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ABSTRACT: We examine new algebraic structures which are
generated by the SU(n) vector Iinvariants conslsted of
oscillator creation and annihilation operators. For analyzing
bosonic oscillator systems with internal SU(n) symmetry we
introduce both infinite-dimensional Lie algebras and
nonstandard polynomial deformations and mutations of finite-
dimensional oscillator Lie algebras. A spectral analysis of
the Fock spaces of initlal oscillators 1ls glven with respect
to the SU(n) invariant algebras under consideration. Some
physical applications in composite models of many-body systems

are polinted out.

1. Introduction.

The symmetry approach based on the use of mathematical forma-
lism of represantation theory of Lle groups and Lie algebras is
widely and successfully used in quantum theory of many-body sys-
tems (see, e.g., [1-6] and references therein). Specifically, ana-
lysis of many-body problems within the second quantization method
introduces in a natural way a symmetry formalism assoclated with
oscillators of bosonic and fermionic types: represantation theory
of oscillator Lie algebras and superalgebras ln the Fock spaces
[1,4-8].

Such an approach is especially fruitful in examining compo-
site models with an internal symmetry since it allows to display
some hidden symmetries and other peculiarities of systems under
consideration [8-11]. Besides, within this analysis we obtain some
new algebraic structures which differ from usual Lie algebras and
and groups and repreesent their specific deformations and
mutatlons (cf.[12-15]).

Indeed, let us consider many-body quantum oscillator systems
( of bosonic or fermionic types) which are associated with the
creation and annihilation operators x? and §T=(x?)+, respectively

(=1,2,...,n; 1=1,2,...,m<w, the superscript "+" denotes the Her-
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mitian conjugation). Here the superscript "«" labels "internal"
components of one-particle states that transform in a accordance
with the vector (fundamental) irreducible representation (irrep)
D'(G) of a classical group G:

X 3 HuaBH € Dl(G), (1.1)

& aB B 2§ (uanB)+.
X 1 i
where from here on the summation is implied over repeated Greek
superscripts. The operator x?.if satisfy the standard commutation
relations (CR)

=x xB+Ax3 “—0 [x . X ]

[x‘:‘,xﬁl (1.2)

a(A) o(A)

s B - =
[x‘,lew(l)—s 611, c(A)=sgna,

where A=~1 and 1 for bosonic and fermionic systems, respectively.
The Hilbert space for these systems are the Fock spaces LF spanned

by the basic vectors

[+3 o o
n 1l & n_2 a nm
(x ™ ° o>, (1.3)

o
oy o 1
l(ni)>—N((nl)) G (x1 ) 2 el

{a}

where |0> is the vacuum vector: §?|0>=0 o,i, N is a normalization
constant; the range of the exponents (n?} depends on the type of
the oscillator statistics. All physical operators includlng Hamil-

tonian H are polynomials in variables x“, §B, e.g.

i 3
H—izjwffx‘x€+§(cax?+c? xa)+higher powers, (1.4)
where the asterisk * denotes the complex conjugation.

Now we suppose that Hamiltonian H is Ilnvariant with respect
to the action (1.1) of the "internal" symmetry group G. Then, ac-
cording to the vector invariant theory [16], H depends polynomial-
ly only on some elementary G-invariants I [(x xB)) constructed in
terms of G-vectors x —(x ) and x —(x ). Further, this G-invarlance
of H provokes a possibility of picking out the G-invariant sub-
spaces in LF that one may interpret as a existence of kinematical-
ly coupled ("confined") in internal variable subsystems with the
G-invariant dynamics. In order to examlne such composlite subsys-
tems within the general symmetry approach [3,4] we need in con-
structing C'-algebras [17] of the G-invariant observables k (G)

and the G-ilnvariant dynamic symmetry algebras k(x)(G) in terms of
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{Ir((x?,;ﬁ))} as well as studying representations of these al-
gebras in the spaces LF'

Efficient tools for solving these problems are the vector in-
variant theory [16] and the conception of complementary groups and
algebras [10,18]. Specifically, the complementarity theory allows
us to decompose the space LF into direct sum (with a simple spec-

trum)

_ «
L = 8 L (1.5)

where the subspaces LY are irreducible with respect to an action

&

of the algebra g@km (G) ("g" being the Lie algebra of G) and
furthermore the label "«" determines simultaneously both an irrep
Du[g) of g and an dual irrep Da(kék)(G)) of k;k)(G). From the
physical point of view the decomposition (1.5) gives rise to some

superselection rules [19] since the single spaces Lg with diffe-

rent "a" do not "mix" under the time-evolution governed by a Ha-

miltonian H € k;h)(G). Thus the “"internal" symmetry algebra g "in-
(A](G)
a .
This program is simply and fruitfully realized in many-body

duces" the "hidden" dynamic symmetry algebra k

physics for the groups G=0(n) and Sp(n) since in these cases the

basic invariants Ir({...}) are bilinear combinatlons of the opera-
tors x? and ;?, and therefore algebras kél)(G) are well-known fi-
nite-dimensional Lie-algebras (see, e.g., [18,20-22] and refe-
rences therein). However for the groups G=SU(n) and SO(n) the

situation is more complicated. Specifically, for n=3 the algebras
kY (su(n)) ana k'™
m m

dimensional Lie algebras [8,9,23] assoclated with some

(S0(n)) belong to new classes of infinite-

deformations of the universal enveloplng algebras of generalized
oscillator algebras [11]. A theory of these structures has as yet
been developed not quite enough.

The main aim of the present paper is to examine the situation
in more detail for the case G=SU(n), D1(G)=D(10n_2), A=-1, where
[pl,...,pn] is the  highest weight of the SU(n) irrep

D(pl,...,pn_l)and dot as a superscript over "a" in "ér means the

repetition of "a" r times. The paper 1s organized as follows. In
Sec.2 we investigate some properties of algebras

(-1)
k

- (SU(n))=k;q(n) and assoclated structures. In Sec.3 we study

their representations in the spaces LF' Sec.4 is devoted to cer-
tain physical applications of the algebras under consideration. In

Sec.5 some problems and generalizations are discussed.
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2.Bosonic algebras of the SU(n) vector invariants.

So, specialize our further analysis for bosonic systems
(A=-1). As is well known [8,16] the set of the basic vector inva-
riants IT({XI’;j)) for the group SU(n) consists of the following

constructions:
= X = (X.—Q‘.= + =
EU_(x‘xJ)—xlxJ (Eil) , 1,5=1,...,m, (2.1a)
LA o

X’mi -‘:[xl R I=¢ X Toex 11<12<...<1n, (2.1b)

1 n 1 n 1 n
X =[x ...x 1=(X )" for a=-1, (2.1c)

1 ...1 i i 1.1

1 n 1 n 1 n
where € '° 1is the invariant antisymmetric tensor. The entities

(2.1) are generators of the C~—algebra km(SU(n))Ekm(n) of the
SU(n)-invariant conceptual observables [17] whose elements are
formal power series in the variables (2.1) with their certain or-
dering. The ordering is dictated by exlistence some relations bet-
ween the quantities (2.1).

Specifically, from the second Hllbert theorem of the vector
invariant theory [16] for A=-1 we have the identities ("syzygies")

X X -X X +
Y 1% Jpedy Alpeety Yylpee)
+(-1)" X =0, (2.2a)

jlll...in_‘ inJZ."Jn

X E -X E +...+(-1)"X E =0, (2.2b)
11...ln I"J rlz...ln 11_1 t‘ll...l“.1 1]

X‘ o XJ s =Pn({E’J)) (2.2c)
1 n "1 n

and those obtained by the Hermitian conjugation of eqs (2.2). Here
Pn((Elj}) are polynomials of the n-th order in variables (2.1a)
whose explicit form can be found from the well-known algebraic
identity [(16]

.. o
1
£ = detlsd, 1. (2.3)
€ 8- 9%

By 1

For example, for the case n=2 we have

P_({E_ })=E E -E E -3 E +3 E . (2.4)
@ u Yy e Nl e R M e M
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The identies (2.2) allow us to identify the algebras km(n) as PI-
algebras [24] on the Grassmann manifolds with the Plicker coordi-
nates Xl . [25,26].

PRERE

Further, from the CRs (2.2) with A=-1 we easily find CRs for
the quantities (2.1):

[EIJ'Ers] = [EsJ’Ers = ajr 1s 1s vy’ (2.5a)
[X‘ L ,XJ o ]=O=[X‘ . ,XJ . 1, (2.5b)
1 n 1 n 1 n i n
[Erj'xi veed ]=61s Xri et +611 x: TP TR (2.5c)
1 n 1 n 2 1 n
[Erj'xl Lot ]=—(5r\ in ) +6rx Xl ...t MAERRE (2.5d)
1 n 1 2 n 2 1°3 n
- ,
X, oX, 1P HE M), (2. 5¢)
1 n 1 n

where Pn({E")) are polynomials of the (n-1)-th order in variables

ElJ which are obtained by using the explicit form of the polyno-

mials P;((Eij}) in eq. (2.&c). Specifically, for the case n=2 we

have
- ’
[xlj'XkI] - PZ({EIJ}) - 2(ajk6\l_61kajl) T EGtOLE, T
é E - 8 E (2.5e’)

1) &t ko’

»*
that allow us to close the CRs (2.5) and to introduce the SO (2m)
Lie algebra structure on the set Im(Z)E(le'Xkl'Eij} [8,11].

It 1s not the case, however, for n23 because repeated CRs of

’
Pn({ElJ}) with elements of the set
Im(n)E{Etj’Xxlu.ln'xxlu.1n|i=1""m} contaln elements of the
km(n) algebras with higher powers of E”,X1 \ ,ij i and
e REES
&)

thus result in infinite-dimensional Lie algebras km (n) [11]. But
if we restrict ourselves by considering only the initial CRs (2.5)
(-)(n) which
are some deformations of usual Lle algebras (cf.[12-14]). Indeed,
the CRs (2.5a)-(2.5d) are similar to those for elements of usual
bosonic oscillator Lie algebras u(m)eh(m) [2-4] while the CR

we obtain a new class of Lie-algebraic structures Im

(2.5e) represents a polynomial deformation of the canonical CR
for usual bosonic oscillator operators. For example, in the case

n=m=3 we have
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123" 123

3
=31+3 3 E +E E -E E +E E -E E +E_E -E E_.
1=1711 11 22 21 12 22 33 32 23 33 11 13 31 (2.6)

Therefore, taking also into account the egs. (2.2), we may call al-
gebras I;”(n) as Grassmann deformations of bosonic osclllator al-
gebras.

We also note that with each algebra I;_)(n) one may assocliate
a Lie algebra k:')(n) if instead of the usual Lie bracket [-,:] we
use a new Lie bracket [-,-],EPrIm[',- ] where the symbol PrIm
stands for the projection onto Spanlm(n)U(cI} (with "I" belng the
identity operator). In a sense the algebras k:”(n) may be consi-
dered as peculiar ("linearized") mutations [15] of the algebras
k;-](n]whlch can be used for a descriptlons of a generalized dyna-
mics of the SU(n)-clusters (cf.[11,151).

Thus, the set (2.1) generates mutually related Lie algeb-
ralc structures k;')(n), I;')(n) and k;‘)(n) of three different
types which are connected with Grassmann oscillators. Any of these
algebras has two mutually conjugate finite-dimensional Lie subal-

gebras bim’“)=Span(EiJ,X } and b(m'")=Span{EU.)_(i . } of

1 ...1 - ..
1 n 1 n

the Grassmann oscillator algebras. In addition, the algebras
ki-)(n) have a characteristic property of nilpotency

n+l

adA B=0, AeX_=Span(Xi i Y, BEX+=Span{Xl . }, (2.7)

Y
1 n 1 n

— n,__.n-1
adAB—[A,B], adAB—adA (adAB),

which is useful for summing up the Baker-Campbell-~Hausdorf series
[11].

3.Representations of the algebras k:q(n). I;ﬂ
k;')(n) in the Fock spaces L

(n) and
F

For the physical applications we need in constructing repre-
sentations of above defined algebras of the SU(n)-vector inva-
riants, particularly, in the spaces LF' Below we outline a general
scheme of the spectral analysis of the spaces LF with respect to
actlons of the algebras su(n)@k;q(n) that determine also approp-
riate irreps of the algebras I;q(n) and k:”(n]. For this aim we
use the concept of complementary algebras and groups [18,22].

We start from the simplest case n=2 when we have
k;q(2)=k;”(2)‘ As 1s known the algebra k;4(2)=so*(2m) acts com-
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plementarily to the algebra su(2) _sp(2) on the space L. [11,22,

27] and the decomposition (1.5) takes the form

F

LF=JgO L(J), (3.1)
where the label J specifies both the SU(2) irrep D(2J) and the
appropriate so*(Zm) irrep DJ(so*(Zm)) [11].

The subspaces L{(J) are spanned by the basic vectors |J;M;v>
where the lables "M" and "v»" distinguish basic vectors within ir-
reps D(2JO and DJ(so*(Zm)) respectively. Thus, the decomposition
(3.1) represents a vector bundle [28). The vectors |J;M;v> are 1li-
near combinations of the Fock states (1.3). In the papers [10,29]
a simple algorithm has been developed for explicit constructing
these vectors by using the techniques of the generating invariants
and generalized coherent states. We consider such constructions
for the case m=2 which, however, elucidiates the situation in the
general case..

For m=n=2 the algebra k;4(2)=so*(4) decomposes into the di-

*
rect sum so (4]=su‘nv(2)®su(1,1) (with generators L
(1/2)(E_+E_)+1 and E _, E_ , (1/2)(E -E_ ) for the subalgebras
11 22 12 21 11 22
su(l,1) and su(2), respectively) and the basis vectors |J;M;v> ha-
ve the form

[J;M; v>=|J;M; {T, t}>=N(J, M, T, t) (elﬁ)"-“(ezﬁ)“x[xlu]Jﬂ[xau]J_tx

T-J =&
X(xlz) jo>, (elu)=elu (3.2)

where N is a normalization factor, "u' and "u" are some interme-
diate boson operators, e,=(8T) are the reference vectors. Speci-
fically, for the G=SU(2)-scalar subspace L(0) the vectors (3.2)
take the form [11]

IT>210;0; {T, 0}>=[T! (T+1)1 17"

(x,,)'10>, (3.3)
which is generated by measns of action of powers of the SU(2)-
invariant cluster (Grassmann oscillator) creation operators X, on
the vacuum vector |0> by analogy with usual one-mode Fock states
(1.3). Comparing the appearence of the vectors (3.2) and (3.3) we
observe that they have a simillar structure. The only discrepancy
is in that the vectors (3.2) are generated, unlike (3.3) by action
of the operators X:z on the (2J+1)%-dimensional "vacuum" subspace
Lv[J)=Span(|J;M;(Jt)>:J=const) with characteristic property

X12Iv>=0, lv> € Lv(J). (3.4)
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In turn the space L&J) is generated by means of action the lowe-
ring opirators E X x '2g?!  and E21 of two subalgebras su(2) c
su(2)eso (4) on the hlghest vector |J;J; {JJ}>.

Now we consider an action of the above algebra so"(4) on the
vectors (3.2) using the CRs (2.5). We note that because of the de-
finition of k;4[2)=so*(4) its action does not change the values
of numbers J,M "controlled" by the "internal" algebra su _(2).

int
Hence each space L(J), J#0, decomposes into the direct sum

L(J]=%L(J,M)=%Span(IJM;{Tt}>:J,M=const) (3.5)

of the disjoint spaces L(J, M) whlch are equivalent with respect to
the action of the algebra k (2) so*(4) Further, the action of
the subalgebra su[2) 1nyC SO (4) does not change the quantum number
T while the operators X and X of the subalgebra su(l,1) <
so (4) raise and lower its value by one respectively. Thus each
space L(J,M) is a conjuction of the disjoint su“w(z)—equivalent
subspaces L(J;M; T)=Span{|J;M; {Tt}>:J,M,TzJ =const} which are "in-
tertwined" by the operators X X12. Such the action of the alge-
bra k (2)~so (4) on the space L(J,M) resembles that of wusual
oscillator algebra on the Fock space (cf.[2,4]) and allows us to
obtain the space-carrier of the so*(4) irrep DJ(so*(4)) starting
from any vector of the “vacuum space" Lv(J). Similiarly, oﬁe can
show that all spaces L(J,M) are the carrier-spaces of equivalent
irreps of the algebra I;_)(Z).

The above analysls provides a sample for reallzing spectral

analysis of the spaces L. in the case of arbitrary "m" and "n"

F
[11). Therefore we outline its logical scheme and polnt out some

peculiarities in the general case.

For arbitrary “m" and "n" the algorithm consist of determi-

ning "vacuum spaces" L (p -P,_ ) and next constructing their
su{m)-equivalent replicas (su(m) [ k (n), I( )( ), k (n)] by

means actlon of operators Xl . on the vectors Iv> €
R

Lv[p1""’pn—1)' In turn the spaces Lv("') are generateg by means

of action of lovering operators of the algebras
suxnt(n)=Span(EijEr§1x:§i. i=), glizgliopt*lsi41,

= i E - =) _
sulnv(m)-Span(Eij, i#4, ﬁ‘i—Eli E1+L1+1} < k, {n) on the com
mon highest vectors lpl...pmd;max>5|<pi>>satisfying the following

and

equations
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a) xi . |<pi>>=0, (3.6a)

IR
b) l‘::“|<pl>>=p‘|<pl>>=l:f“|<pi>>, i=1,...,n-1, (3.6b)
c) Eljl<p1>>=0=EiJ|<pl>>, 1<J. (3.6c)

As a result we obtain at final step of the algorithm the following
specialization of eq.(1.5) [11]:

7

L.=@e L(<p >)=e
<pl> 3 <p‘

- ,,.7L(<p‘ > {p'59)), (3.7)

>, H M
where L(<pl>;u';{u";y))=Span(l<p‘>;p’;{y”;1}>} are carrier-
spaces of the su““(n) irreps D(<p1>) and of assoclated (dual to
D(<p,>)) irreps of the algebras k;_)(n),I;-)(n) and k:')(

and p‘’ are the Gel'fand -Tsetlin patterns for the algebras

.

n); p

su“n(n) and su“w(m), respectively; 7 1is an extra label for
distinguishing vectors within irreps of k:q(n) etc [10). Basic
vectors |$P|>;“';{u”;7}> resemble in thelr appearance the struc-
ture of the vectors (3.2) but instead of monomials X:z we obtain

some polynomials in variables Xl L An algorithm for obtaining
b

an explicit (quasimonomial in vector invariants consisted of X,

and some intermediate boson vectors ul, ﬁj) form has been develo-

ped in our papers [10,29].

4.Some physical applications.

A natural area of applications of the above results is in de-
veloping composite models with internal SU(n)-symmetries within
both quantum mechanics and quantum field theory [2,11,30-32]. Such
models are governed by SU(n)-invariant Hamiltonian Hinv formulated
in terms of elements of the algebras km(n):

H =cI+XZwE +XZc E + Z d X +
inv T 111 1,5 1)1y t ... 1 .,.1
1 n 1 n

+ £ d X . +higher powers. (4.1)

Specifically, some effective Hamiltonians in quantum polari-
zation optics have this form [11,32].

The quantities Xl ' and R: ,  hay be Iinterpreted as

17" n 1"""'n
operators of creation and annihilation, respectively, of SU(n)-

invariant clusters. But, unlike usual quantum particles (bosons
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and fermions) these clusters have unusual statistics as it follows
fromthe CRs (2.5). In particular, in the case n=2 we obtaln from
(2.5) trilinear CRs

X +..., (4.2)

(X ,[X ,X 11=(6. 8 -8 8 )X +(5 & -3 &
re Jl rk  jk rl° is J1 8k Jk sl° ri

137kl
which generalize the Green’'s trilinear CR for parafields and para-
particles [2]. The CRs (2.5) imply also the general form of the

number operator Ncl of such clusters [11]
_ _ o, =
ch_(l/n)§Exi C({E™}) (l/n)§E11 C({Elj}), (4.3)

where C(...) are some SU(n)-invariant nonlinear functions of the
SU(n) generators E“B which are multiple to the identity operator I
on each subspace L(<p1>) from (3.7). Specifically, for m=n=2 we
have

C{E™®))=1/2+(1/2) (142 (B 2E2 4 E12) + (E11-E22)2) 12 (4.4)

Thus, taking also into account (2.2), we see that internal SU(n)-
symmetry yields us a scheme of a generalized paraquantization with
constraints (cf.[30,33]) on the spaces LF=QL(<p1>]. Because of
nontrivial dimensions of the "vacuum subspaces” Lv(<p|>) we can
develope models with spontaneously broken and hidden symmetries
(cf. [31]) within above formalism.

Another interesting line of lnvestigations here is in exami-
ning possibilities of constructing canonical bases of observables
Ya, ?b ([?b,Ya]=Gab) in terms of elements of algebras km(n). This
way seems to be perspective since, following the general scheme
{34], we obtained in [11] explicit expressions for Y, ¥ in the
case m=n:

_ J4l, 3 J
Y=z CJ(X12“.n) (x12”.n)

J=z0

, ¥=(n*, (4.5)

where the coefficlents Cr are determined from a set of reccurence
relations depending on signatures <pi> of subspacles L(<p1>).

Such developments can be useful in analyzing composite models
of many-body quantum systems of arbitrary physical nature (pho-
tons, phonons etc.)}. Some examples of solving certain problems in
polarisation quantum optics have been considered within this ap-
proach in [11].
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5.Conclusion.

In conclusion we point out some problems and generalizations
of the above developments.

The results obtained provide a mathematical tool for analy-
zing composite models with internal SU(n)-symmetry only at algeb-
raic level. However, for examining time evolution governed by ha-
miltonians (4.1) we need in developing group-theoretical aspects
of the theory, in particular, generalized coherent states of al-
gebras ki-)(n) etc.

It is also of interest to extend our analysis by common con-
sidering both internal and the space-time Poincare symmetries. The

"Grassmann nature" of the SU(n)-clusters Xl , 8lves hope that
vt
we can obtain along this line certain results which are useful

for some developments in string theory (cf.[25,26]) and for analy-
zing nonlinear phenomena and coherent structures in strongly inte-
racting many-body systems [35].

Flnally we note that formal aspects of the above analysis may
be extended completely for the case G=SO(n). Another generalisa-
tionis obtained by involving in consideration other than p'(G)

irreps of "internal" groups G.
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