Imperial College London

Department of Physics

THE ROLE OF SUPERSYMMETRY IN THE
BLACK HOLE/QUBIT CORRESPONDENCE

Duminda Dahanayake

September 2010

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Theoretical Physics of Imperial College London
and the Diploma of Imperial College London






Declaration

The work presented in this thesis was carried out in the Theoretical Physics Group at
Imperial College London between August 2007 and July 2010 under the supervision of
Professor Michael J. Duff. Except where otherwise stated, the work is original and has

not been submitted before for a degree of this or any other university.

Duminda Dahanayake
September 2010






Abstract

This thesis explores the numerous relationships between the entropy of black hole so-
lutions in supergravity and the entanglement of multipartite systems in quantum infor-
mation theory: the so-called black hole/qubit correspondence.

We examine how, through the correspondence, the dyonic charges in the entropy of
supersymmetric black hole solutions are directly matched to the state vector coeflicients
in the entanglement measures of their quantum information analogues. Moreover the U-
duality invariance of the black hole entropy translates to the stochastic local operations
and classical communication (SLOCC) invariance of the entanglement measures. Several
examples are discussed, with the correspondence broadening when the supersymmetric
classification of black holes is shown to match the entanglement classification of the
qubit/qutrit analogues.

On the microscopic front, we study the interpretation of D-brane wrapping config-
urations as real qubits/qutrits, including the matching of generating solutions on black
hole and qubit sides. Tentative generalisations to other dimensions and qubit systems
are considered. This is almost eclipsed by more recent developments linking the nilpo-
tent U-duality orbit classification of black holes to the nilpotent classification of complex
qubits. We provide preliminary results on the corresponding covariant classification.

We explore the interesting parallel development of supersymmetric generalisations of
qubits and entanglement, complete with two- and three-superqubit entanglement mea-
sures. Lastly, we briefly mention the supergravity technology of cubic Jordan algebras
and Freudenthal triple systems (FT'S), which are used to: 1) Relate FTS ranks to three-
qubit entanglement and compute SLOCC orbits. 2) Define new black hole dualities
distinct from U-duality and related by a 4D/5D lift. 3) Clarify the state of knowledge
of integral U-duality orbits in maximally extended supergravity in four, five, and six

dimensions.
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Chapter 1

Introduction

1.1 An overview

The past four years have seen the development of a remarkable body of work linking
what are, at first glance, two strikingly different areas of theoretical physics: string
theory and the entropy of supersymmetric black hole solutions on the one hand, and
quantum information theory and the entanglement of multipartite qubit (two-level) and
qutrit (three-level) systems on the other.

The starting point is a 2006 paper by Mike Duff |1] in which he established the rela-
tionship between the entropy of black hole solutions of the so-called STU supergravity
model [2] and an an invariant known as Cayley’s hyperdeterminant [3]. In particular the
fact that the hyperdeterminant, which was first written down in 1845, finds modern use
as a measure of entanglement of three-qubit systems [4].

Having discovered that these disparate disciplines share the same mathematics the
race was on to find evidence of a more substantive physical underpinning or duality;
something to indicate that, underneath it all, the same physical phenomenon was being
described. Kallosh and Linde [5] responded with several important results, one being a
link between the classification of three qubits entanglement and whether ST'U black holes
have vanishing horizon areas and whether they preserve a fraction of supersymmetry. In
addition they showed that the most general black hole and black ring entropy in N’ = 8
supergravity/M-theory, given by Cartan’s quartic Eq(7) invariant, can be written in a
canonical basis that reduces it to Cayleys hyperdeterminant.

These ideas were developed further in a collaboration between Duff and Ferrara [6-8]
in which the N/ = 8 generalisation was fleshed out by providing a tripartite-entangled

seven-qubit system with a proposed entanglement measure to correspond to the N' =8

17
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Black holes Qubits

e U-duality s SLOCC
e Black hole charges o State vector coefficients
» SUSY classification  Entanglement classification

* Entropy  Entanglement

* Triality * Permutation symmetry
e Attractor mechanism * Distillation protocol

* BPS protection e Bit-flip suppression

Figure 1.1: Some of the links between black holes and qubits

entropy. Moreover they put forward a D = 5 generalisation connecting black hole/string
entropy to the bipartite entanglement of three qutrits, with Cartan’s cubic Egg) invari-
ant playing the role of entropy and entanglement. Similar results in 4D and 5D were
outlined for the “magic” N' = 2 supergravities. Meanwhile Levay expanded the
scope further, relating the attractor mechanism on the black hole side with optimal
distillation protocols on the quantum information side, relating supersymmetric and
non-supersymmetric black holes to the suppression or non-suppression of bit-flip errors,
and providing an enlightening description of the seven-qubit tripartite entanglement in
terms of the Fano plane, opening the door to the octonions, which would play several
roles in future work within the correspondence.

This was the state of play at the outset of my involvement in the work done with
L. Borsten, M. J. Duff, and W. Rubens, at times in collaboration with H. Ebrahim, A.
Marrani, and S. Ferrara, and benefiting from helpful conversations with P. Levay. Since
then further papers have enriched the correspondence , feeding the ever growing
dictionary translating phenomena in one language to those in the other (see .

Meanwhile we have continued its expansion along the following avenues:

1. A microscopic interpretation of the correspondence based on wrapped D-branes,

laying the foundations for the classification of entanglement based on intersecting
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D-branes [21].

2. A set of dictionaries to transform between the duality frames of the N/ = 8 entropy
and seven-qubit tripartite entanglement, in effect providing confirmation of this
correspondence. Broader links between entanglement classification and black hole
classification. A new outlook on the symmetries of M-theory based on imaginary

quaternions and octonions [22}23].
3. A new classification of three qubit entanglement using supergravity technology [24].
4. The discovery of a new symmetry of black holes called Freudenthal duality [25].

5. The introduction of the superqubit, a supersymmetric generalisation of the qubit,

with super-analogues of familiar entanglement measures [26].
6. An investigation of the integral U-duality orbits of black holes [27].

7. A derivation of the classification of four-qubit entanglement using string theory
[28].

1.2 Motivation and outline

Clearly then, in a short time the black hole/qubit correspondence has become a sprawl-
ing, multifaceted body of work. Nevertheless, there are a few loosely unifying themes
that can be picked out to lend more coherence to our review of recent developments.
One path is the recurring topic of supersymmetry, which plays an obvious role in the
superqubit construction, but is present throughout our work in the matching of entan-
glement classification to black hole classification, be it in the guise of our four qubit
discoveries or proposed generalisations to our brane wrapping perspective. Amnother
identifiable narrative is of course the use of the supergravity technology involving cubic
Jordan algebras and Freudenthal triple systems to classify entanglement, construct new
dualities, and inspect discrete U-duality orbits.

Since two of the co-authors of [21}[23}28] are submitting their theses simultaneously,
let us make crystal clear that while both draw from [23], we here focus on the role of
supersymmetry and the papers [21,26,28|. The technological, algebraic developments of
the papers [24,25,27] are dealt with elsewhere, so we limit ourselves to a most rudimen-
tary discussion: a mere statement of the developments, including such definitions as are
necessitated by the highly interrelated nature of the research. In reviewing the role of

supersymmetry our two main motivations are
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e To survey the correspondences between the entanglement hierarchies of various

multipartite systems and the SUSY classification of black holes in several theories.

e To study the generalisation of quantum systems experiencing entanglement to their

superentangled, minimal supersymmetric extensions.

In beginning the exploration of the black hole/qubit correspondence, we require a
certain amount of prerequisite material as pertains to black holes in supergravity and
quantum information theory. In the necessary concepts such as U-duality,
extremality, etc are introduced, followed by the theories of interest. We then review the
basics of entanglement and entanglement classification in supported by some
elementary concepts in classical invariant theory in This is rounded off by
a discussion of the early correspondences in dealing with the STU model in
the N' = 8 generalisation in and the D = 5 generalisation in

Moving on to the main topic, we begin our review of newer material in
starting in with a brief outline of the explicit dictionaries through which we
translated between different black hole perspectives and the qubit perspectives. This
leads in to where we look at the alignment of black hole SUSY classification
in various theories with qubit and qutrit entanglement classifications. The octonions are
examined in as they play multiple distinct roles in the early correspondences.

Subsequently, we consider the wrapped brane perspectives in four and five dimensions

in |chapter 6 In|chapter 7| we discuss the recent derivation of a four-qubit entanglement

classification into 31 families by means of the SUSY distinguished U-duality orbits re-
sulting from timelike reduction of string theory from D = 4 to D = 3. We then dive
into full-on superlinear algebra with the supersymmetric generalisation of qubits and
entanglement in This thesis then concludes in with a summary
of the discoveries reviewed and avenues for future research. We have also provided in
supporting material concerning the algebraic tools of cubic Jordan algebras
and Freudenthal triple systems.

As this is a review of aspects of our published body of work some chapters are closely

based on our existing papers, however, previously unpublished material is incorporated,
particularly in [section 3.3.2] [section 5.3| [section 7.1] and




Chapter 2

Black holes

2.1 Black hole entropy

As discussed in [chapter 1} the core of the black hole/qubit correspondence is an en-
tropy /entanglement relationship. We begin then with a brief note on black hole entropy.

Work done by Bekenstein and Hawking [29,/30] in the 1970s established that black
holes radiate energy and could be characterised as thermodynamic systems, with a set of
relationships known as the laws of black hole mechanics describing geometrical properties
of spacetime in a manner identical to the description of the properties of a statistical

system by the laws of thermodynamics [31].

For example, the analogue of the first law of thermodynamics describes the relation-

ship between the conserved quantities of a black hole when subject to small variations
ks

oM = 8—5A + 1@ + Q6J, (2.1)
0

where M, kg, A, 11, Q, €2, and J are respectively mass, surface gravity, event horizon area,
electric potential, charge, angular velocity and angular momentum. In particular, this
law relates quantities defined at the event horizon such as area and surface gravity to

quantities defined at infinity: mass, charge, and angular momentum.

Since the first law of thermodynamics contains a T'dS term, one might hope to
identify the geometrical analogue of entropy, provided the black-body temperature of
radiation emitted by a black hole. This is of course the Hawking temperature Ty, fixed

by treating the black hole in quantum field theory in a curved background, with gravity

21
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treated classically and matter fields quantum mechanically

_ s

Ty = ) 2.2
H 2 ( )

Combining (2.1)) and (2.2) suggests that the entropy of the black hole, the Bekenstein-

hawking entropy, is proportional to its horizon area:
(2.3)

where G4 is the 4D Newton constant. In light of its semiclassical gravity origins it is
subject to higher order quantum corrections. The thermodynamic analogy is borne out
by the second law of black hole mechanics which states dA > 0.

This is the macroscopic picture, but Boltzmann’s entropy formula S = kplogW
raises the question of the microscopic origin of the entropy, the understanding of which
was provided only in 1996 by string theory [32] for the class of extremal black holes.

The supergravities of the various string theories admit black hole solutions [13}33,34],
and one can compute their entropy. In the cases we consider it is expressed (solely, in
the extremal case) in terms of electric and magnetic black hole charges. We now turn

to the subject of extremality.

2.2 Extremal black holes

Even with no prior knowledge, it is reasonable to expect that quantum entanglement is
expressed in terms of state vector coefficients. Our concern here is to clarify why black
hole entropy should be expressed in terms of dyonic charges, knowing already that it is
given by the horizon area.

Consider the line element for a static, spherically symmetric 4D black hole
ds? = =P ae? 4 2R dr? 4+ 12(d? + sin’0de?). (2.4)

In Einstein-Maxwell theory, the most general static black hole solution is the Reissner-

Nordstrom solution )
2h(r) _ —2k(r) _q _ 2M @ (2.5)

which yields two horizons
re =M+~ M?-Q2 (2.6)

For M > |Q| the singularity is hidden behind the horizon (M < |Q| is excluded by
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the cosmic censorship hypothesis). In the special, extremal case M = |Q| the horizons
coincide at . = r_ = |Q| and the area of the horizon reduces to 4rQ?. As a consequence
the entropy is fixed by in terms of the charges. We note also that the surface gravity
also vanishes at M = |@Q| and hence so does the Hawking temperature, leading one to
conclude that the extremal black hole is stable. These considerations easily generalise
to the case with nonzero magnetic charge P by replacing Q? with Q2 + P2.

The supergravity theories we concern ourselves with differ in having more than one
photon (four for the STU model, 28 for N’ = 8, D = 4, etc). Consequently there are more
electric and magnetic charges. Extremal black holes in these cases obey generalised mass
= charge relations, which also involve scalar moduli. This situation can be improved to
one in which the moduli dependence drops out by fixing them (freezing them) at their
horizon values - in this manner the entropy is ensured to be moduli independent [35].
As a simple example, consider the axion dilation extremal black hole [5,36]. It has four
charges p°, p', qo, and q1, and its entropy is given by an SL2(R) invariant, determinant-

like expression:
S =P’ — qop']. (2.7)

An important point for our considerations is that a black hole preserving some unbroken
supersymmetries is called BPS (after Bogomol'nyi-Prasad-Sommerfield). Being BPS

implies extremality, but is not a necessary condition for it.

2.3 U-duality

The black hole entropies we consider are required to be U-duality invariants, with the
charges transforming in representations of the U-duality group [37-40]. As a result of
the correspondence, these invariants show up again on the qubit side. Consequently, a
brief discussion of U-duality is in order.

One can view string theory as a worldsheet sigma model with background space-
time as its target space [41,[42]. While different backgrounds can correspond to different
quantum string theories, some can produce physically equivalent theories. Such back-
grounds can be mapped into each other by discrete transformations coming from the
symmetry groups of string dualities. The dualities that transform one theory to another
are classified into T, S, and U-dualities where U-duality subsumes the others.

Consider superstring theory compactified on a circle of radius R. T-duality [43]
sends the worldsheet theory with radius R to o’/R, where o is the string tension. This

generalises to toroidal compactification where the compact space is T%, a k-dimensional
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torus. Fields of dimensionally reduced theory transform as representations of T-duality
group. T-duality holds perturbatively order-by-order in the string coupling constant gs.
From the open string or D-brane perspective, T-duality transforms Dirichlet boundary
conditions into Neumann boundary conditions and vice versa [44]. S-duality [45-51],
on the other hand, is a generalisation of the electromagnetic duality of supersymmetric

Yang-mills theories [52] and acts non-perturbatively in contrast to T-duality.

For N = 2 compactifications the combined dualities give SLy(Z) x SOy 2(Z) where
the low energy limit is D = 4, N' = 2 supergravity coupled to £+ 1 vector multiplets [53].
For N = 4 compactifications we have SLa(Z) x SOg (Z) where the low energy limit is
D = 4, N = 4 supergravity coupled to m vector multiplets [54].

Unifying S and T dualities yields U-duality. For M-theory on R? x T* or string
theory on R? x T*~1, where d+k = 11, the reduced theories are invariant under a global
symmetry group called the U-duality group. The reduced d-dimensional low energy
effective action, which is the d-dimensional supergravity theory, is invariant under a
continuous symmetry group and the discrete subgroup of it, the U-duality group, is the

symmetry of the full theory.

An analysis of the global symmetries of dimensionally reduced theories is accom-
plished through the consideration of the symmetries in their scalar sectors [55]. In
essence, the symmetry extends to higher valence fields and acts linearly, with the non-
linear realisation for the scalars only. Special care must be taken, since the scalars are
not merely dilatons and axions, but also arise from the Hodge dualisation of (D —1)-form
field strengths (i.e. (D — 2) form potentials) to 1-form field strengths of scalars. The
dualisation generally entails a flip in the sign of the field’s associated dilaton vector, and
an interchange of Chern-Simons and transgression terms. It is the dilation vectors that
hold the key to analysing the scalar manifold, specifically the vectors gi’i+1 and @qs3,
with ¢ € {1,...,11— D} for a D-valent Lagrangian form (in the case of a torus reduction
from 11 dimensions). These are the simple roots of the global symmetry group G. A
brief aside: the generators in the Lie algebra of a group can be partitioned into the

Cartan subalgebra generators H and ladder operators Ez satisfying:
(2.8)

The & are root vectors, and these can be partitioned into positive and negative roots,
where the prescription for allocating signs is to take the sign of their first non-zero ele-

ments. Simple roots are obtained as the minimal subset of the positive vectors that can



2.3. U-DUALITY 25

Q)
F O0—O &

o—-O0 O—O0—0—->0
B12 BZ3 B45 E;56 B67 B78

Figure 2.1: The Dynkin diagram for the global symmetry of a Lagrangian obtained via
T8 reduction of D = 11 SUGRA. The roots are labelled with the corresponding dilaton
vectors. To obtain the diagram for T™ reduction, one only need restrict to the dilaton
vectors that appear in the reduction in question.

generate all of the positive roots via linear combinations of themselves with nonnegative
integer coefficients. The simple roots are sufficient to classify Lie algebras, and it is
the relative root lengths and angles that get encoded in Dynkin diagrams. The general
Dynkin diagram for a torus reduction from 11 dimensions is given in where
one specialises to the dimensionality under consideration by amputating the appropriate
root/dilaton vectors. Returning to the scalar manifold, one reads off G from the dilaton
vectors, and by assembling the exponentiations of the positive-root and Cartan gener-
ators with dilatons and axions, it is possible to write the scalar Lagrangian in a form
that makes the symmetries manifest. The procedure depends on whether dualisation of
field strengths can add to the scalar content of the reduced theory, but in either case the

object V can be constructed:

Y =e¢l/? $'ﬁ<HeAfé]Eij> exp < Z AE(J)]kE”k> (2.9)

1<j 1<j<k

where generators E% and E% correspond to root/dilaton vectors l_);-j and d;ji respec-
tively, and terms are ordered with indices appearing in reverse-canonical order. It is here
that the transgression terms in the field strengths arises, since non-vanishing commu-
tators between positive root generators contribute then via Baker-Campbell-Hausdorf.
V constructed in this manner is in an upper triangular (or Borel) gauge. Defining
M := VTV allows one to write the scalar Lagrangian as %tr (8/\/1_13/\/1). The beauty
of this form of the Lagrangian is that a G transformation A on the scalars ¥V — VA will
result in the transformation M — AT MA, which clearly leaves the Lagrangian invariant,
thanks to trace cyclicity. In truth, the G transformation will generally break the Borel
gauge and a compensating transformation O needs to be made so that V — OVA, which
preserves the invariance. This O will lie in the maximal compact subgroup K C G by

virtue of the Iwasawa decomposition, which states that a general group element g can
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be written as gxgrgn with g € K, gy € G and gy in the Cartan subalgebra. The fact
that points on the scalar manifold are then specified via G transformations modulo K
compensations indicates that the scalar manifold is the coset G/K. The trace form of
the Lagrangian is for this reason referred to as a coset space Lagrangian, with V being
a coset representative. The number of the scalar fields of the compactified theory is
equal to the dimension of the coset space, dim G — dim K. A classification of symmetry
groups of the supergravities with 32 supercharges in different dimensions has been given
in [56].

For reduction past dimension 6, the scalars resulting from dualisation complicate
matters and a generalisation of the transpose is needed to replace the M = VTV relation
since USpg, SUg, and SO16 are not orthogonal. The Cartan involution does the trick by
operating at the generator level, flipping the signs of the noncompact ones; for example,
the involution is simply dagger, T when acting on unitaries. The E,,) groups are the
exceptional groups in their maximally noncompact form: whereas usually the ladder
operator generators provide, through linear combinations, equal numbers of compact and
noncompact generators, in this case the Cartan generators are also noncompact. (More
generally, the bracketed term corresponds to the number of non-compact generators less
the number of compact ones.) In fact, the general prescription for 3 < k < 8 is Erm [57].

Of special interest to us of course is the compactification to four dimensions where
the U-duality group is the 133 dimensional exceptional Lie group Er(7), with 63 compact
and 70 non-compact generators. The resulting low-energy limit is (D = 4, N = 8)
supergravity with 28 abelian vector fields. The 28 electric and 28 magnetic black hole
charges transform as an irreducible 56 of E;(7) as shown in taken from [58,59].

We will later encounter the SL; subgroup in the context of a special 7-qubit system.

Table 2.1: The symmetry groups (G) of the low energy supergravity theories with 32
supercharges in different dimensions (D) and their maximal compact subgroups (K).

D scalars vectors G K
10A 1 1 SO11(R) -
10B p 0 SLo(R) SO,(R)
9 3 3 SL2(R) x SO11(R) SO»(R)
8 7 6 SLQ(]R,) X SLg(R) SOQ(]R) X SO3(R)
7 14 10 SL5(R) SO5(R)
6 25 16 SO575(R) SO5(R) X SO5(R)
5 42 27 E6(6) (R) USp8
4 70 28 E77) (R) SUg
3 128 - Egs)(R) SO16(R)
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Figure 2.2: String/string/string triality. Red arrows are mirror transformations, grey
arrows are string/string dualities.

2.4 The STU model

The STU model, so named for it’s three complex scalar fields or moduli (the dila-
ton/axion, complex Kéhler form, and complex structure fields), is the theory whose low
energy limit is a four dimensional N' = 2 supergravity coupled to three vector multi-
plets interacting through the special Kihler manifold [SLa / SOs2]? ,. It can
be obtained via dimensional reduction of type ITA supergravity on the Calabi-Yau K3
with DO, D2, D4, and D6 branes wrapping on the cycles. It can be usefully embedded
in an N = 4 theory obtained from compactification of the heterotic string on 7% and
exhibits an SLg(Z)s strong/weak coupling duality and an SLo(Z)7 x SLa(Z)y target
space duality. String/string duality furnishes an alternative view in which it is a trunca-
tion of an N = 2 theory obtained by compactifying Type IIA on K3 x T? where S and
T exchange roles ,. This is yet again equivalent through mirror symmetry to a
Type IIB string on the mirror manifold. Indeed it seems all roads lead to STU, but this

profusion is a symptom of D = 4 string/string/string triality as shown in [Figure 2.2
Combined, the theory exhibits a full S-T-U triality symmetry and SL3 duality [61]. The
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28

Table 2.2: The representations of the U-duality group G of all the forms of maximal supergravities in any dimension,
omitting the scalars which parameterise the coset G/K. The (D — 2)-forms dual to the scalars always belong to the adjoint

representation.
D G Form Valence
1 2 3 4 5 6 7 8 9 10
10A R* 1 1 1 1 1 1 1 1 W
10B SLa(RR) 2 1 2 3 M
2 2 3 3 4
9 SLy(R) x R 2 1 1 2 2
1 1 1 2 2
. . s 62 5y
40 70
7 SL5(R) 10 5 5 10 24 45
15 5
320
6 SOs5.5 16 10 16 45 144 126
10
= 1,728
5 E6(16) 27 27 78 351 57
8,645
4 E7(4m 56 133 912 133
3,875 147,250
3 Eg(+8) 248 3,875
1 248
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black hole solutions have 8 charges, p’, ¢; with i € {0,1,2,3}. The action is as follows:

1 _ 1 1
SSTU—167TG/€ n[(R+ Z(tr [8MT 8MT]

+ tr [oM; oMy )) x1 o

1
+ xdn A dn — §*H[3} A Hig

1
— 5 * F§[2] VAN (MT X MU) Fs[21:|

_1 (1w,
Ms—%(S) (9‘3(5) |52> tc, (2.11)

where the object Fgpp is a vector of field strengths for the 4 gauge fields: the gravipho-
ton and the three coupled vectors. The last term in (2.10]) is understood as a typical
kinetic-style term, with matrix multiplication operative on the non-Lorentz indices; the

transpose also only operates on the non-Lorentz index on Fgpj. The invariant trace

terms tr[OM~1OM)] were already discussed in

Crucially the model admits extremal black hole solutions carrying four electric and
four magnetic charges [2,/61,65] denoted qo, q1, g2, g3, p°, p*, p?, p>. These may be
organised into a 2 x 2 X 2 hypermatriz with an associated hyperdeterminant, first intro-
duced by Cayley in 1845 [3]. However, the generating solution depends on just 8 —3 =5
parameters [66,67], after fixing the action of the isotropy subgroup SO3. Whether the
solution is embedded in N' = 4 with symmetry SLs x SOg 22 and charges transforming
in a (2,28) or N' = 8 with symmetry E7(7) and charges transforming in the 56, in all
cases, remarkably, the same five parameters suffice to describe these 56-charge black
holes [66467].

Calculating the area (with a view to calculate the entropy) requires evaluating the
moduli not asymptotically, but with their frozen horizon values which are fixed in terms
of the charges [35]. This ensures that the entropy is moduli-independent, as it should
be. This calculation for the model with the STU prepotential was carried out in |2] with
charges denoted (p°, qo), (p',q1), (p?, q2), (3, q3) and Og5 scalar products

P ="+ ) - 0 - )
¢ = (©)? + (@)? — (©)? — (@)?

, (2.12)
p-q= (") + ('a) + (P*@) + (PPe).
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In these variables, the entropy is given by the quartic polynomial expression

(8/m)? = ~(p-a)®
4]0 ) (Pa2) + (0 a) (PPas) + (0°as) (Pa2) (2.13)
+aop'p*p? — P q1a245
which is [SLg(Z)]® invariant as required and symmetric under transformations: p' <>

p? < p3 and ¢ < ¢2 <> ¢3. It is in fact none other than the hyperdeterminant of the

charge hypermatrix.

2.5 N =8 black holes

The most general class of black hole solutions in AN/ = 8 supergravity /M-theory are
equipped with charges belong to the fundamental 56-dimensional representation of E7(7),

and the black hole entropy is a quartic polynomial in the 56 charges given by
S =m\/|14], (2.14)

where I is Cartan’s quartic E7 invariant [57,68-70], the singlet in 56 x 56 x 56 x 56
given by
Iy = —tr(zy)? + (trzy)? — 4 (Pfz + Pfy), (2.15)

where /7 and y;; are 8 x 8 antisymmetric matrices and Pf is the Pfaffian. An alternative

expression has been provided by Cremmer and Julia [57]

Ii=t(ZZ)? - Y& Z2)* +4(PtZ+Pt2). (2.16)
Here
ZAg = —ﬁ(l‘IJ—{—iy[J)(FIJ)AB, (2.17)
and
IJ | 0 \2 AB
T Fwyrg = 1 ZAB(F )[J. (2.18)

The matrices of the SOg algebra are (I'') 45 where (I,J) are the 8 vector indices and
(A, B) are the 8 spinor indices. The (T'/7) 45 matrices can be considered also as (I'4%);;
matrices due to equivalence of the vector and spinor representations of the SOg Lie
algebra. The exact relation between the Cartan invariant in and Cremmer-Julia
invariant [57) in was established in [71},[72]. Here Z4p is the central charge matrix
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and (x,y) are the quantised charges of the black hole (28 electric and 28 magnetic). The
relation between the entropy of stringy black holes and the Cartan-Cremmer-Julia Er (7
invariant was established in [69]. The Cartan basis of only displays a manifest
SOg symmetry, whereas it was proved in [68] and [57] that the sum of all terms in
is invariant under an SUg symmetry. To address this, the central charge matrix Zap

can be brought through an SUg transformation to a canonical, antisymmetric matrix

format:
Z1 0 0 0
0 2 0 0 0 1
Zap = ® , 2.19
Pl 0 oz o0 (—1 0) (219)
0 0 0 =z

where z; = p;e’¥i are complex. In this way the parameter count is reduced from 56 to 8.
The meaning of these parameters was clarified in a systematic treatment in [73]. Writing
the four complex parameters as z; = p;e’? one can remove a further three phases by
an SUg rotation, but the overall phase cannot be removed as it is related to an extra
parameter in the class of black hole solutions [66,74]. In this basis, the quartic invariant
takes the form [69)

I, = Z |zt — 2 Z |2i|?|2j|* + 4 (21222324 + 212223 74)
1<J

= (p+p2+p3+pa

X (p1+ p2 — p3 — p4a (2.20)

)

( pa)
X (p1— p2 + p3 — p4)
X (p1— p2 — p3 + p4)

+ 8p1pap3pa (cosp —1).

Therefore a 5-parameter solution is called a generating solution for other black holes in
N = 8 supergravity /M-theory [67}/75].

If the phase in (2.20|) vanishes (which is the case if the configuration preserves at
least 1/4 supersymmetry [73]), I of (2.20]) becomes

I4 = 515283584, (2.21)
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where s; are given by the p; of
51 = p1 -+ p2 + p3 + pa,
S2 = p1+ p2 — pP3 — p4, (2.22)
83 = p1 — P2+ pP3 — p4,

S4.=p1— p2 — P3+ P4,

and we order the s; so that s1 > sy > s3 > |s4]. The charge orbits [70,73|,76| for the black
holes depend on the number of unbroken supersymmetries or the number of vanishing
eigenvalues as in “Large” and “small” black holes are classified by the sign of
I4Z

Iy >0, (2.23a)
I, =0, (2.23b)
Iy < 0. (2.23c)

Non-zero I, corresponds to large black holes, which are BPS for I, > 0 and non-BPS
for Iy < 0, and vanishing I corresponds to small black holes. Case ([2.23a)) requires that
only 1/8 of the supersymmetry is preserved, while we may have 1/8, 1/4 or 1/2 for case

(2.23b)). This situation is summarised in |Table 2.3

Table 2.3: Classification of N/ = 8, D = 4 black holes. The distinct charge orbits are
determined by the number of non-vanishing eigenvalues and I, as well as the number
of preserved supersymmetries.

Orbit s1 So S3 S4 I, Black hole SUSY
E7(7) /(Eg(6) xR?) >0 0 0 0 0 small 1/2
Ern /(Os6xR¥2xR) >0 >0 0 0 0 small 1/4
E7(7) /(Fa(q) xR*) >0 >0 >0 0 0 small 1/8
E77) / Eg(2) >0 >0 >0 >0 >0 large 1/8
E77) / Eg(2) >0 >0 >0 <0 <0 large 0
E77) / Eg(6) >0 >0 >0 <0 <0 large 0

When the 2!/ and ;7 charge matrices are themselves SUg transformed into the eight



2.5. N =8 BLACK HOLES 33

parameter canonical form of (2.19) we have

A 0 0 0
0 X 0 O 0 1
IJ
7+ can = ® . 2.24
(7 +u17) 0 o (_1 O) (2.24)
0 0 0 M

The Cartan invariant can be computed in this basis and rewritten again in terms of z

and y matrices to obtain

Iy =
— (o1 + 2%yaz + 2Pyus + 257 yer)?

+ 4(2" 2P yo1y03 + 2 2P yo1ya5 + 22 2P Y345 (2.25)

01_67 23 67 4567
+ 27 2" Yoryer + 27w y23yer + 70" Yasyer)

— 4(2" 2?25 + yo1ya3yasyer),

which is simply Cayley’s hyperdeterminant (2.13|) under the identifications

A =2 +iyor = go + ip°,
Ay = 2% - iyaz = —p® + g, (2.26)
A3 =2 + W45 = p® —ig,

Ay = 2% +iyse = p' —iqy.

This result for Eq(7) also applies, mutatis mutandis, to E7(C). In other words the Cartan
invariant reduces to Cayley’s hyperdeterminant in this basis, permitting STU black holes
to be classified using the same eigenvalue notation as N/ = 8 black holes, which we do in
In contrast to N' = 8, cases (2.23a)) and both require preservation of
1/2 of the supersymmetry. The orbits for the large N/ = 2 black holes were previously

found in [70,/77] while those of the small black holes were more recently found in [24].

One can also consider N = 4 supergravity coupled to m vector multiplets (symmetry
SLy(Z) % SOg 1m(Z)) and N = 2 supergravity coupled to £+1 vector multiplets (symmetry
SL2(Z) x SOy 2(Z)) and the entropies are again the square root of quartic invariants.
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Table 2.4: Classification of N' =2, D = 4 STU black holes, see The values
of Iy and the eigenvalues s; distinguish the different charge orbits. Here, small black
holes have a vanishing horizon.

Orbit s1 S9 S3 S4 I,  Black hole SUSY
SL3 /(SO xR?) >0 0 0 0 0 small 1/2
SL3 /(021 xR) >0 >0 0 0 0 small 1/2
SL3 /R? >0 >0 >0 0 0 small 1/2
SL3 /U? >0 >0 >0 >0 >0 large 1/2
SL3 /U? >0 >0 >0 <0 <0 large 0(Z=0)
SL3 /SO7 >0 >0 >0 <0 <0 large 0(Z #0)

2.6 D =5 black holes

In five dimensions we might consider N' = 8 supergravity where the symmetry is the
non-compact exceptional group Eg(g)(Z) and the black holes carry charges belonging
to the fundamental 27-dimensional representation (all electric) [73]. The electrically
charged objects are point-like and the magnetic duals are one-dimensional, or string-like,
transforming according to the contragredient representation. The black hole entropy is

a cubic polynomial in the 27 charges given by

S =m13(Q)]; (2.27)

where I3 is Cartan’s cubic Egg invariant [68,70,73,/78,79] which may be written
B(Q) = 4 qun Q™" g, (2.28)

where g¢;; is the charge vector transforming as a 27 which can be represented as traceless
Spg matrix.

In five dimensions the compact group K is USpg (with conventions chosen so that
USpy, = SUsg). This time the commutator of the supersymmetry generators yields a
central charge matrix Z4p which can be brought to a normal form by a USpg transfor-

mation. In the normal form the central charge matrix can be written as

51+ s2 — s3 0 0 0
0 31—|—83—52 0 0 0 1
ZAB: X )
0 0 8o + 83 — 81 0 -1 0
0 0 0 —(s1 4 s2+ s3)

(2.29)
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where the s; can be ordered so that |si| > |s2| > |s3|. The cubic invariant, in this basis,
becomes
I3 = 515983, (2.30)

Which furnishes three distinct possibilities as shown in Unlike the four-

Table 2.5: Classification of D = 5,N' = 8 black holes. The distinct charge orbits are
determined by the number of non-vanishing eigenvalues and I3, as well as the number
of unbroken supersymmetries.

Orbit s1 89 S3 I3 Black hole SUSY
Eg6) /(055 xR) >0 0 0 0 small 1/2
E¢e) /(054 xRY) >0 >0 0 0 small 1/4
E6(6) /F4(4) >0 >0 >0 >0 large 1/8

dimensional case where flipping the sign of I interchanges BPS and non-BPS black
holes, the sign of the I3 has no effect since it changes under a CPT transformation.
There are no non-BPS orbits in five dimensions.

One can also consider N = 4 supergravity coupled to m — 1 vector multiplets (sym-
metry SO; 1(Z) x SOy,—15(Z)) and N' = 2 supergravity coupled to ¢ vector multiplets
(symmetry SO1 1(Z) xSOy—_1,1(Z)) where the entropies are again the square root of cubic

invariants.

2.7 Magic supergravities

In both four and five dimensions one can consider N = 2, 4,8 supergravities. In four
dimensions one has the maximal case, N' = 4 coupled to m vector multiplets, and
N = 2 coupled to £ + 1 vector multiplets, where there exist quartic invariants giving
the black hole entropy in each case. The N = 8 case admits a quantum information
theoretic interpretation, which descends to the ' =4,m =6 and N =2,/ = 2 casesE] as
truncations. There is a similar story in five dimensions where one has cubic invariants
instead.

However, as suggested by Levay [9], one might also consider the “magic” super-
gravities [80H84]. In four dimensions these correspond to the R, C,H, O (real, complex,
quaternionic and octonionic) AN/ = 2 supergravity coupled to 6,9, 15 and 27 vector multi-
plets with symmetries Spg(Z), SUs 3,SO7, and E7(_25), respectively. Once again, it has

been shown [85] in all cases that there are quartic invariants whose square root yields

!The £ = 2 case is of course the one we already knew [1].
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the corresponding black hole entropy. In five dimensions [80-H82] the magic supergravi-
ties are the R, C,H, ON = 2 supergravity coupled to 5, 8, 14 and 26 vector multiplets
with symmetries SL3(R), SL3(C), SUG and Eg_g6) respectively, all with cubic invariants
whose square root yields the corresponding black hole entropy [85].



Chapter 3

Quantum information theory

3.1 Qubits and entanglement

Quantum entanglement is a phenomenon in which the quantum states of two or more
objects must be described with reference to each other, even though the individual ob-
jects may be spatially separated [86-92]. This leads to correlations between observable
physical properties of the systems that are classically forbidden. For example it is pos-
sible to prepare two particles in a single quantum state such that when one is observed
to be spin-up, the other one will always be observed to be spin-down and vice versa,
this despite the fact that it is impossible to predict, according to quantum mechan-
ics, which set of measurements will be observed. As a result, measurements performed
on one system seem to be instantaneously influencing other systems entangled with it.
Note, however, that quantum entanglement does not enable the transmission of classical

information faster than the speed of light.

On a more philosophical note, the correlations predicted by quantum mechanics, and
observed in experiment, reject the principle of local realism, which is that information
about the state of a system should only be mediated by interactions in its immedi-
ate surroundings and that the state of a system exists and is well-defined before any

measurement.

While a physical property, indeed a physical resource, entanglement is not exactly
an observable - much like the state itself. As a resource it is leveraged in the fields
of quantum computing and quantum cryptography and has been used to implement

quantum teleportation experimentally.

The prototypical physical systems experiencing entanglement are quantum bits or

37
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qubits: two-level quantum systems
|¥) = a0|0) + a1[1) (3.1)

where a4 € C and (¢[)) = 1 so that in marked contrast to classical bits the system
can exist in a complex superposition of states |0) and |1). Entanglement presupposes
multiple systems to compare with each other so we see no entanglement for a lone qubit.

To describe two qubits, one forms the tensor product of two single qubit states

1 1
W)= aaplA)®|B) = > aap|AB)
A,B=0 A,B=0 (3.2)

= ago|00) + ag1|01) + a10/10) + a11|11).

From the standpoint of this model, the physical phenomenon of entanglement is the
property of the state corresponding to the failure of the sum of tensor products (3.2)) to
factorise: non-separability. When a two-level system doesn’t suffice, one has recourse to

qutrits: three-level quantum systems
[¥) = aol0) + a1[1) + a2(2), (3.3)

and more generally to qudits: d-level systems

U

-1

) = 3" aalA). (3.4)
0

b
I

Finally one can describe any number n of such systems as a linear aggregate of n-fold

tensor products

)= > aaalA) @ @A) = Y aa.a,lArc Ay, (3.5)
Al A Al"'An

where the sums can in general be of differing lengths to accommodate combinations of
qubit, qutrits, etc. The 2" coefficients a4,...4, of an n qubit system can be arranged in
n-dimensional hypercubes as in Of particular significance to us is the n = 3
cube, which can be interpreted as a 2 X 2 X 2 hypermatriz sporting a generalisation of
a matrix determinant known as Cayley’s hyperdeterminant. These hypercubes famously
make an appearance in classical information theory, where the minimum number of edges

between nodes is the Hamming distance between them, a useful metric in error detection
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Figure 3.1: Two-dimensional projections of qubit coefficient hypercubes for one to four
qubits. The red edges in a projection correspond to the preceding hypercube.

and correction [93].

A little more formally, qudits occupy a complex Hilbert space H equipped with a

one-to-one map into its dual space H1,

FoH -
(3.6)
[) = ()T = (¥l
which defines an inner product (¢|¢) and satisfies
aly) = (pla*
()" = (], } (37)
(1) + o))" = (¥] + (4],
(lo)* = (dl), (3.7b)
(Yly) =0, (3.7¢)

for all |¢), |¢) € H,a € C with saturation of the inequality for null |¢)) only.

In particular a qubit inhabits the 2-dimensional complex Hilbert space C?. An arbi-
trary n-qubit system is then simply a vector in the n-fold tensor product Hilbert space
C’®,...® C? = [C?".
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3.2 Entanglement classification

3.2.1 The (S)LOCC paradigm

Entanglement being a resource, one is compelled to quantify it and discriminate systems
by means of it, just as one does for more familiar classical resources such as energy or
entropy [94]. Non-separability is an easy to understand notion of entanglement, but
it is the more physical description of classically forbidden inter-state correlations that
furnishes a means of quantifying entanglement.

The general idea is to partition state space into orbits using classical-correlation re-
specting transformations. The appropriate transformations are supplied by the principle
of (stochastic) local operation and classical communication or (S)LOCC. In the LOCC
paradigm, a multipartite state may be split into its relevant subsystems which are dis-
tributed to different labs where they may be experimented upon, the results optionally
being disseminated by classical means. Classical correlations can be established using
LOCC, but since the protocol can only create separable states it is unable to establish
genuine quantum correlations: LOCC cannot create entanglement [95]. This of course
leads to the restriction that any putative entanglement measure be a monotonically de-
creasing function of any LOCC transformation: an entanglement monotone. The LOCC
method of transforming states forms a hierarchy through some states not being inter-
convertible. States that can be LOCC related should however be physically equivalent
with respect to their entanglement properties, a notion called LOCC equivalence. It was
shown in [96] that two states of a composite system are LOCC equivalent if and only
if they may be transformed into one another using the group of local unitaries (LU),
unitary transformations which factorise into separate transformations on the component
parts. In the case of n qudits, the LU group (up to a phase) is given by [SUg4|". The LU
orbits carve the Hilbert space into equivalence classes. For a n-qudit system the space
of orbits is given by [97,,98]:

[C

Ty xSUL (3.8)
As it happens however, this LU classification is very restrictive and fails to relate nomi-
nally equivalent states: even simple bipartite systems will not, in general, be related [99].
Furthermore, continuous parameters are required to describe the space of entanglement
classes [97,/98,[100L101]. Coarse graining this classification to one that is more physically
acceptable is what puts the S in SLOCC: rather than require that states be deter-
ministically related to each other by LOCC, instead we require only that they may be

transformed into one another with some non-zero probability of success, hence stochastic
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LOCC [96}[09).

It is proved in [99] that for n qudits, the SLOCC equivalence group is (up to an
overall complex factor) [SLy(C)]". Essentially, we may identify two states if there is
a non-zero probability that one can be converted into the other and vice-versa, which
means we get [SLy(C)]™ orbits rather than the [SU4]" kind of LOCC. This generalisation
may be physically motivated by the fact that any set of SLOCC equivalent entangled
states may be used to perform the very same non-classical, entanglement dependent,
operations, only with varying likelihoods of success. For a m-qudit state the space of

SLOCC equivalence classes is given by [99]:

()"

SLAOT (3.9)

Invariants of the quotient group (which are polynomials in the state vector coefficients)
may then act as discriminating polynomials - entanglement measures [95/,96,98//101-113].
In the qubit case d = 2, the lower bound on the number of continuous variables needed
to parameterise the space of orbits is 2(2" — 1) — 6n so that for three qubits in particular
the space of orbits is finite and discrete giving the concise classification of entanglement

classes of [99).

3.2.2 Two qubits

The state norm, despite being fixed for normalised states, is generically a discriminating
polynomial of the simplest variety, serving to distinguish the trivial null class from all
others. This is all one has for one qubit (transforming as a 2 of SLg) since all non-null
states are separable. For two qubits transforming as a (2,2) of [SLo]? the bipartite

measure is the concurrence Cyp

Cap = 2+/det pa = 2+/det pp = 2|det aap| = 2|agoair — aoraio| (3.10)

where p4 and pp are reduced density operators formed as partial traces of the full pure

state density operator |1)(1]

_ <B1B> *
A)Aj A, = 071 7%aa, B a ;
(P ) 1A2 181% A5 By (3‘11>

_ sA1A2 *
(pB)BlB2 =9 AQA1B1OA,B,-
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This is to be compared with the von Neumann entropy £ (an extension of the Shannon
entropy):
& = —trlpalogy(pa)l = —tr[pplogy(pB)]- (3.12)

Cap is a nonlinear function of &£, but as shows, £ increases monotonically

from 0 to 1 as C' goes from 0 to 1,

10
o8l

o6l

&(Cap)

04l

02l

ook

Che

Figure 3.2: The von Neumann entropy as a function of concurrence

E(Cap) = h(5[1+ \/@D (3.13)
)

h(z) := —zlogy(z) — (1 — x)logy(1 — z),

making both acceptable as entanglement measures, though the concurrence becomes
more complicated for mixed states. Typically the relevant discriminating polynomial is

expressed as the two-qubit 2-tangle
TaB = C4p = 2[(tr p)* — tr p?] (3.14)
where p is the total density operator. Exemplary states are
e Separable: ) = %QOO) +101)) for which 745 =0

e Bell state/EPR state [87,89]: [) = %(mo) + |11)) for which 745 =1

3.2.3 Three qubits

For three qubits transforming as a (2,2,2) of [SLg]® there are six SLy(C)? invariant

polynomials that measure the entanglement and discriminate between the orbits. There
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is as always the quadratic norm, followed at quartic order by three local entropies Sa B,c

Sa =4detpsg = 4ddet trpe|) v,
Sp = 4det pp = 4det troal)y], (3.15)
Sc = 4det po = 4dettrap|) .

otherwise known as three-qubit 2-tangles and denoted 74 B¢y, Tp(ac), and To(ap)- These
may be converted to an alternative set of three polynomials which are also referred to

as three-qubit 2-tangles [114]

Tap = Cap = 3 (- TC(AB) T TA(BC) + TB(CA) — TABC) »
B0 = Cho = 5 (—Tae) + TB(CA) + To(an) — TaBC) 5 (3.16)
TCA = C(QJA = % ( TB(CA) T Tc(AB) + TABC) — TABC)

where Cxp,Cpc and Cgoa are the corresponding concurrences. These 2—tangles give

bipartite entanglements between pairs in 3-qubit system as shown in [Figure 3.3

TaAB TaC
TaBC
B C
TBC

Figure 3.3: Tangles.

Next there is the sextic Kempe invariant [104]

K = 04,B,0,04;,B,02043B;C50A, ByC3 0 A2 B3Cy QA3 B, O
= tr(pa @ pppap) — tr(ph) — tr(pp)
= tr(pp ® poppe) — tr(ph) — tr(pf)
= tr(pc @ papca) — tr(pl) — tr(ph).

(3.17)

It happens that this invariant is redundant for the purposes of classification. Neverthe-
less, in [115] the Kempe invariant was shown to vary continuously for a fixed orbit while
the other polynomials were held fixed, indicating that being an entanglement measure

is more restrictive than simply being an invariant and a monotone.
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Finally there is Cayley’s hyperdeterminant Det a 4pc or 3-tangle Tapc

Tapc = 4|Det aapcl, (3.18)

Deta := _% 5A1A2531325A3A453334501C4502C3
(3.19)
X aA1Blcl aAQBQCQCLASB303aA4B4C4‘

The 3-tangle, in contrast to the 2-tangles, is a measure of the genuine 3-way entan-
glement as depicted in The hyperdeterminant is compared to the ordinary
determinant in Unlike the two qubit array asp, contraction with epsilon

det(a)

1/2

Figure 3.4: The hyperdeterminant (right) compared to the ordinary determinant (left)
in diagrammatic tensor notation. The encircled letters are tensors and the lines denote
index contractions. The hyperdeterminant can be viewed as the determinant of the
determinant-like quantity ~.

tensors in a determinant-like manner fails to saturate the indices of the three-qubit ar-
ray aapc. However the resulting object, which we call v, does have two indices and
can be saturated with a determinant style epsilon contraction. There are three ways to

construct

(’)/A)AlAQ = aAlBCaAgBC>
(’78)3132 = aABlcaAB207 (320)
(Y9 ere, = a*Peianpc,,

but they satisfy
A _ B __ C _
det v = detv” = det v~ = — Det a. (3.21)

The values of the five polynomials (recalling that K is redundant) carve the state

space into seven classes, with the entanglement classification complete with represen-
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tative states summarised in [Table 3.1l The objects v5BC satisfy a complementary

Table 3.1: The values of the local entropies S4,Sp, and S¢c and the hyperdeterminant
Det a are used to partition three-qubit states into entanglement classes.

Class Representative Condition

P Sa Sp Sc Deta

Null 0 =0 =0 =0 =0 =0
A-B-C |000) #0 = = = =0
A-BC |010) + |001) #0 =0 #0 #0 =0
B-CA |100) + [001) #0 #0 = # 0 =0
C-AB |010) + |100) #0 #0 #0 = =0
W |100) 4 |010) + |001) #0 #0 #0 #0 =0
GHZ |000) + |111) #0 #0 #0 #0 #0

relationship with the local entropies S4 g c: where in Sa = 0,53 # 0 we
would have 758:¢ = 0,44 # 0, etc. A visual representation of the SLOCC classes is

provided by the onion-like classification [4] of [Figure 3.5

Figure 3.5: Onion-like classification of SLOCC orbits.

The classes and representatives

Null: The trivial zero entanglement orbit corresponding to vanishing states,

Null: 0. (3.22)
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Separable: Another zero entanglement orbit for completely factorisable product states,

A-B-C':  |000). (3.23)

Biseparable: Three classes of bipartite entanglement

A-BC': |010) + |001),
B-CA: |100) + [001), (3.24)
C-AB: (010) -+ |100).

W: Three-way entangled states that do not maximally violate Bell-type inequalities in
the same way as the GHZ class discussed below. However, they are robust in the
sense that tracing out a subsystem generically results in a bipartite mixed state

that is maximally entangled under a number of criteria [99],

W [100) + |010) + |001). (3.25)

GHZ: Genuinely tripartite entangled Greenberger-Horne-Zeilinger [116] states. These
maximally violate Bell-type inequalities but, in contrast to class W, are fragile
under the tracing out of a subsystem since the resultant state is completely unen-
tangled,

GHZ: |000) 4 |111). (3.26)

These W and GHZ state definitions are readily generalised

GHZy) = \2 (10)°Y + o) (3.27)

1 N i—1 N
Wy) = \/N; i§)|o>®y1>® &) l0) (3.28)

j=it1

however, there are multiple alternative W and GHZ states which do not conform to these
patterns, but respect the entanglement properties of the conventional definitions.

The seven listed entanglement classes are arranged in the entanglement hierarchy [99]
shown in [Figure 3.6 Note that no SLOCC operations (invertible or not) relate the GHZ
and W classes; they are genuinely distinct classes of genuine tripartite entanglement.
However, from either the GHZ class or W class one may use non-invertible SLOCC

transformations to descend to one of the biseparable or separable classes and hence we
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have a hierarchical entanglement structure.

Genuine Tripartite

Entangled

Bipartite

Figure 3.6: Three qubit entanglement hierarchy. The arrows are non-invertible SLOCC
transformations between classes that generate the stratification.

In anticipation of the brane wrapping interpretation of we present an
alternative parameterisation. For unnormalised three qubit states, the number of pa-
rameters needed to describe inequivalent states is given by the dimension of the

space of orbits
CZxC?xC?
U1 X SU2 X SUQ X SUQ’

namely 16 — 10 = 6. For subsequent comparison with the STU black hole, however, we

(3.29)

restrict our attention to states with real coeflicients a4pc. In this case one has

R2 x R2 x R2
SOy x S04 x SOy’

(3.30)

with dimension 8 —3 = 5. Hence, the most general real three-qubit state can be described
by just five parameters , conveniently taken as four real numbers Ny, N1, No, N3 and
an angle ¢ H
|¥) = —N3cos? §]001) — N2|010)
+ N3sinf cosf|011) — N1|100) (3.31)
— N3sinfcos8|101) + (No + N3sin? 0)[111).

Representatives states in this parameterisation are provided in

!This is obtained from the canonical form for real states, Eq. (11) of \ , by applying two different
SO(2) transformations on the second and third bits.
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Table 3.2: Entanglement class representatives for the five parameter state (3.31]).

Class Entanglement Representative
A-B-C Separable No|111)
A-BC, AC-B, AB-C Biseparable No|111) — N;|100)
W Full bipartite —N1]100) — N3|010) — N3|001)
GHZ Tripartite Nop|111) — N;|100) — N2|010) — N3|001)

3.2.4 Two qutrits
The bipartite entanglement of A and B is given by the 2-tangle [118H122]

Tap = 27det pa = 27| det aap|?, (3.32)
detaap :%€A1A2A3€BIBZBSaAlBlaA232aA3B3

= aoo(a11a22 - a12a21)

(3.33)
— ag1(a10a22 — ai2a)
+ ap2(ao1a21 — ariag),
where p4 is the reduced density matrix
pa = Trp|¥) (V] (3.34)

The determinant is invariant under SL3 4 x SL3 g, with a4p transforming as a (3,3),
and under a discrete duality that interchanges A and B. The only other discriminating
polynomial we require is Co, the sum of the principal minors of the density matrix:
Co = lagoar1r — aorato|® + |aoza1o — agoai2|? + |aprarz — agzai1|?
+ [agrazo — agoas1|* + agoaze — agzaszo|? + atoazs — arraso|? (3.35)

+ |a12a20 — ajpag|?® + |apgaz — aprage|? + |aiiass — arzaz [

The entanglement classification for two qutrits is then summarised in

Table 3.3: Two qutrit entanglement classification

Class P Co TAB

Null 0 0 0

A-B >0 0 0
Rank 2 Bell >0 >0 0

Rank 3 Bell >0 >0 >0
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As was done in [section 3.2.3] we present an alternative parameterisation in antici-
pation of comparison with the D = 5 black hole. This time restricting to unnormalised

states with real coefficients results in the space of orbits

R3 x R?

SOg X 803’ (3.36)

with dimension namely 9 — 6 = 3. Hence, the most general two-qutrit state can be
described by just three parameters, which may be conveniently taken to be three real
numbers Ny, N1, No:

|W) = Npl00) + Ny|11) + N2|22). (3.37)

3.3 Qubit covariants in classical invariant theory

3.3.1 Transvection and the Omega process

It is possible to systematically generate the discriminating polynomials of
and (and more besides) using techniques from classical invariant the-
ory [1104/123-128]. The basic method was introduced by Cayley in 1845 [3] when he
introduced hyperdeterminant theory. Essentially, one operates on homogeneous polyno-
mials (forms) with differential operators to produce covariants. Covariants of a form in
this context are functions f(@,Z) of the form’s variables # and coefficients @ that are
unchanged under general linear transformations, modulo factors of the determinant A

of the transformation
f(@z) =Avf(a,z). (3.38)

where w is the weight of the covariant. Invariants are covariants with no Z dependence.
When w = 0 the covariant or invariant is called absolute. The process by which covariants
are constructed from a base form is called transvection which is itself based upon the
Omega process. The mth order Omega process with respect to an m X m matrix of

variables V is a differential operator defined as

ol 0

ovii T Vim
o .. _o_ (3.39)
OVim1 WVimm

o
= resn () I v



50 CHAPTER 3. QUANTUM INFORMATION THEORY

For example, a second order Omega process would be 8\/11881/22 — 8V1288V21. We will call
the matrix of which € is the determinant the Omega matrix 2. The essential property
of the Omega matrix that permits the construction of covariants when acting on base
forms is the fact that it transforms with a factor of the inverse of the determinant of the
transformation, making it an example of an invariant process.

Defining P(?) P(Vi1,...,Vip), we use the tensor product notation @?_; P; to

denote Py ( 7 71, A complete n-transvectant is then defined by
(Pr,...,P)™ = tr Q" ®"_, P, (3.40)
where tr sets all vectors of variables to be equal: 71 = 72 = ... = 7,,. Under the

exchange of any of the P;, the transvectant picks up a factor of (—)".

For a complete
n-transvectant, the dimension v of the 71 vectors satisfies p = v = m. However more
generally, v can be any integer multiple of p: p = v/d. In such case, the polynomials
are expected to be multiforms; that is, while the polynomials accept p X d arguments,
they are homogeneous in each of the d sets of v variables. Separate Omega processes

can then operate on the d sets of variables to form a complete (ny,...,ng)-transvectant:

(Pr, ..., Bp)nesnd) .= g Q1 ... QP P (3.41)

z 1

When the P; have multiweights (w11, ..., wiq4),..., (Wp1, ..., wpq) the resulting covariant
has multiweight (w11 + - +wp1 +n1,...,wig+ - +wpg+nq). In the multidegree case,
transvectants satisfy p = v/d = m.

In the case of n qudits the base form is the state itself |¢)) = Z?:_ol Ay A, AL Ap)
where the coeflicients @ are a 4, ... 4, and the variables & are the basis kets |A; - - - A,,). This

trivial covariant is a multiform of multidegree (1,...,1) which we will denote Ay ...7.

n

n
Following |125] we then transvect in the following particular manner
(Ara, - (Arers (A, Aqeg )P )P21men St 8 (3.42)

so that we have a g X n transvectant specification matrix s. We restrict to Z?Zl 85 >
0 (where s;; > 0 by definition) to avoid transvectants that are merely products of

previously generated ones. The resulting transvectant can be systematically named

X(gr1-2 50 sn)(aH1-2 50 sin) (3.43)

where X is the (¢ + 1)th letter of the alphabet. For example if we don’t transvect
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at all we have a 0 x n matrix s so that X is the first letter of the alphabet A and
g+1—-237 s =1forall 1 <j<n. Inother words this notation is consistent with

calling the state Ajp..;. Transvecting once we have
(Al‘..l, Alu.l)sllmsl” = B(2*2811)'"(2*281n)‘ (3.44)

As an example, for two qubits the two nonvanishing covariants are A;; and Bgy =
(A11, A1)t This notation allows one to read off the form of the monomials of a covariant
from its name or transvection specification:
_ q . _ q .

) AP E L ) g |4, 2 S ) (3.45)
Naturally the s;; must also be such that ¢+1—2 2321 si; > 0forall 1 < j < n to prevent
negative tensor powers. Most acceptable covariant specifications s will actually result in
vanishing transvectants. In the case when all tensor powers are empty the covariant is
actually an invariant, such as the determinant Byg. Though informative, this notation
will still assign the same name to different covariants with identical monomial structure

so, depending on the task at hand, one must keep track of the underlying polynomials.

For three qubits one obtains the degree 2 covariants Bagg, By2g, Boo2 which are in fact
44, ~B ~C. At degree 3 one finds C11; which is related to the Kempe invariant K ,and
at degree 4 there is the hyperdeterminant Dggg. If one is insensitive to permutations
of qubits, covariants collapse into multiweight classes: Bogg, Bo2o, Boo2 — 3B2gg- While
A and (1]9) correspond directly to their LOCC class counterparts modulo numerical

factors, the local entropies S; and Kempe invariant obey the following

S =16 (BB — (BB

. (3.46)

(BB = 5[3;8 —25]
YiBIBY) = 53, Si (3.47)
K = (A111|A111)® + 2[(C111|Crur) — (A1 |A1) 3, Sil (3.48)

where B! = Bygg, B2 = Byag, B> = Bgo2. There are however some additional three-qubit
covariants at order 4: 3Dg90 as shown in When one attempts a covariant
based entanglement classification including this added set of covariants it turns out that
they are redundant (i.e. generate no new classes), just as C11; already was. We note
that the trilinear form C1; has the same multiweight structure as the state itself, and
can be considered a transformed state. This perspective is employed in in
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4 DOOO

Figure 3.7: Three-qubit covariant tree down to degree 4 (numbers on the left indicate
degree).

which (11 is proportional to the triple product T

3.3.2 Molecular notation

A rather instructive molecular notation for transvection was developed by Clifford,
Sylvester, Kempe, Olver, and others [123] which can provide some insight to the struc-
ture of the qubit covariants. We will explore the notation for the three qubit case, but
the definitions extend trivially to n qubits. First note that second order omega processes
can be denoted

Qaﬁ = det (gﬁta 8ya> = [066]7 (349)

g ayB

Where the bracket factor [af] is antisymmetric. When written in this form,transvectants

are referred to as bracket polynomials. The three-qubit covariants can then be obtained

Booo = ztr( )([12])([12]) A1 @ A,
Booo = 3tr (12))( )([12]) A111 ® A111, (3.50)
Booz = 5 tr (12))([12))( ) A1 @ A,
Cinn = tr ([12))([23))([23]) AT, (3.51)
Dooo = 4 tr ([12][34])([14][23])([14][23]) AT} (3.52)
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The notation essentially keeps track of the antisymmetrisations between constituent
copies of the base form Aj1;. With that in mind, one can view the basic triform as a

trivalent atom (though we distinguish between |A111) and (Aj11]):

|A111) = |[¢) = @

(3.53)
and (Ain| = (| = @

One can introduce two types of bond between these atoms. The first represents a simple

overlap between bras and kets. For example, the norm is given by:

(V) = M (3.54)

The overlap bond is strictly between atoms of distinct type. In contrast, the second
type of bond represents the action of an Omega process. The bonds are colour-coded to

distinguish between the partial transvection slots.

For example, the B? are given by dimers:

2By = tr () (12N Y @4 = ®_@’
2Bg20 = tr ([12]) (2hyp ey = @:@’ (3.55)
2Boy = tr (12120 e w = ().

Strictly speaking, these bonds are directed since [a] is antisymmetric

O-0-0:=0- 00 -

The fact that the B’ dimers are ionic corresponds to the fact that they are covariants.
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To form invariants, we may neutralise them with overlap bonds.

4(Baoo|B2oo) = |

4(Bozo|Bozo) = || (3.57)
4(Booz2|Boo2) = |
Attempting to neutralise with omega bonds causes them to vanish.
Next there is the trimer Ci11
Ci1 = tr ([12]) ([23]) v (3.58)

Equality still holds under interchange of colours. Again C71; is ionic and we neutralise

with overlap bonds.

Cin =

(3.59)

(C111|Cin) = (7

Finally, there is the hyperdeterminant, which is neutral without needing overlaps

Dooo = 5 tr ([12][34]) ([14][23]) 9, (3.60)
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020
Dogo = ‘ . (3.61)
00

By establishing rules to determine whether a molecule vanishes or is equivalent to an-

other, the generation and examination of covariants by hand is greatly simplified.
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Chapter 4

Preliminary analogies

4.1 Three-qubits and N =2, D = 4 black holes

The black hole/qubit correspondence begins with the recognition that the entropy S of
STU black holes is simply the three-qubit entanglement measure T74p¢c in a different

basis. That is,
T

S = 5\/7}430 (4.1)
with the “dictionary” between bases given by:

0 1 2 3
p, P , D , D , Qo , 41, 92, g3
( ) (4.2)

= (aooo, —apol, —ap1o, —a100, @111, a110, @101, aon),

where this is the convention of [5] and differs from [1] in that the signs of agoo, ao11, @100, @111
are flipped, though of course both satisfy . As a side note, in [5] a simpler example
of such a correspondence is made between the entropy of the axion dilaton black hole
and the two-qubit 2-tangle S = wdet(aap) = 5/7aB-

Two important distinctions between the black hole and quantum information con-

texts are

e Qudit wavefunctions may be normalised but there is no analogous restriction on

black hole charges.

e The quantised charges of STU black holes are integers transforming under SLy(Z)?
rather than SLy(C)3 [11/2,/5,61]

The second point may be addressedm by restricting to real qubits or rebits in which the

More recently, the Kostant-Sekiguchi correspondence allows us to map real orbits of black holes to

o7
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state vector coefficients are real. This results in three cases to consider

Deta < 0, (4.3a)
Deta = 0, (4.3b)
Det a > 0. (4.3¢)

Case (4.3a]) corresponds to the non-separable or GHZ class |116], for example,
) = 1(—]000) + [011) + [101) + |110)). (4.4)

Case (4.3b]) corresponds to the separable (A-B-C, A-BC, B-CA, C-AB) and W classes,
for example

|T) = %(\100) +1010) + 001)). (4.5)

Case (4.3c) is also GHZ, for example the state (4.4]) with a sign flip
|¥) = 1(]000) + |011) + [101) + |110)), (4.6)

however in this case we could just as well use the canonical GHZ state.

In [1], cases and were shown to correspond to BPS black holes, for
which half of the supersymmetry is preserved. Case has non-zero horizon area
and entropy (“large” black holes), and case has vanishing horizon area and entropy
(“small” black holes), at least at the semi-classical leve]ﬂ This alignment of the classi-

fication of A = 2 supersymmetric STU black holes with the entanglement classification

of three qubits is summarised in

4.1.1 Higher order corrections

The small black holes have a singular horizon with vanishing area and entropy at the
classical level, but may acquire nonvanishing area and entropy due to quantum cor-
rections, characterised by higher derivatives in the supergravity Lagrangian. One can
interpret this as consequence of the quantum stretching of the horizon conjectured by
Susskind |129] and Sen [130L{131]. See also [132-137].

Kallosh and Linde [5] have noted that this quantum entropy also admits an interpre-

tation in terms of qubit entanglement measures. They propose a general formula that

the complex orbits of qubits and bypass rebits.
2However, small black holes may acquire a non-zero entropy through higher order quantum effects.
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Table 4.1: The values of the local entropies S4,Sp, and S¢c and the hyperdeterminant
Det a (defined in are used to partition three-qubit states into entanglement
classes. The black hole/qubit correspondence relates these to D = 4, N = 2, STU model
black holes). Specifically, the to absence/presence of a horizon (small/large) and the
extent of supersymmetry.

Class Sa SB Sc Deta Black hole SUSY
A-B-C 0 0 0 0 small 1/2
A-BC 0 >0 >0 0 small 1/2
B-CA >0 0 >0 0 small 1/2
C-AB >0 >0 0 0 small 1/2
W >0 >0 >0 0 small 1/2
GHZ >0 >0 >0 <0 large 1/2
GHZ >0 >0 >0 >0 large 0

correctly reduces to the known special cases. It is given by

T 4c SK?
Stotal = 2\/ ABC + %(CAB + Cpc + Cca) + T|‘1’|, (4.7)

where co and K are constants that depend upon the compactification. Clearly this now

involves the bipartite entanglement of three qubits.

For completely separable states with only one nonzero charge, this reduces to
2 2

For the bipartite and W-states at large values of the charges, the concurrences are much

greater than |¥| and the formula reduces to

C
Stotal = W\/;(CAB + Cpce + Ceoa) (4.9)

= 47/ |qo(p* + p?)|. (4.10)

Finally, for the GHZ states the (unnormalised) 3-tangle is much greater than the con-

currences and we regain

S = g\/TABC- (4.11)
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4.2 The N = 8 generalisation

4.2.1 Decomposing E;7) D SL?

Just as the entropy of the STU model possesses an SLy(Z)? symmetry which permits
a correspondence with the SLy(C)? invariant three-way entanglement measure of three
qubits we seek a system whose entanglement corresponds to the E;(7)(Z) invariant N =38
entropy. This despite the fact that we can only expect an SLy(C)"™ symmetry from n
qudits. Nevertheless E7(7)(Z) contains SLy(Z)" as a subgroup:

E;7)(Z) D SLy(Z),

E;(7)(C) D SLy(C)". (4.12)

This initially suggests a simple analogy with a seven qubit system, but this perception
is altered by the details of the decomposition of the fundamental 56. One begins by

decomposing under the maximal subgroup SLg X SOg ¢

E7(7) D) SLQ’A X 806,67

(4.13)
56 — (2,12) + (1,32),

where the SLy is labelled with an A in anticipation of a seven qubit interpretation. The
decomposition then proceeds as shown in down to

Figure 4.1: E7(7)(Z) D SLy(Z)" decomposition

E7(7) D) SLQ,A X SLQ’B X SLQ’D X SLQyC X SL27G X SL27F X SL27E, (414)
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E:n =2 SO > 504>
SL, % 8O SL, x SL, x SOy, SO, , % SO,,

(21,18,
(21,1,1,4)

(2.2,2,1,1)

(1,2,1,2,2)
+(1,2,1,2,2)
(1,1,2,2,2)
+(1,1,2,2,2)

(1,1,2,8)

80,, >
SL, * SL,

(2,1,1,2,2,1,1)
(21,1,1,1,2,2)

(2,2,2,1,1,1,1)

(1.2,1,2,1,1,2)
+(1,2,1,1,2,2,1)
(1,1,2,2,1,2,1)
+(1,1,2,1,2,1,2)

Figure 4.2: Detailed decomposition of the 56 of E;(7)(Z) under E7 D SL?
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with the detailed decomposition of the 56 shown in where the ordering of the

SLs factors is the same as in [Figure 4.1} This particular ordering of factors is chosen to

admit an interesting decomposition pattern upon the permutation (34)(57)

E7(7) D) SLQ’A X SLQ’B X SLQ’C X SLQ,D X SLQ,E X SLQ,F X SLQ’G,

so that

56 — (2,2,1,2,1,1,1)
+(1,2,2,1,2,1,1)
+(1,1,2,2,1,2,1)
+(1,1,1,2,2,1,2)
+(2,1,1,1,2,2,1)
+(1,2,1,1,1,2,2)
+(2,1,2,1,1,1,2).

An analogous decomposition holds for

E7(C) D SLy(C)".

(4.15)

(4.16)

(4.17)
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4.2.2 Interpretation

Instead of a straightforward seven qubits, which would have the wrong counting 56 -4
(2,2,2,2,2,2,2), we find the direct sum of seven copies of the (23 = 8)-dimensional
three qubit (2,2, 2)s. That is, rather than

aABCDEFG"ABCDEFG>, (418)

we have
‘\II>56 = aABOD.o.|AB.D. ° .>

+ boBCoEoo|.BC.E. .>
+ C..CD.F.|. .CD.F.>

+ desenEec|® ® e DE 0 G) (4.19)
+ CAeseriFe| A0 00 EFe)
+ foBessrc|®Be o 0 I'G)
+ GAeCesec| A0 C 0 0 0(),
which we abbreviate to
(V)56 = aasp|ABD)
+ bpeop|BCE)
+ CCDF’CDF>
+ dprc|DEG) (4.20)
+ egra|EFA)
+ fraB|FGB)
+ gcac|GAC).

This state has the following properties
e Any pair of states has a qubit in common
e Each qubit is excluded from four out of the seven states
e Two given qubits are excluded from two out of the seven states
e Three given qubits are never excluded.

Despite not being a subsector of the seven qubit space there are seven qubits coupled
to each other in groups of three as shown in Consequently we refer to this
situation as the tripartite entanglement of seven qubits, though this phrase needs to be
carefully interpreted. One could in fact consider to be a special 56-dimensional
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Figure 4.3: E7 entanglement diagram corresponding to the decomposition (4.16)) and the
state (4.20). Each of the seven vertices A, B, ..., G represents a qubit and each of the
seven triangles ABD, BCE,...,GAC describes a tripartite entanglement.

subspace of a 37 = 2, 187-dimensional seven qutrit space, where we decompose

SLI > SLI, (4.21)
(3,3,3,3,3,3,3) > 1 term like (2,2,2,2,2,2,2)
+ 7 terms like (2,2,2,2,2,2,1)
+ 21 terms like (2,2,2,2,2,1,1)
+ 35 terms l?ke (2,2,2,2,1,1,1) (4.22)
+ 35 terms like (2,2,2,1,1,1,1)
+ 21 terms like (2,2,1,1,1,1,1)
+ 7 terms like (2,1,1,1,1,1,1)
+ 1 term like (1,1,1,1,1,1,1)

)

so that the singlets originate from 3 — 2 + 1. Thus, our state is indeed a seven
qubit subsector. Nevertheless the main point of interest is the hidden E;(7) symmetry
which must be respected by the entanglement measure. If we’re in the market for a
quartic Eq(7) invariant, the sole possibility is Cartan’s I4. To express I in the basis of
the amplitudes a, b, ..., g one writes the decomposition in a more terse form with
singlets discarded and doublets appropriately labelled

56 = (ABD) + (BCE) + (CDF) + (DEG) + (EFA) + (FGB) + (GAC),  (4.23)

or schematically
56 =a+b+c+d+e+ f+g. (4.24)
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The invariant is then the singlet in 56 x 56 x 56 x 56:

Li=a'+bv'+d+d +et+ [+ g
+ 2[@262 + a?c® + a’d® + a?e? + d?f? + a’g?
+ b2 + 0Pd® + bPe? 4+ 0 fF + bg
+ Ad® + e + 22+ Pg?

4.25
+ d?e® + > f% + d?g? ( )

+ e2f? + e2g?

+ fZQZ}

+ 8labce + bedf + cdeg + defa + efgb+ fgac+ gabd].
The terms like
a* = (ABD)(ABD)(ABD)(ABD)

_ %EA1A2€BIBQ€D1D4€A3A4€BSB4€D2D3 (4.26)

X QA1 B1D10A3BsDyA@A3B3 D3 @A, ByDays

are just seven hyperdeterminants (modulo sign), each excluding four qubits. Products
like

a®b* = (ABD)(ABD)(BCE)(BCE)
— %EAIAQ831BB€D1D2€BQB4€C3C4€E3E4 (4.27)

X QA By Dy @Ay By DobBsCs Es0BLCLES

are 3 X 7 = 21 cross entanglements excluding two qubits. A more compact definition is

afforded via the v decomposition of the hyperdeterminant
— 3 tr[(v%(a) &) " e (B)): (4.28)
Finally, products like

abce — (ABD)(BCE)(CDF)(EFA)
— %EA1A4€BlBQ€02036D1D3€E2E4€F3F4 (4.29)

X QA,B1D; bBQCzEQ CCgD3F3€E4F4A47



4.2. THE N =8 GENERALISATION 65

are seven cross entanglements excluding one qubit. The full entanglement can then be

expressed as

7 7 7 7
I, = ZCL;L + 22 Z a?ajz + 82aia‘i+1‘7a|i+2‘7a|i+4|7 (430)
i=1

i=1 j=1+1 i=1

These results may be verified using the dictionary between amplitudes and the Cartan

basis charges discussed in [section 5.1

4.2.3 The Fano plane

The particular pattern of the decomposition and the state is encapsulated
in the Fano plane as shown in The Fano plane is a projective plane with
seven points and seven lines (the circle counts as a line). We may associate it to the
state by interpreting the points as the seven qubits A-G and the lines as the
seven tripartite entanglements. This is consistent as there are three points on every
line and three lines through every point. We refer to the amplitudes of the state (4.20))
as the Fano basis of the Cartan invariant. If the plane is oriented like ours, one may

use the directed lines to read off a multiplication table for imaginary octonions. This

Figure 4.4: The Fano plane with nodes labelled with qubits A,...,G in a pattern that
matches the decomposition (4.16). Edges are oriented in a way that allows one to read
off a multiplication table for imaginary octonions.

is not the end of the story since the decomposition (4.16)) can be tabulated against the
corresponding amplitudes a,...,g and qubits A,...,G as in to reveal a dual
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description in which the Fano nodes and edges swap roles, resulting in a dual state

Table 4.2: The seven terms in decomposition (4.16|) may be written in a grid such that
Fano lines and vertices are rows and columns. This permits easy identification of the
dual lines and vertices, which are simply given by columns and rows.

A B C D FE F G
a 2 2 1 2 1 1 1
b 1 2 2 1 2 1 1
c 1 1 2 2 1 2 1
d 1 1 1 2 2 1 2
e 2 1 1 1 2 2 1
f 1 2 1 1 1 2 2
g 2 1 2 1 1 1 2

’{IV/>56 = Aaeg|a€g>

+ Bbfa|bfa>

+ chb|cgb>

+ Dygcldac) (4.31)

+ Eebd|€bd>

+ Freel|fce)

+ ngf|gdf>7

and a dual Fano plane shown in which also furnishes a multiplication table

for the imaginary octonions.

4.2.4 Subsectors

Having discussed the correspondence between N = 8 black holes and the tripartite
entanglement of seven qubits using E;(7), we can obtain analogous correspondences in
the N' = 4 and N = 2 cases by taking them as subsectors of the full N' = 8 theory,
examining the SLy x SOg ¢ subgroup for A' = 4 and an SLy x SO 2 subgroup for N = 2.

In the first case we restrict to N’ = 4 by retaining just the 24 NS-NS charges belong-

ing to the (2,12) part of the decomposition of the fundamental 56 under its maximal

subgroup. These can be read off of [Figure 4.2] to give
|¥) = aapp|ABD) + epra|EFA) + goac|GAC). (4.32)

So only qubit A is shared. This corresponds to the three lines passing through A in
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Figure 4.5: The dual Fano plane has nodes and edges swapped with the Fano plane of
Figure 4.4| and is associated with the dual seven qubit state (4.31)). With the above

orientation applied to the edges the dual plane also yields an imaginary octonion multi-
plication table.

the Fano plane or the aeg line in the dual Fano plane, meaning that we reduce from
imaginary octonions to imaginary quaternions. Then the equation analogous to (4.23))
is

(2,12) = (ABD) + (EFA)+ (GAC) =a+e+g, (4.33)
and the corresponding quartic invariant, I, reduces to the singlet in (2,12) x (2,12) x
(2,12) x (2,12)

Iy ~a* + et + gt +2[eg? + g%a® + a*e. (4.34)

The 24 numbers (a4Bp, egra, ggAc) can be identified with (P*, Q,) with u,v =0,...,11
to yield the SLy x SOg ¢ invariant [61,|66,(74]

I, = P?Q* — (P-Q)>. (4.35)
So
Iy = Ineq = det(y'(a) +7%(9) +7°(e)). (4.36)

A different subsector which excludes qubit A is obtained by keeping just the R-R charges:

the 1,32 in (4.13)), which can again be read off [Figure 4.2

(1,32) = (BCE) + (CDF) + (DEG) + (FGB) =b+c+d + f, (4.37)
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and the corresponding quartic invariant, I, reduces to the singlet in (1,32) x (1,32) x
(1,32)x(1,32)

I~ bt d 200+ Pd - dPe? + AP AP fP0%) + 8bedf.  (4.38)

This is does not correspond to any A = 4 black hole but rather to an N/ = 8 black hole
with only the R-R charges switched on.
For N' = 2, examining a SLy x SOg 2 subgroup simply reproduces the SL3)? of the

STU model which we have already considered

(2,2,2) = (ABD) = a, (4.39)
so the corresponding quartic invariant
I ~at, (4.40)
is just Cayley’s hyperdeterminant
I, = —Deta. (4.41)

4.3 The D =5 generalisation

4.3.1 Decomposing Egg D SLg

We saw insection 4.2.1land [section 4.2.2| that the E7(7) invariant 4D N = 8 entropy could

be decomposed under SLy(C)” to yield an analogy with a tripartite entangled seven-
qubit system. Similarly, we seek an Eg) 5D black hole/string entropy decomposition
to SLg(C)™. It so happens that Eg admits the following decompositions

Eg(6) O SL3(R)?, (4.42)
and

E6(C) D SL3(C)3. (4.43)

This suggests a correspondence to a simple three qutrit system [126], but just as the
details of the decomposition of the 56 in 4D led to a more specialised system, so too

does the detailed decomposition of Eg). Specifically, under

E6(6) D) SL37A X SLg’B X SLg’C, (4.44)
the 27 decomposes as

27 — (3/,3,1) + (1,3',3") + (3,1, 3). (4.45)
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An analogous decomposition holds for

Es(C) D SL3(C)3. (4.46)

Note the new feature of this decomposition: in contrast to (4.16)) we see primed repre-
sentations alongside unprimed ones. This is not to be ignored and suitable allowances

must be made in the interpretation of any embedded qutrit system.

4.3.2 Interpretation

Instead of a straightforward three qutrits (which would this time have the correct count-
ing), we see from (4.45)) that rather than

apc|ABC), (4.47)
we have
|\I/>27 = G,A/B.|A,B.> + b.BC‘.BC) + CA/.C/|A, ° Cl>7 (448)
which we abbreviate to
|W)y; = aag|A'B) + bpcr|B'C') + cca|CA), (4.49)

where A, A’ = 0,1,2. Note that:
1. Any pair of states has a qutrit in common
2. Each qutrit is excluded from one out of the three states

Despite not being a subsector of the three qutrit space (3,3, 3), there are three qutrits
coupled to each other pairwise as shown in The appearance of both primed
and unprimed representations is respected by having the upper and lower indices distin-
guished

a?t = %EABlBQQ[BlBQ] (4.50)

in contrast to the qubit case where the £ symbol simply related the two a* = e4Bap. The
antisymmetry of a(p, p,) allows the interpretation of the 3" as a pair of indistinguishable
“fermions”. Just as we referred to the 4D situation as the tripartite entanglement of
seven qubits, we can refer to the present situation as the bipartite entanglement of three

qutrits, and once again this terminology requires some interpretation.
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B C

Figure 4.6: The D = 5 analogue of is the three qutrit entanglement diagram
corresponding to the decomposition and the state . It is a triangle with
vertices A, B, C representing the qutrits and the lines AB, BC and C A representing the
entanglements.

This time, one must explain the primed representations as well as the singlets. This

is achievable under the embedding

SL7 D SL3 (4.51)
under which

7—-53+3+1, (4.52)

so that the qutrits are embedded in 7-dits. Under

SL7 a4 x SL7,g x SL7 ¢ D SL3 4 x SL3 g x SL3 ¢ (4.53)
we have

(r,7,7)— (3,3,3) + (3,3,3) + (1,1,1)
+(3,3,3) + (3,3.,3) + (3,3,3)
+(3,3,3) + (3,3.,3) + (3,3,3)
+(3,3,1) + (3,1.,3) + (1,3,3)

+3.,3,1) + (3,1,3) + (1,3,3) (4.54)
+(3,1,1) + (1,3,1) + (1,1,3)
+3,1,1) + (1,3,1) + (1,1,3)
+(3,1,3) + (3,3,1) + (1,3,3)
+(3,1,3) + (3,3,1) + (1,3.3),

so that the state (4.49) is indeed a special 27-dimensional subspace of a 73 = 343-
dimensional three 7-dit space. The hidden Egg) symmetry must now be respected by
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the entanglement measure, which must be given by the cubic Cartan invariant (2.28))
7(ABC) = 27|I3]*. (4.55)

To express I3 in the basis of amplitudes a, b, c on starts by rewriting (4.45)) with singlets
suppressed and triplets labelled

27 = (AB) + (BC) + (CA), (4.56)
or symbolically

27T=a+b+c. (4.57)
The invariant I3 is then the singlet in 27 x 27 x 27:
I3 = a® + b% 4 ¢ + 6abe. (4.58)

Terms like

a® = (AB)(AB)(AB)

(4.59a)
= %5A1A2A35B1BQBSGA1B1CLA232QA3337
b* = (BC)(BC)(BC
(1 )( )( ) B1C13,B2C21,B3C: (459b)
— 65313233501020313 1P p s 37
3
¢’ = (CA)(CA)(CA
s (1300
= 5 1P A, €0y A, CO5 A3
exclude one qutrit (C, A, and B respectively), and the products
abec = (AB)(BC)(CA)
1 A _;BC (4.60)
= ga b coa,
exclude none. One can truncate to just the (3,3) in (4.45) which excludes B
|¥) = coa|CA), (4.61)

which is described by just that line not passing through B in the ABC triangle,

(3,3) = (CA) =, (4.62)
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and the corresponding cubic invariant, I3, reduces to the singlet in (3,3) x (3,3) x (3, 3)

I3 =detcoa ~ . (4.63)

4.4 Magic supergravities

The black hole/qubit correspondence continues to hold for the magic supergravities. The
essential point is that although the A/ = 8 black hole charges are real and the entropy is
invariant under E7(7)(Z), the amplitudes of are complex, with entanglement mea-
sure invariant under E7(C) which contains both Er(7)(Z) and E7(_g5)(Z) as subgroups.
Thus, one could equally well have chosen the magic octonionic N' = 2 supergravity

rather than the conventional A" = 8 supergravity. It is true that

E;1)(Z) D SLy(Z), (4.64)
but
Er(_25)(Z) 2 SL2(Z)" (4.65)
but this is irrelevant, since all that matters is
E7(C) D SLy(C)". (4.66)

This line of reasoning also holds for the magic real, complex and quaternionic N’ = 2
supergravities which are, in any case truncations of N’ = 8 (in contrast to the octonionic).
With this in mind one may revisit the ordinary /' = 2 and N = 4 cases. Conventionally
we give the seven qubit subsector an N = 4 supergravity interpretation with symmetry
SLy(R) x SOg 6 [6], but we could equally have given an interpretation in terms of N = 2
supergravity coupled to 11 vector multiplets with symmetry SLa(R) x SOj2. Since
SOy¢—1,2 is contained in SOy (C) and SOg,y, is contained in SO124,,(C) one can give a
qubit interpretation to more vector multiplets for both A" = 2 and N/ = 4, at least in
the case of SOy, (C) which contains SLy(C)®?".

The same argument applies for the D = 5 magic supergravities. This time the
crucial observation is that the Eg(C) invariance of the entanglement contains both
Eg(6)(Z) and Eg(_s6)(Z) as subgroups, so that magic octonionic " = 2 supergravity is
an equally good black hole correspondence. Although

Eg(6)(Z) D SL3(Z)?, (4.67)
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but
Eg(_26)(Z) 7 SL3(Z)’ (4.68)
the relevant fact is still

E6(C) D SL3(C)3. (4.69)

Again, this holds for the magic real, complex and quaternionic N' = 2 supergravities
which are, in any case truncations of A/ = 8 (in contrast to the octonionic). When
revisiting the ordinary ' = 2 and N/ = 4 cases one notes that SO, ; is contained in
SO¢+1(C) and SOy, 5 is contained in SOs4m,(C), so we can give a qutrit interpretation
to more vector multiplets for both A/ = 2 and N = 4, at least in the case of SOg,(C)
which contains SL3(C)".
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Chapter 5

Deepening correspondences

5.1 The Cartan invariant in various duality frames

Cartan’s quartic invariant Iy can be written in several bases that manifestly display the
symmetries of subgroups of E7, with the three most useful subgroups for our consider-
ations being SOg, SLJ, and Eg. Black holes are more conveniently described in either
the SOg or Eg bases, whereas the SL; basis is tailored to the qubits. Hence the com-
putation of explicit dictionaries between these bases was an important milestone in the
black hole/qubit correspondence as it cemented the validity of the SL; decomposition of
14 and permitted easier comparisons between the very different perspectives. The SOg
basis is the first one we encountered, namely the Cartan basis with its electric-magnetic
split
E7 D S0s,
56 — 28 + 28, (5.1)
Ii(z,y) = —tr(zy)® + L(tray)® — 4(Pfz + Pfy).

We recall that this can be SUg transformed to a canonical form that reduces to the
hyperdeterminant. Secondly we have the Fano basis, in which is written in terms of the

Fano amplitudes a,...,g
E; D SLY, (5.2)

75
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56 —»(2,2,1,2,1,1,1
1,2,2,1,2,1,1
1,1,2,2,1,2,1
1,1,1,2,2,1,2
2,1,1,1,2,2,1
1,2,1,1,1,2,2

+1(2,1,2,1,1,1,2),

N
+
+
+ (5.3)
+

( )
( )
( )
( )
( )
+ ( )

I4:a4+b4+c4+d4+e4+f4+g4
2[a2b2 + a?c® + a?d® + a?e® + a’f? + a%¢?
+ 02 + VPd? + bPe? + B2f? 4 bPg
+ Ad? + e + Af? + PgP
+d262 +d2f2 4 d2g2
+e2f?2 + e%g?
+ fQQQ}
8 [abce + bedf + cdeg + defa + efgb+ fgac + gabd].

The dictionary between the Fano basis and the Cartan basis charges is

x” = 77le ka(j)(z 7)? (55)

W= WC ¢(w)

Where i, j,k,l € {0,...,7}, C is the dual Fano plane structure constant array (i.e. the
structure constants of the multiplication table defined by the dual Fano plane generalised
so that C’;k =0 for j =0 or k =0), n is the 8-dimensional Minkowski matrix (negative
signature), (a°,a',...,a") = (0,a,...,9), and ¢ and ¢ are given by

. 7 i=0o0rj=0
o(i,j) =9 = (5.7)
(i = j)%l; else

The ¢(i,7) are known as (shifted) quadratic residues modulo seven. It can be helpful to

regard the eight components of each a’ as a pair of quaternions.

Finally there is the Freudenthal/Jordan basis in which the E7 invariant is given as a
quartic form on an object called a Freudenthal Triple system (FTS). See for
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details. The F'TS uses the Springer construction of cubic Jordan algebras, which here
means the Jordan algebra elements are represented by hermitian octonionic matrices

(actually split octonions)

E7;D E6,

56 — 1+ 27+ 1+ 27,

2
Li(®°, P; g0, Q) = — [pqu + tr(J3(P) o J3(Q)) (5.9)

+ 4 { — p°J3(Q) + qoJ3(P) + tr(Js™ (P) o J5#(Q))|.

One can insist that the the ¢ amplitudes correspond to the eight STU subsector charges
to permit a seamless reduction to the STU model correspondence once the other charges

are switched off. In essence, we decompose Eq(7) — Eg) — SO44 to obtain
56 - 1+1+1+1+1+1+1+1+8s+ 8+ 8, + 8+ 8+ 8y, (5.10)

and recognise the a amplitudes as the singlets. To properly assign the remaining ampli-

tudes we instead decompose, for example

E7(7) D) SLQ’A X SLQ’B X SL2’D X 80474, (5.11)
under which,

56 — (2,2,2,1)+(2,1,1,8,) + (1,2,1,8;) + (1,1,2,8,). (5.12)

to see that the A qubit transforms as a doublet with the 8, so that the e and ¢
amplitudes may be associated to it (the a amplitudes already being accounted for).
Repeating the process for the remaining qubits reveals that b and f correspond to the
8s’s and ¢ and d correspond to the 8.’s. Retaining only 8s of a given type in and
comparing with eventually allows one to tease out the explicit transformation. The

Fano-Freudenthal dictionary can be written concisely if we make the following definition.

B i S e 1 TR
(i, 7, Ky U, o= Pf B - o (5.13)
(en-on —@hren)
Qi +Q, Qn+Qk

With i,5,k,l € {0,...,7}, m € {0,1}, and n € {¢,s,v}. The dictionary is (with i €
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{0,1}, and o' being Pauli matrices):

Fano Freudenthal

dies | —0-10,1,4,5]ic - 03

Coie ol [2,3,6,7)ic- ot

fooi | 01-12,3,6,7]] - 03 (5.14)
Diee 03 -[0,1,4,5;5 - ot

Goie | —0'-[0,1,4, 5], - 0!

Cosi | =01 -[2,3,6,7)iy - ot

Take note of the transpose for f. The aeee amplitudes are given by the Kallosh-Linde

dictionary, which in this notation is

o0 = 0° - [2,3,0,1] - 02, (5.15)
Gee1 = 01 [2,3,0,1]; - ol (5.16)

The remaining dictionary and the inverse dictionaries are then trivial to compute, al-

lowing one to navigate the three descriptions with ease.

5.2 SUSY classification meets entanglement classification

Using the canonical basis to convert the Cartan invariant to the Cayley’s hy-
perdeterminant permits the entanglement classification of the seven qubit system to be
derived in the same manner as for three qubits as shown in The A-B-C,
A-BC, W and GHZ states are just those of the STU model. For N' = 8, as for N' = 2,
the large black holes correspond to the two classes of GHZ-type (entangled) states and
small black holes to the separable or W class. Note, however, that we obtain a finer

supersymmetry and charge orbit correspondences than for the N' = 2 STU theory of
Table 2.41

Similarly, the classification of the bipartite entanglements of three qutrits is related
to the classification of N' = 8, D = 5 supersymmetric black holes [21] shown in[Table 5.2

The classification correspondence for the STU model is enriched by the perspective
in which a three-qubit state is mapped to a Freudenthal triple system. The details are
provided in[section A.2.2] but in essence the state is grouped into permutation insensitive



5.2. SUSY CLASSIFICATION MEETS ENTANGLEMENT CLASSIFICATION 79

Table 5.1: As in entanglement measures are used to classify states, but this
time concerning the tripartite entanglement of seven qubit states. The correspondence
relates these to the D = 4, N' = 8 black holes discussed in [section 2.5]

Class Sa Sg Sc Deta Black hole SUSY
A-B-C 0 0 0 0 small 1/2
A-BC 0 >0 >0 0 small 1/4
B-CA >0 0 >0 0 small 1/4
C-AB >0 >0 0 0 small 1/4
W >0 >0 >0 0 small 1/8
GHZ >0 >0 >0 <0 large 1/8
GHZ >0 >0 >0 >0 large 0

Table 5.2: The D = 5 analogue of relates two-qutrit entanglements and their
corresponding D = 5, N/ = 8 black holes.

Class Cy TAB Black hole SUSY

A-B 0 0 small 1/2
Rank 2 Bell >0 0 small 1/4
Rank 3 Bell >0 >0 large 1/8

subsets

|Y) = aapc|ABC) <+ VU = (a111, @000, (¢100, @010, @001), (@011, @101, @110))  (5.17)

and operated upon by a system of rank polynomials arising the in the formalism of
triple systems. The associated ranks 0,1,2,3,4 correspond exactly to the familiar null,
separable, biseparable, W and GHZ classes as shown in The rank 0, 1, and 4
conditions are trivially related to their corresponding entanglement classes since the rank
polynomials involve the state norm and hyperdeterminant. To complete the analogy one
identifies some of the remaining rank polynomials with the 3Bygy and C111 covariants

encountered in [section 3.3.1{ and proves the constraint
two B' =0 < Cy11 =0, (5.18)

making C111 redundant for classification purposes as promised. The result is that the
class conditions and rank conditions can be seen as equivalent using the three-qubit
covariants. In this manner we provided a manifestly SLOCC invariant three-qubit clas-

sification while providing new insights about the SLOCC orbits and the coset character-
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Figure 5.1: Exact matching of three-qubit SLOCC orbits and STU black hole orbits. N
corresponds to F'TS rank.

isation of the small STU black hole orbits, displayed in

Table 5.3: Coset spaces of the orbits of the 3-qubit state space C? x C? x C? under the
action of the SLOCC group SLa(C)3.

Class FTS Rank OI‘bitS3 dim Projective (;rbits dim
Separable 1 sé?&% 4 W 5
Biseparable 2 %Eé&; 5 S SE;({; e

GHZ 4 m 7 m 7

5.3 The octonions

The octonions serve as somewhat of a crossroads in the early black hole/qubit cor-
respondence, arising in the description of the N' = 8 charge vector, in N' = 4 and
N = 2 subsectors (via their quaternionic subsector), and in the Cartan dictionary. As
an algebra, the octonions O (with product denoted by juxtaposition) possess numerous
interesting properties, some of which are notable absences of familiar properties. His-
torical notes and other extensive details can be found in [13§], and some interesting

physical applications may be found in [139-148|. Although the octonions do appear in
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a quantum information context [149,|150], this seems to be unrelated to their role in the
black hole/qubit correspondence.

Typical octonions a, b, c € O are:

e 8-tuples of real numbers: a,b,c € R® so that they form an 8-dimensional vector

space, with basis elements eg, ..., e7.

e non-real: a # a*, like the complexes. The conjugate o* : O — O trivially extends
the conjugate for R, C, and H so that basis element e, is mapped to nu.e, (with
n = diag(l,—17)). Under the familiar partition x = (0,%), scalar multiples of eg

are real octonions, and scalar multiples of e; are imaginary octonions.
e non-commutative: ab # ba, like the quaternions.
e non-associative: a(bc) # (ab)c, a new property not present in R, C, or H.

e alternative - meaning that the subalgebra generated by any two elements is asso-
ciative, or equivalently, the associator [e, e, e] : O3 — O, (a,b,c) + a(bc) — (ab)c is

alternating: [a1, a2, a3] = (=) [ar), @r(2); ax(3)] With m € S3.

e a division algebra, so that when a product of octonions is zero one of the multiplied
octonions must have been zero: ab =0 = a = 0 Ab = 0. They share this property
with R, C, H, and no other algebras.

e normed: |ab| = |a||b|, which implies the division algebra property. Like the conju-
gate, the norm | e | : O — R is also a trivial extension of the norm for the other

division algebras: a — a*a.

Clearly the octonions are closely related to the other division algebras, and indeed in
this context it is instructive to classify R, C,H, and O as x-algebras (star algebras).
Such algebras are characterised by the possession of a real-linear conjugation map that
is involutive ((a*)* = a) and an anti-automorphism ((ab)* = b*a*). The salient point is
that as an *-algebra, the octonions can be constructed using quaternions, which them-
selves can be obtained via complexes (a.k.a. binarions). This is an iterative procedure
that extends down to the reals called the Cayley-Dickson process. It produces a 2"
dimensional x-algebra after n steps and is implemented via a multiplication rule and a

conjugation rule:

(a1,a2) - (b1,b2) == ((a1 - by — b3 - az), (b2 - a1 + az - b7))

5.19
(a1,a2)* := (a], —a2) ( :
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the result of which, at n = 3 is shown in This table does not exactly reproduce
the Fano plane multiplication table, but is an automorphism of it. As ([5.19) is recursively

Table 5.4: The octonion multiplication table resulting from the Cayley-Dickson process.
Due to the generality of as a method for generating x-algebras this table is con-
sidered canonical. The top-left quadrant is actually the quaternion multiplication table,
and the top left quadrant of that is the complex (binarion) table. Apart from the first
row and column, and disregarding the -1’s on the diagonal, the table is antisymmetric.

€0 €1 €2 €3 €4 €5 €6 €7
€0 €0 €1 €2 €3 €4 €5 €6 €7
€1 €1 —€0 €3 —€9 €5 —€4 —€7 €6
€2 €2 —€3 —€p €1 (& er —€4 —€5
€3 €3 €2 —€1 —€Q (&g —€p €5 —€4
€4 €4 —€5 —€g —e7 —€0 €1 €2 €3
€5 €5 €4 —er €e —€1 —€0 —e3 €9
€6 €6 e7 €4 —€5 —€2 €3 —€o —e€1
er er —€6 €5 €4 —€3 —€3 €1 —€0

applied the new algebras lose more properties. Initially we have the reals at step zero,
which have the property of being their own conjugates. The complexes lose this property,
but are commutative. The quaternions lose that but retain associativity. The octonions
lose that and retain the division algebra property, and at step 4 - the sedenions, we lose
that as well. From then on, the procedure “stabilises” so that no more properties are
lost. All of the algebras generated in this way are nicely normed, which means a+a* € R

and a*a = aa® > 0.

In a similar fashion, with a change of sign [151] one obtains the split-octonions of

Table 5.5)).
(al, (Iz) . (bl, b2) = ((a1 -b1 + b; . CLQ), (b2 a1 +ag - bf)) (5.20)

The sign change only takes effect at the top level in the process and doesn’t affect lower
dimensional multiplication, though further generalisations permit this. At any rate, it
is the split octonion multiplication table that is used in the Freudenthal construction
to generate I;. An alternative method of generating hypercomplex numbers involves
appending a new basis element to the vector space and generating new elements until

the algebra closes. In this regime, the octonions are generated by the three basis elements
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Table 5.5: The canonical split-octonion multiplication table results from a single sign
change in to give ([5.20). This time, the last four elements on the main diagonal
are +1 rather than -1. Since the sign change in is only operative at the top level
and doesn’t percolate down to the quaternions and complexes, we see that the top-left
quadrant still gives the lower dimensional tables.

€0 €1 €2 €3 €4 €s €6 €7

€0 €0 €1 €92 €3 €4 €5 €g €7
€0 €0 €1 €2 €3 €4 €s €6 er
€1 €1 —€0 €3 —€2 €5 —€4 —er €6
€2 €2 —€3 —€o €1 €6 €7 —€4 —€5
€3 €3 €2 —€1 —€Q er —€g €5 —€4
€4 €4 —€5 —€6 —e€7 €0 —€1 —€2 —€3
€5 €5 €4 —er €6 €1 €0 €3 —e€2
€6 €6 er €4 —€5 €2 —€3 €0 €1
€7 €7 —€6 €5 €4 €3 €2 —€1 €0
i, 7, and k:

R:1

Cibe o (5.21)

H:1,4,5,45

(D : 17i7j7ij7k)ik)jk7 (Zj)k7

which obviously should not be confused with quaternionic basis elements. This has
a certain transparency, but doesn’t capture the full generality of the Cayley-Dickson
process. An alternative characterisation of the split vs. non split “hypernumbers” is to
refer to them as circular vs. hyperbolic [152}/153]. Circular and hyperbolic here refers
to the norms of these numbers, which in the split /hyperbolic case has a split signature.
A succinct multiplication rule based on the Cayley-Dickson process is provided by the

binary or “dyadic” formalism [154]

exey = (_)xs(y1y2+y3)+x2(y2+y3+y1y3)+961(y1+y2+y3+y2y3)ex@y (5.22)

where z,y € {0,...,7}, z;,y; € {0,1}, and @ is the bitwise OR operation. Note that
we differ in conventions from [154] by reversing the order of the digits. The dyadic
formalism is general enough to encompass not only x-algebras, but Clifford algebras
(and hence Grassmann algebras) too. These algebras share a factorisation property in
their multiplication rule

exey = Vayray, (5.23)
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where V,, is referred to as a scalar factor, which itself factorises

n

Vi = (=)= T (5.24)
=1

The k., matrix characterises the algebra along with an anti-involution vector f;
e ey = (=) ey, (5.25)

both of which can be made to obey recursion relations that reproduce the Cayley-Dickson
process. The ~; also help characterise the algebra: in the x-algebra case they are either 1
or —1 and distinguish ordinary algebras from their various split cousins, in the Clifford
case they are the eigenvalues of the associated quadratic form matrix, and consequently
they vanish in the Grassmann case (though the factorisation as written would

require the interpretation 0° = 1).

Graphically representing the structure contents of x-algebras as in re-
veals an interesting fractal structure. The non-zero elements clearly lie in tetrahedral
patterns (reminding us that a regular tetrahedron can be embedded in a cube,sharing
vertices); specifically these appear to be Sierpinski tetrahedra (a.k.a Sierpinski sponge,
or “tetrix”). It seems that the objects would be truly fractal in the limit of infinite *-
algebra dimension. Despite appearances, it would not possess a truly three-dimensional
character, instead having a (capacity) fractal dimension of two. Viewing the i-j plane
shows the signs of i-j products, while the height in k specifies the basis element resulting
from an i-j product. Switching to a Grassmann algebra collapses the tetrahedron down

to an ordinary Sierpinski triangle.

Restricting to a quaternionic cycle (a line in the Fano plane) permits a striking
result: that the N/ = 4 Cartan invariant can be written as the hyperdeterminant over

the imaginary octonions. Writing the imaginary quaternion multiplication as
eiej = —0;; + €ijkek (5.26)

one forms
eiejexe] + ejegee; = 2(5ij(5kl + ..., (527)

where the dots signify terms vanishing when contracted with

AlAQEBlBQ 5A3A4 8B334 €D1 D4€D2D3

1 4 J k !
— 3¢ QA1 B1D1%A3By D, A3 B3 D3 YA, By Dy (5’28)
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j
Reals Complexes Quaternions
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Figure 5.2: Structure constant diagrams: the axes i, j, k in each 3D plot correspond to
the indices of the structure constant array of the plot’s x-algebra. Each i, j, k position
is filled with a cube coloured according to the value of the structure constant with that
1,7,k specification. Values are depicted as follows: 1 — black, —1 — red, and 0 —
empty.
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Choosing the imaginary quaternions to be
q = aey + ees + gey (5.29)

then results in the aeg N' = 4 subsector of Ij.



Chapter 6

The brane wrapping perspective

6.1 Three-qubits and D3 branes

With the correspondence between the tripartite entanglement measure of three qubits
and the macroscopic entropy of the four-dimensional N' = 2, D = 4 STU black holes
established, one can ask whether there is a true physical underpinning, or if it is simply
a group theoretic analogy. By examining the microscopic string-theoretic origin of the
eight STU charges we emerge with a brane wrapping perspective that suggests a more
substantive link.

As we have seen, there are many ways of embedding the STU model in string/M-
theory, but the most useful for the present purpose is Type IIB compactified on T.
Dp-branes wrapping around the six compact dimensions provide the string-theoretic
interpretation of the black holes. A Dp-brane wrapped around a p-dimensional cycle
of the compact directions (z%,2°, 2%, 27, 2%, 2%) looks like a DO-brane from the four-
dimensional (2°, !, 22, 23) perspective. In this case we have four D3-branes wrapping the
(579), (568), (478), (469) cycles with wrapping numbers Ny, N1, No, N3 and intersecting
over a string [155]. This picture is consistent with the interpretation of the 4-charge
black hole as a bound state at threshold of four 1-charge black holes [61,|156}/157]. A
fifth parameter 6 is obtained [158,|159] by allowing the N3 brane to intersect at an
angle which induces additional effective charges on the (579), (569), (479) cycles. The
microscopic calculation of the entropy consists of taking the logarithm of the number of
microstates and, to leading order, yields the same result as the macroscopic analysis [160].

The wrapped circles are denoted by crosses x and the unwrapped circles by noughts o
as shown in We associate the three-qubit basis vectors |ABC), with wrapping

configurations of these intersecting D3-branes.

87



88 CHAPTER 6. THE BRANE WRAPPING PERSPECTIVE

Table 6.1: Three-qubit interpretation of the 8-charge D = 4 black hole from four D3-
branes wrapping around the lower four cycles of 76 with wrapping numbers Ng, N1, No,
N3 and then allowing N3 to intersect at an angle 6.

dimension charges |ABC)

4 ) 6 7 8 9 macro micro

X 0 X 0 X 0 p° 0 |000)
o X o X X o Q1 0 |110)
o X X 0 o X q2 —N3sinf cos 6 |101)
X 0 o X o X qs N3 sin 6 cos |011)
o X o X o X 90 Ny + N3 sin? 6 |111)
X 0 X 0 o X —p! —Nj3cos? 0 |001)
X 0 o X X o —p? —Ny |010)
o X X o X o —p3 -N; |100)

To wrap or not to wrap; that is the qubit.

-M. J. Duff

Specifically, we associate the three 72 with the SLa 4 X SLo g X SLo ¢ of the three qubits
A, B, and C. The 8 different cycles then yield 8 different basis vectors |[ABC) as in the
last column of the Table, where |0) corresponds to xo and |1) to ox. It is then immediately
apparent that the GHZ state of is described by four D3-branes intersecting over
a string, or groups of four wrapping cycles with just one cross in common. Performing
a T-duality transformation, one obtains a Type IIA interpretation with Ny DO-branes

and Nj, Na, N3 D4-branes where |0) now corresponds to xx and |1) to oo.

This interpretation manages to relate a well-known fact of quantum information
theory, that the most general real three qubit state can be parameterised by four real
numbers and an angle, to a well-known fact of string theory, that the most general STU
black hole can be described by four D3-branes intersecting at an angle. This analysis
also provided an explanation for the appearance of the qubit two-valuedness (0 or 1) that
was lacking in previous treatments: the brane can wrap one circle or the other in each
T?. Further, the number of qubits is three because of the number of extra dimensions

is six.
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6.2 Two-qutrits and M2 branes

The brane wrapping perspective employed for three-qubits and four D3-branes intersect-
ing on a string in the STU model suggests that the correspondence between D = 5 black
holes and qutrits should admit an analogous interpretation. This expectation bears out.
In this case 9-charge N’ = 2, D = 5 black hole is most conveniently embedded in the
N = 8 theory by way of three M2-branes [155,/161] wrapping the (58), (69), (710) cy-
cles of the T compactification of D = 11 M-theory and intersecting over a point with
wrapping numbers Ny, N1, Ny as shown in This time we associate the two T3

Table 6.2: Two qutrit interpretation of the 9-charge D = 5 black hole from M2-branes
in D = 11 wrapping around the upper three cycles of T® with wrapping numbers Ny,
N7, Ns. Note that they intersect over a point.

dimension charges AB)
5 6 7 8 9 10 mMacro micro
x 0 0 X 0 0 p° No |00)
o X o o X o pl N [11)
0 0 x 0 0 x P Ny |22)
X o o o X o p3 0 |01)
0 X 0 0 0 X pt 0 [12)
0 0 X X 0 0 p° 0 |20)
X o o o o X p° 0 |02)
o X o X o o P’ 0 |10)
o ) X o X o p® 0 |21)

with the SLz 4 x SL3 p of the two qutrits A and B. The 9 different cycles then yield the
9 different basis vectors |AB) as in the last column of where |0) corresponds
to x00, |1) to oxo, and |2) to oox. It is once again obvious that we reproduce the three
parameter two-qutrit state |¥) of . This time the wrapped branes interpretation
provides an explanation for the appearance of the qutrit three-valuedness: the brane can
wrap one of the three circles in each T° and the number of qutrits is two because of the

number of extra dimensions is six.
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Chapter 7

Four qubit entanglement

7.1 Attempts to classify four-qubit entanglement

Having discussed the matching of classifications for three qubit entanglement and ex-
tremal black holes in the STU model, it is only natural to attempt to extend this to four
qubits. Indeed, since experimentalists now control entanglement with four qubits [162]
the classification of this entanglement is an active area of research. In contrast to two-
and three-qubit entanglement, which are well understood as we have seen, the situation

for four qubits seems more confused, with apparently contradictory claims made in the

literature, as illustrated in

Table 7.1: Various results on four-qubit entanglement.

Paradigm  Author Year Ref result mod perms result incl. perms

Lamata et al, 2006 |163] 8 genuine,5 degenerate 16 genuine,18 degenerate

classes Cao et al 2007 |164] 8 genuine,4 degenerate 8 genuine,15 degenerate
Li et al 2007  [165] ? > 31 genuine,18 degenerate
Akhtarshenas et al 2010  [166] ? 11 genuine, 6 degenerate
Verstraete et al 2002 [167] 9

families ~ Chretrentahl et al 2007  [168] 9 7
String theory 2010  [28] 9 31

While some of the disagreements are calculational, the main disparity is that the au-
thors of are actually employing distinct classification paradigms: “classes” vs.
“families” (the two are in principle consistent and complementary perspectives). On the
classes side is the covariant based approach we encountered in which uses dis-
criminating polynomials to distinguish the SLOCC orbits. This approach was attempted
by Briand et al. [125] with interesting, but partial results. They found a complete set
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of 170 independent generating covariants for degrees up to and including 12, and used
them to distinguish representative states provided by the family approach. The family
paradigm is a “normal form” approach which considers families of orbits where any given
state may be transformed into a unique normal form. If the normal form depends on
some of the algebraically independent SLOCC invariants it constitutes a family of orbits
parameterised by these invariants. On the other hand a parameter-independent family
contains a single orbit. This philosophy is adopted for the four-qubit case in [167,/168].
Up to permutation of the four qubits, these authors found 6 parameter-dependent fam-

ilies called Gupeds Labeys Lagby, L Lapy, Lo, and 3 parameter-independent families

203575
called Loy;:05515 Losgsr Logg:

d 4

Gawea = “25(10000) + [1111)) + (0011 + [1100))
b bh—

+ ‘2“(\0101> +]1010)) + ?C(|0110> +]1001))
b )

Lase, = “22(10000) + [1111)) + ©2(10011) + [1100))

+¢(]0101) + [1010)) + 0110)
Lag, = a(|0000) + |1111)) + b(|0101) + |1010))
+]0110) + |0011)

a+b
+——

La, = a(|0000) + |1111)) (10101) + [1010))

b
+222(/0110) + [1001))

i
+——(]0001) + |0010) — |0111) — 1011
\/5(! ) +10010) — [0111) — [1011))
Lo, = a(]0000) + [0101) + |1010) + [1111))

+(i)0001) 4 |0110) — i|1011))

Layo,,; = (|0000) + [1111)) + (J0011) + [0101) + |0110))
Lo,,, = ]0000) + |0101) + [1000) + [1110)
Lo,,, = ]0000) + [1011) + [1101) + [1110)
Loy 1055 = 10000) +[0111),

with parameters a,b,c,d € C. Here the subscript notation refers to the eigenvalues
of the Jordan normal form of the representative states once they are transformed into
a particular matrix format, see [168| for full details. Note that L, should really be

written Lg,p, to correspond to the given state, but we follow the literature convention of
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Figure 7.1: Four-qubit covariant lattice down to degree 4 (the numbers along the top
correspond to degrees). (7111 contributes six Daggp and three Daggg, with the rest
provided by C3111; an ambiguity which did not arise in the three-qubit case.

mislabelling it.

To illustrate the difference between these two approaches, consider the separable
EPR-EPR state (|00)+]11))®(]00)+|11)). Since this is obtained by settingb=c=d =0
in Ggpeq it belongs to the Gupeq family, whereas in the covariant approach it forms its
own class. Similarly, a totally totally separable A-B-C-D state, such as |0000), for which
all (save one) covariants vanish, belongs to the family Lp.,, which also contains genuine
four-way entangled states. These interpretational differences were also noted in |163].

To begin with, we make our own attempt at a covariant classification, but in contrast
to Briand et al. we consider the full web of covariants down to a given degree rather than
restricting to the independent covariants, see for example which is already
considerably more complicated than the three qubit case, being a lattice rather than a
simple tree. On the other hand, we are only able to do so up to degree six, whereas
Briand et al. terminate at the maximal degree which is 12. By considering the full
lattice, we are able to group covariants into permutation insensitive subsets as we did
in This affords us a simplification in the classification since representative
states can have a permutation invariant set of amplitudes SLOCC-transformed to zero

without affecting the classification. We develop the necessary formalism below.
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Permutation invariant subsets For n-qubits, split the 2" state vector coefficients
{ai}fia ! into permutation-invariant subsets by placing them into n+1 totally symmetric
tensors Ajg), Ajy), - - -, App) (Where the subscript is the tensorial valence), with zero entries
at positions with any duplicate indices. The A, thus have (Z) independent components,
correctly yielding 2" components for all n+1 tensors. One also has invariant tensors dj,
and d™ with entries proportional to |e;,..;, | and |¢""»| which may be used to dualise
the Ay, with p > n/2 to Al=P]. When n = 2m the tensor Ay will be self-dual. The

explicit entries of the Ap, may be defined as
Ail---ip = dil"'ipa2£:1 on—ig , (71)
so that the entries of AP are precisely the bit-flipped entries of App). For example,
the tensors for n = 1,2, 3,4 qubits are:
1 qubit:
{Ag, A} = {ag, a1} (7.2)
2 qubits:
a
{A), Apy, A} = {ago, ( 10) ,ai1} (7.3)
1

ao

3 qubits:

a100 aop11
{A[O]vA[le[l]aA[O}}:{a0007 aoto | » | @101 | @11} (7.4)
ao01 aiio

4 qubits:

1 0
{A[O}7A[1],A[2]7A[ },A[ ]} _

a1000 0  ai100 aiot0 @1001 ao111

a0100 a1100 0 ap110 4ao1o01 ai1o11 (7'5)
{aoooo, ) ) ,01111}

a0o10 aioto aoiio O apo1t ai1101

ap001 a1001  aopior @oo11 0 ai11o

Comparing with we see that this formalism attempts to generalise the
successful F'TS approach.

SLOCC transformations To enable conversion of representative states to simpler

forms we develop SLOCC transformations adapted to the permutation insensitive for-
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malism. The sly generators are

1 0 01 00
o T L R (N

A subset of the SLOCC generating transformations will then be given by the maps
$(Cpyy) and it’s dual under p — n — p, (D)

$(Cpy) : AP =S "o AR,
k=p

n o
Y(DM) s Ay > DI P Ay

k=p

(7.7a)

Taking care to treat the contractions correctly, one can rewrite these in the dual form

p
k= = (7.7b)

(D) : Al Z A p* P " Ayl = Zd[]d[ DI lK)]

k=n—p

Finally, we can rewrite (7.7)) entirely in terms of the minimal tensors Ap, and APl with
p<n/2:

JApy o Th g dpgldmCE A
¢(C 1}) : [v] Ln/QJ [n] y—p—k [n/2]=1 ~k—p 4[k]
AW s S gl enrE 4y - I gl g

(7.8)
n/2]—1 n—p—k [n/2] k—p
S(DWY ; Ay = il d DY AW 4 3, DHT P Ay
APl 370 dl [y, DIIPT b AlM)
Let’s examine what that means for the case n = 3. The tensors in this case are

{ A0, Apys Ay Ajg ) or in minimal form {Ay, Apy, A 1) A0}, The explicit transfor-
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mations on this set are, after simplification:

Ap Aol
A Crydoy + An
Cy): | TH 14 ,
oC) | 4 dIC2 A+ dICAy + Al
A A+ dICHAY + CpAll 4+ A0 7.9
[113 AL0] 112 4[1] ] (7.9)
Ap) digD AP 4 dg DA DA+ Ay
sy | A0 S dg DM AL 4 qgplaAl 4 4y
Al pliglr Al
AlO) Al0]

Note that there is no ambiguity in the d contractions. Under some obvious relabellings

these reduce to the familiar expressions (A.28) of section A.2.1}

B B
1A cB + A
o(C): B|"” C*B 4+ CxA + B
«a NS + (C'#,A) + (C,B) + « (7.10)
3 N(D)a + (D#,B) + (D,A) + 8 '
#
w(D) A o Do + DxB 4+ A 7
B Do + B
(0] [0}

though other relabellings can achieve the same result. Let us also consider n =1, n = 2

A A
Chy) - o) .

A di DM AL 4+ A
]y . [ 4ol [1] (0]
(DM - (A[0]> — < A )

and n = 4:

(7.11)
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Ap] Ap]
o(Cry) = | Ay | = Cydp + Ay
2| 2 2 0
Al0l dHC[l]A[O] + dHCmA[l] + Al (7.12)
112 4[0 1 '
(Ao dp DI A DAL+ A
Alo] Al0]
Afo) Alg]
Ap Chujdp + An
S : | Ay | = | dldICh 1A+ dgldCmAn] + Apj
All] d¥C8 A + Hcf] m + dicyAp + Al
Alol d9Ch A+ diCE Ay + dUCE A+ oAl 4 Al
Apg d[4]D[1]4A[0] + []D[ll Al 4 []Am + DMAy + Ay
Ap de[lﬁA[m + []Dm Al 4 pllagy 4+ A
$(DMY: | Ay | = | dgDPal0l 4 dy DA 4 A
Alll pliall 4 Al
Alo] Alo]
(7.13)

The remaining SLOCC transformations are generated by the scaling transformation
T()\[l})
(7.14)

()‘[1 11 iy P H exp |: n+1l—k H

5k zm:|

11-0p

Generalised Jordan ranks We generalise the notion of Jordan rank in
by identifying the contractions d™ 0[1]7 k€ {1,...,n} as the relevant rank tensors for a

degree n “Jordan” algebra. The n + 1 ranks are then given by

rank Cfy) < k:—1<:>d["]0[1] =0, ke{l,...,n}, (7.15)
so that in particular
rank Cj;1 = 0 < Chyy =
(1] (1] (7.16)
rank Cpyj =n < d"lCpy # 0.
For the familiar case of n = 3 this means
rank C[l] =0« C[l] =0,
rankCp;p < 1 & B2, = ot = 0,

rank C'[l] <2& dB]C[l] = (C[l}) =0,
rank C[l] =3 d[3]C[1] = (C[l}) # 0.
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Canonical forms We may attempt to use the SLOCC transformations ([7.7)) to convert
states to canonical forms with fewer variables. For a generic n-qubit state, the best we
have been able to do so far is a reduction by n + 1 variables, short of the more sweeping
results of Krutelevich [169,[170]. Start by assuming the state is not null and proceed as

follows:

1. Ensure that A% £ 0 using a ¢(Cpy)) transformation with Cfy) of sufficiently high

rank to involve the first nonzero A tensor:

[n/2] [n/2]-1
o(Cm) : A% = Y dCh A+ Y0 CfyAl. (7.18)
k=0 k=0

Provided the rank tensors are non-degenerate this will work whenever the state

isn’t null.
2. Scale A to 1 using a T transformation.

3. The state is now in the form {Ayqy, Apy, .. -, AM 101} 1f Al = 0 we are finished,
else perform a h(—AM) transformation to yield the form {A, Apgs -+ s ARI ol 1oy,

For our four qubit case this means representative states possess no more that 11 kets,

rather than a potential full 16.

Covariant classification The full covariant lattice up to degree six is shown in
however, the large number of shared descendants at higher degrees prevents
one from inferring the individual contributions of a given covariant to its descendants
and one must keep track while generating them. The situation is ameliorated by listing
the adjacency matrix in While this affords us a full understanding of the
relationships between covariants of two adjacent degrees, if one wants to tease out the
detailed relationship across multiple degrees a more fine-grained description is required.
Such a fine-graining within multiweight classes is possible with our present methods, but
remains to be attempted.

The next step is to scan through these covariants with the reduced permutation
invariant state {A[O},A[l],A[Z},Om, 191} switching off amplitudes in all possible ways
modulo permutations. When this is done it is possible to eliminate redundant covariants,
though there is some ambiguity surrounding the particular choice of retained covariants.
In we make the particular choice of 4Fy09 and 4Fyo00 when we could just
as well have well picked any two out of 68F3111, 10E1111, T6F4292, 300F 000, 93 F2999,
160F5990, and 114F5999. We have filled in the degenerate classes and four-qubit GHZ
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class unambiguously, and have indicated the families we believe correspond to a couple
of the remaining classes. One does after all expect that each class corresponds to a single
family, but not vice versa. This remains work in progress, and we have only been able
to scan through covariants up to degree six, whereas in principle we would have to reach
degree 12. Nevertheless our results so far include the primary invariants at degrees two,

four, and six in terms of which all higher degree invariants can be written.

7.2 31 entanglement families

While we retain some hopes for our covariant based classification, it is with the normal
forms of the family perspective that we have met with unambiguous success. We now

describe this approach.

Black hole side The string theoretic framework we need to consider is that of timelike
dimensional reduction of 4D supergravity theories to 3D. In four dimensions the moduli
parameterise a symmetric space of the form My = G4/Hy, with global U-duality group
G4 and maximal compact subgroup Hy. Post-reduction the moduli space becomes a
pseudo-Riemannian symmetric space My = G3/Hj, with 3D U-duality group G3 and
where H3 is a non-compact form of the maximal compact subgroup Hsz. One finds
that geodesic motion on M3 corresponds to stationary solutions of the D = 4 theory
[20,/1714175]. These geodesics are parameterised by the Lie algebra valued matrix of
Noether charges () and the problem of classifying the spherically symmetric extremal
(resp. mnon-extremal) black hole solutions consists of classifying the nilpotent (resp.
semisimple) orbits of ) (Nilpotent means Q™ = 0 for some sufficiently large n.)

As one might expect, the case we want to consider is the STU model and the nilpotent
classification of STU black holes. Through a procedure called scalar-dressing, the eight
charges of the model can be grouped into the N' = 2 central charge z and three “matter
charges” z, (a = 1,2,3), which exhibit a triality (corresponding to permutation of three
of the qubits). The black holes are divided as shown in The small extremal
black holes are termed lightlike, critical, or doubly critical according to whether the
minimal number of representative electric or magnetic charges is 3, 2 or 1. The lightlike
case is split into one 1/2-BPS solution, where the charges satisfy 21 = 0, |z|? = 4|22]? =
4|z3]? and three non-BPS solutions, where the central charges satisfy z = 0,]z1]? =
4]29% = 4|23)% or 22 = 0, |23]> = 4]21]? = 4|z|? or 23 = 0, |22|? = 4|z1]® = 4]2|?>. The
critical case splits into three 1/2-BPS solutions with z = z, # 0, 2z, = 2. = 0 and three
non-BPS cases with z = 2z, = 0,2, = z. # 0, where a # b # c¢. The doubly critical
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STU black holes

Non-extremal,

Extremal, 7=0, nilpotent 750, semisimple

Small, S=0 Large, $>0

Doubly
Lightlike Critical critical | %BPS | nBPS
%BPS
1x 3x 3x 3x
%BPS | nBPS | %BPS | nBPS

Figure 7.3: Nilpotent classification of STU Black holes. They are divided into extremal
or non-extremal according to whether the temperature is zero or not, with the orbits
being nilpotent or semisimple, respectively. Depending on the values of the charges, the
extremal black holes are further divided into small or large according to whether the
entropy is zero or not, with still further subdivisions described in the text.
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case is always 1/2-BPS with |z|2 = |21]? = |22]?> = |23/> and vanishing sum of the z,
phases. The large black holes may also be 1/2-BPS or non-BPS. One subtlety is that
some extremal cases, termed “extremal”, cannot be obtained as limits of non-extremal
black holes.

Correspondence The post reduction moduli space G3/Hj5 for the STU model is
SOy4.4 / SLa(R)*, which yields the Lie algebra decomposition

s044 = sh(R)* @ (2,2,2,2). (7.19)

We had already pointed to the significance of for four qubits in [23] but this was
recently elucidated by Levay in [20] where he related four qubits to D = 4 STU black
holes.

Critically, the Kostant-Sekiguchi correspondence [176] then implies that the nilpotent
orbits of SO44 acting on the adjoint representation 28 are in one-to-one correspondence
with the nilpotent orbits of SLy(C)* acting on the fundamental representation (2,2, 2, 2)
and hence with the classification of four-qubit entanglement. In particular it is the
complex qubits that appear, relaxing the restriction to rebits that featured in our earlier
considerations.

More specifically, the nilpotent orbits required by the Kostant-Sekiguchi theorem
are those of 80274, where the 0 superscript denotes the identity component. These
orbits may be labelled by “signed” Young tableaux, often referred to as ab-diagrams
in the mathematics literature. See [177] and the references therein. Each signed Young
tableau actually corresponds to a single nilpotent Oy 4 orbit of which the 80274 nilpotent
orbits are the connected components. Since O4 4 has four components, for each nilpotent
Oy4,4 orbit there may be either 1, 2 or 4 nilpotent 802’4 orbits. This number can also
be determined by the corresponding signed Young tableau. If there are 2 orbits one
labels the diagram to its left (right) with a I or a I1. If there are 4 orbits one labels
the diagram to both its left and right with a I or a I1. If it is none of these it is said
to be stable and there is only one orbit. We summarise the partition structure of the
signed Young tableaux, but retain their labellings. There are a total of 31 nilpotent

802’4 orbits, which are summarised in [Figure 7.4 We also supply the complete list of
the associated cosets in [Table 7.4] some of which may be found in [174].

Qubit side Our main result, as summarised in is that via the Kostant-
Sekiguchi theorem we find 31 nilpotent orbits for the SLOCC-equivalence group acting



7.2. 31 ENTANGLEMENT FAMILIES 103

0 10 12 16 18 20 22 24

E 5,13 ' 15,3
Lllp4 LI 3212 LII42 LI

I 3,15 ‘ 32’121,11 '2 5'13 ‘ 5’31.11

Figure 7.4: SO44 Hasse diagram. Numbers along the top are dimensions of the real
orbit, integers inside the boxes indicate the structure of the appropriate Young tableau,
arrows indicate their closure ordering defining a partial order [177], blue arrows count
as double and red arrows count as quadruple.

on the representation space of four qubits. For each nilpotent orbit there is precisely
one family of SLOCC orbits since each family contains one nilpotent orbit on setting all
invariants to zero. The nilpotent orbits and their associated families are summarised in
which is split into upper and lower sections according to whether the nilpotent
orbits belong to parameter-dependent or parameter-independent families.

If one allows for the permutation of the four qubits the connected components of
each Oy 4 orbit are re-identified reducing the count to 17. Moreover, these 17 are further
grouped under this permutation symmetry into just nine nilpotent orbits. In other words
there are 31 entanglement families which reduce to nine up to permutations of the four
qubits. From we see that the nine agrees with [167,|168] while the 31 is new.
It is not difficult to show that the nine cosets really match the nine families, as listed in
the final column of (provided we adopt the version of L, presented in [168]
rather than in [167]). For example, the state representative Lo, 0,,; = [0111) +[0000)
is left invariant by the SO2(C)? x C subgroup, where SO2(C)? is the stabiliser of the
three-qubit GHZ state [24]. In contrast, the four-way entangled family Lo, ;, which is
the “principal” nilpotent orbit [176], is not left invariant by any subgroup. Note that
the total of 31 does not follow trivially by permuting the qubits in these nine. Naive
permutation produces far more than 31 candidates which then have to be reduced to
SLOCC inequivalent families. To the best of our knowledge, this constitutes the only
calculation the nine four-qubit SLo(C)* cosets. The matching of the STU extremal
classes to the nilpotent orbits is also given in

These results are actually consistent with the covariant approach. For example,
the permutation sensitive covariant classification has four biseparable classes A-GHZ,
B-GHZ, C-GHZ and D-GHZ which are then identified as a single class under the per-
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mutation symmetry. These four classes are in fact the four nilpotent orbits corresponding
to the families Lo, ;0,,; in which are also identified as a single nilpotent or-
bit under permutations. Similarly, each of the four A-W classes is a nilpotent orbit
belonging to one of the four families labelled Lq,0,,; which are again identified under
permutations. A less trivial example is given by the six A-B-EPR classes of the covari-
ant classification. These all lie in the single family L,,p, of [167], which is defined up to
permutation. Consulting we see that, when not allowing permutations, this
family splits into six pieces, each containing one of the six A-B-EPR classes. Finally,
the single totally separable class A-B-C-D is the single nilpotent orbit inside the single

family Lgp., which maps into itself under permutations.
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Table 7.2: The transposed adjacency matrix of the four-qubit covariant lattice up to and
including all degree six covariants.

(=) (=) o — — — — —

-~ g £ 2 =z &8 8§ & 5 8 8§ = Z B B = &
D 2 g v e 33 AR E Y 8 8 g 8
< m Ne) [ap) <t [ap) — — Q <f — — Ne} 25} — <# —

A1

Boooo 1

6Bazgg 6

3C1111 3

4C3111 4

3Doo0o 3

12D2200 6 6

12D5999 3 9

Daaoo 1

4D 4000 4

12D 4990 12

10F1111 6 3 1

68F3111 24 24 4 4 12

30331, 12 6 12

16 E3331 4 12

4E5111 4

12551 12

4 Foo00 4

114 Fy00 18 72 24

160F599¢ 12 89 52 7

93F5999 5 21 16

4 F 4000 3 1

12F 4500 9 1 2

300F 4220 138 90 36 12 24

T6F 1999 24 36 4 12

61400 6

84 F 4490 36 36 12

30F 499 24 6

4Fy440 4

12F6200 4 8

4Fg222 4

24 Fg490 24
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Table 7.3: Four qubit covariant classification up to degree six.

0000 572

0007 57

oooon

OONNQNH

NNNNQ
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::Dm

:HmDﬁ

0000gy

00cegg

::v\

Class

Null
A-B-C-D
A-B-EPR

1
1

A-W
A-GHZ

1
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12
12

12
12
12
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Chapter 8

Superqubits and

superentanglement

Upon encountering the construction of a supersymmetric version of Cayley’s hyper-
determinant in [178], we immediately regarded it as a candidate “superentanglement”
measure for a hypothetical super analogue of a three qubit system. We were inspired
to generalise the qubit to the superqubit by adding fermionic degrees of freedom, tak-
ing the first steps towards generalising quantum information theory to super quantum
information theory. So, although the topic of superqubits grew organically out of the
black hole/qubit correspondence, strictly speaking it is logically independent of it. We

discuss it as an interesting parallel development.

In order to accommodate a super analogue of entanglement from the outset it was nec-
essary to appropriately generalise the (S)LOCC group. We thus promoted the SLOCC
equivalence group SLy(C)™ to its minimal supersymmetric extension, the orthosymplec-
tic supergroup OSpg‘l [179/180], concurrently promoting the LOCC equivalence group
SUY to the supergroup uOSpSH.

In ordinary quantum information theory, n-qubit states lie in the fundamental rep-
resentation of the SLOCC equivalence group, so a single superqubit was constructed as
a 3-dimensional representation of OSpy|; consisting of two commuting “bosonic” com-

ponents and one anticommuting “fermionic” component:
|¥) = ap|0) + a1]|l) + ae|e), (8.1)

where the bullet e here denotes the new fermionic component, in contrast to it’s use

in other chapters. This forced us to consider a super Hilbert space defined over the

109
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Grassmann numbers. We label the Grassmann algebra as A and the even (resp. odd)
sub-algebra of commutative (resp. anti-commutative) elements as Ag (resp. Aj) where
ap, a1 € Ag and ae € Aj. It was then possible to introduce the appropriate supersymmet-
ric generalisations of the conventional entanglement measures for the cases of n = 2 and
n = 3: the superdeterminant (distinct from the Berezinian) and superhyperdeterminant
respectively. In particular, super-Bell and super-GHZ states were characterised by the

nonvanishing of these invariants.

We review the superqubit concept in two parts: 1) the promotion of the entangle-
ment equivalence groups to their minimal supersymmetric extensions (accompanied by
the necessary supporting material) followed by an examination of the transformation
properties of one, two, and three superqubits under these groups. 2) The derivation of
the superinvariants that are the obvious candidates for supersymmetric entanglement

measures for two and three superqubits.

8.1 Super analogues of qubits and entanglement

8.1.1 Superlinear algebra

Grassmann numbers are the 2"-dimensional vectors populating the Grassmann algebra

A,,, which is generated by n mutually anticommuting elements {6°}_;.

Any Grassmann number z may be decomposed into “body” zz € C and “soul” zg

viz.

Z=2zZp+ zs

o 1 . . (8.2)

28 = Y peq fiCarap, 0 - 0%,
where cq,...q;, € C are totally antisymmetric. For finite dimension n the sum terminates
at k = 2™ and the soul is nilpotent z§+1 = 0.

One may also decompose z into even and odd parts u and v

=28+ Y peq @cal...a%a‘“ <o 92k 53)

_ o0 1 a1 ... H%2k+1
V=1 (2k+1)10a1-~~a2k+19 fr2k+1

which may also be expressed as the direct sum decomposition A, = AY @ Al. Further-
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more, analytic functions f of Grassmann numbers are defined via
F(2) =) W (zs)5, (8.4)

where f(k)(zlg) is the k'™ derivative of f evaluated at zg and is well defined if f is

nonsingular at zz [181].

One defines the grade of a Grassmann number as

0 z€A?
degx := 7; (8.5)
1 xeA,,

where the grades 0 and 1 are referred to as even and odd, respectively.

Define the star * and superstar # operators [180,/182,|183| satisfying the following

properties:
(A%)* = A?w (Arlz)* = Arlzv

(A = A0 (A1) = A, o
(@0, = 2°0F, 67 =06, (6:6;)" = 0367, '
(x0:)# =20, 07" =—0;, (0,0;))% = 0707,
where x € C and * is ordinary complex conjugation, which means
o™ = a, o = (=)des g (8.7)

for pure even/odd Grassmann «. The impure case follows by linearity.

Following [181] one may, if so desired, take the formal limit n — oo defining the
infinite dimensional vector space Ay. Elements of A are called supernumbers. Our
results are independent of the dimension of the underlying Grassmann algebra and one
can use supernumbers throughout, but for the sake of simplicity we restrict to finite
dimensional algebra by assigning just one Grassmann generator 6 and its superconjugate

67 to every superqubit.

The grade definition applies to the components Tx,..x, of any k-index array of
Grassmann numbers 7', but one may also define deg X;, the grade of an index, for such
an array by specifying a characteristic function from the range of the index X; to the set
{0,1}. In general the indices can have different ranges and the characteristic functions

can be arbitrary for each index. It is then possible to define degT’, the grade of an array,
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as long as the compatibility condition

k
deg T = deg(Tx,..x,) + Z degX; mod2 V X; (8.8)
i=1

is satisfied. In precisely such cases the entries of T' satisfy

k
deg(Tx,...x,) = degT + Zdeg X; mod 2,
i=1
= degT =deg(Ty...1), (8.9)
——

k

deg(T1Ts) = deg Ty + degT» mod 2,

so that in other words T is partitioned into blocks with definite grade such that the
nearest neighbours of any block are of the opposite grade to that block. The array grade
simply distinguishes the two distinct ways of accomplishing such a partition (i.e. the
two possible grades of the first element 77...;). Grassmann numbers and the Grassmann

number grade may be viewed as special cases of arrays and the array grade.

Special care must be taken not to confuse this notion of array grade with whether
the array entries at even/odd index positions vanish. An array 7" may be decomposed
as

T=Tg+ 1o, (8.10)

where the pure even part Ty is obtained from T by setting to zero all entries satisfying
deg(Tx,...x,) = 1, and similarly mutatis mutandis for Tp. The property of being pure

even or pure odd is therefore independent of the array grade as defined above.

The various grades commonly appear in formulae as powers of -1 and the shorthand
(—)* = (-1t (8.11)
is often used. The indices of superarrays may be supersymmetrised as follows:

Tty (] X ) X, 1= (8.12)

%[TXr"Xiijka + (_)XinTX1~~-Xj~--Xi-~~Xk]-

While we require these definitions for some of our considerations, one typically only
uses arrays with 0, 1, or 2 indices where the characteristic functions are monotonic:

supernumbers, supervectors, and supermatrices, respectively. Functions of grades extend
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to mixed superarrays (with nonzero even and odd parts) by linearity.

A (p|q) x (r|s) supermatrix is just an (p+ q) X (r + s)-dimensional block partitioned

matrix
T ‘ S
A B
M=2" (8.13)
q | C D

where entries in the A and D blocks are grade deg M, and those in the B and C' blocks
are grade deg M +1 mod 2. The special cases s = 0 or ¢ = 0 can be permitted to make
the definition encapsulate row and column supervectors. Supermatrix multiplication is
defined as for ordinary matrices; however, the trace, transpose, adjoint, and determinant

have distinct super versions [180,/184].

The supertrace str M of a supermatrix is M defined as

str M =Y (=) XX Dy (8.14)
X

and is linear, cyclic modulo sign, and insensitive to the supertranspose

str(M + N) = str(M) + str(N)
str(MN) = (=)MN str(NM) (8.15)
str M*" = str M.

The supertranspose M of a supermatrix M is defined componentwise as
Moy x, i= (—)FKeFMEFX) pre o (8.16)

Unlike the transpose the supertranspose is not idempotent; instead,

t st X1+X
Afsts XiXy = (_)( 1+ Q)MX1X27

MstststX1X2 _ (—)(X1+M)(X1+X2)MX2X17 (817)

st st st st _
M X1Xs = Mx, x5,

so that it is of order 4. The supertranspose also satisfies

(MN)st = (—)MN Nstprst, (8.18)
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The adjoint T and superadjoint ¥ of a supermatrix are defined as

M= M
8.19
M* = M7t (519
and satisfy
M= M= ()M, (5.20)
(MN) = NTMT, (MN)E = (—)MN Nt '
The preservation of anti-super-Hermiticity, M* = —M, under scalar multiplication

by Grassmann numbers, as required for the proper definition of uosp(1|2) [185], necessi-

tates the left /right multiplication rules:

(O‘M)Xle = (_)XlaaMXl-Xz?

(8.21)
(Ma)x,x, = (=) **Mx, x, 0.

The Berezinian is defined as

Ber M := det(A — BD™'C)/ det(D)

(8.22)
= det(A)/det(D — CA™'B)

and is multiplicative, insensitive to the supertranspose, and generalises the relationship

between trace and determinant

Ber(MN) = Ber(M) Ber(N)

Ber M** = Ber M (8.23)

BereM = str M

The direct sum and super tensor product are unchanged from their ordinary versions.

As such, the dimension of the tensor product of two superqubits is given by
(2]1) @ (2/1) = (2[1]2)3]1), (8.24)
while the threefold product is
(211)* = (2[11213/31112/3[11211]213]1), (8.25)

with similar results holding for the associated density matrices. In analogy with the
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ordinary case we have

(M ®N)'=M'® N
(M ® N)* = M* @ N* (8.26)
str(M ® N) = str M str N.
These definitions are manifestly compatible with Hermiticity and super-Hermiticity.
Denoting the total number of bosonic elements in the product of n superqubits by

By, and similarly the total number of fermionic elements by F},, we know that B,, (F},)

is given by the total number of basis kets with an even (odd) number of e’s:

n n 3"+1
B, = on M2 4=
= (o) () =5

n n 3" -1
F, = on—1 2n—3 -
() ()=

so that, in particular, B,, — F;, = 1: the number of bosonic elements is always one more

(8.27)

than the number of fermionic ones.
In supermatrix representations of superalgebras, one may represent the superbracket

of generators M and N as
[[M,N]] := MN — NgM — No(Mg — Mp). (8.28)

One may also consider supermatrices M and N whose components are themselves su-
permatrices. Provided the component supermatrices are pure even (odd) at even (odd)
index positions (e.g. Mj; is a pure even supermatrix for even M), one may write the

superbracket of such supermatrices as

HMX1X2> NX3X4H =

(X14X2)(Xat Xa) (8.29)
MX1X2NX3X4 - (_) 1A NX3X4MX1X2>

where the final two indices are suppressed. This grouping of supermatrices into super-

matrices is useful for summarising the superbrackets of superalgebras.

8.1.2 Orthosymplectic superalgebras and super (S)LOCC

In promoting the conventional SLOCC equivalence group SLy(C) with Lie algebra

[Py Ags Pasas] = 2604, (43 Pay) a0) (8.30)
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to its minimal supersymmetric extension OSpy);, we begin with a discussion of orthosym-
plectic superalgebras in general. Supermatrix representations of the orthosymplectic

supergroup OSp,y, consist of supermatrices M € GL satisfying

p|2g

M*EM = E, (8.31)

but for convenience we choose instead to use supermatrices M € GLyg, satisfying (8.31)).

In this convention, the invariant supermatrix F is defined by

T 0 0 1
E= |2 , Tog = . (8.32)
~1, 0

Definitions of supermatrices, the supertranspose, and further details of superlinear alge-

bra were supplied in [section 8.1.1

Writing a generic supermatrix 9 of the super Lie algebra osp(p|2q) as

Al B
M = (8.33)
C | D

permits (8.31)) to be rewritten as the following conditions on the blocks of the algebra

supermatrices:
Al = —JA, C = B'J, Dt = —D. (8.34)

Depending on the value of p, the superalgebra falls into one of three basic, “classical”

families
B(r,q) p=2r+1,r>0

Oﬁpppq = C(q + 1) p=2 (835)
D(T7Q) p=2r, r>2.
Clearly it is the first case that will concern us, in particular, with » = 0, = 1. B(r,q)

has rank ¢ + r, dimension 2(¢ + )% + 3¢ + r, and even part so, @ 5pog, Which for ospy)

are 1, 5, and slo, respectively.

One generates 0sp o, as a matrix superalgebra by defining the supermatrices U and
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G
(UX1X2)X3X4 = 5X1X45X2X3a
o JIQq 0 | (8.36)
0 Hp
where
o1 @1, =2r
=1 P (8.37)

L @1, ® 1) p=2r+1

with o1 being the first Pauli matrix. Here the indices X; range from 1 to 2¢ + p and
are partitioned as X; = (X;, X;) with X; ranging from 1 to 2¢, and X; taking on the
remaining p values. Note that under (8.36)), G' has the following symmetry properties

GX1X2 = _GX2X17 GX1X2 = +GX2X17 (838)

GX1X2 =0= GXZXI’

which are shared with the invariant supermatrix F. In the special case p = 1, G reduces
to E.

The generators T are obtained as

T'x,x, = 2G (x5 Uxs |1 x0))» (8.39)
where T has array grade zero and the index grades are monotonically increasing:

0 Xed{l,...,2q}
deg X := (8.40)
1 Xe{2q+1,...,2¢9+p}.

Clearly T has symmetry properties T'x,x, = Tjx,x,- The 2q(2g + 1)/2 generators
Tz, x, generate spy,, the p(p — 1)/2 generators T'g, %, generate sop,, and both are even
(bosonic), while the 2pg generators T' %, x, are odd (fermionic). These supermatrices

yield the 0sp,o, superbrackets

([T, X2, Txs x4]] := 4G x, (13 T x)) x40)» (8.41)

where the supersymmetrisation on the right-hand side is over pairs X; Xo and X3X4 as

on the left-hand side. The action of the generators on (2¢|p)-dimensional supervectors
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ax is given by
(TX1X2)X3X4CLX4 = (TX1X2a>X3 = 2G[[X1|X3GX2H (8'42)

This action may be generalised to an N-fold super tensor product of (2¢|p) supervectors
by labelling the indices with integers k =1,2,..., N

(Tx,v1,0) 2y 2325 =

(=) (Krt¥) 2 (8.43)

=i 17laq
. (X125 021 [Yi) - 2y

In our special case p = 1 we denote the lone dotted index X; by a bullet e and start
counting the barred indices at zero so that X; = (0,1, ). Obviously the Tse generator

vanishes identically, leaving only the following superbrackets:

[Tay Ay, Tasas] = 4E 4, (45T a0) 44)
[Tay A5, Taze] = 2E (4,145 T45)e (8.44)
{TA1.7 TAQ.} == TA1A27

which are written out in with T4 = The = Tea. Explicitly the generators are

Table 8.1: osp;p superbrackets.

To1 Too T To T
To1 0 —2Too 2T =Ty Ty
Too 2Tho 0 4Ty, 0 2Ty
Ti1 =217, —4T01 0 =217 0
To Ty 0 2T Too T
T =T =27y 0 To1 Ti1
-1 0
To1 = 0 1 ,
0 O
0 2 0 0 O 0
Tw=|0 0| 0|, Tu=|-2 0] of, (8.45)
0 0 0 0 O 0
0 0 1 0 O 0
To=10 0 | O, T'=1 0 O 1
01 -1 0 0
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In order to make contact with [178], we rescale the generators into a new supermatrix P

Px,x, = %TX1X2 = E[[Xl\XsUX3|X2]] (8.46)

to yield the superbrackets

[Pay Ays Pagas] = 26(a, (A3 Pag)aq)
[Pay Ay Qas] = €(4,145Q 4,) (8.47)
{Qa,,Qa,} = 3Pa, 4,

where Q4 = P4, which are summarised as

[[Px1 X2, Pxaxall = 2Ex, (x5 Px,) x4 - (8.48)
The rescaled generators have the action

(Px1x,0) x5 = E[x,x50x]]
(Px,v3,@) 7y Zp 2y = (8.49)

k—1 .
(—)Xrt¥e) i 2 B4 2, 2 Vil Ze

which, it can be checked, summarises Tables and

The three even elements Py, 4, form an sly subalgebra generating the bosonic SLOCC

equivalence group, under which )4 transforms as a spinor.

The supersymmetric generalisation of the conventional group of local unitaries is
given by uOSpy;, a compact subgroup of OSp2|1 [180,/183]. It has a supermatrix rep-
resentation as the subset of OSpy|; supermatrices satisfying the additional superunitary
condition

MM =1, (8.50)

where ¥ is the superadjoint given by
MF = (M*H)#, (8.51)
The uOSpy|; algebra is given by

uospy ={X € 05]:J2|1|X:E =-X} (8.52)
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An arbitrary element X € uosp(2|1) may be written as

X =&Ai+0"Qo+nQu, (8.53)
where &; and 7 are pure even/odd Grassmann numbers respectively and

Ay = L(Pyo — Pn1), Ay = 3(Poo + Pr1),
As = iy, (8.54)
Qhy =eanQu,  Al=-4;

8.1.3 Super Hilbert space and uOSp,;

The dual space

We now generalise the ordinary concept of a Hilbert space, described in
With one important difference, explained below, our definition of a super Hilbert space
follows that of DeWitt |181]. We define a super Hilbert space to be a supervector space
H equipped with an injection to its dual space ¥,

FoH - Hh

8.55
W) = (JU)F = (4. (5:39)

Details of even and odd Grassmann numbers and supervectors may be found in
section 8.1.1] A basis in which all basis vectors are pure even or odd is said to be pure.

Such a basis may always be found [181].
The map ¥ : H — H* defines an inner product (1|¢) and satisfies the following

axioms:

1. ¥ sends pure bosonic (fermionic) supervectors in H into bosonic (fermionic) super-

vectors in HE.

2. 1 is linear

(1) + [9)* = (¥] + (4. (8.56)
3. For pure even/odd « and [¢)
([)a)t = (=)™ (Y| (8.57)

and
(a(@)) = ()T [p)a, (8.58)
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where # is the superstar introduced in In particular

) = (—)Y]). (8.59)

Note, an « (or ¢ and the like) appearing in the exponent of (—) is shorthand for
its grade, deg(«), which takes the value 0 or 1 according to whether « is even or

odd. The impure case follows from the linearity of .

In a pure even/odd orthonormal basis {|i)} we adopt the following convention:

) = )i (8.60)

so that for pure even/odd ¢ (8.57) and (8.58|) imply

(liywa)t = (=) Vg (] = (=) (il

" (8.61)
()Tl ) = () 1)y

where we have used deg(t;) = deg(i) + deg(¢). This is consistent with (8.21).
Inner product
For all pure even/odd [¢),|¢) € H the inner product (¢|¢) satisfies

(W)™ = (=)" T (gl). (8.62)
Consequently,

(o)™ = (=) (oly), (8.63)

as would be expected of a pure even/odd Grassmann number since deg((¢[1)) = deg(v))+

deg(¢). In a pure even/odd orthonormal basis we find

(Bl) = (=) g . (8.64)

In using the superstar we depart from the formalism presented in [181] which uses the
ordinary star. A comparison of the star and superstar may be found in

The use of the superstar is tailored to the implementation of uOSpy|; as the compact

subgroup of OSp,|; as explained in
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Physical states

For all [¢)) € H
(Y|)s > 0. (8.65)

Here zp € C denotes the purely complex number component of the Grassmann number
z and is referred to as the body, a terminology introduced in [181]. The soul of z,
denoted zg, is the purely Grassmannian component. Any Grassmann number may be

decomposed into body and soul, z = z5 + zs.

A Grassmann number has an inverse iff it has a non-vanishing body. Consequently,
a state |1)) is normalisable iff (¢)[1))g > 0. The state may then be normalised,

) = Nylp), Ny = (plep) /2, (8.66)

where Ny, is given by the general definition of an analytic function f on the space of
Grassmann numbers (8.4)). Explicitly,

k

(Wlp) 1?2 = Z,}H (=2l * Wlo)k (8.67)
k=0

]:

Motivated by the above considerations a state |1} is said to be physical iff ()|1)g > 0.

We restrict our attention to physical states throughout.

We must acknowledge that this choice presents us with the problem of interpret-
ing “physical” states with non-vanishing soul for which probabilities are no longer real
numbers but elements of a Grassmann algebra. (The probabilities still add up to one,
however.) The examples of avoid this problem, being pure body. DeWitt
advocates retaining only such pure body states in the Hilbert space [181], but we view

this as too draconian, preferring the approaches of |186].

8.1.4 One superqubit
The one superqubit system is described by the state
[0) = [A)aq + [o)as, (8.68)

where a4 is commuting with A = 0,1 and a, is anticommuting. That is to say, the

state vector is promoted to a supervector. The super Hilbert space has dimension 3, two
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“bosons” and one “fermion”. In more compact notation we may write,
) = [X)ax, (8.69)

where X = (A, o).

The super SLOCC equivalence group for a single qubit is OSpy|; 4. Under the SLy 4
subgroup a4 transforms as a 2 while a, is a singlet as shown in The super
LOCC entanglement equivalence group, i.e. the group of local unitaries, is given by

uOSpy); 4, the unitary subgroup of OSpy; 4.

Table 8.2: The action of the ospy; generators on the superqubit fields.

Field acted upon

Generator
QA Ge
Py, 4, €(A1]1A33|Ay) 0
2Q 4, €A1 Az Qe aa,
The norm squared (¥|¥) is given by
(U|T) = 614207 an, — afaa, (8.70)

where (¥| = (|¥))¥ and (¥|¥) is the conventional inner product which is manifestly

uOSpy; invariant.

The one-superqubit state may then be normalised. When presenting examples of
state vector normalisation, we take the underlying Grassmann algebra to have one gen-
erator per superqubit for simplicity, however our other results are independent of the
dimension. Hence the n-superqubit Hilbert space is defined over a 2"-dimensional Grass-
mann algebra. Consequently, L — 0 for all z and terminates after a finite number

of terms. Using (8.67) for n Superqubits one obtains

2n 1 k _ 2k+41
(|w)~12 = Zk—H 1—2))(U|W); 2 (U|D)E, (8.71)
k=0 7=0

where the sum runs to 2n since an arbitrary Grassmann « and its superstar conjugate

o are independent.
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The one-superqubit density matrix in component form is given by

= (X1|p|X
PX1Xs < l)l(p| 2> . (8.72)
= (—) 2a,X1aX2-

The density matrix is self-superadjoint,

ra¥ %t (8.73)

The norm squared is then given by the supertrace

str(p) = (=)0 X2 (X1 p| Xa)

axafé

(8.74)

(—)Xa%ax

>
>

= (¥|W)

as one would expect.

Unnormalised pure state super density matrices satisfy p? = str(p)p,

p? = (=) %2ax,a¥, 6% (<) May,af,

= 5X2X3aX2a§#(3(_)X4aXla§4 (875)

= str(p)p,

the appropriate supersymmetric version of the conventional pure state density matrix

condition.

8.1.5 Two superqubits
The two superqubit system is described by the state

|U) = |AB)aap + |A®)aae + [0 B)dep + |08)des (8.76)



8.1. SUPER ANALOGUES OF QUBITS AND ENTANGLEMENT 125

where aap is commuting, a4, and ae.p are anticommuting and aee is commuting. The
super Hilbert space has dimension 9: 5 “bosons” and 4 “fermions”. The super SLOCC
group for two superqubits is OSpy); 4 X OSpy|; p. Under the SLy 4 X SLg, p subgroup aap
transforms as a (2,2), ase as a (2,1), aep as a (1,2) and aee as a (1,1) as summarised
in The coefficients may also be assembled into a (2|1) x (2|1) supermatrix

Table 8.3: The action of the ospy; @ 0spy); generators on the two-superqubit fields.

Field acted upon

Generator Bosons Fermions
QA3 B3 Uee AAze (eBj
P, a, E(A1] A3 A2)Bs 0 E(A1]A3T|Az)e 0
PB1B2 <C:(Bl‘BgaAg|Bg) 0 0 E(BllB3a.‘B2)
2Q a, €A, As(eBs aA e €A, AzCee (A, By
2Q31 sBlBgaAgo _a.Bl aAgBl _EBlB3 Uee
aAB aa
(XY V) =axy = . (8.77)
GeB Uee
See [Figure 8.1
|
|
|
|
|
|
|
1
|
l
|
anB . 3ae
1
|
|
|
|
|
1
|
|

Figure 8.1: The 3 x 3 square supermatrix, which generalises the ordinary qubit square

of [Figure 3.1
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The norm squared (¥|¥) is given by

<\IJ|\IJ> — (_)X1+Y15X1X25Y1Y2a§1Y1aX2Y2

= 5A1A25BlB2aiBlaA232

A1 A BB
— o™ 2(17jf1.cz,41.—<5 ! 2thiglCl-Bl

(8.78)
+ aﬁaoo;

where (¥| = (|¥))} and (¥|¥) is the conventional inner product which is manifestly
uOSpy|; 4 X uOSpy|; p invariant.

The two-superqubit density matrix is given by

p=[TXY|

(8.79)
= (=) 21X V) ax, v, 0%, y, (X2Yal.

In component form the reduced density matrices for A and B are given by the partial

supertraces:
(pa)xix, = O (=) ax,vad,y,
Y
(8.80)
(PB)viva = Z(—)YQGXYM??YQ’
X
and
strpa = strpp = (U|¥). (8.81)
8.1.6 Three superqubits
The three superqubit system is described by the state
|¥) = |ABC)aapc
+|ABe)asBe + |A®Clasec + |[0BC)aenc
[ABe)asgs + |4 e Chasuc + |oBC)aus .

+|A @) se0 + |0B®)epe + | ® ()

+|. ® .>aooo

where asp is commuting, a4pe GAec Gepc are anticommuting, diee GeBe CeeC ATE
commuting and deee is anticommuting. The super Hilbert space has dimension 27:
14 “bosons” and 13 “fermions”. The super SLOCC group for three superqubits is
OSpy1,4 X OSpy)q, g X OSpy)q . Under the SLa 4 X SLa g X SLy ¢ subgroup aapc trans-
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forms as a (2,2,2), agpe as a (2,1,1), agec as a (2,1,2), aepc as a (1,2,2), a4ee as a
(2,1,1), aepe as a (1,2,1), aeec as a (1,1,2) and aeee as a (1,1,1) as summarised in
Table 8.4l The coefficients may also be assembled into a (2|1) x (2|1) x (2|1) superhyper-

matrix

(XY Z|V) = axyz. (8.83)
See [Figime 8.7
| QeBC |
: ‘ : | QeeC
ABe | B | ]
i | i i a-AoC
| aasc | |
i i aA“ i
///ki,aA,B,. ,,,,,,, ; ,/,/k:,,, __

Figure 8.2: The 3 x 3 x 3 cubic superhypermatrix, which generalises the ordinary qubit
cube of

The norm squared (¥|¥) is given by

(W) = ()AL, vy,

A1As ¢B1 By sC1C
= §rra2ir e 2alelClaAZBZC2

A1Ag sB1By, #
_ §Ardz 5B 2aAlBloaAQB2'

A1 Az sC1C
— a2 50 QGﬁloclaAQOC’z

_ 5313260102611&);101 UeByCs (884)

A1A
+5 ! Qaﬁlooaz‘b.'

B1By #
+5 . 2a.Bl.aoBQO

C1C
+ 01 QCIﬁClaooCQ

#
— (qeeUese,

where (¥| = (|¥))* and (¥|¥) is the conventional inner product which is manifestly
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Table 8.4: The action of the ospy; @ 0spy); & 05py); generators on the three-superqubit

fields.
Bosons acted upon
Generator p
AA3B3C3 A Aze0 (eBse Uee(C3
Py, a, E(A1|A3 U A2)B3Cs  E(A1]A30|Az)ee 0 0
Pp, B, €(B1|B3 ¥ A3|B3)C2 0 €(B1|Bs%e|Az)e 0
Feycy E(C1|C3 @ A3 B3| Co) 0 0 E(C1|C3 Boe|Cy)
ZQAl EA1A30eB3C5 €A1 A30000 A, Bze QA eC3
2QB, €B1 B30 AzeCs AA3B;e —EB,B;Ueee —0eB,Cs
2Qc, €C1C30 A3 Bye e —QeB5Ch €C1C5000e
Fermions acted upon
A A3 Bze AAzeC3 (eB3C3 Geee
Pa,a, E(A1]A3A2)Bse  E(A1|A30|As)eCs 0 0
Pp, B, €(B1|Bs @ A3|Bs)e 0 €(By| B3 Ge| B3)Co 0
Peyc, 0 E(C1|C3@A30|Cy)  E(C1|C3%eB3|Co) 0
2Q 4, €A,A30eB3e €A, AzCeeCs (A, B3Cs A ee
2@31 €B1B30Azee AA3B1C3 —EB1B30eeC3 —QePBje
2@01 A A3 BsCq —E€C1C30A300 —E€C1C30eB3e Gee(Cy

UOSPQH’A X UOSPQH’B X UOSP2\1,C invariant.

The three-superqubit density matrix is given by

p=[TXY|

_ (_)X2+Y2+Z2|X Y, 7 # X Yo (8'85)
= 111 1>aX1Y1ZlaX2y2Z2< 2Y2 2|-

The singly reduced density matrices are defined using the partial supertraces

pPAB = Z(_)X2+Y2|X1Y1>aX1Y12a§2YQZ<X2Y2|’
Z

ppc = (=) Vi Z1)axy, 2,0%y, 5, (Yo Zol,
X

poa=> (=) X121 )ax,y 2,08,y 4, (X2 Za.
%

(8.86)
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The doubly reduced density matrices for A, B and C' are given by the partial supertraces

pa = (=) X1)ax,yza%,y ,(Xal,
Y,Z

pPB = Z(—)Y2’H>QXY1ZQ§YQZ<Y2|> (8.87)
X,z

pe =Y (22| Z)axyz,0%y 4, (Za.
XY

8.2 Superinvariant superentanglement measures

8.2.1 Two superqubits

In seeking a supersymmetric generalisation of the 2-tangle (3.14) one might be tempted

to replace the determinant of aop by the Berezinian of axy
Beraxy = det(aap — aA.a,_,la.B)a._,l. (8.88)

See section 8.1.1] However, although the Berezinian is the natural supersymmetric
extension of the determinant, it is not defined for vanishing aee, making it unsuitable as

an entanglement measure.

A better candidate follows from writing

detaap = %aABaAB = Ltr(a'eact)

(8.89)

N DO

tr[(ae)’eal,

This expression may be generalised by a straightforward promotion of the trace and
transpose to the supertrace and supertranspose and replacing the SLy invariant tensor

with the OSp,; invariant tensor E. Seefsection 8.1.1} This yields a quadratic polynomial,
which we refer to as the superdeterminant, denoted sdet:

sdetaxy = 3 str[(aE)* Eq]

(aABaAB —a™a4e —a*Baeg — a** o) (8.90)

1.2
= (ap0@11 — 01010 + Goel1e + Ge0e1) — 50es";

1
2

which is clearly not equal to the Berezinian, but is nevertheless supersymmetric since Q) 4

AB B AB A

annihilates a*Paap—a*" aep and aA°aA.+a"a.., while () g annihilates a*“asp—a“®a e

and a*Baep + a** Gee. Satisfyingly, (8.90)) reduces to det aap when a ge, Gep and aee are
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set to zero. We then define the super 2-tangle as:
Txy = 4sdet axy(sdet axy)#. (891)

In summary, 2-superqubit entanglement seems to have the same two entanglement
classes as 2-qubits with the invariant det a 4 g replaced by its supersymmetric counterpart

sdetaxy.

Non-superentangled states are given by product states for which asp = asbp,
QAo = U Abe, GeB = WeDB, Gee = Gebe and sdet axy vanishes. This provides a non-trivial

consistency check.

An example of a normalised physical superentangled state is given by

W) = %(|00) +|11) + i|ee)) (8.92)
for which
sdetayy =3+ 45-5=3 (8.93)
and
Txy = 4sdet aXy(sdet axy)# = 1. (894)

So this state is not only entangled but maximally entangled, just like the Bell state
W) = (00} +[11)) (8.95)
for which sdet axy = 1/2 and 7xy = 1. Another more curious example is
| W) = i|ee) (8.96)

which is not a product state since aee is pure body and hence could never be formed
by the product of two odd supernumbers. In fact sdetaxy = 1/2 and 7xy = 1, so this

state is also maximally entangled.

We may interpolate between these two examples with the normalised state

([l + [B81) 72 [a] ) ey + Bloe)], (8.97)
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where «, 8 € C, for which we have

1 a? _ /82
sdetaxyy = —————,
|o® — %2

Y (el + 18122

The entanglement for this state is displayed as a function of the complex parameter (
in [Figure 8.3] for the case & = 1. Note in particular that while the state is maximised for

Contour Plot
[ T T T

Figure 8.3: The 2-tangle 7xy for the state for a complex parameter j3.

arbitrary pure imaginary (3 the state has its minimum value on the real axis at § = £+1
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as shown in [Figure 8.4

2-tanglewith rea 8

™Y

12}

Figure 8.4: The 2-tangle Txy for the state (8.97)) for a real parameter 5.

8.2.2 Three superqubits

In seeking to generalise the 3-tangle (3.18)), invariant under SL%, to a supersymmetric
object, invariant under [O.Sp(2|1)]3, we need to find a quartic polynomial which reduces
to Cayley’s hyperdeterminant when a4pe, G AeC; GeBC; GAee, GeBe, GeeC ANA Ueee are set

to zero. We do this by generalising the v matrices:

- BC B
’7A1A2 L aA1 aAQBC - aAl .aAgBO (8 99)
c .
- aA1. aAQOC - aAl ..a/A2007
BC B
YAye = A, GeBC Tt G4, GeBe (8.100)
+ a A, .CGOOC —aA, ..aooo,
BC B
Yoy = Qe AA,BC — U GA,Be
(8.101)

C
- ao. AAeC — a...aA2..7

together with their B and C' counterparts; notice that the building blocks with two

indices are bosonic and those with one index are fermionic. The final bosonic possibility,
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7Y(ee); vanishes identically. The simple supersymmetry relations are given by:

QAI YA2Az = €A1(A2VA3)e

1
Q4, YAze = 37VA1 A

(8.102)
QBYA A, = 0= Qcv4a, 4,
@B74e = 0= QcVAe.
Using these expressions we define the superhyperdeterminant, denoted sDet a:
sDet axyz = 5(v" 74,4, — 74740 —7**704) (8.103)

which is invariant under the action of the superalgebra. The corresponding expressions
singling out superqubits B and C' are also invariant and equal to (8.103)). sDet axyz can

be seen as the definition of the super-Cayley determinant of the cubic superhypermatrix

given in

Writing

A _ /7141142 ‘ ’7A10\ _ {’VAlAz ‘ 'YAlo\
T ey Al SR & (8.104)

we obtain an invariant analogous to ([8.90)
sDetaxyz = 3 str[(TAE)* BT (8.105)

so that
sDet axyz = —sdet T4 (8.106)

in analogy to the conventional three-qubit identity (3.21]).

Finally, using I'4 we are able to define the supersymmetric generalisation Ty of
the 3-qubit tensor Typc as encountered in (A.2.2) (in other words, super-C111),

/

TXYZ = F?(X/CLX YZ- (8107)

It is not difficult to verify that Txyz transforms in precisely the same way as axyz (as
given in|Table 8.4)) under ospy); @ 05py|; @ 05py);. The superhyperdeterminant may then
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also be written as,

sDetaxyz = TABCaABC + T.Bca.BC

o TA.CCLA.C _ TAB.(IAB.
- TAooaA.. + T.B.Q.B.

+ T..Ca..c _ T...a”..

(8.108)

In this sense sDet axy z, (FA) x, X, and Txyz are the natural supersymmetric gener-
alisations of the hyperdeterminant, Det a 4pc, and the covariant tensors, ('yA) A A, and
Tapc, of the conventional 3-qubit treatment summarised in Finally we are

in a position to define the super 3-tangle:

TXYZ = 4\/sDet axyz(SDet (nyz)#. (8.109)

In summary 3-superqubit entanglement seems to have the same five (seven) entanglement

classes as that of 3-qubits shown in[Table A.5| with the covariants aagc, ¥4, Y2, 7%, Tusc
and Det aspc replaced by their supersymmetric counterparts axyz, I'4 T8 1% Ty,

and sDetaapc.

Completely separable non-superentangled states are given by product states for which
aABC = aAbBCC, aABe = AAbBCe, 0 AeC = A AbCC, GeBC = AeDBCC, G A0e = AAbeCo, Gape =
0eDBCo, UeeC = UebeC(,Gleee = UebeCe and sDetaxyy vanishes. This provides a non-

trivial consistency check.

An example of a normalised physical biseparable state is provided by
|0 = %(;000>+|011>+|0..>) (8.110)

for which

(T) g0 = (8.111)

Wl

and I'B, T°, Txyz and sDet axyz vanish. More generally, one can consider the combi-

nation
W) = (Jaf® + |5!2)71/2[%04(!000> +1011)) + 5|0 e ®)] (8.112)

for which .
(M) = m (8.113)

and the other covariants vanish.
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An example of a normalised physical W state is provided by

|T) = %(;11@ + [101) + |011)
+leel)+ |ole) +[lee))
for which
(M= TP =T =-3
and
T = 27\1/5
while sDet a xy 7 vanishes. One could also consider

¥) (la? + [8%)~*[a(]110) + [101) + |011))

+5(jee1) + |ole) + [l ee))]

- L
VB

for which

202 4 32
1 = %) = 9 = 3(laP+[8P)

and
a(2a? + %)

Ty =
T 3B £ |8)32

while the other T' components and sDet axy 7 vanish.
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(8.114)

(8.115)

(8.116)

(8.117)

(8.118)

(8.119)

An example of a normalised physical tripartite superentangled state is provided by

@) = =(|000) + |o # 0) + [e0s) + [0 0 o)
+[111) 4 [@ e 1) + |ele) + |1 e e))

for which

sDetaxyz = 6L4

and

T™xyz =4 SDetaxyz(SDet axyz)# = ILG

(8.120)

(8.121)

(8.122)
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Chapter 9

Conclusion

9.1 Summary

We have reviewed our recent discoveries and developments in the black hole/qubit corre-
spondence, concentrating on those aspects more closely related to supersymmetry than
FTS technology, namely supersymmetric black hole/entanglement classification and the

superqubit development. Here follows a recap of our discussion:

We began with a brief introduction to the black hole side of the correspon-
dence. In particular describing the origin of black hole entropy, and the fact that
it is expressed in terms of dyonic charges transforming in a representation of the
U-duality group of the attendant theory. This was followed up by describing the
theories of interest: the STU model and generalisations to N' = 8 and D = 5,
along with the corresponding supersymmetric classifications, and a mention of

magic supergravities.

We reviewed the basics of entanglement and entanglement classification
including the SLOCC paradigm, and the classification of three qubits into seven
classes by appropriate entanglement measures. supported by some elementary

concepts in classical invariant theory.

The correspondences for the theories discussed in were presented,
with the A/ = 2 STU model and three qubits, N' = 8 and tripartite entangled

“seven qubits” described by the Fano plane, and D = 5 and bipartite entangled
“three qutrits”. We observed that in the ' = 2 theory the three-qubit entangle-
ment classification is matched by the black hole classification into small (S = 0),

with 1/2 of supersymmetry preserved, and large (S # 0), with either 1/2 or 0.
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Further developments in the correspondences of were presented,

starting with the dictionaries used in transforming between three important bases
of Cartan’s quartic E;(;) invariant. More examples of the SUSY /entanglement
classifications were then given. For N’ = 8, as for N' = 2, the large black holes
correspond to the two classes of GHZ-type (entangled) states and small black holes
to the separable or W class, but this time the large black holes can be 1/8- or non-
BPS, while the small black holes can be 1/8-, 1/4-, or 1/2-BPS. Lastly, we described
the octonions (and their split-signature cousins), which play a role in one of the

aforementioned dictionaries, amongst other roles throughout the correspondence.

We examined the brane wrapping paradigm in four and five dimensions. In
four dimensions matching the eight states of the three-qubit system to the eight
ways of wrapping four D3-branes around three 2-tori of Type II string theory
compactified to four dimensions. Similarly, the nine states of the 2-qutrit system
correspond to nine ways of wrapping two M2-branes around two 3-tori of M-theory

compactified to five dimensions.

Attempts at four qubit entanglement classification were discussed, including
our own in-progress covariant classification approach. By invoking the Kostant-
Sekiguchi correspondence, the U-duality orbits resulting from timelike reduction
of string theory from D = 4 to D = 3 are mapped to 31 entanglement families
( which reduce to nine modulo permutations) for four qubits. In the process it
is shown that the nilpotent classification of N/ = 2 black holes is identical to the
nilpotent classification of complex qubits, bypassing the need for a restriction to

rebits in earlier treatments.

The super generalisations of Hilbert space and entanglement were explored,
specifically by promoting the SLOCC group to it’s minimal supersymmetric ex-
tension. The significant body of auxiliary definitions and structures were intro-
duced to provide the means to define superentanglement measures in the cases
of two and three superqubits, these being generalisations of the determinant and
hyperdeterminant respectively. The non-intuitive nature of superentanglement is

demonstrated by the maximal entanglement of a nominally separable state.

The definitions of (integral) cubic Jordan algebras and Freudenthal triple
systems are provided, followed by telegraphic descriptions of their uses in classify-

ing qubit entanglement, defining new black hole dualities, and examining integral
U-duality orbits.
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9.2 Further work

Taking our existing research [21-28] as a starting point, one can divide the future research

prospects within the black hole/qubit correspondence into four categories:
e The continued development of the superqubit idea.

e Continued matching of entanglement and supersymmetric black hole classification,

potentially extending the brane wrapping perspective.

e Technological developments in the Freudenthal/Jordan machinery enabling the

classification of charge orbits in more theories.
e Broader outstanding issues regarding the physical foundations of the correspon-
dence.
9.2.1 Superqubits

Our treatment of superqubits left one or two loose ends with regard to the formalism

and numerous tasks to investigate:

e Formalising super-Hilbert spaces and the pernicious problem of Grassmann valued

norms to be acceptable to realistic systems.
e Identifying appropriate physical systems that admit a superqubit description.
e Generalising superqubits to other semisimple supergroups like e.g. SLyj;.

e Generalising entanglement invariants and classifications of the tensor product of

multiple superqubits.

e Generalising, if possible, some of the physically important results of ordinary quan-
tum theory: are super-Bell inequalities and a super-Kochen-Specker theorem pos-
sible?

e Classifying fully the two- and three-superqubit entanglement classes and their cor-
responding orbits as was done for the two- and three-qubit entanglement classes
in [4}24,99]

While one can easily go to town on super generalisations of familiar quantum con-
cepts, the principle problem remains the need for physical scenarios demanding such a

superqubit description. Are superqubits a solution looking for a problem? We can go
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tyy  Jry

Figure 9.1: The ¢-J model which shows how the ¢ interaction corresponds to electron
hopping and the J to anti-ferromagnetic exchange.

some way to allaying any apprehensions on this point by identifying a couple of can-
didates. One’s first instinct may be to look to photinos or selectrons, but since the
supersymmetrisation of the (S)LOCC equivalence groups is quite distinct from the su-
persymmetrisation of the spacetime Poincaré group these are not obvious candidates.
Supergroups of the form OSpy|; do in fact show up in some models of strongly correlated
electrons in condensed matter physics. In particular in the ¢-J model [187/188|, which is a
specialisation of the Hubbard model. It consists of a one dimensional anti-ferromagnetic
lattice containing holes and where double occupancy is energetically hindered. The ¢
corresponds to electron hopping and the J corresponds to anti-ferromagnetic exchange,
see The field theory describes a condensate of holons and spinons which
becomes supersymmetric when J = 2t, with the holons and spinons transforming in the
fundamental representation of the supergroup [189]. Thus, in the same way that two
polarisations of a photon can be a realisation of a qubit, we can anticipate that the
holons and spinons form a valid realisation of a superqubit. If true, the lattice would
contain long chains of superqubits which could be superentangled. Our techniques could
then be applied to quantify the superentanglement and, speculatively, determine if the
supersymmetry is able to control the decoherence times of these systems. While entirely
hypothetical this could have a significant impact on quantum error correction and quan-
tum computing, whose super analogues are already being investigated by Castellani et
al [190].

Another example where our superqubits can be used is the supersymmetric quan-
tum Hall effect |191], observed in two-dimensional electron systems subjected to low

temperatures and strong magnetic fields, whereby conductivity is quantised.
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9.2.2 Classification: entanglement vs. supersymmetric black holes

In four D3-branes of Type IIB string theory wrapped the (469), (479), (569),
(578) cycles of a six-torus and intersected over a string. However, in the string literature

one finds D-brane intersection rules which specify how N branes can intersect over one
another and the fraction v of supersymmetry that they preserve. Up to N = 4 the
results are given by [192]

N=4v=1/8
N=3v=1/8 N=3,v=1/8
N=2v=1/4 N=2v=1/4 N=2v=1/4
N=1v=1/2 N=1v=1/2
N=0,v=1

(9.1)
Our case is clearly N = 4, v = 1/8 and corresponds to a three qubit GHZ state, however
one is naturally led to consider the NV < 4 cases. Using our dictionary, we see that string
theory predicts the three qubit entanglement classification (9.2), in complete agreement

with the standard results of quantum information theory.

GHZ
W W
A-BC A-BC A-BC (9.2)
A-B-C A-B-C
Null

Allowing for different p-branes wrapping tori of different dimensions, we are led to spec-
ulate that the classifications of intersecting branes in string theory in D-dimensions are
related to the entanglement classifications of qubits, qutrits and more generally qudits,
with our three qubit case of being just one particular example. While still
under development, this perspective yields positive results for the well-documented cases
of 2 x2, 2x3,3x3,2x2x3and2x2x4,in which the brane intersection rules
match the classification of the respective quantum information systems. As we have
seen, the 2 x 2 x 2 x 2 four qubit system has a less well understood or, at any rate, less
well accepted entanglement structure [124,/163,/167| leading one to consider the brane

wrapping perspective in this scenario. For example, the (un-normalised) W state in four

dimensions is given in [Table 9.1| by

[W) = [0001) + |0010) + |0100) + |1000). (9.3)
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Using the same dictionary as in we find that the intersection of four D4 branes

Table 9.1: Four D4 branes intersecting in D = 2 with 1/16 conserved supersymmetry
looks like a 4 qubit W state |0000) + [1100) + |1010) 4 |1001) using the same dictionary
as in [Table 6,11

0 1 2 3 4 5 6 7 8 9 brane State
X 0 o X X o X 0 X 0 D4 [1000)
X o X 0 o X X o X o D4 |0100)
X 0 X o X o o X X 0 D4 |0010)
X o X 0 X 0 X o o X D4 |0001)

is supersymmetric. Similarly for the 4 qubit GHZ state |0000) + [1111) in {Table 9.2

Our recent successes at classifying four qubit entanglement reduce the urgency of this

Table 9.2: Two D4 branes intersecting in D = 2 with 1/2 conserved supersymmetry
looks like a 4 qubit GHZ |0000) + |1111) state using the same dictionary as in[Table 6.1}

0 1 2 3 4 5 6 7 8 9 brane State
X o0 X 0 X o X 0 X o D4 |0000)
X 0 o X o X o X o X D4 [1111)

particular approach, and indeed supersedes it in that we need not trouble ourselves with
rebits, nevertheless our goal remains to use the allowed wrapping configurations and D-
brane intersection rules to predict new qubit entanglement classifications. We also have
in mind to produce a more detailed four qubit analysis that incorporates the covariant

classification approach and provides the details of the computation of the cosets.

9.2.3 Freudenthal/Jordan ranks and duals

The microscopic stringy interpretation of F- and J-duality is not clear, in part due to the
dualities being defined on black hole charge vectors rather that the component fields of
the lowest order action. Furthermore we are as yet unaware of the broader significance
of the spaces of black holes admitting F- and J-duals.

We have seen that the 4D /5D lift of [193] relates 4D and 5D black holes through the
exceptional Jordan algebras and the Freudenthal triple systems, but these black holes
are themselves related to three qubits and two qutrits respectively. What then are the
implications for the relationship between qubits and qutrits? In addition, the 4D/5D
lift involves nonvanishing angular momentum and the quantum information analogue of

rotating black holes remains unclear. In D > 6 dimensions there are no black holes with
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nonvanishing entropy, but there are black strings and other intersecting brane configu-
rations with entropies given by U-duality invariants, all awaiting QI interpretations.
We are also presently engaged in the extension of the formalism of Jordan/Freudenthal

ranks and canonical forms to the case of N’ = 2 black hole charge orbits in 4 and 5D.

9.2.4 Outstanding issues

There are a number of research avenues broached by other authors contributing to the
correspondence which we have not yet approached: distillation protocols, error correction
codes, twistors and the geometry of entanglement to name a few. Within our own body
of work there also remain a couple of loose ends.

We confirmed the form of the E7(7) D SLJ invariant written in terms of state vector
amplitudes, but a longstanding issue has been its monotonicity or lack thereof. Our early
investigations suggested the latter, meaning that it may not in fact be a valid entangle-
ment measure, but this needs to be thoroughly checked and the outcome published.

Cayley’s hyperdeterminant has already proven itself to be a bit of a Swiss-army-
knife invariant, but we have neglected one of it’s other important physical applications.
Namely that it provides the Lagrangian of the Nambu-Goto string in spacetime signature
(2,2) [194]. It remains to be seen whether this is related to it’s role in the black hole/qubit
correspondence.

Despite all the progress already made, the fundamental basis of the correspondence -
why black holes should be related to qubits - remains murky. Keeping an open mind, one
must accept the possibility that they may not in fact be dual descriptions of the same
physical phenomenon. Nevertheless the research conducted has been genuinely cross-
disciplinary, with insights in one field finding ready application in the other. For this
reason the work has enduring value even in the absence of a more physically substantive
duality. We need not be so pessimistic however, as the continually arising correlations
between entanglement classification and the supersymmetric classification of black holes
hint that the answer may lie with a more developed version of the brane wrapping

perspective. The story for black holes and qubits, it seems, is far from over.
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Appendix A

Cubic Jordan algebras and

Freudenthal triple systems

The quantised charges A of five dimensional black strings and quantised charges B of
five dimensional black holes are assigned to elements of an integral Jordan algebra J

whose cubic norm N determines the lowest order entropy
SS(black string) — 2m N(A>7 SB(blaCk holes) — 2m N(B)7 (Al)

and whose reduced structure group Stro(J) is the U-duality group. Integral cubic Jordan
algebras are defined in and the reduced structure group is described in
We proceed to define the Jordan duality operation in
Similarly the quantised charges x of black holes of the four dimensional supergravities
arising from string and M-theory are assigned to elements of an integral Freudenthal
triple system (FTS) 9M(J) (where J is the integral cubic Jordan algebra underlying
the corresponding 5D supergravity [80-82,/169,170,/195}196]) whose quartic form A(x)

determines the lowest order entropy
Sy = my/|A(x)], (A.2)

and whose automorphism group Aut(9M(J)) is the U-duality group. FTSs are defined in

and the automorphism group is described in We proceed to

define the Freudenthal duality operation in
Examples of integral Jordan algebras and FTSs with the corresponding U-duality

groups Stro(J) and Aut9(J) are given in [Table A.1l In particular this includes the
cases N = 2 STU, N = 2 coupled to n vector multiplets, magic N’ = 2, and N/ = 8
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[23,/34,381/70,73,(77,82.85.,197,[198]. The N = 4 heterotic string with SLa(Z) x SOg 22(Z)
U-duality may also be included using J = Z & Q521 [34,/199]. The notation Jé& denotes
sets of 3 x 3 Hermitian matrices defined over the four division algebras A = R, C,H or O
(or their split signature cousins). The notation Z @ @,, denotes the infinite sequence of

spin factors Z.&Q,, where @, is an n-dimensional vector space over Z [138/170,200-202].

Table A.1: The automorphism group Aut(t(J)) and the dimension of its representation
dim M (J) given by the Freudenthal construction defined over the integral cubic Jordan
algebra J with dimension dimJ and reduced structure group Stro(J). The quantised
N = 8 theories in 5 and 4 dimensions have U-duality groups Eg)(Z) and E7(7)(Z)
respectively.

Jordan algebra J Stro(J) dim J Aut(IM(3J)) dim M(J)
z - 1 SLy(Z 4
787 S01,1(Z) 2 SLy(Z)? 6
YAV S01.1(Z) x SO1.1(Z) 3 SLy(Z)3 8
VA Qn 80171(Z) X SOn,Ll(Z) n+1 SLQ(Z) X SOQJL(Z) 2n + 4
JZ SL3(Z) 6 Spe(Z) 14
JE SL3(Z) 9 SU33(Z) 20
JH SU(Z) 15 SO%,(7Z) 32
J3 Eg(_26)(Z) 27 Er(_a5)(Z) 56
I3 Ee(6)(Z) 27 E7(7)(Z) 56

The Bekenstein-Hawking entropy and other macroscopic physical quantities are in-
variant under the continuous U-duality group of the underlying low energy supergravity
action, but in the full quantum theory the symmetry is broken to a discrete subgroup
due to the Dirac-Schwinger quantisation conditions. As a result, physical quantities
in the quantised theory can depend on previously absent discrete invariants. Typi-

cally the discrete invariants are given by the gcds of particular dyon charge combina-

tions [40,203-206]. These are described for 5D insection A.1.4|and for 4D insection A.2.4]

along with their behaviour under J/F-duality.

A.1 Cubic Jordan algebras and 5D black holes/strings

A.1.1 Cubic Jordan algebras

The bilinear product o, of a Jordan algebra J [200},201,]207-209], satisfies

XoY=YoX, X?0(XoY)=Xo(X?0Y), VX, Ye3J. (A.3)
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Of particular interest to us is the class of integral cubic Jordan algebras, which possess

a cubic map N : J — Z homogeneous of degree three
NOAX)=XMN(X), VI€Z X 3. (A.4)

With the aid of a base point 1 € J satisfying N(1) = 1 one may determine the properties
of J from the cubic form through a construction due to Freudenthal, Springer and Tits

[202,210,]211]. First the cubic form is polarised to a trilinear map

N(X,Y,Z) = :[N(X+Y+Z)-N(X+Y)-N(X+Z)-N(Y+Z)+N(X)+N(Y)+N(Z)].

(A.5)
Second the trilinear map defines the following four maps
trace Tr(X) :=3N(X,1,1), (A.6a)
spur quadratic map S(X):=3N(X,X,1), (A.6D)
spur bilinear map S(X,Y):=6N(X,Y,1), (A.6c)
trace bilinear form Tr(X,Y) = Tr(X) Te(Y) — S(X,Y). (A.6d)

Third the trace bilinear form uniquely defines the quadratic adjoint map # : J — J and

its polarisation

Tr(X#,Y) :=3N(X,X,Y), (A.7a)
X#Y = (X +Y)# - X# - Y7#, (A.7b)

Finally the Jordan product is defined as

X oY = L(X#Y + Tr(X)Y + Tr(Y)X — S(X,Y)1). (A.8)

1
2
The result is a cubic Jordan algebra provided the cubic form is Jordan cubic, to wit

1. The trace bilinear form (A.6d)) is non-degenerate.

2. The quadratic adjoint map (A.7al) satisfies

(XH)* = N(X)X, VXej. (A.9)

For example, in the J4* case the Jordan product is X oY = %(XY + Y X), where XY

is just the conventional matrix product. See [201] for a comprehensive account. In all
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cases, one defines the Jordan triple product as
{X,V,Z} :=(XoY)oZ+Xo(YoZ)—(XoZ)oY. (A.10)

In general an integral Jordan algebra is not closed under the Jordan product, but the
cubic norm and trace bilinear form are integer valued, which are the crucial properties
for our purposes. Furthermore J is closed under the (un)polarised quadratic adjoint map

as required.

A.1.2 Jordan ranks

The structure group, Str(J), is composed of all linear bijections on J that leave the cubic

norm N invariant up to a fixed scalar factor,
N(g(X)) =AN(X), Vg e Str(J). (A.11)

The reduced structure group Stro(J) leaves the cubic norm invariant and therefore con-
sists of those elements in Str(J) for which A = 1 [140,/198,201]. The usual concept of
matrix rank may be generalised to cubic Jordan algebras and is invariant under both
Str(J) and Strp(J) [170,200]. The ranks are specified by the vanishing or not of three
rank polynomials linear, quadratic, and cubic in A (resp. B) as shown in
Large BPS black holes and strings correspond to rank 3 with N(A), N(B) # 0 and small
BPS correspond to ranks 1 and 2 with N(A), N(B) = 0. In we have listed

the fraction of unbroken supersymmetry for the N' = 8 case.

Table A.2: Partition of the space J into four orbits of Stro(J) or ranks.

Rank Condition N = 8 BPS
A AF N(A)
0 —0 —0 —0 i
1 £0 _ _ 1/2
2 20 £0 —0 1/4
3 20 £0 £0 1/8
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Table A.3: Orbit representatives of (D = 5, N' = 8), see [Table 2.5|for details. Each orbit
is specified by a Jordan algebra element of a given rank.

Rank Rep Orbit
0 diag(0,0,0) {0}
1 diag(1,0,0) Es(s) /(O(5,5) x R'0)
2 diag(1,1,0) Eg(6) /(0(5,4) x R'°)
3 diag(1,1, k) Eg(6) /Faa)

A.1.3 Jordan dual

Given a black string with charges A or black hole with charges B, we define its Jordan
dual by

A* = A#N(A)Y3, B* := B¥N(B)™ /3. (A.12)

J-duality is well defined for large rank 3 strings for which both A% and N(A) are nonzero
and large rank 3 holes for which both B# and N(B) are nonzero. It can be shown
[25] that the Jordan dual leaves the cubic form invariant N(A) = N(A*) and satisfies
A = A. For a valid dual A*, we require that N(A) is a perfect cube. Despite the

non-polynomial nature of the transformation, the J-dual scales linearly in the sense
A*(nA) =nA*(A), B*(nB) = nB*(B), n € 7Z. (A.13)

The U-duality integral invariants Tr(X,Y’) and N (X, Y, Z) are not generally invariant
under Jordan duality while Tr(A*, A) and N(A), and hence the lowest-order black hole
entropy are. However, higher order corrections to the black hole entropy depend on some

of the discrete U-duality invariants, to which we now turn.

A.1.4 Discrete U-invariants

J-duality commutes with U-duality in the sense that A* transforms contragredient to
A. This follows from the property that a linear transformation s belongs to the norm

preserving group if and only if
s(A)#s(B) = ' (A#B) (A.14)

where s’ is given by
Tr(s(A),s'(B)) = Tr(A, B) (A.15)
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and always belongs to the norm preserving group if s itself does [212]. This implies
(s(A))* = §'(AY). (A.16)

The ged of a collection of not all zero integral Jordan algebra elements is defined to
be the greatest integer that divides them. By definition gcd is positive. The gcd may
be used to define the following set of discrete U-duality invariants [169]:

d1(A) = ged(A), dz(A) = ged(A™), d3(A) = [N (A)], (A.17)

which are the geds of the rank polynomials. Clearly d3(A) is conserved as expected, but
this is not necessarily the case for d; (A) and d2(A). Nevertheless the product d;(A)da(A)
is preserved.

While we require that N(A) is a perfect cube for a valid J-dual this is not a sufficient

condition because we further require that

= {féiﬂ]g - [‘Zﬁ;

For J = J4* with A € {C* H*, 0%} the orbit representatives of all black strings (holes)
have been fully classified [169] and it can be shown that the three d; uniquely determine

3
)} = d5(A*). (A.18)

the representative.

A.2 Freudenthal triple systems and 4D black holes

A.2.1 Freudenthal triple systems
The charges of various 4D supersymmetric black holes, e.g.
e N =2 STU model
e N = 2 magic supergravities
e N = 4 heterotic
e N =38

are assigned to elements of a Freudenthal triple system (FTS). Given an integral cubic
Jordan algebra Jj, one is able to construct an integral F'T'S by defining the vector space
M),

MI)=ZDZDIDJ. (A.19)
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with elements x € M(J) written
r=(o,8,A,B), «a,f€Z, ABEJ. (A.20)
In the STU case the charges are assigned
8 —(1,1,3,3) (A.21)

where the Jordan elements are 3-tuples. For the N = 8 generalisation we have instead

56 — (1,1,27,27), (A.22)
specifically
(—q0,0%, J3(P), J3(Q)) (A.23)
where
27 > 14+1+1+8;+8:+ 8¢ (A.24)

so that 27 are assigned to a 3 x 3 Hermitian matrix over the split octonions.

pl pv ﬁ
Js(P)=|Pv p* P¢|. (A.25)
ps pc p?
For convenience we identify the quadratic quantity
k(z) := L(aB — Tr(A, B)). (A.26)

T2

The FTS comes equipped with a non-degenerate bilinear antisymmetric quadratic form,
a quartic form and a trilinear triple product [1704{197}/198},213,214]:

1. Quadratic form {z,y}: M(J) x M(J) — Z

{z,y} = ad — By + Tr(A, D) — Tr(B, (),

(A.27a)
where x=(a,(,A,B), y=(v,6,C, D).

2. Quartic form A : M(J) — Z

A(z) = —4[r(z)? + (aN(A) + BN(B) — Tr(A*, B*))]. (A.27b)
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The quartic norm A(z) is either 4k or 4k + 1 for some k € Z.

3. Triple product T : MM(JF) x M(F) x M(J) — M(J) which is uniquely defined by
{T(w,2,y), 2} = 28w, 2,9, 2), (A.27c)

where A(w,z,y, z) is the fully polarised quartic form such that A(x,z,x,z) =

Al(x).

Note that all the necessary definitions, such as the cubic and trace bilinear forms, are
inherited from the underlying Jordan algebra J. When A = R, C,H, O and J = Jé&, the
group Aut(9(J)) is generated by the following three maps |198§]:

B g
1A A+ pC
A | B+ AxC+BCt ’ (4.280)
a a+ (B,C) + (A,CH 4+ BN(C)
6 B+ (A,D)+ (B,C% +aN(C)
A A+ B x D+ aD?
UERN I Bt oD : (A.28b)
(6% (6%
B AB
A s(A)
TG gl s(B) (A.28¢)
« A la

where s € Str(J) and s* is its adjoint defined with respect to the trace bilinear form,
Tr(X,s(Y)) = Tr(s*(X),Y).

A.2.2 FTS ranks

The automorphism group Aut(9(J)) is composed of all invertible Z-linear transfor-
mations that leave both the antisymmetric bilinear form {z,y} and the quartic form
A(x) invariant [198]. The conventional concept of matrix rank may be generalised to
Freudenthal triple systems in a natural and Aut(9%(J)) invariant manner. The rank
of an arbitrary element x € 9(J) is uniquely defined by the vanishing or not of four
rank polynomials linear, quadratic (in essence), cubic, and quartic in = as shown in
[170L[214]). Large BPS and large non-BPS black holes correspond to rank
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4 with A(x) > 0 and A(z) < 0, respectively. Small BPS black holes correspond to
ranks 1, 2 and 3 with A(z) = 0. In|Table A.4] we have listed the fraction of unbroken

supersymmetry for the A/ = 8 case.

Table A.4: Partition of the space M (J) into five orbits of Aut(M(J)) or ranks.

Rank Condition N — 8 BPS
z  3T(x,z,y) +{z,y}x T(z,z,z) A(x)
0 —0 — 0y -0 -0 -
1 £0 — 0y -0 -0 1/2
2 £0 £0 =0 =0 1/4
3 £0 £0 £0 —0 1/8
4 £0 £0 £0 >0 1/8
4 40 £0 £0 <0 0

Noting that the STU model may be consistently embedded in the A' = 8 theory one
might anticipate an FTS characterisation of three qubits. Indeed, setting F = C and
J=C&® C & C we may model the 3-qubit system using;:

(A.29)

) = agpc|ABC) + U= ( aiil (aoo1, @010, @100)
( .

110, @101, aon) apoo

In this case the automorphism group is given by SLa 4(C) x SLa g(C) x SLy ¢(C) together
with a discrete triality that interchanges A, B and C. The quartic norm (A.27h]) coincides
with Cayley’s hyperdeterminant (3.18]),

A(\I/) = —Detaapc, (A.30)

and the entanglement of a state is determined precisely by its F'T'S rank, rank 1 separable
through to rank 4 GHZ, as described in A slightly modified (qubit-adapted)
set of rank conditions is presented in here, the 4 refer to the B’ covariants of
and the trilinear form 7" can be identified as the covariant C11;. Embryonic
attempts to generalise this classification scheme are described in

A.2.3 Freudenthal dual

Given a black hole with charges =, we define its Freudenthal dual by

i = T(x)|Az)] "2, (A.31)
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Table A.5: F'TS rank conditions.
FTS rank condition

Class Rank

vanishing non-vanishing
Null 0 v —
A-B-C 1 3T(V, U, ®) + {U, 010 ]
A-BC 2a T(¥, T, T) A
B-CA 2b T(V, V¥, W) ~B
C-AB 2c T(¥, ¥, ) ~¢
W 3 A(T) T(¥,T,T)
GHZ 4 — A(W)

where T'(z) = T'(x, z,z) € M(J). F-duality is well defined for large rank 4 black holes for
which both T'(z) and A(zx) are nonzero. It can be shown that the Freudenthal dual leaves
the quartic form invariant A(z) = A(#) and satisfies Z = —x. For a valid & we require
that A(x)is a perfect square. Despite the non-polynomial nature of the transformation,

the F-dual scales linearly in the sense

Z(nzx) = ni(zx), n € 7. (A.32)

The U-duality integral invariants {z,y} and A(x,y, z,w) are not generally invariant
under Freudenthal duality while {Z,z}, A(x), and hence the lowest-order black hole
entropy, are invariant. However, higher order corrections to the black hole entropy

depend on some of the discrete U-duality invariants.

For J = J5* with A € {C*, H?, O}, that is, when A is one of the three integral split
composition algebras (i.e. including the all-important N' = 8 case) we can rewrite the

charge vector of any black hole in the diagonally reduced canonical form
z = a(1,7,k(1,1,1m),0), (A.33)
where o > 0,k,l > 0, and «, j, k, I, m € Z. The quartic norm of this element is
A(z) = —(§% + 4K31%m) ™. (A.34)
The F-dual is then explicitly given by

Z = ((—n1,n1J + nokim), n1k(1,1,lm), na(lm, m, 1)), (A.35)
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where we have ensured an admissible dual by imposing the constraints

2 + 43 1Pm|Y? = ng € NN, (A.36a)
aj/ng =ny € Z, (A.36D)
2k%la/ng = ng € Ny, (A.36¢)

where sgnn; = sgnj. It is then possible to classify example F-duals as shown in
[ble A.6l

Table A.6: Conditions on parameters for several example FTSs, where p € Z. Param-
eters mg,n; and ny are fixed by (A.36). Note that we still require o > 0, k,I > 0 and
ng # 0 in all cases.

Case J k l m sgn A no ny Ny

1 0 p?lm| >0 #0 —sgnm  2|p3|m?l 0 |p|a
2.1 #0 0 >0 €7 - 7] asgn j 0
2.2 #£0 >0 0 € — 7] asgn j 0
2.3 #0 >0 >0 0 — |7 asgnj  2k%a/|j]
3.1.1 2p 1 1 —(p*£1) + 2 Ip|a !
3.1.2  2r 1 >0 —(r’£q) + 2l|q| nr n
3.1.3  2r >0 >0 4q(gxr)/k3 - 21|2q £ 7| nr nk?
32 2p+1 1 1 -p(p+1) _ 1 2p+ Do 2a

A.2.4 Discrete U-invariants

We make the important observation that since
T(o(x),0(y),0(2)) =o(T(x,y,z2)), Vo € Aut M(J), (A.37)
F-duality commutes with U-duality

o(x) =o(2). (A.38)

The ged of a collection of not all zero integral FTS elements is defined to be the
greatest integer that divides them. By definition ged is positive. The gcd may be used
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to define the followinﬂ set of discrete U-duality invariants [40,/170]:

dy(z) = ged(x), ds(z) = ged(T'(z, x, x)),

dg(l’) = ng(ST(.’L’,l’,y) + {.T,y} l‘) vy, d4(l’) = |A(LU)|,

dy(z) = ged(B* — aA, A% — BB, 2k(x)C + 2{A, B,C})) VO, dy(z) = ged(z AT(z)),
(A.39)

where A denotes the antisymmetric tensor product. As in the 5D case, the unprimed
invariants are geds of the rank polynomials. Clearly d4(x) is conserved as expected
and it can be shown [25] that d)(z),da2(x), and dj(z) are also invariant, but this is
not necessarily the case for dj(x) and ds(z). Nevertheless the product d(z)ds(z) is
preserved.

Typically, the literature on exact 4D black hole degeneracies [32,34} 40,135,203~
206,1215/-222] deals only with primitive black holes d;(x) = 1. We are not required to
impose this condition and generically do not do so. More generally a quantity is termed
primitive if it has unit gcd. A related simplifying concept is projectivity, wherein a charge
vector for the cases J=2Z ® Z & Z, Jgs, J:,])HS, J;?S is projective if the components of it’s
quadratic rank tensor are primitive.

While we require that |A(z)| is a perfect square for a valid F-dual this is not a

sufficient condition because we further require that

o] [ . am

Unlike in 5D the invariants (A.39)) are insufficient to uniquely determine the orbit
representatives for the J = J4* with A € {C*, H*, O°} cases.

A.3 4D/5D lift

A subset of 5D black holes admit a Jordan dual A* preserving some, but not all, discrete
U-invariants. Similarly, a subset of 4D black holes admit a Freudenthal dual & preserving
some, but not all, discrete U-invariants. In both the 4D and 5D cases, if the discrete
invariant d; is preserved by the J/F-duality map, then all the listed discrete invariants
are preserved. When d; isn’t conserved the J/F-dual is not U-related to the original
charge vector. In the simpler 5D case the preservation of d; ensures that A* is U-related
to A, but in 4D the analogous conclusion only holds in the projective case. For non-

projective 4D black holes the situation is complicated by the absence of a complete orbit

Tn the A = 8 case Sen [40] denotes d5(x) by %, and dj(z) by .
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classification and uncertainty regarding what invariants are relevant to the higher-order
corrections. This situation is summarised in It would be interesting if in the

Table A.7: Are F or J duals related by U-duality?

Duality di conserved? U-dual?
Yes Projective Yes
F Non-projective ?
No No
3 Yes Yes
No No

non-projective case there were configurations with the same precision entropy that are
F-related but not U-related.

From a physical standpoint F-duality and J-duality are defined on charge vectors
rather than component fields of the lowest order action so their microscopic stringy
interpretation remains unclear, but we remark that two black holes related by F-duality
in 4D are related by J-duality when lifted to 5D. The 4D /5D lift [193] relates the entropy
of non-rotating 4D black holes to the entropy of rotating 5D black holes and it can be
shown [25] that the lift of the F-dual is related to the J-dual of the lift thus:

4D/5D lift
_—

4D black hole x 5D black string A ~ B*

Freudenthal duall lJordan dual . (A41)

dual 4D black hole # —— dual 5D black hole B ~ A*
4D /5D lift

A.4 Integral U-duality orbits

We recently leveraged the integral Jordan/Freudenthal technology to address the ques-
tion of whether two a priori distinct extremal black p-brane solutions are actually U-
duality related in the context of AV = 8 supergravity in four, five and six dimensions.
The answer has been known for some time in the classical supergravity limit, but Dirac-
Zwanziger-Schwinger charge quantisation breaks the U-duality group to a discrete sub-
group, making the matter of U-duality orbits in the full quantum theory rather more
subtle.

Not only is this an interesting mathematical question [170,223], it is also of physical

significance, with implications for a number of topics including the stringy origins of
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microscopic black hole entropy [206,1216,[224]. Moreover, following a conjecture for the
finiteness of D = 4, N/ = 8 supergravity [225], it has recently been observed that some
of the orbits of E;(7)(Z) should play an important role in counting microstates of this
theory [226], even if it may differ from its superstring or M-theory completion [227].
We were able to clarify the state of knowledge at the time, presenting the cascade
of relationships between orbits (and the associated moduli spaces) as one descends from
six to four dimensions in the continuous case. We were able to fill in a few gaps in the
literature by adapting the work of Krutelevich [169}/170,/195,/196] in the discrete case.
The charge vector of the dyonic black string in D = 6 is SOs5 5(Z) related to a two-
charge reduced canonical form uniquely specified by a set of two arithmetic U-duality
invariants. Similarly, the black hole (string) charge vectors in D = 5 are Eg(4)(Z) equiv-
alent to a three-charge canonical form, again uniquely fixed by a set of three arithmetic
U-duality invariants. However, the situation in four dimensions is, perhaps predictably,
less clear. While black holes preserving more than 1/8 of the supersymmetries may be
fully classified by known arithmetic E7(7)(Z) invariants, 1/8-BPS and non-BPS black
holes yield increasingly subtle orbit structures, which remain to be properly understood.
However, for the very special subclass of projective black holes a complete classification
is known. All projective black holes are E(7)(Z) related to a four or five charge canonical
form determined uniquely by Cartan’s quartic E77)(R) invariant. Moreover, Er(7)(Z)

acts transitively on the charge vectors of black holes with a given leading-order entropy.
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