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ABSTRACT: We examine new algebraic structures which are 

generated by the SU[n) vector Invarlants consisted of 

oscillator creation and annihilation operators. For analyzing 

bosonlc oscillator systems with internal SU(n) symmetry we 

introduce both infinite-dimensional Lie algebras and 

nonstandard polynomial deformations and mutations of finite- 

dimensional oscillator Lie algebras. A spectral analysis of 

the rock spaces of initial oscillators is given with respect 

to the SU[n) invariant algebras under consideration. Some 

physical applications in composite models of many-body systems 

are pointed out. 

l. Introductlon. 

The symmetry approach based on the use of mathematical forma- 

lism of represantation theory of Lie groups and Lie algebras is 

widely and successfully used in quantum theory of many-body sys- 

tems (see, e.g., [i-6] and references therein). Specifically, ana- 

lysis of many-body problems within the second quantlzation method 

introduces in a natural way a symmetry formalism associated with 

oscillators of bosonic and fermionic types: represantatlon theory 

of oscillator Lie algebras and superalgebras in the Fock spaces 

[1,4-S]. 

Such an approach is especially fruitful in examlnin E compo- 

site models with an internal symmetry since it allows to display 

some hidden symmetries and other peculiarities of systems under 

consideration [8-II]. Besides, within this analysis we obtain some 

new alEebraie structures which differ from usual Lie algebras and 

and groups and repreesent their specific deformations and 

mutations (cf. [12-15]). 

Indeed, let us consider many-body quantum oscillator systems 

[ of bosonic or fermlonlc types) which are associated with the 
--~ ~+ 

creation and annihilation operators x~i and xi=(x i) , respectively 

(~=i,2 ..... n; i=I,2 ..... m<m, the superscript "+" denotes the Her- 
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mitlan conjugation). Here the superscript "~" labels "internal" 

components of one-partlcle states that transform in a accordance 

with the vector (fundamental) irreducible representation (irrep) 

DI(G) of a classical group G: 

x ", 9 x? ÷, , D'(G). (i I) 

where from here on the summation is implied over repeated Greek 

superscripts. The operator x ~ x~ satisfy the standard commutation 
I' J 

relations (CR) 

ix i,xj] (~)=xtx]+Ax]xt=0=[xl,xj]~CX), 

[ x ~ . x ~ ] c r ( ) O = ~  j. o-(;~)=sgr~, 

( i . 2 )  

where A=-I and I for bosonlc and fermlonic systems, respectively. 

The Hilbert space for these systems are the Fock spaces L F spanned 

by the basic vectors 

n l l  g2 n22 g n m 
I{n~}>=N({n~})~. G (x11) (x 2 ) . . . ( x  m) m I0>, (1.3) 

where I0> is the vacuum vector: x=lO>=O ~,i, N is a normalization 
| 

constant; the range of the exponents {n 7} depends on the type of 

the oscillator statistics. All physical operators includin E Hamil- 

tonian H are polynomials in variables x ~, x~, e.g. 
i ] 

H=.Z.~..x.x.+~(c.x.+c. x.)+higher powers, (1.4) 
,,j ,j , j , i , , , 

where the asterisk ~ denotes the complex conjugation. 

Now we suppose that Hamiltonlan H is Invarlant with respect 

to the action (i.I) of the "internal" symmetry group G. Then, ac- 

cording to the vector invariant theory [16], H depends polynomial- 

ly only on some elementary G-invarlants I ({x?,~.}) constructed in 
r i j 

terms of G-vectors xi=(x ~) and xi=(xT). Further, this G-lnvarlance 

of H provokes a possibility of picking out the G-invarlant sub- 

spaces in L F that one may interpret as a existence of kinematical- 

ly coupled ("confined") in internal variable subsystems with the 

G-invarlant dynamics. In order to examine such composite subsys- 

tems within the general symmetry approach [3,4] we need in con- 
m 

structing C -algebras [17] of the G-invarlant observables k (G) 
m 

and the G-Invariant dynamic symmetry algebras k(h)(G) in terms of 
m 
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{Ir({X?,X~})} as well as studying representations of these al- 

gebras in the spaces L F. 

Efficient tools for solving these problems are the vector in- 

variant theory [16] and the conception of complementary groups and 

algebras [10,18]. Specifically, the complementarity theory allows 

us to decompose the space L F into direct sum (with a simple spec- 

trum) 

LF= ~ L F, (1.5) 

where the subspaces L_ are irreducible wlth respect to an action 

of the algebra gek~)(G)- ("g" being the Lie algebra of G) and 

furthermore the label "~" determines simultaneously both an irrep 

of g and an dual irrep D~(kLA)(G))- of k(A)[G). From the D~[g) 
m m 

physical point of view the decomposition (i.5) gives rise to some 

superselection rules [19] since the single spaces L F with diffe- 

rent "~" do not "mix" under the time-evolution governed by a Ha- 

miltonian H E k(A)(G). Thus the "internal" symmetry algebra g "in- 
m 

duces" the "hidden" dynamic symmetry algebra k(A)(G). 
m 

This program is simply and fruitfully realized in many-body 

physics for the groups C=O(n) and Sp(n) since in these cases the 

basic invariants Ir({...}) are bilinear combinations of the opera- 

tors x ~ and x~ and therefore algebras k(A)(G) are well-known fi- i J' m 
nlte-dlmenslonal Lie-algebras (see, e.g., [18,20-22] and refe- 

rences therein). However for the groups G=SU(n) and SO(n) the 

situation is more complicated. Specifically, for nm3 the algebras 

k(-1)(SU(n)) and k(-1)(SO(n)) belong to new classes of infinite- 
m m 

dimensional Lie algebras [8,9,23] associated with some 

deformations of the universal enveloping algebras of generalized 

oscillator algebras [Ii]. A theory of these structures has as yet 

been developed not quite enough. 

The main aim of the present paper is to examine the situation 

in more detail for the case G=SU(n), DI(G)=D(IOn_2) , A=-I, where 

[pl,...,pn ] is the highest weight of the SU(n) irrep 

D(pl ..... pn_1)and dot as a superscript over "a" in "~ " means the 
r 

repetition of "a" r times. The paper is organized as follows. In 

Sec. 2 we investigate some properties of algebras 

k(-1)(SU(n))=k(-)(n) and associated structures. In See. 3 we study 
m m 

their representations in the spaces L F. See. 4 is devoted to cer- 

tain physical applications of the algebras under consideration. In 

See. 5 some problems and generalizations are discussed. 
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2. Bosonic algebras of the SU(n} vector invarlants. 

So, specialize our further analysis for bosonic systems 

(A=-I). As is well known [8,16] the set of the basic vector inva- 

riants Ir({Xl,Xj}) for the group SU(n) consists of the following 

constructions: 

E t j ~ ( X l X j ) = X ? X ~ = ( E j ~ )  +, i , j = l  . . . . .  m, ( 2 . 1 a }  

m[Xl 1 n i <i <. .<i , (2.1b) Xl . . . I  . . . X  1 ]=E 1 n Xl . . . X !  ~ 1 2 " n 
1 n 1 n 1 n 

Xi1""tnE[xil'"xt]=(Xln 1""In )+ for A=-I, (2.1c) 

where c''" is the [nvariant ant£symmetrlc tensor• The ent£ties 

(2.1) are generators of the C -algebra km(SU(n))mkm(n) of the 

SU(n)-invarlant conceptual observables [17] whose elements are 

formal power series in the variables (2.1) with their certain or- 

dering. The ordering is dictated by existence some relations bet- 

ween the quantities (2.1). 

Specifically, from the second Hilbert theorem of the vector 

invariant theory [16] for A=-I we have the identities ("syzygles") 

X X -X X +... + 
ll...i Jl...Jn J112,.'In l l J 2 . ' ' J  n n 
+(-l)nx X =0, 

ill[• • i  'in 
• n-1 tnJ2"" 

(2.2a) 

X| I.. .InErj-Xrl2" '" InEilJ+•''+C-l}nXr|l'"In-IEinJ=O' (2.2b) 

XII., .inxjl... jn=Pn{ {Eli}) (2.2c) 

and those obtained by the Hermit[an conjugation of eqs (2.2}. Here 

P ({EH}} are polynomials of the n-th order in variables (2.1a) 

whose explicit form can be found from the well-known algebraic 

Identity [16] 

1 n 
E c = detU[Jll. (2.3) ~,...~ ~j 

For example, for the case n=2 we have 

P 2 ( { E i j } ) = E  E -E  E - 6  E +~ E . ( 2 . 4 }  
l j J  1 12J 2 J lJ  2 12J | 12J 1 l l J  2 i2J 2 i i J i  
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The identles (2.2) allow us to identify the algebras k (n) as PI- 
m 

algebras [24] on the Grassmann manifolds with the Plucker coordi- 

nates X [25,26]. 
i ...i 
I n 

Further, from the CRs (~.2) with k=-I we easily find CRs for 

the quantities (2 .  i): 

[Elj, Ers ] m [El j, Ers]_= ~ jrEis-~IsErj' (2.5a) 

. J ]=0=[Xt I ,X ], (2.5b) 
[Xll ''in' XJI"" n 1 ' ' "  n Jl'''Jn 

[Erj'Xl i'"In]=~J|IXri2""In+~Ji2Xilri3 "''In ÷ .... (2.5c] 

[Erj'Xt ...i ]=-(~rt ~ +~ X +'"" )' (2.5d) 
1 n 1 J l 2 ' ' ' l n  r l 2  l l J l 3 " ' ' l n  

[X|I' ..In'XJl... Jn ]=P~({EIj})' ( 2 . 5 e )  

pt 
where n({Eij}) are polynomials of the {n-l)-th order in variables 

E which are obtained by using the explicit form of the polyno- 
lJ 

mlals Pn[{Eij}) in eq. (2.1c). Specifically, for the case n=2 we 

have 

i 
[Xlj,Xkl] = - ~ E +~ E + = P2({EtJ}) 2(~]k~il-~Ik~Jl) - tl k] Ik I] 

+ ~ E - ~ E ( 2 . 5 e ' )  
lJ k! Jk I t '  

that allow us to close the CRs (2.5) and to introduce the S0e(2m) 

Lie algebra structure on the set Im(2)m{Xlj,Xkl,Eij} [8,11]. 

It is not the case, however, for nZ3 because repeated CRs of 

P;({EIj}), with elements of the set 

Im(n)E{Etj'Xl ...I 'Xi ...i li=1 .... m} contain elements of the 
1 n 1 n 

k (n) algebras wlth higher powers of EIj,X i i 'Xj and 

thus result in infinite-dimensional Lie algebras k- On) [II]. But 

if we restrict ourselves by considering only the initial CRs [2.5) 

we obtain a new class of Lie-algebralc structures I (-){n) which 
m 

are some deformations of usual Lle algebras (cf, [12-14]). Indeed, 

the CRs (2.5a)-[2.5d) are similar to those for elements of usual 

bosonic oscillator Lie algebras u(m)eh(m) [2-4] while the CR 

(2.5e} represents a polynomial deformation of the canonical CR 

for usual bosonlc oscillator operators. For example, in the case 

n-m=3 we have 
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[X123, X123 ] = 
3 

=3!+3 Z E +E E -E E +E E -E E +E E -E E 
1=1 i l  11 22 21 12 22 33 32 23 33 11 13 31 (2•6) 

Therefore, taking also into account the eqs•(2.2), we may call al- 

gebras I(-)(n) as Grassmann deformations of bosonlc oscillator al- 
m 

gebras. 

We also note that with each algebra I(-)(n) one may associate 
m 

a Lie algebra k(')(n) if instead of the usual Lie bracket [.,.] we 
m 

use a new Lie bracket [',.]~mPrlm[',. ] where the symbol Prlm 

stands for the projection onto Spanlm(n)U{cl} (with "I" being the 

identity operator)• In a sense the algebras k(')(n) may be consl- 
m 

dered as peculiar ("linearized") mutations [15] of the algebras 

k(-](n)whlch can be used for a descriptions of a generalized dyna- 
m 

mics of the SU(n)-clusters (cf.[ll,15]). 

Thus, the set (2.1) generates mutually related Lie algeb- 

raic structures k~-)(n), I(-)(n) and k(')(n) of three different 
m m 

types which are connected with Grassmann oscillators• Any of these 

algebras has two mutually conjugate finlte-dlmensional Lie subal- 

gebras b(m'n)=span{Etj,X i } and b(m'n)=Span{Ei.,Xi . } of 
+ •..| - 1 . . i  

1 n 1 n 

the Grassmann oscillator algebras. In addition, the algebras 

k(-)(n) have a characteristic property of nllpotency 
m 

a-'n+tQA B=O, AeX_=Span{X? •i.t }'n BeX+=Span{Xl i "'i }'n (2.7) 

n n-i adAB=[A,B], adAB=ad A (adAB}, 

which is useful for summing up the Baker-Campbell-Hausdorf series 

[ l l ] .  

3.Representatlons of the algebras k~-)(n}, l~-)(n} and 

k(')(n}m in the Fock spaces L F. 

For the physical applications we need In constructing repre- 

sentations of above defined algebras of the SU(n)-vector inva- 

riants, particularly, in the spaces L F. Below we outline a general 

scheme of the spectral analysis of the spaces L F with respect to 

actions of the algebras su(n}®k(')(n) that determine also approp- 
=) 

rlate Irreps of the algebras I ~- (n) and k{')(n}• For this aim we 
m m 

use the concept of complementary algebras and groups [18,22]• 

We start from the simplest case n=2 when we have 

k(-) (2)=k(*) (2). As is known the algebra k(-)(2)=som(2m) acts com- 
m m m 
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plementarily to the algebra su(2)~sp(2) on the space L F [11,22, 

27] and the decomposition (1.5) takes the form 

LF=j~ ° L(J), (3.1) 

where the label J specifies both the SU(2) irrep D(2J) and the 

appropriate so (2m) irrep DJ(sot[2m)) [II]. 

The subspaces L(J) are spanned by the basic vectors ]J;M;v> 

where the lables "M" and "u" distinguish basic vectors within ir- 

reps D(2JO and DJ[so*(2m)) respectively. Thus, the decomposition 

(3.1) represents a vector bundle [28]. The vectors IJ;M;v> are li- 

near combinations of the Fork states (1.3). In the papers [10,29] 

a simple algorithm has been developed for explicit constructing 

these vectors by using the techniques of the generating invariants 

and generalized coherent states. We consider such constructions 

for the case m=2 which, however, elucidiates the situation in the 

general case.. 

For m=n=2 the algebra k(-)[Z)=soI(4) decomposes into the dl- 
2 

rect sum so (4)=SUlnv(2)®su(l,l) (with generators x12, x12 , 

(I/2)[EII+E22)+I and El2, E21, [1/2)(Eli-E22) for the subalgebras 

su(l,1) and su(2), respectively) and the basis vectors IJ;M;u> ha- 

ve the form 

• -,J-M, -,J÷M J ÷ t  r 
IJ;M;v>~IJ;M;{T,t}>=N(J,M,T,t)telu) te2u) [xtu] tx2u]J-tx 

X[XI2)T-JIo>, (elu)meTu~ (3.2) 

where N is a normalization factor, "u" and "u" are some interme- 

diate boson operators, e1=(~ 7) are the reference vectors. Speci- 

fically, for the G=SU[2)-scalar subspace L(O) the vectors (3.2) 

take the form [Ii] 

IT>~IO;O;{T,O}>=[T!(T+I)! ] - t /2[x )TIo>, 
1 2  

(3.3) 

which is generated by measns of action of powers of the SU(2)- 

invariant cluster (Grassmann oscillator) creation operators x on 
12 

the vacuum vector I0> by analogy with usual one-mode Fork states 

(1.3). Comparing the appearence of the vectors (3.2) and (3.3) we 

observe that they have a similiar structure. The only discrepancy 

is in that the vectors (3.2) are generated, unlike (3.3) by action 

of the operators X s on the (2J+l)2-dimensional "vacuum" subspace 
12 

Lu(J)=Span{IJ;M;{Jt}>:J=const} with characteristic property 

X121~>=0, iv> E Lu(J). (3 .4)  
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In turn the space LIJ) is generated by means of action the lowe- 
. . ~ 2 -1  - - 2 1  

rlng operators.~ x x.=~ and E of two subalgebras su(2) c 
1 = 1  1 1 21 

su(2)eso (4) on the highest vector IJ;J;{JJ}>. 

Now we consider an action of the above algebra so"(4) on the 

vectors (3.2) using the CRs (2.5). We note that because of the de- 

finition of k(-)[2)=som(4) its action does not change the values 
2 

of numbers J,M "controlled" by the "internal" algebra SUlnt(2). 

Hence each space L(J), J~O, decomposes into the direct sum 

L(J)=eL(J,M)=eSpan{IJM;{Tt}>:J,M=const} 
M M 

( 3 . 5 )  

of the disjoint spaces L(J,M) which are equivalent with respect to 

the action of the algebra k{-)(2)=so~(4). Further, the action of 
~2 

the subalgebra su(2)invC so (4) does not change the quantum number 

T while the operators X and X of the subalgebra su(l,l) c 
] 2  12 

so~(4) raise and lower its value by one respectively. Thus each 

space L(J,M) is a conjuction of the disjoint sUlnv(2)-equivalent 

subspaces L(J;M;T)=Span(IJ;M;{Tt}>:J,M,T~J =const} which are "in- 

tertwined" by the operators XI2,X12. Such the action of the alge- 
m 

bra k(')(2)=so (4) on the space L(J,M) resembles that of usual 
2 

oscillator algebra on the Fock space (cf.[2,4]) and allows us to 
m 

obtain the space-carrier of the so (4) irrep DJ(soQ(4)) starting 

from any vector of the "vacuum space" Lv(J). Similiarly, one can 

show that all spaces L(J,M) are the carrier-spaces of equivalent 

irreps of the algebra I(-)(2). 
2 

The above analysis provides a sample for realizing spectral 

analysis of the spaces L F in the case of arbitrary "m" and "n" 

[II]. Therefore we outline its logical scheme and point out some 

peculiarities in the general case. 

For arbitrary "m" and "n" the algorithm consist of determi- 

nin E "vacuum spaces" L (pl...pn_ I) and next constructing their 

su(m)-equivalent replicas (su(m) c k~-)(n), I(-)(n)m ' k(')(n))m by 

means action of operators X on the vectors iv> 
! ...i 
I n 

LuCPl ..... Pn_1). In turn the spaces Lu(...) are generate~ by means 

of action of lowering operators of the algebras 

susnt(n)=Span{EiJsr=1 ~ x|xJ'r r i~j, £11=E11-Ei÷1'l**} and 

SUlnv(m)=Span{Eij, i~j, ~II=EII-EI+l,I+1} c kC-){n)m on the com- 

mon highest vectors ~pl...pn_1;max>ml<pi>>satisfyinE the following 

equations 
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a) Xi . . .1  I<Pi>>=O' (3.6a} 
1 n 

b) ~ . . . .  il<p1>>=pil<pi>>=E111<p1>>, i=l, ,n-1 (3.6b) 

c) EtJt<p1>>=O=Eijl<pi>>, i<j. (3.6c) 

As a result we obtain at final step of the algorithm the following 

specialization of eq.[l.5) [II]: 

LF=<~I>L(< ~ >)=<p|>,~e ,,~,,, L(<~ >;~';{~';~}), (3.7) 

where L(<Pi>;~';{p'';~})=Span{f<pi>;~';{~'';T}>} are carrier- 

spaces of the SUlnt(n) irreps D(<pt>) and of associated (dual to 

D(<pi>]) irreps of the algebras k(-)(n)'Im - ) ( n } m  and k(')(n);m ~' 

and 9'' are the Gel'land -Tsetlln patterns for the algebras 

SUint(n) and SUinv(m), respectively; ~ is an extra label for 

distinguishing vectors within irreps of k(-)(n) etc [IO]. Basic 
m 

vectors [Spt>;~';{~'';~}> resemble in their appearance the struc- 

ture of the vectors (3.2) but instead of monomlals X s we obtain 
12 

some polynomials in variables X i ...t " An algorithm for obtaining 
1 n 

an explicit (quasimonomial in vector invarlants consisted of x 
i 

and some intermediate boson vectors u i, uj) form has been develo- 

ped in our papers [10,29]. 

4. Some physical applications. 

A natural area of applications of the above results is in de- 

veloping composite models with internal SU(n)-symmetries within 

both quantum mechanics and quantum field theory [2,11,30-32]. Such 

models are governed by SU(n)-invarlant Hamiltonian H formulated 
Inv 

in terms of elements of the algebras k (n}: 
m 

Htnv=CI+ ~ (~iEi + Z c E + ~ d X + 
t i,J tJ iJ i ,..i i ...i 

1 n 1 n 

o 
+ Z d X +higher powers. (4. I) 

I . . . i  % . . . 1  
1 n 1 n 

Specifically, some effective Hamiltonlans in quantum polari- 

zation optics have this form [11,32]. 

The quantities X i ...i and Xt ...I may be interpreted as 
I n I n 

operators of creation and annihilation, respectively, of SU(n)- 

Invarlant clusters. But, unlike usual quantum particles (bosons 
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and fermions) these clusters have unusual statistics as it follows 

fromthe CRs (2.5). In particular, in the case n=2 we obtain from 

(2.5) trlllnear CRs 

[Xr,[Xlj,Xkl]]=(~jl~rk-~jk~rl)Xls+(~jl~sk-~jk6sl)Xr1+ . . . .  (4.2] 

which generalize the Green's trlllnear CR for paraflelds and para- 

particles [2]. The CRs (2.5] imply also the general form of the 

number operator Ncl of such clusters [11] 

N =(I/n)ZE -C({E~})=(I/n)ZE -C({E }), (4.3] 
c l  I I I  I i l  l j  

where C(...] are some SU(n)-invariant nonlinear functions of the 

SU(n] generators E °~ which are multiple to the identity operator I 

on each subspace L(<pi>) from (3.7]. Specifically, for m=n=2 we 

have 

C({EC~8})=-I/Z+(I/2)(l+2(EI2E21+E21EIe)+(EII-E22)2) I/2. (4.4) 

Thus, taking also into account (2.2], we see that internal SU(n)- 

symmetry yields us a scheme of a generalized paraquantlzatlon with 

constraints [cf.[30,33]) on the spaces LF=eL(<pi>). Because of 

nontrlvlal dimensions of the "vacuum subspaces" Lv[<pi>) we can 

develope models with spontaneously broken and hidden symmetries 

(cf. [31]] within above formalism. 

Another interesting llne of InvestlEatlons here is in examl- 

nlng posslb111tles of constructing canonical bases of observables 

Yb ([Yb'Y,]=~ab] in terms of elements of algebras km(n). Thls Ya' 

way seems to be perspective since, followln E the general scheme 

[34], we obtained In [11] explicit expressions for Y, Y in the 

case m=n: 

Y= Z Cj(X12...n)J+l(x12...n]J, Y=(Y]+, (4.5] 
J Z O  

where the coefficients C are determined from a set of reccurence r 
relations depending on signatures <p~> of subspacles L(<pi>). 

Such developments can be useful in analyzlnE composite models 

of many-body quantum systems of arbitrary physical nature (pho- 

tons, phonons etc.). Some examples of solving certain problems in 

polarlsatlon quantum optics have been considered wlthln this ap- 

proach in [11]. 

502 



5 . C o n c l u s i o n .  

In conclusion we point out some problems and generalizations 

of the above developments. 

The results obtained provide a mathematical tool for analy- 

zing composite models with internal SU(n)-symmetry only at alEeb- 

talc level. However, for examlnln E time evolution governed by ha- 

miltonians (4.1) we need in developing group-theoretical aspects 

of the theory, in particular, generalized coherent states of al- 

Eebras k(-)(n) etc. 
m 

It is also of interest to extend our analysis by common con- 

sidering both internal and the space-tlme Polncare symmetries. The 

"Grassmann nature" of the SU(n)-clusters X! ...i Elves hope that 
I n 

we can obtain alone this llne certain results which are useful 

for some developments in strlnE theory (cf.[25,26]) and for analy- 

zing nonlinear phenomena and coherent structures in stronEly inte- 

racting many-body systems [35]. 

Finally we note that formal aspects of the above analysis may 

be extended completely for the case G=SO(n). Another Eenerallsa- 

tlonls obtained by involving in consideration other than DI(G) 

irreps of "internal" groups G. 
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