
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 953 (2020) 114948

www.elsevier.com/locate/nuclphysb

Macroscopic length correlations in non-equilibrium 

systems and their possible realizations

Z. Nussinov

Department of Physics, Washington University, St. Louis, MO 63160, USA

Received 28 August 2019; received in revised form 31 December 2019; accepted 1 February 2020
Available online 6 February 2020

Editor: Hubert Saleur

Abstract

We consider general systems that start from and/or end in thermodynamic equilibrium while experienc-
ing a finite rate of change of their energy density or other intensive quantities q at intermediate times. 
We demonstrate that at these times, during which q varies at a finite rate, the associated covariance, the 
connected pair correlator Gij = 〈qiqj 〉 −〈qi〉〈qj 〉, between any two (far separated) sites i and j in a macro-
scopic system may, on average, become finite. Once the global mean q no longer changes, the average of 
Gij over all site pairs i and j may tend to zero. However, when the equilibration times are significant (e.g., 
as in a glass that is not in true thermodynamic equilibrium yet in which the energy density (or tempera-
ture) reaches a final steady state value), these long range correlations may persist also long after q ceases 
to change. We explore viable experimental implications of our findings and speculate on their potential 
realization in glasses (where a prediction of a theory based on the effect that we describe here suggests 
a universal collapse of the viscosity that agrees with all published viscosity measurements over sixteen 
decades) and non-Fermi liquids. We discuss effective equilibrium in driven systems and derive uncertainty 
relation based inequalities that connect the heat capacity to the dynamics in general open thermal systems. 
These rigorous thermalization inequalities suggest the shortest possible fluctuation times scales in open 
equilibrated systems at a temperature T are typically “Planckian” (i.e., O(h̄/(kBT ))). We briefly comment 
on parallels between quantum measurements, unitary quantum evolution, and thermalization and on how 
Gaussian distributions may generically emerge.
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1. Introduction

In theories with local interactions, the connected correlations between two different sites i
and j often decay with their spatial separation |i − j |. Indeed, connected correlations decay 
exponentially with distance in systems with finite correlation lengths. In massless (or critical) 
theories, this exponential decay is typically replaced by an algebraic drop. The detailed under-
standing of these decays was achieved via numerous investigations that primarily focused on 
venerable equilibrium and other systems with fixed control parameters, e.g., [1–11] including 
long range correlations at high temperatures in disparate systems associated with generalized 
screening lengths [12]. Pioneering studies examined work-free energy relations in irreversible 
systems [13–16]. We wish to build on these notions and ask what occurs in a general (quantum 
or classical) non-relativistic system, when an intensive parameter such as the average energy den-
sity (set, in all but the phase coexistence region where latent heat appears, by the temperature) or 
external field is varied so that, during transient times, the system is forcefully kept out of thermal 
equilibrium. We will illustrate that, under these circumstances, extensive fluctuations will gener-
ally appear. These large fluctuations will imply the existence of connected two point correlation 
functions that will, on average, remain finite for all spatial separations. If the system returns to 
equilibrium, these long range correlations may be lost. In focusing on driven non-equilibrium 
systems, the quantum facets of our work complement investigations on nontrivial aspects of the 
interplay between entanglement and thermalization that have witnessed a flurry of activity in re-
cent years in, e.g., studies of operator scrambling [17,18] and entanglement growth [19]. Earlier 
celebrated analysis also suggested fundamental quantum mechanical “chaos” bounds in thermal 
systems [20]. In the current work, we will largely focus on the more precise quantum descrip-
tions. Much of our analysis can be replicated for the classical limit of these systems.

Although our considerations are general, we may couch these for theories residing on 
d-dimensional hypercubic lattices of N = Ld sites; the average energy density ε ≡ E/N with 
E the total energy. In theories with bounded local interactions, we may express (in a variety of 
ways) the Hamiltonian H as a sum of N ′ =O(N) terms ({Hi}N ′

i=1) that are each of finite range 
and bounded operator norm,

H =
N ′∑
i=1

Hi . (1)

Our principal interest lies in the thermodynamic (N � 1) limit. Since our focus is on general 
non-equilibrium systems, the (general time dependent) Schrodinger picture probability density 
matrix ρ(t) need not be equal to the any of the standard density matrices describing equilibrium 
systems. Our analysis will be largely quantum; the Ehrenfest equations typically reproduce the 
classical equations of motion. Aspects of classical dynamics may also be directly investigated 
along lines similar to those that we will largely pursue for the quantum systems. With a Liouville 
operator replacing the Schrodinger picture Hamiltonian, the quantum dynamics may generally 
replicate the classical canonical equations of motion [21,22]. In the individual Sections of this 
work, we note which results also hold for classical systems.

2. Sketch of main result

In a nutshell, in order to establish the existence of long range correlations we will show the 
following:
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Fig. 1. A schematic of the probability distribution P(ε′) of the energy density (Eq. (2)) for a rapid cooling process. Left: 
An initially equilibrated system at high temperatures where the energy density is sharply defined (in the thermodynamic 
limit, the distribution is a delta-function). Center: The system is rapidly cooled to a final state such that its energy density 
drops down at a finite rate as a function of time. During this cooling process, as it is being driven, P(ε′) obtains a finite 
standard deviation (even for macroscopic systems). The demonstration of such a generic widening of the distribution is a 
principal objective of this paper. A finite standard deviation of P(ε′) implies correlations that extend over length scales 
comparable to the system size. Right: After the cooling ceases, (if and) when the formerly driven system re-equilibrates, 
the distribution P(ε′) becomes a delta-function once again (yet now at the lower temperature (smaller average energy 
density ε) to which the system was cooled). Similar broadening may occur for general intensive quantities q .

• If the expectation value of the Hamiltonian H of the original (undriven) system varies 

in the time evolved (driven) state such that dε
dt

≡ d
dt

T r
(
ρ(t)H

N

)
�= 0 then the energy 

density fluctuations σε ≡ σH
N

as computed with ρ(t) will, generally, also be finite. 
Similar results apply to all other intensive quantities.

As we will explain in Section 4 and thereafter, starting from an equilibrated system, there is 
a minimal time tmin associated with the onset of a finite dε

dt
and standard deviation σε . Once the 

driving ceases and dε/dt = 0, the time scale required for the system to re-equilibrate and return 
to its true equilibrium state with σε = 0 may depend on system details (see, e.g., Section 13 for 
an approach to glasses in which the latter return time scale may be very large).

While we will largely employ the more general quantum formalism, our central result holds 
for both quantum and classical systems. The central function that we will focus on to further 
quantify these fluctuations is the probability density of global energy density,

P(ε′)≡ T r
[
ρ(t) δ(ε′ − H

N
)
]
. (2)

To avoid cumbersome notation, in Eq. (2) and what follows, the time dependence of P(ε′) is 
not made explicit; the reader should bear in mind that, throughout the current work, P(ε′) is 
time dependent. In equilibrium, the energy density (similar to all other intensive thermodynamic 
variables) is sharply defined; regardless of the specific equilibrium ensemble employed, the dis-
tribution of Eq. (2) is a Dirac delta-function, P(ε′) = δ(ε′ − ε). This is schematically illustrated 
in the left and righthand sides of Fig. 1. As we highlighted above, the chief goal of the current 
article is to demonstrate that when a system that was initially in equilibrium is driven at inter-
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Fig. 2. The evolution of the density matrix ρ̃ → ρ̃(t) = Ũ ρ̃Ũ describing the system S and its environment E (when, 
together, they form a larger closed hybrid system I = S ∪ E) is unitary. After tracing over the environment (Eq. (4)), the 
resultant dynamical mapping ρS (t) =�t (ρS(0)) describing the reduced density matrix of the system alone is, generally, 
not a unitary transformation. In many situations of physical interest, the environment may, however, still be effectively 
captured by a modification of a system Hamiltonian. As we will explain in Appendix B, causality constrains this effective 
system Hamiltonian. In systems with local interactions, the rate of energy density of the system cannot be made to change 
instantaneously from zero to a finite value. A minimal time (linear in the system size) must elapse before the environment 
(and effective interactions generated by the presence of the environment) can couple to a finite fraction of the system.

mediate times (by, e.g., rapid cooling) such that its energy density varies at a finite rate as a 
function of time, the distribution P(ε′) will need not remain a delta-function. A caricature of this 
feature is provided in the central panel of Fig. 1 [23]. Because the final state displays a broad 
distribution of energy densities, our result implies that the “work” per site, in the context of its 
quantum mechanical definitions as energy differences between final and initial states [13–16,24]
is not necessarily sharp (even in the N →∞ limit). Since the variance of P(ε′) is a sum of pair 
correlators Gij ≡ 〈HiHj 〉 − 〈Hi〉〈Hj 〉, this latter finite width of P(ε′) of the system when it is 
driven implies (as we will explain in depth) that the correlations Gij extend over macroscopic 
length scales that are of the order of the system size. (Here, 〈·〉 denotes the average as computed 
with ρ(t).)

Whenever the formerly driven system re-equilibrates, P(ε′) becomes a delta-function once 
again (right panel of Fig. 1). We will investigate driving implemented by either one of two pos-
sibilities:

(1) Endowing the Hamiltonian with a non-adiabatic transient time dependence leading to a de-
viation from H only during a short time interval during which the system is driven (Sections 5, 6, 
8, 9, and 12). In this case, between an initial and a final time, the Schrodinger picture Hamiltonian 
differs from H , i.e., H(ti = 0 < t ′ < tf ) �=H .

(2) Including a coupling to an external bath yet allow for no explicit time dependence in 
the fundamental terms forming the Hamiltonian (this approach is invoked in Section 4 (in par-
ticular, in its second half describing Eq. (4), Section 10), and Appendix B, Appendix C, and 
Appendix D)). By comparison to procedure (1) above, this approach is more faithful to the real 
physical system in which the form of all fundamental interactions is time independent.

In procedure (1), the density matrix of the system evolves unitarily ρ → ρ(t) = U(t)ρU†(t). 
In the more realistic approach (2), the evolution of the density matrix of the system ρS(t) (now a 
reduced density matrix after a trace over the environment is performed) is described by a general 
(non-unitary [26]) dynamic map ρS(t) =�t(ρS(0)); a cartoon is provided in Fig. 2.

In procedure (2), we will examine the probability distribution P(ε′) of Eq. (2) with the re-
placement of ρ(t) by ρS(t). We will keep our study general and not resort to Linblad type 
analysis that may, e.g., be derived from and implicitly assume weak coupling between the sys-
tem and its environment [25].
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The divide between these non-unitary and unitary evolutions (respectively, evolutions with 
and without an external environment) is a feature that is not always of great pertinence. Indeed, 
though many common non-dissipative physical systems are not truly closed, they are described to 
an excellent approximation by the standard unitary evolution of the Schrodinger equation. Com-
plementing the standard distinction between unitary and non-unitary evolutions, there is another 
issue that we will highlight in the current work. As we will elaborate in Appendix B, there are 
physical constraints on the possible transient time variations of the effective Hamiltonian (that 
are captured by analysis including the effect of the environment). Notably, in a theory with inter-
actions that are of finite range and strength, due to causality, the allowed changes in the transient 
time Hamiltonian that captures the effects of the environment cannot be made to instantaneously 
vary over arbitrarily large distances. That is, the environment cannot couple (nor decouple) to a 
finite fraction of a macroscopic system instantaneously. Keeping in mind this constraint on the 
form of the possible variations of the effective Hamiltonian of approach (1), we will often use 
these two descriptions interchangeably. Our inequalities will bound, from below, (a) the variance 
of the distribution P(ε′) and (b) the magnitude of the pair correlator Gij for sites i and j that 
are separated by a distance that is of the order of the system size [27]. A similar broadening of 
the distribution P(q ′) (and ensuing lower bounds on the associated pair correlators) may arise 
for general intensive quantities q ≡ 〈Q〉/N (that include the energy density ε only as a special 
case).

3. Outline

A large fraction of the current work (Sections 5 - 12) establishing the central result of Section 2
and related effects will be somewhat mathematical in spirit. The sections towards the end of 
this paper (Sections 13, 14, and 15) will touch on possible measurable quantities. In these later 
sections, our discussion is more speculative.

We now briefly summarize the central contents of the various Sections. In Section 4, we ex-
plain why, in spite of its seemingly striking nature, our main finding of large variances (even in 
systems with local interactions) and the macroscopic range correlations that they imply is quite 
natural. By macroscopic range, we refer, in any macroscopic N � 1 site system, to correlations 
that span the entire system size. As we explain in Section 4 (and in Appendix A, Appendix B, 
Appendix C, and Appendix D), in various physical settings, finite rates of change of the energy 
(and other) densities and concomitant long range correlations may appear only at sufficiently 
long time after coupling the system to an external drive. Next, in Section 5, we discuss special 
situations in which our results do not hold – those of product states with an evolution given by 
separable Hamiltonians. This will prompt us to explore systems that do not have a probability 
density that is of the simple local product form and to further discuss various aspects of entan-
glement. Notwithstanding their simplicity and appeal, product states do not generally describe 
systems above their ground state energy density. Similarly, the finite temperature probability den-
sities of interacting classical systems do not have a product state form. In Section 6, we turn to 
more generic situations such as those appearing in rather natural dual models on lattices in an 
arbitrary number of spatial dimensions for which a class of finite energy density eigenstates can 
be exactly constructed. These theories principally include (1) general rotationally symmetric spin 
models (both quantum and classical) in an external magnetic field and (2) systems of itinerant 
hard-core bosons with attractive interactions. We investigate the effects of “cooling/heating” and 
“doping” protocols on these systems and illustrate that, regardless of the system size, after a finite 
amount of time, notable energy or carrier density fluctuations will appear. In Section 7, we simi-
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larly solve simple models in which the external environment exhibits uniform global fluctuations. 
Armed with these proof of principle demonstrations, we examine in Section 8 the anatomy of a 
Dyson type expansion to see how generic these behaviors may be. Straightforward calculations 
illustrate that although there exist fine tuned situations in which the variance of intensive quanti-
ties such as the energy density remain zero (e.g., the product states of Section 5) in rapidly driven 
systems, such circumstances may be rare. General non-adiabatic evolutions that change the ex-
pectation values of various intensive quantities may, concomitantly, lead to substantial standard 
deviations. In Section 10, we go one step further and establish that under a rather mild set of con-
straints, macroscopic range connected fluctuations are all but inevitable. (Yet another proof of 
these long range correlations will be provided in Appendix C and Appendix D.) In Section 10.2, 
we derive bounds on the fastest fluctuation rates in open thermal system by linking a general-
ized variant of the quantum standard time-energy uncertainty relations to the heat capacity. In 
Section 10.3, we illustrate that local quantities in thermal translationally invariant systems are 
similarly bounded. Our new thermalization bounds suggest that, under typical circumstances, up 
to factors of order unity, the smallest fluctuation times for thermal systems cannot be shorter than 
“Planckian” times O(h̄/(kBT )). We next illustrate (Section 11) how general expectation values 
in these systems relate to equilibrium averages. Our effect has broad experimental implications: 
common systems undergoing heating/cooling and/or other evolutions of their intensive quanti-
ties may exhibit long range correlations. In Section 12, we demonstrate that the non-equilibrium 
system displays an effective equilibrium relative to a time evolved Hamiltonian. The remainder 
of the paper, largely focusing on candidate experimental and in silico realizations of our effect, is 
more speculative than the detailed exact solutions and derivations presented in its earlier Sections. 
In Sections 13 and 14, we turn to two prototypical systems and ask whether our findings may 
rationalize experimental (and numerical) results. In particular, in Section 13, we discuss glasses 
and show a universal collapse of the viscosity data that was inspired by considerations similar to 
those that we describe in the current work. In Section 14, we ask whether the broadened distri-
butions that we find may lead to “non-Fermi” liquid type behavior in various electronic systems. 
In Section 15, we discuss adiabatic quantum processes and demonstrate how these may maintain 
thermal equilibration. We further speculate on possible offshoots of this result that suggest cer-
tain similarities between quantum measurements and thermalization. We conclude in Section 16
with a synopsis of our results.

Various details (including an alternate proof of our central result, typical order of magnitude 
estimates, and further analysis) have been relegated to the appendices. Appendix A provides 
simple estimates of the minimal time scale tmin that must be exceeded in order to establish fi-
nite rate of variation of the energy density (and concomitant long range correlations amongst 
the local contributions {Hi} to the Hamiltonian). In Appendix B, we prove that in typical non-
relativistic systems with local interactions (where the Lieb-Robinson bounds apply), a finite rate 
of change of the energy density (and, similarly, that of other intensive quantities) is only possi-
ble at sufficiently long times t > tmin. As we briefly noted above, Appendix C and Appendix D
will provide a complementary proof of our central result. In Appendix C, we demonstrate that a 
finite a rate of variation of the energy density implies long range connected correlations between 
the environment driving the system and the system itself. Appendix D then employs “classical” 
probability arguments to illustrate that the latter long range correlation between different sites 
in the system and its surrounding environment may lead to correlations between the sites in the 
system bulk even if these sites are far separated. A lightning review of several earlier known 
long range correlations is provided in Appendix E. In Appendix F, we show that using entan-
gled states (similar to those analyzed in Section 6) reproduces the finite temperature correlators 
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of an Ising chain. In Appendix G, we demonstrate that the entanglement entropy of symmetric 
entangled states is logarithmic in the system size; this latter calculation will further illustrate 
that the entangled spin states studied in Section 6 display such macroscopic entanglement. These 
examples underscore that, even in closed systems, eigenstates of an energy density larger than 
that of the ground state can very naturally exhibit a macroscopic entanglement. In Appendix H, 
Appendix I, and Appendix J, we discuss aspects related to the spin model example of Section 6
(and, by extension, to some of the models dual to this spin model that are further studied in 
Section 6). Appendix H details what occurs when adding a general number of S = 1/2 spins. 
We connect the result in the limit of a large number of spins to the Gaussian distribution re-
sulting from random walks (in the limit of large spins, the addition of spins naturally relates to 
the addition of classical vectors). Appendix I and Appendix J underscore the correlations in the 
initial state of this spin model system. Appendix I.1 explicitly introduces these correlations. In 
Appendix I.2, we explain why such correlations are inevitable in various cases. (The discussion 
in these appendices augment a more general result concerning correlations in the initial state of 
various driven systems that is described in the text following Eqs. (E.1), (E.2) regarding gener-
ally more complex correlations.) The central aim of Section 6 was to provide the reader with a 
simple solvable spin model and its duals where a finite σε and associated long range correlations 
between Hi appear hand in hand with a finite rate of change of the energy density. The exact 
solvability of the spin model of Section 6 hints that the correlations that its initial simple corre-
lations exhibit are not necessarily generic. In Appendix J, we outline a gedanken experiment in 
which the initial state of Section 6 may be realized. In Appendix K, we discuss several situations 
in which the variance of the energy density remains zero even when the energy density itself 
changes at a finite rate. Several aspects of the viscosity fit discussed in Section 13 are elaborated 
on in Appendix L. Appendix M provides intuitive arguments for the appearance of long time 
Gaussian distributions. Such long time Gaussian distributions were (a) invoked in our derivation 
of the 16 decade viscosity collapse of supercooled liquids and glasses and also appear (b) in 
standard textbook systems that have equilibrated at long times at general temperatures T where 
(with Cv denoting the heat capacity at constant volume), the width of the Gaussian distribution 
is given by σε =

√
kBT 2Cv/N ∼O(N−1/2). Lastly, in Appendix N, we explain that, generally, 

the entanglement entropy may be higher than of the states studied in Appendix G.

4. Intuitive arguments

To make our more abstract discussions clear, we first try to motivate why our central claim 
might not, at all, be surprising and expand on the basic premise outlined in Section 2. Consider 
a system that is, initially, in thermodynamic equilibrium with a sharp energy density ε. For an 
initial closed equilibrium system (described by the microcanonical ensemble), the standard devi-
ation of ε scales as 1/N while in open systems connected to a heat bath, the standard deviation 
of ε is O(1/

√
N). In either of these two cases, the standard deviation of ε vanishes in the ther-

modynamic limit (similar results apply to any intensive thermodynamic variable), see, e.g., the 
right-hand panel of Fig. 1. Now imagine cooling the system. As the system is cooled, its energy 
density ε drops. Various arguments hint that as ε drifts (or is “translated”) downwards in value, 
its associated standard deviation also increases (see the central panel of Fig. 1). This is analogous 
to the increase in width of an initially localized “wave packet” with a non-trivial evolution (with 
the energy density itself playing the role of the packet location). This argument applies to both 
quantum and classical systems (with the classical probability distribution obeying a Liouville 
or Fokker-Planck type equations instead of the von Neumann equation obeyed by the quantum 



8 Z. Nussinov / Nuclear Physics B 953 (2020) 114948
probability density matrices). Thus, on a rudimentary level, it might be hardly surprising that 
the energy density obtains a finite standard deviation when it continuously varies in time. A fi-
nite standard deviation of the energy density implies long range correlations of the local energy 
terms. This is so since the variance of the energy density

0 < σ 2
ε = 1

N2

∑
i,j

(〈HiHj 〉 − 〈Hi〉〈Hj 〉)= 1

N2

∑
i,j

Gij ≡G. (3)

Thus, if σε is finite then the average G of Gij over all separations |i − j | will be non-vanishing. 
More broadly, similar considerations apply to intensive quantities of the form q = 1

N

∑
i qi that 

must have a sharp value in thermodynamic equilibrium. Thus, generally, if q broadens as some 
parameters are varied, there must be finite connected correlations (〈qiqj 〉 − 〈qi〉〈qj 〉) even when 
|i− j ′| is the order of the linear dimension of a macroscopic system. Identical conclusions to the 
ones presented above may be drawn for systems that end in thermodynamic equilibrium (instead 
of starting from equilibrium) while experiencing a finite rate of change of their energy density at 
earlier times at which Eq. (3) will hold. This effect may appear for quantum as well as classical 
systems. Generally, there are “classical” and “quantum” contributions [28] to the variance σ 2

ε .
Empirically, in cases of experimental relevance, as in, e.g., cooling or heating a material, if 

the rate of change of its temperature (or energy density) is finite then Eq. (3) will hold. Although 
heat (and other) currents associated with various intensive quantities q traverse material surfaces, 
experimentally, even for thermodynamically large systems, the rate of change of energy density 
ε, and other intensive quantities q can be readily made finite, i.e., dq/dt =O(1). This common 
experimentally relevant situation of finite heat or other rate of change dq/dt in macroscopic finite 
size (N � 1) samples is the focus of our attention (see Appendix A). We nonetheless remark that 
if the energy density (or other intensive parameter) exchange rate are dominated by contributions 
in Eq. (3) with i and j close to the surface then dq/dt = O(1/L) and the average connected 
correlator associated with q for arbitrarily far separated sites i and j will be bounded by Gq ≥
O(N−2/d) [29]. As we will further emphasize in Section 10 (as will formally follow therein, 
e.g., from the Heisenberg picture Eq. (66) or its Ehrenfest theorem analog in the Schrodinger 
picture), in order to achieve a finite rate of change of any intensive quantity (including that of the 
energy density dε/dt (or, equivalently, of the measured temperature dT /dt )), the coupling (and 
correlations) between the system and its surroundings must be extensive and involve minimal 
time scales (see Appendix A, Appendix B, and Appendix C). In reality, due to the surface flow 
of the heat current from the surrounding environment to the system during periods of heating 
or cooling, the local energy density in the system is generally spatially non–uniform and may 
depend on the distance to the surrounding external bath from which heat flows to the system.

The physical origin of the long range correlations of Eq. (3) in general systems (either quan-
tum or classical) is symbolically depicted in Fig. 3. As noted above, in order to achieve a finite 
rate of cooling/heating in a system with bounded interaction strengths, a finite fraction of the 
fields/sites in the system must couple to the surrounding heat bath (see also Appendix C for a 
simple brief demonstration of macroscopic length correlations between the surrounding environ-
ment and the system bulk in systems with time dependent H̃ ). If such a single bath/external drive 
couples to a finite fraction of all sites/fields in the system S so as to lower the average energy 
density then even fields that are spatially far apart become correlated by virtue of their non-
local interaction with the common environment E (their shared bath or external drive). The full 
Hamiltonian H̃ describing the system S and its environment E (including the coupling between 
S and E ) provides the full time evolution Ũ(t) for the initial density matrix ρ̃ on I = S ∪ E . We 
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Fig. 3. An intuitive representation of the effect. In order to drive the system S and vary its energy density at a finite 
rate, the environment (E) must couple to a finite fraction of the number of sites in S (e.g., sites i and j ). The energy 
fluctuations at both i and j are correlated with S . This, consequently, allows for non-trivial correlations between the 
local energy fluctuations (those of Hi and Hj of Eq. (1)) even when i and j are far apart. By virtue of both coupling to 
the E , colloquially, any such pair of sites i and j are a graph distance of two (links) away (“two degrees of separation” 
apart) even though they may be very far away spatially. The above graph constitutes a simple example of a “small worlds 
network” where each node (site) is linked to all others by a small number of steps (in this case, two) [31]. As we will 
explain in Appendix B, in non-relativistic systems with local interactions, causality in the form of the Lieb-Robinson 
bounds [30] mandates that a minimal time must elapse before an external drive may couple to sites in the bulk of the 
system S . Physical estimates on lower bounds on minimal times are further briefly discussed in Appendix A. The finite 
rate of the energy density implies that, on average, the correlation between the driving Hamiltonian (coupling the system 
to its environment) and each of the system degrees of freedom is of order unity and of uniform sign (Appendix C). In 
Section 7, we will examine simple models with an associated uniform coupling of the system degrees of freedom to a 
common environment.

may trace or “integrate” over the bath/drive degrees of freedom in E (accounting for the driving 
(as well as dissipation) due to coupling to the environment) to arrive at the Schrodinger picture 
reduced density matrix ρS depending only on the degrees of freedom in S . Thus, we consider

ρS(t)≡ T rE (Ũ(t)ρ̃Ũ†(t)),

Ũ(t)= T exp(− i

h̄

t∫
0

H̃ (t ′)dt ′) (4)

≡ T exp(− i

h̄

t∫
0

(HS(t ′)+HE (t ′)+HS−E (t ′))dt ′).

Here, T denotes time ordering, and three Hamiltonians (i) HS , (ii) HE , and (iii) HS−E describe, 
respectively, (i) the Hamiltonian involving only the degrees of freedom in S , (ii) the Hamiltonian 
involving degrees of freedom in E alone, and (iii) the interaction between the system and its 
environment. HS−E may capture the coupling between different, far separated, fields (say at 
sites i and j ) in the system S to the same external drive/environment E . Indeed, associated with 
the solvable systems of Section 6, initial long range correlations may be created by coupling 
all sites in the system to the same environment (a magnet of macroscopic magnetization (see 
Appendix J)).

The trace in the first line of Eq. (4) over the external drive degrees of freedom E may generate 
a correlation between these two fields at i and j irrespective of their spatial separation (see 
Fig. 3). This correlation in ρS(t) between spatially distant fields may arise, rather universally, 
if in HS−E the latter two fields couple to the very same external drive or environment E . For a 
uniform external drive, the coupling between all fields in S to those in E is of typical comparable 
strength. Thus, the resulting correlation in ρS(t) may be non-local even at short times t (so 
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long as at that these (or earlier) times, a finite fraction of the fields in S couple to the external 
drive/bath E ). A semi-classical motivation for this effect is sketched in Appendix D. As alluded 
to in procedure (ii) of Section 2, in real physical systems the form of the microscopic interactions 
is time independent (corresponding to a time independent H̃ in Eq. (4).

In relativistic theories, a strict minimal cutoff time tmin for a finite fraction of the fields in S
to become coupled to an external drive/bath E is set by tmin = �min/c. Here, �min is the minimal 
linear distance between the “center of mass” of S and the nearest point in E and c is the speed 
of light for bona fide radiative coupling that changes the energy density ε (or temperature) of the 
system. Thus, since �min = O(L) for, e.g., radiative coupling to the environment, this minimal 
time tmin = O(L/c) (as further discussed in Appendix A while paying attention to absorption 
lengths). For generic spin models and other non-relativistic local theories, a similar bound on 
tmin on the time required for the environment to couple with a typical uniform strength or be-
come entangled with a finite fraction of the sites in S is set by the effective (Lieb-Robinson 
(LR)) speed vLR [8–11,30] (tmin = tLR =O(L/vLR)). In all cases (relativistic or non-relativistic) 
tmin =O(L/v) with v a finite relevant speed. Thus, no long-range correlations violating causality 
(either relativistic or non-relativistic Lieb-Robinson type) appear. Rather, our results concerning 
long-range correlations pertain to times t > tmin. At such times, the relativistic or Lieb-Robinson 
light-cones (respectively given by (ct) or (vLRt )) already span most of the system S . Indeed, as 
seen from Eq. (4), long range correlations may be generated from the coupling of the environ-
ment E to the bulk of S . At sufficiently short times, no such coupling exists and, in tandem, the 
total energy of the system cannot change at a rate proportional to its volume (i.e., at these short 
times, the rate of change of the energy density vanishes, dε/dt = 0). A system that starts off with 
only local Gij will require a time t > tmin to develop long range correlations [8,9] consistent with 
our new results concerning (i) a required minimal time scale for changing the energy density of 
the system at a finite rate (Appendix B) and (ii) the appearance of nontrivial correlations once the 
energy density varies (the central result of this paper). The above also applies to general intensive 
quantities q different from the energy density. In Section 10, we will sharpen other considera-
tions related to Ũ(t) to arrive at exact inequalities. A brief summary of earlier known long range 
correlations is provided in Appendix E. In what follows, we first turn to product states where 
no broad distributions of intensive quantities arise. For product states undergoing an evolution 
with a locally separable Hamiltonian, the system degrees of freedom cannot couple to a common 
environment in Eq. (4). In the sections thereafter, we will demonstrate that in general quantum 
systems (not constrained to a product state structure), broadening may be quite common. Such 
prevalent non-factorizable states generally allow for a coupling to a common environment.

5. Product states and bounded separable Hamiltonians

Prior to demonstrating that energy density broadening may naturally accompany a cooling 
or heating of the system, we first discuss (within the framework of procedure (1) of Section 2
for which the detailed considerations of Eq. (4) (Fig. 3) do not apply) states associated with 
individually decoupled local subsystems. Our focus is on systems with separable bounded local 
interactions. For a density matrix ρ(t) that, at a time t , is a direct tensor product of local density 
matrices {ρl(t)}Ml=1 acting on disjoint spaces, with M =O(N),

ρ(t)= ρ1(t)⊗ ρ2(t)⊗ · · · ⊗ ρM(t), (5)

the standard deviation σH of the Hamiltonian of Eq. (1) at this time will, in accord with the central 
limit theorem, generally be O(

√
N) even when the rate of change of the energy dE/dt may be 
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extensive (i.e., ∝N ). This result applies to quantum and classical systems. In classical theories, 
{ρl} portray the probability distributions of independent decoupled local degrees of freedom. In 
the quantum arena, Eq. (5) also describes states in which no entanglement exists.

As a case in point, we may consider the initial (spin S = 1/2) state |ψ0
Ising〉 = |s0

1s0
2 · · · s0

N 〉
to be a low energy eigenstate of an Ising model HI = − 

∑
〈ij〉 Jij S

z
i S

z
j that is acted on during 

intermediate times by a transverse magnetic field Hamiltonian (Htr =−By(t) 
∑

i S
y
i ) that causes 

a precession around the Sy axis and thus alters the energy as measured by HI (thereby heating or 
cooling the system). Here, si =±1 denote the scaled eigenvalues of the local spin operators Sz

i . 
The transverse field Hamiltonian Htr may be explicitly written a sum of decoupled terms each of 
which acts on a separate local subspace, Htr ≡∑M

i=1 Hi , with M =N . The initial state |ψ0
Ising〉

(and its associated density matrix) can be written as an outer product of M =N single spin states 
(density matrices) defined on the same M decoupled separate spaces. Thus an evolution, from an 
initial product state, with Htr will trivially lead to a final state which still is of the product state 
form. All product states |ψ〉 = |s1s2 · · · sN 〉 are eigenstates of HI . A uniform rotation, between 
an initial time (t = 0) and a final time tf , of all of the N spins around the y spin axis by the 
transverse field Hamiltonian Htr by an angle of π/2 will transform |ψ0

Ising〉 to a final state |χ〉
that is an equal modulus superposition of all Ising product states (all eigenstates of HI ), viz.,

|χ〉 = 2−N/2
∑

s1s2···sN
(−1)

∑N
i=1(δs0

i
,−1

δsi ,−1)|s1s2 · · · sN 〉,

with δσi ,σj
the Kronecker delta. We next discuss what occurs when the exchange constants Jij

are of finite range but are otherwise arbitrary. The standard deviation of the energy (i.e., the 
standard deviation of HI ) associated with this final rotated state (and any other state during the 
evolution) of the initial Ising product state scales as O(

√
N) while the energy change can be 

extensive [32]. The state |χ〉 corresponds to the infinite temperature limit of the classical Ising 
model of HI (its energy density is equal to that of the system at infinite temperature and sim-
ilarly all correlation functions vanish). A key point is that generic finite temperature states are 
not of the type of Eq. (5). In fact, general thermal states (i.e., eigenstates of either local or non-
local Hamiltonians that are elevated by a finite energy density difference relative to the ground 
state) typically display volume law entanglement entropy [33–36] in agreement with the Eigen-
state Thermalization Hypothesis [37–45] while ground states and many body localized states of 
arbitrarily high energy [46–54] may exhibit area law entropies [55]. The entanglement entropy 
of individual quantum “thermalized” states imitates the conventional thermodynamic entropy of 
the macroscopic system that they describe [56]. In order to further elucidate these notions, in 
Appendix F, we illustrate that correlations in finite energy density eigenstates of the Ising chain 
mirror those in equilibrated Ising chains at positive temperatures. In the one dimensional Ising 
model and other equilibrium systems at temperatures T > 0, the high degree of entanglement and 
mixing between individual product states leads to contributions to the two point correlation func-
tions that alternate in sign and ultimately lead to the usual decay of correlations with distance. 
Our central thesis is that an external driving Hamiltonian (such as that present in cooling/heating 
of a system) may lead to large extensive fluctuations. While the appearance of such extensive 
fluctuations may seem natural for non-local operators (such as (Heisenberg picture) time evolved 
local Hamiltonian terms in various examples), these generic fluctuations may also appear for lo-
cal quantities (e.g., the local operators {Hi} in Eq. (3)). In Section 6, we will study systems for 
which the relevant {Hi} are, indeed, local.
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When all of the eigenvectors of the density matrix are trivial local product states that do not 
exhibit entanglement, the system described by ρ is a classical system (with different classical 
realizations having disparate probabilities). In the next sections, we will demonstrate that large 
fluctuations of any observable may naturally arise for all system sizes (including systems in 
their thermodynamic limit). The calculations in the studied examples will be for single quantum 
mechanical states. Any density matrix (also that capturing a system having a mixed state in any 
region S) may be expressed as ρ = |ψ〉〈ψ | with a pure state |ψ〉 that extends over a volume 
I ′ ⊃ S [57,58].

As suggested in Section 4, our effect may be realized in both quantum and classical systems. 
Our analysis will allow for entangled states. These states describe general situations in which 
the evolution operator or the environment E in Eq. (4) are non-factorizable and long-range cou-
pling/correlations between the sites in S may result.

6. Dual examples with non-fluctuating external drives

The existence of finite connected correlations |Gij | (Eq. (3)) for far separated sites |i − j | →
∞ is at odds with common lore. Before turning to more formal general aspects, we illustrate how 
this occurs in two classes of archetypical systems – (i) any globally SU(2) symmetric (arbitrary 
graph or lattice) spin S = 1/2 model in an external magnetic field (discussed next in Section 6.1) 
and (ii) dual hard core Bose systems on the same graphs or latices (Section 6.2). In these models, 
the external fields/terms (magnetic fields in (i) or doping in (ii)) are constant. Although (i) and (ii) 
constitute two well known (and very general) intractable many-body theories, as we will demon-
strate, the analysis of the fluctuations becomes identical to that associated with an integrable one 
body problem. In the context of example (i), this effective single body problem will be associ-
ated with the total system spin �Stot . This simplification will enable us to arrive at exact results. 
Similar to Section 5, the analysis below is within the framework of procedure (1) of Section 2
– that of an explicitly time varying Hamiltonian in a closed system with no environment. The 
initial system states that we will consider are eigenstates of the system Hamiltonian. Thus, these 
states match like the equilibrium states have a vanishing variance of the energy density σε = 0. 
When the Eigenstate Thermalization Hypothesis [37–45] holds, an eigenstate may represent an 
equilibrium state. Repeating the calculations in this Section, one may verify that superposing 
eigenstates of nearly equal energy will not alter our finding of a finite σε after the system couples 
to an external field such that it energy density varies at a finite rate |dε/dt |. These initial states 
will, nonetheless, display nontrivial correlations that are elaborated on in significant depth in the 
Appendices. In Section 7, we will analyze other models with initial states that do not exhibit any 
nontrivial correlations.

6.1. Rotationally invariant spin models on all graphs (including lattices in general dimensions)

In what follows, we consider a general rotationally symmetric spin model (Hsymm) of local 
spin-S moments augmented by a uniform magnetic field.

Hspin =Hsymm −Bz

∑
i

Sz
i . (6)

Amongst many other possibilities, the general rotationally symmetric Hamiltonian Hsymm may 
be a typical spin interaction of the type
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HHeisenberg =−
∑
ij

Jij
�Si · �Sj −

∑
ijkl

Wijkl(�Si · �Sj )(�Sk · �Sl)+ · · · , (7)

with arbitrary Heisenberg spin exchange couplings {Jij } augmented by conventional higher order 
rotationally symmetric terms. We reiterate that the model of Eq. (6) is defined on any graph 
(including lattices in any number of spatial dimensions).

6.1.1. Quantum spin system
In the upcoming analysis, we will label the eigenstates of Hspin (and their energies) by {|φα〉}

(having, respectively, energies {Eα}). We will employ the total spin operator �Stot =∑N
i=1

�Si . 
Since [ �Stot , Hspin] = 0, all eigenstates of Hspin may be simultaneously diagonalized with Sz

tot

(with eigenvalue mh̄) and �S2
tot (with eigenvalue Stot (Stot + 1)h̄2). Thus, any eigenstate of Eq. (6)

may be written as |φα〉 = |υα; Stot , S
z
tot 〉 with υα denoting all additional quantum numbers label-

ing the eigenstates of Hspin in a given sector of Stot and Sz
tot [59]. Although our results apply 

for local spins of any size S, in order to elucidate certain aspects, we will often allude to spin 
S = 1/2 systems. For any eigenstate having a general Sz

tot �= ±Smax =±NS, the associated den-
sity matrix is not of the local tensor product form of Eq. (5). Rather, any such eigenstate is a 
particular superposition of spin S = 1/2 product states having a total fixed value of Sz

tot . The 
state of maximal total spin Stot = Smax (which can be trivially shown to be a non-degenerate 
eigenstate for any value of Sz

tot , see Appendix H) corresponds to a symmetric equal amplitude 
superposition of all such product states of a given Sz

tot (i.e., such a sum of all product states of the 
type | ↑1↑2↓3↑4↓5↑6 · · · ↑N−1↓N 〉 in which there are a total of (N/2 ± Sz

tot /h̄) single spin of 
up/down polarizations along the z axis). We set an arbitrary eigenstate |φα〉 to be the initial state 
(at time t = 0) of the system |ψ0

Spin〉. The energy density (and the global energy itself) will have a 
vanishing standard deviation in any such initially chosen eigenstate, σε = 0. We next evolve this 
initial (t = 0) state via a “cooling/heating process” wherein the energy (as measured by Hspin) 
is varied by replacing, during the period of time in which the system is cooled or heated, the 
Hamiltonian of Eq. (6) by a time dependent transverse field Hamiltonian (see Section 6.1.3 for 
restrictions imposed by causality)

Htr(t
′)=−By(t

′)
∑

i

S
y
i . (8)

It is important to note that, similar to all models studied in this Section, the value of the external 
field is “sharp” at all times t (i.e., By(t) exhibits no statistical or other fluctuations). At t = 0, the 
system Hamiltonian varies instantaneously (a particular realization of procedure (1) of Section 2) 
from Hspin to Htr . Once the “cooling/heating process” terminates at a final time (t = tf ), the 
system Hamiltonian becomes, once again, the original Hamiltonian of Eq. (6). Once again, in 
this case, the change of the Hamiltonian at the final time tf is instantaneous. In accord with the 
discussion in Section 4, in Eq. (8), a finite fraction (in this case all) of the system degrees of 
freedom (i.e., the spins) couple to the external drive/bath (the external transverse field). Such a 
global coupling is necessary to achieve a finite dε/dt . During the evolution with Htr , the spins 
globally precess about the y axis. Thus, after a time t , the energy per lattice site is changed 
(relative to its initial value ε0) by an amount ε(tf ) − ε0 = Bz

Sz
tot

N
(1 − cos θ(tf )). Here, θ(t) ≡∫ t

0 By(t
′) dt ′. In the terminology of [13–16,24], this energy density shift represents the work 

done per site. When BzS
z
tot > 0, the energy density of the system is generally increased relative 

to its initial value while for negative BzS
z
tot , the system is “cooled” relative to its initial energy 
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density. For all Sz
tot , the energy density ε(t) exhibits consecutive cooling and heating periods. 

Employing the shorthand w ≡ Sz
tot /(h̄Stot ), the standard deviation of Hspin

N
is

σε(tf )= Stot h̄|Bz sin θ(tf )|
N
√

2

√
1+ 1

Stot

−w2. (9)

We briefly elaborate on the physically transparent derivation of Eq. (9). The applied transverse 
field generates a global Larmor precession of the spins about the y-axis. While the first term 
of Eq. (6) is manifestly invariant under rotations, the second term (that of (−Bz

∑
i S

z
i )) will 

change. In the Heisenberg picture after the evolution with the transverse field, each local (BzS
z
i )

transforms into Bz(S
z
i cos(

∫ tf
0 By(t

′) dt ′) + Sx
i sin(

∫ tf
0 By(t

′) dt ′)). Since in any eigenstate 
of Sz

tot (including |ψ0
Spin〉), the expectation value 〈Sx

totS
z
tot 〉 = 〈Sx

tot 〉〈Sz
tot 〉(= 0), the only non-

vanishing contributions to the variance of the Hamiltonian of Eq. (6) will originate from the 
expectation value of the square of the second term of Hspin and thus (up to a trivial prefactor of 
(B2

z sin2(
∫ tf

0 dt ′By(t
′)))) from

σ 2
Sx

tot
= 〈(Sx

tot )
2〉 = 1

2
〈(Sx

tot )
2 + (S

y
tot )

2〉 = 1

2
〈(�Stot )

2 − (Sz
tot )

2〉

= 1

2

(
h̄2Stot (Stot + 1)− (Sz

tot )
2
)
. (10)

Substituting w ≡ Sz
tot /(h̄Stot ) (and rescaling by a factor of N2 to determine the variance of the 

energy density) leads to the square of Eq. (9). A standard deviation comparable to that of Eq. (9)
appears not only for a single eigenstate of Hspin but also for any other initial states having an 
uncertainty in the total energy that is not extensive. When w= 1 (or −1) with the total spin being 
maximal, Stot = Smax, the initial state |ψ0

Spin〉 is a product state of all spins being maximally up 
(or all spins pointing maximally down). Even in the state of maximal spin Stot = Smax, so long 
as |w| < 1, the standard deviation will generally be σε =O(1). Furthermore, although they are 
statistically preferable values for Stot when adding angular momenta in the large N limit (e.g., 
Appendix H), regardless of the form of Hsymm (for instance, irrespective of the specific couplings 
in Eq. (7)), in this N � 1 limit, states of vanishingly small Stot

N
will not allow for a finite change 

of the energy density, �ε = Bz
Sz

tot

N
(1 − cos(

∫ tf
0 By(t

′) dt ′)), via the application of the transverse 
field (as embodied by the Hamiltonian Htr ). Indeed, the central point that we wish to emphasize 
and is evident in our example of Eq. (6) is that, generally, when the energy density �ε does 
change at a non-vanishing rate, a finite σε > 0 is all but inevitable.

Away from the singular Sz
tot =±h̄Smax limit, spatial long range entanglement develops. When 

(1 − |w|) = O(1), the scaled standard deviation of the energy density is, for general times, 
( 1
h̄Bz

)σε =O(1) and, as we will elucidate in Appendix G.1, a macroscopic (logarithmic in system 
size) entanglement entropy appears. A comparable standard deviation σε appears not only for the 
eigenstate but also for states initial having an energy uncertainty of order O(1) (in units of Bzh̄) 
(e.g., c1|Stot , S

z
tot 〉 + c2|Stot , S

z
tot − h̄〉 with c1,2 =O(1)). In the following, we briefly remark on 

the simplest case of a constant (time independent) By . Here, the time required to first achieve 
1

Bzh̄
σε = O(1) starting from an eigenstate of Hspin is O(1/By). This requisite waiting time is 

independent of the system size (as it must be in this model where a finite σε is brought about by 
the sum of local decoupled transverse magnetic field terms in Htr ). The large standard deviation 
implies (Eq. (3)) that long range connected correlations of Sz

i emerge once the state is rotated 
under the evolution with Htr . This large standard deviation of 1 ∑N

Sz appears in the rotated 

N i=1 i
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state displaying (at all sites i) a uniform value of 〈Sz
i 〉. Even though there are no connected corre-

lations of the energy densities themselves in the initial state, the non-local entanglement enables 
long range correlations of the local energy densities once the system is evolved with a transverse 
field. The variance σε should not, of course, be confused with the spread of energy densities that 
the system assumes as it evolves (e.g., for the Sz

tot = 0 state, σε =O(1) while the energy density 
ε(t) does not vary with time). We nonetheless remark that the standard deviation σε vanishes at 
the discrete times tk = kπ/By (with k an integer) – the very same times where the rate of change 
of the energy density ε(t) is zero.

We now turn to the higher order moments of the fluctuations of the t > 0 states evolved 
with Eq. (8), 〈(�ε)p〉 ≡ 1

Np 〈(HH
spin − 〈HH

spin〉)p〉 with p > 2. (The standard deviation of 

Eq. (9) corresponds to p = 2.) Here, HH
spin(t) = (T e

i
h̄

∫ t
0 iHtr (t

′)dt ′
)HspinT (e

− i
h̄

∫ t
0 Htr (t

′)dt ′
) is the 

Heisenberg picture Hamiltonian and the expectation value is taken in the initial state |ψ0
Spin〉. 

If N � 1 and 1 > |w| then Stot± |Stot , S
z
tot 〉 = h̄

√
Stot (Stot + 1)−m(m± 1)|Stot , m ± 1〉 ∼

Stot h̄
√

1−w2|Stot , m ± 1〉 where Sz
tot = mh̄. Trivially, for all m and m′, the matrix element 

of δSz
tot ≡ Sz

tot − 〈Sz
tot 〉 between any two eigenstates, 〈Stot , m|δSz

tot |Stot , m′〉 = 0. Thus, the 
only non-vanishing contributions to 〈(�ε)p〉 stem from 〈(Sx

tot )
p〉. This expectation value may 

be finite only for even p. Thus, in what follows, we set p = 2g with g being a natural num-
ber. For Stot = O(N), when expressing the expectation value of 〈(�ε)2g〉 longhand in terms 
of spin raising and lowering operators, one notices that, in this large N limit, each individual 
term containing an equal number of raising and lowering operators yields an identical contri-
bution (proportional to (Stot h̄

√
1−w2)2g) to the expectation value 〈(�ε)2g〉. Since there are (2g

g

)
such contributions, for all g � N in the thermodynamic (N →∞) limit, the expectation 

value 〈(�ε)2g〉 = (2g
g

)
(
σ 2

ε

2 )g . We write the final (Schrodinger picture) state at time t = tf as 
|ψSpin〉 =∑α cα|φα〉. The probability distribution of the energy density of Eq. (2) reads

P(ε′)=
∑
α

|cα|2δ(ε′ − Eα

N
). (11)

In this example, the Heisenberg picture Hamiltonian HH
spin (and the associated operators Hi) 

remains local for all times. In general systems, the time evolved Heisenberg picture Hamil-
tonian need not be spatially local. Eq. (11) describes the probability distribution associated 
with the “wave packet” intuitively discussed in Section 4 (a “packet” that is now given by 
the amplitudes {cα} in our eigenvalue decomposition of the final state |ψSpin〉). The averaged 
moments of �ε′ ≡ (ε′ − ε) are 〈(�ε)2g〉 = ∫ dε′ P(ε′) (ε′ − ε)2g . Here, as throughout, ε =
1
N
〈ψSpin|Hspin|ψSpin〉 =−(

∑
ij Jij +BzS

z
tot cos θ(tf ))/N is the energy density in the final state 

(i.e., the average of the energy density ε′ when weighted with P(ε′)). More generally, the expec-

tation value of a general function f (
HH

spin

N
) in the state |ψ0

Spin〉 (or, equivalently, of f (
Hspin

N
) in the 

above defined final Schrodinger picture state |ψSpin〉) is given by 〈f (
HH

spin

N
)〉 = ∫ dε′f (ε′)P (ε′). 

The mean value of each Fourier component eiq(�ε′) when evaluated with P(ε′) is

〈eiq(�ε′)〉 =
∞∑

g=0

(iq)2g

2g(2g)!
(

2g

g

)
σ 2g

ε =
∞∑

g=0

(−1)g

(g!)2 (
qσε√

2
)2g = J0(qσε

√
2), (12)

where J0 is a Bessel function. An inverse Fourier transformation then yields
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P(ε′)= θ(σε

√
2− |�ε′|)

πσε

√
2− (�ε′)2

(σε)2

. (13)

Here, as earlier, �ε′ denotes the difference between ε′ and the value of the energy density ε(t). 
The Heaviside function θ(z) in Eq. (13) captures the fact that the spectrum of Hspin is bounded. 
Similar results apply to boundary couplings [60]. The distribution of Eq. (13) may also be ratio-
nalized geometrically as we will shortly discuss (Eq. (16)). Comparing our result of Eq. (13) to 
known cases, we remark that, where it is non-vanishing, the distribution of Eq. (13) is the recip-
rocal of the Wigner’s semi-circle law governing the eigenvalues of random Hamiltonians and the 
associated distributions of Eq. (11), e.g., [61]. We stress that Eq. (13) is exact for the general spin 
Hamiltonians of Eqs. (6), (8) and does not hinge on assumed eigenvalue distributions of effective 
random matrices.

Performing additional calculations, we find qualitatively similar results for analogous “cool-
ing/heating” protocols. For instance, one may consider, at intermediate times 0 ≤ t ≤ tf , the 
Hamiltonian governing the system to be that of a time independent Htr (i.e., one with a con-
stant By(t) = By ) augmenting Hspin instead of replacing it. That is, we may consider, at times 
0 ≤ t ≤ tf , the total Hamiltonian to be

Ha =Hspin +Htr . (14)

For such an augmented total Hamiltonian Ha , the total spin �Stot precesses around direction of the 
applied external field (Byêy +Bzêz) ≡ Bên. An elementary calculation analogous to that leading 
to Eq. (9) then demonstrates that the corresponding standard deviation σa

ε of the energy density 
at t = tf ,

σa
ε (t = tf )= |BzBy |Stot h̄

NB
√

2

√
1+ 1

Stot

−w2

×
√

sin2(Btf )+ B2
z (1− cos(Btf ))2

B2 . (15)

We wish to stress that if Stot = O(N) and |w| < 1 then, as in Eq. (9), the standard deviation 
σa

ε =O(N) for general times tf . The distribution of the energy density following an evolution 
with this augmented Hamiltonian will, once again, be given by Eq. (13) for macroscopic systems 
of size N →∞. The reader can readily see how such spin model calculations may be extended 
to many other exactly solvable cases. The central point that we wish to underscore is that a broad 
distribution of the energy density, σε �= 0, is obtained in all of these exactly solvable spin models 
in general dimensions.

6.1.2. Semi-classical spin systems and a geometrical interpretation
The results that we just derived are valid for any spin S realization of the Hamiltonians of 

Eqs. (6), (8). The standard deviations of Eqs. (9), (15) remain finite for all S (with a scale set by 
the external magnetic field energies in these Hamiltonians). As long known [62,63], the S →∞
limit yields classical renditions of respective quantum spin models. Thus, the finite standard 
deviation of the energy density in individual eigenstates (Eqs. (9), (15)) and in thermal states 
formed by these eigenstates implies that the standard deviation of the energy density remains 
finite in the classical limit (as was suggested by the general arguments associated with Eq. (4)). 
More strongly, all that mattered in our earlier calculation of Section 6.1.1 were the Stot and 



Z. Nussinov / Nuclear Physics B 953 (2020) 114948 17
Fig. 4. (Color online.) Semi-classically, the total spin �Stot may, with equal probability, correspond to any vector connect-
ing the origin of a sphere of radius h̄Stot to a point along a ring forming “a line of latitude”. In the figure above, this 
“line of latitude” ring is defined by boundary of the shaded spherical cap near the “north pole”. All points along the line 
of latitude share the same value of Sz

tot . Here, in the initial state, the polar angle θ = 0.

Fig. 5. (Color online.) Applying the transverse field of Eq. (8) to the ring of Fig. 4 leads to precession about the Sy
tot axis. 

For the above displayed ring, θ(t) = π/2. During the precession, the semi-classical total spin vectors �Stot on the ring 
acquire a range of possible Sz

tot values leading to the standard deviation σε of the energy density of Eq. (6). The simple 
(semi-classical) calculation of Eq. (16) for the distribution of Sz

tot values for such a uniform ring leads anew to Eq. (13).

Sz
tot values. If Stot = O(N) then even if the size of the spin S at each lattice site is small, the 

total system spin �Stot is a macroscopic classical quantity and our results may be reproduced 
by a computation for semi-classical spins. Indeed, an explicit calculation for classical spin states 
trivially illustrates that a finite standard deviation σε > 0 may arise in semi-classical systems [64]. 
To make this explicit, we now perform such a computation. This rather elementary calculation 
will link the geometry of the manifold of possible Sz

tot values to the full distribution P(ε′) of the 
possible energy densities. Towards this end, we parameterize the semi-classical total spin by a 
vector �Stot on a sphere of fixed radius Stot (the application of the transverse field Hamiltonian of 
Eq. (8) does not alter (�Stot )

2). Herein, at any time t , the vector �Stot may correspond, with equal 
probability, to any vector on a circular ring, see, e.g., Figs. 4 and 5.

In Eq. (13), �ε′ denotes the difference between ε′ and the average energy density ε(t). At 
time t , along a ring (see, e.g., Fig. 5), that is further parameterized by an azimuthal angle ϕ′, 
the possible values of Sz are given by Sz

tot (ϕ
′, t) = 〈Sz

tot (t)〉 + Stot

√
1−w2 sin θ(t) cosϕ′. Here, 
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θ(t) becomes the polar angle of the center of mass of the ring (i.e., θ(t) is the angle between 
(i) a vector connecting the origin to the center of the center of the ring (see, e.g., Figs. 4 and 
5) and (ii) a vector along the positive Sz

tot axis). The expectation value 〈Sz
tot 〉 is that of Sz

tot in 
the time evolved state (classically, it is the average of Sz

tot around the full ring (0 ≤ ϕ′ < 2π ) 
at time t ), i.e., Sz

tot (t) = Sz
tot cos θ(t). The possible values of Sz(ϕ

′) appear symmetrically twice 
in the interval 0 ≤ ϕ′ < 2π . We may thus consider only 0 ≤ ϕ′ < π . By the normalization of 
the probability distribution for ϕ′ and the corresponding probability distribution for the energy 
density, P(ε′)dε′ = dϕ′

π
. Thus,

P(ε′)= 1

π

∣∣∣dϕ′

dε′
∣∣∣= N

π

∣∣∣Bz
∂Sz

tot (ϕ
′)

∂ϕ′
∣∣∣ . (16)

Combining Eq. (9) (which may derived from a geometric analysis of Fig. 5 as we next ex-
plain) with Eq. (16) then provides Eq. (13). We may indeed readily calculate the spread σSz

tot

of Sz
tot values and rationalize the finite standard deviation σε of Eq. (9) from simple geo-

metric considerations, when 1/Stot is set to zero (the semi-classical limit). From geometry, 
σSz

tot
= Rring√

2
| sin θ(t)| ≡ Rg| sin θ(t)| where Rring = Stot h̄

√
1−w2. Here, Rg is the radius of gy-

ration of the ring of Fig. 5 (corresponding to θ = π/2) about an axis parallel to the Sz
tot axis that 

passes through the center of mass of this ring. The finite radius of gyration Rg �= 0 implies a 

spread of energy densities σε = |Bz sin θ(t)|Rg

N
�= 0 at general times. This semi-classical result for 

σε coincides with Eq. (9). We will further comment on the |w| = 1 states below and at the end 
of Section 6.1.3. We now first briefly comment on another trivial limiting case. When w = 0, the 
initial state will correspond, in the description of Fig. 4, to the equator. Applying a transverse 
field will then lead to a rotation of the equator around the Sy

tot axis; this so generated ring (an-
other great circle on the sphere) will, generally, display a non-vanishing spread of Sz

tot/N values 
(leading to σε �= 0). However, when the initial state has w = 0, such a rotation will not yield any 
change in the energy density, dε/dt = 0. This trivial limiting case illustrates that, as a matter of 
principle, a finite rate of variation of the energy density is not mandatory in order to a finite have 
σε . As we demonstrate in the current work, the converse statement holds (a finite dε/dt implies 
a finite σε).

Although the Hamiltonian of Eq. (6) is extremely general as are its eigenstates of high to-
tal spin Stot = O(N) (e.g., states of large total spin in typical low temperature ferromagnets), 
characteristic equilibrium states of this Hamiltonian will correspond to a special subset having 
|w| = 1 (that is, the total spin will be polarized along the externally applied field direction). As 
we discussed earlier, such equilibrium states will thus emulate product states (in which all indi-
vidual spins assume the same polarization). Thus, as was indeed evident in Eqs. (9), (15), when 
w =±1, the broadening σε = 0. In a related vein, the fully polarized state – a coherent spin state 
on a sphere of radius Stot – is rotated “en block” without any other change of the wavefunction 
under the action of a transverse field. To see the effect for our exactly solvable system, we have 
to go away from the limit |w| = 1. Away from this limit, the state of the system evolves non-
trivially. In the parlance of Section 4, when evolving under the transverse field Hamiltonian of 
Eq. (8), the |w| �= 1 spin state is not merely “translated” (rotated on a sphere of radius Stot ) with 
no other accompanying changes. Appendix J discusses a gedanken experiment in which starting 
from an equilibrium state, one may apply transverse fields and let the closed system equilibrate 
anew so as to generate a state |ψ0 〉 of total spin Stot =O(N) with w �= ±1.
Spin
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6.1.3. Causality, correlations, and a finite dε
dt

We now return to the qualitative discussion of Section 4 concerning the causal generation 
of long range correlations in real physical systems. Eq. (4) suggests that long-range correla-
tions emerge from the coupling between an external environment (which we have not explicitly 
included in the model system in this Section) to the system bulk (e.g., the global coupling of 
Eq. (8)). As we will demonstrate in Appendix B, compounding the lack of causal correlations 
in relativistic systems, when the environment is included also in non-relativistic systems obey-
ing Lieb-Robinson type bounds [8–11,30], a finite rate of variation of the energy density cannot 
appear at short times t < tmin = O(L/vLR). Thus, generally, effective global couplings such as 
those of Eq. (8) cannot appear instantaneously. We wish to reiterate this particular point. Without 
the bulk coupling of Eq. (8) (and ensuing correlations), the system cannot exhibit a finite rate 
of change of its energy density (i.e., without such a global coupling, the latter rate of change 
dε
dt
= 0). It is only after long enough times (such as those implied by the Lieb-Robinson bounds 

of Appendix B), at t > tmin, that a global coupling such as that of Eq. (8) may appear in effec-
tive descriptions not explicitly involving an external environment. Only at these sufficiently long 
times, our obtained results for the correlations hold.

We note anew that in an equilibrium state of the Hamiltonian of Eq. (6), the total spin will 
be polarized along the applied field direction and w = 1. In such a case, for the realization 
of various gedanken experiments (e.g., Appendix J), long-range correlations (Appendix I) may 
indeed appear in the system after a time that scales with the system size.

As noted after Eq. (9), the calculation of the energy density and its standard deviation for a 
|w| = 1 system evolving under Eq. (8) is identically the same as that for a product state of Stot/S

spins. In the representation of Section 6.1.2, such an initial ferromagnetic state will correspond 
to a single point on the sphere (the north or south pole) instead of the ring in Fig. 4; a rotation by 
a transverse field as depicted in Fig. 5 will then lead to this point rotated elsewhere – there will 
not any spread of the Sz

tot values and σε = 0. That such a ferromagnetic state (akin to the product 
states discussed earlier) exhibits no spread of the energy density is consistent with Section 5. 
Further, in tandem with our main thesis concerning a typical general trend between the energy 
changes and long range correlations, for w �= ±0, 1 states, at those times at which the energy 
density changes at a vanishing rate dε/dt = 0 (corresponding to θ(t) ≡ 0(mod π)), the standard 
deviations of the energy density (and the associated long-range correlations that it implies) also 
vanishes, σε = 0.

6.2. Itinerant hard core Bose systems

Our spin model of Section 6.1 can be defined for local spins of any size S. The function P(ε′)
of Eq. (13) characterizing our investigated states is not a very typical probability distribution. 
However, the non-local entangled character of states having a finite energy density relative to 
the ground state is pervasive for thermal states. This model can be recast in different ways. 
In what follows we focus on the spin S = 1/2 realization of Eq. (6). The Matsubara-Matsuda 
transformation [65,66] maps the algebra of spin S = 1/2 operators onto that of hard core bosons. 
Such hard core bosons may, e.g., emulate Cooper pairs in superconductors in the limit of short 
coherence length. Specifically, the hard core bosonic number operator at site i is ni = b

†
i bi =

0, 1 with bi and b†
i the annihilation and creation operators of hard core bosons ((b†

i )
2 = b2

i =
0, [bi, b

†
j ] = (1 − 2ni)δij ). Following this transformation, the spin Hamiltonian of Eq. (6) is 

converted into its hard core bosonic dual,
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HBose =−
∑
ij

Jij ((b
†
i bj + h.c.)+ ninj )−

∑
i

(Bz −
∑
j

Jij )ni . (17)

The above Hamiltonian describes hard core bosons hopping (with amplitudes Jij ) on the same 
d-dimensional lattice, featuring attractive interactions and a chemical potential set by (Bz −∑

j Jij ). Here, the transverse field cooling/heating Hamiltonian Htr transforms into

HBose−doping =− iBy(t)

2

∑
i

(b
†
i − bi), (18)

a Hamiltonian that alters the number of the bosons (thereby “doping” the system). In the con-
text of Cooper pairs of short coherence length emulating hard core bosons, HBose−doping may 
describe the effect of Cooper pairs injected/removed from the system from a surrounding en-
vironment comprised of a bulk superconductor. The hard core Bose states are symmetric under 
all pairwise permutations Pij of the bosons at occupied sites. The bosonic dual of, e.g., the 
specific spin product state | ↑1↑2↓3↑4↓5↑6 · · · ↑N−1↓N 〉 corresponds to the symmetrized state 
of a fixed total number of hard core bosons that are placed on the graph (or lattice) sites 
(1, 2, 4, 6, · · · , (N − 1)). Thus, the bosonic dual of an initial spin state |ψ0

Spin〉 with a total 

spin Stot = Smax = N/2 is an initial hard core Bose state |ψ0
Bose〉 that is an equal amplitude 

superstition of all real space product states with the same total number of hard core bosons 
(
∑N

i=1 ni = m + N
2 ) distributed over the N lattice sites (an eigenstate of HBose that adheres to 

the fully symmetric bosonic statistics). Evolving (during times 0 ≤ t ≤ tf ) this initial state with 
Hdoping , the standard deviation of Eq. (9) and the distribution of Eq. (13) are left unchanged, apart 

from a trivial rescaling by h̄ (e.g., σBose
ε = |Bz sin θ(tf )|

2
√

2

√
1+ 2

N
−w2 for Stot =N/2). Similar to 

our discussion of the dual spin system of the previous subsection, the finite standard deviation 
in this energy density (and of the associated particle density n = 1

N

∑
i ni ) does not imply that 

the “doping” is, explicitly, spatially inhomogeneous (indeed, at all times, the expectation value 
of the particle number 〈ni〉 stays uniform for all lattice sites i).

We conclude this subsection with three weaker statements regarding viable extensions of the 
results that we derived for hard core bosonic systems on general graphs (these graphs include 
lattices in general dimensions).
(a) We may relate the above lattice theory to a continuum scalar field theory in the usual way. Do-
ing so, it is readily seen that for a continuous scaled ϕ(x) field replacing (bi + b

†
i ), the canonical 

Hamiltonian density

H[ϕ] = 1

2
(m2ϕ2 + (∇ϕ)2)+ uϕ4 (19)

qualitatively constitutes a lowest order continuum rendition of the hard core Bose lattice model 
of Eq. (17) for a system with uniform nearest neighbor couplings Jij . A large value of the con-
stant u in generic bosonic ϕ4 field theories of the type of Eq. (19) yields a large local repulsion 
between the bosonic fields endowing them with hard core characteristics. The continuum analog 
of HBose−doping is the volume integral of the momentum conjugate to ϕ(x). Thus, during vari-
ous continuous changes of the Hamiltonian, such generic scalar field theories (and myriad lattice 
system described by them) may exhibit the broad σε that we derived for some of their lattice 
counterpart in this subsection.
(b) The models of Eqs. (6), (17) were defined on arbitrary graphs (including lattices in general 
spatial dimensions). Identical results apply for spineless fermions on one dimensional chains 
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with non-negative nearest neighbor hopping amplitudes/coupling constants {Jij} and analogs of 
HBose−doping capturing a non-local coupling of the system to the external bath. These spinless 
Fermi systems may be engineered by applying the Jordan-Wigner transformation [67] to Eq. (6).
(c) Phonons in anharmonic solids. One may apply the Holstein-Primakoff transformation,

S+i = h̄
√

2

√
1− a

†
i ai

2S
ai, S−i = h̄

√
2a

†
i

√
1− a

†
i ai

2S
, Sz

i = h̄(S − a
†
i ai), (20)

to express the local spin operators in Eq. (6) in terms of bosonic creation/annihilation operators 
(a†

i and ai ). The resulting bosonic Hamiltonian may then be expanded in a series in 1/S (as in 
conventional 1/S expansions) [70]. When Fourier transformed, the Hamiltonian describes cou-
pled bosonic modes (involving the bosonic creation/annihilation operators a†

k and ak at different 
Fourier modes k) such as those of phonons in anharmonic solids. Here, the heating/cooling pro-
tocol of Section 6.1 corresponds to the creation/annihilation of phonons and leads to identical 
results for σε . (Contrary to the anharmonic system, in harmonic theories, the eigenstates have 
a product state form and some of intuition underlying the product states of Section 5 comes to 
life. For completeness, we remark that for harmonic systems, the individual interactions terms in 
Eq. (1) are unbounded unlike those discussed in Section 5.) A Schwinger boson representation 
may similarly express the spin system of Eqs. (6), (8) in terms of bosonic modes.

7. Long range correlations induced by a common environment – simple solvable limits

We now turn to systems akin to those of type (2) of Section 2 illustrating the possible effect 
of an environment common to all the local degrees of freedom. As noted in Section 4 (and 
schematically depicted in Fig. 3), in order to achieve a finite rate of change of the system energy 
density, there must be a coupling between the bulk of the system and its environment. The models 
that we study in this Section will explicitly include such a coupling. We will consider situations 
in which the driving environment will not initially be in an eigenstate of the full Hamiltonian, and 
thus exhibit fluctuations. Hence, some of the tractable models that we introduce in this Section 
may also be viewed as belonging to category (1) of Section 2 in which (unlike the models of 
Section 6), the driving parameters in the Hamiltonian (including any external fields) are replaced 
by operators that display a finite variance.

In the general evolution operator of Eq. (4), the coupling between the system and the en-
vironment HS−E may include both local stochastic effects of the environment coupling to the 
system (e.g., photon/phonon/. . . exchange coupling local degrees of freedom in the system S to 
local ones in the environment E ) as well coupling between collective degrees of freedom (if any) 
characterizing an external drive and the system bulk. For instance, in Joule’s heating experiment 
in which a large dropping mass heats a fluid by causing a paddle to stir, the height of the macro-
scopic dropping mass serves as a collective coordinate q associated with the environment that, 
at sufficiently long times t > tmin may couple to a finite fraction of the fluid (the system) that it 
heats a non-vanishing rate. Similarly, an external piston pressing on a gaseous system may cou-
ple and lead to bulk effects. In other instances, q may correspond to another collective degree of 
freedom (or “switch”) that leads to a bulk coupling of the system to its environment. In these and 
other cases, the coupling between the environment and the individual system degrees of freedom 
is, on average, of uniform sign (see, e.g., Appendix C for further discussion and simple proof 
concerning uniform sign correlations mandated by a finite rate of change of the energy den-
sity). Augmenting changes in such collective coordinates q, there are many other local stochastic 
degrees of freedom of the environment that couple to those of the system.



22 Z. Nussinov / Nuclear Physics B 953 (2020) 114948
In this Section, we will compute correlation functions associated with exceptionally simple 
“central spin model” (CSM) type Hamiltonians capturing the caricature of Fig. 3; the “cen-
tral spin” represents the common driving environment that couples to the bulk system spins or 
masses. By comparison to Section 5, the CSM type Hamiltonians studied in this Section are not 
separable. In Sections 7.1, 7.2, and 7.3, we consider the environment to be a single spin. This 
“central spin” may generate an effective finite local field at the N different sites of the system. 
Acting together, these local fields may generate a finite rate change of the energy density. The 
fluctuations of the effective local fields in these exactly soluble CSMs models portraying driven 
non-equilibrium systems will be of finite (O(1)) size. The fluctuations of the external drive need 
not tend to zero, regardless of the size of the system that this drive couples to. In Sections 7.4 (in 
particular, Section 7.4.2) and 7.5, we solve systems in which the environment E is of macroscopic 
(O(N) or larger) scale. These models are not introduced to portray real systems but rather merely 
serve as solvable examples. The special solvable systems that we consider might be realized in, 
e.g., trapped ion systems in which spin-spin interactions are mediated by coupling to a common 
laser or other source [68,69] in which we will now allow for fluctuations. In Section 7.6, we 
comment on other possible realizations in which external (electric or other) fields with uniform 
global fluctuations (e.g., the field between capacitor plates with a fluctuating voltage) appear. In 
all of the examples studied in this Section, we will illustrate the generic existence of connected 
local range correlations but assuming the converse – taking the initial state to be a simple prod-
uct state with no such correlations – and illustrate that the system evolves to a state with long 
range covariance. Thus, the initial product states of this Section will, unlike those in Section 6, 
be devoid of any non-trivial connected correlations. Similar to the models of Section 6, we con-
sider these initial states are eigenstates of the system Hamiltonian (trivially satisfying σε = 0 as 
expected in equilibrium systems in the absence of an external environment driving the system).

7.1. Non-interacting Ising system

We will first examine a very simple bare CSM model. In the notation of Eq. (4), we consider 
the spin S = 1/2 time independent Hamiltonians describing the system S (of N spins) and the 
coupling between the system an its environment E to be given by

HCSM
S =−Bz

N∑
i=1

Sz
i ,

HCSM
S−E =−JE

N∑
i=1

Sx
i PE . (21)

We will allow the environment only Hamiltonian HCSM
E to be any function (fE ) of PE . Here, 

PE is a projection operator on the S = 1/2 “central spin” (the environment E ) that couples to 

each of the system spins in Fig. 3. Specifically, we choose PE = ( 1
2 −

Sz
E
h̄

). Unlike the models of 
Section 6 and Eq. (8) in particular, the effective transverse magnetic field (JPE ) is not a constant 
c-number but rather an operator that exhibits a finite standard deviation in general states of the 
system-environment hybrid. In the limit of dominant HCSM

S−E , the temporal evolution with the

full Hamiltonian of Eq. (4), H̃CSM = (HCSM
S +HCSM

E +HCSM
S−E ) may be replaced by one with 

HCSM
S−E . In the Heisenberg picture, as employed in Section 6.1, the system spins will perform 

standard precessions yet now with a “transverse field” that is not a constant c-number but rather 
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a bona fide (collective) degree of freedom q (that of the environment E ), i.e., the Heisenberg 
picture operator SzH

i (t) = eiH̃ t/h̄Sz
i e

−iH̃ t/h̄ = (Sz
i cos(PEJE t) − S

y
i sin(PEJE t)). To motivate 

the general emergence of long range connected correlations as the system evolves, we consider 
the initial (t = 0) state to enjoy no such correlations. Specifically, we consider the initial state 
to be given, in the local Sz product basis, by a simple spin S = 1/2 ferromagnetic product state 
(an eigenstate (ground state) of HCSM

S ) of the system multiplied by the h̄/2 eigenstate of the 
environment S = 1/2 spin Sx

E coupling to all system spins,

|ψ0
CSM 〉 = | ↑1↑2 · · · ↑N 〉 ⊗ |→E 〉 (22)

Evolving under H̃CSM , the rate of change of the system energy density

d

dt

1

N
〈HCSMH

S (t)〉 = h̄BzJE
2

sin(JE t), (23)

with HCSMH
S (t) denoting the Heisenberg picture system Hamiltonian. Concurrently, the con-

nected correlator

〈SzH
i SzH

j 〉 − 〈SzH
i 〉〈SzH

j 〉 = h̄2

4
sin4(

JE t

2
). (24)

For general times t �≡ 0(mod π/(2JE )), this finite covariance is (by the very nature of this prob-
lem) the same for all pairs i �= j and is thus trivially independent of the spatial distance |i − j |
between sites i and j . This independence is not surprising since, in the absence of interactions 
in HS , the effective coupling between any two system spins at sites i and j to each other via 
the “central” spin that is afforded by the environment E is independent of the separation between 
the two sites (the graph of Fig. 3 in the absence of intra-system couplings). The non-vanishing 
covariance between the spins in this example can be traced to the fluctuations of the environment 
(the variance of PE in the state |ψ0

CSM 〉). In [71], we briefly discuss the standard deviations of 
the energy density in this system and related aspects.

7.2. Spin chain

We next consider a particular spin S = 1/2 chain (IC) (with periodic boundary conditions) 
with nearest neighbor (n.n.) interactions coupled to a central (S = 1/2) spin E ,

H
IC,CSM
S =−Jn.n.

N∑
i=1

Sz
i S

x
i+1 ≡−Jn.n.

∑
i

bi ,

H
IC,CSM
S−E =−JE

N∑
i=1

Sx
i PE . (25)

Similar to the example of the previous subsection, HIC,CSM may be a general function of 

PE where PE = ( 1
2 − Sz

E
h̄

). Once again, for simplicity, we consider the limit, where the sys-

tem evolves under the Hamiltonian H̃ IC,CSM = H
IC,CSM
S−E and the initial state of the envi-

ronment to be | →E 〉 (the eigenstate of Sx
E corresponding to an eigenvalue of (h̄/2)). Long-

hand, the time evolved system “bonds” in the system Hamiltonian HIC,CSM
S become bH

i (t) =
(Sz

i S
x
i+1 cos(JE tPE ) − S

y
i Sx

i+1 sin(JE tPE )). The sinusoidal time variation of bH
i (t) implies that 

for general states, the system energy density 
〈HIC,CSM

S 〉
may similarly vary at a finite rate. We 
N
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consider (in order to demonstrate, by contradiction, the existence of connected long range corre-
lations at finite t ) the initial system state to exhibit no long range covariance between the bilinears 
(Sa

i Sb
i+1) and (Sa′

j Sb′
j+1) for all spin polarizations (each of the spin components a, b, a′, b′ may be 

x, y, or z) for far separated sites |i − j | =O(N) (e.g., simple product form states of the form of 
Eq. (22) and other generic states with short range correlations). In other words, in the initial state, 
〈Sa

i Sb
i+1)(S

a′
j Sb′

j+1〉 = 〈Sa
i Sb

i+1〉〈Sa′
j Sb′

j+1〉 for |i − j | =O(N). Inserting bH
i (t), the covariance of 

Eq. (3)), for such distant sites

Gij = J 2
n.n

(
〈Sz

i S
x
i+1〉2 sin4(

JE t

2
) +1

2
(〈Sz

i S
x
i+1〉〈Sy

j Sx
j+1〉 + 〈Sz

jS
x
j+1〉〈Sy

i Sx
i+1〉)

× sin(JE t) sin2(
JE t

2
)
)
. (26)

We reiterate that in computing the expectation value above, we took the environment state to be in 
the (h̄/2) eigenstate of Sx

E . Now, the expectation value 〈Sz
i S

x
i+1〉 is, up to a constant multiplicative 

factor, the energy density, i.e., 〈Sz
i S

x
i+1〉 = − 1

NJn.n.
〈HIC,CSM

S 〉 which for general equilibrium 
states is finite. This, in turns, implies a finite Gij at general times for such distant sites |i − j | =
O(N).

7.3. Jaynes-Cummings type model

We next examine an analog of Eqs. (21) that, somewhat like the Jaynes-Cummings model 
[72], includes a coupling between local two state (S = 1/2) degrees of freedom and a bosonic 
field (a “central oscillator” coordinate q in our case). Here,

HJCCM
S =−Bz

N∑
i=1

Sz
i ≡

N∑
i=1

HJCCM
i ,

HJCCM
S−E =−λq

N∑
i=1

Sx
i , (27)

and HJCCM
E is any function of q (yet not containing the conjugate momentum p – the environ-

ment does not evolve in time). In this model, q is a (bosonic displacement) degree of freedom 
that couples linearly to each of local two level degrees of freedom at site i. Similar to Section 7.1, 
we take the initial state to be the product state of a ferromagnetic system completely polarized 
along the z axis multiplied by the state of the environment, | ↑1↑2 · · · ↑N 〉 ⊗ |E〉. For concrete-
ness, we set 〈q|E〉 to be in the Gaussian in q of standard deviation σq and zero mean. Similar 
to Sections 7.1 and 7.2, we assume ||HJCCM

S−E || � ||HJCCM
S ||. Ignoring backaction effects of 

the system on the environment, the time evolved spin operators SzH
i (t) = eiH̃ t/h̄Sz

i e
−iH̃ t/h̄ =

(Sz
i cos(λqt) − S

y
i sin(λqt)). As in the previous subsections, the sinusoidal variation of SzH

i (t)

may lead, in general states, to a finite rate of variation of the expectation value of the time evolved 

energy density 
HJCCMH
S

N
. The covariance [73]

〈SzH
i (t)SzH

j (t)〉 − 〈SzH
i (t)〉〈SzH

j (t)〉

= h̄2

4
(〈E | cos2(λqt)|E〉 − 〈E | cos(λqt)|E〉2)

= h̄2

(1− e
−λ2t2σ 2

q )2, (28)

8
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implying connected correlations between HJCCM,H
i (t) and HJCCM,H

j (t) for all system sites i
and j (including arbitrarily large |i − j |). For this model, the probability density of Eq. (2), (11)
for ε′ ≡ −2ε′/(h̄Bz) [74],

P(ε′)=
exp
(
− (cos−1 ε′)2

2α2σ 2
q

)
ϑ3

(
i cos−1 ε′

2ασ 2
q

, e
− π2

2σ2
q

)
α
√

2πσ 2
q (1− (ε′)2)

, (29)

with ϑ3 the third Jacobi function and α ≡ λt . If a kinetic term (involving the collective envi-
ronment momentum p) is included and backaction effects are not negligible, then the system 
will generally modify the environment. In such cases, with qH (t) denoting the Heisenberg 
picture oscillator coordinate, instead of Eq. (28), there will be contributions to the covariance 
〈SzH

i (t)SzH
j (t)〉 − 〈SzH

i (t)〉〈SzH
j (t)〉 that are of the form

〈cos2(λ

t∫
0

dt ′qH (t ′))〉 − 〈cos(λ

t∫
0

qH (t ′)dt ′)〉2. (30)

These expectation values are, once again, generally non-vanishing (the initial state does not, 
generally, need to be an eigenstate of cos(λ 

∫ t

0 qH (t ′)dt ′)) and long range connected long range 
correlations will appear in the system.

7.4. Ideal gas type models

In this subsection and the next, we will discuss simple mechanical systems that will comple-
ment the spin models of the earlier subsections. The current subsection will detail two models in 
which the system is a non-interacting ideal gas (IG) comprised of N particles of mass m.

7.4.1. Static environment
We first consider IG type system S with a general bilinear mechanical coupling to a static 

external environment E . In the convention of Eq. (4) and the earlier examples studied in this 
Section, the system only Hamiltonian and the system-environment coupling will, respectively, 
be given by

HIG
S =

N∑
i=1

p2
i

2m
≡

N∑
i=1

HCOIG
i ,

HIG
S−E =−λq

N∑
i=1

xi ≡
N∑

i=1

HIG
S−E,i . (31)

We further consider the environment only Hamiltonian HIG
E to be a general function of the 

collective coordinate q including no kinetic terms (and thus associated with a static Heisenberg 
picture qH (t) = q). We take the initial state in this mechanical example to be a product state of 
each of the particles and the ground state of the environment,

|ψ0 〉 = |ψ0〉 ⊗ |ψ0〉 ⊗ · · · ⊗ |ψ0 〉 ⊗ |E〉. (32)
mech 1 2 N
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In this example, each of the system particles accelerates under the external force λq,

pH
i (t)= pi + λqt,

xH
i (t)= xi + pi

m
t + λq

2m
t2, (33)

with pi and xi denoting the momentum and position operators at time t = 0. The rate of change 

of the system energy density dε
dt
= λ2t〈q2〉

m
, and, trivially,

〈pH
i (t)pH

j (t)〉 − 〈pH
i (t)〉〈pH

j (t)〉 = λ2σ 2
q t2. (34)

For all i and j , the connected correlator of Eq. (3) between the time evolved local system 
energy densities HCOIGH

i (t) and HCOIGH
j (t) (i.e., the covariance between the kinetic terms 

(pH
i (t))2/(2m) and (pH

j (t))2/(2m)) is

Gij = λ4t4

4m2 (〈E |q4|E〉 − 〈E |q2|E〉2). (35)

Fluctuations in q may thus trigger connected long range correlations. Classical fluctuations of the 
environment may yield a similar result if the density matrix of the system-environment hybrid is 
of the product form ρSρE and the variance of q is computed with the probability density matrix 
ρE .

7.4.2. Harmonic oscillator environment
Similar to Eq. (30), if the backaction effects of the system on its environment are not neg-

ligible then integrals over the Heisenberg picture operators qH may more generally be written. 
For concreteness, instead of a static environment Hamiltonian HIG

E having no kinetic terms (as 
in Eq. (31)), we will consider the environment to be a large central mechanical oscillator. The 

system-environment hybrid defined by Eq. (31) with HCOIG
E = 1

2M�
2
q2 + p2

2M
is exactly solv-

able since the full Hamiltonian H̃ =HIG
S +HIG

S−E +HCOIG
E is quadratic [75]. The appearance, 

in HCOIG
E , of a kinetic term (with a finite mass M) involving the momentum p conjugate to 

the collective environment q will (unlike the model of Section 7.4.1) now endow the Heisenberg 
picture qH with dynamics and allow for backaction effects of the system on the environment. 
There are only two nontrivial mechanical eigenmodes appearing the Hamiltonian H̃ that involve 
both the N particles of the system and the single collective coordinate q of the environment E . 
By virtue of the uniform coupling in HIG

S−E , all of the system degrees of freedom only appear 
through their center of mass coordinate and momentum. All other (N − 1) linearly independent 
eigenmodes are orthogonal to center of mass displacements and do not couple to the environ-
ment. The coupled Heisenberg (or classical) equations of motion for (I) center of mass of the 
system

xH
cm(t)≡

∑N
i=1 xH

i (t)

N
, (36)

and (II) external environment q collective coordinate are

d2

dt2

(
xH
cm(t)

qH (t)

)
=−

(
0 λ

m

Nλ �
2

)(
xH
cm(t)

qH (t)

)
≡−D

(
xH
cm(t)

qH (t)

)
. (37)
M
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The eigenvalues of the dynamical matrix D trivially yield one oscillatory eigenmode (u(t) =
A sinωt +B sinωt (with A and B constants)) of frequency

ω = 1√
2

√√√√√
�

2 + 4Nλ2

mM
+�

2
, (38)

and another eigenvector v(t) =Ce−αt +Deαt (with constant C and D) where

α = 1√
2

√√√√√
�

2 + 4Nλ2

mM
−�

2
. (39)

The results of Section 7.4.1 correspond to the static environment operator qH (t) = q arising in 
the limit M →∞ of Eq. (39); the momentum in the accelerating system (Eq. (33)) is qualitatively 
similar in its unbounded linear increase to the exponential eαt in the M →∞ limit (reminiscent 
of limn→0

1
n
(zn − 1) = ln z with z replaced by an exponential in t ). Expressing xH

cm, qH as 
linear combinations of u and v and solving for the four unknowns A, B, C, and D by setting 
xH
cm(t = 0) = xcm, qH (t = 0) = q , and equating the total system and environment momenta 

Nm
dxcm(t)

dt
|t=0 = ptot and M dqH (t)

dt
|t=0 = p yields

xH
cm(t)= 1

ω2 + α2

(mω2α2

λ

(
q(cosωt − coshαt)+ p

M
(
sinωt

ω
− sinhαt

α
)
)

+xcm(α2 cosωt +ω2 coshαt)+ ptot

Nm
(
α2

ω
sinωt + ω2

α
sinhαt)

)
. (40)

For an initial product state of the system |S〉 (that does not display long range connected cor-
relations between the system degrees of freedom) and its environment |E〉, in the large system 
size (N ) limit, the corresponding initial variances σ 2

xcm
= 0 and 1

N2 σ 2
ptot

= 0. Evaluating, using 
Eq. (40), the variance of xcm(t) at time t when the environment |E〉 is the n-th eigenstate of the 
Harmonic oscillator Hamiltonian HCOIG

E ,

σ 2
xH
cm(t)

= m2ω4α4(n+ 1
2 )2h̄2

λ2M
2
(ω2 + α2)2

( (cosωt − coshαt)2

�
+�(

sinωt

ω
− sinhαt

α
)2
)
. (41)

When present, a finite standard deviation σq at time t = 0 implies a finite σ 2
xcm

= O(1) at 
positive times. From Eq. (36) this, in turn, mandates (similar to Eq. (3)) a long range covariance 
between the local oscillator displacements,

1

N2

N∑
i=1

N∑
j=1

(〈xH
i (t)xH

j (t)〉 − 〈xH
i (t)〉〈xH

j (t)〉)=O(1).

The results of Eqs. (40), (41) suffer only a trivial change if the uniform coupling between q
and the environment in HIG

S−E of Eq. (31) is generalized to any other bilinear coupling between 
the environment and system. For instance, we may replace HIG

S−E by (−Nλkqkxk)) with the 

(un-normalized) Fourier mode xk = 1
N

∑N
i=1 xie

ikx and HCOIG
E = ( 1

2M�
2
kq

2
k + p2

k

2M
). In such 

a case, Eqs. (37), (38), (39), (40), (41) will trivially hold following the substitutions � → �k , 
λ → λk , xcm → (xk/N), and q → qk .
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7.5. Central oscillator-system oscillators model

We next consider local Harmonic oscillators,

Hi = p2
i

2m
+ 1

2
mω2

i x
2
i , (42)

with a global coupling to the environment of the form

HCOM
S−E =−λq

N∑
i=1

xi (43)

and where HCOM
E is any function of q alone (i.e., no kinetic term, an infinitely “heavy” en-

vironment). In such a system, an effect of HCOM
S−E is to trivially shift the equilibrium positions 

(xi ) of all N system oscillators from their initial value (that in the absence of coupling to the 
environment) by λ

mω2
i

q . As a consequence, at all times t ,

〈xH
i (t)xH

j (t)〉 − 〈xH
i (t)〉〈xH

j (t)〉 = λ2

m2ω2
i ω

2
j

(〈q2〉 − 〈q〉2). (44)

Eq. (44) also trivially holds for a shift of q by an arbitrary constant, HC′OM
S−E = −λ(q0 +

q) 
∑N

i=1 xi with q0 a general constant. Such a constant shift amounts to a constant displace-
ment of the location of the oscillator equilibrium, xi → (xi − λq0

mω2 ). As in the earlier models 
solved in this Section, if the environment E exhibits a finite standard deviation of q then Eq. (44)
implies long range connected correlations amongst the local displacements xH

i .

7.6. External fluctuating fields

In the examples of Sections 7.4 and 7.5, if {xi} portray particle heights (or the locations of 
charged particles between capacitor plates (in the direction transverse to these plates)) then the 
effect of the environment may be viewed as that of a gravitational (or electric) field coupling lin-
early to {xi}. In these models, however, the latter effective field features fluctuations. Similarly, 
in Section 7.1, the external central spin acts as a transverse field with fluctuations that led to a 
finite variance of σ 2

ε . Generally, we may consider systems with global external fields displaying 
fluctuations. Such models may thus be viewed as hybrid of procedures (1) and (2) of Section 2. 
There is an external environment driving the system (as in procedure (1)) exhibiting finite vari-
ance local fluctuations. Similarly, one may examine theories with background gauge fields [76]
that (like the collective degrees of freedom q that studied thus far) exhibit global fluctuations.

8. Dyson type expansions for general evolutions

To make progress beyond intuitive arguments and specific tractable systems, we next com-
pute the standard deviation of the energy density (and, by trivial extension, any other intensive 
quantity q). Towards this end, we return to procedure (1) of Section 2 involving no external 
environment and examine Dyson type expansions for a general non-adiabatic [27] time de-
pendent Hamiltonian H(t) (of which the piecewise constant Hamiltonians Hspin and Htr (or 
HBose and Hdoping) are particular instances). Our calculation will demonstrate that in general 
situations, a finite σε will arise. Via a Magnus expansion, the general evolution operator, the 
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time ordered exponential U(t) = T exp(− i
h̄

∫ t

0 H(t ′)dt ′), may be written as U = exp(�(t)) with 
�(t) =∑∞

k=1 �k(t) where

�1(t)=− i

h̄

t∫
0

dt1H(t1),

�2(t)=− 1

2h̄2

t∫
0

dt1

t1∫
0

dt2[H(t1),H(t2)],

�3(t)= i

6h̄3

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3

(
[H(t1), [H(t2),H(t3)]]

+ [H(t3), [H(t2),H(t1)]]
)
,

· · · . (45)

We may apply the above Magnus expansion to a Heisenberg picture operator AH(t) = U†AU , 
with A an arbitrary fixed operator, with the above �(t) and subsequently invoke the Baker-
Campbell-Hausdorff formula e−�Ae� =A −[�, A] + 1

2! [�, [�, A]] − 1
3! [�, [�, [�, A]]] +· · · . 

If no change occurs at intermediate times t and the Hamiltonian is that of the initial system (i.e., 
H(t) =H ) then, of course, the standard deviation σε(t) will remain unchanged when computed 
with the (time independent) equilibrium density matrix for which it trivially vanishes. Similarly, 
if the evolution of H(t) is adiabatic at all times then no broadening of the distribution P(ε′) will 
arise. Our interest, however, lies in the Hamiltonians H(t) �= H necessary to elicit a change of 
the energy density dε/dt �= 0 in a macroscopic system. In particular, we wish to examine the 
variance of the total energy density,

σ 2
ε (t)= 1

N2

(
T r(ρ(HH (t))2)− (T r(ρHH (t)))2

)
, (46)

with ρ the initial density matrix the system (time t = 0) when cooling or heating commences. (In 
the dual examples considered in Section 6, ρ = |ψ0〉〈ψ0| with |ψ0〉 the initial spin or bosonic 
wavefunction.) If σε is to vanish identically then the resulting series for Eq. (46) must vanish, 
order by order, for any H(t). Collecting terms to the first two nontrivial orders in H(t > 0),

σ 2
ε (t)= σ 2

ε (0)+ 1

N2 〈[(�H)2,�1]〉

+ 1

2N2

(
〈[�1, [�1, (�H)2]] + [(�H)2,�2]〉

−〈[(�H),�1]〉2
)
+O((H(t > 0))3). (47)

Here, 〈−〉 denotes an average computed with ρ and �H ≡ (H − E0) where H ≡ H(t = 0)

and E0 is the initial energy 〈H 〉. We emphasize that if, at all times t , the standard deviation 
vanishes identically for the heated/cooled system with the time dependent Hamiltonian, then the 
sum of all terms of a given order in H(t > 0) in the expansion of Eq. (47) must vanish. In the 
special case ρ = |φn〉〈φn| with |φn〉 an eigenstate of H , the expectation values 〈[�H, �1]〉 =
[(�H)2, �2]〉 = 0. For this density matrix ρ, to order O((H(t > 0))2), the standard deviation 
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is given by the norm σε =
∣∣∣�H(i�1(t))

N
|φn〉

∣∣∣ or (recalling that �H |φn〉 = 0 and consequently 

σε = 1
N

∣∣∣[�H, �1(t)]|φn〉
∣∣∣),

σε(t)= 1

Nh̄

∣∣∣
t∫

0

dt1[H,H(t1)]|φn〉
∣∣∣. (48)

Because the total energy of the system changes with time (at an O(N) rate), the commutator of 
Eq. (48) cannot identically vanish and is, typically, of order O(N). Nonetheless, it is possible 
that when acting on the eigenstate |φn〉, this commutator will yield a vector of size o(N) and 
thus a vanishing contribution to σε in the N →∞ limit.

Indeed, as is to be expected, in the special product state setting of Section 5, we will obtain a 
vanishing σε . Specifically, if for all t , the Hamiltonian H(t) =∑N ′

i=1 Hi (t) is a sum of decoupled 
commuting local operators that, act on the same M = N ′ =O(N) disjoint subspaces (Eq. (5)), 
then the eigenstates |φn〉 of H(t = 0) will be a product of N ′ decoupled states. Under the further 
constraint that, for all t , the local Hamiltonian operator norm satisfies a finite upper bound, 
||Hi (t)|| ≤ Y = O(1), one observes that (�H)�1(t)|φn〉 becomes the sum of N ′ orthogonal 
local product state vectors, each of which is of length O(1). Then, from Eq. (48), to second order 
in H(t > 0),

σ local
ε (t) � t

√
N ′

h̄N
Y 2. (49)

Hence, to this order in the expansion of Eq. (47), for such local product states |φn〉, we have 
limN→∞ σ local

ε (t) = 0.
Contrary to Eq. (49), however, for general non-product state density matrices ρ and non-

adiabatic evolution of H(t) (for which the commutators appearing in the series for σε tend to 
zero), the norm of Eq. (48) does not identically vanish as N →∞ for all functions H(t) and ini-
tial density matrices ρ (even if ρ is a stationary under an evolution with the initial Hamiltonian 
H ). We stress that the perturbative result of Eq. (48) may, generally, be valid only for short times. 
Our aim in this Section is to illustrate that, generally, the standard deviation of the energy density 
does not vanish at all times. That a resulting σε = 0 in a closed driven system cannot appear 
identically at all times is also evident from our exactly solvable examples. As noted above, the 
non-vanishing series expansion result illustrates that when the system starts from an equilibrium 
state with a sharp energy density σε(0) = 0, then notwithstanding any locality of the Hamilto-
nian, σε may become finite (i.e., O(1)) at later times t . Additional aspects and further connection 
with “wave packet” analogy of Section 4 are discussed in Appendix K.

The Dyson type expansion analysis is not limited to the energy density ε (similar results hold 
for any other intensive quantity q) nor to specific continuum or lattice systems. Thus, broad dis-
tributions may generally arise in systems displaying an evolution of their intensive quantities. Of 
course, constrained solutions to the equation σε(t) = 0, at all times t , may be engineered. Indeed, 
particular solutions associated with operators that translate the system spectrum bring to life the 
intuitive analogy that we made with wave packets (Section 4) as well as the special character 
of product states (Section 5). Similar results may also appear for classical systems; using Weyl 
quantization, the commutators in Eqs. (45), (47) are replaced (to lowest order in powers of h̄) by 
the corresponding Poisson brackets and all averages are evaluated with the classical probability 
density instead of the quantum probability density matrix ρ. Eqs. (45), (47) are indeed solely 
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a consequence of the “canonical” time evolution of the system given by Hamilton’s equations 
in the classical arena (replacing the quantum Heisenberg equations of motion). We next study 
another situation in which a finite σε > 0 arises rather trivially.

9. Short time averaged probability distribution

The inequalities derived this Section are motivated by and also hold for classical systems. We 
will examine a time averaged probability density on S ,

ρτ̃ (t)≡ 1

τ̃

t+τ̃∫
t

ρ(t ′)dt ′. (50)

Here, ρ(t ′) = U(t)ρU†(t) is the (instantaneous) density matrix in the Schrodinger picture. 
Ref. [79] studied numerous aspects of the probability densities ρτ̃ (t) for lattice spin systems. 
We remark that, arguably, any real measurement of a macroscopic quantity Q in large “semi-
classical” systems is not instantaneous but rather requires a finite period of time τ̃ ; thus the 
observed values correspond to T r(ρτ̃ (t)Q). Averaging with this probability distribution,〈(H

N

)2〉
τ̃
≡ 1

N2 T r(ρτ̃ (t)H
2)

=
t+τ̃∫
t

T r(ρ(t ′)H 2)

N2τ̃
dt ′ ≥

t+τ̃∫
t

(T r(ρ(t ′)H))2

N2τ̃
dt ′

= 1

τ̃

t+τ̃∫
t

ε2(t ′)dt ′. (51)

Similarly,

〈H
N

〉
τ̃
= 1

τ̃

t+τ̃∫
t

ε(t ′)dt ′. (52)

Hence, σ 2
ε,τ̃

≡
〈(

H
N

)2〉
τ
−
〈
H
N

〉2
τ

will be finite for an energy density ε that varies at a finite rate 

in the interval [t, t + τ̃ ]. For a short time interval in which dε
dt ′ is approximately constant, Taylor 

expanding ε(t ′) to linear order in (t ′ − (t + τ̃
2 )) in the integrands of Eqs. (51), (52),

σε,τ̃ � τ̃√
12

∣∣∣dε

dt

∣∣∣. (53)

Putting all of the pieces together, we see, from Eq. (3), that macroscopic range G > 0 will appear 
when all correlations evaluated with the time averaged density matrix ρτ̃ (t) of Eq. (50). Albeit 
being trivial, this result is extremely general and applies to all density matrices and Hamiltonians 
whenever dε

dt
�= 0. Returning to the opening sentence of this Section, the inequalities of Eqs. (51), 

(53) indeed also hold for classical systems (with the trace in Eq. (51) replaced by phase space 
integrals or other sum over classical microstates and ρ being a classical probability distribution). 
In classical ergodic systems, equilibrium (and various non-equilibrium) phase space probability 
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distributions have their conceptual origin in long or finite time averages: an equilibrium ensemble 
average reproduces the long time expectation values. Although it is somewhat obvious, it is 
nonetheless important to emphasize that, in the quantum arena, having an instantaneous density 
matrix that is a product state does not imply a time averaged density matrix that is also a product 
state. This is much the same as the two spin S = 1/2 density matrix 1

2 (| ↑↑〉〈↑↑ | + | ↓↓〉〈↓↓ |); 
the latter is an average of the density matrices of two product states yet it is not, of course, the 
density matrix of a product state.

In the next Section, we will demonstrate that under certain conditions, σε must be finite when 
dε/dt �= 0. In Sections 11 and 13, we will further discuss what occurs once the system is no 
longer driven. Apart from its form as a time average expectation value, our result of Eq. (53)
implies that there are states for which the standard deviation σε > 0 when the latter is evaluated 
for instantaneous expectation values in mixed and pure states evolving under a piecewise constant 
H(t) (such as that of Section 6). To this end, we may equate ρτ to be the instantaneous density 
matrix ρnew(t) of a new mixed state or, alternatively, to be the partial trace of the density matrix 
of a pure state defined on an artificially constructed volume I ′ larger than the system volume (S)

on which the Hamiltonian H acts (I ′ = S ∪E ′ with E ′ an artificially constructed “environment”) 
following the “purification” procedure of [57,58]. In the notation of [58], the dimension D will 
correspond to the number of time steps in a discretization of the integral of Eq. (50). Herein, 
given original pure states {|ψ(t ′)〉} (with t ′ = t + kτ/D with integer 1 ≤ k ≤ D), the scaled 
density matrices |ψ(t ′)〉〈ψ(t ′)|

τ
may be summed, as in Eq. (50), to provide an instantaneous density 

matrix ρnew(t). The latter density matrix may, following [58], be constructed such that its partial 
trace over the environment E ′ yields ρτ̃ (t) (i.e., ρτ̃ (t) = ρnew(t) = T rE ′ |�(t)〉〈�(t)| with |�(t)〉
a pure state in I ′). This demonstrates, once again, that the standard deviation σε as evaluated 
with instantaneous probability density matrices or pure states can be trivially finite even for local 
Hamiltonians H .

10. Generalized two-Hamiltonian uncertainty relations

We next turn to a more specific demonstration that, in other settings, when evaluated with the 
instantaneous density matrix, the standard deviation σε > 0 when the energy density exhibits a 
finite rate of change. In this Section, we consider non-relativistic systems S of arbitrary size N
(large or small) that satisfy certain conditions in the order of decreasing generality.

We first derive exact inequalities for closed system-environment hybrids and discuss, once 
again, how our results relate to causality. We will then derive exact bounds for open system-
environment hybrids. In this Section, we will formalize and study procedure (2) of Section 2. 
We will explicitly include the effects of the environment. In Sections 10.1 and 10.2, we will re-
spectively analyze, situations in which the ensuing system-environment hybrids constitute larger 
closed or open hybrid systems.

10.1. Closed system-environment hybrids

10.1.1. Exact inequalities for closed system-environment hybrids
In this subsection, we will derive inequalities when the following assumptions are satisfied:

Assumption (1): When combined with their physical environment (or “heat bath”) E , these sys-
tems constitute a larger global closed isolated hybrid system I = S ∪E (of Ñ sites) such that the 
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sites in S do not interact with any sites that are not in I . The number of particles or sites in both 
S and E is held fixed. �
Assumption (2 - weak version): The Hamiltonian H describing S is time independent. �

We stress that the Hamiltonian H̃ describing the full hybrid system I including interactions 
between S and E is, at this stage, kept general and may depend on time.

Denoting the evolution operator (first discussed in Eq. (4)) of the full closed hybrid system I
by

Ũ(t)= T exp(− i

h̄

t∫
0

H̃ (t ′)dt ′), (54)

the two Heisenberg picture Hamiltonians HH(t) = Ũ†(t)H Ũ(t)(t) and H̃H (t) = Ũ†(t)H̃ Ũ(t)

describe, respectively, the open system S and the larger closed hybrid system I at time t . The 
energy of the system S is E(t) = T rI(ρ̃HH (t)) where ρ̃ is the initial density matrix of I . By 
the uncertainty relations [77,78],

σε(t)σH̃H (t)
≥ 1

2

∣∣∣T rI(ρ̃[H
H (t)

N
, H̃H (t)])

∣∣∣. (55)

σε(t) and σ
H̃H (t)

denote, respectively, the uncertainties associated with HH(t)/N and H̃H (t)

(when these uncertainties are computed with the probability density matrix ρ̃). Combined with 
Heisenberg’s equations of motion for the time independent H (Assumption (2 - weak version)), 
we obtain an extension of the time-energy uncertainty relations for this two Hamiltonian realiza-
tion,

σε(t)σH̃H (t)
≥ h̄

2N

∣∣∣dE

dt

∣∣∣. (56)

Eq. (3) then implies a lower bound on the average macroscopic range correlators in the subsystem 
S ,

GS ≥ h̄2

4σ 2
H̃H (t)

(dε

dt

)2
. (57)

The derivative in Eq. (57) scales as O(N2) if the energy E(t) of S changes at a rate propor-
tional to the size of S (i.e., if the energy density changes at a finite rate). Eqs. (55), (56), (57)
will remain valid if Assumption (1) is relaxed, i.e., if I is an open system with a Hamiltonian 
H̃ that, itself, is in contact with a yet larger system. We next examine what occurs if the local 
energy density correlators Gij decay with a correlation length ξ , i.e., with

Gij ∼A
e−|i−j |/ξH

|i − j |p , (58)

with A a finite constant. Transforming to hyperspherical coordinates, we see that on a d dimen-
sional hypercubic L ×L × ... ×L lattice with L � ξH , the average correlator of Eq. (3) will, up 

to factors of order unity, be given by GS ∼ 2A
πd/2�(d−p)

�( d
2 )

(
ξH

L
)dξ

−p
H . Combined with Eq. (57), 

this implies a lower bound on the correlation length
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ξH � L
d

d−p

[ h̄2�(d
2 )

8Aπd/2�(d − p)σ 2
H̃H

(t)

(dε

dt

)2]1/(d−p)

, (59)

with ε(t) =E(t)/N being the energy density of the system S and with �(z) denoting a Gamma 
function. Note that the lower bound of Eq. (59) on the correlation length is monotonic in the 
temporal variation of the energy density ε(t). That is, the larger the rate of change | dε

dt
| of the 

energy density, the larger the lower bound on the putative finite correlation length ξH . In partic-
ular, for finite dε/dt and σ

H̃H , such a lower bound will diverge as L →∞ (indicating that an 
assumption of small ξH cannot be made self-consistently). Moreover, regardless of p, if (in any 
dimension) σH̃H <O(

√
N) then Eq. (59) illustrates that ξH cannot be finite in the L →∞ limit 

whenever dε/dt is finite. Thus, the reader can see how divergent correlation lengths are man-
dated whenever I exhibits fluctuations that are smaller than those of typical open systems (i.e., 
when σH̃H = o(

√
N)). The bound of Eq. (59) assumes Eq. (58) and is only suggestive. In what 

follows, we will examine conditions that will enforce a finite σ
H̃H and thus divergent correlations 

when dε/dt �= 0. Towards that end, we impose a more restrictive condition:

Assumption (2 - strong version): The fundamental interactions appearing in the global Hamil-
tonian H̃ describing I are time independent. �

This assumption (which, for brevity, we will henceforth simply refer to as Assumption (2)) 
implies Assumption (2 - weak version). This is so since the terms in H̃ include, as a subset, 
the interactions appearing in the Hamiltonian H describing S . When Assumption (2) holds, 
time dependence arises when the density matrix ρ̃ is not diagonal in the eigenbasis of the full 
Hamiltonian H̃ .

In what briefly follows, we make general colloquial remarks motivating our final result. We 
will then invoke a last assumption (either of Assumptions (3) or (3′) to be introduced below), 
with the aid of which we will be able to rigorously derive our result. When Assumption (2) 
holds, the global Heisenberg and Schrodinger picture Hamiltonians coincide, H̃H(t) = H̃ . If a 
time independent Hamiltonian H̃ governs the dynamics of the closed hybrid system I , then the 
energy will not vary with time. Classically, there is no meaningful finite standard deviation σ

H̃
: 

the energy of the closed system is conserved. By contrast, no quantum dynamics are possible 
unless σ

H̃
�= 0. That is, any eigenstate of H̃ (for which σ

H̃
= 0) is trivially stationary under an 

evolution with H̃ . For a general initial state |ψ̃0〉 of the closed hybrid system I , the probability 
density,

ρ̃(t)=
∑
ñm̃

e
−i

(Ẽñ−Ẽm̃)t

h̄ 〈φ̃ñ|ψ̃0〉〈ψ̃0|φ̃m̃〉|φ̃ñ〉〈φ̃m̃|, (60)

will typically vary on a time scale of order τ ≡ h̄
σ

H̃
. In Eq. (60), {|φ̃ñ〉} are the eigenstates of H̃ . 

The off-diagonal spread of the density matrix (in the eigenbasis of H̃ ) determines the oscillation 
frequencies that it displays. For pure states |ψ̃0〉 in the closed hybrid system I , a large σ

H̃

implies large temporal fluctuations [80]. If, as in many closed energy conserving systems with a 
well-defined semi-classical limit, the representative frequencies governing the global dynamics 
(and probability density) do not scale with N , i.e., if O(τ ) =O(1) [81] then σH̃

will, typically, 
also not vary with N . Inserting σ

H̃
= h̄

τ
in Eq. (56),

σε(t) ≥ τ
∣∣∣dε

∣∣∣. (61)

2 dt
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This result is natural for a probability distribution that varies over time scales � τ . Along re-
lated lines, a time average of the form of Eq. (50) applied to the density matrix ρ̃ on I (i.e., 
ρ̃τ̃ (t) ≡ 1

τ̃

∫ t+τ̃

t
ρ̃(t ′)dt ′) will remove frequencies higher than a cutoff that scales as h̄/τ̃ . That 

is, if τ < τ̃ , then ρ̃τ̃ (t) will not exhibit the higher frequency oscillations present in ρ̃(t). The 
removal of these high frequencies (associated with short “virtual events”) will render the system 
more “semi-classical”; in a path integral representation, in the sum of the exponentiated classi-
cal action over all possible paths, fluctuations of phases generated by relative energy differences 
larger than O(h̄/τ̃ ) will, for an evolution over a time of length τ̃ , lead to oscillatory phases that 
will cancel. The larger the waiting or averaging time τ̃ is, the more narrow the range of eigen-
states that are relevant to the system evolution will be (i.e., only those with energies in a small 
window about the average system energy may be considered) on time scales ≥ τ̃ .

The above intuition can be made more accurate to bolster the considerations of Section 9. 
The bound of Eq. (55) is an algebraic identity that may be extended to arbitrary probability 
density matrices. In particular, in Eq. (55), we may replace ρ̃ → ρ̃τ̃ for general averaging times 
τ̃ (Eq. (50)). This implies the inequality

σ τ̃
ε(t)σ

τ̃

H̃ (t)
≥ h̄

2N

∣∣∣dEτ̃

dt

∣∣∣, (62)

where Eτ̃ (t) ≡ T rI(ρ̃τ̃H
H (t)). In Eq. (62), σ τ̃

ε(t) and σ τ̃

H̃ (t)
denote, respectively, the standard de-

viations of (H/N) and H̃ as computed with the time averaged probability distribution ρ̃τ̃ . Thus, 
we can qualitatively relate the uncertainty relations to the trivial general bounds of Eqs. (51), 
(53). That is, for any finite (system size independent) averaging time τ̃ , the density matrix ρ̃τ̃ (t)

will display σ
H̃
≤ h̄/τ̃ . Eq. (62) will (in agreement with Eqs. (51), (53)) then imply a finite σ τ̃

ε(t)

whenever dEτ̃

dt
is extensive. As emphasized earlier, of physical relevance are finite time (τ̃ > 0) 

window measurements.
While bounded system size independent frequencies are natural in quasi-classical and “typ-

ical” closed (energy conserving) quantum systems, that is certainly not the case for all con-
structible model states [82]. With this in mind, we consider the consequences of any one of two 
additional conditions (labeled Assumption (3) and Assumption (3′) in the below). Either of these 
conditions will lead to a system size independent standard deviation for the energy density (when 
the latter is evaluated with the instantaneous density matrix ρ̃).

Assumption (3): The closed hybrid system I equilibrates at long times. Stated more precisely 
(and automatically accounting for Poincare recurrence type events), the asymptotic long time 
average of the probability density ρI in the larger closed hybrid system I veers towards the mi-
crocanonical (mc) density matrix applicable for closed energy conserving systems in equilibrium 
[83]. That is,

ρ̃mc;I = lim
T̃ →∞

1

T̃

T̃∫
0

ρ̃I(t ′)dt ′, (63)

with ρ̃mc;I the microcanonical ensemble density matrix for the closed hybrid system I . �

In systems obeying Eq. (63), the uncertainty in the energy of I at asymptotically long times 
(i.e., as computed with ρ̃mc;I ) will be system size independent,
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σ
H̃
=O(1). (64)

Eq. (64) constitutes the defining textbook property of the microcanonical ensemble [83]. Since 
the closed system-environment hybrid I is governed by the time independent Hamiltonian H̃ , 
the standard deviation σ

H̃
is time independent and Eq. (64) trivially holds at all times t when the 

variance σ
H̃

is computed with the density matrix ρ̃(t). Assumption (3) and the preceding discus-
sion may seem abstract. The semiclassical intuition underlying the somewhat axiomatic standard 
definition of the microcanonical ensemble is rather trivial. We repeat anew some elements below.

For a classical ergodic hybrid system (e.g., that assumed for I governed by the time inde-
pendent H̃ ), the probability density is that associated with the long time average. For a closed
conservative system, the total energy is conserved and the probability density defined in this 
way exhibits zero variance of the total energy. In the quantum arena, if the closed ergodic sys-
tem exhibits non-trivial dynamics then the standard deviation of its Hamiltonian cannot vanish 
(since the eigenstates of H̃ are trivially stationary). Thus, the common assumption underlying 
the microcanonical ensemble is that the standard deviation of H̃ is finite (in order to allow for 
non-vanishing frequencies) yet, for a closed system does not diverge as the size increases. This 
intuition rationalizes the standard use of Eq. (64) defining the microcanonical ensemble. In the 
spirit of the above maxim, we next introduce an alternate assumption that does not rely on the 
closed hybrid system I being ergodic (nor the use of the microcanonical ensemble):

Assumption (3′): A finite time step discretization (t = tk = k�t with integer k and �t a suf-
ficiently small system size independent time step) may effectively simulate the evolution of I . 
Here, as before, the (pure) state of the closed hybrid system I may be described by a wave-
function. The uniform discretization of t implies that any function f (t) (including the associated 
density matrix ρ̃(t) of Eq. (60)) may be expressed as a Fourier sum f (t) =∑p′ f̂ (ωp′)e−iωp′ t

with ωp′ lying in the “first Brillouin zone” (|ωp′ | ≤ π/�t). Thus, the uncertainty in the energy 
of the closed hybrid system I satisfies σ

H̃
≤ πh̄/�t – a realization of Eq. (64). Expectation 

values of finite time gradients in I (including the standard deviation of the discrete time gradient 
approximation of the Hamiltonian H̃ = ih̄ ∂

∂t
) are bounded from above by O(1/�t) [84]. �

Assumptions (1-3) (as well as Assumptions (1, 2, 3′)) [85] imply that when the energy density 
varies at a finite rate (dE/dt =O(N)) then, from Eqs. (56), (64), the standard deviation of the 
energy density of S ,

σε(t) =O(1). (65)

Thus, we discern from Eqs. (3), (57) that long range correlations must appear during the cooling 
or heating period at which the energy density of the system (S) is varied at a finite rate. Analogs 
of Eq. (65) are also valid for any other intensive quantity q (different from the energy density ε) 
whenever dq

dt
�= 0. Analogs of Eq. (65) are also valid for any other intensive quantity q (different 

from the energy density ε) whenever dq
dt

�= 0. When the environment E is included for (as we 
do now), the evolution of the system itself (Fig. 2) is, generally, non unitary; this non unitary 
evolution lies in strong contrast to the earlier examples of Section 6 in which the system evolved 
unitarily. One may, nonetheless, still make some non-rigorous pedagogical contact with the spin 
models of Section 6 for a special case exhibiting unitary time evolution [86] for which all of the 
above three assumptions hold. These assumptions are not met (in particular Assumption (3) does 
not hold) for the rather artificial (yet exactly solvable) models of Section 7 [71]. Assumptions 
(1-3) are often employed in standard textbook derivations of the canonical ensemble for open 
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systems S by applying the microcanonical ensemble averages for the larger equilibrated closed 
systems I that include the relevant environments E that are in contact (or “entangled”) with S . If, 
as evinced by measurements in prototypical states in the composite hybrid system I at asymp-
totically long times, ergodicity and equilibrium set in, then the microcanonical ensemble may 
be invoked. We next turn to the scales of the righthand sides of Eqs. (55), (56), (57) and their 
consequence for systems that are cooled/heat at finite rate. By Heisenberg’s equation for the time 
independent Hamiltonian H ,

dHH

dt
= i

h̄
[H̃ ,HH ]. (66)

Therefore, in order to obtain a finite rate of change of the system energy density dε/dt (or an 
extensive rate dE/dt ), the total Hamiltonian H̃ of the large hybrid system I must have a com-
mutator with the Hamiltonian H of S that is of order N , i.e., T rI(ρ̃[H̃ , HH ]) =O(N). Hence, 
to achieve a finite global rate of cooling/heating, H̃ must couple to an extensive number of sites 
in the volume of S – it is not possible to obtain an extensive cooling/heating rate by a bounded 
strength coupling that extends over an infinitesimal fraction of the system size (see also the dis-
cussion at the end of Section 4 and that appearing after Eq. (8) in Section 6.1). Effectively, a 
finite fraction of the sites lying in the volume of S must couple to H̃ whenever dε

dt
=O(1). The 

initial state of the system S prior to its cooling/heating (or variation in its other parameters) may 
have a well defined energy density ε and other state variables yet nonetheless still be far from 
a typical equilibrium state. One may introduce various probes, clocks, etc., that start the cool-
ing/heating process in a particular way; the initial state need not be in equilibrium but may rather 
be specially crafted. We further wish to underscore that the value of the (nearly) constant energy 
of the closed hybrid I (up to corrections that do not increase with the system size) as captured 
by Assumption (3) (as well as Assumption (3′)) imply constraints between the environment E
and the system S . Thus, qualitatively, the resulting picture (literally and figuratively) is in accord 
with the schematic of Fig. 3 with the same environment E coupling to a finite fraction of all 
sites in the system. Indeed, if this is not the case and the environment E is composed of O(N)

microscopic decoupled reservoirs with each of these reservoirs independently, coupling to an-
other local region of S (such that O(N) independent local system-environment hybrids appear 
each having a conserved energy up to O(1) fluctuations) then the total energy of I will exhibit 
O(N1/2) fluctuations (a sum of the N independent random errors with each of these errors being 
of order unity). In such instances, the energy of the closed hybrid I would not, up to system size 
independent errors, remain constant in time in the thermodynamic limit.

If Assumptions (1-3) are met then at asymptotically long times, memory of the initial state 
will be lost and all observables may be computed via the microcanonical ensemble with its few 
thermodynamic state variables. In particular, the defining feature of the microcanonical proba-
bility distribution of closed equilibrated systems holds, Eq. (64). For completeness, we note that 
the Dyson type expansion of Section 8 may also be reproduced in the setting of the current sub-
section with a time independent H̃ (for which the evolution operator is e−iH̃ t/h̄ and the global 
density matrix is given by ρ̃).

10.1.2. Remarks on causality
In the earlier part of this subsection, the effect of the environment E driving the system was 

explicitly included and, as in basic theories, the form of the terms in the system-environment hy-
brid (i.e., those in H̃ ) was time independent. While the form of the fundamental interactions in H̃
is time independent, tracing over the environment (Fig. 2) may lead to complex dynamical maps. 
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We now revisit, yet again, the constraints implied by causality. As noted in Section 4, in models 
with local interactions, compounding relativistic bounds, Lieb-Robinson inequalities [30] gener-
ally provide upper bounds on commutators in non-relativistic systems (such as those appearing in 
Eq. (55)). These relations lead to bounds on correlations [8,9]. However, as we explained above, 
in driven systems for which the energy density is made to vary at a finite rate, commutators such 
as those of Eq. (55) must be extensive; such commutators may only appear at sufficiently long 
times (we refer the reader, once again to Appendix B for an explicit proof of this assertion). 
In diverse physical situations (i.e., when cooling/heating leads to a finite rate of change of the 
system energy density or measured temperature), photons and/or other particles/quasiparticles 
emitted/absorbed by an extensive volume of the surrounding heat bath effectively couple to the 
system bulk (see Appendix A). In the spin model of Section 6.1 (in which the system evolution 
was unitary), the time independent (for all times t > 0) transverse field (By ) Hamiltonian of 
Eq. (8) played the role of H̃ acting on all N sites (so as to have [H̃ , HH ] =O(N)).

10.2. Open system-environment hybrids

As noted above, for a closed system described by a wavefunction, a large σ
H̃

implies rapid 
temporal fluctuations. By contrast, the density matrix describing an open system can be time in-
dependent yet exhibit large σ

H̃
[80]. “Canonical” open systems I feature a large (by comparison 

to the energy uncertainties of the closed systems that we discussed earlier) σ
H̃
∼ Ñ1/2 scaling. 

This larger value of σ
H̃

renders the corollaries of Eq. (56) weaker for open systems. Nonetheless, 
as we will next demonstrate by a simple “proof by contradiction” argument, if we consider an 
initial open thermal system composite I at an assumed temperature T (instead of Assumption (1) 
for the closed systems of Section 10.1), then there exists a limiting cooling/heating rate beyond 
which equilibration is impossible. The bound that we present encompasses the physical situation 
of a general uniform medium that is heated or cooled via contacts with an external environment. 
Our result pertains to what transpires if the subsystem S and the larger open hybrid system I
containing it are in equilibrium with one another at a temperature T (see Fig. 6). Specifically, we 
will invoke the following assumptions for open (o) systems:

Assumption (1o): When combined with their environment (or “heat bath”) E , these systems 
constitute a larger open hybrid system I = S ∪ E (of Ñ sites) in which the sites in S do not 
interact with any sites that are not in I . The open system-environment hybrid I is embedded in 
a larger volume � (of size N�). �

We comment that with this assumption and definition of I as a volume containing all sites 
that S interacts with, when only short range interactions are present, we may choose, in the 
thermodynamic limit, I such that limN→∞ Ñ

N
= 1 with N denoting the number of sites in S .

Assumption (2o): The open hybrid system I is in thermal equilibrium with its environment at a 
fixed temperature T . In particular, the fluctuations (as computed with initial probability density 
matrix ρ̃) of extensive quantities are those of an equilibrated system at a temperature T . �
Assumption (3o): The subsystem S ⊂ I is in thermal equilibrium with I . �

This last assumption might be regarded as a consequence of Assumption (2o) for the equili-
brated hybrid system I that includes S. Nonetheless, we wish to make Assumption (3o) explicit. 



Z. Nussinov / Nuclear Physics B 953 (2020) 114948 39
Fig. 6. An open system-environment hybrid I . The degrees of freedom in S may only interact with others in S and/or 
the environment E . Unlike the analysis of 10.1, however, the constituents of E may now interact also with others not 
in I . (The shown open hybrid I lies in a larger (possibly infinite) volume �.)

The open hybrid system I (including S) may be taken to lie deep in a uniform medium so that it 
is far from any external contacts that change its temperature. The Heisenberg picture Hamiltonian 
H̃H evolves with an operator different from Eq. (54) – one that involves also the sites exterior 
to I . The latter coupling allows for a non-trivial time dependence. Equivalently, the Schrodinger 
picture probability density matrix ρ̃(t) is generally a function of time [87]. Macroscopic ex-
pectation values computed with ρ̃(t) are those of equilibrated thermal systems yet measurable 
dynamics also appear (as in, e.g., an equilibrated gas with mobile molecules having correlations 
set by the diffusion equation). For a static ρ̃(t), all expectation values will be trivially stationary. 
Since, by Assumption (2o), the full hybrid system I = S ∪ E is in equilibrium, the system S
must be in equilibrium with its environment E . From the zeroth law of thermodynamics, it then 
follows that S is also described by a (canonical) probability density matrix at the same inverse 
temperature β .

Because the sites in S only interact with those in I (Assumption (1o)), Eqs. (55), (56), (57)
(as well as the bound of Eq. (59) for correlators of the form of Eq. (58)) remain valid. In what 
follows, following Assumption (2o), we will set, in Eq. (56), the equilibrium values of standard 
deviations of the respective Hamiltonians in the appropriate (canonical) ensembles describing 
the open systems I and S. That is,

σ
H̃
=
√

kBT 2Cv,I(T ) (67)

(with kB the Boltzmann constant and Cv,I(T ) the constant volume heat capacity of the large 
system composite I) to be the standard deviation of the large open hybrid system I , and equate

σH =
√

kBT 2Cv,S(T ), (68)

where Cv,S(T ) is the heat capacity of the small system at temperature T , to be the standard 
deviation of the smaller subsystem S. We may repeat, mutatis mutandis, the steps that led to 
Eq. (65) when I was a closed system. Doing so and employing Eq. (56), we discover that if the 
cooling/heating rate exceeds a threshold value for an equilibrated open hybrid system I (and any 
subsystem S ⊂ I that is in equilibrium with it (Assumption (3o))),∣∣∣dE

dt

∣∣∣> 2

h̄
kBT 2

√
Cv,I(T )Cv,S(T ), (69)

then a simple contradiction will be obtained. That is, an assumption of having a sharp equi-
librium energy density state variable (by coupling I to a larger external bath at a well defined 
temperature) [94] becomes inconsistent once Eq. (69) is satisfied. At sufficiently fast cooling or 
heating rates (given by Eq. (69)), the inequality of Eq. (56) will be violated when we substitute 
the equilibrium open system values of σH/N and σ ˜ .
H
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Using the exact inequality of Eq. (69), it is illuminating to estimate the rate of the temperature 
variation beyond which equilibration of an open system is rigorously impossible to arrive at a 
typical thermalization bound. Towards that end, we assume that I and S are of comparable size 
(see also the comment following Assumption (1o)), i.e., of size O(N), and that the heat capacity 
of both is, up to factors of order unity, given by dNkB and that the energy density is the order of 
(dkBT ). Hence, if the energy variations fulfill a “Planckian rate” inequality,∣∣∣ dε

dt

∣∣∣
ε

� O
(2kBT

h̄

)
, (70)

then, in any dimension d , it might be impossible to satisfy all of our assumptions in unison. 
Interestingly, earlier work established that the thermalization rates for typical random states are 
given by kBT

h
[88]. The rigorous inequality of Eq. (69) and its common realization of Eq. (70)

augment these relations to rigorously demonstrate that in typical situations (when all energy den-
sities and heat capacities are set by the Boltzmann constant, the number of particles, and the 
energy), whenever the heating/cooling rate is larger than O(kBT /h̄) then no thermalization of 
the open system is possible. We arrived at this inequality by combining exact inequalities associ-
ated with the system dynamics (Eqs. (55), (56)) with the standard deviations (Eqs. (67), (68)) of 
open thermal systems. Variations in the energy need not arise only as a result of an external drive. 
Eq. (69) also holds true for any system in equilibrated open systems for which the variations in 
the energy are thermally self-generated fluctuations typical to the equilibrium state. The bound 
of Eq. (70) is similar that suggested in [20] as a bound on Lyapunov exponents (λL ≤ 2πkBT/h̄) 
in thermal systems. At room temperature, 2kBT /h̄∼ 1014 Hz. Thus, at low temperatures, pulsed 
picosecond laser cooling/heating may, in principle, achieve these rates beyond which, as we just 
demonstrated, quantum uncertainty relations forbid thermalization (even for open systems). Our 
inequality of Eq. (69) is rigorous. By contrast, Eq. (70) only arises as an order of magnitude 
estimate.

Our two results of Eqs. (56), (69) for, respectively, the closed and open composites I apply 
for any rate of the energy change dE/dt . These include situations in which dE/dt scales as the 
surface area of the system (O(N(d−1)/d)) for which an extension of Eq. (3) will, in turn, imply 
that G≥O(N−2/d). Eqs. (65), (69) further apply to any function f (q) of an intensive quantity 
q that is varied at a finite rate. In particular, setting f (q) = qn, we find that the uncertainties 
in all moments of q are, typically, finite if the rate dq/dt is finite. With a formal proof at our 
disposal, we now briefly reflect back on the arguments of Section 4 in which we explained why 
a varying quantity energy density (or any other intensive quantity q) with a finite rate of change 
dε/dt (or general dq/dt ) naturally suggests an uncertainty. The arguments of Section 4 provide 
an intuitive basis for the time-energy uncertainty type relations that we derived and employed in 
this section for our two Hamiltonian system and, more generally for other intensive quantities.

We next discuss inequalities that may also be derived when Assumption (3o) is not invoked. 
Replacing the energy density ε in Eqs. (55), (56), (57) by a general self-adjoint quantity Q having 
its support on a region of arbitrary size N , we discover that thermal fluctuations evaluated with 
the equilibrium many body density matrix ρ� must always satisfy

τ−1
Q ≡ |〈 dQ

dt
〉|

σQ

≤
(2
√

kBCv,I
h̄

)
T . (71)

This inequality is exact at all temperatures and times. It is a “quantum thermodynamic uncertainty 
relation” relating thermodynamic properties (the temperature T and the heat capacity Cv,I (with 
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the latter given, e.g., by the temperature times the partial derivative of the entropy of I at fixed 
volume relative to the temperature or, equivalently, the derivative of the internal energy of I
relative to the temperature)) to σQ and the fundamental constant of quantum mechanics h̄. Both 
the standard deviation σQ and the rate 〈 dQ

dt
〉 are computed with the reduced density matrix ρ̃

after a partial trace over all degrees of freedom not in I of the full density matrix describing 
the equilibrated system � to which I generally belongs. If I is any subvolume of a system 
(�) that is in thermal equilibrium, then the Hamiltonian H̃ exhibits its own variance given by 
Eq. (67). Similar to Eq. (70), we find that if (i) I is of comparable size to S (having O(N)

sites) and (ii) if Cv,I � dNkB , then τQ cannot be shorter than O( h̄

2kBT
√

dN
). Barring critical 

points/transition regions and/or strong anharmonoticities, in most substances, heat capacities are 
typically bounded by their (Dulong-Petit type) high temperature value of O(dNkB) making this 
order of magnitude inequality more stringent than might be suspected otherwise. As remarked 
above, in Eq. (71), N may be of arbitrary size. Indeed, what matters is that in the uncertainty 
relations we may still approximate the equilibrium energy fluctuations in the larger hybrid system 
I by Eq. (67) and that S only interacts with sites in I . The environment E may be chosen to be 
the smallest volume such that all sites in S interact amongst themselves or with sites in S and 
as long as all observables in I (including fluctuations) are equal to those in thermal equilibrium. 
Generally, the upper bound of Eq. (71) becomes more stringent as I decreases (scaling with 
Ñ−1/2). Eq. (71) also provides a lower bound on the average long distance correlators,

GQ ≡ σ 2
q = 1

N2

∑
i,j

(
〈QiQj 〉 − 〈Qi〉〈Qj 〉

)
≥ h̄2

4kBT 2Cv,I

∣∣∣dq

dt

∣∣∣2, (72)

where q = 1
N

∑N
i=1 Qi . By the equilibrium fluctuation-response theorem, this inequality implies 

a lower bound on the uniform susceptibility χQ associated with a general order parameter or 
field Q for an equilibrated open thermal system in which Q fluctuates at a rate (dQ/dt),

χQ ≥ h̄2

4k2
BT 3Cv,I

∣∣∣dQ

dt

∣∣∣2. (73)

10.3. Bounds on the rate of change of general local operators in translationally invariant 
thermal systems

To elucidate the meaning of the inequalities of Section 10.2 and illustrate how (a) the time-
energy uncertainty inequalities arising from dynamics and (b) equalities in thermal equilibrium 
intertwine with one another, we next explicitly consider what occurs for the expectation values 
of local quantities in translationally invariant systems (LTI).

Assumption (1LT I ): We consider local quantities Q defined on a spatial region S ⊂ I . The 
operators Q commute with all terms in the Hamiltonian that do not involve sites in I . The open 
system-environment hybrid I is embedded in a larger volume � (of size N�). Now, I itself does 
not need to constitute a sufficiently large region displaying typical thermal expectation values 
(i.e., Assumption (2o) no longer holds). Instead of Assumption (2o), we impose an even weaker 
condition:

Assumption (2LT I ): Global expectation values in � are given by equilibrium thermal aver-
ages. �
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Assumption (3LT I ): The time independent Hamiltonian H� governing the dynamics of � is 
translationally invariant.

With these assumptions, we discuss general (possibly infinite volume) theories on a spatial 
region � that evolve according to a fixed translationally Hamiltonian H� and ask what occurs 
when the initial probability density matrix to be ρ� describes the large volume � in equilib-
rium. We will derive bounds only slightly weaker than those of Eq. (71) when only Assumptions 
(1LT I ), (2LT I ), and (3LT I ) are invoked instead of Assumptions (1o), (2o), and (3o). Towards that 
end, we explicitly define H̃H ⊂ H� to be the set of all terms in H� that do not commute with 
the quantity QH = eiH�t/h̄Qe−iH�t/h̄ and thus (by Heisenberg’s equation of motion) contribute 
to its time derivative, dQH

dt
= i

h̄
[H̃H , QH ]. As emphasized above, H̃ may be the sum of all terms 

in the global Hamiltonian H� that do not commute with Q and thus endow Q with dynamics. 
To make the above explicit, we derive Eq. (71) in a general setting, longhand,∣∣∣〈dQH

dt
〉
∣∣∣2 ≡ ∣∣∣T r(ρ�

dQH

dt
)

∣∣∣2 = ∣∣∣T r(ρ�(
i

h̄
[H�,QH (t)]))

∣∣∣2
=
∣∣∣T r(ρ�(

i

h̄
[H̃H (t),QH (t)]))

∣∣∣2 ≤ 4

h̄2 σ 2
H̃H (t)

σ 2
QH (t)

. (74)

Eq. (74) is valid at all times and constitutes a minor twist of the standard time-energy uncertainty 
relations. In the third equality of Eq. (74), we picked out of the full many body Hamiltonian 
HH

� (t) ≡ eiH�t/h̄H�e−iH�t/h̄ = H�, the sum (H̃H (t)) of all terms in H� that do not commute 
with QH (t). That is, [H�, QH (t)] = [H̃H (t), QH (t)]. The last inequality in Eq. (74) is, once 
again, the standard uncertainty identity, now applied to the two self-adjoint operators �H̃H(t) ≡
(H̃H (t) −T r(ρ�H̃H (t))) and �QH (t) ≡ (QH (t) −T r(ρ�QH (t))) (the deviation, at time t , of 
Q from its equilibrium value as computed with the density matrix ρ�), viz.,(

T r(ρ�(�H̃H (t))2)× T r(ρ�(�QH (t))2)
)
≥ 1

4

∣∣∣T r(ρ�[H̃H (t),QH (t)])
∣∣∣2. (75)

As we remarked earlier (Section 10.1), such an uncertainty inequality applies both to pure states 
(the typical case) as well as mixed states with general density matrices [58]. The above equations 
were a consequence of the system dynamics. We next discuss what occurs in thermal equilib-
rium. If � is in thermal equilibrium, the variance σ 2

H̃H (t)
will be that of the operator H̃H (t)

computed in the thermal state ρ�. Inserting Eq. (67) in Eq. (74) leads to Eq. (71) anew. The 
heat capacity Cv,I(T ) in Eq. (71) is that associated with the fluctuations σ

H̃H (t)
when computed 

with the density matrix ρ� (leading to Eq. (67)). It is important to explain the physical content 
of 〈 dQ

dt
〉. For all quantities Q if the density matrix ρ� depends solely on the time independent 

Hamiltonian H� (e.g., the density matrix associated with the canonical ensemble) the evolution 
operator U(t) = exp(−iH�t/h̄) will then commute with ρ� and all expectation values will be 
stationary. This identical stationarity does not capture the local dynamics in thermal systems. In, 
e.g., an equilibrated gas, the atomic positions of the particles are not stationary (i.e., the average 
computed with the exact density matrix describing the gas will be time dependent). However, 
the expectation value of the velocity of any given particle when computing this average with the 
equilibrium canonical density matrices is identically zero; there is a finite probability density for 
the particles to assume any velocity and only the mean velocity vanishes. By the “mean”, we may 
refer to an (i) ensemble average or one over (ii) long times or as we will focus when Assumption 
(2-LT I ) holds, for systems with translationally invariant Hamiltonians H�, (iii) a global average 
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over all of space. Indeed, while the global velocity average in an equilibrated ideal gas is zero, 
the local velocities are finite. The density matrix ρcanonical

� = e−βH�

Z�
, with Z� = T r(e−βH�) de-

noting the partition function, yields the correct average of local observables yet does not describe 
the dynamics in the equilibrium system. That is, the global average

O ≡ 1

N�

N�∑
i=1

〈OH
i (t)〉 (76)

of any Heisenberg picture expectation value of O evaluated with ρ� is stationary if � is an 
equilibrium system with a value given by

O = 1

N

N∑
i=1

T r(ρcanonical
� OH

i ). (77)

From Eqs. (74), (75), for identical local operators {Qi}N�

i=1, each with a corresponding H̃Hi de-
fined on a region Ii , we have

N�∑
i=1

T r(ρ�(�H̃H
i (t))2)≥ h̄2

4

N�∑
i=1

T r(ρ�
dQH

i

dt
)

T r(ρ�(�QH
i (t))2)

. (78)

Invoking Eqs. (76), (77), the righthand side of Eq. (78) can be rewritten as a canonical thermal 
average of the fluctuations (�H̃H

i (t))2 whose value is set by the correspodning heat capacity 
Cv,Ii

≡ d
dT

T r(ρcanonical
� H̃Hi) and temperature,

T r(ρcanonical
� (�H̃H

i (t))2)≥ h̄2

4N�

N�∑
i=1

T r(ρ�
dQH

i

dt
)

T r(ρ�(�QH
i (t))2)

⇒ kBT 2Cv,Ii
≥ h̄2

4
O. (79)

Eq. (79) constitutes a bound on general local measures of the dynamics in thermal systems. In 
going from Eq. (78) to the top line of Eq. (79), we invoked Assumption (2LT I ): the expectation 
value T r(ρcanonical

� (�H̃H
i (t))2) is the same for all 1 ≤ i ≤ N� (and is thus equal to 1

N�
times 

the sum on the lefthand side of Eq. (78)) and, for the assumed time independent H�, is also the 
same at all times t . In the bottom line of Eq. (79), on the righthand side, the global average of 
Eqs. (76), (77) is applied to the ratio

O ≡ 〈 dQH
i

dt
〉

(σH
Qi

(t))2
. (80)

On the lefthand side of the last equality of Eq. (79), we applied, analogous to Eq. (67), the 
identity T r(ρcanonical

� (�H̃H
i (t))2) = kBT 2Cv,Ii

. In Eq. (80), both the expectation value of the 

local temporal derivative 〈 dQH
i

dt
〉 and the local variance of QH

i are calculated with ρ�. Eqs. (79), 
(80) constitute an explicit local weaker rendition of Eq. (71) that require the use of the global 
average of O as defined in Eq. (76). We stress that σH

Qi
(t) is not an uncertainty due to purely 

quantum effects. Rather, σH
Qi

(t) is the standard deviation of QH
i in the equilibrium system �

(i.e., σH (t) depicts fluctuations of QH(t) from its average value as computed with the thermal 
Qi i
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density matrix ρ�). The global average of the local variances σH
Qi

(t) is that given by the canonical 
density matrix ρcanonical

� .
To further clarify the physical content of Eq. (79), (80), we may consider Q to be a single 

position coordinate Q = ri� of particle i of mass m in a general many body thermal system �. 
The index � = 1, 2, · · · , d labels the Cartesian component of the particle location in d spatial 
dimensions. The full many body Hamiltonian H� = T + V contains kinetic energies (T ) and 
any position dependent interactions V ({�ri}). At any time t , the Heisenberg picture Hamiltonian 
H̃H

i (t) may be chosen to be the kinetic term (pH
i� (t))

2/(2m) since only this term in the Hamilto-
nian H� does not commute with rH

i� (t). From Eq. (79), we observe that in an equilibrated system 
at temperature T , the equilibrium fluctuations (σrH

i�
) in any Cartesian component of the individual 

particle locations (rH
i� ) about their average equilibrium values must obey a simple inequality,

(σrH
i�

)−1|〈drH
i� /dt〉| ≤ kBT

√
2

h̄
, (81)

if the heat capacity associated with H̃H
i in the exact quantum system is lower than that com-

puted in the classical limit Cv,I(T ) ≤ Cclassical
v,I = kB

2 . By the equipartition theorem, for any 

interactions V ({�ri}), the classical thermal average 〈 p2

2m
〉classical = kBT

2 and the associated heat 
capacity Cclassical

v,Ii
= kB

2 . Stated equivalently, Eq. (81) will hold if the fluctuations σ
H̃H in the 

quantum system given by the exact ρ� are bounded from above by those of in the classi-

cal limit, σ 2
H̃H

i

≤ (σ 2
H̃H

i

)classical = (kBT )2

2 . Here, (σ 2
H̃i

)classical denotes the variance as computed 

with ρclassical
� = e−βH�

Zclassical
�

(with Zclassical
� the classical partition function) instead of computing 

the standard deviation of H̃ with the exact density matrix ρ�. For a classical thermal system, 
irrespective of the spatial dependence of the interaction V , the phase space integrals for comput-
ing (σ 2

H̃i
)classical decouple into those over the position coordinates and those for the individual 

momentum components; the single momentum integral that does not cancel identically when 
averaging with ρclassical

� involves only a Gaussian distribution 1√
2πmkBT

e−p2
i�/(2mkBT ) leading, as 

it must by the equipartition theorem, to Eq. (81). With a simple substitution, Eq. (71) is similarly 
realized with Cv,I = kB

2 if the self-adjoint Q is any periodic function of an angle θb that, amongst 

all terms in H�, does not commute only with a single kinetic term H̃ = p2
θb

2Ib
(as happens when 

[θb, H�] = [θb, H̃ ]). A physical realization is that of a molecular system with θb denoting, for 

any single molecule, the angle around a principal axis of rotation and 
p2

θb

2Ib
an angular contribution 

to the kinetic energy with Ib the associated moment of inertia. Here, pθb
is the orbital angular 

momentum conjugate to θb (i.e., pθb
=−ih̄ ∂

∂θb
). For such molecular systems, Eq. (81) will hold 

anew when interchanging the Heisenberg picture rH
i� →Q(θH

b ) with Q any 2π periodic function 

of the angle θb, if, as earlier, σ 2
H̃H

≤ (σ 2
H̃H

)classical = (kBT )2

2 . The analogous inequalities for the 
fluctuations σpH

i�
of the canonically conjugate momentum component of an individual particle 

are typically more involved since, generally, the momentum of an individual particle does not 
commute with multiple interaction terms (this becomes more acute in systems with long range 
interactions) that include the said individual particle coordinate ri�. That is, the Hamiltonian H�

giving rise to the dynamics of pi� (i.e., all potential energy terms whose sum is the associated 

force component 
dpH

i� ) includes all interaction terms in V ({�ri}) containing ri�.

dt
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We conclude this Section by connecting our results concerning uncertainties in intensive quan-
tities to conventional (non-weak [89–92]) quantum measurements. Qualitatively, interactions 
with the environment might be expected to mimic rapid repeated measurements that collapse 
the wavefunction and not allow Schrodinger type mixing states of significantly different energies 
to exist. Such a colloquial “paradox” is somewhat ill formed as we now explain. Continuous mea-
surements by an environment will indeed not enable large uncertainties to appear. However, the 
putative existence of continuous collapses will also not allow for any change in the energy den-
sity or other intensive quantities. This situation is reminiscent to the well-known “Quantum Zeno 
Effect” [93]. Progressively weaker continuous measurements [89–92] may allow for a more rapid 
evolution of various quantities hand in hand with larger uncertainties. We will discuss adiabatic 
process, quantum measurements, and thermalization in Section 15.

11. Deviation from equilibrium averages

In the earlier Sections, we demonstrated that forcefully varying the set of intensive (typical 
state variable) parameters {q ′} characterizing the eigenstates of H (such as the energy and par-
ticle number densities) at a finite rate generally leads to a widening of the distributions P({q ′})
of these quantities. This was investigated for systems both in the presence and absence of an ex-
plicitly included external environment with similar conclusions. Indeed, the causal constraints on 
the effective interactions associated with the environment was the greatest physical distinction 
of interest. In this Section, we wish to underscore that such a widening of the distributions P
allows for a natural departure from equilibrium behaviors. That is, even if the expectation values 
of general observables in individual eigenstates coincide with equilibrium averages [37–45] and 
H has no special many body localized eigenstates [46–54], once a broad distribution P({q ′})
is present, all averages differ from those in true equilibrium ensembles. This will occur since 
the broad probability distribution P({q ′}) describing the driven system is different from the cor-
responding probability distribution in equilibrium systems (where all intensive quantities have 
vanishingly small fluctuations); thus the broad distribution P({q ′}) will give rise to expectation 
values of typical observables that are different from those found in equilibrium. We write the 
equilibrium averages of quantities Oc that commute with the Hamiltonian ([Oc, H ] = 0) [95] in 
a general equilibrium ensemble W for large systems of arbitrary finite size,

〈Oc〉eq;{q};W =
∫

dq ′Peq;{q}({q ′};W)Oc({q ′};W). (82)

Here, the integration is performed over the full set of intensive variables {q ′} and the function 
Peq;{q}({q ′}; W) denotes the probability distribution in an equilibrium ensemble W for which 
the average of the various quantities q = ∫ dq ′(q ′Peq;{q}({q ′}; W)). Lastly, Oc({q ′}; W) ≡
〈φ({q ′}; W)|Oc|φ({q ′}; W)〉. Augmenting the set of intensive quantities {q ′} defining any of 
the standard equilibrium ensemble probability distributions, the index W may specify any addi-
tional quantum numbers. These quantum numbers may be associated with symmetries in which 
case W can label the orthogonal degenerate eigenstates {|φ({q ′}; W)〉} of fixed energy or particle 
number or other global observables giving rise to the intensive quantities q . For instance, in Ising 
spin systems, the probability distribution Peq;{q ′}({q ′}′; W) may be finite only for states with a 
positive magnetization 1

N

∑N
i=1〈Sz

i 〉 as it is in these systems at temperatures below the ordering 
temperatures once time reversal symmetry is spontaneously broken. An essential feature of all 
systems in equilibrium is that they exhibit well defined thermodynamic state variables {q ′}. For 
instance, as we alluded to in earlier Sections, the energy density exhibits O(N−1/2) fluctuations 
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in the open systems described by the canonical ensemble while it displays O(N−1) fluctuations 
in closed systems described by the microcanonical ensemble. In all equilibrium ensembles, the 
width σq of any intensive quantity q vanishes as N →∞. This sharp delta-function like charac-
teristic of the probability distribution Peq;{q ′}({q ′}′; W) is diametrically opposite of P({q ′}) for 
which σq is finite. Consequently, the expectation value in the driven system 〈Oc〉driven during 
the period in which {q ′} are made to vary with time (that will be given by Eq. (82) with the 
replacement of the equilibrium probability distribution Peq by its non-equilibrium counterpart 
with P({q ′})) will generally differ from the equilibrium average 〈Oc〉eq;{q};W .

We now relate the equilibrium and non-equilibrium expectation values. Because the equilib-
rium distribution Peq;{q ′}({q ′}′; W) is, for large systems, essentially a delta-function in {q ′} (and 
all additional numbers W), we may explicitly write the expectation values in the driven system 
as

〈Oc〉driven =
∫

dq ′P(q ′;W)〈Oc〉eq;{q ′};W . (83)

That is, the expectation values of the observables Oc in the driven system may be expressed as 
weighted sums of the equilibrium averages 〈Oc〉eq;{q ′};W with the weights given by the finite 
width σq distribution P(q ′; W) that we focused on in the earlier Sections [96]. The equilibrium 
expectation values 〈Oc〉eq;{q ′};W of Eq. (82) are experimentally known in many cases. Thus, to 
predict the expectation values in the driven system, we need to know P(q ′; W). In Eq. (83), 
we allowed the probability distribution of the driven system to depend both on the general state 
variables characterizing the eigenstates of H along with any additional quantum numbers W that 
might be selected to define various equilibrium ensembles (e.g., the sectors of positive and neg-
ative magnetization in low temperature Ising systems or qualitatively similar sectors describing 
the broken translational and rotational symmetries of an equilibrium low temperature crystal).

We next consider what occurs if driven systems fail to equilibrate at times t ′ > tf (when the 
parameters {q} are no longer forcefully varied at a finite rate) and the system is effectively gov-
erned by the time independent Hamiltonian H and the distribution P(ε′) of energy densities 
as measured by the Hamiltonian H will identically remain unchanged at all times t ′ > tf . To-
wards this end, we remark that, for a system with any fixed time independent Hamiltonian H , 
the long time average of a general bounded operator O (that, unlike Oc, need not commute with 
the Hamiltonian) is given by

Ol.t.a. = T r
(ρ(tf )

T̃

tf+T̃∫
tf

dt ′OH (t ′)
)
= T r

(ρτ (tf + τ̃ )

T̃

tf+τ̃+T̃∫
tf+τ̃

dt ′OH (t ′)
)
. (84)

Here, ρ(tf ) the density matrix at the final time tf after which the Schrodinger picture density 
matrix no longer changes in time, the Heisenberg picture OH(t ′) ≡ eiH(t ′−tf )/h̄Oe−iH(t ′−tf )/h̄, 
and (as we have invoked it earlier) T̃ is the said long averaging time. The instantaneous density 
matrix ρ(t ′ > tf ) is constant in time if and only if the density matrix ρτ̃ (t

′) of Eq. (50) is constant 
in time for t ′ > tf + τ̃ . From the latter “if and only if” relation, the second line in Eq. (84) follows.

Now, by the Heisenberg equations of motion, for bounded operators O, as T̃ →∞, the com-

mutator [H, 1
T̃
∫ tf+T̃
tf

dt ′OH (t ′)] =− ih̄

T̃
∫ tf+T̃
tf

dt ′ dO
H (t ′)
dt ′ = − ih̄

T̃

(
OH (tf + T̃ ) −OH (tf )

)
= 0. 

In other words, Ol.t.a. is trivially diagonal in the eigenbasis of the Hamiltonian [95]. (For classical 
systems, similar results are obtained when invoking Hamilton’s equations with the commutators 
replaced by Poisson brackets.) For finite T̃ , there are corrections to the vanishing commutator 
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that scale as 1/T̃ . Since, in the long time limit, Ol.t.a. commutes with the Hamiltonian, we may 
apply Eqs. (82), (83). In particular, with the substitution Oc =Ol.t.a., Eq. (83) will provide the 
long time averages of arbitrary observables O. For any ergodic system in equilibrium, the ther-
mal average of the operator of any long time average Ol.t.a of Eq. (84) is the equilibrium average. 
Substituting in Eq. (83), one thus explicitly has

Ol.t.a. =
∫

dq ′P(q ′;W)〈O〉eq;{q ′};W . (85)

Along other lines, a similar conclusion was drawn in [23]. Eq. (85) is a general relation that holds 
true independent of the results derived in the earlier Sections and is true also in classical systems. 
From this equality we see that, excusing many body localized states [46–54], the only way that 
long time averages may be different from equilibrium averages is that the distributions P(q ′; W)

are not simple delta functions or simple combinations thereof (e.g., if 〈O〉eq;{q ′};W has no de-
pendence on some set of q ′ values then these may be superposed) that reproduce equilibrium 
expectation values. Eq. (85) holds for general local and global observables. In the special case in 
which O=∑i Oi is a sum of local operators using Eq. (85) to evaluate the long time average of 
O and O2 implies that the long time average of the pair correlators 〈OiOj 〉 need not vanish for 
large spatial distances |i − j | if the distribution P(q ′; W) is associated with a broad distribution 
in O values (equilibrium averages for different q ′ and W yield disparate values of O). In what 
follows, we will ask whether an initially driven system may effectively saturate to a distribution 
P(ε′) that relative to time independent Hamiltonian H exhibits a vanishingly narrow (σε = 0 as 
in equilibrium systems) or to a finite width (σε �= 0) distribution. In Section 13, we will consider 
a temperature (T ) dependent P(ε′).

12. Effective equilibrium in driven systems

We now consider a closed system sans an environment (procedure (1) of Section 2). In this 
setting, given the time ordered exponential U(t) = T exp(− i

h̄

∫ t

0 H(t ′)dt ′), the density matrix 
evolves as ρ → ρ(t) = U(t)ρU†(t). It follows that any initial (Schrodinger picture) equilibrium 
probability distribution ρ = f (H) with f a function of the Hamiltonian will evolve as

ρ = f (H)−→ ρ(t)= f (Heff (t)), (86)

where Heff (t) = U(t)HU†(t). Thus, e.g., a general (canonical) Boltzmann distribution f in 
H will evolve into a corresponding one in Heff (t). Eq. (86) may further enable the proof of 
other relations [97]. If H(t) is time independent for t �= 0 (different from the initial (t = 0) 
Hamiltonian H ) then Heff (t) = HH (−t) (i.e., Heff is equal to the Heisenberg picture Hamil-
tonian HH at time (−t)). If H is a local Hamiltonian then Heff will remain local in the 
Heisenberg picture operators at time (−t). Thus, if, e.g., the system starts from a thermal 
state at inverse temperature β (and, by Eq. (86), with a (Schrodinger picture) canonical ensem-
ble density matrix ρ = ρcanonical = Z−1e−βH then at general times t , the probability density 
ρ(t) = Z−1e−βHeff (t) = Z−1e−βHH (−t) with (given the unitary evolution) the (time indepen-
dent) partition function Z = T r[e−βHeff (t)] = T r[e−βH ]. Thus, within the Heisenberg picture, 
all observables of the driven system (starting from thermal equilibrium at inverse temperature β) 
will satisfy

dOH (−t) = i [OH (−t), lnρ(t)]. (87)

dt βh̄
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Thus, the logarithm of the density matrix generates the dynamics for the time reversed operators 
OH (−t) in the Heisenberg picture. Eq. (87) holds also in the classical limit (with commuta-
tors replaced by Poisson Brackets (PB), i

h̄
[AH , BH ] →−{A, B}PB ≡− 

∑
α( ∂A

∂xα

∂B
∂pα

− ∂A
∂pα

∂B
∂xα

), 
with the sum over all generalized coordinates xα and their conjugate momenta pα). Thus, for a 
driven classical system that starts from thermal equilibrium at temperature T (having, at time 
t = 0, a classical probability density ρcanonical),

dO(−t)

dt
= kBT {lnρ(t),O(−t)}PB. (88)

Similar to the quantum commutators, the appearance of both t and (−t) in Eq. (88) captures the 
opposite sign partial time derivatives of the classical probability density (Liouville’s equation) 
and time derivatives of general observables O (Hamilton’s equations) when expressed in terms 
of classical PBs. (By Liouville’s theorem, the time derivative of the locally conserved probability 
density 0 = dρ/dt is the sum of the partial time derivative ∂ρ/∂t and the classical PB between 
ρ(t) and the Hamiltonian leading to the latter opposite sign.) Eq. (88) suggests a similar equa-
tion also for overdamped dissipative systems so long as their microscopics are governed by an 
underlying Hamiltonian (as, indeed, all real physical systems are) and may thus relate to earlier 
analysis (e.g., [98]) in particular limiting cases. Eqs. (87), (88) further call into focus the impor-
tant role of the modular Hamiltonian (− lnρ) studied in previous works [103]. If the temperature 
varies with time then in Eqs. (87), (88) the relevant value of T (and of the inverse temperature 
β) is that of the initial equilibrium state [104]. We stress that the invariance of the partition func-
tion under the unitary temporal evolution does not imply that the states ρ(t) do not change their 
character as the system evolves [105,106].

If the system no longer varies (or varies weakly) in time (e.g., the system approaches a 
nearly stationary Heisenberg picture Hamiltonian Heff (t)) then the probability density matrix 
ρ(t) = f (HH (−t)) will become (nearly) time independent. In particular, all expectation values 
computed with ρ(t) will be (nearly) time independent in much the same way that they were 
in the original equilibrium distribution. (Moreover, for an adiabatic evolution the density ma-
trix becomes (by the adiabatic or Gell-Mann Low theorems [107]) ρcanonical associated with 
the final Schrodinger picture Hamiltonian.) If U(t) and initial Hamiltonian H are both spatially 
uniform then the resulting HH(−t) defining the effectively equilibrated system will also be 
translationally invariant. For any f , the standard deviation of HH(−t)/N as computed with 
f (HH (−t)) will be identically zero. However, as explained in the earlier sections, the variance 
of the original Hamiltonian H (not the variance of HH(−t)) may scale as N2. A large variance 
(σH = O(N)) allows for (yet does not mandate) rapid dynamics under H . The von Neumann 
equation ∂ρ(t)

∂t
= i

h̄
[ρ(t), H ] allows for stationary ρ(t) regardless of the magnitude of σH =Nσε . 

An example is afforded by a Schrodinger picture density matrix diagonal in the eigenbasis of H , 
and thus trivially stationary once the system evolves under H in the absence of external driving 
terms. Similar to the discussion following Eq. (60), the off-diagonal spread of ρ determines its 
fluctuation frequencies. Indeed, some systems (e.g., glasses that we turn to next) do not adhere 
to the same equations of state as their conventional equilibrium (e.g., equilibrium solid and fluid) 
counterparts yet may, nonetheless, appear stationary on very long time scales.

13. “To thermalize or to not thermalize?”

The above question alludes to possible differences between (i) an effective equilibrium den-
sity matrix associated with a density matrix ρ(t) (including those for the systems discussed in 
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Section 12) that becomes nearly stationary (and thus a nearly constant ρτ̃ (t)) at finite long times 
t and (ii) the density matrix associated with the truly asymptotic long time equilibrium density 
matrix ρeq . Most of our focus thus far has been on intermediate times 0 ≤ t ≤ tf during which 
the energy density (or any other intensive quantity q) varied. We showed that during these times, 
the standard deviation of q may be finite, σq = O(1). Thus, the variation of general quantities 
q (including, notably, the energy density or temperature) may trigger long range correlations. 
As discussed in Appendix E, this effect may be further exacerbated by “non-self-averaging” 
[99–102] found in disordered systems. Our inequalities of Eqs. (65), (69) hold for general fluctu-
ations (regardless of the magnitude of their “classical” and “quantum” contributions [28] to the 
variance). In most systems coupled to an external bath, after the temperature or field no longer 
changes (e.g., when |dε/dt | vanishes at times t > t ) thermalization rapidly ensues already at 
short times after tf . Indeed, there are arguments (including certain rigorous results) that “typ-
ical” states [88] might thermalize on times set by Planck’s constant and the temperature, viz. 
the “Planckian” time scale O( h

kBT
) encountered in Eq. (70). Other, exceedingly short (as well 

as long), equilibration time scales may be present [108]. The Planckian rate of Eq. (70) appears 
in a host of interacting systems, e.g., [109–114]. Various reaction times are often given by such 
minimal Planckian time scales multiplied by e�G/(kBT ) with �G the effective Gibbs free energy 
barrier for the reaction or relaxation to occur, e.g., [114,115]. However, some systems such as 
glasses do not achieve true equilibrium: measurements on viable experimental time scales dif-
fer from the predictions of the microcanonical or canonical ensemble averages. (The difference 
between the microcanonical and canonical ensembles is irrelevant for all intensive quantities 
in the absence of long range interactions for which “ensemble inequivalence” is known to ap-
pear [116–119].) In such cases (including, e.g., rapid supercooling of liquids that can lead to 
glass formation), the system may effectively exhibit self-generated disorder. Structural glasses 
are disordered relative to their truly thermalized crystalline counterparts. It is important to stress, 
however, that both structural glasses and crystalline solids are governed by the very same (dis-
order free) Hamiltonian. The effective disorder that glasses exhibit is not intrinsic but merely 
self-generated by the rapid supercooling protocol of non-disordered liquids. Thus, as hinted in 
Section 11, the question remains as to whether, once the energy density or other intensive quan-
tity no longer varies (e.g., once the glass is formed and its temperature not lowered), the system 
will thermalize on experimental time scales (and display the rightmost distribution of Fig. 1) or 
not be able to do so. Similar to Assumption (3) of Section 10.1, starting from a glassy state, super-
cooled liquids achieve their true equilibrium (crystalline) state only at asymptotically long times 
[125]. In systems that do not thermalize on experimental time scales, the discrepancy between 
equilibrium ensemble averages and empirical observables hints that the width σε of the energy 
density might become smaller than it was during the cooling process yet is not vanishingly small. 
Indeed, if σε = 0 and no special “many body localized” states [46–54] exist then the long time 
averages of all observables must be equal their microcanonical expectation values. Specifically, 
similar to Eq. (85), the time average of a general quantity O over a long (finite) time T during 
which the probability distribution P(q ′; W) is nearly stationary is identical to the equilibrium 
average, i.e., Ol.t.a. = 〈O〉eq;{q ′};W when the distribution P(q ′; W) is of a delta-function type 
nature in the energy density ε and all other intensive quantities q . If the expectation values of the 
thermodynamic equilibrium observables depend on the temperature or energy density (and are 
the same for all states related by symmetries of the Hamiltonian) then deviations of long time 
average values of observables O from their true equilibrium average values [23],

Ol.t.a. �= 〈O〉eq;{q};W (89)
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will imply that the width of the energy density may remain finite even after the system is no 
longer driven, σε > 0. In glassy systems that, by their defining character, cannot achieve true 
equilibrium (and thus satisfy Eq. (89)) on relevant experimental time scales, the link to the exter-
nal bath is effectively excised since the dynamics are so slow that little flow may appear. Here, 
the finite long time averages of Eq. (84) may be employed. If, in such instances, the probability 
density becomes time independent on measurable time scales then only an effective equilibrium 
(different from the true equilibrium defined by an equilibrium ensemble for the Hamiltonian 
defining the system) may be reached. That is, in systems with an effective equilibrium at suf-
ficiently long times, see Section 12, the probability density P(ε′) may be history independent 
and be a function of only a few global state variables yet differ from the conventional equilib-
rium statistical mechanics probability density in which the standard deviations of all intensive 
quantities vanish, e.g., σε = 0. Since the probability density determines all observable properties 
of the system, interdependences between the state variables (i.e., equations of state) may result 
[23]. Such a nearly static effective long time equilibrium distribution bears some resemblance to 
“prethermalization” in perturbed, nearly-integrable, models and other systems, e.g., [120–124]. 
Indeed, if local observables do not vary rapidly in time then, by the Heisenberg equations of mo-
tion, these observables nearly commute with the Hamiltonian (and constitute nearly integrable 
constants of motion). We remark that by applying the Matsubara-Matsuda transformation [65]
(similar to that invoked in Section 6.2), we may map the prethermalized three-dimensional spiral 
spin states of [124] to establish the existence of long-lived effective equilibrium crystals of hard-
core bosons. As stated above (see also Section 12), at asymptotically long times, systems such as 
glasses finally truly thermalize to true equilibrium solids [125]. However, prior to reaching the 
true equilibrium defined by the any of the canonical ensembles for the full system Hamiltonian, 
over very long finite times, the supercooled liquid/glass may display a nearly static distribution 
P and thus obeys equations of state, absence of memory effects and other hallmarks of effective 
equilibrium. Even when the equilibrium averages 〈O〉eq;{q ′};W feature non-analyticities at spe-
cific q ′, the smeared average of Eq. (85) can be analytic (e.g., no measurable phase transitions 
might appear as T is varied). In [23], we introduced this notion of an effective long time distribu-
tion P of finite σε and employed it to predict the viscosity of glass formers. This prediction was 
later tested [126,127] for the measured viscosity data of all known glass formers when these are 
supercooled below their melting temperature. Fig. 7 reproduces the result. Here, the probability 
density PT (ε) at temperature T is a normal distribution with the (finite) energy density width

σε =A
T (εmelt − ε)

Tmelt − T
. (90)

In Eq. (90), A > 0 is a liquid dependent constant (0.05 � A � 0.12 for all liquids with pub-
lished viscosity data [126,127]). In equilibrium, such values of A ∼ 0.1 would be typically 
anticipated for effective classical harmonic solids/clusters (displaying a Gaussian distribution 
of the energy density with σε =

√
kBT 2Cv/Neff where the heat capacity Cv = dNeff kB and 

ε = dkBT ) of Neff ∼ 30 atoms in d = 3 dimensions. Albeit emulating such effective finite size 
equilibrium clusters, the energy densities ε and εmelt in Eq. (90) are, respectively, those of the 
genuinely macroscopic supercooled liquid or glass at temperature T < Tmelt and at the melting 
(or “liquidus”) temperature Tmelt . The wide distribution of Eq. (90) mirrors that present in non-
self-averaging disordered classical systems with an approximately linear in T standard deviation 
and energy density ε(T ). (All eigenstates of the density matrix may share the same energy while 
displaying a finite standard deviation σε .) In the models of Section 6 (with the distribution of 
Eq. (13) that was far from the canonical normal form of equilibrium systems), the systems were 
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Fig. 7. (Color online.) Reproduced from [126]. On the vertical axis, we plot the experimentally measured viscosity data 
divided by its value at the liquidus temperature (η(Tl )) as a function of a dimensionless temperature ratio. The viscosities 
of 45 liquids of diverse classes/bonding types (metallic, silicate, organic, and others) collapse on a single curve. The 
underlying continuous “curve” (more clearly visible at high viscosities where fewer data exist) is predicted by Eq. (91). 
Since A varies from fluid to fluid (albeit weakly) [126], the shown collapse does not imply a corresponding collapse of 
the viscosity as a function of Tl/T nor as a function of Tl/(AT ) (due, relative to the latter, to an additional shift along 
the x axis that is set by −1/(A

√
2)).

driven by an external source whose effect on general quantities was cyclic in time. The situation 
may be radically different when the system is no longer forcefully driven out of equilibrium yet, 
nonetheless, is still unable to fully equilibrate. If, as in equilibrium thermodynamics, the final 
state maximizes the Shannon entropy for a given energy then the probability distribution of the 
energy density will be a Gaussian of width σε = T

√
kBCv

N
and standard 1√

N
fluctuations result 

(with σε ∝ T for a nearly constant Cv). For systems of temperature T that have not fully equili-
brated, we may (as illustrated in the earlier Sections) find finite width PT (ε′). If the distributions 
PT (ε′) minimally differ in form from those in equilibrium then they may still be Gaussian with 
σε ∝ T . Indeed, the general distribution that maximizes the Shannon entropy given a finite stan-
dard deviation σε (and average energy density) is a Gaussian. Adhering to Occam’s razor, the sole 
difference between the distribution of the energy density in equilibrium systems and those that 
we assume here for systems that have not yet achieved equilibrium is that in the latter systems 
σε = O(1) (while σε = 0 for equilibrium systems in their thermodynamic limit). Non-rigorous 
considerations further suggest the appearance of a Gaussian distribution once the system is no 
longer further cooled (or heated), see Appendix M [128,129]. Assuming a normal distribution 
PT (ε′) of width σε , the viscosity η of supercooled liquids at temperatures T ≤ Tmelt was pre-
dicted (by an application of Eq. (85)) to be [23],

η(T )= ηs.c.(Tmelt )

erf c
(

εmelt−ε(T )√
) = ηs.c.(Tmelt )

erf c
(

Tmelt−T√
) . (91)
σε 2 AT 2
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Eq. (91) is a direct consequence of Eqs. (85), (90) and the Stokes’ law [23]. This prediction 
is indicated by the continuous curve in Fig. 7. The coincidence between this non-perturbative 
prediction and the experimental data extends 16 decades of the viscosity increase and is a com-
pilation of the analysis of the data of 45 fluids [126]; the corresponding dimensionless ratio in 
the argument of Eq. (91), x ≡ Tmelt−T

AT
√

2
(the abscissa of Fig. 7), varies up to a value of six. Unlike 

well known data collapse forms in equilibrium transitions and conventional critical phenomena 
in particular, the agreement between Eq. (91) and the experimental data does not wane for the 
larger x (and viscosity) values. In fact, beyond an intermediate temperature range at which some 
scatter is seen in Fig. 7, the quality of the data collapse improves as one progresses to lower 
temperatures more removed from the equilibrium melting temperature Tmelt Appendix L. At the 
so-called “glass transition temperature” Tg , the viscosity η(Tg) = 1012 Pascal × second [130]. 
At lower temperatures T < Tg , the viscosity is so large that it is hard to measure it on experimen-
tal time scales. We note that at sufficiently low temperatures (energy densities), the deviations 
of PT (ε) from a putative normal distribution (assumed in deriving Eq. (91)) will become more 
important (since the probability of having states of energies lower than the ground state is strictly 
zero); other distributions such as log-normal have a strict cutoff below which their value vanishes. 
Furthermore, in deriving Eq. (91), an assumption [23] was made that the viscosity of the equilib-
rium solid is infinite; any finite contributions (no matter how small) to hydrodynamic transport 
from the equilibrium solid eigenstates will lead to larger hydrodynamic flow rates and viscosities 
lower than those predicted by Eq. (91). These effects may be of larger relevance at very low 
temperatures where the viscosity as predicted by Eq. (91) (in which these effects were excluded) 
becomes exceedingly large. Replicating the derivation for the viscosity in [23] when the equi-
librium solid displays activated flow and thus, at very low temperatures, the net contributions to 
the long time velocities vl.t.a. of [23] from the occupied solid states overwhelm those from the 
sparsely populated equilibrium fluid states replaces, at these low energy densities, Eq. (91) by an 
activated Arrhenius form. Apart from predictions for the viscosity, more general transition and 
relaxation rates may be investigated along similar lines [23,131].

One may use other words to rationalize the same physics suggested here regarding the relevant 
distributions of eigenstates of the Hamiltonian/classical modes/ ... of different energies/frequen-
cies, etc. The very same distribution PT (ε′) invoked in deriving Eq. (91) may relate other 
properties of supercooled liquids and glasses to those of equilibrium systems. For instance, the 
measured thermal emission from supercooled fluids may differ in a subtle manner from that of 
typical equilibrium fluids. This deviation may be found by replacing Planck’s law for the spec-
tral radiance I for photons of frequency ν in a system with well defined equilibrium temperature 
T by a weighted average of Planck’s law over effective equilibrium temperatures T ′ that are 
associated with internal energy densities of equilibrium systems that are equal to ε′,

I (ν, T )= 2hν

c3

∫
dT ′ P̃T (T ′)

ehν/(kBT ′) − 1
+ IPT EI(ν, T ). (92)

Here, P̃T (T ′) = PT (ε′)ceq
v (with the equilibrium specific heat capacity ceq

v ≡ dε′
dT ′ ) is the distribu-

tion of effective equilibrium temperatures T ′ associated with the probability distribution PT (ε′)
of the energy densities. The second term, IPT EI ≡ 2hν

c3

∫
PT EI dε′PT (ε′)

ehν/(kBT )−1
, captures viable contri-

butions from any “Phase Transition Energy Interval” [23] (wherein the energy density ε′ of an 
equilibrium system may vary by an amount set by the latent heat without concomitant changes 
in the corresponding equilibrium temperature T ′). More accurately stated, in Eq. (92), we may 
replace 2hν

3 hν/(k T ′) by u(ν, T ′) – the energy density carried by photons of frequency ν when 

c (e B −1)
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the equilibrium system is at a temperature T ′ [23]. We highlight that this prediction for the emis-
sion spectrum I (ν, T ) is determined by the same distribution predicting the viscosity collapses 
of Fig. 7 (the Gaussian PT (ε′) of the width given by Eq. (90)). As such, this prediction may, 
in principle, be experimentally tested. This prediction is akin to that having an effective locally 
varying temperature (similar to that associated with observed heterogeneities) whose distribu-
tion is determined by PT . Similarly, the temperature dependence of other observables (including 
various response functions) may be expected to have the same increase in the time scale as that 
characterizing the viscosity. Indeed, the time dependent heat capacity response follows exhibits 
a dynamical time that increases with temperature in a manner similar to the viscosity, e.g., [132]. 
We suspect that this increase in the relaxation time scale as the temperature is dropped may ac-
count very naturally for the experimentally observed smooth specific heat peak [133] near the 
glass transition temperature Tg when the system is heated from lower temperatures (consistent 
with Tg marking a dynamical crossover rather than a bona fide thermodynamic transition [126,
127]). This is so since, at temperatures T ≤ Tg , on the time scales of the experiment, the system 
is essentially static (e.g., the viscosity of the Eq. (91) and the associated measured relaxation 
times are large). Consequently, the relatively stable nearly static structures that appear once the 
glass is formed need not significantly respond to a small amount of external heat. The situa-
tion is somewhat reminiscent of the extensive latent heat that is required to melt equilibrium 
crystals. Pronounced thermodynamic changes appear at the transition between equilibrium fluids 
and crystals. Once the supercooled liquid or glass becomes effectively static on experimental 
time scales at Tg , it may weakly emulate the latent heat signature of the equilibrium liquid to 
solid transition sans having true latent heat required to elevate the temperature. Contrary to the 
weak peak in the heat capacity on heating, when the system is cooled from temperatures above 
Tg , the heat capacity typically drops monotonically near Tg and does not exhibit a peak (this 
may reflect a memory of larger mobility at higher temperatures). A finite σε may naturally al-
low for a finite width temperature interval about Tg where the empirically observed crossover 
in the heat capacity and/or other quantities can appear on experimental time scales. In line with 
our earlier discussion concerning general properties stemming PT (ε′), Eqs. (83), (85) [23] fur-
ther suggest that similar features may appear at other temperature at which other crossovers 
appear (i.e., the ratio of the width of the temperature range where a crossover is observed to the 
crossover temperature itself may be set by the scale of dimensionless parameter A appearing in 
Eq. (91) for the viscosity). Indeed, simple estimates illustrate that experimentally observed heat 
capacity crossover region is of the same scale as ATg [135]. More generally, by simple dimen-
sionless analysis if the dimensionless parameter A is the most important feature of the system, the 
temperature window over which crossovers occur may scale as f (A)Tg with f the appropriate 
function. By dimensional arguments, as a function of the temperature σε = kBT F({Ta

T
}) where 

{Ta} are any relevant temperature or associated energy scales (e.g., the melting temperature Tm

and any other) and F is a function of the dimensionless temperature ratios; far away special 
temperature scales, one anticipates a largely linear dependence of σε on temperature. A broad-
ening due to the finite σε may supplant any existing features of the equilibrium system (having 
σε = 0). More general than heat capacity measurements alone, we stress that, experimentally, 
supercooled liquids indeed exhibit effective smooth crossovers instead of true singularities asso-
ciated with thermodynamic phase transitions that appear at well defined transition temperatures. 
Thus, our suggestion is that the size of the temperature interval over which these crossovers 
arise/are enhanced as a result of smearing by the finite width distribution PT (ε′) is set by the 
effective crossover temperature scale multiplied by A. An energy density distribution of a finite 
width σε allows for a superposition of low energy density solid type eigenstates (that may break 
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continuous translational and rotational symmetries) and higher energy density liquid type eigen-
states [23]. Such a general combination of eigenstates does not imply experimentally discernible 
equilibrium solid (crystalline) order. Sharp Bragg peaks need not appear in states formed by su-
perposing eigenstates that, individually, display order [23,134]. This absence of ordering reflects 
the possible lack of clear structure when, e.g., randomly superposing different Fourier modes 
with each Fourier mode displaying its defining periodic order. In an interesting preprint [136]
that appeared after an earlier version of the current paper [137], it was found that effectively 
superposing (periodically replicated) finite size states of 16 or 24 atoms (so as have these states 
as unit cells that are repeated to span all space) according to their Boltzmann weights accurately 
reproduces the structure factor of certain structural glasses. This latter result is in accord with our 
approach to glasses; the size of these 16 and 24 atom states is not too dissimilar from the order of 
magnitude estimate, provided earlier in this Section, of the requisite number of atoms Neff ∼ 30
in an effective equilibrium solid that would lead to a Gaussian distribution of a width consistent 
with our theory of glasses and the ensuing collapse of Fig. 7. It will be interesting to examine in 
more quantitative detail whether distributions associated with states similar to those examined in 
[136] adhere to the normal form that we invoked for P .

The mixing of eigenstates of different energy densities over a range set by σε further sug-
gests the appearance of non-uniform dynamics both in space and in time. The superposition of 
different modes suggests non-uniform spatial dynamics. Interestingly, in accord with this conse-
quence of our theory, dynamical heterogeneities are empirically ubiquitous in supercooled fluids 
[138–142]; these large fluctuations are still present even after the fluids remain in contact with an 
external bath for a long time. To examine temporal fluctuations, we may invoke Eq. (85) when 
the operator O is set to be v2

i and v4
i (i.e., the scaled kinetic energy of particle i and its square), 

one may anticipate the standard deviation of v2
i divided by square of the average of v2

i itself (i.e., 

the dimensionless ratio 

√
(v4

i )l.t.a.−((v2
i )l.t.a)2

(v2
i )l.t.a

which emulates the fluctuations in the local kinetic 

energy divided by the average local kinetic energy instead of similar ratios for the global energy 
density ε). Such a ratio may be naturally determined by the width of the total energy density 
distribution PT (ε) divided by an energy scale set by the squared velocity to vary with A; in-
deed, in equilibrium systems at a temperature T ′ having potential energies that are independent 
of the momentum, the average local kinetic energy is, by the equipartition theorem, linear in T ′
and from Eq. (85) this ratio will yield the corresponding ratios for the equilibrium result when 
smeared by the weight PT (ε) (or a similar distribution in the effective equilibrium temperatures 
T ′ where the equilibrium internal energy density u matches the energy density, ε = u(T ′)). (Of 
course, in experiment, one typically does not directly measure v2

i in a given system but rather vi .) 
The presence of a spatially non-uniform energy density is very natural during general heating or 
cooling processes (e.g., the exterior parts of a system being supercooled may be colder than its 
interior, see also the discussion towards the end of Section 4). Once supercooling stops, heat may 
diffuse through the system yet heterogeneities (generated in our framework from a distribution 
of finite σε) may persist for a long time [143].

Eq. (85) that enabled the prediction of the viscosity of Eq. (91) and other quantities does not 
rely on quantum effects. An advantage of the quantum approach described in this Section is that it 
allows for an accurate definition of the (eigen)states of the systems as opposed to the more loosely 
defined classical microstates in which Planck’s constant needs to be introduced by hand in order 
to produce a dimensionless number of states from phase space volumes [144]. Furthermore, in 
standard classical treatments, one often needs to integrate the equations of motion numerically in 
order to obtain results for various particular systems (this is particularly time consuming for slow 
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glassy systems). Alternatively, if numerics are to be avoided, assumptions may be made about 
the classical energy landscape and configurational entropies. The quantum treatment invoked in 
this Section is devoid of such assumptions. Nonetheless, one may translate the more fundamental 
and precise quantum description into a corresponding classical one [23,126].

14. Possible extensions to electronic and lattice systems

The spin and hard core Bose models of Section 6 were defined on lattices. In this Section, 
we will speculate and further discuss possible extensions to other, experimentally relevant, the-
ories and lattice systems. The electronic properties of many materials are well described by 
Landau Fermi Liquid Theory [145–148]. This theory is centered on the premise of well defined 
quasiparticles leading to universal predictions. Recent decades have seen the discovery of vari-
ous unconventional materials displaying rich phases [149–166,145] that often defy Fermi liquid 
theory. Given the results of the earlier Sections, it is natural to posit that as these systems are 
prepared by doping or the application of external pressure and fields (in which case the var-
ied parameter q may be the carrier density, specific volume, or magnetization), a widening σq

will appear during the process. This wide distribution might persist also once the samples are 
no longer experimentally altered. In such cases, the density matrices (and associated response 
functions) describing these systems may exhibit finite standard deviations σq > 0. The broad 
distribution may trigger deviations from the conventional behaviors found in systems having 
sharp energy and number densities (σn = 0) or, equivalently, sharp chemical potentials and other 
intensive quantities. In flat band and other systems displaying a plethora of degenerate/nearly de-
generate low-energy states, these fluctuations may be further enhanced. Theoretically, non-Fermi 
liquid behavior may be generated by effectively superposing different density Fermi liquids (with 
each Fermi liquid having a sharp carrier concentration n) in an entangled state. Systems harbor-
ing such an effective distribution P(μ′) of chemical potentials may be described by a mixture of 
Fermi liquids of different particle densities. Any non-anomalous Green’s function is manifestly 
diagonal in the total particle number. Thus, the value of any such Green’s function may be com-
puted in each sector of fixed particle number and then subsequently averaged over the distribution 
of total particle numbers in order to determine its expected value when σn �= 0. In particular, this 
implies that the conventional jump (set by the quasiparticle weight Z�k,μ′ ) of the momentum 
space occupancy [145–148], in the coherent part of the Green’s function (G = Gcoh + Gincoh) 
will be “smeared out” when σμ �= 0. Similar to Eq. (83), a distribution of chemical potentials (in 
a Lehmann representation like sum) will lead to the replacement of the coherent Green’s function 
of ordinary Fermi liquids by

Gcoh(�k,ω)=
∫

dμ′P(μ′)
Z�k,μ′

ω− ε�k +μ′ + i/τ�k,μ′
. (93)

Here, τ�k,μ′ is the quasi-particle lifetime in a system with sharp μ′ at wave-vector �k. The de-
nominator in Eq. (93) corresponds to the coherent part of the Green’s function of a Fermi liquid 
of a particular chemical potential μ′ and quasi-particle weight Z = 1 [145–148]. Qualitatively, 
Eq. (93) is consistent with indications of the very poor Fermi liquid type behavior reported 
in [168]. The effective shift of the chemical potential in Eq. (93) is equivalent to a change in 
the frequency dependence while holding the chemical potential μ fixed; the resulting nontriv-
ial dependence of the correlation function on the frequency (with little corresponding additional 
change in the momentum) is, qualitatively similar to that advanced by theories of “local Fermi 
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liquids”, e.g., [145,167]. Our considerations suggest a similar smearing with the distribution 
P(μ′) will appear for any quantity (other than the Green’s function of Eq. (93)) that is diag-
onal in the particle number. Analogous results will appear for a distribution of other intensive 
quantities. The prediction of Eq. (93) (and similar others [23] in different arenas) may be tested 
to see whether a single consistent probability distribution function P accounts for multiple ob-
servables. General identities relate expectation values in interacting Fermi systems to a weighted 
average of the same expectation values in free fermionic systems [169]. These relations raise the 
possibility of further related smeared averages, akin to those in Eq. (93), in numerous systems. 
Numerically, in various models of electronic systems that display non-Fermi liquid type behav-
iors, the energy density differences between contending low energy states {|ψα〉} (not necessarily 
exact eigenstates) are often exceedingly small, e.g., [170]. Since these states globally appear to 
be very different from one another, the matrix element of any local Hamiltonian between any 
two such orthogonal states vanishes, 〈ψα|H |ψβ〉 = 0 for α �= β . We notice that, given these 
results, arbitrary superpositions of these nearly degenerate states, 

∑
α aα|ψα〉, will have similar 

energies. Thus, for many body Hamiltonians modeling these systems, a superposition of differ-
ent eigenstates may be natural from energetic considerations. Towards the end of Section 13, 
we remarked on the viable disordered character of the states formed by superposing eigenstates 
that break continuous symmetries. We now briefly speculate on the corresponding situation for 
eigenstates in electronic lattice systems that break discrete point group symmetries on a fixed 
size unit cell. Here, due to the existence of a finite unit cell in reciprocal space, a superposition of 
eigenstates that are related to each other by a finite number of discrete symmetry operations may 
not eradicate all Bragg weights. In other words, order may partially persist when superposing 
states on the lattice that, individually, display different distinct structures.

15. Thermalization and quantum measurements

As we demonstrated in the current work, rapidly driven systems may exhibit uncertainties 
in their energy and/or other densities. We now close our circle of ideas and focus on the dia-
metrically opposite case of unitary evolutions – slow adiabatic processes (for which, obviously, 
dq/dt = 0); this discussion will complement that of Section 12. In this Section, we will further 
speculate on relations concerning thermalization that superficially emulate those of quantum 
measurements. In line with the focus of the current work, the latter purely hypothetical connec-
tions suggest that the absence of thermalization may allow for broad distributions.

As well known, a basic tenet of quantum mechanics is that a measurement will project or “col-
lapse” a measured system onto an eigenstate of the operator being measured. A natural question 
to ask is whether such effective projections may merely emerge as a consequence of an effective 
very rapid thermalization of microscopic systems. To motivate this query and more generally 
examine effectively adiabatic processes, we consider a Hamiltonian

HA∪B(t)=HA +HAB(t)+HB (94)

describing the combined system of two systems and the coupling between them (HAB). This 
Hamiltonian emulates H̃ of the subsystem-environment hybrid of Eq. (4). We first examine 
what occurs when the coupling HAB(t) changes adiabatically from zero. Consider the situation 
wherein, initially, at times t ≤ 0, systems A and B were in respective eigenstates |φnA

〉 and |φnB
〉

of HA and HB . That is, at times t ≤ 0, the state of the combined system A ∪ B was described 
by the product state of these two eigenstates. We further assume that at times t < 0, the coupling 
HAB(t) = 0 and for times t ≥ 0 an adiabatic change of HAB(t) ensues. Under these conditions, 
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by the adiabatic theorem, at any later time t , the initial state evolves into a particular eigenstate 
|φnAB

(t)〉 of HA∪B(t), we have |φnA
〉|φnB

〉 → |φnAB
(t)〉. We may expand the density matrices 

ρA,B of the initial system A and B in terms of the eigenvectors of HA and HB . Expressing the 
density matrix ρA∪B(t) of the combined system at time t in the eigenbasis of Hmeasure(t), the 
density matrix evolves as∑

nAnB

ρnAnB
|φnA

〉|φnB
〉〈φnA

|〈φnB
| →

∑
nAnB

ρnAnB
|φnAB

(t)〉〈φnAB
(t)|. (95)

Hence, if both systems A and B start from equilibrium (and thus have sharp energy densities – 
i.e., if at t = 0 the eigenstates of HA and HB of significant amplitude were clustered around a 
given energy density) then an adiabatic evolution of HAB(t) will yield a density matrix ρA∪B

having a sharp energy density, σεA∪B
(t) = 0. Thus, the notion that sufficiently slow processes en-

able systems to remain in equilibrium is indeed consistent with the adiabatic theorem of quantum 
mechanics.

We next comment on how such adiabatic processes (and later briefly discuss more general 
thermalization events that need not be adiabatic) may superficially emulate certain features of a 
wavefunction collapse. Towards that end, we consider the extreme case of a microscopic system 
A (“being measured”) and a macroscopic system B that we may regard as an environment that 
includes a coupling to an experimental probe at the measurement time tmeasure. As earlier, for a 
general adiabatic evolution, |φnAB

(0)〉 → |φnAB
(tmeasure)〉. We now allow the coupling HAB(t)

to be non-vanishing at all times t (i.e., also including times t ≤ 0) and, due to its ease, first briefly 
discuss the case when its evolution is adiabatic.

Under these circumstances, by the adiabatic theorem, |φA∪B(tmeasure)〉 must be an eigenstate 
of HA∪B(tmeasure). Thus, such an adiabatic evolution emulates an effective “collapse” onto an 
eigenstate of the Hamiltonian that measures the state of the microscopic system A. We emphasize 
that the state |φA∪B(tmeasure)〉, describing both the microscopic system A and the large system 
B , will be in an eigenstate of HA∪B(tmeasure) – i.e., not only the small system A will be altered by 
the measurement. While, at any time t , the state |φA∪B(t)〉 is an eigenstate of HA∪B(t), its highly 
entangled content largely remains unknown. Thus, unique predictions for the outcome of other 
future evolutions cannot be made. Certain “realistic” setups involving quantum measurements 
often entail higher energy “thermal” states of the measurement device (e.g., the reaction between 
silver ions and the screen that they strike in a Stern-Gerlach type experiment creating visible 
spots on a screen). The collapsed system is in an excited state.

The effective “collapse” brought about by such an adiabatic process may be nearly imme-
diate for microscopic systems A. Typical lower bounds on time scales for adiabatic processes 
defined by an energy difference �E are set by h̄/�E (for precise bounds see, e.g., [175]). Such 
scales are consistent with the uncertainty relations and our bounds of Section 10. For small 
energy splittings �E, this adiabatic time scale may become large. The above discussion of a 
hypothetical adiabatic evolution is merely illustrative. A potentially more practical question con-
cerning realistic HAB(t) is that of the thermalization of the full system. At room temperature, the 
“Planckian time” scale for the equilibrium thermalization of random initial states [88] (see also 
Section 10.2) is h/(kBT ) ∼ 10−13 seconds (e.g., the typical period of a thermal photon). The 
latter time scale may be smaller than that required for an adiabatic evolution yet is still finite; one 
may attempt to probe for such an effective finite time collapse produced by thermalization (cf., 
any such deviations from the textbook “instantaneous collapse”) only at extremely low temper-
atures. The very rapid thermalization evolution suggested here allows for multiple measurement 
outcomes with different probabilities. A measurement provides only partial information on the 
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many body entangled state |φA∪B(t)〉 formed by A and B – it does not specify it. Conditional 
probabilities may be assigned to the possible future evolutions of this entangled state (and thus of 
future measurement outcomes thereof). Thus, our suggestion concerning thermalization is some-
what similar “Quantum Bayesianism” [176] and other frameworks relying on entanglement, e.g., 
[177,178].

Further parallels between equilibration and certain features of an effective collapse in quan-
tum measurements are motivated by the Eigenstate Thermalization Hypothesis [37–45]. When 
valid, this hypothesis equates the results of local measurements of general observables O in pure 
eigenstates {|φn〉} (of energies {En}) of a general Hamiltonian (including Hamiltonians describ-
ing a coupling between a measurement device and a microscopic system) with expectation values 
in equilibrated thermal systems defined by the full system Hamiltonian,

〈φn|O|φn〉 = T r(ρ(En)O). (96)

Here, ρ(En) is an equilibrium density matrix associated with the energy E = En (and, when 
applicable, any other conserved quantities defining the state |φn〉 and the thermal system). Taken 
to the extreme, Eq. (96) suggests that we may relate two seemingly very different concepts:

(i) An effective collapse to an eigenstate. The lefthand side of Eq. (96) yields the results 
of quantum expectation values associated with (projecting the system onto) eigenstates of the 
Hamiltonian (also describing, as in a realization of Eq. (94), the measurement process – the 
substantial coupling ||HAB || � ||HA|| of the environment (B) containing a measurement device 
to the measured quantity (A) and) providing the dynamics.

(ii) Equilibration. The righthand side of Eq. (96) reflects the outcomes of equilibration (in 
which, inasmuch as any observable O can inform, the system effectively becomes indistinguish-
able from an eigenstate of the very same Hamiltonian associated with item (i)). As noted above, in 
a realization of Eq. (94) describing a typical measurement, this Hamiltonian displays a dominant 
coupling between the measurement device and the quantity being measured, ||HAB|| � ||HA||.

That is, denoting by ρcollapse the probability density matrix following the collapse to an eigen-
state of the measurement device and ρequilibration that associated with equilibration of the small 
system with the measurement device, Eq. (96) suggests a very qualitative relation,

ρcollapse“=”ρequilibration. (97)

When Eq. (96) holds for general measurable observables O, then it will be consistent with 
Eq. (97) (inasmuch as those observables are concerned). Unlike “collapsed” eigenstates of sys-
tem Hamiltonians, general equilibrated systems display dynamics. (In the Eigenstate Thermal-
ization Hypothesis, fluctuations are associated with assumed small random off-diagonal (in the 
eigenbasis of the system Hamiltonian) matrix elements of general observables O.) More general 
than adiabatic processes alone, thermalization shares other commonalities with quantum mea-
surements. Just as a quantum measurement (and ensuing collapse) is not a time reversal invariant 
operation [179] so, too, is a typical finite T thermalization process. Indeed, even classically, as 
the Szilard engine and other idealized constructs underscore, measurements mandate the trans-
fer of heat. The second law of thermodynamics is consistent with an evolution of the entangled 
A ∪B system displaying a non-decreasing entropy upon performing consecutive measurements 
(compatible with indeterminate outcomes for other subsequent measurements thereafter). What 
we are suggesting/asking here is whether the evolution of a collapse to an eigenstate following a 
quantum measurement (an eigenstate of HAB ) is no different than a particular case of a unitary 
evolution with a Hamiltonian (the latter having ||HAB || � ||HA||). A sufficiently long time evo-
lution with HA∪B leads, in systems that thermalize with this Hamiltonian, to an equilibrium state. 
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Whenever the Eigenstate Thermalization Hypothesis applies, the resulting equilibrium thermal 
state (to which the system will evolve) will be an eigenstate of the Hamiltonian HA∪B . In other 
words, after a (possibly very short) thermalization time after which the system equilibrates, the 
system will indeed effectively “collapse” to an eigenstate of HA∪B describing the coupling be-
tween A and B . If the system is already an eigenstate of HAB then it will remain stationary – 
a “measurement” will lead to a constant outcome. If the system A is not an eigenstate of HAB

then it may evolve and “precess” due to the applied external “field” HAB . In a simple setting, the 
long time average of general observables will be the average over the measurements associated 
with these “precessions” (mirroring the phase fluctuations of Eq. (60)). The long time average 
associated with HAB (or any other Hamiltonian) will be given by Eq. (85). If the Eigenstate 
Thermalization Hypothesis holds then a far stronger result will appear: the longtime average over 
microscopic precessions will correspond to an expectation value of the said observable within a 
single eigenstate of the full Hamiltonian HA∪B .

A notional link between (i) and (ii) is naturally compatible with the appearance of wide distri-
butions of various measurable quantities in non-equilibrium systems. Regardless of the validity 
of the Eigenstate Thermalization Hypothesis of Eq. (96), any equilibrium expectation value is an 
ensemble average over states having a sharp value of intensive state variables q . Thus, as alluded 
to in Section 11, barring special eigenstates [46–54], the system may rather straightforwardly ex-
hibit non-equilibrium behaviors if the distribution of its intensive thermodynamic state variables 
q is, quite simply, not a delta function. We conclude this Section by underscoring that (as we 
explained in several of the previous Sections) the central result of the current paper regarding the 
existence of wide distributions in non-equilibrium systems does not rely on quantum effects nor 
the character of quantum measurement (on which we speculated above). Similar behaviors may 
appear in classical systems. The use of the quantum language in the current article merely made 
our considerations more precise and also gave rise to the bounds of Section 10.

16. Conclusions

We illustrated that a finite rate variation of general intensive quantities may lead to long range 
correlations. In the simplest variant of this effect, in systems having varying intensive observ-
ables q (such as the energy density ε) for which dq

dt
= O(1), an average connected two site 

correlation functions need not vanish even for sites are arbitrarily far apart. Trivial extensions 
hold for weaker variations of intensive quantities. For instance, if only short range effects of the 
environment appear (e.g., fluids with local coupling to their boundaries) and, consequently, for 
an N site system residing in d spatial dimensions, dq

dt
=O(N−1/d) then the average value of the 

connected two point correlation function for an arbitrary pair (i, j) of far separated sites may be 
asymptotically bounded as G≥O(N−2/d) [201].

In the quantum arena, the general non-local correlations that we found relate to the macro-
scopic entanglement present in typical thermal states. Our results highlight that, even in seem-
ingly trivial thermal systems, one cannot dismiss the existence of long range correlations. Our 
analysis of non-equilibrium systems does not appeal to conventional coarsening and spinodal de-
composition phenomena (although the departure from a spatially uniform true equilibrium state 
in spinodal systems is very naturally consistent with a distribution of low energy solid like and 
higher energy fluid like states). Cold atom systems may provide a controlled testbed for our ap-
proach. We speculate that our results may also appear in naturally occurring non-equilibrium 
systems. As we explained (Section 13), the peculiar effect that we find may rationalize the un-
conventional behaviors of glasses and supercooled fluids. Our effect might further appear in 
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electronic systems that do not feature Fermi liquid behavior (Section 14). Here, a broad distribu-
tion of effective energy densities and/or chemical potentials may appear. The validity of weighted 
averages such as that of Eq. (93) may be assessed by examining whether a unique distribution P
simultaneously accounts for all measurable quantities. In Section 15, we illustrated how adiabatic 
processes maintain sharp thermodynamic quantities and speculated that a nearly instantaneous 
equilibration of small systems with macroscopic ones may emulate certain features of quantum 
measurements. We hope that our suggested effect and analysis will be further pursued in light of 
their transparent mathematical generality and ability to suggest new experimental behaviors (e.g., 
the universal viscosity collapse of supercooled liquids that it predicted and is indeed empirically 
obeyed over sixteen decades (Fig. 7)).

While deriving the above, we arrived at other results. These include the finding of universal 
bounds relating thermalization and time derivatives of general observables (Section 10.2), ex-
plaining how driven system may be described by an effective equilibrium distribution in which 
the dynamics are universally generated by the logarithm of the corresponding probability den-
sity matrix (Section 12), and speculatively pointing to similarities between unitary dynamics, 
thermalization, and quantum measurements (Section 15). Additional technical details have been 
relegated to the Appendices. In Appendix M, we motivate the appearance of long time Gaussian 
distributions in both equilibrium and non-equilibrium systems.
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Appendix A. Order of magnitude time estimates

For radiation traveling at a speed c, during a time interval �t , an extensive (i.e., volume 
proportional) amount of radiative heat �Qrad may flow into a d dimensional system of linear 
scale L if L � c(�t). Thus, bulk effects from radiative heat exchange may only be present after a 
sufficiently long time t � L/c after radiative heating or cooling begins. Similarly, if the effective 
radiative absorption lengths �S and �B of, respectively, the media comprising the system and 
the surrounding heat bath satisfy �S,B � L then the total system radiative heat flow rate may 
be proportional to its volume, �Qrad/�t = O(V ). The existence of a minimal time scale in 
non-relativistic systems may be proven from the Lieb-Robinson bounds (see Appendix B).

We now briefly provide order of magnitude estimates. If, e.g., L is the order of 1 cm for a 
sample of index of refraction ∼ 1 and the relevant velocity v = c is a typical radiation speed (as 
in, radiative cooling or heating) then the requisite minimal time scale tmin = L ∼ 3 × 10−11 sec.
c
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Experiments on supercooled liquids typically involve cooling at a rapid finite rate (thus, the ex-
perimental time scale t ≥ tmin). In metallic liquids (that form glasses when supercooled), often 
in experiments one uses (radiative) laser beam heating. In typical metals, heat and charge effec-
tively travel at a finite fraction (typically of the order of 10−2) of the speed of light c reflecting 
the effective speed of electrons in a metal. The effective heat and charge transport velocities may 
be the equal to one another in conventional metals obeying the Wiedemann-Franz law. The heat 
transfer rate is bounded by the rates of any of the individual (radiative/conduction/convection) 
processes that contribute to it. Thus, if either the typical radiative or conductive processes occur 
at speeds associated with a finite fraction of the speed of light c then so, too, is the total heat 
transfer. In metals as well as in systems where the radiative penetration depth is larger than or of 
the scale of the linear dimension of the material, the speed associated with heat transfer is rather 
large and, correspondingly, the minimal time scale can, in these instances, become very short.

The continuity equation for the local energy density, ∂tε(�x) + �∇ · �j(�x) = 0 where �x denotes a 
spatial location in the continuum limit. If the average current flowing through the system surface 
|j | ≡ |ε|vQ where ε is the global average of the local energy density with vQ a speed charac-
terizing heat or energy flow through a boundary of Ã) and the volume V = O(ÃL) then the 
rate (dE/dt)/E =O(vQ/L). That is, the time required to change the system energy density is 
proportional to L.

Appendix B. A finite rate of change of intensive quantities and the Lieb-Robinson light 
cone

In driven systems with dε/dt = O(1), the commutators with expectation values equal to 
dE/dt must be extensive. Specifically, both in (1) closed systems with a time dependent Hamil-
tonian (as in, e.g., Section 8), the commutator [HH(t), H ] (where HH (t) is the Heisenberg 
picture Hamiltonian) as well as in (2) settings similar to those in Sections 4 (Eq. (4) therein) 
and 10, namely a subsystem with Hamiltonian H in contact with the full system of Hamiltonian 
H̃ , where the relevant commutator is given by Eq. (55), the above two-Hamiltonian commu-
tators are of order O(N). In both (1) and (2), for local Hamiltonians, one may examine the 
constraints implied by causality as these appear via the Lieb-Robinson bound [30] for commuta-
tors [AH (t), B(0)] of local Heisenberg picture operators A and B that have their support centered 
about sites i and j . In particular, whenever the Lieb-Robinson bound applies, the operator norm 
(|| · ||) of commutators between any two local quantities A and B is bounded from above by

||[AH (t),B(0)]|| ≤ c′e(−a(|i−j |−vLR|t |)). (B.1)

Here, a and c′ are constants and vLR is the Lieb-Robinson speed of Section 4. The Lieb-Robinson 
speed plays the role of the velocity of light in relativistic theories. Since, by the Heisenberg 
equations of motion, the commutators in both cases (1) and (2) have an average given by the 
derivative of the energy dE/dt and since the latter is of order N , i.e., dE/dt = O(N) when 
the energy density varies at a finite rate, the upper bounds on the two Hamiltonian commutators 
must also be of order N . Equivalently, as we next detail, the Lieb-Robinson “light cone” [30], 
during the times at which the energy density as measured by H/N varies at a non-zero rate, 
is of the scale of the entire system. The Schrodinger picture Hamiltonian H̃ of the combined 
system (S) + environment (E ) hybrid may be expressed as H̃ = H + HS−E + HE where H
is the system Hamiltonian, HS−E denotes the coupling of the system to its environment, and 
HE is the Hamiltonian of the environment. When only bounded local interactions appear in the 
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system-environment hybrid, we will write the Hamiltonians (in the form of Eq. (1) (explicitly 
rewritten below) and its generalization),

H =
∑

i

Hi (B.2)

and

HS−E +HE =
∑
j ′

Hj ′ (B.3)

as, respectively, sums of the bounded local operators {Hi} and {Hj ′ }. In what follows, as through-
out the main text of the paper, ρ̃ will denote the density matrix of the system-environment hybrid. 
By Heisenberg’s equations of motion, with ε = 1

N
T r[ρ̃HH (t)] the energy density of the system 

(where HH (t) = Ũ†(t)H Ũ(t), with Ũ(t) = e−iH̃ t/h̄, for a time independent H̃ in Eq. (54)), the 
derivative ih̄ dε

dt
is given by

1

N

∑
i

T r(ρ̃[HH
i (t), H̃ ])

= 1

N

∑
i

T r(ρ̃[HH
i (t),HH (t)+HH

S−E (t)+HH
E (t)])

= 1

N

∑
i

T r(ρ̃[HH
i (t),HH

S−E (t)+HH
E (t)]). (B.4)

The first equality of Eq. (B.4) invoked the trivial invariance of H̃ under time evolution with 
Ũ(t) = e−iH̃ t/h̄ (i.e., H̃ = Ũ†(t)H̃ Ũ(t) = H̃H (t)). The last equality in Eq. (B.4) follows since, 
in the second commutator, HH(t) =∑i HH

i (t) similarly commutes with itself. For t > 0, the 
norm of the above commutator average

1

N
|
∑

i

T r(ρ̃[HH
i (t),HH

S−E (t)+HH
E (t)])|

= 1

N
|
∑
i,j ′

T r(ρ̃[HH
i (t),HH

j ′ (t)])|

≤ c′

N

∑
i,j ′

e−a(|i−j ′|−vLRt). (B.5)

The decomposition of the system Hamiltonian H =∑i Hi is into a sum over local regions spans 
N ′ = O(N) terms – the number of sites in the system. In the last inequality, c′ is a constant, 
and a and vLR denote the Lieb-Robinson decay constant (inverse correlation length) and speed 
respectively of Eq. (B.1) [30]. Rather explicitly,

|T r(ρ̃[HH
i (t),HH

j ′ (t)])| ≤ ||[HH
i (t),HH

j ′ (t)]||. (B.6)

In order to derive Eq. (B.5), we note that the Lieb-Robinson bounds of Eq. (B.1) [30] applied 
to the local operators appearing in the Hamiltonian, ||[HH

i (t), HH
j ′ (t)]|| ≤ c′e−a(|i−j ′|−vLRt), im-

ply Eq. (B.5). For each i ∈ S , there is a minimum distance D(i) between i and the surrounding 
region where the operator sum (HS−E + HE ) has its support. For any such i, we may bound 
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(from above) the sum over all j ′ of the exponential e−a(|i−j ′|−vLRt) by a sum of this exponential 
over the larger domain external to a sphere of radius D(i) around i (such a volume contains E
as a subset). For sufficiently short times t , the sum over c′

N

∑
i,j ′ e

−a(|i−j ′|−vLRt) in Eq. (B.5)
tends to zero for macroscopic systems (since the minimal distance D(i) of a typical i ∈ S to its 
surrounding environment is of the order of the system length). For vanishingly small times, the 
latter sum of e−a(|i−j ′|−vLRt) over such a larger domain of j ′ values with |i − j ′| ≥ D(i) de-
cays exponentially in D(i). Specifically, in d spatial dimensions, c′

N

∑
i,j ′ e

−a(|i−j ′|−vLRt) scales 
as O(Dde−aD) for large distances D. Putting all of the pieces together, we see that the Lieb-
Robinson bounds imply that at vanishingly short times, 1

N
| ∑i T r(ρ̃[HH

i (t), H̃ ]|) is bounded 
from above by a function that is exponentially small in the length of the system. In other words, 
under the above specified locality conditions, the energy density of a macroscopic system cannot 
change at a finite rate at sufficiently short times. A corollary of these inequalities is that in a 
local theory in which the Lieb-Robinson bounds hold, a transient time Hamiltonian describing 
the effects of the environment cannot change instantaneously in such a way as to give rise to 
a finite change in the energy density of the system. Thus, generally, the environment may not 
truly instantaneously couple to (nor decouple from) a finite fraction of a macroscopic system 
(in the form of an effective instantaneously varying Hamiltonian H(t ′) (as in Section 6) when 
procedure (1) of Section 2 is invoked). The influences of the environment (and variations in any 
Hamiltonian that emulate the effects of the environment) are limited those associated with “light 
cone” distances of size (vLRt). The above calculations may be replicated, nearly verbatim, for 
operators associated with other intensive quantities q different from H

N
of Eq. (B.2).

Appendix C. Relating equations of motion to correlations

In this Appendix, we will allow for the effects of an environment E on the system S (as in 
the system-environment hybrids of type (2) of Section 2) when all interactions (H̃ ) are time 
independent. We will demonstrate that:

• If the energy density of the system changes at a finite rate then there must be system length 
spanning correlations between the external environment and the system itself.

A formal proof of this assertion is straightforward. Using the notation of Appendix B and the 
main text, by the Heisenberg equations of motion,

0 <

∣∣∣dε

dt

∣∣∣= 1

Nh̄

∣∣∣T r(ρ̃[H̃ ,HH ])
∣∣∣= 1

Nh̄

∣∣∣T r(ρ̃[ ˜δH, δHH ])
∣∣∣

= 1

Nh̄

∣∣∣∑
i

T r(ρ̃[δHH
i (t), δHH

S−E (t)+ δHH
E (t)])

∣∣∣. (C.1)

For any of the Hamiltonians appearing in Eq. (C.1) which we now generally represent by Q, we 
define δQ ≡ (Q − 〈Q〉) ≡ (Q − T r(ρ̃Q)). Apart from trivial shifts by (−〈Q〉), Eq. (C.1) and 

its derivation are identical to those of Eq. (B.4). For all operators Â and B̂, 
∣∣∣T r(ρ̃[Â, B̂])

∣∣∣ ≤
2 ×max

{∣∣∣T r(ρ̃(ÂB̂))

∣∣∣, ∣∣∣T r(ρ̃(B̂Â))

∣∣∣}. Thus, from Eq. (C.1),

0 <
2

N

∑
i

max
{∣∣∣T r

(
ρ̃(δHH

i (t)(δHH
S−E (t)+ δHH

E (t)))
)∣∣∣,

∣∣∣T r
(
ρ̃(δHH

S−E (t)+ δHH
E (t))δHH

i (t)
)∣∣∣}. (C.2)
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Since the number (N ′) of system sites i associated with the bounded local operators HH
i

(Eq. (1)) is N ′ = O(N), from Eq. (C.2), we see that the average correlator between the lo-
cal δHH

i (that, apart from a set of vanishing measure, all lie in the system bulk at a distance 
D =O(L) from the surrounding environment) and the fluctuations (δHH

S−E(t) + δHH
E (t)) must 

be finite. In other words (as is expected), the correlator between the bulk and the Hamiltonian 
coupling it to the surrounding environment is of order unity. Given Eq. (C.2), this typical or-
der unity correlator (the average over all sites i) between (δHH

S−E(t) + δHH
E (t)) and δHH

i (t)

is of a uniform sign. This uniform sign character is emulated by the uniform sign coupling 
between the collective (environment) coordinate q̃ in the solvable examples of Section 7 to 
each of system degrees of freedom i (corresponding to a uniform sign coupling for each of 
the spokes between the environment E and the sites of the system S in the cartoon of Fig. 3). 
For random sign couplings of uniform strength between the system and its environment, the 
energy density might vary at an O(N−1/2) rate. The above holds irrespective of how large 

N may be so long as 
(

dε
dt

)
is non-vanishing. We next consider what occurs when, similar 

to Appendix B, we invoke Eq. (B.3) and express the Hamiltonian of the environment and its 
coupling to the system as a sum of local terms ({Hj } with j /∈ S). In such a case, Eq. (C.2)
will imply that if there is an exponential decay length ξ associated with the larger of the 
two connected correlations functions Gij ′(t) ≡ 〈δHi (t)δHj ′(t)〉 ≡ T r(ρ̃(δHi (t)δHj ′(t))) and 
Gj ′i (t) ≡ 〈δHj ′(t)δHi (t)〉 ≡ T r(ρ̃(δHj ′(t)δHi )(t)) then ξ � O(L). Similarly, if the correla-
tor decays algebraically, |Gij ′ | ∼ |i − j ′|−p , then Eq. (C.2) implies a finite rate of change of 
the energy density for large systems sizes L only if p < d with d the spatial dimensionality of 
the system and the environment. It is noteworthy that the commutator of Eq. (C.1) has (when 
evaluated with ρ̃) an imaginary expectation value for the Hermitian Hamiltonian operators. For 
semiclassical systems, the real component of the correlator Gij ′ is, typically, far larger than its 
imaginary part (which we bounded in the above). Stated equivalently, the expectation value of 
the anticommutator {δHi (t), δHj ′(t)} is, in semiclassical systems, normally far larger than the 
expectation value of the commutator [δHi (t), δHj ′(t)].

Appendix D. Conditional probability arguments for long range correlations

As we explained in Appendix C, a driven system (one in which the intensive quantities change 
at a finite rate) must exhibit long range correlations between observables (Hi) at sites i in the 
bulk to the environment (E ). We now apply “classical” probability arguments to demonstrate that 
when these long range correlations between different sites in the system and its environment are 
present, then the local Hamiltonian terms Hi at different sites in the system bulk may exhibit 
long range correlations. Towards this end, we write the classical joint probability distribution 
P(EE , Ei, Ej) associated with the values (Ei,j ) of the energies Hi and Hj at the two sites i, j
in the bulk (in the system S) and the energy (HH

S−E(t) +HH
E (t)) affiliated with the environment 

E (denoted by EE ). In the context of Appendix C, the joint probability distribution

P(EE ,Ei,Ej )≡ T r
[
ρ̃ δ(HH

S−E (t)+HH
E (t)−EE (t))δ(Hi −Ei(t)) δ(Hj −Ej(t))

]
.

Other joint probabilities are defined similarly. By the chain rule of conditional probabilities,

P(EE ,Ei,Ej )= P(Ei |EE ,Ej )P (EE |Ej)P (Ej ). (D.1)
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Here, P(Ei |EE , Ej) = P(Ei,EE ,Ej )

P (EE ,Ej )
is the conditional probability of measuring a local energy 

(with a local “thermometer”) of value Ei given a value of the local energy (Ej ) at site j and the 
above defined energy EE associated with the environment E . Now, if i is independent of j then

P(Ei |EE ,Ej )= P(Ei |EE ). (D.2)

Subsequently, Eq. (D.1) reduces to

P(EE ,Ei,Ej )= P(Ei |EE )P (EE |Ej)P (Ej ). (D.3)

The classical joint probability P(Ei, Ej) then reads

P(Ei,Ej )=
∑
EE

P(EE ,Ei,Ej )

=
∑
EE

P(Ei |EE )P (EE |Ej)P (Ej ). (D.4)

This, in turn, implies that the conditional probability between the values of Ei and Ej at the two 
sites in the system bulk is given by

P(Ei |Ej)=
∑
EE

P(Ei |EE )P (EE |Ej)

=
∑

EE P(Ei |EE )P (Ej |EE )P (EE )∑
EE P(Ej |EE )P (EE )

. (D.5)

In the second (alternate form) line of Eq. (D.5), we invoked Bayes’ theorem. Appendix C demon-
strated that in a (quantum) system in which the energy density varies at a finite rate, there the 
energy fluctuations in i and E are not independent of one another. Similarly, the energy fluc-
tuations in j and in E are correlated and not independent of one another. Thus, in general, the 
conditional probabilities

P(Ei |EE ) �= P(Ei) and P(EE |Ej) �= P(EE ). (D.6)

(Analogously, for the conditional probabilities appearing in the second line of Eq. (D.5), a cou-
pling between the driving environment and the bulk implies (as formalized in Appendix C) that 
P(Ej |EE ) �= P(Ej ).) These inequalities are expected to generally hold for both quantum as well 
as classical systems since, at their core, these relations indeed reflect the bulk coupling between 
the environment driving the system and the system itself necessary to induce a finite rate of 
change of the energy density. (See also the discussion in Appendix C concerning semiclassical 
systems.) When the inequalities of Eq. (D.6) are substituted in Eq. (D.5), we will generally have

P(Ei |Ej) �= P(Ei). (D.7)

That is, the local energy fluctuations at (arbitrarily far separated) sites i and j in the system 
bulk are not independent of one another as assumed in deriving Eq. (D.4). Thus, there may be 
non-trivial correlations between any two such sites i and j in the driven system S . With reference 
to Eq. (3), we now see that (even for large |i − j |) the covariance

Gij =
∑

Ei,Ej

(
P(Ei |Ej)− P(Ei)

)
P(Ej )EiEj , (D.8)

need not vanish (and may be of order unity). If the coupling to the environment is the dominant 
contribution to the correlations Gij when |i − j | is large then when the coupling between the 
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environment and different sites i in the bulk is (nearly) constant, then all connected pair corre-
lators Gij appearing in Eq. (3) will be of (almost) uniform magnitude (and sign). Under these 
conditions, σε =O(1). The above conditional probability arguments may be extended verbatim 
to general situations when general observables in E, i, and j may carry time and/or other indices 
in addition to spatial ones. Indeed, in the simple conditional probability computations above the 
specific physical content of these labels was irrelevant.

Appendix E. Other long range correlations

It has long been known that algebraic power law correlations may appear in non-equilibrium 
steady states of fluids and other systems in which the energy density and other intensive quantities 
do not vary with time and in which a coupling to spatially non-uniform external bath was a local 
boundary effect [180–182]. The existence of a spatially non-uniform profile of the local energy 
density may enhance the large fluctuations that we find in the current work. We will briefly touch 
on related aspects towards the end of Section 13. In classical systems with local interactions, 
broad distributions of various observables may also occur in the thermodynamic limit when these 
systems are disordered. This phenomenon is known as “non-self-averaging”, e.g., [99–102]. In 
these disordered systems, an ensemble average of a physical observable computed over different 
disorder realizations may differ significantly from the expectation value of the same quantity in 
any single member of the ensemble. The systems that we will focus on in the current work need 
not be disordered nor critical. However, given the absence of self-averaging in such disordered 
classical systems, we remark that the broadening that we find will also apply to various systems 
when the (“ensemble of”) eigenstates of the density matrix effectively describe these different 
disorder realizations of classical critical systems. This is so since, in such cases, an average 
computed with the probability density matrix ρ will reproduce the average associated with an 
ensemble of disordered classical states.

In the driven system, the correlators Gij of Eq. (3) may be finite. By evolving (forward and 
backwards) in time, one can examine the correlations of general quantities in the driven system. 
Eqs. (3), (4) allow for other non-local covariances to be finite. Specifically, whenever Eq. (3)
holds, regarded as a formal operator, the Heisenberg picture Hamiltonian HH(t) = Ũ†(t)H Ũ(t), 
evaluated for times t at which Eq. (3) applies, will trivially, exhibit a standard deviation that is 
O(N) when computed with the initial density matrix ρ̃ at (i.e., prior to driving the system). The 
proof of this assertion is straightforward. If 〈HH(t)〉 = T r(ρ̃HH (t)) then,

T r
[
ρ̃(HH (t)− 〈HH (t)〉)2

]
= T r

[
Ũ(t)ρ̃Ũ†(t)(H − 〈HH (t)〉)2

]
. (E.1)

Whenever Eq. (3) holds,

T r
[
ρ̃(HH (t)− 〈HH (t)〉)2

]
=O(N2). (E.2)

Thus, rather trivially, when evaluated with the initial probability density matrix ρ̃, the operator 
(HH (t) − 〈HH (t)〉) exhibits an O(N2) variance. This allows for non-local correlations similar 
to those in Eq. (3) for operators different from H also at initial times before the system is driven. 
In special cases, when HH (t) will remain a sum of local terms similar to those in Eqs. (1), 
the simple derivation of Eq. (3) may imply non-local correlations for operators do not appear 
in the Hamiltonian H at time t = 0. We will indeed precisely encounter such correlations and 
further elaborate on viable preparation of non-product form type states with these correlations 
in the example of Section 6 (discussed in some detail in Appendix I and Appendix J) where 
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the correlations in the initial state assume a particularly simple form. In certain other instances, 
the operator HH (t) may become non-local and thus the long range covariance might not be too 
surprising.

It should be stressed that in the current work we explain how long range correlations of the 
particular form of Eq. (3) for the local energetic terms {Hi} may arise when the corresponding 
energy density ( 1

N

∑
i〈Hi〉) changes at a finite rate (and also explain how similar correlations 

appear when other intensive quantities vary at a finite rate). With the exception of a brief dis-
cussion at the very end of Section 11, we will not discuss results concerning macroscopic range 
correlations that are different from Eq. (3). That is, in this paper we will largely analyze only 
correlations between the driven observables. For completeness, however, we must remark that 
many other nontrivial correlations may appear between quantities that are not driven. Indeed, 
long range correlations may even appear in equilibrated systems. As has been long known, sys-
tems such as the celebrated AKLT spin chains [183–187] as well as Hubbard [188–190], t − Jz

[191] the Kitaev honeycomb [192], and lattice Bose models [193] may indeed display nontrivial 
long range correlations. For instance, the AKLT spin chains exhibit non-trivial long range string 
correlations in their ground states [184–187] in addition to more mundane conventional short 
range nematic type correlations [194,195]. In [194,195], a general algorithm was provided for 
the construction of non-vanishing string type and other correlators for general entangled ground 
states.

Appendix F. Entangled Ising chain eigenstate expectation values produce thermal 
averages

In order to explicitly illustrate how macroscopic entanglement may naturally appear in typ-
ical thermal states (even those of closed systems that have no explicit contact with an external 
bath), we turn to a simple example – that of the uniform coupling one dimensional Ising model 
(the Hamiltonian HI of Section 5 on an open chain with uniform nearest neighbor coupling – 
Jij = J ). In these appendices, we will dispense with factors of h̄/2 and use the conventional 
definition of the Ising model Hamiltonian with the spin at any site r being Sz

r = ±1 (i.e., the 
diagonal elements of the Pauli matrix σ z

r ). In each Ising state product state, the value of 〈Sz
r S

z
r ′ 〉

is either 1 or (-1). This single Ising product state expectation value differs from that of the equi-
librium system at finite temperatures. It is only if we compute the expectation value within a state 
formed by a superposition of many such product states (i.e., an expectation value within such a 
highly entangled state) or if we average under uniform translations of the origin (i.e., entangle 
with equal weights all states related by translation) that we will obtain the equilibrium result. 
The Ising operators Sz

i are diagonal in the product basis; different product states are orthogonal 
to each other. In a superposition of different product states, only the diagonal (i.e., weighted Ising 
product expectation values) terms are of importance when computing 〈Sz

rS
z
r ′ 〉.

We consider a highly entangled eigenstate |�〉 of the one-dimensional Ising model. Such an 
entangled state emulates, in real space, entangled eigenstates |υα; Stot , S

z
tot 〉 with (for systems 

in their thermodynamic limit) |Stot
z /Smax| < 1 (i.e., not product states of all spins maximally 

polarized up or down along the field direction) of the spin models discussed in Section 6. For 
an Ising model HI on a one dimensional chain of length L, given an eigenstate of energy E, 
the frequency of low energy nearest neighbor bonds (namely, Sz

r = Sz
r ′ = ±1 (“↑↑” or “↓↓”)) 

is p and that of having higher energy bonds (i.e., “↑↓” or “↓↑”) is q . Clearly, p + q = 1 and 
(q − p) = E/(LJ ) where J is the Ising model exchange constant and E is the total energy. In 
the one dimensional Ising model there is no constraint on the nearest neighbor bonds SzSz
i i+1
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(these products are all independent variables that are “+1” or “-1” that sum to the scaled total 
energy E/J ). Consider a spin at site r which is, say, “↑”. We may now ask what is the aver-
age value of a spin at another site r ′. Evidently, if there is an even number of domain walls (or 
even number of energetic bonds) between sties r and r ′ then the spin at site r ′ is “↑” while if 
there is an odd number of domain walls between the two sites then the spin at site r ′ is “↓”. 
The average 〈Sz

r S
z
r ′ 〉 = (p − q)|r−r ′|. That is, if we have an even number of bad domain walls 

(corresponding to an even power of q) then the contribution to the correlation function will be 
positive while if we have an odd number of domain walls (odd power of q) then the contribu-
tion to the correlation function will be negative. The prefactors in the binomial expansion of 
(p − q)|r−r ′| account for all of the ways in which domain walls may be placed in the interval 
(r, r ′). However, (p− q) = (−E)/(LJ ). Thus, the correlator 〈Sz

r S
z
r ′ 〉 = [(−E)/(LJ )]|r−r ′|. This 

single eigenstate result using the binomial theorem indeed matches with the known results for 
correlations in the Ising chain in the canonical ensemble at an inverse temperature β = 1

kBT
where 

E =−J (L − 1) tanhβJ and 〈Sz
r S

z
r ′ 〉 = (tanhβJ )|r−r ′|. The agreement of the spatially long dis-

tance correlator result in one eigenstate with the prediction of the fixed energy microcanonical 
ensemble is obvious. The above probabilistic derivation for general sites r and r ′ will hold so 
long as the eigenstate |ψ〉 is a sum of numerous Ising product states (all having the same energy 
or, equivalently, the same number of domain walls). If this result holds for all site pairs (r, r ′)
then the entanglement entropy is expected to scale monotonically in the size (or “volume”) of this 
one dimensional system. Indeed, a rather simple calculation (outlined in Appendix G) illustrates 
that if the L site system is partitioned into subregions A and B of “volumes” LA and LB (with 
L = LA + LB ) then if, e.g., |�〉 is an equal amplitude superposition |�+〉 of all Ising product 
states (i.e., an equal amplitude superposition of the product states |s1s2 · · · sN 〉 of Section 5) that 
all have a given fixed energy then the entanglement entropy between regions A and B scales as 
min{lnLA, lnLB}.

Broader than the specific example of this Appendix, the coincidence between the single (en-
tangled) eigenstate expectation values with the equilibrium ensemble averages is expected to 
hold for general classical systems in arbitrary dimensions. To see why this is so consider the ex-
pectation value of a general observable (including any correlation functions) that is diagonal in 
the basis of degenerate classical product states. When computed in a state formed by a uniform 
modulus superposition of degenerate states (e.g., the equal amplitude sum of all local product 
states of the same energy), the expectation value of such an observable may naturally emulate 
the microcanonical ensemble average of this observable over all classical states of the same 
energy. Finite energy density states (i.e., states whose energy density is larger than that of the 
ground state) formed by a uniform amplitude superposition of all product states generally exhibit 
macroscopic entanglement. As we have elaborated on in this Appendix, this anticipation is real-
ized for the classical Ising chain. For the classical Ising chains discussed above, the below two 
general quantities are the same for a general observable O: (i) the mean of the expectation values 
of O in all local product states that are superposed to form general (not necessarily an exact uni-
form modulus superposition of degenerate states) highly entangled states and (ii) the average of 
O as computed by a classical microcanonical ensemble calculation. As we emphasized earlier, 
general thermal states may exhibit “volume” law entanglement entropies [56]. However, not all 
eigenstates that display the equilibrium value of the correlators 〈Sz

r S
z
r ′ 〉 need to exhibit volume 

law entanglement. As alluded to above, in the next Appendix, we will compute the entanglement 
entropy associated with |�+〉 and show that it is macroscopic even in one dimensional systems 
albeit being logarithmic in the “volume”.
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Appendix G. Entanglement entropies of a uniform amplitude superposition of classical 
product states

We next discuss the reduced density matrices and entanglement entropies associated with (1) 
the eigenstates |φα〉 = |υα; Stot , S

z
tot 〉 of Section 6 when Stot happens to be maximal (Stot =

Smax), (2) the symmetric quantum states described of Appendix F, and a generalization thereof 
that we now describe. Specifically, we will consider general Hamiltonians that may be expressed 
as a sum of decoupled commuting local terms, H =∑L

i=1 Hi (i.e., N ′ = L in the notation of the 
Introduction) on a Hilbert space endowed with a simple local tensor product structure. We denote 
the eigenstates (of energies εni

) of each of the local operators Hi by {|νni

i 〉}. For such systems, 

any product state |c〉 = |ν(n1)
1 〉 ⊗ |ν(n2)

2 〉 ⊗ · · · ⊗ |ν(nL)
L 〉 is, trivially, a eigenstate of H (of total 

energy Ec =∑L
i=1 εni

). Formally, one may think of Hi as decoupled independent commuting 
“quasi-particle” operators (i.e., colloquially, H describes “an ideal gas” of such quasi-particles). 
We now explicitly write the states that are equal amplitude superpositions of all such product 
states |c〉 of a given total energy,

|�+〉 ≡ 1√
N (E)

∑
Ec=E

|c〉. (G.1)

Similar to the discussion of Appendix F, for observables Od that are diagonal in the {|c〉} basis, 
the single eigenstate expectation values 〈�+|Od |�+〉 are equal to the microcanonical equilib-
rium averages of 〈Od〉eq;mc in which the energy E is held fixed. In Eq. (G.1), N (E) = eS(E)/kB is 
the number of product states |c〉 that have a total energy E (and S(E) is the associated Boltzmann 
entropy). The states of Eq. (G.1) describe those of the Ising spin states alluded to in Appendix F. 
Such states rear their head also in other arenas. For instance, since, in a many body spin system, 
the state of maximal total spin Stot = Smax is a uniform amplitude superposition of all product 
states having a given value of Stot

z (i.e., a uniform amplitude superposition of all states of de-
coupled spins in a uniform magnetic field that share the same energy), states of the type |�+〉
include the eigenstates that we analyzed in Section 6 (when these states are those of maximal 
total spin). The entanglement entropy that we will compute for |�+〉 will thus have implications 
for these and other systems. We partition the L site system into two disjoint regions A and B and 
examine the entanglement between these two subvolumes. To facilitate the calculation, we will 
employ the symmetric combinations

|EA〉+ ≡ 1√
NA(EA)

∑
E({cA})=EA

|{cA}〉,

|EB〉+ ≡ 1√
NB(EB)

∑
E({cB })=EB

|{cB}〉. (G.2)

In the first of Eqs. (G.2), the sum is over all product states {|cA〉} having their support on the sites 
1 ≤ i ≤ LA that are of fixed energy EA. Similarly, the symmetric state |EB〉+ extends over the 
sites LA + 1 ≤ i ≤ L. With these definitions, we rewrite Eq. (G.1) as

|�+〉 =
∑
EA

√
NA(EA)NB(E −EA)

N (E)
|EA〉+|EB =E −EA〉+. (G.3)

The density matrix associated with this state is ρ+ ≡ |�+〉〈�+|. To compute the entanglement 
entropy, we next write the reduced density matrix
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ρB,+ ≡ T rAρ+ = 1

N (E)

∑
EA

(NA(EA)NB(EB =E −EA)

×|EB =E −EA〉+〈EB =E −EA|+). (G.4)

If a given system is partitioned into two non-interacting subsystems A and B then the sole relation 
linking the two subsystems will be the constraint of total energy E = EA +EB . Of all possible 
ways of partitioning the total energy E = EA +EB , one pair of energies EA and EB will yield 
the highest value of SA(EA) + SB(EB). The ratios appearing in Eq. (G.4),

NA(EA)NB(E −EA)

N (E)
= e(SA(EA)+SB(E−EA)−S(E))/kB , (G.5)

follow, upon Taylor expanding the ratio to quadratic order about its maximum at EA and EB =
E −EA, a Gaussian distribution with a standard deviation set by

σB =
√

kBT 2C
eff
v (T ). (G.6)

In Eq. (G.6),

Ceff
v (T )≡ C

(A)
v (T )C

(B)
v (T )

C
(A)
v (T )+C

(B)
v (T )

. (G.7)

The latter Taylor expansion may be carried out for energy densities associated with finite tem-
peratures. (In the vicinities of either the ground state value of the energy density or the highest 
energy density, the derivatives of the entropy relative to the energy diverge and the Taylor ex-
pansion becomes void.) The entropies SA(EA) and SB(EB) appearing in Eq (G.5) are those of 
subsystems A and B that, as emphasized above, for non-interacting particles, are merely con-
strained by the condition that EA +EB =E. For this non-interacting system,

eS(E)/kB =
∑
EA

eSA(EA)/kB eSB(EB=E−EA)/kB , (G.8)

and thus, trivially, S(E) ≥ SA(EA) + SB(EB). As throughout the current work, in Eqs. (G.6), 
(G.7), T denotes the temperature (set by the condition that the canonical ensemble equilibrium 
internal energy T r(He−βH )/T r(e−βH ) is equal to the total energy E). The entropy of the Gaus-
sian distribution scales as the logarithm of its width. Specifically, for the saddle point Gaussian 
approximation of Eqs. (G.5), (G.6), (G.7),

Sent,+ ≡−T r(ρB,+ lnρB,+)= 1

2
ln(2πσ 2

B + 1)∼ lnσB, (G.9)

where in the last asymptotic form, we made manifest the assumed extensive LA,B � 1 (and thus 
σB � 1). If SA(EA) = O(LA) and SB(EB) = O(LB) when LA,B � 1 then, from Eqs. (G.6), 
(G.7), (G.9), the entanglement entropy for states of finite temperature (i.e., states exhibiting a 
finite energy density above that of the ground state value),

Sent,+ =O(min{lnLA, lnLB}). (G.10)

We reiterate that generic states of fixed total energy will exhibit an entanglement entropy pro-
portional to the system volume (see, e.g., the considerations of [56]). Even though a system of 
non-interacting particles is trivial and its properties may, generally, be exactly computed, its en-
tanglement entropy may be macroscopic. We next discuss two specific realizations of Eqs. (G.9), 
(G.10).
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G.1. Maximal total spin eigenstates

As noted above, for any fixed Sz
tot , the eigenstates of Eq. (6), |�+〉 corresponds to a maximal 

total spin (Stot = Smax) state of the L =N spins (with the given value of Sz
tot ). In order to relate 

this to our general results of Eqs. (G.9), (G.10) for the entanglement entropy, we consider the 
local Hamiltonians Hi forming the Hamiltonian H =∑N

i=1 Hi to be given by Hi =−BzS
z
i . With 

this, |�+〉 of Eq. (G.1) is an eigenstate of Sz
tot (with each product state |c〉 being an eigenstate of 

all {Sz
i } operators). We consider what occurs if the N spins are partitioned into the two groups 

A and B of approximately equal numbers LA and LB , and |w| ≡ |Sz
tot /(h̄Stot )| < 1. In this 

case, the saddle point approximation of Eq. (G.5) yields, as before, a Gaussian distribution and, 
a consequent logarithmic entanglement entropy,

Sent,+ =O(lnN). (G.11)

Thus, as highlighted in Section 6, initial states |ψ0
Spin〉 of maximal total spin and |w| < 1 feature 

logarithmic in volume entanglement entropies.

G.2. Ising chains

Returning to the considerations of Appendix F and the notation introduced in Section 5, we 
now consider the symmetric sum of all Ising product states that share the same energy (as mea-
sured by the Ising Hamiltonian HI of Section 5). As in Appendix G.1, we can transform the 
problem of computing the entanglement entropy of such symmetric states |�+〉 into that involv-
ing eigenstates of decoupled local Hamiltonians Hi that led to Eqs. (G.10). Towards this end, we 
focus on the nearest neighbor spin products that were crucial to our analysis in Appendix F, and 
define the operators

1 ≤ i ≤ L− 1 : Ri ≡ Sz
i S

z
i+1,

RL ≡ Sz
L. (G.12)

The Ising Hamiltonian now explicitly becomes a sum of the above defined decoupled commut-
ing operators, HI = −J

∑L−1
i=1 Ri . Using the vocabulary that we employed earlier, the “quasi-

particle” operators {Ri}L:−1
i=1 are associated with the existence (Ri = −1) or absence (Ri = 1) 

of domain walls between neighboring Ising spins. On the two subregions A and B , we define 
HAI =−J

∑LA

i=1 Ri and HBI =−J
∑L−1

i=LA+1 Ri . The equal amplitude superposition of all Ising 
product states of fixed energy can be rewritten as

|�I+〉 = 1

2L/2

∑
r1,r2,··· ,rL

|r1r2 · · · rL〉, (G.13)

where ri =±1 denote the eigenvalues of Ri . When evaluating the reduced density matrix ρBI+ =
T rA|�I+〉〈�I+|, the trace over all Ising spins {si≤LA

} that lie in the spatial region A is replaced 
by that over {ri≤LA

}. Repeating the earlier calculations we find, once again, the entanglement 
entropy of Eqs. (G.6), (G.7), (G.9) [196]. Equating the internal energy of a system given by HI

to E we see that, when L � 1, the temperature appearing in Eqs. (G.6), (G.7), (G.9) is given by

1

kBT
=− tanh−1

( E

LJ

)
. (G.14)

In Eq. (G.7), the heat capacities of the Ising chain subsystems A and B (when LA,B � 1) are
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C(A,B)
v (T )= kBLA,B

(
(βJ )2 −

(βEA,B

LA,B

)2)
. (G.15)

Eq. (G.10) provides the asymptotic scale of the entanglement entropy; similar to Eq. (G.11), if 
LA and LB are both of order of the system size, LA,B =O(N) then the entanglement entropy 
Sent;+ of the symmetric state will scale logarithmically in N . General eigenstates may exhibit 
larger entanglement entropies (see Appendix N).

Appendix H. The total spin of large systems

We now discuss the total spin sectors that may appear in the spin model of Section 6.1. Our 
aim is to highlight both statistical and physical aspects of the total spin and its scaling with 
the system size N . All states with maximal total spin and definite eigenvalues of the total Sz

tot

operator are eigenstates of the general Hamiltonian Hspin of Eq. (6). (These eigenstates span the 
basis of all ferromagnetic spin states with spins uniformly polarized along different directions.) 
This assertion may be explicitly proven by the following simple observations: (i) For any two spin 
S = 1/2 operators, the scalar product �Si · �Sj = h̄2( 1

2Pij − 1
4 ) where Pij is the operator permuting 

the two spins, (ii) Any state of maximum total spin (Stot = Smax = Nh̄/2) is a symmetric state 
that is invariant under all permutations {Pij }. From properties (i) and (ii), it follows that any 
state |Stot = Smax = Nh̄/2, Sz

tot 〉 is an eigenstate of both the first and second terms of Eq. (6)
and therefore of the full Hamiltonian Hspin. Thus, any state of maximal total spin Stot = Smax
that is an eigenstate of Sz

tot is automatically an eigenstate of Hspin of Eq. (6). In general, when 
Stot < Smax, only some linear combinations of the multiple states of given values of Stot and 
Sz

tot are eigenstates of Hspin (hence the appearance of additional quantum numbers υα defining 
general eigenstates |φα〉). To make this clear, we can explicitly write down the total spin for a 
system of N spin S = 1/2 particles. That is,

N = 2 : 1

2
⊗ 1

2
= 1⊕ 0,

N = 3 : 1

2
⊗ 1

2
⊗ 1

2
= 3

2
⊕ 1

2
⊕ 1

2
,

N = 4 : 1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0,

· · · . (H.1)

The first (textbook type) equality of Eq. (H.1) states that singlet (S = 0) and triplet (S = 1) 
total spin combinations may be formed by adding two (N = 2) spins of size S = 1/2. Other 
well known relations are similarly tabulated for higher N . Since Hspin is defined on a (2S + 1)N

dimensional Hilbert space, its eigenstates span all states in the direct product basis on the lefthand 
side of Eq. (H.1). For each N , the sector of maximal spin (Stot = Smax =NS) is unique. However, 
for N > 2, all other total spin sectors in Eq. (H.1) exhibit a multiplicity MStot larger than one. 
While it is, of course, possible to simultaneously diagonalize the Hamiltonian of Eq. (6) with the 
two operators Stot and Sz

tot , there are multiple states that share the same eigenvalues of Stot and 
Sz

tot . Using the characters χStot
of spin Stot representations of SU(2), we find that there are

MN
Stot

= N !(2Stot + 1)

(N
2 + Stot + 1)!(N

2 − Stot )!
(H.2)

sectors of total spin 0 ≤ Stot ≤ N
2 on the righthand side of Eq. (H.1). The decomposition into 

characters of SU(2) has a transparent physical content. Consider a global rotation by of all spins 
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an arbitrary angle θ ′ about the z axis. The trace of the operator that implements this rotation 
is the same into the different basis appearing in Eq. (H.1): (1) the product basis (the lefthand 
side of Eq. (H.1)) of N spins of size S = 1/2 and (2) the basis comprised of the total spin 
sectors (the righthand side of Eq. (H.1)). When expressing the basis invariant trace of the arbitrary 
rotation evolution operator in terms of the Laurent series in eiθ ′/2 that arises when taking the 
trace of the rotation operator, the series must identically match in both of these bases of Eq. (H.1). 
Equating the trace as evaluated in (1) and (2) as discussed above, we explicitly have (2 cos θ ′

2 )N =∑
Stot

MN
Stot

χStot
with χStot

=∑Stot

S=−Stot
eiSθ ′ = sin(2Stot+1) θ ′

2

sin θ ′
2

from which Eq. (H.2) follows by 

Fourier transformation. Perusing Eq. (H.2), we see that for large N , the highest values of MN
Stot

occur for small Stot ; in Eq. (H.1), a “randomly” (“infinite temperature”) chosen state of N � 1
spins is most likely to have Stot ≤ O(

√
N). Specifically, if we approximate, for fixed N �

Stot � 1, the distribution of binomial coefficients in Eq. (H.2) by a Gaussian, we trivially obtain

MN
Stot

∼ 2N+ 5
2 e−

2S2
tot
N

N
3
2
√

π
Stot . (H.3)

The binomial character of Eqs. (H.2) with the associated asymptotic Gaussian form of Eq. (H.3)
is not unexpected: a summation of N � 1 random classical spins (when these are viewed as 
uniform length displacement vectors) leads to a total spin that, similar to that appearing for 
the total displacement in random walks (sum of the uniform length displacements), follows a 
Gaussian distribution. As seen in our equations, the situation for quantum spins is qualitatively 
similar. Even though, when N � 1, states of low Stot /N ∼O(N−1/2) are statistically preferred 
in the entries of Eq. (H.1), physically finite Stot/N ratios are naturally mandatory in numerous 
instances (including the ability to cool/heat the energy density of the system at a finite rate). For 
instance, sans symmetry breaking fields, in low temperature ferromagnetic states (having a finite 
magnetization density or, equivalently, an extensive total spin), the total spin value Stot =O(N). 
In the presence of the applied symmetry breaking field in Hspin of Eq. (6), such a finite average 
of (Sz

tot /N) arises at general finite temperatures. Furthermore, as noted above, in order to have a 
finite rate of change of the energy density by applying the transverse field By of Eq. (8), we must 
have that the total spin Stot =O(N).

Appendix I. Correlations in rotationally invariant spin systems driven by a uniform field

I.1. Long range correlations

We will now briefly underscore that any eigenstate of |φα〉 of Eq. (6) having Stot = O(N)

with |w| < 1 displays long range correlations. As we will further explain, such macroscopic 
spin states with |w| < 1 must appear if the application of a transverse field in the example of 
Section 6.1 leads to, e.g., either (1) finite second cumulants (i.e., variances) the change of the 
energy density (in addition to a finite rate of variation of the energy density as required for the 
systems that we analyze) or generally leads to (2) finite second derivatives of the energy density 
for time dependent external fields (such as those of Eq. (I.9) below).

First, we make the correlations in these states explicit by writing down two simple equalities,

〈(Sx
tot )

2〉 = 1 〈(�S2
tot − (Sz

tot )
2
)〉
= 1[

Stot (Stot + 1)h̄2 − (Sz
tot )

2
]
, (I.1)
2 2
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and

〈(Sx
tot )

2〉 =
∑
i �=j

〈Sx
i Sx

j 〉 +
∑

i

〈(Sx
i )2〉 =

∑
i �=j

〈Sx
i Sx

j 〉 +
Nh̄2

4
. (I.2)

Combining Eqs. (I.1), (I.2), and noting that in any eigenstate |φα〉 of the Sz
tot operator, the expec-

tation value 〈Sx
i 〉 = 0, one finds that, on average, for all i �= j , the pair correlator

1

N(N − 1)

∑
i �=j

(〈Sx
i Sx

j 〉 − 〈Sx
i 〉〈Sx

j 〉)=
(Stot (Stot + 1)− N

2 )h̄2 − (Sz
tot )

2

2N(N − 1)
. (I.3)

For fully symmetric states |φα〉 (those associated with a maximal total spin, Stot = Smax =NS), 
all of the correlators when i �= j are equal to each other and given by the righthand side of 
Eq. (I.3). The possibility of correlations in the initial state is consistent with our discussion fol-
lowing Eqs. (E.1), (E.2). In the exactly solvable model system of Section 6, these correlations 
are of a particularly simple form of Eq. (I.3).

I.2. Cumulants and higher order derivatives of the energy density for various fields

We next explain how the correlations described in Appendix I.1 for initial states of the models 
of Section 6.1 may be inevitable in various circumstances.

I.2.1. Finite variances of the derivative of the energy density
As we noted earlier, in order for the system to display a finite rate of variation of its energy 

density (the focus of the systems discussed in our work), the spin system of Eq. 6 must have 
macroscopic (O(N)) total Sz

tot (as in a ferromagnet). While a finite average correlator for large 
|i − j ′| (such as that resulting when Stot = O(N) and |w| < 1) might appear paradoxical, one 
must recall that for these states |φα〉, the application of the transverse field of Eq. (8) led to a finite 
range of change of the energy density. That is, when evaluated in these states, the expectation 

value of the time derivative of the Heisenberg picture Hamiltonian dε
dt

= 1
N
〈 dHH (t)

dt
〉 �= 0 for 

general times t . Indeed, the latter inequality defined our problem (that of a finite rate of change 
of the energy density). Given that, at most times t , the first moment of dHH (t)

dt
in the state |φα〉 is 

finite, it is no surprise that its second cumulant (i.e., the variance) may also be finite at these or 
other times. Indeed, when 

∫ t

0 By(t
′) dt ′ ≡ 0(mod π),

1

N2

(〈(dHH (t)

dt

)2〉− 〈dHH (t)

dt

〉2)= (By(t)Bz

N

)2〈
(Sx

tot )
2
〉
. (I.4)

Thus, for those times t at which θ(t) ≡ 0(mod π) (which, coincidently, for w �= 0, ±1, are the 
only times at which dε

dt
= σε = 0) if the second cumulant of 1

N
dHH (t)

dt
is finite then the initial 

state |ψ0
Spin〉 = |φα〉 must display a finite 〈

(
Sx

tot

N

)2〉. From Eq. (I.2), a non-vanishing 〈
(

Sx
tot

N

)2〉
implies a finite average value of (〈Sx

i Sx
j 〉 − 〈Sx

i 〉〈Sx
j 〉) for far separated sites i and j . Hence, the 

correlations of Eq. (I.3) are not unexpected in systems generally exhibiting finite cumulants of 
1
N

dHH (t)
dt

. We must caution that, of course, the possibility of a finite first cumulant of 1
N

dHH (t)
dt

at general times does not mandate the existence of a finite second cumulant (i.e., a variance) yet 
certainly does not preclude it (as is indeed the case for our example of Section 6.1). Generally, one 

anticipates a finite variance from the different local contributions to dHH (t) . These contributions 

dt
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are generally correlated due to the coupling between the local contributions (the local spins) to 
the external drive (the transverse field of Eq. (8)) to all spins in the system so as to change the 
energy density at a finite rate (as motivated by the qualitative discussion of Eq. (4)). That the 

variance of 1
N

dHH (t)
dt

is given by Eq. (I.4) may be explicitly seen as follows. In the Heisenberg 
picture, an evolution under the transverse field Hamiltonian of Eq. (8) leads to the precession

Sz
tot (t)= Sz

tot cos θ(t)− Sx
tot sin θ(t), (I.5)

where, as in the main text, θ(t) ≡ ∫ t

0 By(t
′)dt ′. Invoking Eq. (6), this yields

dHH (t)

dt
= BzBy(t)

(
Sz

tot sin θ(t)− Sx
tot cos θ(t)

)
, (I.6)

giving rise to Eq. (I.4) when θ(t) ≡ 0(mod π).

I.2.2. Finite averages of the second order derivative of the energy density
Higher order derivatives may be similarly examined. We next discuss the average of the sec-

ond derivative of the energy density,

d2Sz
tot (t)

dt2 =−Sz
tot [B2

y (t) cos θ + dBy

dt
sin θ ]

+Sx
tot [B2

y −
dBy

dt
cos θ ]. (I.7)

In the following, we will very briefly discuss two special simple cases: (1) a time dependent and 
(2) a constant external field.

Time dependent external field.

From Eq. (I.7), if 1
N2 〈( d2Sz

tot (t)

dt2 )2〉 = O(1) then whenever [B2
y (t) cos θ + dBy

dt
sin θ ] = 0, the 

variance 〈(Sx
tot )

2〉 =O(N2). Since By(t) = dθ
dt

, this yields the ordinary differential equation(dθ

dt

)2 =−d2θ

dt2 tan θ. (I.8)

Explicitly integrating ( d2θ
dt2 )/( dθ

dt
) =− dθ

dt
cot θ once implies ln dθ

dt
=− ln(sin θ) + C1. An expo-

nentiation and a second integration result in cosθ = C2 − Ct (with C, C1,2, arbitrary integra-
tion constants). Hence, if θ(0) = 0 then the solution to Eq. (I.8) is, for 0 ≤ t ≤ 2

C
, given by 

θ(t) = cos−1(1 −Ct) for general C > 0. Thus, if an applied field

By(t)= dθ

dt
= 1√

2t
C
− t2

, (I.9)

not only trivially leads to a finite rate of change of the energy density but also to a finite 1
N2 〈 d2HH

dt2 〉
on a continuous time interval then 〈(Sx

tot )
2〉 = O(N2) (i.e., |w| < 1) signaling, as discussed in 

Appendix I.1, the existence of long range correlations.

Constant external field.
If, apart from having a finite rate of change of the energy density, the square of the second 

order derivative 1
N2 〈( d2HH

dt2 )2〉 > 0 when θ(t) = π/2 for a uniform time independent By then, 
from Eq. (I.7), 〈(Sx

tot )
2〉 =O(N2), i.e., |w| < 1 (implying long range correlations once again).
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Appendix J. Preparation of the initial spin states of Section 6.1

The results of Section 6.1 hold for any initial state |ψ0
Spin〉 that is an eigenstate of the Hamilto-

nian Hspin of Eq. (6) evolved under the transverse field Hamiltonian Htr of Eq. (8). We reiterate 
that a finite rate of cooling or heating can be achieved by Htr only when the initial state |ψ0

Spin〉 is 
of a macroscopic total spin Stot =O(N) (e.g., a ferromagnet) and the ratio w ≡ Sz

tot /(h̄Stot ) �= 0. 
Furthermore, as noted earlier, the inequality w �= ±1 must be satisfied in order for the initial 
state to differ qualitatively from a product state in which all spins are polarized along the z di-
rection. Indeed, as we explained in Section 5, for initial product states, no spreading is possible 
(i.e., σε = 0). In a related manner, if w = ±1 then the transverse field Hamiltonian Htr will 
act as a pure displacement operator on the spin coherent state initially polarized along the z−
axis and lead to no spreading of the energy density as evaluated with Eq. (6). It is only for the 
fully polarized states w = ±1 that no spreading occurs. The states |ψ0

Spin〉 that we considered 
are, obviously, somewhat special (see also Appendix I). In this Appendix, we describe a purely 
gedanken experiment for preparing states (with either quantum or classical probability densities) 
of high spin Stot =O(N) with |w| < 1. Towards this end, we first consider the Hamiltonian of 
Eq. (6) as that describing a typical ferromagnet F associated with the Hamiltonian HHeisenberg

of Eq. (7) on a lattice of N sites (having, e.g., all of the couplings in Eq. (7) non-negative) that is 
subjected to, at low temperatures, to a longitudinal external field (Bz). The latter external field is 
created by a large permanent magnet M of size NM =O(N). The global magnetic field Bz gen-
erated by M has small δBz =O(N−1/2) fluctuations in its magnitude. We consider the “F −M” 
hybrid to be, initially, in contact with a thermal bath. In equilibrium, at low temperatures, the 
spins in F become polarized with the resulting total magnetization being parallel to the applied 
external field Bz (viz., Sz

tot = Stot =O(N)). Next, we introduce a transverse field By (captured 
by Eq. (8) or Eq. (14)) that acts on F. Following the application of the transverse field, the total 
spin will precess about the y axis (see Figs. 4 and 5). Next, we turn off the transverse field and 
let the system evolve under Eq. (6). As earlier, we do so by considering the F −M hybrid which 
is now closed (i.e., with no connection to an external heat bath). Now that the total spin is no 
longer polarized along the z axis, the fluctuations in the values of Bz will lead to a spread of 
precession of the total spin about the z axis. After a time τcover ∼ 2π/δBz (assuming that this 
time is larger than the Lieb-Robinson time of Section 4, τcover > tLR), the probability distribution 
for the total spin covers uniformly a “line of latitude” of fixed Sz

tot (see Fig. 4). This resulting 
probability distribution for the total spin emulates that associated with |ψ0

Spin〉 of Section 6.1 or 
that affiliated with the semi-classical distribution of Section 6.1.2. Once a strong transverse field 
(||Htr || � ||Hspin||) is applied anew to this state, the results Eqs. (9), (13) will follow (the ring 
of Fig. 4 will rotate to that of Fig. 5). Similarly, Eq. (15) will yield the standard deviation of the 
energy density for the more general situation of Eq. (14) for an arbitrary size Htr augmenting 
Hspin. The existence of a minimal time (beyond that required for the field to couple to all sites in 
the system) is reminiscent of lower bounds that we found in other model systems (e.g., the time 
scale required to have a fluctuation in the effective external field set by q satisfy σq = O(1) in 
Section 7.4.2).

The simple example in this Appendix is a particular realization of the schematic of Fig. 3. All 
spins in the system couple uniformly to the external magnet (the “environment”) M. Fluctuations 
in the “collective coordinate” of the external drive, the global magnetization of M, lead to a 
distribution of precession frequencies of the total spin in the “system” F and, in the aftermath, 
to the ensuing long range fluctuations of Eq. (I.3) within it [31]. If the environment acts like a 
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uniform stationary field with no fluctuations on a product state form then correlations will not 
arise as was seen in the example of Section 5.

Appendix K. Finite rate shifts of the energy density ε

For Hamiltonians H(t), the single condition dε
dt
= 0 at all times may be satisfied by an infinite 

number of special Hamiltonians and/or density matrices ρ. A solution is afforded by Hamiltoni-
ans H(t) that during the cooling/heating time have a commutator with H that is a non-vanishing 
c-number. Under these circumstances, the evolution operator U has the form of a shift operator 
for the energy (shifting, during each interval of time [t, t + dt], the Heisenberg picture Hamilto-
nian so as to have HH(t) −→ (HH (t) − idt

h̄
[H(t), H ])) that brings to life the intuitive analogy 

with wave packets (Section 4). In order to obtain a general shift of the energy without widening 
the width of the energy density distribution, one may apply a shift operator (an evolution with 
a “momentum” conjugate to H ). Indeed, the above evolution leads to a shift of the energy den-
sity with no additional changes. More comprehensive solutions to the equation d

dt
σε = 0 at all 

times t (and thus solutions to σε(t) = 0 at all t ) given that σε = 0 at time t = 0 are afforded by 
combining multiple “shifts” of the above type with the product states of Section 5. That is, we 
may set the initial state to be a general product of decoupled density matrices afforded by Eq. (5)
with general values of 1 ≤M ≤N . If all of the probability density matrices are local (have their 
support on regions of size O(1)) then any Hamiltonian evolution is possible. Conversely, if the 
density matrices cannot be factorized beyond a region of size O(N) then only an innocuous shift 
with a constant [H(t), H ] will be possible. General hybrids where for (1) all non-local density 
matrices such innocuous shift appears while (2) the evolution of any local density matrices is ar-
bitrary further satisfy σε(t) = 0 at all t . Generally, as Eq. (48) illustrates, as the system is cooled 
or heated, an evolution from an initial sharp energy density will not only shift the initial delta 
function distribution of the energy density but will also lead to a (non-vanishing) widening σε.

Appendix L. Aspects of the viscosity fits for supercooled liquids

One may work backwards from the data to extract an effective σε needed to fit the exper-
imental viscosity data when using the first equality in Eq. (91). This leads to σT ≡ Tmelt−T

εmelt−ε
σε

(which according to Eq. (90) is equal to AT ) exhibits larger deviations from a linear in T near 
Tmelt than at temperatures far below Tmelt where a nearly perfect linear behavior appears. Such 
deviations from a nearly perfect linear increase of the effective σT at lower temperatures are 
seen in, e.g., Figure 3 in [126] and Figures 16, 17, and S1 in [127]. Indeed, above melting, non-
supercooled equilibrated high temperature fluids have (by virtue of being in equilibrium) a sharp 
energy density (σT = 0) implying a breakdown of any putative increase of σT with temperature 
and suggesting a possible departure from a perfect linear increase of σT also before Tmelt . In 
Fig. 7 of the current work, the logarithm of the scaled dimensionless viscosities of all liquids 
must collapse onto the single ordinate log(η(T )/η(Tmelt )) = 0 at T = Tmelt . The smaller devi-
ation from linear in T behavior of the effective extracted σT at lower temperatures is consistent 
with the better collapse at lower temperatures seen in Fig. 7. Indeed, at temperatures far below 
Tmelt , the only natural temperature scale is T itself (suggesting by dimensional analysis a pos-
sibly better linear in T behavior). Indeed, it is also possible that the crossover to an even more 
precise form similar to Eq. (91) includes temperatures that do not precisely coincide with Tmelt . 
In such a case, at temperatures much lower than Tmelt , such corrections will be irrelevant but 
close to Tmelt such deviations may become more important. Furthermore, in the derivation of 
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[23] for Eq. (91) an approximation was made that may become more accurate at the tempera-
tures become lower. Specifically, the long time average vl.t.a of the speed of a dropped spherical 
object into a viscous fluid, given (similar to Eq. (85)) by the integral 

∫∞
ε+melt

PT (ε′)veq(ε′)dε′ was 

approximated by the product (veq(ε
+
melt ) 

∫∞
ε+melt

PT (ε′)dε′). This approximation becomes more 

accurate if the distribution PT (ε′) drops sharply as the energy density is increased for ε′ > ε+melt ; 
in such instances, most of the weight in the first integral above occurs in a narrow region just 
above ε+melt so that the above replacement is justified. This is certainly the case for a Gaussian 
distribution PT (ε′) centered about energy densities far below εmelt ; in such cases, most of the 
weight of the integral 

∫∞
ε+melt

PT (ε′)dε′ arises from a very narrow interval just above εmelt . How-

ever, if the distribution PT (ε′) is centered about energy densities close to εmelt (especially if the 
standard deviation of PT (ε′) is not too small) then the above approximation will become more 
inaccurate. The above integrals were used in [23] (see also Appendix L) to compute the viscosity 
as given in Eq. (91) using Stokes’ law, viz., η = const./vl.t.a (with const. denoting a temperature 
independent constant).

Appendix M. Intuitive arguments for the appearance of long time Gaussian distributions

The prediction of Eq. (91) for the viscosity of quintessential non-equilibrium liquids (super-
cooled liquids and glasses) that yielded the 16 decade collapse of Fig. 7 was first derived [23] by 
computing long time averages and invoking a Gaussian distribution of finite width σε . In equi-
librium systems, a Gaussian distribution of the energy density P(ε′) is also found. In [23], we 
motivated the possible presence of Gaussian distributions by maximizing the Shannon entropy 
for a given σε . We now suggest that long time normal distributions (both in systems that exhibit 
long time equilibrium and those that do not such as glasses) might also be natural from other 
considerations. In general, the probability distribution P(ε′) may be calculated along lines simi-
lar to those that led to Eq. (13) in our toy example of Eq. (6) where the system was continuously 
driven by an external transverse field. However, unlike the models studied in Section 6, at long 
times, supercooled liquids and glasses are no longer driven by an external bath Htr that continu-
ously cools/heats them in a predetermined fashion. Instead, for supercooled liquids and glasses, 
at long times, the external heat bath (similar to the situation in equilibrium thermodynamics), 
becomes a source of stochastic noise (whose strength is set by its temperature T ). Thus, the ini-
tially driven (i.e., continuously cooled) supercooled fluids or glasses will, at these long times, be 
effectively exposed to random noise. Following the reasoning that led to Eq. (13), we examine 
general moments of the Heisenberg picture Hamiltonian

〈(�ε)p〉 ≡ 1

Np
〈(HH − 〈HH 〉)p〉 ≡ 〈(�HH

N
)p〉 (M.1)

when evaluated in the initial equilibrium state prior to cooling |ψ0〉 =∑n c0
n|φn〉. Here, {c0

n} are 
the amplitudes of the initial state |ψ0〉 in the eigenbasis of the system Hamiltonian H . Writing 
Eq. (M.1) longhand as a product of p factors of (�HH

N
), we have

〈(�ε)p〉 =
∑

n1n2···np

c(0)∗
n1

c(0)
np

( (�HH )n1n2

N

)

×
( (�HH )n2n3

)
· · ·
( (�HH )np−1np

)
, (M.2)
N N
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where (�HH )ab are the matrix elements of �HH in the eigenbasis of H . If, at long times, 
the matrix elements of the scaled Heisenberg picture Hamiltonian �HH

N
(now evolved with the 

stochastic influence of the environment at long times) attain random phases relative to each 
other then the only remaining contributions in Eq. (M.2) will be those in which all matrix el-

ements come in complex conjugate pairs of the type 
(

(�HH )ab

N

)(
(�HH )ba

N

)
. More precisely, in 

the calculation of the long time average of Eq. (M.2), only the temporal average of such complex 
conjugate pairs will not vanish. Thus, similar to the calculation that led to Eq. (13), only even 
moments p = 2g may be finite. Now, however, the number of non-vanishing contributions (the 
number of ways in which the elements of HH may be matched in complex conjugate pairs) will 

scale as 
(

(2g)!
2gg!

)
. This, in turn, prompts us to consider the possibility that, approximately,

〈(�ε)2g〉 ∼
( (2g)!

2gg!
)
σ 2g

ε . (M.3)

This is especially the case if the initial state |ψ0〉 corresponds to a single eigenstate of the Hamil-
tonian H , i.e., c(0)

n1 = δn1,n and c(0)
np

= δnp,n. The appearance of phases (c0
n → c0

ne
−iEnt/h̄) does 

not, of course, change the average energy 〈E〉 nor 〈(HH )2〉 at any time (implying the invariance 
of the variance σ 2

ε ) due to identical phase cancellations for all t . However, higher order moments 
of HH will, generally, vary with time. For these higher order moments, the (essentially random) 
phases will only cancel at large t (not identically at all t ) allowing for Eq. (M.3). If, for all g, 
these moments of �ε are equal to those evaluated with a Gaussian distribution (as follows from 
Wick’s theorem – the combinatorics of which essentially reappeared in the above), then the prob-
ability distribution P(ε′) for obtaining different energy densities in the final state must, indeed, 
be a Gaussian. If the expectation value 〈HH 〉 = E is held constant, then similar results may 
still apply (the density matrix may now mix states [23] each with the aforementioned Gaussian 
distribution in ε subject to such constraints of fixed 〈HH 〉). The above simple (non-rigorous) 
derivation rationalizes the appearance of Gaussian distributions in systems that equilibrate at 
long times (standard thermal systems) as well as the conjectured Gaussian form of P(ε′) for 
supercooled liquids (Section 13) that led to Eq. (91).

Long time steady states with constrained conserved quantities may enable memory loss of 
the initial conditions and the appearance of effective equations of state [23]. For thermal fluctu-
ations in standard (“canonical”) systems, the resulting Gaussian distribution in ε is defined by 
its average and a standard deviation linear in the temperature (σε ∝ T ) suggestive of Eq. (90). 
In a somewhat qualitatively similar manner, the stochastic effects of the environment are often 
simulated by Gaussian distributed forces whose standard deviation depends on the tempera-
ture T . The assumption of random phases in the above derivation of the Gaussian form does 
not, of course, imply small variances; the standard deviation of the energy density σε (possibly 
still linear in the temperature) may be finite. As emphasized in Sections 10 and 13, in ther-
mal systems the (typically linear in T ) standard deviation characterizing the distribution P(ε′)
is σε =

√
kBT 2Cv/N ∼ O(N−1/2). For the product states of Section 5, the energy is a sum 

of O(N) independent variables (associated with decoupled Hamiltonians acting on different 
states) for which, as discussed earlier, in accord with the central limit theorem (applicable to the 
independent decoupled contributions to the total energy), σε =O(N−1/2). While the above con-
siderations suggest a Gaussian distribution, the standard central limit theorem cannot be simply 
applied for states that are not of a product form and σε may be finite. More complex multi-scale 
probability distributions are possible (e.g., Appendix 6 of [23]). The above arguments for long 
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time Gaussian distributions may be replicated, by a change of variables, to general intensive 
quantities q other than the energy density. For a general q , various distributions P(q ′; W) may 
in some cases, lead to the same result in Eq. (85) for certain measured observables O.

Appendix N. High entanglement entropy states

As we underscored earlier, typical “thermal states” may exhibit an entanglement entropy that 
scales with the system volume [56], not its logarithm. The eigenstates |�+〉 examined in Ap-
pendix G were special in two different ways: (i) The eigenstates were constructed as an equal 
weight symmetric combination of all local product states and (ii) The systems that we examined 
were endowed with a local “quasi-particle” structure embodied by the independent commuting 
operators {Hi} (and associated local product eigenstates). In general, even when only property 
(i) is violated, larger entropies may arise. It is instructive to see why this is so and how the 
state |�+〉 is special inasmuch as the calculation of its entanglement entropy is concerned. In 
the space spanned by all product states |c〉 that given energies EB (instead of that performed in 
Appendix G in the basis of the symmetric basis of Eqs. (G.2)), the reduced density matrix ρB,+
becomes block diagonal. Repeating the calculation of Appendix G in this basis, we find that in 
each region of fixed energy EB , the block matrix is equal to

One =

⎛
⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 1 1 · · · 1
. . . · · · 1
. . . · · · 1
1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ (N.1)

multiplied by the factor e(SA(E−EB)−S(E))/kB . The dimensions of the matrix One are determined 
by the number NB(EB) = eSB(EB)/kB of degenerate states {|EB, j〉}NB(EB)

j=1 that have an energy 
EB on the spatial region B . We may perform a unitary transformation to the discrete Fourier basis 
(spanned by the states |EB, kEB

〉 ≡ (NB(EB))−1/2∑NB(EB)
j=1 eikEB

j |EB, j〉 with the wavenum-
ber k = 2πm/NB(EB) where m = 0, 1, 2, · · · , NB(EB) − 1). This transformation reduces the 
matrices of the form of Eq. (N.1) to a single non-vanishing entry. Indeed, up to a constant pref-
actor (NB(EB)), the matrix One is the outer product |EB, kEB

= 0〉〈EB, k′EB
= 0|. To make the 

contact with Appendix G lucid, we remark that in the notation of Eqs. (G.2), the single non-
vanishing Fourier mode |EB, kEB

= 0〉 = |EB〉+. In each block of fixed energies EB , all other 
discrete Fourier (kEB

�= 0) modes have a vanishing amplitude. Such a Fourier transformation 
yields the eigenvalue spectrum,

Spec{One} = {NB(EB),0,0,0, · · · ,0︸ ︷︷ ︸
NB(EB)−1

}. (N.2)

Thus, upon performing a unitary transformation to the Fourier basis, the block diagonal ma-
trix ρB,+ becomes sparser (each vanishing eigenvalue of the reduced density matrix ρB,+ does 
not contribute to the entropy) and only the completely symmetric states of Eq. (G.2) are of 
relevance. If the equal amplitude eigenstates |�+〉 are replaced by a general linear combina-
tion |�{ac}〉 =

∑
Ec=E ac|c〉 (with 

∑
c |ac|2 = 1) then the associated reduced density matrix 

ρB,{ac} = T rA|�{ac}〉〈�{ac}| will remain block diagonal. However, the block matrices that span 
each region of fixed energy EB will, generally, look very different from One. Intuition con-
cerning the larger entanglement entropies that may generally result can be gained by suggestive 
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arguments. Towards this end, we may consider what occurs if each diagonal block of ρB,+ of 
the type One is replaced by other block diagonal matrices with a wider distribution of the eigen-
values such that, e.g., each of the non-vanishing eigenvalues of ρB,+ for energies EB (close to 
the energy EB that maximizes the sum SA(EA = E −EB) + SB(EB)) is, effectively, split into 
K equal parts. In such a case, the entanglement entropy Sent,{ac} will be larger than Sent,+ by 
an additive contribution of lnK . If, for LB < LA, the logarithm (lnK) =O(SB(EB)) =O(LB)

then this additive contribution to the entanglement entropy may be linear in the volume LB of 
subsystem B .
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the system size. (Note that in this closed system example, the different eigenmodes cannot couple independently 
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. The microcanonical ensemble (for which σ
H̃

is bounded) will be rendered incompatible in states like 
these for which the standard deviation scales with the system size.

[83] For textbook discussions, see, e.g., K. Huang, Statistical Mechanics, Wiley, New York, 1987 or F. Schwabl, Statis-
tical Mechanics, Springer Series, Berlin Heidelberg New York, 2002. As noted in [82], one can certainly construct 
states with extensive uncertainties.

[84] The uncertainty relation of Eq. (56) was derived from Eq. (55) by expressing H̃ = ih̄ ∂
∂t

. The discrete time gradients 
of bounded quantities such as (H/N) and the standard deviation of the time discretized version of H̃ cannot 

http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib7A6E676C617373s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib7A6E676C617373s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib6D697831s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib6D697831s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4661676F747469s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4661676F747469s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1


86 Z. Nussinov / Nuclear Physics B 953 (2020) 114948
exceed O(1/�t). However, the expectation values of gauge non-invariant quantities can be made arbitrarily large 
or small. In non-relativistic systems studied in the current paper, the energy can be shifted by a constant without 
altering the expectation values of all measurable observables Q so long as these observables are not explicitly time 
dependent ( ∂Q

∂t
= 0). A shift of the energy by a constant �E is tantamount to a trivial “gauge transformation” – a 

multiplication of the wavefunction by a linear in time phase factor, |ψ〉 → e−i(�E)t/h̄|ψ〉. We emphasize that the 
measurable frequencies of these oscillations and their standard deviation are bounded in time discretized systems. 
The standard deviation of the energy density is a physical gauge invariant quantity (as are general relative energy 
differences) and all quantities evaluated with the density matrix ρ̃(t) of Eq. (60).

[85] Assumption (3) and Assumption (3′) do not hold for the factorizable states of Section 5 when M =O(N) with a 
Hamiltonian that acts disjointly on each of the M local regions. If a product state description exists for the closed 
isolated hybrid system I = S ∪ E (i.e., if the density matrix on I factorizes into density matrices on disjoint 
spatial regions) then we may focus on the primitive disjoint subhybrid system Imax = Smax ∪Emax of I (wherein 
Imax ⊂ I, Smax ⊆ S , and Emax ⊆ E). For systems with short range bounded strength interactions, the subsystem 
Smax spans a volume of size O(N) such that all sites in Smax only couple to those in Emax. For such systems, in 
order for the energy density of S to vary at an extensive rate, Smax (and Emax) can have a volume of size O(N)

(and, respectively, of a volume that is at least O(N)); if all decoupled subvolumes of I were local regions (i.e., of 
volume O(1)) uncorrelated from one another then the rate of change of the energy density may scale as 

√
N (i.e., 

not as O(N)) as a sum of N independent random errors (each of which is of order unity). By its definition, the 
density matrix on the maximal Imax cannot be further factorized into density matrices on disjoint spatial regions. 
It is for this density matrix on Imax that we can then apply Assumptions (1-3) (or Assumptions (1, 2, 3′)) and the 
uncertainty inequalities that follow leading to Eq. (65).

[86] Although Assumptions (1-3) of Section 10.1 are not always satisfied (see, e.g., [82]), rather general systems do 
obey them and further exhibit a finite rate of change of the energy density | dε

dt
|. To make contact with our earlier 

examples of Section 6, as a case in point, we may consider a simple example. We take H̃ to be Hspin of Eq. (6)
with a short range Hsymm and in which the magnetic field Bz is along the z direction over the entire volume 
I; in a similar spirit, we consider the Hamiltonian H in the region S to be given by Eq. (6) with an internal 
applied field By parallel to the y direction. In this example (apart from “surface terms” arising from the short 
range interactions in Hsymm), the interaction between the system S and its external environment E is dominated 
by an external field ( �B = (0, −By, Bz)) applied from sites exterior to S . This external field couples to all spins 
in S ; when added together with H , this field will reproduce the terms of H̃ appearing in S . We further set the 
density matrix to be ρ = |ψ〉〈ψ |, with |ψ〉 corresponding to an equal amplitude superposition of two eigenstates 
of maximal total spin Stot =O(N) that differ by one quantum of h̄ in their Stot

z eigenvalues. In the convention 
of Section 6, |ψ〉 = 1√

2
(|υα; Stot , Sz

tot 〉 + |υα; Stot , Sz
tot − h̄〉). It is readily verified that Assumptions (1-3) are 

satisfied. The state |ψ〉 displays a standard deviation σ
H̃

= h̄|Bz|
2 = O(1) (consistent with the finite standard 

deviation of the total energy characterizing the microcanonical ensemble on the full volume I). However, within 
the smaller subvolume S , at all times t , the standard deviation of the energy density (i.e., the standard deviation 
of H/N ) is σε = |By |h̄Stot

2N

√
2+ 2

Stot
− (w2 + (w − 1

Stot
)2) =O(1); the standard deviation of the total energy 

of S is generally extensive, σH = O(N). In the above, as in Section 6, w ≡ Sz
tot /(h̄Stot ). The rate of change 

of the energy density is | dε
dt
| = |ByBz|h̄Stot cos(Bzt)

2N

√
1+ 1

Stot
−w(w − 1

Stot
). Thus, in this example, generally 

| dε
dt
| =O(1) for finite By and Bz when Stot =O(N) and |w| < 1.

[87] Generally, sites exterior to I may give rise to an evolution as given by Eq. (86) applied to I (and S). In systems 
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