0, a1, . . . , a7) = (0, a, . . . , g), and φ and φ̃ are given by

φ(i, j) :=

7 i = 0 or j = 0

|(i− j)2|7 else
(5.7)

φ̃(i, j) := 7− φ(i, j). (5.8)

The φ(i, j) are known as (shifted) quadratic residues modulo seven. It can be helpful to

regard the eight components of each ai as a pair of quaternions.

Finally there is the Freudenthal/Jordan basis in which the E7 invariant is given as a

quartic form on an object called a Freudenthal Triple system (FTS). See section A.2.1 for
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details. The FTS uses the Springer construction of cubic Jordan algebras, which here

means the Jordan algebra elements are represented by hermitian octonionic matrices

(actually split octonions)

E7 ⊃ E6,

56→ 1 + 27 + 1 + 27′,

I4(p0, P ; q0, Q) = −
[
p0q0 + tr(J3(P ) ◦ J3(Q))

]2

+ 4

[
− p0J3(Q) + q0J3(P ) + tr(J3

#(P ) ◦ J3
#(Q))

]
.

(5.9)

One can insist that the the a amplitudes correspond to the eight STU subsector charges

to permit a seamless reduction to the STU model correspondence once the other charges

are switched off. In essence, we decompose E7(7) → E6(6) → SO4,4 to obtain

56→ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 8s + 8c + 8v + 8s + 8c + 8v, (5.10)

and recognise the a amplitudes as the singlets. To properly assign the remaining ampli-

tudes we instead decompose, for example

E7(7) ⊃ SL2,A×SL2,B ×SL2,D ×SO4,4, (5.11)

under which,

56→ (2,2,2,1) + (2,1,1,8v) + (1,2,1,8s) + (1,1,2,8c). (5.12)

to see that the A qubit transforms as a doublet with the 8v, so that the e and g

amplitudes may be associated to it (the a amplitudes already being accounted for).

Repeating the process for the remaining qubits reveals that b and f correspond to the

8s’s and c and d correspond to the 8c’s. Retaining only 8s of a given type in (5.9) and

comparing with (5.4) eventually allows one to tease out the explicit transformation. The

Fano-Freudenthal dictionary can be written concisely if we make the following definition.

[i, j, k, l]mn :=


−

Pni − Pnk −Pnj + Pnl

Pnj + Pnl Pni + Pnk

 m = 0

−

Qin −Qkn −Qjn +Qln

Qjn +Qln Qin +Qkn

 m = 1

(5.13)

With i, j, k, l ∈ {0, . . . , 7}, m ∈ {0, 1}, and n ∈ {c, s, v}. The dictionary is (with i ∈
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{0, 1}, and σi being Pauli matrices):

Fano Freudenthal

di•• −σ3 · [0, 1, 4, 5]ic · σ3

c•i• σ1 · [2, 3, 6, 7]ic · σ1

f••i σ1 · [2, 3, 6, 7]Tis · σ3

bi•• σ3 · [0, 1, 4, 5]is · σ1

g•i• −σ1 · [0, 1, 4, 5]iv · σ1

e••i −σ1 · [2, 3, 6, 7]iv · σ1

(5.14)

Take note of the transpose for f . The a••• amplitudes are given by the Kallosh-Linde

dictionary, which in this notation is

a••0 = σ3 · [2, 3, 0, 1]0 · σ3, (5.15)

a••1 = σ1 · [2, 3, 0, 1]1 · σ1. (5.16)

The remaining dictionary and the inverse dictionaries are then trivial to compute, al-

lowing one to navigate the three descriptions with ease.

5.2 SUSY classification meets entanglement classification

Using the canonical basis (2.24) to convert the Cartan invariant to the Cayley’s hy-

perdeterminant permits the entanglement classification of the seven qubit system to be

derived in the same manner as for three qubits as shown in Table 5.1. The A-B-C,

A-BC, W and GHZ states are just those of the STU model. For N = 8, as for N = 2,

the large black holes correspond to the two classes of GHZ-type (entangled) states and

small black holes to the separable or W class. Note, however, that we obtain a finer

supersymmetry and charge orbit correspondences than for the N = 2 STU theory of

Table 2.4.

Similarly, the classification of the bipartite entanglements of three qutrits is related

to the classification of N = 8, D = 5 supersymmetric black holes [21] shown in Table 5.2.

The classification correspondence for the STU model is enriched by the perspective

in which a three-qubit state is mapped to a Freudenthal triple system. The details are

provided in section A.2.2, but in essence the state is grouped into permutation insensitive
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Table 5.1: As in Table 4.1 entanglement measures are used to classify states, but this
time concerning the tripartite entanglement of seven qubit states. The correspondence
relates these to the D = 4,N = 8 black holes discussed in section 2.5.

Class SA SB SC Det a Black hole SUSY

A-B-C 0 0 0 0 small 1/2
A-BC 0 > 0 > 0 0 small 1/4
B-CA > 0 0 > 0 0 small 1/4
C-AB > 0 > 0 0 0 small 1/4

W > 0 > 0 > 0 0 small 1/8
GHZ > 0 > 0 > 0 < 0 large 1/8
GHZ > 0 > 0 > 0 > 0 large 0

Table 5.2: The D = 5 analogue of Table 4.1 relates two-qutrit entanglements and their
corresponding D = 5,N = 8 black holes.

Class C2 τAB Black hole SUSY

A-B 0 0 small 1/2
Rank 2 Bell > 0 0 small 1/4
Rank 3 Bell > 0 > 0 large 1/8

subsets

|ψ〉 = aABC |ABC〉 ↔ Ψ = (a111, a000, (a100, a010, a001), (a011, a101, a110)) (5.17)

and operated upon by a system of rank polynomials arising the in the formalism of

triple systems. The associated ranks 0,1,2,3,4 correspond exactly to the familiar null,

separable, biseparable, W and GHZ classes as shown in Figure 5.1. The rank 0, 1, and 4

conditions are trivially related to their corresponding entanglement classes since the rank

polynomials involve the state norm and hyperdeterminant. To complete the analogy one

identifies some of the remaining rank polynomials with the 3B200 and C111 covariants

encountered in section 3.3.1 and proves the constraint

two Bi = 0⇔ C111 = 0, (5.18)

making C111 redundant for classification purposes as promised. The result is that the

class conditions and rank conditions can be seen as equivalent using the three-qubit

covariants. In this manner we provided a manifestly SLOCC invariant three-qubit clas-

sification while providing new insights about the SLOCC orbits and the coset character-



80 CHAPTER 5. DEEPENING CORRESPONDENCES

N = 4N = 3

N = 2a N = 2b N = 2c

N = 1

N = 0 1 Susy

1�2 Susy

1�4 Susy

1�8 Susy GHZW

A-BC B-CA C-AB

A-B-C

Null Null

Separable

Bipartite

Tripartite

Entangled

Unentangled

Genuine

Degenerate

Figure 5.1: Exact matching of three-qubit SLOCC orbits and STU black hole orbits. N
corresponds to FTS rank.

isation of the small STU black hole orbits, displayed in Table 5.3.

Table 5.3: Coset spaces of the orbits of the 3-qubit state space C2 × C2 × C2 under the
action of the SLOCC group SL2(C)3.

Class FTS Rank Orbits dim Projective orbits dim

Separable 1
SL2(C)3

SO2(C)2 n C3
4

SL2(C)3

[SO2(C) n C]3
3

Biseparable 2
SL2(C)3

O3(C)× C
5

SL2(C)3

O3(C)× [SO2(C) n C]
4

W 3
SL2(C)3

C2
7

SL2(C)3

SO2(C) n C2
6

GHZ 4
SL2(C)3

SO2(C)2
7

SL2(C)3

SO2(C)2
7

5.3 The octonions

The octonions serve as somewhat of a crossroads in the early black hole/qubit cor-

respondence, arising in the description of the N = 8 charge vector, in N = 4 and

N = 2 subsectors (via their quaternionic subsector), and in the Cartan dictionary. As

an algebra, the octonions O (with product denoted by juxtaposition) possess numerous

interesting properties, some of which are notable absences of familiar properties. His-

torical notes and other extensive details can be found in [138], and some interesting

physical applications may be found in [139–148]. Although the octonions do appear in
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a quantum information context [149,150], this seems to be unrelated to their role in the

black hole/qubit correspondence.

Typical octonions a, b, c ∈ O are:

• 8-tuples of real numbers: a, b, c ∈ R8 so that they form an 8-dimensional vector

space, with basis elements e0, . . . , e7.

• non-real: a 6= a∗, like the complexes. The conjugate •∗ : O → O trivially extends

the conjugate for R,C, and H so that basis element eµ is mapped to ηµνeν (with

η ≡ diag(1,−17)). Under the familiar partition µ = (0, i), scalar multiples of e0

are real octonions, and scalar multiples of ei are imaginary octonions.

• non-commutative: ab 6= ba, like the quaternions.

• non-associative: a(bc) 6= (ab)c, a new property not present in R,C, or H.

• alternative - meaning that the subalgebra generated by any two elements is asso-

ciative, or equivalently, the associator [•, •, •] : O3 → O, (a, b, c) 7→ a(bc)− (ab)c is

alternating: [a1, a2, a3] = (−)π[aπ(1), aπ(2), aπ(3)] with π ∈ S3.

• a division algebra, so that when a product of octonions is zero one of the multiplied

octonions must have been zero: ab = 0⇒ a = 0∧ b = 0. They share this property

with R, C, H, and no other algebras.

• normed: |ab| = |a||b|, which implies the division algebra property. Like the conju-

gate, the norm | • | : O → R is also a trivial extension of the norm for the other

division algebras: a 7→ a∗a.

Clearly the octonions are closely related to the other division algebras, and indeed in

this context it is instructive to classify R,C,H, and O as ∗-algebras (star algebras).

Such algebras are characterised by the possession of a real-linear conjugation map that

is involutive ((a∗)∗ ≡ a) and an anti-automorphism ((ab)∗ ≡ b∗a∗). The salient point is

that as an ∗-algebra, the octonions can be constructed using quaternions, which them-

selves can be obtained via complexes (a.k.a. binarions). This is an iterative procedure

that extends down to the reals called the Cayley-Dickson process. It produces a 2n

dimensional ∗-algebra after n steps and is implemented via a multiplication rule and a

conjugation rule:

(a1, a2) · (b1, b2) := ((a1 · b1 − b∗2 · a2), (b2 · a1 + a2 · b∗1))

(a1, a2)∗ := (a∗1,−a2)
(5.19)
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the result of which, at n = 3 is shown in Table 5.4. This table does not exactly reproduce

the Fano plane multiplication table, but is an automorphism of it. As (5.19) is recursively

Table 5.4: The octonion multiplication table resulting from the Cayley-Dickson process.
Due to the generality of (5.19) as a method for generating ∗-algebras this table is con-
sidered canonical. The top-left quadrant is actually the quaternion multiplication table,
and the top left quadrant of that is the complex (binarion) table. Apart from the first
row and column, and disregarding the -1’s on the diagonal, the table is antisymmetric.

e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

applied the new algebras lose more properties. Initially we have the reals at step zero,

which have the property of being their own conjugates. The complexes lose this property,

but are commutative. The quaternions lose that but retain associativity. The octonions

lose that and retain the division algebra property, and at step 4 - the sedenions, we lose

that as well. From then on, the procedure “stabilises” so that no more properties are

lost. All of the algebras generated in this way are nicely normed, which means a+a∗ ∈ R
and a∗a = aa∗ > 0.

In a similar fashion, with a change of sign [151] one obtains the split-octonions of

Table 5.5).

(a1, a2) · (b1, b2) := ((a1 · b1 + b∗2 · a2), (b2 · a1 + a2 · b∗1)) (5.20)

The sign change only takes effect at the top level in the process and doesn’t affect lower

dimensional multiplication, though further generalisations permit this. At any rate, it

is the split octonion multiplication table that is used in the Freudenthal construction

to generate I4. An alternative method of generating hypercomplex numbers involves

appending a new basis element to the vector space and generating new elements until

the algebra closes. In this regime, the octonions are generated by the three basis elements
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Table 5.5: The canonical split-octonion multiplication table results from a single sign
change in (5.19) to give (5.20). This time, the last four elements on the main diagonal
are +1 rather than -1. Since the sign change in (5.19) is only operative at the top level
and doesn’t percolate down to the quaternions and complexes, we see that the top-left
quadrant still gives the lower dimensional tables.

e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 e0 −e1 −e2 −e3

e5 e5 e4 −e7 e6 e1 e0 e3 −e2

e6 e6 e7 e4 −e5 e2 −e3 e0 e1

e7 e7 −e6 e5 e4 e3 e2 −e1 e0

i, j, and k:

R : 1

C : 1, i

H : 1, i, j, ij

O : 1, i, j, ij, k, ik, jk, (ij)k,

(5.21)

which obviously should not be confused with quaternionic basis elements. This has

a certain transparency, but doesn’t capture the full generality of the Cayley-Dickson

process. An alternative characterisation of the split vs. non split “hypernumbers” is to

refer to them as circular vs. hyperbolic [152, 153]. Circular and hyperbolic here refers

to the norms of these numbers, which in the split/hyperbolic case has a split signature.

A succinct multiplication rule based on the Cayley-Dickson process is provided by the

binary or “dyadic” formalism [154]

exey = (−)x3(y1y2+y3)+x2(y2+y3+y1y3)+x1(y1+y2+y3+y2y3)ex⊕y (5.22)

where x, y ∈ {0, . . . , 7}, xi, yi ∈ {0, 1}, and ⊕ is the bitwise OR operation. Note that

we differ in conventions from [154] by reversing the order of the digits. The dyadic

formalism is general enough to encompass not only ∗-algebras, but Clifford algebras

(and hence Grassmann algebras) too. These algebras share a factorisation property in

their multiplication rule

exey = Vxyex⊕y, (5.23)
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where Vxy is referred to as a scalar factor, which itself factorises

Vxy = (−)kxy
n∏
i=1

γxiyii . (5.24)

The kxy matrix characterises the algebra along with an anti-involution vector fx

ex 7→ e∗x = (−)fxex, (5.25)

both of which can be made to obey recursion relations that reproduce the Cayley-Dickson

process. The γi also help characterise the algebra: in the ∗-algebra case they are either 1

or −1 and distinguish ordinary algebras from their various split cousins, in the Clifford

case they are the eigenvalues of the associated quadratic form matrix, and consequently

they vanish in the Grassmann case (though the factorisation (5.24) as written would

require the interpretation 00 = 1).

Graphically representing the structure contents of ∗-algebras as in Figure 5.2 re-

veals an interesting fractal structure. The non-zero elements clearly lie in tetrahedral

patterns (reminding us that a regular tetrahedron can be embedded in a cube,sharing

vertices); specifically these appear to be Sierpinski tetrahedra (a.k.a Sierpinski sponge,

or “tetrix”). It seems that the objects would be truly fractal in the limit of infinite ∗-
algebra dimension. Despite appearances, it would not possess a truly three-dimensional

character, instead having a (capacity) fractal dimension of two. Viewing the i-j plane

shows the signs of i-j products, while the height in k specifies the basis element resulting

from an i-j product. Switching to a Grassmann algebra collapses the tetrahedron down

to an ordinary Sierpinski triangle.

Restricting to a quaternionic cycle (a line in the Fano plane) permits a striking

result: that the N = 4 Cartan invariant can be written as the hyperdeterminant over

the imaginary octonions. Writing the imaginary quaternion multiplication as

eiej = −δij + εijkek (5.26)

one forms

eiejekel + eiekelej = 2δijδkl + . . . , (5.27)

where the dots signify terms vanishing when contracted with

− 1
2ε
A1A2εB1B2εA3A4εB3B4εD1D4εD2D3aiA1B1D1

ajA2B2D2
akA3B3D3

alA4B4D4
. (5.28)
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Figure 5.2: Structure constant diagrams: the axes i, j, k in each 3D plot correspond to
the indices of the structure constant array of the plot’s ∗-algebra. Each i, j, k position
is filled with a cube coloured according to the value of the structure constant with that
i, j, k specification. Values are depicted as follows: 1 → black, −1 → red, and 0 →
empty.
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Choosing the imaginary quaternions to be

q = ae1 + ee5 + ge7 (5.29)

then results in the aeg N = 4 subsector of I4.



Chapter 6

The brane wrapping perspective

6.1 Three-qubits and D3 branes

With the correspondence between the tripartite entanglement measure of three qubits

and the macroscopic entropy of the four-dimensional N = 2, D = 4 STU black holes

established, one can ask whether there is a true physical underpinning, or if it is simply

a group theoretic analogy. By examining the microscopic string-theoretic origin of the

eight STU charges we emerge with a brane wrapping perspective that suggests a more

substantive link.

As we have seen, there are many ways of embedding the STU model in string/M-

theory, but the most useful for the present purpose is Type IIB compactified on T 6.

Dp-branes wrapping around the six compact dimensions provide the string-theoretic

interpretation of the black holes. A Dp-brane wrapped around a p-dimensional cycle

of the compact directions (x4, x5, x6, x7, x8, x9) looks like a D0-brane from the four-

dimensional (x0, x1, x2, x3) perspective. In this case we have four D3-branes wrapping the

(579), (568), (478), (469) cycles with wrapping numbers N0, N1, N2, N3 and intersecting

over a string [155]. This picture is consistent with the interpretation of the 4-charge

black hole as a bound state at threshold of four 1-charge black holes [61, 156, 157]. A

fifth parameter θ is obtained [158, 159] by allowing the N3 brane to intersect at an

angle which induces additional effective charges on the (579), (569), (479) cycles. The

microscopic calculation of the entropy consists of taking the logarithm of the number of

microstates and, to leading order, yields the same result as the macroscopic analysis [160].

The wrapped circles are denoted by crosses x and the unwrapped circles by noughts o

as shown in Table 6.1. We associate the three-qubit basis vectors |ABC〉, with wrapping

configurations of these intersecting D3-branes.

87



88 CHAPTER 6. THE BRANE WRAPPING PERSPECTIVE

Table 6.1: Three-qubit interpretation of the 8-charge D = 4 black hole from four D3-
branes wrapping around the lower four cycles of T 6 with wrapping numbers N0, N1, N2,
N3 and then allowing N3 to intersect at an angle θ.

dimension charges |ABC〉
4 5 6 7 8 9 macro micro

x o x o x o p0 0 |000〉
o x o x x o q1 0 |110〉
o x x o o x q2 −N3 sin θ cos θ |101〉
x o o x o x q3 N3 sin θ cos θ |011〉

o x o x o x q0 N0 +N3 sin2 θ |111〉
x o x o o x −p1 −N3 cos2 θ |001〉
x o o x x o −p2 −N2 |010〉
o x x o x o −p3 −N1 |100〉

To wrap or not to wrap; that is the qubit.

-M. J. Duff

Specifically, we associate the three T 2 with the SL2,A×SL2,B ×SL2,C of the three qubits

A, B, and C. The 8 different cycles then yield 8 different basis vectors |ABC〉 as in the

last column of the Table, where |0〉 corresponds to xo and |1〉 to ox. It is then immediately

apparent that the GHZ state of Table 3.2 is described by four D3-branes intersecting over

a string, or groups of four wrapping cycles with just one cross in common. Performing

a T-duality transformation, one obtains a Type IIA interpretation with N0 D0-branes

and N1, N2, N3 D4-branes where |0〉 now corresponds to xx and |1〉 to oo.

This interpretation manages to relate a well-known fact of quantum information

theory, that the most general real three qubit state can be parameterised by four real

numbers and an angle, to a well-known fact of string theory, that the most general STU

black hole can be described by four D3-branes intersecting at an angle. This analysis

also provided an explanation for the appearance of the qubit two-valuedness (0 or 1) that

was lacking in previous treatments: the brane can wrap one circle or the other in each

T 2. Further, the number of qubits is three because of the number of extra dimensions

is six.
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6.2 Two-qutrits and M2 branes

The brane wrapping perspective employed for three-qubits and four D3-branes intersect-

ing on a string in the STU model suggests that the correspondence between D = 5 black

holes and qutrits should admit an analogous interpretation. This expectation bears out.

In this case 9-charge N = 2, D = 5 black hole is most conveniently embedded in the

N = 8 theory by way of three M2-branes [155, 161] wrapping the (58), (69), (710) cy-

cles of the T 6 compactification of D = 11 M-theory and intersecting over a point with

wrapping numbers N0, N1, N2 as shown in Table 6.2. This time we associate the two T 3

Table 6.2: Two qutrit interpretation of the 9-charge D = 5 black hole from M2-branes
in D = 11 wrapping around the upper three cycles of T 6 with wrapping numbers N0,
N1, N2. Note that they intersect over a point.

dimension charges |AB〉
5 6 7 8 9 10 macro micro

x o o x o o p0 N0 |00〉
o x o o x o p1 N1 |11〉
o o x o o x p2 N2 |22〉

x o o o x o p3 0 |01〉
o x o o o x p4 0 |12〉
o o x x o o p5 0 |20〉

x o o o o x p6 0 |02〉
o x o x o o p7 0 |10〉
o o x o x o p8 0 |21〉

with the SL3,A×SL3,B of the two qutrits A and B. The 9 different cycles then yield the

9 different basis vectors |AB〉 as in the last column of Table 6.2, where |0〉 corresponds

to xoo, |1〉 to oxo, and |2〉 to oox. It is once again obvious that we reproduce the three

parameter two-qutrit state |Ψ〉 of (3.37). This time the wrapped branes interpretation

provides an explanation for the appearance of the qutrit three-valuedness: the brane can

wrap one of the three circles in each T 3 and the number of qutrits is two because of the

number of extra dimensions is six.
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Chapter 7

Four qubit entanglement

7.1 Attempts to classify four-qubit entanglement

Having discussed the matching of classifications for three qubit entanglement and ex-

tremal black holes in the STU model, it is only natural to attempt to extend this to four

qubits. Indeed, since experimentalists now control entanglement with four qubits [162]

the classification of this entanglement is an active area of research. In contrast to two-

and three-qubit entanglement, which are well understood as we have seen, the situation

for four qubits seems more confused, with apparently contradictory claims made in the

literature, as illustrated in Table 7.1.

Table 7.1: Various results on four-qubit entanglement.

Paradigm Author Year Ref result mod perms result incl. perms

classes

Lamata et al, 2006 [163] 8 genuine,5 degenerate 16 genuine,18 degenerate
Cao et al 2007 [164] 8 genuine,4 degenerate 8 genuine,15 degenerate
Li et al 2007 [165] ? ≥ 31 genuine,18 degenerate
Akhtarshenas et al 2010 [166] ? 11 genuine, 6 degenerate

families
Verstraete et al 2002 [167] 9 ?
Chretrentahl et al 2007 [168] 9 ?
String theory 2010 [28] 9 31

While some of the disagreements are calculational, the main disparity is that the au-

thors of Table 7.1 are actually employing distinct classification paradigms: “classes” vs.

“families” (the two are in principle consistent and complementary perspectives). On the

classes side is the covariant based approach we encountered in chapter 3 which uses dis-

criminating polynomials to distinguish the SLOCC orbits. This approach was attempted

by Briand et al. [125] with interesting, but partial results. They found a complete set
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of 170 independent generating covariants for degrees up to and including 12, and used

them to distinguish representative states provided by the family approach. The family

paradigm is a “normal form” approach which considers families of orbits where any given

state may be transformed into a unique normal form. If the normal form depends on

some of the algebraically independent SLOCC invariants it constitutes a family of orbits

parameterised by these invariants. On the other hand a parameter-independent family

contains a single orbit. This philosophy is adopted for the four-qubit case in [167, 168].

Up to permutation of the four qubits, these authors found 6 parameter-dependent fam-

ilies called Gabcd, Labc2 , La2b2 , La203⊕1̄
, Lab3 , La4 and 3 parameter-independent families

called L03⊕1̄03⊕1̄
, L05⊕3̄

, L07⊕1̄
:

Gabcd =
a+ d

2
(|0000〉+ |1111〉) +

a− d
2

(|0011〉+ |1100〉)

+
b+ c

2
(|0101〉+ |1010〉) +

b− c
2

(|0110〉+ |1001〉)

Labc2 =
a+ b

2
(|0000〉+ |1111〉) +

a− b
2

(|0011〉+ |1100〉)

+c(|0101〉+ |1010〉) + |0110〉

La2b2 = a(|0000〉+ |1111〉) + b(|0101〉+ |1010〉)

+|0110〉+ |0011〉

Lab3 = a(|0000〉+ |1111〉) +
a+ b

2
(|0101〉+ |1010〉)

+
a− b

2
(|0110〉+ |1001〉)

+
i√
2

(|0001〉+ |0010〉 − |0111〉 − |1011〉)

La4 = a(|0000〉+ |0101〉+ |1010〉+ |1111〉)

+(i|0001〉+ |0110〉 − i|1011〉)

La203⊕1̄
= a(|0000〉+ |1111〉) + (|0011〉+ |0101〉+ |0110〉)

L05⊕3̄
= |0000〉+ |0101〉+ |1000〉+ |1110〉

L07⊕1̄
= |0000〉+ |1011〉+ |1101〉+ |1110〉

L03⊕1̄03⊕1̄
= |0000〉+ |0111〉,

with parameters a, b, c, d ∈ C. Here the subscript notation refers to the eigenvalues

of the Jordan normal form of the representative states once they are transformed into

a particular matrix format, see [168] for full details. Note that Lab3 should really be

written La3b to correspond to the given state, but we follow the literature convention of
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Figure 7.1: Four-qubit covariant lattice down to degree 4 (the numbers along the top
correspond to degrees). C1111 contributes six D2200 and three D2220, with the rest
provided by C3111; an ambiguity which did not arise in the three-qubit case.

mislabelling it.

To illustrate the difference between these two approaches, consider the separable

EPR-EPR state (|00〉+|11〉)⊗(|00〉+|11〉). Since this is obtained by setting b = c = d = 0

in Gabcd it belongs to the Gabcd family, whereas in the covariant approach it forms its

own class. Similarly, a totally totally separable A-B-C-D state, such as |0000〉, for which

all (save one) covariants vanish, belongs to the family Labc2 , which also contains genuine

four-way entangled states. These interpretational differences were also noted in [163].

To begin with, we make our own attempt at a covariant classification, but in contrast

to Briand et al. we consider the full web of covariants down to a given degree rather than

restricting to the independent covariants, see for example Figure 7.2 which is already

considerably more complicated than the three qubit case, being a lattice rather than a

simple tree. On the other hand, we are only able to do so up to degree six, whereas

Briand et al. terminate at the maximal degree which is 12. By considering the full

lattice, we are able to group covariants into permutation insensitive subsets as we did

in section 3.3.1. This affords us a simplification in the classification since representative

states can have a permutation invariant set of amplitudes SLOCC-transformed to zero

without affecting the classification. We develop the necessary formalism below.



94 CHAPTER 7. FOUR QUBIT ENTANGLEMENT

Permutation invariant subsets For n-qubits, split the 2n state vector coefficients

{ai}2
n−1
i=0 into permutation-invariant subsets by placing them into n+1 totally symmetric

tensors A[0], A[1], . . . , A[n] (where the subscript is the tensorial valence), with zero entries

at positions with any duplicate indices. The A[p] thus have
(
n
p

)
independent components,

correctly yielding 2n components for all n+1 tensors. One also has invariant tensors d[n]

and d[n] with entries proportional to |εi1···in | and |εi1···in | which may be used to dualise

the A[p] with p > n/2 to A[n−p]. When n = 2m the tensor A[m] will be self-dual. The

explicit entries of the A[p] may be defined as

Ai1···ip := di1···ipa
∑p
k=1 2n−ik , (7.1)

so that the entries of A[n−p] are precisely the bit-flipped entries of A[p]. For example,

the tensors for n = 1, 2, 3, 4 qubits are:

1 qubit:

{A[0], A
[0]} = {a0, a1} (7.2)

2 qubits:

{A[0], A[1], A
[0]} = {a00,

(
a10

a01

)
, a11} (7.3)

3 qubits:

{A[0], A[1], A
[1], A[0]} = {a000,

a100

a010

a001

 ,

a011

a101

a110

 , a111} (7.4)

4 qubits:

{A[0], A[1], A[2], A
[1], A[0]} =

{a0000,


a1000

a0100

a0010

a0001

 ,


0 a1100 a1010 a1001

a1100 0 a0110 a0101

a1010 a0110 0 a0011

a1001 a0101 a0011 0

 ,


a0111

a1011

a1101

a1110

 , a1111}
(7.5)

Comparing with section A.2.2 we see that this formalism attempts to generalise the

successful FTS approach.

SLOCC transformations To enable conversion of representative states to simpler

forms we develop SLOCC transformations adapted to the permutation insensitive for-
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malism. The sl2 generators are

T1 =

(
1 0

0 −1

)
, T2 =

(
0 1

0 0

)
, T3 =

(
0 0

1 0

)
. (7.6)

A subset of the SLOCC generating transformations will then be given by the maps

φ(C[1]) and it’s dual under p→ n− p, ψ(D[1]):

φ(C[1]) : A[p] 7→
n∑
k=p

Ck−p[1] A[k],

ψ(D[1]) : A[p] 7→
n∑
k=p

D[1]k−pA[k].

(7.7a)

Taking care to treat the contractions correctly, one can rewrite these in the dual form

φ(C[1]) : A[p] 7→
n∑

k=n−p
d[n][C

k+p−n
[1] A[k]] =

p∑
k=0

d[n][d
[n]Cp−k[1] A[k]],

ψ(D[1]) : A[p] 7→
n∑

k=n−p
d[n][D[1]k+p−n

A[k]] =

p∑
k=0

d[n][d[n]D
[1]p−kA[k]].

(7.7b)

Finally, we can rewrite (7.7) entirely in terms of the minimal tensors A[p] and A[p] with

p ≤ n/2:

φ(C[1]) :

A[p] 7→
∑p

k=0 d[n][d
[n]Cp−k[1] A[k]]

A[p] 7→
∑bn/2c

k=0 d[n]Cn−p−k[1] A[k] +
∑dn/2e−1

k=p Ck−p[1] A[k]
,

ψ(D[1]) :

A[p] 7→
∑bn/2c−1

k=0 d[n]D
[1]n−p−kA[k] +

∑dn/2e
k=p D[1]k−pA[k]

A[p] 7→
∑p

k=0 d
[n][d[n]D

[1]p−kA[k]]
.

(7.8)

Let’s examine what that means for the case n = 3. The tensors in this case are

{A[0], A[1], A[2], A[3]}, or in minimal form {A[0], A[1], A
[1], A[0]}. The explicit transfor-
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mations on this set are, after simplification:

φ(C[1]) :


A[0]

A[1]

A[1]

A[0]

 7→


A[0]

C[1]A[0] + A[1]

d[3]C2
[1]A[0] + d[3]C[1]A[1] + A[1]

d[3]C3
[1]A[0] + d[3]C2

[1]A[1] + C[1]A
[1] + A[0]



ψ(D[1]) :


A[0]

A[1]

A[1]

A[0]

 7→


d[3]D
[1]3A[0] + d[3]D

[1]2A[1] + D[1]A[1] + A[0]

d[3]D
[1]2A[0] + d[3]D

[1]A[1] + A[1]

D[1]A[0] + A[1]

A[0]

 .

(7.9)

Note that there is no ambiguity in the d contractions. Under some obvious relabellings

these reduce to the familiar expressions (A.28) of section A.2.1:

φ(C) :


β

A

B

α

 7→


β

Cβ + A

C#β + C ×A + B

N(C)β + (C#, A) + (C,B) + α



ψ(D) :


β

A

B

α

 7→


N(D)α + (D#, B) + (D,A) + β

D#α + D ×B + A

Dα + B

α

 ,

(7.10)

though other relabellings can achieve the same result. Let us also consider n = 1, n = 2

and n = 4:

φ(C[1]) :

(
A[0]

A[0]

)
7→

(
A[0]

d[1]C[1]A[0] + A[0]

)

ψ(D[1]) :

(
A[0]

A[0]

)
7→

(
d[1]D

[1]A[0] + A[0]

A[0]

)
.

(7.11)
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φ(C[1]) :

A[0]

A[1]

A[0]

 7→
 A[0]

C[1]A[0] + A[1]

d[2]C2
[1]A[0] + d[2]C[1]A[1] + A[0]



ψ(D[1]) :

A[0]

A[1]

A[0]

 7→
 d[2]D

[1]2A[0] + D[1]A[1] + A[0]

d[2]D
[1]A[0] + A[1]

A[0]

 .

(7.12)

φ(C[1]) :


A[0]

A[1]

A[2]

A[1]

A[0]

 7→


A[0]

C[1]A[0] + A[1]

d[4][d
[4]C2

[1]
]A[0] + d[4][d

[4]C[1]A[1]] + A[2]

d[4]C3
[1]
A[0] + d[4]C2

[1]
A[1] + d[4]C[1]A[2] + A[1]

d[4]C4
[1]
A[0] + d[4]C3

[1]
A[1] + d[4]C2

[1]
A[2] + C[1]A

[1] + A[0]



ψ(D[1]) :


A[0]

A[1]

A[2]

A[1]

A[0]

 7→


d[4]D
[1]4A[0] + d[4]D

[1]3A[1] + D[1]2A[2] + D[1]A[1] + A[0]

d[4]D
[1]3A[0] + d[4]D

[1]2A[1] + D[1]A[2] + A[1]

d[4]D
[1]2A[0] + d[4]D

[1]A[1] + A[2]

D[1]A[0] + A[1]

A[0]

 .

(7.13)

The remaining SLOCC transformations are generated by the scaling transformation

T (λ[1]):

T (λ[1]) : Ai1···ip 7→
n∏
k=1

exp
[
λn+1−k

p∏
m=1

(−)δk,im
]
Ai1···ip . (7.14)

Generalised Jordan ranks We generalise the notion of Jordan rank in section A.1.2

by identifying the contractions d[n]Ck[1], k ∈ {1, . . . , n} as the relevant rank tensors for a

degree n “Jordan” algebra. The n+ 1 ranks are then given by

rankC[1] ≤ k − 1⇔ d[n]Ck[1] = 0, k ∈ {1, . . . , n}, (7.15)

so that in particular

rankC[1] = 0⇔ C[1] = 0,

rankC[1] = n⇔ d[n]Cn[1] 6= 0.
(7.16)

For the familiar case of n = 3 this means

rankC[1] = 0⇔ C[1] = 0,

rankC[1] ≤ 1⇔ d[3]C2
[1] = C#

[1] = 0,

rankC[1] ≤ 2⇔ d[3]C3
[1] = N(C[1]) = 0,

rankC[1] = 3⇔ d[3]C3
[1] = N(C[1]) 6= 0.

(7.17)
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Canonical forms We may attempt to use the SLOCC transformations (7.7) to convert

states to canonical forms with fewer variables. For a generic n-qubit state, the best we

have been able to do so far is a reduction by n+ 1 variables, short of the more sweeping

results of Krutelevich [169,170]. Start by assuming the state is not null and proceed as

follows:

1. Ensure that A[0] 6= 0 using a φ(C[1]) transformation with C[1] of sufficiently high

rank to involve the first nonzero A tensor:

φ(C[1]) : A[0] 7→
bn/2c∑
k=0

d[n]Cn−k[1] A[k] +

dn/2e−1∑
k=0

Ck[1]A
[k]. (7.18)

Provided the rank tensors are non-degenerate this will work whenever the state

isn’t null.

2. Scale A[0] to 1 using a T transformation.

3. The state is now in the form {A[0], A[1], . . . , A
[1], 1[0]}. If A[1] = 0 we are finished,

else perform a ψ(−A[1]) transformation to yield the form {A[0], A[1], . . . , A
[2], 0[1], 1[0]}.

For our four qubit case this means representative states possess no more that 11 kets,

rather than a potential full 16.

Covariant classification The full covariant lattice up to degree six is shown in Fig-

ure 7.2, however, the large number of shared descendants at higher degrees prevents

one from inferring the individual contributions of a given covariant to its descendants

and one must keep track while generating them. The situation is ameliorated by listing

the adjacency matrix in Table 7.2. While this affords us a full understanding of the

relationships between covariants of two adjacent degrees, if one wants to tease out the

detailed relationship across multiple degrees a more fine-grained description is required.

Such a fine-graining within multiweight classes is possible with our present methods, but

remains to be attempted.

The next step is to scan through these covariants with the reduced permutation

invariant state {A[0], A[1], A
[2], 0[1], 1[0]}, switching off amplitudes in all possible ways

modulo permutations. When this is done it is possible to eliminate redundant covariants,

though there is some ambiguity surrounding the particular choice of retained covariants.

In Table 7.3 we make the particular choice of 4F4000 and 4F0000 when we could just

as well have well picked any two out of 68E3111, 10E1111, 76F4222, 300F4220, 93F2222,

160F2220, and 114F2200. We have filled in the degenerate classes and four-qubit GHZ
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class unambiguously, and have indicated the families we believe correspond to a couple

of the remaining classes. One does after all expect that each class corresponds to a single

family, but not vice versa. This remains work in progress, and we have only been able

to scan through covariants up to degree six, whereas in principle we would have to reach

degree 12. Nevertheless our results so far include the primary invariants at degrees two,

four, and six in terms of which all higher degree invariants can be written.

7.2 31 entanglement families

While we retain some hopes for our covariant based classification, it is with the normal

forms of the family perspective that we have met with unambiguous success. We now

describe this approach.

Black hole side The string theoretic framework we need to consider is that of timelike

dimensional reduction of 4D supergravity theories to 3D. In four dimensions the moduli

parameterise a symmetric space of the form M4 = G4/H4, with global U-duality group

G4 and maximal compact subgroup H4. Post-reduction the moduli space becomes a

pseudo-Riemannian symmetric space M∗3 = G3/H
∗
3 , with 3D U-duality group G3 and

where H∗3 is a non-compact form of the maximal compact subgroup H3. One finds

that geodesic motion on M∗3 corresponds to stationary solutions of the D = 4 theory

[20, 171–175]. These geodesics are parameterised by the Lie algebra valued matrix of

Noether charges Q and the problem of classifying the spherically symmetric extremal

(resp. non-extremal) black hole solutions consists of classifying the nilpotent (resp.

semisimple) orbits of Q (Nilpotent means Qn = 0 for some sufficiently large n.)

As one might expect, the case we want to consider is the STU model and the nilpotent

classification of STU black holes. Through a procedure called scalar-dressing, the eight

charges of the model can be grouped into the N = 2 central charge z and three “matter

charges” za (a = 1, 2, 3), which exhibit a triality (corresponding to permutation of three

of the qubits). The black holes are divided as shown in Figure 7.3. The small extremal

black holes are termed lightlike, critical, or doubly critical according to whether the

minimal number of representative electric or magnetic charges is 3, 2 or 1. The lightlike

case is split into one 1/2-BPS solution, where the charges satisfy z1 = 0, |z|2 = 4|z2|2 =

4|z3|2 and three non-BPS solutions, where the central charges satisfy z = 0, |z1|2 =

4|z2|2 = 4|z3|2 or z2 = 0, |z3|2 = 4|z1|2 = 4|z|2 or z3 = 0, |z2|2 = 4|z1|2 = 4|z|2. The

critical case splits into three 1/2-BPS solutions with z = za 6= 0, zb = zc = 0 and three

non-BPS cases with z = za = 0, zb = zc 6= 0, where a 6= b 6= c. The doubly critical
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Figure 7.3: Nilpotent classification of STU Black holes. They are divided into extremal
or non-extremal according to whether the temperature is zero or not, with the orbits
being nilpotent or semisimple, respectively. Depending on the values of the charges, the
extremal black holes are further divided into small or large according to whether the
entropy is zero or not, with still further subdivisions described in the text.
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case is always 1/2-BPS with |z|2 = |z1|2 = |z2|2 = |z3|2 and vanishing sum of the za

phases. The large black holes may also be 1/2-BPS or non-BPS. One subtlety is that

some extremal cases, termed “extremal”, cannot be obtained as limits of non-extremal

black holes.

Correspondence The post reduction moduli space G3/H
∗
3 for the STU model is

SO4,4 / SL2(R)4, which yields the Lie algebra decomposition

so4,4
∼= sl2(R)4 ⊕ (2,2,2,2). (7.19)

We had already pointed to the significance of (7.19) for four qubits in [23] but this was

recently elucidated by Levay in [20] where he related four qubits to D = 4 STU black

holes.

Critically, the Kostant-Sekiguchi correspondence [176] then implies that the nilpotent

orbits of SO4,4 acting on the adjoint representation 28 are in one-to-one correspondence

with the nilpotent orbits of SL2(C)4 acting on the fundamental representation (2,2,2,2)

and hence with the classification of four-qubit entanglement. In particular it is the

complex qubits that appear, relaxing the restriction to rebits that featured in our earlier

considerations.

More specifically, the nilpotent orbits required by the Kostant-Sekiguchi theorem

are those of SO0
4,4, where the 0 superscript denotes the identity component. These

orbits may be labelled by “signed” Young tableaux, often referred to as ab-diagrams

in the mathematics literature. See [177] and the references therein. Each signed Young

tableau actually corresponds to a single nilpotent O4,4 orbit of which the SO0
4,4 nilpotent

orbits are the connected components. Since O4,4 has four components, for each nilpotent

O4,4 orbit there may be either 1, 2 or 4 nilpotent SO0
4,4 orbits. This number can also

be determined by the corresponding signed Young tableau. If there are 2 orbits one

labels the diagram to its left (right) with a I or a II. If there are 4 orbits one labels

the diagram to both its left and right with a I or a II. If it is none of these it is said

to be stable and there is only one orbit. We summarise the partition structure of the

signed Young tableaux, but retain their labellings. There are a total of 31 nilpotent

SO0
4,4 orbits, which are summarised in Figure 7.4. We also supply the complete list of

the associated cosets in Table 7.4, some of which may be found in [174].

Qubit side Our main result, as summarised in Table 7.4, is that via the Kostant-

Sekiguchi theorem we find 31 nilpotent orbits for the SLOCC-equivalence group acting
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Figure 7.4: SO4,4 Hasse diagram. Numbers along the top are dimensions of the real
orbit, integers inside the boxes indicate the structure of the appropriate Young tableau,
arrows indicate their closure ordering defining a partial order [177], blue arrows count
as double and red arrows count as quadruple.

on the representation space of four qubits. For each nilpotent orbit there is precisely

one family of SLOCC orbits since each family contains one nilpotent orbit on setting all

invariants to zero. The nilpotent orbits and their associated families are summarised in

Table 7.4, which is split into upper and lower sections according to whether the nilpotent

orbits belong to parameter-dependent or parameter-independent families.

If one allows for the permutation of the four qubits the connected components of

each O4,4 orbit are re-identified reducing the count to 17. Moreover, these 17 are further

grouped under this permutation symmetry into just nine nilpotent orbits. In other words

there are 31 entanglement families which reduce to nine up to permutations of the four

qubits. From Table 7.1 we see that the nine agrees with [167, 168] while the 31 is new.

It is not difficult to show that the nine cosets really match the nine families, as listed in

the final column of Table 7.4 (provided we adopt the version of Lab3 presented in [168]

rather than in [167]). For example, the state representative L03⊕1̄03⊕1̄
= |0111〉+ |0000〉

is left invariant by the SO2(C)2 × C subgroup, where SO2(C)2 is the stabiliser of the

three-qubit GHZ state [24]. In contrast, the four-way entangled family L07⊕1̄
, which is

the “principal” nilpotent orbit [176], is not left invariant by any subgroup. Note that

the total of 31 does not follow trivially by permuting the qubits in these nine. Naive

permutation produces far more than 31 candidates which then have to be reduced to

SLOCC inequivalent families. To the best of our knowledge, this constitutes the only

calculation the nine four-qubit SL2(C)4 cosets. The matching of the STU extremal

classes to the nilpotent orbits is also given in Table 7.4.

These results are actually consistent with the covariant approach. For example,

the permutation sensitive covariant classification has four biseparable classes A-GHZ,

B-GHZ, C-GHZ and D-GHZ which are then identified as a single class under the per-



104 CHAPTER 7. FOUR QUBIT ENTANGLEMENT

mutation symmetry. These four classes are in fact the four nilpotent orbits corresponding

to the families L03⊕1̄03⊕1̄
in Table 7.4, which are also identified as a single nilpotent or-

bit under permutations. Similarly, each of the four A-W classes is a nilpotent orbit

belonging to one of the four families labelled La203⊕1̄
which are again identified under

permutations. A less trivial example is given by the six A-B-EPR classes of the covari-

ant classification. These all lie in the single family La2b2 of [167], which is defined up to

permutation. Consulting Table 7.4 we see that, when not allowing permutations, this

family splits into six pieces, each containing one of the six A-B-EPR classes. Finally,

the single totally separable class A-B-C-D is the single nilpotent orbit inside the single

family Labc2 which maps into itself under permutations.
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Table 7.2: The transposed adjacency matrix of the four-qubit covariant lattice up to and
including all degree six covariants.

A
1
1
1
1

B
0
0
0
0

6B
2
2
0
0

3
C

1
1
1
1

4C
3
1
1
1

3
D

0
0
0
0

12
D

2
2
0
0

12
D

2
2
2
0

D
2
2
2
2

4D
4
0
0
0

12
D

4
2
2
0

10
E

1
1
1
1

68
E

3
1
1
1

30
E

3
3
1
1

16
E

3
3
3
1

4
E

5
1
1
1

12
E

5
3
1
1

A1111

B0000 1
6B2200 6

3C1111 3
4C3111 4

3D0000 3
12D2200 6 6
12D2220 3 9
D2222 1

4D4000 4
12D4220 12

10E1111 6 3 1
68E3111 24 24 4 4 12
30E3311 12 6 12
16E3331 4 12
4E5111 4

12E5311 12

4F0000 4
114F2200 18 72 24
160F2220 12 89 52 7
93F2222 56 21 16
4F4000 3 1

12F4200 9 1 2
300F4220 138 90 36 12 24
76F4222 24 36 4 12
6F4400 6

84F4420 36 36 12
30F4422 24 6
4F4440 4

12F6200 4 8
4F6222 4

24F6420 24
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Table 7.3: Four qubit covariant classification up to degree six.

Class A
1
1
1
1

6
B

2
2
0
0

B
0
0
0
0

4
C

3
1
1
1

3
C

1
1
1
1

4D
4
0
0
0

D
2
2
2
2

12
D

2
2
0
0

3D
0
0
0
0

4
F

4
0
0
0

4
F

0
0
0
0

Null
A-B-C-D 1
A-B-EPR 1 1
A-W 1 3 1
A-GHZ 1 3 1 1
Lab3 1 6 4 1

? 1 6 4 3 2 1 2
? 1 6 4 3 3 1 6

L07⊕1̄
1 6 4 3 4 1 12

? 1 6 4 3 4 1 12 1
? 1 6 4 3 4 1 12 4 4
? 1 6 4 3 4 1 12 3 4 4

GHZ 1 6 1 4 3 4 1 12 3 4 4
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Chapter 8

Superqubits and

superentanglement

Upon encountering the construction of a supersymmetric version of Cayley’s hyper-

determinant in [178], we immediately regarded it as a candidate “superentanglement”

measure for a hypothetical super analogue of a three qubit system. We were inspired

to generalise the qubit to the superqubit by adding fermionic degrees of freedom, tak-

ing the first steps towards generalising quantum information theory to super quantum

information theory. So, although the topic of superqubits grew organically out of the

black hole/qubit correspondence, strictly speaking it is logically independent of it. We

discuss it as an interesting parallel development.

In order to accommodate a super analogue of entanglement from the outset it was nec-

essary to appropriately generalise the (S)LOCC group. We thus promoted the SLOCC

equivalence group SL2(C)n to its minimal supersymmetric extension, the orthosymplec-

tic supergroup OSpn2|1 [179, 180], concurrently promoting the LOCC equivalence group

SUn
2 to the supergroup uOSpn2|1.

In ordinary quantum information theory, n-qubit states lie in the fundamental rep-

resentation of the SLOCC equivalence group, so a single superqubit was constructed as

a 3-dimensional representation of OSp2|1 consisting of two commuting “bosonic” com-

ponents and one anticommuting “fermionic” component:

|Ψ〉 = a0|0〉+ a1|1〉+ a•|•〉, (8.1)

where the bullet • here denotes the new fermionic component, in contrast to it’s use

in other chapters. This forced us to consider a super Hilbert space defined over the

109
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Grassmann numbers. We label the Grassmann algebra as Λ and the even (resp. odd)

sub-algebra of commutative (resp. anti-commutative) elements as Λ0 (resp. Λ1) where

a0, a1 ∈ Λ0 and a• ∈ Λ1. It was then possible to introduce the appropriate supersymmet-

ric generalisations of the conventional entanglement measures for the cases of n = 2 and

n = 3: the superdeterminant (distinct from the Berezinian) and superhyperdeterminant

respectively. In particular, super-Bell and super-GHZ states were characterised by the

nonvanishing of these invariants.

We review the superqubit concept in two parts: 1) the promotion of the entangle-

ment equivalence groups to their minimal supersymmetric extensions (accompanied by

the necessary supporting material) followed by an examination of the transformation

properties of one, two, and three superqubits under these groups. 2) The derivation of

the superinvariants that are the obvious candidates for supersymmetric entanglement

measures for two and three superqubits.

8.1 Super analogues of qubits and entanglement

8.1.1 Superlinear algebra

Grassmann numbers are the 2n-dimensional vectors populating the Grassmann algebra

Λn, which is generated by n mutually anticommuting elements {θi}ni=1.

Any Grassmann number z may be decomposed into “body” zB ∈ C and “soul” zS

viz.

z = zB + zS

zS =
∑∞

k=1
1
k!ca1···akθ

a1 · · · θak ,
(8.2)

where ca1···ak ∈ C are totally antisymmetric. For finite dimension n the sum terminates

at k = 2n and the soul is nilpotent zn+1
S = 0.

One may also decompose z into even and odd parts u and v

u = zB +
∑∞

k=1
1

(2k)!ca1···a2k
θa1 · · · θa2k

v =
∑∞

k=0
1

(2k+1)!ca1···a2k+1
θa1 · · · θa2k+1 ,

(8.3)

which may also be expressed as the direct sum decomposition Λn = Λ0
n ⊕ Λ1

n. Further-
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more, analytic functions f of Grassmann numbers are defined via

f(z) :=
∞∑
k=0

1
k!f

(k)(zB)zkS , (8.4)

where f (k)(zB) is the kth derivative of f evaluated at zB and is well defined if f is

nonsingular at zB [181].

One defines the grade of a Grassmann number as

deg x :=

0 x ∈ Λ0
n

1 x ∈ Λ1
n,

(8.5)

where the grades 0 and 1 are referred to as even and odd, respectively.

Define the star ? and superstar # operators [180, 182, 183] satisfying the following

properties:

(Λ0
n)? = Λ0

n, (Λ1
n)? = Λ1

n,

(Λ0
n)# = Λ0

n, (Λ1
n)# = Λ1

n,

(xθi)
? = x∗θ?i , θ??i = θi, (θiθj)

? = θ?j θ
?
i ,

(xθi)
# = x∗θ#

i , θ##
i = −θi, (θiθj)

# = θ#
i θ

#
j ,

(8.6)

where x ∈ C and ∗ is ordinary complex conjugation, which means

α?? = α, α## = (−)degαα (8.7)

for pure even/odd Grassmann α. The impure case follows by linearity.

Following [181] one may, if so desired, take the formal limit n → ∞ defining the

infinite dimensional vector space Λ∞. Elements of Λ∞ are called supernumbers. Our

results are independent of the dimension of the underlying Grassmann algebra and one

can use supernumbers throughout, but for the sake of simplicity we restrict to finite

dimensional algebra by assigning just one Grassmann generator θ and its superconjugate

θ# to every superqubit.

The grade definition applies to the components TX1···Xk of any k-index array of

Grassmann numbers T , but one may also define degXi, the grade of an index, for such

an array by specifying a characteristic function from the range of the index Xi to the set

{0, 1}. In general the indices can have different ranges and the characteristic functions

can be arbitrary for each index. It is then possible to define deg T , the grade of an array,
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as long as the compatibility condition

deg T ≡ deg(TX1···Xk) +

k∑
i=1

degXi mod 2 ∀ Xi (8.8)

is satisfied. In precisely such cases the entries of T satisfy

deg(TX1···Xk) = deg T +

k∑
i=1

degXi mod 2,

=⇒ deg T = deg(T1 · · · 1︸ ︷︷ ︸
k

),

deg(T1T2) = deg T1 + deg T2 mod 2,

(8.9)

so that in other words T is partitioned into blocks with definite grade such that the

nearest neighbours of any block are of the opposite grade to that block. The array grade

simply distinguishes the two distinct ways of accomplishing such a partition (i.e. the

two possible grades of the first element T1···1). Grassmann numbers and the Grassmann

number grade may be viewed as special cases of arrays and the array grade.

Special care must be taken not to confuse this notion of array grade with whether

the array entries at even/odd index positions vanish. An array T may be decomposed

as

T = TE + TO, (8.10)

where the pure even part TE is obtained from T by setting to zero all entries satisfying

deg(TX1···Xk) = 1, and similarly mutatis mutandis for TO. The property of being pure

even or pure odd is therefore independent of the array grade as defined above.

The various grades commonly appear in formulae as powers of -1 and the shorthand

(−)X := (−1)degX (8.11)

is often used. The indices of superarrays may be supersymmetrised as follows:

TX1···[[Xi|···|Xj ]]···Xk :=

1
2 [TX1···Xi···Xj ···Xk + (−)XiXjTX1···Xj ···Xi···Xk ].

(8.12)

While we require these definitions for some of our considerations, one typically only

uses arrays with 0, 1, or 2 indices where the characteristic functions are monotonic:

supernumbers, supervectors, and supermatrices, respectively. Functions of grades extend
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to mixed superarrays (with nonzero even and odd parts) by linearity.

A (p|q)× (r|s) supermatrix is just an (p+ q)× (r+ s)-dimensional block partitioned

matrix

M =

[ r s

p A B

q C D

]
(8.13)

where entries in the A and D blocks are grade degM , and those in the B and C blocks

are grade degM + 1 mod 2. The special cases s = 0 or q = 0 can be permitted to make

the definition encapsulate row and column supervectors. Supermatrix multiplication is

defined as for ordinary matrices; however, the trace, transpose, adjoint, and determinant

have distinct super versions [180,184].

The supertrace strM of a supermatrix is M defined as

strM :=
∑
X

(−)(X+M)XMXX (8.14)

and is linear, cyclic modulo sign, and insensitive to the supertranspose

str(M +N) = str(M) + str(N)

str(MN) = (−)MN str(NM)

strM st = strM.

(8.15)

The supertranspose M st of a supermatrix M is defined componentwise as

M st
X1X2 := (−)(X2+M)(X1+X2)MX2X1 . (8.16)

Unlike the transpose the supertranspose is not idempotent; instead,

M st st
X1X2 = (−)(X1+X2)MX1X2 ,

M st st st
X1X2 = (−)(X1+M)(X1+X2)MX2X1 ,

M st st st st
X1X2 = MX1X2 ,

(8.17)

so that it is of order 4. The supertranspose also satisfies

(MN)st = (−)MNN stM st. (8.18)
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The adjoint † and superadjoint ‡ of a supermatrix are defined as

M † := M?t

M ‡ := M#st,
(8.19)

and satisfy

M †† = M, M ‡‡ = (−)MM,

(MN)† = N †M †, (MN)‡ = (−)MNN ‡M ‡.
(8.20)

The preservation of anti-super-Hermiticity, M ‡ = −M , under scalar multiplication

by Grassmann numbers, as required for the proper definition of uosp(1|2) [185], necessi-

tates the left/right multiplication rules:

(αM)X1X2 = (−)X1ααMX1X2 ,

(Mα)X1X2 = (−)X2αMX1X2α.
(8.21)

The Berezinian is defined as

BerM := det(A−BD−1C)/det(D)

= det(A)/ det(D − CA−1B)
(8.22)

and is multiplicative, insensitive to the supertranspose, and generalises the relationship

between trace and determinant

Ber(MN) = Ber(M) Ber(N)

BerM st = BerM

Ber eM = estrM .

(8.23)

The direct sum and super tensor product are unchanged from their ordinary versions.

As such, the dimension of the tensor product of two superqubits is given by

(2|1)⊗ (2|1) = (2|1|2|3|1), (8.24)

while the threefold product is

(2|1)3 = (2|1|2|3|3|1|2|3|1|2|1|2|3|1), (8.25)

with similar results holding for the associated density matrices. In analogy with the
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ordinary case we have

(M ⊗N)t = M t ⊗N t

(M ⊗N)st = M st ⊗N st

str(M ⊗N) = strM strN.

(8.26)

These definitions are manifestly compatible with Hermiticity and super-Hermiticity.

Denoting the total number of bosonic elements in the product of n superqubits by

Bn, and similarly the total number of fermionic elements by Fn, we know that Bn (Fn)

is given by the total number of basis kets with an even (odd) number of •’s:

Bn =

(
n

0

)
2n +

(
n

2

)
2n−2 + · · · = 3n + 1

2

Fn =

(
n

1

)
2n−1 +

(
n

3

)
2n−3 + · · · = 3n − 1

2

(8.27)

so that, in particular, Bn − Fn = 1: the number of bosonic elements is always one more

than the number of fermionic ones.

In supermatrix representations of superalgebras, one may represent the superbracket

of generators M and N as

[[M,N ]] := MN −NEM −NO(ME −MO). (8.28)

One may also consider supermatrices M and N whose components are themselves su-

permatrices. Provided the component supermatrices are pure even (odd) at even (odd)

index positions (e.g. M11 is a pure even supermatrix for even M), one may write the

superbracket of such supermatrices as

[[MX1X2 , NX3X4 ]] =

MX1X2NX3X4 − (−)(X1+X2)(X3+X4)NX3X4MX1X2 ,
(8.29)

where the final two indices are suppressed. This grouping of supermatrices into super-

matrices is useful for summarising the superbrackets of superalgebras.

8.1.2 Orthosymplectic superalgebras and super (S)LOCC

In promoting the conventional SLOCC equivalence group SL2(C) with Lie algebra

[PA1A2 , PA3A4 ] = 2ε(A1(A3
PA4)A2), (8.30)
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to its minimal supersymmetric extension OSp2|1, we begin with a discussion of orthosym-

plectic superalgebras in general. Supermatrix representations of the orthosymplectic

supergroup OSpp|2q consist of supermatrices M ∈ GLp|2q satisfying

M stEM = E, (8.31)

but for convenience we choose instead to use supermatrices M ∈ GL2q|p satisfying (8.31).

In this convention, the invariant supermatrix E is defined by

E :=

(
J2q 0

0 1p

)
, J2q :=

(
0 1q

−1q 0

)
. (8.32)

Definitions of supermatrices, the supertranspose, and further details of superlinear alge-

bra were supplied in section 8.1.1.

Writing a generic supermatrix M of the super Lie algebra osp(p|2q) as

M =

(
A B

C D

)
(8.33)

permits (8.31) to be rewritten as the following conditions on the blocks of the algebra

supermatrices:

AtJ = −JA, C = BtJ, Dt = −D. (8.34)

Depending on the value of p, the superalgebra falls into one of three basic, “classical”

families

ospp|2q =


B(r, q) p = 2r + 1, r ≥ 0

C(q + 1) p = 2

D(r, q) p = 2r, r ≥ 2.

(8.35)

Clearly it is the first case that will concern us, in particular, with r = 0, q = 1. B(r, q)

has rank q + r, dimension 2(q + r)2 + 3q + r, and even part sop ⊕ sp2q, which for osp1|2

are 1, 5, and sl2, respectively.

One generates ospp|2q as a matrix superalgebra by defining the supermatrices U and
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G

(UX1X2)X3X4 := δX1X4δX2X3 ,

G :=

(
J2q 0

0 Hp

)
,

(8.36)

where

Hp :=

 σ1 ⊗ 1r p = 2r

[σ1 ⊗ 1r]⊕ (1) p = 2r + 1
(8.37)

with σ1 being the first Pauli matrix. Here the indices Xi range from 1 to 2q + p and

are partitioned as Xi = (X̄i, Ẋi) with X̄i ranging from 1 to 2q, and Ẋi taking on the

remaining p values. Note that under (8.36), G has the following symmetry properties

GX̄1X̄2
= −GX̄2X̄1

, GẊ1Ẋ2
= +GẊ2Ẋ1

,

GX̄1Ẋ2
= 0 = GẊ2X̄1

,
(8.38)

which are shared with the invariant supermatrix E. In the special case p = 1, G reduces

to E.

The generators T are obtained as

TX1X2 = 2G[[X1|X3
UX3|X2]], (8.39)

where T has array grade zero and the index grades are monotonically increasing:

degX :=

0 X ∈ {1, . . . , 2q}

1 X ∈ {2q + 1, . . . , 2q + p}.
(8.40)

Clearly T has symmetry properties TX1X2 = T[[X1X2]]. The 2q(2q + 1)/2 generators

TX̄1X̄2
generate sp2q, the p(p − 1)/2 generators TẊ1Ẋ2

generate sop, and both are even

(bosonic), while the 2pq generators TX̄1Ẋ2
are odd (fermionic). These supermatrices

yield the ospp|2q superbrackets

[[TX1X2 , TX3X4 ]] := 4G[[X1[[X3
TX2]]X4]], (8.41)

where the supersymmetrisation on the right-hand side is over pairs X1X2 and X3X4 as

on the left-hand side. The action of the generators on (2q|p)-dimensional supervectors
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aX is given by

(TX1X2)X3X4aX4 ≡ (TX1X2a)X3 = 2G[[X1|X3
aX2]] (8.42)

This action may be generalised to an N -fold super tensor product of (2q|p) supervectors

by labelling the indices with integers k = 1, 2, . . . , N

(TXkYka)Z1···Zk···ZN =

(−)(Xk+Yk)
∑k−1
i=1 |Zi|2G[[Xk|ZkaZ1···|Yk]]···ZN .

(8.43)

In our special case p = 1 we denote the lone dotted index Ẋi by a bullet • and start

counting the barred indices at zero so that Xi = (0, 1, •). Obviously the T•• generator

vanishes identically, leaving only the following superbrackets:

[TA1A2 , TA3A4 ] = 4E(A1(A3
TA2)A4)

[TA1A2 , TA3•] = 2E(A1|A3
TA2)•

{TA1•, TA2•} = TA1A2 ,

(8.44)

which are written out in Table 8.1 with TA ≡ TA• ≡ T•A. Explicitly the generators are

Table 8.1: osp1|2 superbrackets.

T01 T00 T11 T0 T1

T01 0 −2T00 2T11 −T0 T1

T00 2T00 0 4T01 0 2T0

T11 −2T11 −4T01 0 −2T1 0
T0 T0 0 2T1 T00 T01

T1 −T1 −2T0 0 T01 T11

T01 =

−1 0 0

0 1 0

0 0 0

 ,

T00 =

0 2 0

0 0 0

0 0 0

 , T11 =

 0 0 0

−2 0 0

0 0 0

 ,

T0 =

0 0 1

0 0 0

0 1 0

 , T1 =

 0 0 0

0 0 1

−1 0 0

 .

(8.45)
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In order to make contact with [178], we rescale the generators into a new supermatrix P

PX1X2 := 1
2TX1X2 ≡ E[[X1|X3

UX3|X2]] (8.46)

to yield the superbrackets

[PA1A2 , PA3A4 ] = 2ε(A1(A3
PA2)A4)

[PA1A2 , QA3 ] = ε(A1|A3
QA2)

{QA1 , QA2} = 1
2PA1A2 ,

(8.47)

where QA ≡ PA, which are summarised as

[[PX1X2 , PX3X4 ]] = 2E[[X1[[X3
PX2]]X4]]. (8.48)

The rescaled generators have the action

(PX1X2a)X3 = E[[X1|X3
aX2]]

(PXkYka)Z1···Zk···ZN =

(−)(Xk+Yk)
∑k−1
i=1 ZiE[[Xk|ZkaZ1···|Yk]]···ZN ,

(8.49)

which, it can be checked, summarises Tables 8.2, 8.3 and 8.4.

The three even elements PA1A2 form an sl2 subalgebra generating the bosonic SLOCC

equivalence group, under which QA transforms as a spinor.

The supersymmetric generalisation of the conventional group of local unitaries is

given by uOSp2|1, a compact subgroup of OSp2|1 [180, 183]. It has a supermatrix rep-

resentation as the subset of OSp2|1 supermatrices satisfying the additional superunitary

condition

M ‡M = 1, (8.50)

where ‡ is the superadjoint given by

M ‡ = (M st)#. (8.51)

The uOSp2|1 algebra is given by

uosp2|1 := {X ∈ osp2|1|X‡ = −X}. (8.52)
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An arbitrary element X ∈ uosp(2|1) may be written as

X = ξiAi + η#Q0 + ηQ1, (8.53)

where ξi and η are pure even/odd Grassmann numbers respectively and

A1 = i
2(P00 − P11), A2 = 1

2(P00 + P11),

A3 = iP01,

Q‡A = εAA′QA′ , A‡i = −Ai.

(8.54)

8.1.3 Super Hilbert space and uOSp2|1

The dual space

We now generalise the ordinary concept of a Hilbert space, described in section 3.1.

With one important difference, explained below, our definition of a super Hilbert space

follows that of DeWitt [181]. We define a super Hilbert space to be a supervector space

H equipped with an injection to its dual space H‡,

‡ : H → H‡,

|ψ〉 7→ (|ψ〉)‡ := 〈ψ|.
(8.55)

Details of even and odd Grassmann numbers and supervectors may be found in

section 8.1.1. A basis in which all basis vectors are pure even or odd is said to be pure.

Such a basis may always be found [181].

The map ‡ : H → H‡ defines an inner product 〈ψ|φ〉 and satisfies the following

axioms:

1. ‡ sends pure bosonic (fermionic) supervectors in H into bosonic (fermionic) super-

vectors in H‡.

2. ‡ is linear

(|ψ〉+ |φ〉)‡ = 〈ψ|+ 〈φ|. (8.56)

3. For pure even/odd α and |ψ〉

(|ψ〉α)‡ = (−)αψα#〈ψ| (8.57)

and

(α〈ψ|)‡ = (−)ψ+αψ|ψ〉α#, (8.58)
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where # is the superstar introduced in section 8.1.1. In particular

|ψ〉‡‡ = (−)ψ|ψ〉. (8.59)

Note, an α (or ψ and the like) appearing in the exponent of (−) is shorthand for

its grade, deg(α), which takes the value 0 or 1 according to whether α is even or

odd. The impure case follows from the linearity of ‡.

In a pure even/odd orthonormal basis {|i〉} we adopt the following convention:

|ψ〉 = |i〉ψi (8.60)

so that for pure even/odd ψ (8.57) and (8.58) imply

(|i〉ψi)‡ = (−)ψiiψ#
i 〈i| = (−)i+iψψ#

i 〈i|

((−)i+iψψ#
i 〈i|)

‡ = (−)ψ|i〉ψi
(8.61)

where we have used deg(ψi) = deg(i) + deg(ψ). This is consistent with (8.21).

Inner product

For all pure even/odd |ψ〉, |φ〉 ∈ H the inner product 〈ψ|φ〉 satisfies

〈ψ|φ〉# = (−)ψ+ψφ〈φ|ψ〉. (8.62)

Consequently,

〈ψ|φ〉## = (−)ψ+φ〈φ|ψ〉, (8.63)

as would be expected of a pure even/odd Grassmann number since deg(〈φ|ψ〉) = deg(ψ)+

deg(φ). In a pure even/odd orthonormal basis we find

〈φ|ψ〉 = (−)i+iφφ#
i ψi. (8.64)

In using the superstar we depart from the formalism presented in [181] which uses the

ordinary star. A comparison of the star and superstar may be found in section 8.1.1.

The use of the superstar is tailored to the implementation of uOSp2|1 as the compact

subgroup of OSp2|1 as explained in section 8.1.2.
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Physical states

For all |ψ〉 ∈ H
〈ψ|ψ〉B ≥ 0. (8.65)

Here zB ∈ C denotes the purely complex number component of the Grassmann number

z and is referred to as the body, a terminology introduced in [181]. The soul of z,

denoted zS , is the purely Grassmannian component. Any Grassmann number may be

decomposed into body and soul, z = zB + zS .

A Grassmann number has an inverse iff it has a non-vanishing body. Consequently,

a state |ψ〉 is normalisable iff 〈ψ|ψ〉B > 0. The state may then be normalised,

|ψ̂〉 = Nψ|ψ〉, Nψ = 〈ψ|ψ〉−1/2, (8.66)

where Nψ is given by the general definition of an analytic function f on the space of

Grassmann numbers (8.4). Explicitly,

〈ψ|ψ〉−1/2 =

∞∑
k=0

1

k!2k

k∏
j=0

(1− 2j)〈ψ|ψ〉−
2k+1

2
B 〈ψ|ψ〉kS . (8.67)

Motivated by the above considerations a state |ψ〉 is said to be physical iff 〈ψ|ψ〉B > 0.

We restrict our attention to physical states throughout.

We must acknowledge that this choice presents us with the problem of interpret-

ing “physical” states with non-vanishing soul for which probabilities are no longer real

numbers but elements of a Grassmann algebra. (The probabilities still add up to one,

however.) The examples of section 8.2 avoid this problem, being pure body. DeWitt

advocates retaining only such pure body states in the Hilbert space [181], but we view

this as too draconian, preferring the approaches of [186].

8.1.4 One superqubit

The one superqubit system is described by the state

|Ψ〉 = |A〉aA + |•〉a•, (8.68)

where aA is commuting with A = 0, 1 and a• is anticommuting. That is to say, the

state vector is promoted to a supervector. The super Hilbert space has dimension 3, two
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“bosons” and one “fermion”. In more compact notation we may write,

|Ψ〉 = |X〉aX , (8.69)

where X = (A, •).

The super SLOCC equivalence group for a single qubit is OSp2|1,A. Under the SL2,A

subgroup aA transforms as a 2 while a• is a singlet as shown in Table 8.2. The super

LOCC entanglement equivalence group, i.e. the group of local unitaries, is given by

uOSp2|1,A, the unitary subgroup of OSp2|1,A.

Table 8.2: The action of the osp2|1 generators on the superqubit fields.

Generator
Field acted upon

aA3 a•

PA1A2 ε(A1|A3
a|A2) 0

2QA1 εA1A3a• aA1

The norm squared 〈Ψ|Ψ〉 is given by

〈Ψ|Ψ〉 = δA1A2a#
A1
aA2 − a#

• a•, (8.70)

where 〈Ψ| = (|Ψ〉)‡ and 〈Ψ|Ψ〉 is the conventional inner product which is manifestly

uOSp2|1 invariant.

The one-superqubit state may then be normalised. When presenting examples of

state vector normalisation, we take the underlying Grassmann algebra to have one gen-

erator per superqubit for simplicity, however our other results are independent of the

dimension. Hence the n-superqubit Hilbert space is defined over a 2n-dimensional Grass-

mann algebra. Consequently, zn+1
S = 0 for all z and (8.4) terminates after a finite number

of terms. Using (8.67) for n superqubits one obtains

〈Ψ|Ψ〉−1/2 =

2n∑
k=0

1

k!2k

k∏
j=0

(1− 2j)〈Ψ|Ψ〉−
2k+1

2
B 〈Ψ|Ψ〉kS , (8.71)

where the sum runs to 2n since an arbitrary Grassmann α and its superstar conjugate

α# are independent.
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The one-superqubit density matrix in component form is given by

ρX1X2 = 〈X1|ρ|X2〉

= (−)X2aX1a
#
X2
.

(8.72)

The density matrix is self-superadjoint,

ρ‡X1X2
= (ρstX1X2

)#

= (−)X2+X1X2ρ#
X2X1

= (−)X2+X1X2(−)X1a#
X2
a##
X1

= (−)X2aX1a
#
X2

= ρX1X2 .

(8.73)

The norm squared is then given by the supertrace

str(ρ) = (−)X1δX1X2〈X1|ρ|X2〉

=
∑
X

aXa
#
X

=
∑
X

(−)Xa#
XaX

= 〈Ψ|Ψ〉

(8.74)

as one would expect.

Unnormalised pure state super density matrices satisfy ρ2 = str(ρ)ρ,

ρ2 = (−)X2aX1a
#
X2
δX2X3(−)X4aX3a

#
X4

= δX2X3aX2a
#
X3

(−)X4aX1a
#
X4

= str(ρ)ρ,

(8.75)

the appropriate supersymmetric version of the conventional pure state density matrix

condition.

8.1.5 Two superqubits

The two superqubit system is described by the state

|Ψ〉 = |AB〉aAB + |A•〉aA• + |•B〉a•B + |••〉a•• (8.76)
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where aAB is commuting, aA• and a•B are anticommuting and a•• is commuting. The

super Hilbert space has dimension 9: 5 “bosons” and 4 “fermions”. The super SLOCC

group for two superqubits is OSp2|1,A×OSp2|1,B. Under the SL2,A×SL2,B subgroup aAB

transforms as a (2,2), aA• as a (2,1), a•B as a (1,2) and a•• as a (1,1) as summarised

in Table 8.3. The coefficients may also be assembled into a (2|1)× (2|1) supermatrix

Table 8.3: The action of the osp2|1 ⊕ osp2|1 generators on the two-superqubit fields.

Generator
Field acted upon

Bosons Fermions

aA3B3 a•• aA3• a•B3

PA1A2 ε(A1|A3
a|A2)B3

0 ε(A1|A3
a|A2)• 0

PB1B2 ε(B1|B3
aA3|B2) 0 0 ε(B1|B3

a•|B2)

2QA1 εA1A3a•B3 aA1• εA1A3a•• aA1B3

2QB1 εB1B3aA3• −a•B1 aA3B1 −εB1B3a••

〈XY |Ψ〉 = aXY =

(
aAB aA•

a•B a••

)
. (8.77)

See Figure 8.1.

aAB aAè

aèB aèè

Figure 8.1: The 3 × 3 square supermatrix, which generalises the ordinary qubit square
of Figure 3.1.
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The norm squared 〈Ψ|Ψ〉 is given by

〈Ψ|Ψ〉 = (−)X1+Y1δX1X2δY1Y2a#
X1Y1

aX2Y2

= δA1A2δB1B2a#
A1B1

aA2B2

− δA1A2a#
A1•aA1• − δB1B2a#

•B1
a•B1

+ a#
••a••,

(8.78)

where 〈Ψ| = (|Ψ〉)‡ and 〈Ψ|Ψ〉 is the conventional inner product which is manifestly

uOSp2|1,A×uOSp2|1,B invariant.

The two-superqubit density matrix is given by

ρ = |Ψ〉〈Ψ|

= (−)X2+Y2 |X1Y1〉aX1Y1a
#
X2Y2
〈X2Y2|.

(8.79)

In component form the reduced density matrices for A and B are given by the partial

supertraces:

(ρA)X1X2 =
∑
Y

(−)X2aX1Y a
#
X2Y

,

(ρB)Y1Y2 =
∑
X

(−)Y2aXY1a
#
XY2

,
(8.80)

and

str ρA = str ρB = 〈Ψ|Ψ〉. (8.81)

8.1.6 Three superqubits

The three superqubit system is described by the state

|Ψ〉 = |ABC〉aABC
+|AB•〉aAB• + |A • C〉aA•C + |•BC〉a•BC
+|A • •〉aA•• + |•B•〉a•B• + |• • C〉a••C

+|• • •〉a•••

(8.82)

where aAB is commuting, aAB• aA•C a•BC are anticommuting, aA•• a•B• a••C are

commuting and a••• is anticommuting. The super Hilbert space has dimension 27:

14 “bosons” and 13 “fermions”. The super SLOCC group for three superqubits is

OSp2|1,A×OSp2|1,B ×OSp2|1,C . Under the SL2,A×SL2,B × SL2,C subgroup aABC trans-
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forms as a (2,2,2), aAB• as a (2,1,1), aA•C as a (2,1,2), a•BC as a (1,2,2), aA•• as a

(2,1,1), a•B• as a (1,2,1), a••C as a (1,1,2) and a••• as a (1,1,1) as summarised in

Table 8.4.The coefficients may also be assembled into a (2|1)× (2|1)× (2|1) superhyper-

matrix

〈XY Z|Ψ〉 = aXY Z . (8.83)

See Figure 8.2.

aABC

aèèè

aèBC

aABè

aAèC

aèèC

aèBè

aAèè

Figure 8.2: The 3× 3× 3 cubic superhypermatrix, which generalises the ordinary qubit
cube of Figure 3.1.

The norm squared 〈Ψ|Ψ〉 is given by

〈Ψ|Ψ〉 = (−)X1+Y1+Z1δX1X2δY1Y2δZ1Z2a#
X1Y1Z1

aX2Y2Z2

= δA1A2δB1B2δC1C2a#
A1B1C1

aA2B2C2

− δA1A2δB1B2a#
A1B1•aA2B2•

− δA1A2δC1C2a#
A1•C1

aA2•C2

− δB1B2δC1C2a#
•B1C1

a•B2C2

+ δA1A2a#
A1••aA2••

+ δB1B2a#
•B1•a•B2•

+ δC1C2a#
••C1

a••C2

− a#
•••a•••,

(8.84)

where 〈Ψ| = (|Ψ〉)‡ and 〈Ψ|Ψ〉 is the conventional inner product which is manifestly
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Table 8.4: The action of the osp2|1 ⊕ osp2|1 ⊕ osp2|1 generators on the three-superqubit
fields.

Generator
Bosons acted upon

aA3B3C3 aA3•• a•B3• a••C3

PA1A2 ε(A1|A3
a|A2)B3C3

ε(A1|A3
a|A2)•• 0 0

PB1B2 ε(B1|B3
aA3|B3)C2

0 ε(B1|B3
a•|A2)• 0

PC1C2 ε(C1|C3
aA3B3|C2) 0 0 ε(C1|C3

a••|C2)

2QA1 εA1A3a•B3C3 εA1A3a••• aA1B3• aA1•C3

2QB1 εB1B3aA3•C3 aA3B1• −εB1B3a••• −a•B1C3

2QC1 εC1C3aA3B3• −aA3•C1 −a•B3C1 εC1C3a•••

Fermions acted upon

aA3B3• aA3•C3 a•B3C3 a•••

PA1A2 ε(A1|A3
a|A2)B3• ε(A1|A3

a|A2)•C3
0 0

PB1B2 ε(B1|B3
aA3|B3)• 0 ε(B1|B3

a•|B3)C2
0

PC1C2 0 ε(C1|C3
aA3•|C2) ε(C1|C3

a•B3|C2) 0

2QA1 εA1A3a•B3• εA1A3a••C3 aA1B3C3 aA1••
2QB1 εB1B3aA3•• aA3B1C3 −εB1B3a••C3 −a•B1•
2QC1 aA3B3C1 −εC1C3aA3•• −εC1C3a•B3• a••C1

uOSp2|1,A×uOSp2|1,B ×uOSp2|1,C invariant.

The three-superqubit density matrix is given by

ρ = |Ψ〉〈Ψ|

= (−)X2+Y2+Z2 |X1Y1Z1〉aX1Y1Z1a
#
X2Y2Z2

〈X2Y2Z2|.
(8.85)

The singly reduced density matrices are defined using the partial supertraces

ρAB =
∑
Z

(−)X2+Y2 |X1Y1〉aX1Y1Za
#
X2Y2Z

〈X2Y2|,

ρBC =
∑
X

(−)Y2+Z2 |Y1Z1〉aXY1Z1a
#
XY2Z2

〈Y2Z2|,

ρCA =
∑
Y

(−)X2+Z2 |X1Z1〉aX1Y Z1a
#
X2Y Z2

〈X2Z2|.

(8.86)
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The doubly reduced density matrices for A, B and C are given by the partial supertraces

ρA =
∑
Y,Z

(−)X2 |X1〉aX1Y Za
#
X2Y Z

〈X2|,

ρB =
∑
X,Z

(−)Y2 |Y1〉aXY1Za
#
XY2Z

〈Y2|,

ρC =
∑
X,Y

(−)Z2 |Z1〉aXY Z1a
#
XY Z2

〈Z2|.

(8.87)

8.2 Superinvariant superentanglement measures

8.2.1 Two superqubits

In seeking a supersymmetric generalisation of the 2-tangle (3.14) one might be tempted

to replace the determinant of aAB by the Berezinian of aXY

Ber aXY = det(aAB − aA•a−1
•• a•B)a−1

•• . (8.88)

See section 8.1.1. However, although the Berezinian is the natural supersymmetric

extension of the determinant, it is not defined for vanishing a••, making it unsuitable as

an entanglement measure.

A better candidate follows from writing

det aAB = 1
2a

ABaAB = 1
2 tr(atεaεt)

= 1
2 tr[(aε)tεa],

(8.89)

This expression may be generalised by a straightforward promotion of the trace and

transpose to the supertrace and supertranspose and replacing the SL2 invariant tensor ε

with the OSp2|1 invariant tensor E. See section 8.1.1. This yields a quadratic polynomial,

which we refer to as the superdeterminant, denoted sdet:

sdet aXY = 1
2 str[(aE)stEa]

= 1
2(aABaAB − aA•aA• − a•Ba•B − a••a••)

= (a00a11 − a01a10 + a0•a1• + a•0a•1)− 1
2a••

2,

(8.90)

which is clearly not equal to the Berezinian, but is nevertheless supersymmetric since QA

annihilates aABaAB−a•Ba•B and aA•aA•+a
••a••, whileQB annihilates aABaAB−aA•aA•

and a•Ba•B + a••a••. Satisfyingly, (8.90) reduces to det aAB when aA•, a•B and a•• are
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set to zero. We then define the super 2-tangle as:

τXY = 4 sdet aXY (sdet aXY )#. (8.91)

In summary, 2-superqubit entanglement seems to have the same two entanglement

classes as 2-qubits with the invariant det aAB replaced by its supersymmetric counterpart

sdet aXY .

Non-superentangled states are given by product states for which aAB = aAbB,

aA• = aAb•, a•B = a•bB, a•• = a•b• and sdet aXY vanishes. This provides a non-trivial

consistency check.

An example of a normalised physical superentangled state is given by

|Ψ〉 = 1√
3
(|00〉+ |11〉+ i|••〉) (8.92)

for which

sdet aXY = 1
3 + 1

2 ·
1
3 = 1

2 (8.93)

and

τXY = 4 sdet aXY (sdet aXY )# = 1. (8.94)

So this state is not only entangled but maximally entangled, just like the Bell state

|Ψ〉 = 1√
2
(|00〉+ |11〉) (8.95)

for which sdet aXY = 1/2 and τXY = 1. Another more curious example is

|Ψ〉 = i|••〉 (8.96)

which is not a product state since a•• is pure body and hence could never be formed

by the product of two odd supernumbers. In fact sdet aXY = 1/2 and τXY = 1, so this

state is also maximally entangled.

We may interpolate between these two examples with the normalised state

(|α|2 + |β|2)−1/2[α|Ψ〉Bell + β|••〉], (8.97)



8.2. SUPERINVARIANT SUPERENTANGLEMENT MEASURES 131

where α, β ∈ C, for which we have

sdet aXY =
1

2

α2 − β2

|α|2 + |β|2
,

τXY =
|α2 − β2|2

(|α|2 + |β|2)2
.

(8.98)

The entanglement for this state is displayed as a function of the complex parameter β

in Figure 8.3 for the case α = 1. Note in particular that while the state is maximised for

Figure 8.3: The 2-tangle τXY for the state (8.97) for a complex parameter β.

arbitrary pure imaginary β the state has its minimum value on the real axis at β = ±1
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as shown in Figure 8.4.

-3 -2 -1 0 1 2 3
Β

0.2

0.4

0.6

0.8

1.0

1.2

ΤXY

2-tangle with real Β

Figure 8.4: The 2-tangle τXY for the state (8.97) for a real parameter β.

8.2.2 Three superqubits

In seeking to generalise the 3-tangle (3.18), invariant under SL3
2, to a supersymmetric

object, invariant under [OSp(2|1)]3, we need to find a quartic polynomial which reduces

to Cayley’s hyperdeterminant when aAB•, aA•C , a•BC , aA••, a•B•, a••C and a••• are set

to zero. We do this by generalising the γ matrices:

γA1A2 := aA1
BCaA2BC − aA1

B•aA2B•

− aA1
•CaA2•C − aA1

••aA2••,
(8.99)

γA1• := aA1
BCa•BC + aA1

B•a•B•

+ aA1
•Ca••C − aA1

••a•••,
(8.100)

γ•A2 := a•
BCaA2BC − a•B•aA2B•

− a••CaA2•C − a•••aA2••,
(8.101)

together with their B and C counterparts; notice that the building blocks with two

indices are bosonic and those with one index are fermionic. The final bosonic possibility,
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γ(••), vanishes identically. The simple supersymmetry relations are given by:

QA1γA2A3 = εA1(A2
γA3)•

QA1γA2• = 1
2γA1A2

QBγA1A2 = 0 = QCγA1A2

QBγA• = 0 = QCγA•.

(8.102)

Using these expressions we define the superhyperdeterminant, denoted sDet a:

sDet aXY Z = 1
2(γA1A2γA1A2 − γA•γA• − γ•Aγ•A) (8.103)

which is invariant under the action of the superalgebra. The corresponding expressions

singling out superqubits B and C are also invariant and equal to (8.103). sDet aXY Z can

be seen as the definition of the super-Cayley determinant of the cubic superhypermatrix

given in Figure 8.2.

Writing

ΓA :=

(
γA1A2 γA1•

γ•A2 γ••

)
=

(
γA1A2 γA1•

γA2• 0

)
, (8.104)

we obtain an invariant analogous to (8.90)

sDet aXY Z = 1
2 str[(ΓAE)stEΓA] (8.105)

so that

sDet aXY Z = − sdet ΓA (8.106)

in analogy to the conventional three-qubit identity (3.21).

Finally, using ΓA we are able to define the supersymmetric generalisation TXY Z of

the 3-qubit tensor TABC as encountered in (A.2.2) (in other words, super-C111),

TXY Z = ΓAXX′a
X′
Y Z . (8.107)

It is not difficult to verify that TXY Z transforms in precisely the same way as aXY Z (as

given in Table 8.4) under osp2|1⊕ osp2|1⊕ osp2|1. The superhyperdeterminant may then
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also be written as,

sDet aXY Z = TABCa
ABC + T•BCa

•BC

− TA•CaA•C − TAB•aAB•

− TA••aA•• + T•B•a
•B•

+ T••Ca
••C − T•••a•••.

(8.108)

In this sense sDet aXY Z , (ΓA)X1X2 and TXY Z are the natural supersymmetric gener-

alisations of the hyperdeterminant, Det aABC , and the covariant tensors, (γA)A1A2 and

TABC , of the conventional 3-qubit treatment summarised in Table A.5. Finally we are

in a position to define the super 3-tangle:

τXY Z = 4
√

sDet aXY Z(sDet aXY Z)#. (8.109)

In summary 3-superqubit entanglement seems to have the same five (seven) entanglement

classes as that of 3-qubits shown in Table A.5, with the covariants aABC , γ
A, γB, γC , TABC

and Det aABC replaced by their supersymmetric counterparts aXY Z ,Γ
A,ΓB,ΓC , TXY Z

and sDet aABC .

Completely separable non-superentangled states are given by product states for which

aABC = aAbBcC , aAB• = aAbBc•, aA•C = aAb•cC , a•BC = a•bBcC , aA•• = aAb•c•, a•B• =

a•bBc•, a••C = a•b•cC , a••• = a•b•c• and sDet aXY Z vanishes. This provides a non-

trivial consistency check.

An example of a normalised physical biseparable state is provided by

|Ψ〉 = 1√
3
(|000〉+ |011〉+ |0 • •〉) (8.110)

for which

(ΓA)00 = 1
3 (8.111)

and ΓB, ΓC , TXY Z and sDet aXY Z vanish. More generally, one can consider the combi-

nation

|Ψ〉 = (|α|2 + |β|2)−1/2[ 1√
2
α(|000〉+ |011〉) + β|0 • •〉] (8.112)

for which

(ΓA)00 =
α2 − β2

|α|2 + |β|2
(8.113)

and the other covariants vanish.
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An example of a normalised physical W state is provided by

|Ψ〉 = 1√
6
(|110〉+ |101〉+ |011〉

+|• • 1〉+ |•1•〉+ |1 • •〉)
(8.114)

for which

(ΓA)11 = (ΓB)11 = (ΓC)11 = −1
2 (8.115)

and

T111 = 1
2
√

6
(8.116)

while sDet aXY Z vanishes. One could also consider

|Ψ〉 = 1√
3
(|α|2 + |β|2)−1/2[α(|110〉+ |101〉+ |011〉)

+β(|• • 1〉+ |•1•〉+ |1 • •〉)]
(8.117)

for which

(ΓA)11 = (ΓB)11 = (ΓC)11 = − 2α2 + β2

3(|α|2 + |β|2)
(8.118)

and

T111 =
α(2α2 + β2)

3
√

3(|α|2 + |β|2)3/2
(8.119)

while the other T components and sDet aXY Z vanish.

An example of a normalised physical tripartite superentangled state is provided by

|Ψ〉 = 1√
8
(|000〉+ |• • 0〉+ |•0•〉+ |0 • •〉

+|111〉+ |• • 1〉+ |•1•〉+ |1 • •〉)
(8.120)

for which

sDet aXY Z = 1
64 (8.121)

and

τXY Z = 4
√

sDet aXY Z(sDet aXY Z)# = 1
16 . (8.122)
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Chapter 9

Conclusion

9.1 Summary

We have reviewed our recent discoveries and developments in the black hole/qubit corre-

spondence, concentrating on those aspects more closely related to supersymmetry than

FTS technology, namely supersymmetric black hole/entanglement classification and the

superqubit development. Here follows a recap of our discussion:

Chapter 2 We began with a brief introduction to the black hole side of the correspon-

dence. In particular describing the origin of black hole entropy, and the fact that

it is expressed in terms of dyonic charges transforming in a representation of the

U-duality group of the attendant theory. This was followed up by describing the

theories of interest: the STU model and generalisations to N = 8 and D = 5,

along with the corresponding supersymmetric classifications, and a mention of

magic supergravities.

Chapter 3 We reviewed the basics of entanglement and entanglement classification

including the SLOCC paradigm, and the classification of three qubits into seven

classes by appropriate entanglement measures. supported by some elementary

concepts in classical invariant theory.

Chapter 4 The correspondences for the theories discussed in chapter 2 were presented,

with the N = 2 STU model and three qubits, N = 8 and tripartite entangled

“seven qubits” described by the Fano plane, and D = 5 and bipartite entangled

“three qutrits”. We observed that in the N = 2 theory the three-qubit entangle-

ment classification is matched by the black hole classification into small (S = 0),

with 1/2 of supersymmetry preserved, and large (S 6= 0), with either 1/2 or 0.
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Chapter 5 Further developments in the correspondences of chapter 4 were presented,

starting with the dictionaries used in transforming between three important bases

of Cartan’s quartic E7(7) invariant. More examples of the SUSY/entanglement

classifications were then given. For N = 8, as for N = 2, the large black holes

correspond to the two classes of GHZ-type (entangled) states and small black holes

to the separable or W class, but this time the large black holes can be 1/8- or non-

BPS, while the small black holes can be 1/8-, 1/4-, or 1/2-BPS. Lastly, we described

the octonions (and their split-signature cousins), which play a role in one of the

aforementioned dictionaries, amongst other roles throughout the correspondence.

Chapter 6 We examined the brane wrapping paradigm in four and five dimensions. In

four dimensions matching the eight states of the three-qubit system to the eight

ways of wrapping four D3-branes around three 2-tori of Type II string theory

compactified to four dimensions. Similarly, the nine states of the 2-qutrit system

correspond to nine ways of wrapping two M2-branes around two 3-tori of M-theory

compactified to five dimensions.

Chapter 7 Attempts at four qubit entanglement classification were discussed, including

our own in-progress covariant classification approach. By invoking the Kostant-

Sekiguchi correspondence, the U-duality orbits resulting from timelike reduction

of string theory from D = 4 to D = 3 are mapped to 31 entanglement families

( which reduce to nine modulo permutations) for four qubits. In the process it

is shown that the nilpotent classification of N = 2 black holes is identical to the

nilpotent classification of complex qubits, bypassing the need for a restriction to

rebits in earlier treatments.

Chapter 8 The super generalisations of Hilbert space and entanglement were explored,

specifically by promoting the SLOCC group to it’s minimal supersymmetric ex-

tension. The significant body of auxiliary definitions and structures were intro-

duced to provide the means to define superentanglement measures in the cases

of two and three superqubits, these being generalisations of the determinant and

hyperdeterminant respectively. The non-intuitive nature of superentanglement is

demonstrated by the maximal entanglement of a nominally separable state.

Appendix A The definitions of (integral) cubic Jordan algebras and Freudenthal triple

systems are provided, followed by telegraphic descriptions of their uses in classify-

ing qubit entanglement, defining new black hole dualities, and examining integral

U-duality orbits.
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9.2 Further work

Taking our existing research [21–28] as a starting point, one can divide the future research

prospects within the black hole/qubit correspondence into four categories:

• The continued development of the superqubit idea.

• Continued matching of entanglement and supersymmetric black hole classification,

potentially extending the brane wrapping perspective.

• Technological developments in the Freudenthal/Jordan machinery enabling the

classification of charge orbits in more theories.

• Broader outstanding issues regarding the physical foundations of the correspon-

dence.

9.2.1 Superqubits

Our treatment of superqubits left one or two loose ends with regard to the formalism

and numerous tasks to investigate:

• Formalising super-Hilbert spaces and the pernicious problem of Grassmann valued

norms to be acceptable to realistic systems.

• Identifying appropriate physical systems that admit a superqubit description.

• Generalising superqubits to other semisimple supergroups like e.g. SL2|1.

• Generalising entanglement invariants and classifications of the tensor product of

multiple superqubits.

• Generalising, if possible, some of the physically important results of ordinary quan-

tum theory: are super-Bell inequalities and a super-Kochen-Specker theorem pos-

sible?

• Classifying fully the two- and three-superqubit entanglement classes and their cor-

responding orbits as was done for the two- and three-qubit entanglement classes

in [4, 24,99]

While one can easily go to town on super generalisations of familiar quantum con-

cepts, the principle problem remains the need for physical scenarios demanding such a

superqubit description. Are superqubits a solution looking for a problem? We can go
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t J

Figure 9.1: The t-J model which shows how the t interaction corresponds to electron
hopping and the J to anti-ferromagnetic exchange.

some way to allaying any apprehensions on this point by identifying a couple of can-

didates. One’s first instinct may be to look to photinos or selectrons, but since the

supersymmetrisation of the (S)LOCC equivalence groups is quite distinct from the su-

persymmetrisation of the spacetime Poincaré group these are not obvious candidates.

Supergroups of the form OSp2|1 do in fact show up in some models of strongly correlated

electrons in condensed matter physics. In particular in the t-J model [187,188], which is a

specialisation of the Hubbard model. It consists of a one dimensional anti-ferromagnetic

lattice containing holes and where double occupancy is energetically hindered. The t

corresponds to electron hopping and the J corresponds to anti-ferromagnetic exchange,

see Figure 9.1. The field theory describes a condensate of holons and spinons which

becomes supersymmetric when J = 2t, with the holons and spinons transforming in the

fundamental representation of the supergroup [189]. Thus, in the same way that two

polarisations of a photon can be a realisation of a qubit, we can anticipate that the

holons and spinons form a valid realisation of a superqubit. If true, the lattice would

contain long chains of superqubits which could be superentangled. Our techniques could

then be applied to quantify the superentanglement and, speculatively, determine if the

supersymmetry is able to control the decoherence times of these systems. While entirely

hypothetical this could have a significant impact on quantum error correction and quan-

tum computing, whose super analogues are already being investigated by Castellani et

al [190].

Another example where our superqubits can be used is the supersymmetric quan-

tum Hall effect [191], observed in two-dimensional electron systems subjected to low

temperatures and strong magnetic fields, whereby conductivity is quantised.



9.2. FURTHER WORK 141

9.2.2 Classification: entanglement vs. supersymmetric black holes

In section 6.1 four D3-branes of Type IIB string theory wrapped the (469), (479), (569),

(578) cycles of a six-torus and intersected over a string. However, in the string literature

one finds D-brane intersection rules which specify how N branes can intersect over one

another and the fraction ν of supersymmetry that they preserve. Up to N = 4 the

results are given by [192]

N = 4, ν = 1/8

N = 3, ν = 1/8 N = 3, ν = 1/8

N = 2, ν = 1/4 N = 2, ν = 1/4 N = 2, ν = 1/4

N = 1, ν = 1/2 N = 1, ν = 1/2

N = 0, ν = 1

(9.1)

Our case is clearly N = 4, ν = 1/8 and corresponds to a three qubit GHZ state, however

one is naturally led to consider the N < 4 cases. Using our dictionary, we see that string

theory predicts the three qubit entanglement classification (9.2), in complete agreement

with the standard results of quantum information theory.

GHZ

W W

A-BC A-BC A-BC

A-B-C A-B-C

Null

(9.2)

Allowing for different p-branes wrapping tori of different dimensions, we are led to spec-

ulate that the classifications of intersecting branes in string theory in D-dimensions are

related to the entanglement classifications of qubits, qutrits and more generally qudits,

with our three qubit case of section 6.1 being just one particular example. While still

under development, this perspective yields positive results for the well-documented cases

of 2 × 2, 2 × 3, 3 × 3, 2 × 2 × 3 and 2 × 2 × 4, in which the brane intersection rules

match the classification of the respective quantum information systems. As we have

seen, the 2× 2× 2× 2 four qubit system has a less well understood or, at any rate, less

well accepted entanglement structure [124, 163, 167] leading one to consider the brane

wrapping perspective in this scenario. For example, the (un-normalised) W state in four

dimensions is given in Table 9.1 by

|W 〉 = |0001〉+ |0010〉+ |0100〉+ |1000〉. (9.3)
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Using the same dictionary as in Table 6.1 we find that the intersection of four D4 branes

Table 9.1: Four D4 branes intersecting in D = 2 with 1/16 conserved supersymmetry
looks like a 4 qubit W state |0000〉+ |1100〉+ |1010〉+ |1001〉 using the same dictionary
as in Table 6.1.

0 1 2 3 4 5 6 7 8 9 brane State

x o o x x o x o x o D4 |1000〉
x o x o o x x o x o D4 |0100〉
x o x o x o o x x o D4 |0010〉
x o x o x o x o o x D4 |0001〉

is supersymmetric. Similarly for the 4 qubit GHZ state |0000〉 + |1111〉 in Table 9.2.

Our recent successes at classifying four qubit entanglement reduce the urgency of this

Table 9.2: Two D4 branes intersecting in D = 2 with 1/2 conserved supersymmetry
looks like a 4 qubit GHZ |0000〉+ |1111〉 state using the same dictionary as in Table 6.1.

0 1 2 3 4 5 6 7 8 9 brane State

x o x o x o x o x o D4 |0000〉
x o o x o x o x o x D4 |1111〉

particular approach, and indeed supersedes it in that we need not trouble ourselves with

rebits, nevertheless our goal remains to use the allowed wrapping configurations and D-

brane intersection rules to predict new qubit entanglement classifications. We also have

in mind to produce a more detailed four qubit analysis that incorporates the covariant

classification approach and provides the details of the computation of the cosets.

9.2.3 Freudenthal/Jordan ranks and duals

The microscopic stringy interpretation of F- and J-duality is not clear, in part due to the

dualities being defined on black hole charge vectors rather that the component fields of

the lowest order action. Furthermore we are as yet unaware of the broader significance

of the spaces of black holes admitting F- and J-duals.

We have seen that the 4D/5D lift of [193] relates 4D and 5D black holes through the

exceptional Jordan algebras and the Freudenthal triple systems, but these black holes

are themselves related to three qubits and two qutrits respectively. What then are the

implications for the relationship between qubits and qutrits? In addition, the 4D/5D

lift involves nonvanishing angular momentum and the quantum information analogue of

rotating black holes remains unclear. In D ≥ 6 dimensions there are no black holes with
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nonvanishing entropy, but there are black strings and other intersecting brane configu-

rations with entropies given by U-duality invariants, all awaiting QI interpretations.

We are also presently engaged in the extension of the formalism of Jordan/Freudenthal

ranks and canonical forms to the case of N = 2 black hole charge orbits in 4 and 5D.

9.2.4 Outstanding issues

There are a number of research avenues broached by other authors contributing to the

correspondence which we have not yet approached: distillation protocols, error correction

codes, twistors and the geometry of entanglement to name a few. Within our own body

of work there also remain a couple of loose ends.

We confirmed the form of the E7(7) ⊃ SL7
2 invariant written in terms of state vector

amplitudes, but a longstanding issue has been its monotonicity or lack thereof. Our early

investigations suggested the latter, meaning that it may not in fact be a valid entangle-

ment measure, but this needs to be thoroughly checked and the outcome published.

Cayley’s hyperdeterminant has already proven itself to be a bit of a Swiss-army-

knife invariant, but we have neglected one of it’s other important physical applications.

Namely that it provides the Lagrangian of the Nambu-Goto string in spacetime signature

(2, 2) [194]. It remains to be seen whether this is related to it’s role in the black hole/qubit

correspondence.

Despite all the progress already made, the fundamental basis of the correspondence -

why black holes should be related to qubits - remains murky. Keeping an open mind, one

must accept the possibility that they may not in fact be dual descriptions of the same

physical phenomenon. Nevertheless the research conducted has been genuinely cross-

disciplinary, with insights in one field finding ready application in the other. For this

reason the work has enduring value even in the absence of a more physically substantive

duality. We need not be so pessimistic however, as the continually arising correlations

between entanglement classification and the supersymmetric classification of black holes

hint that the answer may lie with a more developed version of the brane wrapping

perspective. The story for black holes and qubits, it seems, is far from over.
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Appendix A

Cubic Jordan algebras and

Freudenthal triple systems

The quantised charges A of five dimensional black strings and quantised charges B of

five dimensional black holes are assigned to elements of an integral Jordan algebra J

whose cubic norm N determines the lowest order entropy

S5(black string) = 2π
√
N(A), S5(black holes) = 2π

√
N(B), (A.1)

and whose reduced structure group Str0(J) is the U-duality group. Integral cubic Jordan

algebras are defined in section A.1.1 and the reduced structure group is described in

section A.1.2. We proceed to define the Jordan duality operation in section A.1.3.

Similarly the quantised charges x of black holes of the four dimensional supergravities

arising from string and M-theory are assigned to elements of an integral Freudenthal

triple system (FTS) M(J) (where J is the integral cubic Jordan algebra underlying

the corresponding 5D supergravity [80–82, 169, 170, 195, 196]) whose quartic form ∆(x)

determines the lowest order entropy

S4 = π
√
|∆(x)|, (A.2)

and whose automorphism group Aut(M(J)) is the U-duality group. FTSs are defined in

section A.2.1 and the automorphism group is described in section A.2.2. We proceed to

define the Freudenthal duality operation in section A.2.3.

Examples of integral Jordan algebras and FTSs with the corresponding U-duality

groups Str0(J) and AutM(J) are given in Table A.1. In particular this includes the

cases N = 2 STU , N = 2 coupled to n vector multiplets, magic N = 2, and N = 8
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[23,34,38,70,73,77,82,85,197,198]. The N = 4 heterotic string with SL2(Z)×SO6,22(Z)

U-duality may also be included using J = Z⊕Q5,21 [34,199]. The notation JA3 denotes

sets of 3×3 Hermitian matrices defined over the four division algebras A = R,C,H or O

(or their split signature cousins). The notation Z⊕Qn denotes the infinite sequence of

spin factors Z⊕Qn, where Qn is an n-dimensional vector space over Z [138,170,200–202].

Table A.1: The automorphism group Aut(M(J)) and the dimension of its representation
dimM(J) given by the Freudenthal construction defined over the integral cubic Jordan
algebra J with dimension dim J and reduced structure group Str0(J). The quantised
N = 8 theories in 5 and 4 dimensions have U-duality groups E6(6)(Z) and E7(7)(Z)
respectively.

Jordan algebra J Str0(J) dim J Aut(M(J)) dimM(J)

Z − 1 SL2(Z) 4
Z⊕Z SO1,1(Z) 2 SL2(Z)2 6

Z⊕Z⊕Z SO1,1(Z)× SO1,1(Z) 3 SL2(Z)3 8
Z⊕Qn SO1,1(Z)× SOn−1,1(Z) n+ 1 SL2(Z)× SO2,n(Z) 2n+ 4
JZ3 SL3(Z) 6 Sp6(Z) 14
JC3 SL3(Z) 9 SU3,3(Z) 20
JH3 SU?

6(Z) 15 SO?
12(Z) 32

JO3 E6(−26)(Z) 27 E7(−25)(Z) 56

JO
s

3 E6(6)(Z) 27 E7(7)(Z) 56

The Bekenstein-Hawking entropy and other macroscopic physical quantities are in-

variant under the continuous U-duality group of the underlying low energy supergravity

action, but in the full quantum theory the symmetry is broken to a discrete subgroup

due to the Dirac-Schwinger quantisation conditions. As a result, physical quantities

in the quantised theory can depend on previously absent discrete invariants. Typi-

cally the discrete invariants are given by the gcds of particular dyon charge combina-

tions [40,203–206]. These are described for 5D in section A.1.4 and for 4D in section A.2.4

along with their behaviour under J/F-duality.

A.1 Cubic Jordan algebras and 5D black holes/strings

A.1.1 Cubic Jordan algebras

The bilinear product ◦, of a Jordan algebra J [200,201,207–209], satisfies

X ◦ Y = Y ◦X, X2 ◦ (X ◦ Y ) = X ◦ (X2 ◦ Y ), ∀ X,Y ∈ J. (A.3)
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Of particular interest to us is the class of integral cubic Jordan algebras, which possess

a cubic map N : J→ Z homogeneous of degree three

N(λX) = λ3N(X), ∀ λ ∈ Z, X ∈ J. (A.4)

With the aid of a base point 1 ∈ J satisfying N(1) = 1 one may determine the properties

of J from the cubic form through a construction due to Freudenthal, Springer and Tits

[202,210,211]. First the cubic form is polarised to a trilinear map

N(X,Y, Z) := 1
6

[
N(X+Y+Z)−N(X+Y )−N(X+Z)−N(Y+Z)+N(X)+N(Y )+N(Z)

]
.

(A.5)

Second the trilinear map defines the following four maps

trace Tr(X) := 3N(X,1,1), (A.6a)

spur quadratic map S(X) := 3N(X,X,1), (A.6b)

spur bilinear map S(X,Y ) := 6N(X,Y,1), (A.6c)

trace bilinear form Tr(X,Y ) := Tr(X) Tr(Y )− S(X,Y ). (A.6d)

Third the trace bilinear form uniquely defines the quadratic adjoint map # : J→ J and

its polarisation

Tr(X#, Y ) := 3N(X,X, Y ), (A.7a)

X#Y := (X + Y )# −X# − Y #. (A.7b)

Finally the Jordan product is defined as

X ◦ Y := 1
2

(
X#Y + Tr(X)Y + Tr(Y )X − S(X,Y )1

)
. (A.8)

The result is a cubic Jordan algebra provided the cubic form is Jordan cubic, to wit

1. The trace bilinear form (A.6d) is non-degenerate.

2. The quadratic adjoint map (A.7a) satisfies

(X#)# = N(X)X, ∀X ∈ J. (A.9)

For example, in the JA3 case the Jordan product is X ◦ Y = 1
2(XY + Y X), where XY

is just the conventional matrix product. See [201] for a comprehensive account. In all
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cases, one defines the Jordan triple product as

{X,Y, Z} := (X ◦ Y ) ◦ Z +X ◦ (Y ◦ Z)− (X ◦ Z) ◦ Y. (A.10)

In general an integral Jordan algebra is not closed under the Jordan product, but the

cubic norm and trace bilinear form are integer valued, which are the crucial properties

for our purposes. Furthermore J is closed under the (un)polarised quadratic adjoint map

as required.

A.1.2 Jordan ranks

The structure group, Str(J), is composed of all linear bijections on J that leave the cubic

norm N invariant up to a fixed scalar factor,

N(g(X)) = λN(X), ∀g ∈ Str(J). (A.11)

The reduced structure group Str0(J) leaves the cubic norm invariant and therefore con-

sists of those elements in Str(J) for which λ = 1 [140, 198, 201]. The usual concept of

matrix rank may be generalised to cubic Jordan algebras and is invariant under both

Str(J) and Str0(J) [170, 200]. The ranks are specified by the vanishing or not of three

rank polynomials linear, quadratic, and cubic in A (resp. B) as shown in Table A.2.

Large BPS black holes and strings correspond to rank 3 with N(A), N(B) 6= 0 and small

BPS correspond to ranks 1 and 2 with N(A), N(B) = 0. In Table A.2 we have listed

the fraction of unbroken supersymmetry for the N = 8 case.

Table A.2: Partition of the space J into four orbits of Str0(J) or ranks.

Rank
Condition N = 8 BPS

A A# N(A)

0 = 0 = 0 = 0 -
1 6= 0 = 0 = 0 1/2
2 6= 0 6= 0 = 0 1/4
3 6= 0 6= 0 6= 0 1/8
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Table A.3: Orbit representatives of (D = 5,N = 8), see Table 2.5 for details. Each orbit
is specified by a Jordan algebra element of a given rank.

Rank Rep Orbit

0 diag(0, 0, 0) {0}
1 diag(1, 0, 0) E6(6) /(O(5, 5) nR16)

2 diag(1, 1, 0) E6(6) /(O(5, 4) nR16)

3 diag(1, 1, k) E6(6) /F4(4)

A.1.3 Jordan dual

Given a black string with charges A or black hole with charges B, we define its Jordan

dual by

A? := A#N(A)−1/3, B? := B#N(B)−1/3. (A.12)

J-duality is well defined for large rank 3 strings for which both A# and N(A) are nonzero

and large rank 3 holes for which both B# and N(B) are nonzero. It can be shown

[25] that the Jordan dual leaves the cubic form invariant N(A) = N(A?) and satisfies

A?? = A. For a valid dual A?, we require that N(A) is a perfect cube. Despite the

non-polynomial nature of the transformation, the J-dual scales linearly in the sense

A?(nA) = nA?(A), B?(nB) = nB?(B), n ∈ Z. (A.13)

The U-duality integral invariants Tr(X,Y ) andN(X,Y, Z) are not generally invariant

under Jordan duality while Tr(A?, A) and N(A), and hence the lowest-order black hole

entropy are. However, higher order corrections to the black hole entropy depend on some

of the discrete U-duality invariants, to which we now turn.

A.1.4 Discrete U-invariants

J-duality commutes with U-duality in the sense that A? transforms contragredient to

A. This follows from the property that a linear transformation s belongs to the norm

preserving group if and only if

s(A)#s(B) = s′(A#B) (A.14)

where s′ is given by

Tr(s(A), s′(B)) = Tr(A,B) (A.15)
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and always belongs to the norm preserving group if s itself does [212]. This implies

(s(A))? = s′(A?). (A.16)

The gcd of a collection of not all zero integral Jordan algebra elements is defined to

be the greatest integer that divides them. By definition gcd is positive. The gcd may

be used to define the following set of discrete U-duality invariants [169]:

d1(A) = gcd(A), d2(A) = gcd(A#), d3(A) = |N(A)|, (A.17)

which are the gcds of the rank polynomials. Clearly d3(A) is conserved as expected, but

this is not necessarily the case for d1(A) and d2(A). Nevertheless the product d1(A)d2(A)

is preserved.

While we require that N(A) is a perfect cube for a valid J-dual this is not a sufficient

condition because we further require that

d3(A) =

[
d2(A)

d1(A?)

]3

=

[
d2(A?)

d1(A)

]3

= d3(A?). (A.18)

For J = JA3 with A ∈ {Cs,Hs,Os} the orbit representatives of all black strings (holes)

have been fully classified [169] and it can be shown that the three di uniquely determine

the representative.

A.2 Freudenthal triple systems and 4D black holes

A.2.1 Freudenthal triple systems

The charges of various 4D supersymmetric black holes, e.g.

• N = 2 STU model

• N = 2 magic supergravities

• N = 4 heterotic

• N = 8

are assigned to elements of a Freudenthal triple system (FTS). Given an integral cubic

Jordan algebra J, one is able to construct an integral FTS by defining the vector space

M(J),

M(J) = Z⊕Z⊕ J⊕ J. (A.19)
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with elements x ∈M(J) written

x = (α, β,A,B), α, β ∈ Z, A,B ∈ J. (A.20)

In the STU case the charges are assigned

8→ (1,1,3,3) (A.21)

where the Jordan elements are 3-tuples. For the N = 8 generalisation we have instead

56→ (1,1,27,27′), (A.22)

specifically

(−q0, p
0, J3(P ), J3(Q)) (A.23)

where

27→ 1 + 1 + 1 + 8s + 8c + 8v (A.24)

so that 27 are assigned to a 3× 3 Hermitian matrix over the split octonions.

J3(P ) =

p1 P v P s

P v p2 P c

P s P c p3

 . (A.25)

For convenience we identify the quadratic quantity

κ(x) := 1
2(αβ − Tr(A,B)). (A.26)

The FTS comes equipped with a non-degenerate bilinear antisymmetric quadratic form,

a quartic form and a trilinear triple product [170,197,198,213,214]:

1. Quadratic form {x, y}: M(J)×M(J)→ Z

{x, y} = αδ − βγ + Tr(A,D)− Tr(B,C),

where x = (α, β,A,B), y = (γ, δ, C,D).
(A.27a)

2. Quartic form ∆ : M(J)→ Z

∆(x) = −4[κ(x)2 + (αN(A) + βN(B)− Tr(A#, B#))]. (A.27b)
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The quartic norm ∆(x) is either 4k or 4k + 1 for some k ∈ Z.

3. Triple product T : M(J)×M(J)×M(J)→M(J) which is uniquely defined by

{T (w, x, y), z} = 2∆(w, x, y, z), (A.27c)

where ∆(w, x, y, z) is the fully polarised quartic form such that ∆(x, x, x, x) =

∆(x).

Note that all the necessary definitions, such as the cubic and trace bilinear forms, are

inherited from the underlying Jordan algebra J. When A = R,C,H,O and J = JA3 , the

group Aut(M(J)) is generated by the following three maps [198]:

φ(C) :


β

A

B

α

 7→


β

A+ βC

B +A× C + βC]

α+ (B,C) + (A,C]) + βN(C)

 , (A.28a)

ψ(D) :


β

A

B

α

 7→

β + (A,D) + (B,C]) + αN(C)

A+B ×D + αD]

B + αD

α

 , (A.28b)

T (s) :


β

A

B

α

 7→


λβ

s(A)

s′−1(B)

λ−1α

 (A.28c)

where s ∈ Str(J) and s∗ is its adjoint defined with respect to the trace bilinear form,

Tr(X, s(Y )) = Tr(s∗(X), Y ).

A.2.2 FTS ranks

The automorphism group Aut(M(J)) is composed of all invertible Z-linear transfor-

mations that leave both the antisymmetric bilinear form {x, y} and the quartic form

∆(x) invariant [198]. The conventional concept of matrix rank may be generalised to

Freudenthal triple systems in a natural and Aut(M(J)) invariant manner. The rank

of an arbitrary element x ∈ M(J) is uniquely defined by the vanishing or not of four

rank polynomials linear, quadratic (in essence), cubic, and quartic in x as shown in

Table A.4 [170, 214]. Large BPS and large non-BPS black holes correspond to rank



A.2. FREUDENTHAL TRIPLE SYSTEMS AND 4D BLACK HOLES 155

4 with ∆(x) > 0 and ∆(x) < 0, respectively. Small BPS black holes correspond to

ranks 1, 2 and 3 with ∆(x) = 0. In Table A.4 we have listed the fraction of unbroken

supersymmetry for the N = 8 case.

Table A.4: Partition of the space M(J) into five orbits of Aut(M(J)) or ranks.

Rank
Condition N = 8 BPS

x 3T (x, x, y) + {x, y}x T (x, x, x) ∆(x)

0 = 0 = 0 ∀y = 0 = 0 -
1 6= 0 = 0 ∀y = 0 = 0 1/2
2 6= 0 6= 0 = 0 = 0 1/4
3 6= 0 6= 0 6= 0 = 0 1/8
4 6= 0 6= 0 6= 0 > 0 1/8
4 6= 0 6= 0 6= 0 < 0 0

Noting that the STU model may be consistently embedded in the N = 8 theory one

might anticipate an FTS characterisation of three qubits. Indeed, setting F = C and

J = C⊕ C⊕ C we may model the 3-qubit system using:

|Ψ〉 = aABC |ABC〉 ↔ Ψ =

(
a111 (a001, a010, a100)

(a110, a101, a011) a000

)
. (A.29)

In this case the automorphism group is given by SL2,A(C)×SL2,B(C)×SL2,C(C) together

with a discrete triality that interchangesA, B and C. The quartic norm (A.27b) coincides

with Cayley’s hyperdeterminant (3.18),

∆(Ψ) = −Det aABC , (A.30)

and the entanglement of a state is determined precisely by its FTS rank, rank 1 separable

through to rank 4 GHZ, as described in Table 5.3. A slightly modified (qubit-adapted)

set of rank conditions is presented in Table A.5. here, the γi refer to the Bi covariants of

section 3.3.1 and the trilinear form T can be identified as the covariant C111. Embryonic

attempts to generalise this classification scheme are described in section 7.1.

A.2.3 Freudenthal dual

Given a black hole with charges x, we define its Freudenthal dual by

x̃ := T (x)|∆(x)|−1/2, (A.31)
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Table A.5: FTS rank conditions.

Class Rank
FTS rank condition

vanishing non-vanishing

Null 0 Ψ −
A-B-C 1 3T (Ψ,Ψ,Φ) + {Ψ,Φ}Ψ Ψ
A-BC 2a T (Ψ,Ψ,Ψ) γA

B-CA 2b T (Ψ,Ψ,Ψ) γB

C-AB 2c T (Ψ,Ψ,Ψ) γC

W 3 ∆(Ψ) T (Ψ,Ψ,Ψ)
GHZ 4 − ∆(Ψ)

where T (x) ≡ T (x, x, x) ∈M(J). F-duality is well defined for large rank 4 black holes for

which both T (x) and ∆(x) are nonzero. It can be shown that the Freudenthal dual leaves

the quartic form invariant ∆(x) = ∆(x̃) and satisfies ˜̃x = −x. For a valid x̃ we require

that ∆(x)is a perfect square. Despite the non-polynomial nature of the transformation,

the F-dual scales linearly in the sense

x̃(nx) = nx̃(x), n ∈ Z. (A.32)

The U-duality integral invariants {x, y} and ∆(x, y, z, w) are not generally invariant

under Freudenthal duality while {x̃, x}, ∆(x), and hence the lowest-order black hole

entropy, are invariant. However, higher order corrections to the black hole entropy

depend on some of the discrete U-duality invariants.

For J = JA3 with A ∈ {Cs,Hs, Os}, that is, when A is one of the three integral split

composition algebras (i.e. including the all-important N = 8 case) we can rewrite the

charge vector of any black hole in the diagonally reduced canonical form

x = α(1, j, k(1, l, lm),~0), (A.33)

where α > 0, k, l ≥ 0, and α, j, k, l,m ∈ Z. The quartic norm of this element is

∆(x) = −(j2 + 4k3l2m)α4. (A.34)

The F-dual is then explicitly given by

x̃ = ((−n1, n1j + n2klm), n1k(1, l, lm), n2(lm,m, 1)), (A.35)
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where we have ensured an admissible dual by imposing the constraints

|j2 + 4k3l2m|1/2 = n0 ∈ N, (A.36a)

αj/n0 = n1 ∈ Z, (A.36b)

2k2lα/n0 = n2 ∈ N0, (A.36c)

where sgnn1 = sgn j. It is then possible to classify example F-duals as shown in Ta-

ble A.6.

Table A.6: Conditions on parameters for several example FTSs, where p ∈ Z. Param-
eters n0, n1 and n2 are fixed by (A.36). Note that we still require α > 0, k, l ≥ 0 and
n0 6= 0 in all cases.

Case j k l m sgn ∆ n0 n1 n2

1 0 p2|m| > 0 6= 0 − sgnm 2|p3|m2l 0 |p|α

2.1 6= 0 0 ≥ 0 ∈ Z − |j| α sgn j 0
2.2 6= 0 > 0 0 ∈ Z − |j| α sgn j 0
2.3 6= 0 > 0 > 0 0 − |j| α sgn j 2k2lα/|j|

3.1.1 2p 1 1 −(p2 ± 1) ± 2 |p|α α
3.1.2 2lr 1 > 0 −(r2 ± q) ± 2l|q| nr n
3.1.3 2lr > 0 > 0 4q(q ± r)/k3 − 2l|2q ± r| nr nk2

3.2 2p+ 1 1 1 −p(p+ 1) − 1 (2p+ 1)α 2α

A.2.4 Discrete U-invariants

We make the important observation that since

T (σ(x), σ(y), σ(z)) = σ(T (x, y, z)), ∀σ ∈ AutM(J), (A.37)

F-duality commutes with U-duality

σ̃(x) = σ(x̃). (A.38)

The gcd of a collection of not all zero integral FTS elements is defined to be the

greatest integer that divides them. By definition gcd is positive. The gcd may be used
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to define the following1 set of discrete U-duality invariants [40,170]:

d1(x) = gcd(x), d3(x) = gcd(T (x, x, x)),

d2(x) = gcd(3T (x, x, y) + {x, y}x) ∀y, d4(x) = |∆(x)|,

d′2(x) = gcd(B# − αA, A# − βB, 2κ(x)C + 2{A,B,C})) ∀C, d′4(x) = gcd(x ∧ T (x)),

(A.39)

where ∧ denotes the antisymmetric tensor product. As in the 5D case, the unprimed

invariants are gcds of the rank polynomials. Clearly d4(x) is conserved as expected

and it can be shown [25] that d′4(x), d2(x), and d′2(x) are also invariant, but this is

not necessarily the case for d1(x) and d3(x). Nevertheless the product d1(x)d3(x) is

preserved.

Typically, the literature on exact 4D black hole degeneracies [32, 34, 40, 135, 203–

206, 215–222] deals only with primitive black holes d1(x) = 1. We are not required to

impose this condition and generically do not do so. More generally a quantity is termed

primitive if it has unit gcd. A related simplifying concept is projectivity, wherein a charge

vector for the cases J = Z⊕Z⊕Z, JCs3 , JH
s

3 , JO
s

3 is projective if the components of it’s

quadratic rank tensor are primitive.

While we require that |∆(x)| is a perfect square for a valid F-dual this is not a

sufficient condition because we further require that

d4(x) =

[
d3(x)

d1(x̃)

]2

=

[
d3(x̃)

d1(x)

]2

= d4(x̃). (A.40)

Unlike in 5D the invariants (A.39) are insufficient to uniquely determine the orbit

representatives for the J = JA3 with A ∈ {Cs,Hs,Os} cases.

A.3 4D/5D lift

A subset of 5D black holes admit a Jordan dual A? preserving some, but not all, discrete

U-invariants. Similarly, a subset of 4D black holes admit a Freudenthal dual x̃ preserving

some, but not all, discrete U-invariants. In both the 4D and 5D cases, if the discrete

invariant d1 is preserved by the J/F-duality map, then all the listed discrete invariants

are preserved. When d1 isn’t conserved the J/F-dual is not U-related to the original

charge vector. In the simpler 5D case the preservation of d1 ensures that A? is U-related

to A, but in 4D the analogous conclusion only holds in the projective case. For non-

projective 4D black holes the situation is complicated by the absence of a complete orbit

1In the N = 8 case Sen [40] denotes d′2(x) by ψ, and d′4(x) by χ.
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classification and uncertainty regarding what invariants are relevant to the higher-order

corrections. This situation is summarised in Table A.7. It would be interesting if in the

Table A.7: Are F or J duals related by U-duality?

Duality d1 conserved? U-dual?

F
Yes

Projective Yes
Non-projective ?

No No

J
Yes Yes
No No

non-projective case there were configurations with the same precision entropy that are

F-related but not U-related.

From a physical standpoint F-duality and J-duality are defined on charge vectors

rather than component fields of the lowest order action so their microscopic stringy

interpretation remains unclear, but we remark that two black holes related by F-duality

in 4D are related by J-duality when lifted to 5D. The 4D/5D lift [193] relates the entropy

of non-rotating 4D black holes to the entropy of rotating 5D black holes and it can be

shown [25] that the lift of the F-dual is related to the J-dual of the lift thus:

4D black hole x
4D/5D lift−−−−−−→ 5D black string A ∼ B̃?

Freudenthal dual

y yJordan dual

dual 4D black hole x̃ −−−−−−→
4D/5D lift

dual 5D black hole B̃ ∼ A?
. (A.41)

A.4 Integral U-duality orbits

We recently leveraged the integral Jordan/Freudenthal technology to address the ques-

tion of whether two a priori distinct extremal black p-brane solutions are actually U-

duality related in the context of N = 8 supergravity in four, five and six dimensions.

The answer has been known for some time in the classical supergravity limit, but Dirac-

Zwanziger-Schwinger charge quantisation breaks the U-duality group to a discrete sub-

group, making the matter of U-duality orbits in the full quantum theory rather more

subtle.

Not only is this an interesting mathematical question [170,223], it is also of physical

significance, with implications for a number of topics including the stringy origins of
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microscopic black hole entropy [206, 216, 224]. Moreover, following a conjecture for the

finiteness of D = 4,N = 8 supergravity [225], it has recently been observed that some

of the orbits of E7(7)(Z) should play an important role in counting microstates of this

theory [226], even if it may differ from its superstring or M-theory completion [227].

We were able to clarify the state of knowledge at the time, presenting the cascade

of relationships between orbits (and the associated moduli spaces) as one descends from

six to four dimensions in the continuous case. We were able to fill in a few gaps in the

literature by adapting the work of Krutelevich [169,170,195,196] in the discrete case.

The charge vector of the dyonic black string in D = 6 is SO5,5(Z) related to a two-

charge reduced canonical form uniquely specified by a set of two arithmetic U-duality

invariants. Similarly, the black hole (string) charge vectors in D = 5 are E6(6)(Z) equiv-

alent to a three-charge canonical form, again uniquely fixed by a set of three arithmetic

U-duality invariants. However, the situation in four dimensions is, perhaps predictably,

less clear. While black holes preserving more than 1/8 of the supersymmetries may be

fully classified by known arithmetic E7(7)(Z) invariants, 1/8-BPS and non-BPS black

holes yield increasingly subtle orbit structures, which remain to be properly understood.

However, for the very special subclass of projective black holes a complete classification

is known. All projective black holes are E7(7)(Z) related to a four or five charge canonical

form determined uniquely by Cartan’s quartic E7(7)(R) invariant. Moreover, E7(7)(Z)

acts transitively on the charge vectors of black holes with a given leading-order entropy.
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[14] Péter Lévay and Péter Vrana, “Three fermions with six single-particle states

can be entangled in two inequivalent ways,” Phys. Rev. A78, 022329 (2008),

arXiv:0806.4076 [quant-ph]

[15] Stefano Bellucci, Sergio Ferrara, Alessio Marrani, and Armen Yeranyan, “STU

black holes unveiled,” Entropy 10, 507–555 (2008), arXiv:0807.3503 [hep-th]
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[17] Péter Lévay and Péter Vrana, “Special entangled quantum systems and the

Freudenthal construction,” arXiv:0902.2269 [quant-ph]

[18] Peter Levay, Metod Saniga, Peter Vrana, and Petr Pracna, “Black Hole Entropy

and Finite Geometry,” Phys. Rev. D79, 084036 (2009), arXiv:0903.0541 [hep-th]

[19] Peter Levay and Szilard Szalay, “The attractor mechanism as a distillation proce-

dure,” Phys. Rev. D82, 026002 (2010), arXiv:1004.2346 [hep-th]

[20] Peter Levay, “STU Black Holes as Four Qubit Systems,” Phys. Rev. D82, 026003

(2010), arXiv:1004.3639 [hep-th]

[21] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, and H. Ebrahim, “Wrapped

branes as qubits,” Phys. Rev. Lett. 100, 251602 (2008), arXiv:0802.0840 [hep-th]

[22] Leron Borsten, “E7(7) invariant measures of entanglement,” Fortschr. Phys. 56,

842–848 (2008)

[23] L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim, and W. Rubens, “Black

Holes, Qubits and Octonions,” Phys. Rep. 471, 113–219 (2009), arXiv:0809.4685

[hep-th]

http://dx.doi.org/10.1103/PhysRevD.76.106011
http://arxiv.org/abs/0708.2799
http://dx.doi.org/10.1016/j.physletb.2007.08.079
http://arxiv.org/abs/0707.2730
http://dx.doi.org/10.1002/prop.200810569
http://dx.doi.org/10.1103/PhysRevA.78.022329
http://arxiv.org/abs/0806.4076
http://dx.doi.org/10.3390/e10040507
http://arxiv.org/abs/0807.3503
http://dx.doi.org/10.1103/PhysRevD.78.124022
http://arxiv.org/abs/0808.3849
http://arxiv.org/abs/0902.2269
http://arxiv.org/abs/0903.0541
http://dx.doi.org/10.1103/PhysRevD.82.026002
http://arxiv.org/abs/1004.2346
http://dx.doi.org/10.1103/PhysRevD.82.026003
http://arxiv.org/abs/1004.3639
http://dx.doi.org/10.1103/PhysRevLett.100.251602
http://arxiv.org/abs/0802.0840
http://dx.doi.org/10.1002/prop.200810542
http://dx.doi.org/10.1016/j.physrep.2008.11.002
http://arxiv.org/abs/0809.4685
http://arxiv.org/abs/0809.4685


BIBLIOGRAPHY 163

[24] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, and H. Ebrahim, “Freudenthal

triple classification of three-qubit entanglement,” Phys. Rev. A80, 032326 (2009),

arXiv:0812.3322 [quant-ph]

[25] L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, “Black holes admitting

a Freudenthal dual,” Phys. Rev. D80, 026003 (2009), arXiv:0903.5517 [hep-th]

[26] L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, “Superqubits,” Phys.

Rev. D81, 105023 (2010), arXiv:0908.0706 [quant-ph]

[27] L. Borsten et al., “Observations on Integral and Continuous U-duality Orbits in

N = 8 Supergravity,” Class. Quant. Grav. 27, 185003 (2010), arXiv:1002.4223

[hep-th]

[28] L. Borsten, D. Dahanayake, M. J. Duff, A. Marrani, and W. Rubens, “Four-

qubit entanglement from string theory,” Phys. Rev. Lett. 105, 100507 (2010),

arXiv:1005.4915 [hep-th]

[29] Jacob D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7, 2333–2346 (1973)

[30] S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43,

199–220 (1975)

[31] James M. Bardeen, B. Carter, and S. W. Hawking, “The four laws of black hole

mechanics,” Commun. Math. Phys. 31, 161–170 (1973)

[32] Andrew Strominger and Cumrun Vafa, “Microscopic origin of the Bekenstein-

Hawking entropy,” Phys. Lett. B379, 99–104 (1996), arXiv:hep-th/9601029

[33] Amanda W. Peet, “TASI lectures on black holes in string theory,” in Boulder 1999,

Strings, branes and gravity (1999) pp. 353–433, prepared for Theoretical Advanced

Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and

Gravity, Boulder, Colorado, 31 May - 25 Jun 1999, arXiv:hep-th/0008241

[34] Boris Pioline, “Lectures on on black holes, topological strings and quantum at-

tractors,” Class. Quant. Grav. 23, S981 (2006), arXiv:hep-th/0607227

[35] Sergio Ferrara, Renata Kallosh, and Andrew Strominger, “N = 2 extremal black

holes,” Phys. Rev. D52, 5412–5416 (1995), arXiv:hep-th/9508072

[36] Renata Kallosh and Tomas Ortin, “Charge quantization of axion - dilaton black

holes,” Phys. Rev. D48, 742–747 (1993), arXiv:hep-th/9302109

http://dx.doi.org/10.1103/PhysRevA.80.032326
http://arxiv.org/abs/0812.3322
http://dx.doi.org/10.1103/PhysRevD.80.026003
http://arxiv.org/abs/0903.5517
http://dx.doi.org/10.1103/PhysRevD.81.105023
http://dx.doi.org/10.1103/PhysRevD.81.105023
http://arxiv.org/abs/0908.0706
http://dx.doi.org/10.1088/0264-9381/27/18/185003
http://arxiv.org/abs/1002.4223
http://arxiv.org/abs/1002.4223
http://dx.doi.org/10.1103/PhysRevLett.105.100507
http://arxiv.org/abs/1005.4915
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://arxiv.org/abs/hep-th/0008241
http://dx.doi.org/10.1088/0264-9381/23/21/S05
http://arxiv.org/abs/hep-th/0607227
http://dx.doi.org/10.1103/PhysRevD.52.R5412
http://arxiv.org/abs/hep-th/9508072
http://dx.doi.org/10.1103/PhysRevD.48.742
http://arxiv.org/abs/hep-th/9302109


164 BIBLIOGRAPHY

[37] Laura Andrianopoli, Riccardo D’Auria, and Sergio Ferrara, “U-duality and central

charges in various dimensions revisited,” Int. J. Mod. Phys. A13, 431–490 (1998),

arXiv:hep-th/9612105

[38] Murat Günaydin, “Unitary realizations of U-duality groups as conformal and qua-

siconformal groups and extremal black holes of supergravity theories,” AIP Conf.

Proc. 767, 268–287 (2005), arXiv:hep-th/0502235

[39] C. M. Hull, “Gravitational duality, branes and charges,” Nucl. Phys. B509, 216–

251 (1998), arXiv:hep-th/9705162

[40] Ashoke Sen, “U-duality invariant dyon spectrum in type II on T 6,” JHEP 08, 037

(2008), arXiv:0804.0651 [hep-th]

[41] Michael B. Green, J. H. Schwarz, and Edward Witten, Superstring Theory vol.

1: Introduction, Cambridge Monographs on Mathematical Physics (Cambridge

University Press, Cambridge, UK, 1987) 469 p

[42] Michael B. Green, J. H. Schwarz, and Edward Witten, Superstring Theory vol.

2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Monographs on

Mathematical Physics (Cambridge University Press, Cambridge, UK, 1987) 596 p

[43] Amit Giveon, Massimo Porrati, and Eliezer Rabinovici, “Target space duality in

string theory,” Phys. Rept. 244, 77–202 (1994), arXiv:hep-th/9401139

[44] Joseph Polchinski, “Dirichlet-branes and Ramond-Ramond charges,” Phys. Rev.

Lett. 75, 4724–4727 (1995), arXiv:hep-th/9510017

[45] A. Font, Luis E. Ibanez, D. Lust, and F. Quevedo, “Strong - weak coupling duality

and nonperturbative effects in string theory,” Phys. Lett. B249, 35–43 (1990)

[46] Soo-Jong Rey, “The confining phase of superstrings and axionic strings,” Phys.

Rev. D43, 526–538 (1991)

[47] John H. Schwarz and Ashoke Sen, “Duality symmetries of 4-D heterotic strings,”

Phys. Lett. B312, 105–114 (1993), arXiv:hep-th/9305185

[48] M. J. Duff and Ramzi R. Khuri, “Four-dimensional string / string duality,” Nucl.

Phys. B411, 473–486 (1994), arXiv:hep-th/9305142

[49] John H. Schwarz and Ashoke Sen, “Duality symmetric actions,” Nucl. Phys. B411,

35–63 (1994), arXiv:hep-th/9304154

http://dx.doi.org/10.1142/S0217751X98000196
http://arxiv.org/abs/hep-th/9612105
http://dx.doi.org/10.1063/1.1923339
http://dx.doi.org/10.1063/1.1923339
http://arxiv.org/abs/hep-th/0502235
http://dx.doi.org/10.1016/S0550-3213(97)00501-4
http://arxiv.org/abs/hep-th/9705162
http://dx.doi.org/10.1088/1126-6708/2008/08/037
http://arxiv.org/abs/0804.0651
http://dx.doi.org/10.1016/0370-1573(94)90070-1
http://arxiv.org/abs/hep-th/9401139
http://dx.doi.org/10.1103/PhysRevLett.75.4724
http://dx.doi.org/10.1103/PhysRevLett.75.4724
http://arxiv.org/abs/hep-th/9510017
http://dx.doi.org/10.1016/0370-2693(90)90523-9
http://dx.doi.org/10.1103/PhysRevD.43.526
http://dx.doi.org/10.1103/PhysRevD.43.526
http://dx.doi.org/10.1016/0370-2693(93)90495-4
http://arxiv.org/abs/hep-th/9305185
http://dx.doi.org/10.1016/0550-3213(94)90459-6
http://dx.doi.org/10.1016/0550-3213(94)90459-6
http://arxiv.org/abs/hep-th/9305142
http://dx.doi.org/10.1016/0550-3213(94)90053-1
http://arxiv.org/abs/hep-th/9304154


BIBLIOGRAPHY 165

[50] Ashoke Sen, “Quantization of dyon charge and electric magnetic duality in string

theory,” Phys. Lett. B303, 22–26 (1993), arXiv:hep-th/9209016

[51] Ashoke Sen, “Electric magnetic duality in string theory,” Nucl. Phys. B404, 109–

126 (1993), arXiv:hep-th/9207053

[52] C. Montonen and David I. Olive, “Magnetic monopoles as gauge particles?.” Phys.

Lett. B72, 117 (1977)

[53] E. Cremmer and Antoine Van Proeyen, “Classification Of Kähler manifolds in

N = 2 vector multiplet supergravity couplings,” Class. Quant. Grav. 2, 445–454

(1985)

[54] E. Bergshoeff, I. G. Koh, and E. Sezgin, “Coupling of Yang-Mills to N = 4, D = 4

supergravity,” Phys. Lett. B155, 71 (1985)

[55] Christopher N. Pope, “Kaluza Klein Theory,” Lecture notes available on home-

page: http://faculty.physics.tamu.edu/pope/ihplec.pdf

[56] J. Polchinski, String Theory vol. 2: Superstring theory and beyond, Cambridge

Monographs on Mathematical Physics (Cambridge University Press, Cambridge,

U.K.; New York, U.S.A., 1998)

[57] E. Cremmer and B. Julia, “The SO(8) supergravity,” Nucl. Phys. B159, 141

(1979)

[58] Eric A. Bergshoeff, Iwein De Baetselier, and Teake A. Nutma, “E11 and the em-

bedding tensor,” JHEP 09, 047 (2007), arXiv:0705.1304 [hep-th]

[59] Paul P. Cook and Peter C. West, “Charge multiplets and masses for E11,” JHEP

11, 091 (2008), arXiv:0805.4451 [hep-th]

[60] Ashoke Sen and Cumrun Vafa, “Dual pairs of type II string compactification,”

Nucl. Phys. B455, 165–187 (1995), arXiv:hep-th/9508064

[61] M. J. Duff, James T. Liu, and J. Rahmfeld, “Four-dimensional string-string-string

triality,” Nucl. Phys. B459, 125–159 (1996), arXiv:hep-th/9508094

[62] Andrea Gregori, Costas Kounnas, and P. M. Petropoulos, “Non-perturbative tri-

ality in heterotic and type II N = 2 strings,” Nucl. Phys. B553, 108–132 (1999),

arXiv:hep-th/9901117

http://dx.doi.org/10.1016/0370-2693(93)90037-I
http://arxiv.org/abs/hep-th/9209016
http://dx.doi.org/10.1016/0550-3213(93)90475-5
http://arxiv.org/abs/hep-th/9207053
http://dx.doi.org/10.1016/0370-2693(77)90076-4
http://dx.doi.org/10.1016/0370-2693(77)90076-4
http://dx.doi.org/10.1088/0264-9381/2/4/010
http://dx.doi.org/10.1016/0370-2693(85)91034-2
http://faculty.physics.tamu.edu/pope/ihplec.pdf
http://dx.doi.org/10.1016/0550-3213(79)90331-6
http://dx.doi.org/10.1088/1126-6708/2007/09/047
http://arxiv.org/abs/0705.1304
http://dx.doi.org/10.1088/1126-6708/2008/11/091
http://arxiv.org/abs/0805.4451
http://dx.doi.org/10.1016/0550-3213(95)00498-H
http://arxiv.org/abs/hep-th/9508064
http://dx.doi.org/10.1016/0550-3213(95)00555-2
http://arxiv.org/abs/hep-th/9508094
http://dx.doi.org/10.1016/S0550-3213(99)00281-3
http://arxiv.org/abs/hep-th/9901117


166 BIBLIOGRAPHY

[63] C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys.

B438, 109–137 (1995), arXiv:hep-th/9410167

[64] M. J. Duff, “Strong / weak coupling duality from the dual string,” Nucl. Phys.

B442, 47–63 (1995), arXiv:hep-th/9501030

[65] Mirjam Cvetic and Donam Youm, “Dyonic BPS saturated black holes of heterotic

string on a six torus,” Phys. Rev. D53, 584–588 (1996), arXiv:hep-th/9507090

[66] Mirjam Cvetic and Donam Youm, “All the static spherically symmetric black holes

of heterotic string on a six torus,” Nucl. Phys. B472, 249–267 (1996), arXiv:hep-

th/9512127

[67] Mirjam Cvetic and Christopher M. Hull, “Black holes and U-duality,” Nucl. Phys.

B480, 296–316 (1996), arXiv:hep-th/9606193
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