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Abstract

We consider general systems that start from and/or end in thermodynamic equilibrium while experienc-
ing a finite rate of change of their energy density or other intensive quantities g at intermediate times.
We demonstrate that at these times, during which ¢ varies at a finite rate, the associated covariance, the
connected pair correlator G;; = (q;q;) — (q;)(q ), between any two (far separated) sites i and j in a macro-
scopic system may, on average, become finite. Once the global mean ¢ no longer changes, the average of
G;j over all site pairs i and j may tend to zero. However, when the equilibration times are significant (e.g.,
as in a glass that is not in true thermodynamic equilibrium yet in which the energy density (or tempera-
ture) reaches a final steady state value), these long range correlations may persist also long after g ceases
to change. We explore viable experimental implications of our findings and speculate on their potential
realization in glasses (where a prediction of a theory based on the effect that we describe here suggests
a universal collapse of the viscosity that agrees with all published viscosity measurements over sixteen
decades) and non-Fermi liquids. We discuss effective equilibrium in driven systems and derive uncertainty
relation based inequalities that connect the heat capacity to the dynamics in general open thermal systems.
These rigorous thermalization inequalities suggest the shortest possible fluctuation times scales in open
equilibrated systems at a temperature T are typically “Planckian” (i.e., O(fi/(kpT))). We briefly comment
on parallels between quantum measurements, unitary quantum evolution, and thermalization and on how
Gaussian distributions may generically emerge.
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1. Introduction

In theories with local interactions, the connected correlations between two different sites i
and j often decay with their spatial separation |i — j|. Indeed, connected correlations decay
exponentially with distance in systems with finite correlation lengths. In massless (or critical)
theories, this exponential decay is typically replaced by an algebraic drop. The detailed under-
standing of these decays was achieved via numerous investigations that primarily focused on
venerable equilibrium and other systems with fixed control parameters, e.g., [1-11] including
long range correlations at high temperatures in disparate systems associated with generalized
screening lengths [12]. Pioneering studies examined work-free energy relations in irreversible
systems [13—16]. We wish to build on these notions and ask what occurs in a general (quantum
or classical) non-relativistic system, when an intensive parameter such as the average energy den-
sity (set, in all but the phase coexistence region where latent heat appears, by the temperature) or
external field is varied so that, during transient times, the system is forcefully kept out of thermal
equilibrium. We will illustrate that, under these circumstances, extensive fluctuations will gener-
ally appear. These large fluctuations will imply the existence of connected two point correlation
functions that will, on average, remain finite for all spatial separations. If the system returns to
equilibrium, these long range correlations may be lost. In focusing on driven non-equilibrium
systems, the quantum facets of our work complement investigations on nontrivial aspects of the
interplay between entanglement and thermalization that have witnessed a flurry of activity in re-
cent years in, e.g., studies of operator scrambling [17,18] and entanglement growth [19]. Earlier
celebrated analysis also suggested fundamental quantum mechanical “chaos” bounds in thermal
systems [20]. In the current work, we will largely focus on the more precise quantum descrip-
tions. Much of our analysis can be replicated for the classical limit of these systems.

Although our considerations are general, we may couch these for theories residing on
d-dimensional hypercubic lattices of N = L¢ sites; the average energy density ¢ = E/N with
E the total energy. In theories with bounded local interactions, we may express (in a variety of
ways) the Hamiltonian H as a sum of N’ = O(N) terms ({Hi}fvz/l) that are each of finite range
and bounded operator norm,

N/
H=Y"%. M

i=1

Our principal interest lies in the thermodynamic (N > 1) limit. Since our focus is on general
non-equilibrium systems, the (general time dependent) Schrodinger picture probability density
matrix p(¢) need not be equal to the any of the standard density matrices describing equilibrium
systems. Our analysis will be largely quantum; the Ehrenfest equations typically reproduce the
classical equations of motion. Aspects of classical dynamics may also be directly investigated
along lines similar to those that we will largely pursue for the quantum systems. With a Liouville
operator replacing the Schrodinger picture Hamiltonian, the quantum dynamics may generally
replicate the classical canonical equations of motion [21,22]. In the individual Sections of this
work, we note which results also hold for classical systems.

2. Sketch of main result

In a nutshell, in order to establish the existence of long range correlations we will show the
following:
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Fig. 1. A schematic of the probability distribution P (¢’) of the energy density (Eq. (2)) for a rapid cooling process. Left:
An initially equilibrated system at high temperatures where the energy density is sharply defined (in the thermodynamic
limit, the distribution is a delta-function). Center: The system is rapidly cooled to a final state such that its energy density
drops down at a finite rate as a function of time. During this cooling process, as it is being driven, P (e’) obtains a finite
standard deviation (even for macroscopic systems). The demonstration of such a generic widening of the distribution is a
principal objective of this paper. A finite standard deviation of P (e’) implies correlations that extend over length scales
comparable to the system size. Right: After the cooling ceases, (if and) when the formerly driven system re-equilibrates,
the distribution P(e’) becomes a delta-function once again (yet now at the lower temperature (smaller average energy
density €) to which the system was cooled). Similar broadening may occur for general intensive quantities q.

o If the expectation value of the Hamiltonian H of the original (undriven) system varies
in the time evolved (driven) state such that ‘fi—f = %Tr(p (t)%) # 0 then the energy
density fluctuations o, = or as computed with p(¢) will, generally, also be finite.

Similar results apply to all other intensive quantities.

As we will explain in Section 4 and thereafter, starting from an equilibrated system, there is
a minimal time #,;, associated with the onset of a finite fi—f and standard deviation o,. Once the
driving ceases and de/dt = 0, the time scale required for the system to re-equilibrate and return
to its true equilibrium state with o, = 0 may depend on system details (see, e.g., Section 13 for
an approach to glasses in which the latter return time scale may be very large).

While we will largely employ the more general quantum formalism, our central result holds
for both quantum and classical systems. The central function that we will focus on to further
quantify these fluctuations is the probability density of global energy density,

N / H
P(e) = Tr[,o(t) 5(e' — N)]' )

To avoid cumbersome notation, in Eq. (2) and what follows, the time dependence of P(¢’) is
not made explicit; the reader should bear in mind that, throughout the current work, P(¢’) is
time dependent. In equilibrium, the energy density (similar to all other intensive thermodynamic
variables) is sharply defined; regardless of the specific equilibrium ensemble employed, the dis-
tribution of Eq. (2) is a Dirac delta-function, P(e") = §(¢/ — €). This is schematically illustrated
in the left and righthand sides of Fig. 1. As we highlighted above, the chief goal of the current
article is to demonstrate that when a system that was initially in equilibrium is driven at inter-



4 Z. Nussinov / Nuclear Physics B 953 (2020) 114948

p ps(t)
Tre Trg
ps ps(t)

Fig. 2. The evolution of the density matrix 5 — 5(t) = U5l describing the system S and its environment € (when,
together, they form a larger closed hybrid system Z = S U £) is unitary. After tracing over the environment (Eq. (4)), the
resultant dynamical mapping pg (1) = ®;(pS(0)) describing the reduced density matrix of the system alone is, generally,
not a unitary transformation. In many situations of physical interest, the environment may, however, still be effectively
captured by a modification of a system Hamiltonian. As we will explain in Appendix B, causality constrains this effective
system Hamiltonian. In systems with local interactions, the rate of energy density of the system cannot be made to change
instantaneously from zero to a finite value. A minimal time (linear in the system size) must elapse before the environment
(and effective interactions generated by the presence of the environment) can couple to a finite fraction of the system.

mediate times (by, e.g., rapid cooling) such that its energy density varies at a finite rate as a
function of time, the distribution P (¢’) will need not remain a delta-function. A caricature of this
feature is provided in the central panel of Fig. 1 [23]. Because the final state displays a broad
distribution of energy densities, our result implies that the “work™ per site, in the context of its
quantum mechanical definitions as energy differences between final and initial states [13—16,24]
is not necessarily sharp (even in the N — oo limit). Since the variance of P (¢’) is a sum of pair
correlators G;j = (H;H ;) — (H;)(#;), this latter finite width of P (') of the system when it is
driven implies (as we will explain in depth) that the correlations G;; extend over macroscopic
length scales that are of the order of the system size. (Here, (-) denotes the average as computed
with p(¢).)

Whenever the formerly driven system re-equilibrates, P(e”) becomes a delta-function once
again (right panel of Fig. 1). We will investigate driving implemented by either one of two pos-
sibilities:

(1) Endowing the Hamiltonian with a non-adiabatic transient time dependence leading to a de-
viation from H only during a short time interval during which the system is driven (Sections 5, 6,
8,9, and 12). In this case, between an initial and a final time, the Schrodinger picture Hamiltonian
differs from H,ie., H(t; =0<1t' <ty) # H.

(2) Including a coupling to an external bath yet allow for no explicit time dependence in
the fundamental terms forming the Hamiltonian (this approach is invoked in Section 4 (in par-
ticular, in its second half describing Eq. (4), Section 10), and Appendix B, Appendix C, and
Appendix D)). By comparison to procedure (1) above, this approach is more faithful to the real
physical system in which the form of all fundamental interactions is time independent.

In procedure (1), the density matrix of the system evolves unitarily p — p(¢) =U(t) pU ().
In the more realistic approach (2), the evolution of the density matrix of the system pg(¢) (now a
reduced density matrix after a trace over the environment is performed) is described by a general
(non-unitary [26]) dynamic map ps(t) = ®;(p5(0)); a cartoon is provided in Fig. 2.

In procedure (2), we will examine the probability distribution P (¢) of Eq. (2) with the re-
placement of p(t) by ps(t). We will keep our study general and not resort to Linblad type
analysis that may, e.g., be derived from and implicitly assume weak coupling between the sys-
tem and its environment [25].
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The divide between these non-unitary and unitary evolutions (respectively, evolutions with
and without an external environment) is a feature that is not always of great pertinence. Indeed,
though many common non-dissipative physical systems are not truly closed, they are described to
an excellent approximation by the standard unitary evolution of the Schrodinger equation. Com-
plementing the standard distinction between unitary and non-unitary evolutions, there is another
issue that we will highlight in the current work. As we will elaborate in Appendix B, there are
physical constraints on the possible transient time variations of the effective Hamiltonian (that
are captured by analysis including the effect of the environment). Notably, in a theory with inter-
actions that are of finite range and strength, due to causality, the allowed changes in the transient
time Hamiltonian that captures the effects of the environment cannot be made to instantaneously
vary over arbitrarily large distances. That is, the environment cannot couple (nor decouple) to a
finite fraction of a macroscopic system instantaneously. Keeping in mind this constraint on the
form of the possible variations of the effective Hamiltonian of approach (1), we will often use
these two descriptions interchangeably. Our inequalities will bound, from below, (a) the variance
of the distribution P(¢’) and (b) the magnitude of the pair correlator G;; for sites i and j that
are separated by a distance that is of the order of the system size [27]. A similar broadening of
the distribution P(g’) (and ensuing lower bounds on the associated pair correlators) may arise
for general intensive quantities ¢ = (Q)/N (that include the energy density € only as a special
case).

3. Outline

A large fraction of the current work (Sections 5 - 12) establishing the central result of Section 2
and related effects will be somewhat mathematical in spirit. The sections towards the end of
this paper (Sections 13, 14, and 15) will touch on possible measurable quantities. In these later
sections, our discussion is more speculative.

We now briefly summarize the central contents of the various Sections. In Section 4, we ex-
plain why, in spite of its seemingly striking nature, our main finding of large variances (even in
systems with local interactions) and the macroscopic range correlations that they imply is quite
natural. By macroscopic range, we refer, in any macroscopic N 3> 1 site system, to correlations
that span the entire system size. As we explain in Section 4 (and in Appendix A, Appendix B,
Appendix C, and Appendix D), in various physical settings, finite rates of change of the energy
(and other) densities and concomitant long range correlations may appear only at sufficiently
long time after coupling the system to an external drive. Next, in Section 5, we discuss special
situations in which our results do not hold — those of product states with an evolution given by
separable Hamiltonians. This will prompt us to explore systems that do not have a probability
density that is of the simple local product form and to further discuss various aspects of entan-
glement. Notwithstanding their simplicity and appeal, product states do not generally describe
systems above their ground state energy density. Similarly, the finite temperature probability den-
sities of interacting classical systems do not have a product state form. In Section 6, we turn to
more generic situations such as those appearing in rather natural dual models on lattices in an
arbitrary number of spatial dimensions for which a class of finite energy density eigenstates can
be exactly constructed. These theories principally include (1) general rotationally symmetric spin
models (both quantum and classical) in an external magnetic field and (2) systems of itinerant
hard-core bosons with attractive interactions. We investigate the effects of “cooling/heating” and
“doping” protocols on these systems and illustrate that, regardless of the system size, after a finite
amount of time, notable energy or carrier density fluctuations will appear. In Section 7, we simi-
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larly solve simple models in which the external environment exhibits uniform global fluctuations.
Armed with these proof of principle demonstrations, we examine in Section 8 the anatomy of a
Dyson type expansion to see how generic these behaviors may be. Straightforward calculations
illustrate that although there exist fine tuned situations in which the variance of intensive quanti-
ties such as the energy density remain zero (e.g., the product states of Section 5) in rapidly driven
systems, such circumstances may be rare. General non-adiabatic evolutions that change the ex-
pectation values of various intensive quantities may, concomitantly, lead to substantial standard
deviations. In Section 10, we go one step further and establish that under a rather mild set of con-
straints, macroscopic range connected fluctuations are all but inevitable. (Yet another proof of
these long range correlations will be provided in Appendix C and Appendix D.) In Section 10.2,
we derive bounds on the fastest fluctuation rates in open thermal system by linking a general-
ized variant of the quantum standard time-energy uncertainty relations to the heat capacity. In
Section 10.3, we illustrate that local quantities in thermal translationally invariant systems are
similarly bounded. Our new thermalization bounds suggest that, under typical circumstances, up
to factors of order unity, the smallest fluctuation times for thermal systems cannot be shorter than
“Planckian” times O(%/(kpT)). We next illustrate (Section 11) how general expectation values
in these systems relate to equilibrium averages. Our effect has broad experimental implications:
common systems undergoing heating/cooling and/or other evolutions of their intensive quanti-
ties may exhibit long range correlations. In Section 12, we demonstrate that the non-equilibrium
system displays an effective equilibrium relative to a time evolved Hamiltonian. The remainder
of the paper, largely focusing on candidate experimental and in silico realizations of our effect, is
more speculative than the detailed exact solutions and derivations presented in its earlier Sections.
In Sections 13 and 14, we turn to two prototypical systems and ask whether our findings may
rationalize experimental (and numerical) results. In particular, in Section 13, we discuss glasses
and show a universal collapse of the viscosity data that was inspired by considerations similar to
those that we describe in the current work. In Section 14, we ask whether the broadened distri-
butions that we find may lead to “non-Fermi” liquid type behavior in various electronic systems.
In Section 15, we discuss adiabatic quantum processes and demonstrate how these may maintain
thermal equilibration. We further speculate on possible offshoots of this result that suggest cer-
tain similarities between quantum measurements and thermalization. We conclude in Section 16
with a synopsis of our results.

Various details (including an alternate proof of our central result, typical order of magnitude
estimates, and further analysis) have been relegated to the appendices. Appendix A provides
simple estimates of the minimal time scale fy, that must be exceeded in order to establish fi-
nite rate of variation of the energy density (and concomitant long range correlations amongst
the local contributions {#;} to the Hamiltonian). In Appendix B, we prove that in typical non-
relativistic systems with local interactions (where the Lieb-Robinson bounds apply), a finite rate
of change of the energy density (and, similarly, that of other intensive quantities) is only possi-
ble at sufficiently long times ¢ > #in. As we briefly noted above, Appendix C and Appendix D
will provide a complementary proof of our central result. In Appendix C, we demonstrate that a
finite a rate of variation of the energy density implies long range connected correlations between
the environment driving the system and the system itself. Appendix D then employs “classical”
probability arguments to illustrate that the latter long range correlation between different sites
in the system and its surrounding environment may lead to correlations between the sites in the
system bulk even if these sites are far separated. A lightning review of several earlier known
long range correlations is provided in Appendix E. In Appendix F, we show that using entan-
gled states (similar to those analyzed in Section 6) reproduces the finite temperature correlators
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of an Ising chain. In Appendix G, we demonstrate that the entanglement entropy of symmetric
entangled states is logarithmic in the system size; this latter calculation will further illustrate
that the entangled spin states studied in Section 6 display such macroscopic entanglement. These
examples underscore that, even in closed systems, eigenstates of an energy density larger than
that of the ground state can very naturally exhibit a macroscopic entanglement. In Appendix H,
Appendix I, and Appendix J, we discuss aspects related to the spin model example of Section 6
(and, by extension, to some of the models dual to this spin model that are further studied in
Section 6). Appendix H details what occurs when adding a general number of S = 1/2 spins.
We connect the result in the limit of a large number of spins to the Gaussian distribution re-
sulting from random walks (in the limit of large spins, the addition of spins naturally relates to
the addition of classical vectors). Appendix I and Appendix J underscore the correlations in the
initial state of this spin model system. Appendix I.1 explicitly introduces these correlations. In
Appendix 1.2, we explain why such correlations are inevitable in various cases. (The discussion
in these appendices augment a more general result concerning correlations in the initial state of
various driven systems that is described in the text following Egs. (E.1), (E.2) regarding gener-
ally more complex correlations.) The central aim of Section 6 was to provide the reader with a
simple solvable spin model and its duals where a finite o and associated long range correlations
between H,; appear hand in hand with a finite rate of change of the energy density. The exact
solvability of the spin model of Section 6 hints that the correlations that its initial simple corre-
lations exhibit are not necessarily generic. In Appendix J, we outline a gedanken experiment in
which the initial state of Section 6 may be realized. In Appendix K, we discuss several situations
in which the variance of the energy density remains zero even when the energy density itself
changes at a finite rate. Several aspects of the viscosity fit discussed in Section 13 are elaborated
on in Appendix L. Appendix M provides intuitive arguments for the appearance of long time
Gaussian distributions. Such long time Gaussian distributions were (a) invoked in our derivation
of the 16 decade viscosity collapse of supercooled liquids and glasses and also appear (b) in
standard textbook systems that have equilibrated at long times at general temperatures 7 where
(with C, denoting the heat capacity at constant volume), the width of the Gaussian distribution
is given by o, = /kgT2C,/N ~ O(N~'/?). Lastly, in Appendix N, we explain that, generally,
the entanglement entropy may be higher than of the states studied in Appendix G.

4. Intuitive arguments

To make our more abstract discussions clear, we first try to motivate why our central claim
might not, at all, be surprising and expand on the basic premise outlined in Section 2. Consider
a system that is, initially, in thermodynamic equilibrium with a sharp energy density €. For an
initial closed equilibrium system (described by the microcanonical ensemble), the standard devi-
ation of € scales as 1/N while in open systems connected to a heat bath, the standard deviation
of € is O(1/+/N). In either of these two cases, the standard deviation of € vanishes in the ther-
modynamic limit (similar results apply to any intensive thermodynamic variable), see, e.g., the
right-hand panel of Fig. 1. Now imagine cooling the system. As the system is cooled, its energy
density € drops. Various arguments hint that as € drifts (or is “translated””) downwards in value,
its associated standard deviation also increases (see the central panel of Fig. 1). This is analogous
to the increase in width of an initially localized “wave packet” with a non-trivial evolution (with
the energy density itself playing the role of the packet location). This argument applies to both
quantum and classical systems (with the classical probability distribution obeying a Liouville
or Fokker-Planck type equations instead of the von Neumann equation obeyed by the quantum
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probability density matrices). Thus, on a rudimentary level, it might be hardly surprising that
the energy density obtains a finite standard deviation when it continuously varies in time. A fi-
nite standard deviation of the energy density implies long range correlations of the local energy
terms. This is so since the variance of the energy density

0< 02 = 2 S (HiH;) — (i) (Hy) = < 3 Giy =G. )
iJ iJ
Thus, if o, is finite then the average G of G; ; over all separations | — j| will be non-vanishing.
More broadly, similar considerations apply to intensive quantities of the form g = % >, qi that
must have a sharp value in thermodynamic equilibrium. Thus, generally, if g broadens as some
parameters are varied, there must be finite connected correlations ({g;q;) — {¢i){g;)) even when
li — j’| is the order of the linear dimension of a macroscopic system. Identical conclusions to the
ones presented above may be drawn for systems that end in thermodynamic equilibrium (instead
of starting from equilibrium) while experiencing a finite rate of change of their energy density at
earlier times at which Eq. (3) will hold. This effect may appear for quantum as well as classical
systems. Generally, there are “classical” and “quantum” contributions [28] to the variance 63.
Empirically, in cases of experimental relevance, as in, e.g., cooling or heating a material, if
the rate of change of its temperature (or energy density) is finite then Eq. (3) will hold. Although
heat (and other) currents associated with various intensive quantities g traverse material surfaces,
experimentally, even for thermodynamically large systems, the rate of change of energy density
€, and other intensive quantities ¢ can be readily made finite, i.e., dg/dt = O(1). This common
experimentally relevant situation of finite heat or other rate of change dg /dt in macroscopic finite
size (N > 1) samples is the focus of our attention (see Appendix A). We nonetheless remark that
if the energy density (or other intensive parameter) exchange rate are dominated by contributions
in Eq. (3) with i and j close to the surface then dq/dt = O(1/L) and the average connected
correlator associated with ¢ for arbitrarily far separated sites i and j will be bounded by G_q >
O(N~2%/4) [29]. As we will further emphasize in Section 10 (as will formally follow therein,
e.g., from the Heisenberg picture Eq. (66) or its Ehrenfest theorem analog in the Schrodinger
picture), in order to achieve a finite rate of change of any intensive quantity (including that of the
energy density de/dt (or, equivalently, of the measured temperature dT'/dt)), the coupling (and
correlations) between the system and its surroundings must be extensive and involve minimal
time scales (see Appendix A, Appendix B, and Appendix C). In reality, due to the surface flow
of the heat current from the surrounding environment to the system during periods of heating
or cooling, the local energy density in the system is generally spatially non—uniform and may
depend on the distance to the surrounding external bath from which heat flows to the system.
The physical origin of the long range correlations of Eq. (3) in general systems (either quan-
tum or classical) is symbolically depicted in Fig. 3. As noted above, in order to achieve a finite
rate of cooling/heating in a system with bounded interaction strengths, a finite fraction of the
fields/sites in the system must couple to the surrounding heat bath (see also Appendix C for a
simple brief demonstration of macroscopic length correlations between the surrounding environ-
ment and the system bulk in systems with time dependent H). If such a single bath/external drive
couples to a finite fraction of all sites/fields in the system S so as to lower the average energy
density then even fields that are spatially far apart become correlated by virtue of their non-
local interaction with the common environment £ (their shared bath or external drive). The full
Hamiltonian H describing the system S and its environment € (including the coupling between
S and &) provides the full time evolution U(t) for the initial density matrix ponZ =S UE. We
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€

]

Fig. 3. An intuitive representation of the effect. In order to drive the system S and vary its energy density at a finite
rate, the environment (£) must couple to a finite fraction of the number of sites in S (e.g., sites i and j). The energy
fluctuations at both i and j are correlated with S. This, consequently, allows for non-trivial correlations between the
local energy fluctuations (those of H; and H ; of Eq. (1)) even when i and j are far apart. By virtue of both coupling to
the £, colloquially, any such pair of sites i and j are a graph distance of two (links) away (“two degrees of separation”
apart) even though they may be very far away spatially. The above graph constitutes a simple example of a “small worlds
network” where each node (site) is linked to all others by a small number of steps (in this case, two) [31]. As we will
explain in Appendix B, in non-relativistic systems with local interactions, causality in the form of the Lieb-Robinson
bounds [30] mandates that a minimal time must elapse before an external drive may couple to sites in the bulk of the
system S. Physical estimates on lower bounds on minimal times are further briefly discussed in Appendix A. The finite
rate of the energy density implies that, on average, the correlation between the driving Hamiltonian (coupling the system
to its environment) and each of the system degrees of freedom is of order unity and of uniform sign (Appendix C). In
Section 7, we will examine simple models with an associated uniform coupling of the system degrees of freedom to a
common environment.

may trace or “integrate” over the bath/drive degrees of freedom in £ (accounting for the driving
(as well as dissipation) due to coupling to the environment) to arrive at the Schrodinger picture
reduced density matrix ps depending only on the degrees of freedom in S. Thus, we consider

ps(t) = Tre U U (1)),

t
Z;{(t)zTexp(—% / H({)dt) 4)
0

t
= ’Texp(—;— /(Hg(l/) + He(t') + Hs_g(t))dt").
0

Here, 7 denotes time ordering, and three Hamiltonians (i) Hgs, (ii) Hg, and (iii) Hs_¢ describe,
respectively, (i) the Hamiltonian involving only the degrees of freedom in S, (ii) the Hamiltonian
involving degrees of freedom in £ alone, and (iii) the interaction between the system and its
environment. Hs_g may capture the coupling between different, far separated, fields (say at
sites i and j) in the system S to the same external drive/environment £. Indeed, associated with
the solvable systems of Section 6, initial long range correlations may be created by coupling
all sites in the system to the same environment (a magnet of macroscopic magnetization (see
Appendix J)).

The trace in the first line of Eq. (4) over the external drive degrees of freedom £ may generate
a correlation between these two fields at i and j irrespective of their spatial separation (see
Fig. 3). This correlation in ps(¢) between spatially distant fields may arise, rather universally,
if in Hg_g the latter two fields couple to the very same external drive or environment £. For a
uniform external drive, the coupling between all fields in S to those in £ is of typical comparable
strength. Thus, the resulting correlation in ps(#) may be non-local even at short times ¢ (so
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long as at that these (or earlier) times, a finite fraction of the fields in S couple to the external
drive/bath £). A semi-classical motivation for this effect is sketched in Appendix D. As alluded
to in procedure (ii) of Section 2, in real physical systems the form of the microscopic interactions
is time independent (corresponding to a time independent H in Eq. (4).

In relativistic theories, a strict minimal cutoff time #.,;, for a finite fraction of the fields in S
to become coupled to an external drive/bath & is set by fyin = €min/c. Here, £y is the minimal
linear distance between the “center of mass” of S and the nearest point in £ and c is the speed
of light for bona fide radiative coupling that changes the energy density € (or temperature) of the
system. Thus, since ¢, = O(L) for, e.g., radiative coupling to the environment, this minimal
time fmin = O(L/c) (as further discussed in Appendix A while paying attention to absorption
lengths). For generic spin models and other non-relativistic local theories, a similar bound on
min on the time required for the environment to couple with a typical uniform strength or be-
come entangled with a finite fraction of the sites in S is set by the effective (Lieb-Robinson
(LR)) speed v g [8-11,30] (tmin = fur = O(L /v R)). In all cases (relativistic or non-relativistic)
tmin = O(L /v) with v a finite relevant speed. Thus, no long-range correlations violating causality
(either relativistic or non-relativistic Lieb-Robinson type) appear. Rather, our results concerning
long-range correlations pertain to times ¢ > fyijp. At such times, the relativistic or Lieb-Robinson
light-cones (respectively given by (ct) or (v gt)) already span most of the system S. Indeed, as
seen from Eq. (4), long range correlations may be generated from the coupling of the environ-
ment £ to the bulk of S. At sufficiently short times, no such coupling exists and, in tandem, the
total energy of the system cannot change at a rate proportional to its volume (i.e., at these short
times, the rate of change of the energy density vanishes, de /dt = 0). A system that starts off with
only local G;; will require a time # > #y;, to develop long range correlations [8,9] consistent with
our new results concerning (i) a required minimal time scale for changing the energy density of
the system at a finite rate (Appendix B) and (ii) the appearance of nontrivial correlations once the
energy density varies (the central result of this paper). The above also applies to general intensive
quantities g different from the energy density. In Section 10, we will sharpen other considera-
tions related to Z/(f) to arrive at exact inequalities. A brief summary of earlier known long range
correlations is provided in Appendix E. In what follows, we first turn to product states where
no broad distributions of intensive quantities arise. For product states undergoing an evolution
with a locally separable Hamiltonian, the system degrees of freedom cannot couple to a common
environment in Eq. (4). In the sections thereafter, we will demonstrate that in general quantum
systems (not constrained to a product state structure), broadening may be quite common. Such
prevalent non-factorizable states generally allow for a coupling to a common environment.

5. Product states and bounded separable Hamiltonians

Prior to demonstrating that energy density broadening may naturally accompany a cooling
or heating of the system, we first discuss (within the framework of procedure (1) of Section 2
for which the detailed considerations of Eq. (4) (Fig. 3) do not apply) states associated with
individually decoupled local subsystems. Our focus is on systems with separable bounded local
interactions. For a density matrix p(#) that, at a time ¢, is a direct tensor product of local density
matrices {,ol(t)}l]‘i1 acting on disjoint spaces, with M = O(N),

P =p1O) () ® - & pm(2), @)

the standard deviation oy of the Hamiltonian of Eq. (1) at this time will, in accord with the central
limit theorem, generally be O(+v/N) even when the rate of change of the energy d E /dt may be
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extensive (i.e., o« N). This result applies to quantum and classical systems. In classical theories,
{p1} portray the probability distributions of independent decoupled local degrees of freedom. In
the quantum arena, Eq. (5) also describes states in which no entanglement exists.

As a case in point, we may consider the initial (spin S = 1/2) state h[f?“.ng) = |s?sg .- ~s2/)
to be a low energy eigenstate of an Ising model Hy = — ) iy Jij 7 S; that is acted on during

intermediate times by a transverse magnetic field Hamiltonian (H,, = — By (1) ) _; Sl.y ) that causes
a precession around the S axis and thus alters the energy as measured by H; (thereby heating or
cooling the system). Here, s; = £1 denote the scaled eigenvalues of the local spin operators S;.
The transverse field Hamiltonian H; may be explicitly written a sum of decoupled terms each of
which acts on a separate local subspace, H; = Zzﬁil H;, with M = N. The initial state |1p?s in g)
(and its associated density matrix) can be written as an outer product of M = N single spin states
(density matrices) defined on the same M decoupled separate spaces. Thus an evolution, from an
initial product state, with H;, will trivially lead to a final state which still is of the product state
form. All product states [) = |s1s2---sy) are eigenstates of Hy. A uniform rotation, between
an initial time (¢ = 0) and a final time 7, of all of the N spins around the y spin axis by the
transverse field Hamiltonian H;, by an angle of /2 will transform |w?”.n g) to a final state |x)
that is an equal modulus superposition of all Ising product states (all eigenstates of Hy), viz.,

_ Y60 8.1
) =2"N2 3 (=TT sy ),

S182SN

with 551.’0_/. the Kronecker delta. We next discuss what occurs when the exchange constants J;;
are of finite range but are otherwise arbitrary. The standard deviation of the energy (i.e., the
standard deviation of Hj) associated with this final rotated state (and any other state during the
evolution) of the initial Ising product state scales as O(+/N) while the energy change can be
extensive [32]. The state |x) corresponds to the infinite temperature limit of the classical Ising
model of Hj (its energy density is equal to that of the system at infinite temperature and sim-
ilarly all correlation functions vanish). A key point is that generic finite temperature states are
not of the type of Eq. (5). In fact, general thermal states (i.e., eigenstates of either local or non-
local Hamiltonians that are elevated by a finite energy density difference relative to the ground
state) typically display volume law entanglement entropy [33-36] in agreement with the Eigen-
state Thermalization Hypothesis [37—45] while ground states and many body localized states of
arbitrarily high energy [46-54] may exhibit area law entropies [55]. The entanglement entropy
of individual quantum “thermalized” states imitates the conventional thermodynamic entropy of
the macroscopic system that they describe [56]. In order to further elucidate these notions, in
Appendix F, we illustrate that correlations in finite energy density eigenstates of the Ising chain
mirror those in equilibrated Ising chains at positive temperatures. In the one dimensional Ising
model and other equilibrium systems at temperatures 7 > 0, the high degree of entanglement and
mixing between individual product states leads to contributions to the two point correlation func-
tions that alternate in sign and ultimately lead to the usual decay of correlations with distance.
Our central thesis is that an external driving Hamiltonian (such as that present in cooling/heating
of a system) may lead to large extensive fluctuations. While the appearance of such extensive
fluctuations may seem natural for non-local operators (such as (Heisenberg picture) time evolved
local Hamiltonian terms in various examples), these generic fluctuations may also appear for lo-
cal quantities (e.g., the local operators {#;} in Eq. (3)). In Section 6, we will study systems for
which the relevant {#;} are, indeed, local.
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When all of the eigenvectors of the density matrix are trivial local product states that do not
exhibit entanglement, the system described by p is a classical system (with different classical
realizations having disparate probabilities). In the next sections, we will demonstrate that large
fluctuations of any observable may naturally arise for all system sizes (including systems in
their thermodynamic limit). The calculations in the studied examples will be for single quantum
mechanical states. Any density matrix (also that capturing a system having a mixed state in any
region &) may be expressed as p = |y)(y| with a pure state |¢) that extends over a volume
7' > 8 [57,58].

As suggested in Section 4, our effect may be realized in both quantum and classical systems.
Our analysis will allow for entangled states. These states describe general situations in which
the evolution operator or the environment £ in Eq. (4) are non-factorizable and long-range cou-
pling/correlations between the sites in S may result.

6. Dual examples with non-fluctuating external drives

The existence of finite connected correlations |G;;| (Eq. (3)) for far separated sites |i — j| —
oo is at odds with common lore. Before turning to more formal general aspects, we illustrate how
this occurs in two classes of archetypical systems — (i) any globally SU (2) symmetric (arbitrary
graph or lattice) spin S = 1/2 model in an external magnetic field (discussed next in Section 6.1)
and (ii) dual hard core Bose systems on the same graphs or latices (Section 6.2). In these models,
the external fields/terms (magnetic fields in (i) or doping in (ii)) are constant. Although (i) and (ii)
constitute two well known (and very general) intractable many-body theories, as we will demon-
strate, the analysis of the fluctuations becomes identical to that associated with an integrable one
body problem. In the context of example (i), this effective single body problem will be associ-
ated with the total system spin S;,;. This simplification will enable us to arrive at exact results.
Similar to Section 5, the analysis below is within the framework of procedure (1) of Section 2
— that of an explicitly time varying Hamiltonian in a closed system with no environment. The
initial system states that we will consider are eigenstates of the system Hamiltonian. Thus, these
states match like the equilibrium states have a vanishing variance of the energy density o = 0.
When the Eigenstate Thermalization Hypothesis [37—45] holds, an eigenstate may represent an
equilibrium state. Repeating the calculations in this Section, one may verify that superposing
eigenstates of nearly equal energy will not alter our finding of a finite o, after the system couples
to an external field such that it energy density varies at a finite rate |de/dt|. These initial states
will, nonetheless, display nontrivial correlations that are elaborated on in significant depth in the
Appendices. In Section 7, we will analyze other models with initial states that do not exhibit any
nontrivial correlations.

6.1. Rotationally invariant spin models on all graphs (including lattices in general dimensions)

In what follows, we consider a general rotationally symmetric spin model (Hyymm) of local
spin-S moments augmented by a uniform magnetic field.

Hspin = dsymm — Bz Z S,Z (6)
i

Amongst many other possibilities, the general rotationally symmetric Hamiltonian Hjy,;,,, may
be a typical spin interaction of the type
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Hyeisenberg = — Z-]ijgi . §j - Z Wijkl(gi . §j)(§k S+, (7
ij ijkl
with arbitrary Heisenberg spin exchange couplings {/J;;} augmented by conventional higher order

rotationally symmetric terms. We reiterate that the model of Eq. (6) is defined on any graph
(including lattices in any number of spatial dimensions).

6.1.1. Quantum spin system

In the upcoming analysis, we will label the eigenstates of Hjp;, (and their energies) by {|¢q )}
(having, respectively, energies {E,}). We will employ the total spin operator 3’,,,, = Z,N= | S’i.
Since [:S:m,, Hypin] =0, all eigenstates of Hyp;, may be simultaneously diagonalized with St
(with eigenvalue m#) and S?oz (with eigenvalue S, (Stor + l)hz). Thus, any eigenstate of Eq. (6)
may be written as |¢) = |Ua; Sror, Sipe) With Uy denoting all additional quantum numbers label-
ing the eigenstates of Hyp;, in a given sector of S;,, and S%,; [59]. Although our results apply
for local spins of any size S, in order to elucidate certain aspects, we will often allude to spin
S = 1/2 systems. For any eigenstate having a general S7,, # +Syax = £N S, the associated den-
sity matrix is not of the local tensor product form of Eq. (5). Rather, any such eigenstate is a
particular superposition of spin S = 1/2 product states having a total fixed value of S},,. The
state of maximal total spin Sto; = Smax (Which can be trivially shown to be a non-degenerate
eigenstate for any value of S7,,, see Appendix H) corresponds to a symmetric equal amplitude
superposition of all such product states of a given S7,, (i.e., such a sum of all product states of the
type | 111243%4d5%6 - -- Tn—1{n) in which there are a total of (N /2 £ S7,,/h) single spin of
up/down polarizations along the z axis). We set an arbitrary eigenstate |¢,) to be the initial state
(at time ¢t = 0) of the system |1ﬁ2pm). The energy density (and the global energy itself) will have a
vanishing standard deviation in any such initially chosen eigenstate, o = 0. We next evolve this
initial (f = 0) state via a “cooling/heating process” wherein the energy (as measured by Hpiy)
is varied by replacing, during the period of time in which the system is cooled or heated, the
Hamiltonian of Eq. (6) by a time dependent transverse field Hamiltonian (see Section 6.1.3 for

restrictions imposed by causality)
Hy (') =—By(t) ) S;. (8)
i

It is important to note that, similar to all models studied in this Section, the value of the external
field is “sharp” at all times ¢ (i.e., By (¢) exhibits no statistical or other fluctuations). At t =0, the
system Hamiltonian varies instantaneously (a particular realization of procedure (1) of Section 2)
from Hgp;p to Hy,. Once the “cooling/heating process” terminates at a final time (¢ = t7), the
system Hamiltonian becomes, once again, the original Hamiltonian of Eq. (6). Once again, in
this case, the change of the Hamiltonian at the final time ¢ is instantaneous. In accord with the
discussion in Section 4, in Eq. (8), a finite fraction (in this case all) of the system degrees of
freedom (i.e., the spins) couple to the external drive/bath (the external transverse field). Such a
global coupling is necessary to achieve a finite de/dt. During the evolution with H;,, the spins
globally precess about the y axis. Thus, after a time ¢, the energy per lattice site is changed

(relative to its initial value €p) by an amount €(f7) — €9 = B; %(1 —cosd(ty)). Here, 0(¢) =
fé By(t') dt’. In the terminology of [13-16,24], this energy density shift represents the work
done per site. When B;S7,, > 0, the energy density of the system is generally increased relative
to its initial value while for negative B. S, the system is “cooled” relative to its initial energy
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density. For all S;,,, the energy density € () exhibits consecutive cooling and heating periods.
Hspin
N

Stoth| B, sin0(tr)| 1
tf) = 14+ — —w? 9
oelty) N2 * Stot v ©)

We briefly elaborate on the physically transparent derivation of Eq. (9). The applied transverse
field generates a global Larmor precession of the spins about the y-axis. While the first term
of Eq. (6) is manifestly invariant under rotations, the second term (that of (—B;}_; S7)) will
change. In the Heisenberg picture after the evolution with the transverse field, each local (B.S;)
transforms into B (S} cos(fotf B,(t") dt’) + S} sin(fotf B, (t') dt’)). Since in any eigenstate
of S7,; (including |1/f2pin)), the expectation value (S),S7,,) = (S%,)(55%,,) (= 0), the only non-
vanishing contributions to the variance of the Hamiltonian of Eq. (6) will originate from the
expectation value of the square of the second term of H;, and thus (up to a trivial prefactor of

(B2sin?( [y’ di'By(1')))) from

Employing the shorthand w = S}, /(AS;0:), the standard deviation of is

1 ] 1 -
05, = ((Si0)*) = 5 ((Sio)® + (S10)®) = 5 ((Si)? = (S})?)

1 2 Z \2

= 5 (P2 S10r Suar + 1) = (55,?)- (10)
Substituting w = S%,,/(1S;,;) (and rescaling by a factor of N2 to determine the variance of the
energy density) leads to the square of Eq. (9). A standard deviation comparable to that of Eq. (9)
appears not only for a single eigenstate of Hp;, but also for any other initial states having an
uncertainty in the total energy that is not extensive. When w = 1 (or —1) with the total spin being
maximal, S;o; = Smax, the initial state ngin) is a product state of all spins being maximally up
(or all spins pointing maximally down). Even in the state of maximal spin S;,; = Smax, so long
as |w| < 1, the standard deviation will generally be o = O(1). Furthermore, although they are
statistically preferable values for S;,;, when adding angular momenta in the large N limit (e.g.,
Appendix H), regardless of the form of Hyy,,,, (for instance, irrespective of the specific couplings

in Eq. (7)), in this N >> 1 limit, states of vanishingly small 5 ot will not allow for a finite change

of the energy density, Ae = B, % (1 —cos( f(;f ' By (") dt')), via the application of the transverse
field (as embodied by the Hamiltonian H;,). Indeed, the central point that we wish to emphasize
and is evident in our example of Eq. (6) is that, generally, when the energy density Ae does
change at a non-vanishing rate, a finite o > 0 is all but inevitable.

Away from the singular S, = £/ Snax limit, spatial long range entanglement develops. When
(1 — Jw|) = O(1), the scaled standard deviation of the energy density is, for general times,
(h—};?)aE = O(1) and, as we will elucidate in Appendix G.1, a macroscopic (logarithmic in system
size) entanglement entropy appears. A comparable standard deviation o, appears not only for the
eigenstate but also for states initial having an energy uncertainty of order O(1) (in units of B /)
(e.g-, c1|Stors Sipe) + €2|Stor, S5, — ) with ¢1 2 = O(1)). In the following, we briefly remark on
the simplest case of a constant (time independent) By. Here, the time required to first achieve
ﬁoe = O(1) starting from an eigenstate of Hp;, is O(1/By). This requisite waiting time is
independent of the system size (as it must be in this model where a finite o, is brought about by
the sum of local decoupled transverse magnetic field terms in H;,). The large standard deviation
implies (Eq. (3)) that long range connected correlations of S; emerge once the state is rotated

under the evolution with H;,. This large standard deviation of % ZlN: | S7 appears in the rotated
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state displaying (at all sites /) a uniform value of (S;). Even though there are no connected corre-
lations of the energy densities themselves in the initial state, the non-local entanglement enables
long range correlations of the local energy densities once the system is evolved with a transverse
field. The variance o, should not, of course, be confused with the spread of energy densities that
the system assumes as it evolves (e.g., for the S7,, = 0 state, o = O(1) while the energy density
€(t) does not vary with time). We nonetheless remark that the standard deviation o, vanishes at
the discrete times #; = kr /By, (with k an integer) — the very same times where the rate of change
of the energy density €(t) is zero.

We now turn to the higher order moments of the fluctuations of the r > 0 states evolved

with Eq. (8), ((Ae)P) = ((Hf;m — bpm))p) with p > 2. (The standard deviation of
Eq. (9) corresponds to p = 2.) Here, Hf;m ) = (Teh Jo i Hir@hat' )HypinT (€™ i Jo Her (Hdt! ) is the

Heisenberg picture Hamiltonian and the expectation value is taken in the initial state |1/f5pin).
If N> 1 and 1> |w| then SY|Sior, Sior) = A/Stor(Stor + 1) —m(M £ 1) S0, m £ 1) ~
Stothv/1 — w2|Sior, m £ 1) where S5, = mh. Trivially, for all m and m’, the matrix element
of 885, = Sf,; — (S5,,) between any two eigenstates, (Str, m|<SSfo,|S,o,, m’) = 0. Thus, the
only non-vanishing contributions to ((Ae€)”) stem from ((S;,,)”). This expectation value may
be finite only for even p. Thus, in what follows, we set p = 2¢g with g being a natural num-
ber. For S;,; = O(N), when expressing the expectation value of ((A€)28) longhand in terms
of spin raising and lowering operators, one notices that, in this large N limit, each individual
term containing an equal number of raising and lowering operators yields an identical contri-
bution (proportional to (S;o/hiv1 — w2)28) to the expectation value ((Ae)zg). Since there are
(Zgg) such contributions, for all g <« N in the thermodynamic (N — oo) limit, the expectation

2
value ((A€)%8) = (2;’)(%)5’ . We write the final (Schrodinger picture) state at time t =ty as
[¥spin) = D _q Cal@a). The probability distribution of the energy density of Eq. (2) reads

E
Pe) = leal’8(€ = <), (11)

o

In this example, the Heisenberg picture Hamiltonian HSHin (and the associated operators H;)
remains local for all times. In general systems, the time evolved Heisenberg picture Hamil-
tonian need not be spatially local. Eq. (11) describes the probability distribution associated
with the “wave packet” intuitively discussed in Section 4 (a “packet” that is now given by
the amplitudes {cy} in our eigenvalue decomposition of the final state |v/sp;,)). The averaged
moments of Ae’ = (' — €) are ((Ae)X8) = = [de’ P(e) (¢ — €)%8. Here, as throughout, € =
L N W spin Hspin|¥spin) = (Z” Jij + B; St cosf(ty))/N is the energy density in the final state
(1 e., the average of the energy den51ty €’ when weighted with P (¢’)). More generally, the expec-

tation value of a general function f( "”") in the state |y Spln> (or, equlvalently, of f( "’”‘) in the

above defined final Schrodinger picture state [{spin)) is given by (f (— ””" = [de' f(e)P(€).
The mean value of each Fourier component €/9A€) \when evaluated W1th P (e/ ) is

o 2 (g% (2g> 5 (=1 qoe ,
iq(Ae)y _ g _ 228 — Jo(qo V2 12
(/94) ;02“2@’ . ) ggo Gz () = a2, (12)

where Jy is a Bessel function. An inverse Fourier transformation then yields
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0(0cv/2 — |A€')

—_—
Here, as earlier, Ae’ denotes the difference between €’ and the value of the energy density ().
The Heaviside function 6(z) in Eq. (13) captures the fact that the spectrum of Hy,;, is bounded.
Similar results apply to boundary couplings [60]. The distribution of Eq. (13) may also be ratio-
nalized geometrically as we will shortly discuss (Eq. (16)). Comparing our result of Eq. (13) to
known cases, we remark that, where it is non-vanishing, the distribution of Eq. (13) is the recip-
rocal of the Wigner’s semi-circle law governing the eigenvalues of random Hamiltonians and the
associated distributions of Eq. (11), e.g., [61]. We stress that Eq. (13) is exact for the general spin
Hamiltonians of Egs. (6), (8) and does not hinge on assumed eigenvalue distributions of effective
random matrices.

Performing additional calculations, we find qualitatively similar results for analogous “cool-
ing/heating” protocols. For instance, one may consider, at intermediate times 0 <t < ¢, the
Hamiltonian governing the system to be that of a time independent H;, (i.e., one with a con-
stant By (f) = By) augmenting H;;, instead of replacing it. That is, we may consider, at times
0 <t <1y, the total Hamiltonian to be

P(e) (13)

H, = Hspin + Hy;. (14)

For such an augmented total Hamiltonian H,,, the total spin §t0t precesses around direction of the
applied external field (Byéy + B.é;) = Bé,. An elementary calculation analogous to that leading
to Eq. (9) then demonstrates that the corresponding standard deviation o¢ of the energy density
atr =1y,

B,B,|S;oh 1
s iy BBSwl [
NB\/E Stor

2(1 — )2
x\/sinz(Btf)—}— B ?;(Btf)) . (15)

We wish to stress that if S;,; = O(N) and |w| < 1 then, as in Eq. (9), the standard deviation
o = O(N) for general times ¢ . The distribution of the energy density following an evolution
with this augmented Hamiltonian will, once again, be given by Eq. (13) for macroscopic systems
of size N — oo. The reader can readily see how such spin model calculations may be extended
to many other exactly solvable cases. The central point that we wish to underscore is that a broad
distribution of the energy density, o # 0, is obtained in all of these exactly solvable spin models
in general dimensions.

6.1.2. Semi-classical spin systems and a geometrical interpretation

The results that we just derived are valid for any spin S realization of the Hamiltonians of
Egs. (6), (8). The standard deviations of Eqs. (9), (15) remain finite for all S (with a scale set by
the external magnetic field energies in these Hamiltonians). As long known [62,63], the § — co
limit yields classical renditions of respective quantum spin models. Thus, the finite standard
deviation of the energy density in individual eigenstates (Egs. (9), (15)) and in thermal states
formed by these eigenstates implies that the standard deviation of the energy density remains
finite in the classical limit (as was suggested by the general arguments associated with Eq. (4)).
More strongly, all that mattered in our earlier calculation of Section 6.1.1 were the S;,; and
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Fig. 4. (Color online.) Semi-classically, the total spin S}m may, with equal probability, correspond to any vector connect-
ing the origin of a sphere of radius /.Sy, to a point along a ring forming “a line of latitude”. In the figure above, this
“line of latitude” ring is defined by boundary of the shaded spherical cap near the “north pole”. All points along the line
of latitude share the same value of S,ZO,. Here, in the initial state, the polar angle 6 = 0.

Fig. 5. (Color online.) Applying the transverse field of Eq. (8) to the ring of Fig. 4 leads to precession about the S, ; axis.
For the above displayed ring, 6(¢) = /2. During the precession, the semi-classical total spin vectors Sl(,, on the ring
acquire a range of possible S7,, values leading to the standard deviation o¢ of the energy density of Eq. (6). The simple
(semi-classical) calculation of Eq. (16) for the distribution of S7,, values for such a uniform ring leads anew to Eq. (13).

Sior values. If S;o = O(N) then even if the size of the spin S at each lattice site is small, the
total system spin Sior is a macroscopic classical quantity and our results may be reproduced
by a computation for semi-classical spins. Indeed, an explicit calculation for classical spin states
trivially illustrates that a finite standard deviation o, > 0 may arise in semi-classical systems [64].
To make this explicit, we now perform such a computation. This rather elementary calculation
will link the geometry of the manifold of possible S5, values to the full distribution P (€’) of the
possible energy densities. Towards this end, we parameterize the semi-classical total spin by a
vector Sm, on a sphere of fixed radius S;,; (the application of the transverse field Hamiltonian of
Eq. (8) does not alter (Smt) ). Herein, at any time 7, the vector S,m may correspond, with equal
probability, to any vector on a circular ring, see, e.g., Figs. 4 and 5.

In Eq. (13), A€’ denotes the difference between ¢’ and the average energy density €(r). At
time 7, along a ring (see, e.g., Fig. 5), that is further parameterized by an azimuthal angle ¢,
the possible values of S, are given by 7, (¢, 1) = (S5, (1)) + Siorv/1 — w2 sinO(¢) cos ¢’. Here,
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0(t) becomes the polar angle of the center of mass of the ring (i.e., (¢) is the angle between
(1) a vector connecting the origin to the center of the center of the ring (see, e.g., Figs. 4 and
5) and (ii) a vector along the positive S7,, axis). The expectation value (S},,) is that of S7,, in
the time evolved state (classically, it is the average of S5, around the full ring (0 < ¢’ < 27)
at time 1), i.e., S5, (t) = Sf,; cos0(#). The possible values of S;(¢’) appear symmetrically twice
in the interval 0 < ¢’ < 2. We may thus consider only 0 < ¢’ < 7. By the normalization of

the probability distribution for ¢’ and the corresponding probability distribution for the energy
density, P(¢")de' = ‘%". Thus,

N (16)
JT‘BZ BS%)(;(/(/;/)

11dy’
P)=—|-"-
©) wlde

Combining Eq. (9) (which may derived from a geometric analysis of Fig. 5 as we next ex-
plain) with Eq. (16) then provides Eq. (13). We may indeed readily calculate the spread o:
of S7, values and rationalize the finite standard deviation o of Eq. (9) from simple geo-
metric considerations, when 1/S;,; is set to zero (the semi-classical limit). From geometry,
os: = %l sinf(t)| = Rg|sin6(¢)| where Rying = Sioriv'1 — w?. Here, Ry is the radius of gy-

ration of the ring of Fig. 5 (corresponding to 6 = 7 /2) about an axis parallel to the S5, axis that

passes through the center of mass of this ring. The finite radius of gyration R, # 0 implies a
spread of energy densities o = w # 0 at general times. This semi-classical result for
o coincides with Eq. (9). We will further comment on the |w| =1 states below and at the end
of Section 6.1.3. We now first briefly comment on another trivial limiting case. When w = 0, the
initial state will correspond, in the description of Fig. 4, to the equator. Applying a transverse
field will then lead to a rotation of the equator around the S;,, axis; this so generated ring (an-
other great circle on the sphere) will, generally, display a non-vanishing spread of S5, /N values
(leading to o¢ # 0). However, when the initial state has w = 0, such a rotation will not yield any
change in the energy density, de/dt = 0. This trivial limiting case illustrates that, as a matter of
principle, a finite rate of variation of the energy density is not mandatory in order to a finite have
oc. As we demonstrate in the current work, the converse statement holds (a finite de /dt implies
a finite o).

Although the Hamiltonian of Eq. (6) is extremely general as are its eigenstates of high to-
tal spin Sy, = O(N) (e.g., states of large total spin in typical low temperature ferromagnets),
characteristic equilibrium states of this Hamiltonian will correspond to a special subset having
|w| =1 (that is, the total spin will be polarized along the externally applied field direction). As
we discussed earlier, such equilibrium states will thus emulate product states (in which all indi-
vidual spins assume the same polarization). Thus, as was indeed evident in Egs. (9), (15), when
w = %1, the broadening o, = 0. In a related vein, the fully polarized state — a coherent spin state
on a sphere of radius S;,; — is rotated “en block” without any other change of the wavefunction
under the action of a transverse field. To see the effect for our exactly solvable system, we have
to go away from the limit |w| = 1. Away from this limit, the state of the system evolves non-
trivially. In the parlance of Section 4, when evolving under the transverse field Hamiltonian of
Eq. (8), the |w| # 1 spin state is not merely “translated” (rotated on a sphere of radius S;,,) with
no other accompanying changes. Appendix J discusses a gedanken experiment in which starting
from an equilibrium state, one may apply transverse fields and let the closed system equilibrate
anew so as to generate a state |1/f2pin) of total spin S;,; = O(N) with w # £1.
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6.1.3. Causality, correlations, and a finite i—f

We now return to the qualitative discussion of Section 4 concerning the causal generation
of long range correlations in real physical systems. Eq. (4) suggests that long-range correla-
tions emerge from the coupling between an external environment (which we have not explicitly
included in the model system in this Section) to the system bulk (e.g., the global coupling of
Eq. (8)). As we will demonstrate in Appendix B, compounding the lack of causal correlations
in relativistic systems, when the environment is included also in non-relativistic systems obey-
ing Lieb-Robinson type bounds [8—11,30], a finite rate of variation of the energy density cannot
appear at short times ¢ < fmin = O(L /v R). Thus, generally, effective global couplings such as
those of Eq. (8) cannot appear instantaneously. We wish to reiterate this particular point. Without
the bulk coupling of Eq. (8) (and ensuing correlations), the system cannot exhibit a finite rate
of change of its energy density (i.e., without such a global coupling, the latter rate of change
Z—j =0). It is only after long enough times (such as those implied by the Lieb-Robinson bounds
of Appendix B), at t > iy, that a global coupling such as that of Eq. (8) may appear in effec-
tive descriptions not explicitly involving an external environment. Only at these sufficiently long
times, our obtained results for the correlations hold.

We note anew that in an equilibrium state of the Hamiltonian of Eq. (6), the total spin will
be polarized along the applied field direction and w = 1. In such a case, for the realization
of various gedanken experiments (e.g., Appendix J), long-range correlations (Appendix I) may
indeed appear in the system after a time that scales with the system size.

As noted after Eq. (9), the calculation of the energy density and its standard deviation for a
|w| =1 system evolving under Eq. (8) is identically the same as that for a product state of S;,;/.S
spins. In the representation of Section 6.1.2, such an initial ferromagnetic state will correspond
to a single point on the sphere (the north or south pole) instead of the ring in Fig. 4; a rotation by
a transverse field as depicted in Fig. 5 will then lead to this point rotated elsewhere — there will
not any spread of the S7,, values and o, = 0. That such a ferromagnetic state (akin to the product
states discussed earlier) exhibits no spread of the energy density is consistent with Section 5.
Further, in tandem with our main thesis concerning a typical general trend between the energy
changes and long range correlations, for w # £0, 1 states, at those times at which the energy
density changes at a vanishing rate de /dt = 0 (corresponding to 6(¢) = 0(mod )), the standard
deviations of the energy density (and the associated long-range correlations that it implies) also
vanishes, o = 0.

6.2. Itinerant hard core Bose systems

Our spin model of Section 6.1 can be defined for local spins of any size S. The function P (¢’)
of Eq. (13) characterizing our investigated states is not a very typical probability distribution.
However, the non-local entangled character of states having a finite energy density relative to
the ground state is pervasive for thermal states. This model can be recast in different ways.
In what follows we focus on the spin S = 1/2 realization of Eq. (6). The Matsubara-Matsuda
transformation [65,66] maps the algebra of spin § = 1/2 operators onto that of hard core bosons.
Such hard core bosons may, e.g., emulate Cooper pairs in superconductors in the limit of short
coherence length. Specifically, the hard core bosonic number operator at site i is n; = b;r b; =
0, 1 with b; and bg_ the annihilation and creation operators of hard core bosons ((bl.T)2 = bi2 =
0, [b;, b;] = (1 — 2n;)é;j). Following this transformation, the spin Hamiltonian of Eq. (6) is
converted into its hard core bosonic dual,
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Hpose =— Y Jij((b]bj +h.c)+miny) =Y (B = > Jij)n:. (17)
ij i j

The above Hamiltonian describes hard core bosons hopping (with amplitudes J;;) on the same

d-dimensional lattice, featuring attractive interactions and a chemical potential set by (B, —

> j Jij). Here, the transverse field cooling/heating Hamiltonian H;, transforms into

iBy (1)
Hpose—doping = =—5— D (b = bi). (18)
i

a Hamiltonian that alters the number of the bosons (thereby “doping” the system). In the con-
text of Cooper pairs of short coherence length emulating hard core bosons, Hpgose—doping may
describe the effect of Cooper pairs injected/removed from the system from a surrounding en-
vironment comprised of a bulk superconductor. The hard core Bose states are symmetric under
all pairwise permutations P;; of the bosons at occupied sites. The bosonic dual of, e.g., the
specific spin product state | $112)3%445%6 - - Tn—1Jn) corresponds to the symmetrized state
of a fixed total number of hard core bosons that are placed on the graph (or lattice) sites
(1,2,4,6,---,(N — 1)). Thus, the bosonic dual of an initial spin state ngm) with a total

spin S;or = Smax = N/2 is an initial hard core Bose state |1ﬁg ose) that is an equal amplitude
superstition of all real space product states with the same total number of hard core bosons
(vaz (hi=m+ %) distributed over the N lattice sites (an eigenstate of Hp,s. that adheres to
the fully symmetric bosonic statistics). Evolving (during times 0 < ¢ < ) this initial state with
Hyoping» the standard deviation of Eq. (9) and the distribution of Eq. (13) are left unchanged, apart

from a trivial rescaling by # (e.g., 0 5%%¢ = 1B, sin6y)|

! 57 J1+ % —wfor S = N/2). Similar to
our discussion of the dual spin system of the previous subsection, the finite standard deviation
in this energy density (and of the associated particle density n = % >_; ni) does not imply that
the “doping” is, explicitly, spatially inhomogeneous (indeed, at all times, the expectation value
of the particle number (n;) stays uniform for all lattice sites 7).

We conclude this subsection with three weaker statements regarding viable extensions of the
results that we derived for hard core bosonic systems on general graphs (these graphs include
lattices in general dimensions).

(a) We may relate the above lattice theory to a continuum scalar field theory in the usual way. Do-
ing so, it is readily seen that for a continuous scaled ¢ (x) field replacing (b; + bj'), the canonical
Hamiltonian density

Hlp] = %(m%z + (Vo)D) +ugp* (19)

qualitatively constitutes a lowest order continuum rendition of the hard core Bose lattice model
of Eq. (17) for a system with uniform nearest neighbor couplings J;;. A large value of the con-
stant u in generic bosonic ¢* field theories of the type of Eq. (19) yields a large local repulsion
between the bosonic fields endowing them with hard core characteristics. The continuum analog
of Hpose—doping 1s the volume integral of the momentum conjugate to ¢(x). Thus, during vari-
ous continuous changes of the Hamiltonian, such generic scalar field theories (and myriad lattice
system described by them) may exhibit the broad o, that we derived for some of their lattice
counterpart in this subsection.

(b) The models of Egs. (6), (17) were defined on arbitrary graphs (including lattices in general
spatial dimensions). Identical results apply for spineless fermions on one dimensional chains



Z. Nussinov / Nuclear Physics B 953 (2020) 114948 21

with non-negative nearest neighbor hopping amplitudes/coupling constants {J;;} and analogs of
HBose—doping capturing a non-local coupling of the system to the external bath. These spinless
Fermi systems may be engineered by applying the Jordan-Wigner transformation [67] to Eq. (6).
(c) Phonons in anharmonic solids. One may apply the Holstein-Primakoff transformation,

aji‘a‘ aTa' -
SH=hv2 1—5—3’@, ST =hv2a}\[ 1~ ésl, Si=h(S —aja)), (20)

to express the local spin operators in Eq. (6) in terms of bosonic creation/annihilation operators
(al:r and a;). The resulting bosonic Hamiltonian may then be expanded in a series in 1/S (as in
conventional 1/S expansions) [70]. When Fourier transformed, the Hamiltonian describes cou-
pled bosonic modes (involving the bosonic creation/annihilation operators aZ and ay, at different
Fourier modes k) such as those of phonons in anharmonic solids. Here, the heating/cooling pro-
tocol of Section 6.1 corresponds to the creation/annihilation of phonons and leads to identical
results for o.. (Contrary to the anharmonic system, in harmonic theories, the eigenstates have
a product state form and some of intuition underlying the product states of Section 5 comes to
life. For completeness, we remark that for harmonic systems, the individual interactions terms in
Eq. (1) are unbounded unlike those discussed in Section 5.) A Schwinger boson representation
may similarly express the spin system of Egs. (6), (8) in terms of bosonic modes.

7. Long range correlations induced by a common environment — simple solvable limits

We now turn to systems akin to those of type (2) of Section 2 illustrating the possible effect
of an environment common to all the local degrees of freedom. As noted in Section 4 (and
schematically depicted in Fig. 3), in order to achieve a finite rate of change of the system energy
density, there must be a coupling between the bulk of the system and its environment. The models
that we study in this Section will explicitly include such a coupling. We will consider situations
in which the driving environment will not initially be in an eigenstate of the full Hamiltonian, and
thus exhibit fluctuations. Hence, some of the tractable models that we introduce in this Section
may also be viewed as belonging to category (1) of Section 2 in which (unlike the models of
Section 6), the driving parameters in the Hamiltonian (including any external fields) are replaced
by operators that display a finite variance.

In the general evolution operator of Eq. (4), the coupling between the system and the en-
vironment Hs_g may include both local stochastic effects of the environment coupling to the
system (e.g., photon/phonon/. .. exchange coupling local degrees of freedom in the system S to
local ones in the environment &) as well coupling between collective degrees of freedom (if any)
characterizing an external drive and the system bulk. For instance, in Joule’s heating experiment
in which a large dropping mass heats a fluid by causing a paddle to stir, the height of the macro-
scopic dropping mass serves as a collective coordinate g associated with the environment that,
at sufficiently long times ¢ > fn;, may couple to a finite fraction of the fluid (the system) that it
heats a non-vanishing rate. Similarly, an external piston pressing on a gaseous system may cou-
ple and lead to bulk effects. In other instances, g may correspond to another collective degree of
freedom (or “switch”) that leads to a bulk coupling of the system to its environment. In these and
other cases, the coupling between the environment and the individual system degrees of freedom
is, on average, of uniform sign (see, e.g., Appendix C for further discussion and simple proof
concerning uniform sign correlations mandated by a finite rate of change of the energy den-
sity). Augmenting changes in such collective coordinates g, there are many other local stochastic
degrees of freedom of the environment that couple to those of the system.
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In this Section, we will compute correlation functions associated with exceptionally simple
“central spin model” (CSM) type Hamiltonians capturing the caricature of Fig. 3; the “cen-
tral spin” represents the common driving environment that couples to the bulk system spins or
masses. By comparison to Section 5, the CSM type Hamiltonians studied in this Section are not
separable. In Sections 7.1, 7.2, and 7.3, we consider the environment to be a single spin. This
“central spin” may generate an effective finite local field at the N different sites of the system.
Acting together, these local fields may generate a finite rate change of the energy density. The
fluctuations of the effective local fields in these exactly soluble CSMs models portraying driven
non-equilibrium systems will be of finite (O(1)) size. The fluctuations of the external drive need
not tend to zero, regardless of the size of the system that this drive couples to. In Sections 7.4 (in
particular, Section 7.4.2) and 7.5, we solve systems in which the environment £ is of macroscopic
(O(N) or larger) scale. These models are not introduced to portray real systems but rather merely
serve as solvable examples. The special solvable systems that we consider might be realized in,
e.g., trapped ion systems in which spin-spin interactions are mediated by coupling to a common
laser or other source [68,69] in which we will now allow for fluctuations. In Section 7.6, we
comment on other possible realizations in which external (electric or other) fields with uniform
global fluctuations (e.g., the field between capacitor plates with a fluctuating voltage) appear. In
all of the examples studied in this Section, we will illustrate the generic existence of connected
local range correlations but assuming the converse — taking the initial state to be a simple prod-
uct state with no such correlations — and illustrate that the system evolves to a state with long
range covariance. Thus, the initial product states of this Section will, unlike those in Section 6,
be devoid of any non-trivial connected correlations. Similar to the models of Section 6, we con-
sider these initial states are eigenstates of the system Hamiltonian (trivially satisfying o = 0 as
expected in equilibrium systems in the absence of an external environment driving the system).

7.1. Non-interacting Ising system
We will first examine a very simple bare CSM model. In the notation of Eq. (4), we consider

the spin S = 1/2 time independent Hamiltonians describing the system S (of N spins) and the
coupling between the system an its environment £ to be given by

N
HSM = —B. )" 57,
i=1
N
HSSY =—Jg Y S7Ps. 21

i=1

We will allow the environment only Hamiltonian HSC SM to be any function ( fg) of Pg. Here,
Pe is a projection operator on the S = 1/2 “central spin” (the environment &) that couples to

each of the system spins in Fig. 3. Specifically, we choose Pg = (% — ST;:). Unlike the models of

Section 6 and Eq. (8) in particular, the effective transverse magnetic field (JPg) is not a constant
c-number but rather an operator that exhibits a finite standard deviation in general states of the

system-environment hybrid. In the limit of dominant H g fg” , the temporal evolution with the

full Hamiltonian of Eq. (4), HESM = (H g SM 4 H 5C SM L H gfg[ ) may be replaced by one with

Hgfg’ . In the Heisenberg picture, as employed in Section 6.1, the system spins will perform
standard precessions yet now with a “transverse field” that is not a constant c-number but rather
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a bona fide (collective) degree of freedom ¢ (that of the environment &), i.e., the Heisenberg
picture operator SfH(t) et/ Sie —iHt/h _ = (87 cos(PgJgt) — Sy sin(Pg Jet)). To motivate
the general emergence of long range connected correlations as the system evolves, we consider
the initial (¢ = 0) state to enjoy no such correlations. Specifically, we consider the initial state
to be given, in the local S* product basis, by a simple spin S = 1/2 ferromagnetic product state
(an eigenstate (ground state) of H g SM of the system multiplied by the //2 eigenstate of the
environment S = 1/2 spin Sg coupling to all system spins,

Wesu)=11112tn) ®| —>¢) (22)
Evolving under HSS™ | the rate of change of the system energy density
d 1 hB;Jg
HCSMH — Z . 2
T (1)) = ——sin(Jen), 23)

with H g SMH (1) denoting the Heisenberg picture system Hamiltonian. Concurrently, the con-
nected correlator

h2
(SFSTHy — (s (531 = ( . (24)

For general times ¢ % 0(mod 7/ (2]5)), this ﬁmte covariance is (by the very nature of this prob-
lem) the same for all pairs i # j and is thus trivially independent of the spatial distance |i — j|
between sites i and j. This independence is not surprising since, in the absence of interactions
in Hg, the effective coupling between any two system spins at sites i and j to each other via
the “central” spin that is afforded by the environment £ is independent of the separation between
the two sites (the graph of Fig. 3 in the absence of intra-system couplings). The non-vanishing
covariance between the spins in this example can be traced to the fluctuations of the environment
(the variance of Pg in the state |1ﬂ8 sy ). In [71], we briefly discuss the standard deviations of
the energy density in this system and related aspects.

7.2. Spin chain

We next consider a particular spin S = 1/2 chain (IC) (with periodic boundary conditions)
with nearest neighbor (n.n.) interactions coupled to a central (S = 1/2) spin &,

IC CSM — —Jun. ZSZ i+1 = _Jn.n.zbia
i

Similar to the example of the previous subsection, H/€-¢5™ may be a general function of

Ps where Pg = (— - —) Once again, for simplicity, we consider the limit, where the sys-
tem evolves under the Hamiltonian H/¢-CSM = H §€5C SM and the initial state of the envi-

ronment to be | —¢) (the eigenstate of Sx corresponding to an eigenvalue of (%/2)). Long-
hand, the time evolved system “bonds” in the system Hamiltonian Hg [C.CSM pecome bH ) =

(SZS T cos(JetPg) — S“VS 11 8in(Jgt'Pg)). The sinusoidal time variation of bH(t) implies that
IC CSM
)

for general states, the system energy density Gk —

i may similarly vary at a finite rate. We
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consider (in order to demonstrate, by contradiction, the existence of connected long range corre-
lations at finite ) the initial system state to exhibit no long range covariance between the bilinears
(8¢ Sf’ ’,1) and (S;.‘,Sj.’;l) for all spin polarizations (each of the spin components a, b, a’, b’ may be
x,y, or z) for far separated sites |i — j| = O(N) (e.g., simple product form states of the form of
Eq. (22) and other generic states with short range correlations). In other words, in the initial state,
(s¢ S{’H)(Sj’sj?;]) = (¢ S{’+1><S]“.’Sj?’+l> for |i — j| = O(N). Inserting b (1), the covariance of
Eq. (3)), for such distant sites

. g4 Jet 1 ,
Gij = I (1S3 S sin® (F0) +5 ((SF 8200 (] S5 ) + (8583087 S2)

x sin(Jgt) sinz(%)) (26)

We reiterate that in computing the expectation value above, we took the environment state to be in
the (%/2) eigenstate of Sg. Now, the expectation value (S; S 1) 1S, up to a constant multiplicative
factor,' the energy de':nsity, i.e.., (S"fS;‘H) = _NJIM, <H§C,CS'M> which for ‘general' equilibrium
states is finite. This, in turns, implies a finite G;; at general times for such distant sites |i — j| =

O(N).

7.3. Jaynes-Cummings type model

We next examine an analog of Egs. (21) that, somewhat like the Jaynes-Cummings model
[72], includes a coupling between local two state (S = 1/2) degrees of freedom and a bosonic
field (a “central oscillator” coordinate g in our case). Here,

N N
JCCM § : — 2 : JCCM
i=1 i=1

N
HICEM = —2g ) 57, Q27)
i=1
and H g CCM is any function of § (yet not containing the conjugate momentum p — the environ-

ment does not evolve in time). In this model, ¢ is a (bosonic displacement) degree of freedom
that couples linearly to each of local two level degrees of freedom at site i. Similar to Section 7.1,
we take the initial state to be the product state of a ferromagnetic system completely polarized
along the z axis multiplied by the state of the environment, | 11412 --- 1x) ® |E). For concrete-
ness, we set (g|€) to be in the Gaussian in g of standard deviation o7 and zero mean. Similar
to Sections 7.1 and 7.2, we assume ||H§ng|| > ||H§CCM||. Ignoring backaction effects of

the system on the environment, the time evolved spin operators Sl.ZH (t) = e HI/hGEe=tHI/N —

(Sl.z cos(Agt) — Siy sin(Agt)). As in the previous subsections, the sinusoidal variation of Sl.ZH (1)
may lead, in general states, to a finite rate of variation of the expectation value of the time evolved

JCCMH

energy density Hs ~—— - The covariance [73]

(SF7 )57 (0)) — (57 ()85 (1))

2
_ ’%«acoszwma (€] cos(RaNIEN)
2

h 5222
=g(-e Moy (28)




Z. Nussinov / Nuclear Physics B 953 (2020) 114948 25

implying connected correlations between ’HICCM H(t) and HICM: H(t) for all system sites i

and j (including arbitrarily large |i — j|). For this model, the probability density of Eq. (2), (11)
for &’ = —2¢'/(hB;) [74],

(cos™! &/)2 icos™le! 202
P ( T 24202 e 202 '€ !
q q

o, /2ma2(1 - (¢)?) ’

with 93 the third Jacobi function and o = Af. If a kinetic term (involving the collective envi-
ronment momentum p) is included and backaction effects are not negligible, then the system
will generally modify the environment. In such cases, with g%’ (¢) denoting the Heisenberg
picture oscillator coordinate, instead of Eq. (28), there will be contributions to the covariance
(s:H (t)sj.H (1)) — (S*H (t)><SjH (1)) that are of the form

P(e) = (29)

t t
(cos®(n / dr'g" (') — (cos(r / g @"dih)?. (30)
0 0

These expectation values are, once again, generally non-vanishing (the initial state does not,
generally, need to be an eigenstate of cos(A f(; g™ (")dt")) and long range connected long range
correlations will appear in the system.

7.4. Ideal gas type models

In this subsection and the next, we will discuss simple mechanical systems that will comple-
ment the spin models of the earlier subsections. The current subsection will detail two models in
which the system is a non-interacting ideal gas (IG) comprised of N particles of mass m.

7.4.1. Static environment

We first consider IG type system S with a general bilinear mechanical coupling to a static
external environment £. In the convention of Eq. (4) and the earlier examples studied in this
Section, the system only Hamiltonian and the system-environment coupling will, respectively,
be given by

_ YLy yyeoi6
pa 2m P ! ’
HEC g——)»qle ZHS gi - (31

We further consider the environment only Hamiltonian Hg]G to be a general function of the
collective coordinate g including no kinetic terms (and thus associated with a static Heisenberg
picture 77 (r) = 7). We take the initial state in this mechanical example to be a product state of
each of the particles and the ground state of the environment,

[Wmeen) =107)) @ 1¥3) ® - ® [yy) ® [E). (32)
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In this example, each of the system particles accelerates under the external force Ag,

pi ()= pi +2qt,

rq
(@) =x; + —t n 2—qt2 33)
with p; and x; denoting the momentum and position operators at time ¢ = 0. The rate of change
_ X t(q2

of the system energy densny , and, trivially,

({1 P ) — (p O) (T (1) =1 *oft>. (34)

For all i and j, the connected correlator of Eq. (3) between the time evolved local system
energy densities Hl.COI GH (1) and ”H,COI GH (1) (i.e., the covariance between the kinetic terms

(p{1(1))*/@2m) and (pf (1))*/(2m)) is

Gij= 2(( 7*1E) — (E17°1€)). (35)

Fluctuations in g may thus trigger connected long range correlations. Classical fluctuations of the
environment may yield a similar result if the density matrix of the system-environment hybrid is
of the product form pspg and the variance of g is computed with the probability density matrix

PE -

7.4.2. Harmonic oscillator environment

Similar to Eq. (30), if the backaction effects of the system on its environment are not neg-
ligible then integrals over the Heisenberg picture operators g7 may more generally be written.
For concreteness, instead of a static environment Hamiltonian H éI,G having no kinetic terms (as
in Eq. (31)), we will consider the environment to be a large central mechanical oscillator. The

HCOIG

system-environment hybrid defined by Eq. (31) with LMQ F M 52 + - 1s exactly solv-

able since the full Hamiltonian H = H éG +Hg Lo Jet+Hg CO[ Gis quadratlc [75] The appearance,
in Hg OIG " of a kinetic term (with a finite mass M) 1nv01v1ng the momentum p conjugate to
the collective environment g will (unlike the model of Section 7.4.1) now endow the Heisenberg
picture g with dynamics and allow for backaction effects of the system on the environment.
There are only two nontrivial mechanical eigenmodes appearing the Hamiltonian H that involve
both the N particles of the system and the single collective coordinate g of the environment £.
By virtue of the uniform coupling in H éG g» all of the system degrees of freedom only appear
through their center of mass coordinate and momentum. All other (N — 1) linearly independent
eigenmodes are orthogonal to center of mass displacements and do not couple to the environ-
ment. The coupled Heisenberg (or classical) equations of motion for (I) center of mass of the
system

ZzNzlxiH(t)
N 9

and (IT) external environment g collective coordinate are

& (BN (0 &\ (o Xk, (1)
W(ﬁ*’(r))“(% o \ao)=\7n) 7

xch(t) = (36)
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The eigenvalues of the dynamical matrix D trivially yield one oscillatory eigenmode (u(t) =
Asinwt 4 Bsinwt (with A and B constants)) of frequency

_ 1 AN A2
w=— Q + + Q (38)
\/5\ mM
and another eigenvector v(¢) = C e~ 4+ De® (with constant C and D) where
_ 1 —2 4NAZ
o0=— Q4+ - Q. (39)

V2 mM

The results of Section 7.4.1 correspond to the static environment operator g (t) = g arising in
the limit M — oo of Eq. (39); the momentum in the accelerating system (Eq. (33)) is qualitatively
similar in its unbounded linear increase to the exponential ¢ in the M — oo limit (reminiscent
of lim,_,¢ %(z" — 1) = Inz with z replaced by an exponential in #). Expressing x| g

linear combinations of # and v and solving for the four unknowns A, B, C, and D by setting
xH (t=0) = xcm, ﬁH (t = 0) = ¢, and equating the total system and environment momenta

cm d 1
Nm (’)|l —0 = pros and ML (’)|, o = P yields

1 mo o> P sinwt sinh&t
H
(1) = ——— | —— (g (coswt — coshat —
Yo (1) w2+52( A (a(cos® Ot)JrM( z )
—2 -2
+Xem (&2 cos@! + @’ cosh at) + Prot (at sinwt + wt sinh 6t)>. 40)
Nm o o

For an initial product state of the system |S) (that does not display long range connected cor-
relations between the system degrees of freedom) and its environment |€), in the large system
size (N) limit, the corresponding initial variances 02 =0 and N20 ,, = 0. Evaluating, using
Eq. (40), the variance of x,, (¢) at time ¢ when the env1r0nment |E) is the n-th eigenstate of the
Harmonic oscillator Hamiltonian H col G,

5 m?&*at (m + 5 )2h2<(coswt—coshozt)2 __ sinot sinh&t)z) @)

Q
ngn(,) )\.ZM (—2 2)2 Q + 8 w o

When present, a finite standard deviation oz at time ¢ = O implies a finite oxz(_m =0Q) at
positive times. From Eq. (36) this, in turn, mandates (similar to Eq. (3)) a long range covariance
between the local oscillator displacements,

1 N N
=7 22 2 Ox ! 0) = (! ) () = 01,

i=1 j=1
The results of Egs. (40), (41) suffer only a trivial change if the uniform coupling between g
and the environment in H éﬁ £ Of Eq. (31) is generalized to any other bilinear coupling between
the environment and system. For instance, we may replace Hg~ LG g by (=NAkqxi)) with the

=2
: . 1kx COIG P
(un-normalized) Fourier mode x; = N E iz Xie'™ and Hg ( M Qk ﬁ)' In such

a case, Egs. (37), (38), (39), (40), (41) will trivially hold following the substitutions Q — Q;,
)\, - )‘*/ﬁ xcm - (xk/N)7 andq_) qk
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7.5. Central oscillator-system oscillators model

‘We next consider local Harmonic oscillators,

p 1
Hi = ﬁ + zma)lez, (42)
with a global coupling to the environment of the form
HSOM = g Zx, (43)
and where ch OM is any function of g alone (i.e., no kinetic term, an infinitely “heavy” en-

vironment). In such a system, an effect of H‘SCsO(SM is to trivially shift the equilibrium positions

(x;) of all N system oscillators from their initial value (that in the absence of coupling to the
environment) by — —~-¢. As a consequence, at all times 7,

i
2

A _ _
e x@) — o) x L) = W«q% —@. (44)

Eq. (44) also trivially holds for a shift of g by an arbitrary constant, Hg C OM = —A(qo +

q) Z,N: 1 X; with qp a general constant. Such a constant shift amounts to a constant displace-
ment of the location of the oscillator equilibrium, x; — (x; — ﬂ) As in the earlier models
solved in this Section, if the environment £ exhibits a finite standard deviation of G q then Eq. (44)

implies long range connected correlations amongst the local displacements xiH .
7.6. External fluctuating fields

In the examples of Sections 7.4 and 7.5, if {x;} portray particle heights (or the locations of
charged particles between capacitor plates (in the direction transverse to these plates)) then the
effect of the environment may be viewed as that of a gravitational (or electric) field coupling lin-
early to {x;}. In these models, however, the latter effective field features fluctuations. Similarly,
in Section 7.1, the external central spin acts as a transverse field with fluctuations that led to a
finite variance of 0’62. Generally, we may consider systems with global external fields displaying
fluctuations. Such models may thus be viewed as hybrid of procedures (1) and (2) of Section 2.
There is an external environment driving the system (as in procedure (1)) exhibiting finite vari-
ance local fluctuations. Similarly, one may examine theories with background gauge fields [76]
that (like the collective degrees of freedom g that studied thus far) exhibit global fluctuations.

8. Dyson type expansions for general evolutions

To make progress beyond intuitive arguments and specific tractable systems, we next com-
pute the standard deviation of the energy density (and, by trivial extension, any other intensive
quantity ¢g). Towards this end, we return to procedure (1) of Section 2 involving no external
environment and examine Dyson type expansions for a general non-adiabatic [27] time de-
pendent Hamiltonian H (¢) (of which the piecewise constant Hamiltonians Hjp;, and H;, (or
Hpose and Hyoping) are particular instances). Our calculation will demonstrate that in general
situations, a finite o, will arise. Via a Magnus expansion, the general evolution operator, the
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time ordered exponential U (¢) = Texp(—;.l—' fé H (t")dt"), may be written as U = exp(2(¢)) with
Q) =Y 72| Q(t) where

t
i
Q@)= —E/dle(fl)»
0
t n

1
) =——> / i, / dnlH (1), H()],
0 0
. t 1 153
Q3(1) = 61? / dn / dn, / drs(LH (1), [H (12), H(1)]]
0 0 0

+[H (1), H(12), Hn)1),
(45)

We may apply the above Magnus expansion to a Heisenberg picture operator A% (1) = UTAU,
with A an arbitrary fixed operator, with the above 2(¢#) and subsequently invoke the Baker-
Campbell-Hausdorff formula e~ Ae = A — [Q, A]+ %[, [, Al — 5[, [2, [Q, Alll+---.
If no change occurs at intermediate times ¢ and the Hamiltonian is that of the initial system (i.e.,
H (t) = H) then, of course, the standard deviation o, (¢) will remain unchanged when computed
with the (time independent) equilibrium density matrix for which it trivially vanishes. Similarly,
if the evolution of H (z) is adiabatic at all times then no broadening of the distribution P (e”) will
arise. Our interest, however, lies in the Hamiltonians H (t) # H necessary to elicit a change of
the energy density de/dt # 0 in a macroscopic system. In particular, we wish to examine the
variance of the total energy density,

1
02 (1) = 5 (Tr(oH" 0)%) = (Tr(pH" 1))?). (46)
with p the initial density matrix the system (time ¢ = 0) when cooling or heating commences. (In
the dual examples considered in Section 6, p = [¥9) (¢ with [¥0) the initial spin or bosonic
wavefunction.) If o, is to vanish identically then the resulting series for Eq. (46) must vanish,

order by order, for any H (). Collecting terms to the first two nontrivial orders in H (¢ > 0),

1
02(0) = 02(0) + 15 (((AH)?, 21])

1 2 2
55 (21 121 (A T+ [(AH). 220)
—((AH), 11)%) + O((H @ > 0))?). (47)

Here, (—) denotes an average computed with p and AH = (H — Ep) where H = H(t =0)
and Ey is the initial energy (H). We emphasize that if, at all times ¢, the standard deviation
vanishes identically for the heated/cooled system with the time dependent Hamiltonian, then the
sum of all terms of a given order in H (¢ > 0) in the expansion of Eq. (47) must vanish. In the
special case p = |¢y)(¢p,| With |¢,) an eigenstate of H, the expectation values ([AH, 21]) =
[(AH)Z, 1) = 0. For this density matrix p, to order O((H (¢t > O))z), the standard deviation
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or (recalling that AH|¢,) = 0 and consequently

is given by the norm o, = ’WW}U

0c = % [[AH, 2101 ),

N

: (48)

t
1
oelt) = W)fdnm, H()1in)
0

Because the total energy of the system changes with time (at an O(N) rate), the commutator of
Eq. (48) cannot identically vanish and is, typically, of order O(N). Nonetheless, it is possible
that when acting on the eigenstate |¢,,), this commutator will yield a vector of size o(N) and
thus a vanishing contribution to o, in the N — oo limit.

Indeed, as is to be expected, in the special product state setting of Section 5, we will obtain a
vanishing o. Specifically, if for all 7, the Hamiltonian H (¢) = ZZN=/1 H;(t) is a sum of decoupled
commuting local operators that, act on the same M = N’ = O(N) disjoint subspaces (Eq. (5)),
then the eigenstates |¢,) of H(r = 0) will be a product of N” decoupled states. Under the further
constraint that, for all ¢, the local Hamiltonian operator norm satisfies a finite upper bound,
[|H;(®)]] <Y = O(1), one observes that (AH)Q(t)|¢,) becomes the sum of N’ orthogonal
local product state vectors, each of which is of length O(1). Then, from Eq. (48), to second order
in H(t > 0),

local IVN' 2
o (D) S aN L (49)
Hence, to this order in the expansion of Eq. (47), for such local product states |¢,), we have
limy — 00 0% (1) = 0.

Contrary to Eq. (49), however, for general non-product state density matrices p and non-
adiabatic evolution of H () (for which the commutators appearing in the series for o, tend to
zero), the norm of Eq. (48) does not identically vanish as N — oo for all functions H (¢) and ini-
tial density matrices p (even if p is a stationary under an evolution with the initial Hamiltonian
H). We stress that the perturbative result of Eq. (48) may, generally, be valid only for short times.
Our aim in this Section is to illustrate that, generally, the standard deviation of the energy density
does not vanish at all times. That a resulting o = 0 in a closed driven system cannot appear
identically at all times is also evident from our exactly solvable examples. As noted above, the
non-vanishing series expansion result illustrates that when the system starts from an equilibrium
state with a sharp energy density o.(0) = 0, then notwithstanding any locality of the Hamilto-
nian, o, may become finite (i.e., O(1)) at later times ¢. Additional aspects and further connection
with “wave packet” analogy of Section 4 are discussed in Appendix K.

The Dyson type expansion analysis is not limited to the energy density € (similar results hold
for any other intensive quantity ¢) nor to specific continuum or lattice systems. Thus, broad dis-
tributions may generally arise in systems displaying an evolution of their intensive quantities. Of
course, constrained solutions to the equation o () = 0, at all times 7, may be engineered. Indeed,
particular solutions associated with operators that translate the system spectrum bring to life the
intuitive analogy that we made with wave packets (Section 4) as well as the special character
of product states (Section 5). Similar results may also appear for classical systems; using Weyl
quantization, the commutators in Eqs. (45), (47) are replaced (to lowest order in powers of /) by
the corresponding Poisson brackets and all averages are evaluated with the classical probability
density instead of the quantum probability density matrix p. Egs. (45), (47) are indeed solely
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a consequence of the “canonical” time evolution of the system given by Hamilton’s equations
in the classical arena (replacing the quantum Heisenberg equations of motion). We next study
another situation in which a finite o > 0 arises rather trivially.

9. Short time averaged probability distribution

The inequalities derived this Section are motivated by and also hold for classical systems. We
will examine a time averaged probability density on S,

t+7

1
pe(t) == / p(t)dr'. (50)

t

Here, p(t') = U(t)pUT(r) is the (instantaneous) density matrix in the Schrodinger picture.
Ref. [79] studied numerous aspects of the probability densities p;z(¢) for lattice spin systems.
We remark that, arguably, any real measurement of a macroscopic quantity Q in large “semi-
classical” systems is not instantaneous but rather requires a finite period of time 7; thus the
observed values correspond to Tr(pz(¢) Q). Averaging with this probability distribution,

(), = errioston

N
z+fT y H2 t+7 T NH )
=/ r(p(g )dt/Z/( r(,o(z ) dr’
N2t N2t
t
1 t+7
= :/62(/)07/. (5D
T
t
Similarly,
t+7
<£) 21/6([/)dl/ (52)
Nl 7 '
'

2 2
Hence, 03% = <<%> > - <%> will be finite for an energy density € that varies at a finite rate
’ T T

in the interval [¢, r 4+ 7]. For a short time interval in which % is approximately constant, Taylor
expanding €(¢) to linear order in (¢’ — (¢ + %)) in the integrands of Egs. (51), (52),

2%
Oc 7 < \/ﬁ dr (53)
Putting all of the pieces together, we see, from Eq. (3), that macroscopic range G > 0 will appear
when all correlations evaluated with the time averaged density matrix pz(¢) of Eq. (50). Albeit
being trivial, this result is extremely general and applies to all density matrices and Hamiltonians
whenever Z—j # 0. Returning to the opening sentence of this Section, the inequalities of Eqs. (51),
(53) indeed also hold for classical systems (with the trace in Eq. (51) replaced by phase space
integrals or other sum over classical microstates and p being a classical probability distribution).
In classical ergodic systems, equilibrium (and various non-equilibrium) phase space probability
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distributions have their conceptual origin in long or finite time averages: an equilibrium ensemble
average reproduces the long time expectation values. Although it is somewhat obvious, it is
nonetheless important to emphasize that, in the quantum arena, having an instantaneous density
matrix that is a product state does not imply a time averaged density matrix that is also a product
state. This is much the same as the two spin § = 1/2 density matrix %(| MY TN EAL DS
the latter is an average of the density matrices of two product states yet it is not, of course, the
density matrix of a product state.

In the next Section, we will demonstrate that under certain conditions, o must be finite when
de/dt # 0. In Sections 11 and 13, we will further discuss what occurs once the system is no
longer driven. Apart from its form as a time average expectation value, our result of Eq. (53)
implies that there are states for which the standard deviation o, > 0 when the latter is evaluated
for instantaneous expectation values in mixed and pure states evolving under a piecewise constant
H () (such as that of Section 6). To this end, we may equate p, to be the instantaneous density
matrix p"°"(¢) of a new mixed state or, alternatively, to be the partial trace of the density matrix
of a pure state defined on an artificially constructed volume Z’ larger than the system volume (S)
on which the Hamiltonian H acts (Z' = SUE’ with £’ an artificially constructed “environment’)
following the “purification” procedure of [57,58]. In the notation of [58], the dimension D will
correspond to the number of time steps in a discretization of the integral of Eq. (50). Herein,
given original pure states {|(¢'))} (with t' =t + kr/D with integer 1 < k < D), the scaled
density matrices Ww may be summed, as in Eq. (50), to provide an instantaneous density
matrix " (t). The latter density matrix may, following [58], be constructed such that its partial
trace over the environment £’ yields p;z (¢) (i.e., p;z (t) = p"" (t) = Tre | W(£)) (¥ (2)| with |W(z))
a pure state in Z'). This demonstrates, once again, that the standard deviation o, as evaluated
with instantaneous probability density matrices or pure states can be trivially finite even for local
Hamiltonians H.

10. Generalized two-Hamiltonian uncertainty relations

We next turn to a more specific demonstration that, in other settings, when evaluated with the
instantaneous density matrix, the standard deviation o > O when the energy density exhibits a
finite rate of change. In this Section, we consider non-relativistic systems S of arbitrary size N
(large or small) that satisfy certain conditions in the order of decreasing generality.

We first derive exact inequalities for closed system-environment hybrids and discuss, once
again, how our results relate to causality. We will then derive exact bounds for open system-
environment hybrids. In this Section, we will formalize and study procedure (2) of Section 2.
We will explicitly include the effects of the environment. In Sections 10.1 and 10.2, we will re-
spectively analyze, situations in which the ensuing system-environment hybrids constitute larger
closed or open hybrid systems.

10.1. Closed system-environment hybrids

10.1.1. Exact inequalities for closed system-environment hybrids
In this subsection, we will derive inequalities when the following assumptions are satisfied:

Assumption (1): When combined with their physical environment (or “heat bath”) &, these sys-
tems constitute a larger global closed isolated hybrid system Z =S U E (of N sites) such that the
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sites in S do not interact with any sites that are not in Z. The number of particles or sites in both
S and € is held fixed. ¢

Assumption (2 - weak version): The Hamiltonian H describing S is time independent. <

We stress that the Hamiltonian H describing the full hybrid system Z including interactions
between S and £ is, at this stage, kept general and may depend on time.

Denoting the evolution operator (first discussed in Eq. (4)) of the full closed hybrid system Z
by

t
Z:{(t)=Texp(—% f H()dt)), (54)
0

the two Heisenberg picture Hamiltonians HE @) = Z/NlT(t)HZ;{(t)(t) and I:IH(t) = Z/le(t)ﬁl;l(t)
describe, respectively, the open system S and the larger closed hybrid system Z at time 7. The
energy of the system S is E(t) = Trz(pH" (t)) where / is the initial density matrix of Z. By
the uncertainty relations [77,78],

1 CHE®
Oet)TGH () = 5 Trz(pl N

Oc(ry and o 7x @ denote, respectively, the uncertainties associated with H (t)/N and H" (1)
(when these uncertainties are computed with the probability density matrix p). Combined with
Heisenberg’s equations of motion for the time independent H (Assumption (2 - weak version)),
we obtain an extension of the time-energy uncertainty relations for this two Hamiltonian realiza-
tion,

CHA 1)) (55)

h |dE
o0 ine = 3y | g | (56)

Eq. (3) then implies a lower bound on the average macroscopic range correlators in the subsystem
S’

— R sden?
Gs= () S
HH (1)

The derivative in Eq. (57) scales as O(N?) if the energy E(t) of S changes at a rate propor-
tional to the size of S (i.e., if the energy density changes at a finite rate). Egs. (55), (56), (57)
will remain valid if Assumption (1) is relaxed, i.e., if Z is an open system with a Hamiltonian
H that, itself, is in contact with a yet larger system. We next examine what occurs if the local
energy density correlators G;; decay with a correlation length &, i.e., with

o—li=il/én

Gij~ A , (58)

li —j1?
with A a finite constant. Transforming to hyperspherical coordinates, we see that on a d dimen-
sional hypercubic L x L x ... x L lattice with L > &y, the average correlator of Eq. (3) will, up

to factors of order unity, be given by Gg ~ ZA%( %”)dé' I;p . Combined with Eq. (57),
2

this implies a lower bound on the correlation length
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L[ h’r(%) (de>2]1/(dfp)

€y 2 LTr — (59)
8A7d/2I(d — p)a%H(I) dt

with €(r) = E(¢)/N being the energy density of the system S and with I'(z) denoting a Gamma
function. Note that the lower bound of Eq. (59) on the correlation length is monotonic in the
temporal variation of the energy density €(¢). That is, the larger the rate of change |Z—f| of the
energy density, the larger the lower bound on the putative finite correlation length £g. In partic-
ular, for finite de/dt and o5, such a lower bound will diverge as L — oo (indicating that an
assumption of small £y cannot be made self-consistently). Moreover, regardless of p, if (in any
dimension) o gy < O(\/ﬁ) then Eq. (59) illustrates that £y cannot be finite in the L — oo limit
whenever de/dt is finite. Thus, the reader can see how divergent correlation lengths are man-
dated whenever 7 exhibits fluctuations that are smaller than those of typical open systems (i.e.,
when o5 = o(+/N)). The bound of Eq. (59) assumes Eq. (58) and is only suggestive. In what
follows, we will examine conditions that will enforce a finite o H and thus divergent correlations
when de/dt # 0. Towards that end, we impose a more restrictive condition:

Assumption (2 - strong version): The fundamental interactions appearing in the global Hamil-
tonian H describing Z are time independent. ¢

This assumption (which, for brevity, we will henceforth simply refer to as Assumption (2))
implies Assumption (2 - weak version). This is so since the terms in H include, as a subset,
the interactions appearing in the Hamiltonian H describing S. When Assumption (2) holds,
time dependence arises when the density matrix p is not diagonal in the eigenbasis of the full
Hamiltonian H.

In what briefly follows, we make general colloquial remarks motivating our final result. We
will then invoke a last assumption (either of Assumptions (3) or (3') to be introduced below),
with the aid of which we will be able to rigorously derive our result. When Assumption (2)
holds, the global Heisenberg and Schrodinger picture Hamiltonians coincide, HP(t)=H.Ifa
time independent Hamiltonian H governs the dynamics of the closed hybrid system Z, then the
energy will not vary with time. Classically, there is no meaningful finite standard deviation o 3:
the energy of the closed system is conserved. By contrast, no quantum dynamics are possible
unless o5 # 0. That is, any eigenstate of H (for which o5 = 0) is trivially stationary under an
evolution with H. For a general initial state |°) of the closed hybrid system Z, the probability
density,

(E—Ept L ~
Y=Y e T (Gl (PO

nm

Gi)9i) (D, (60)

will typically vary on a time scale of order 7 = oi In Eq. (60), {|¢;)} are the eigenstates of H.
H

The off-diagonal spread of the density matrix (in the eigenbasis of H) determines the oscillation
frequencies that it displays. For pure states |°) in the closed hybrid system Z, a large o
implies large temporal fluctuations [80]. If, as in many closed energy conserving systems with a
well-defined semi-classical limit, the representative frequencies governing the global dynamics
(and probability density) do not scale with N, i.e., if O(t) = O(1) [81] then o5 will, typically,

also not vary with N. Inserting o5 = g in Eq. (56),
T|de

> —|—. 61

Ge(t)_z‘dt‘ (61)
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This result is natural for a probability distribution that varies over time scales 2> t. Along re-
lated lines, a time average of the form of Eq. (50) applied to the density matrix p on Z (i.e.,
oz (t) = % lt“ o(t")dt") will remove frequencies higher than a cutoff that scales as %/7. That
is, if T < 7, then pz(¢) will not exhibit the higher frequency oscillations present in p(z). The
removal of these high frequencies (associated with short “virtual events”) will render the system
more “semi-classical”; in a path integral representation, in the sum of the exponentiated classi-
cal action over all possible paths, fluctuations of phases generated by relative energy differences
larger than O(h/7T) will, for an evolution over a time of length 7, lead to oscillatory phases that
will cancel. The larger the waiting or averaging time 7 is, the more narrow the range of eigen-
states that are relevant to the system evolution will be (i.e., only those with energies in a small
window about the average system energy may be considered) on time scales > 7.

The above intuition can be made more accurate to bolster the considerations of Section 9.
The bound of Eq. (55) is an algebraic identity that may be extended to arbitrary probability
density matrices. In particular, in Eq. (55), we may replace p — p; for general averaging times
7 (Eq. (50)). This implies the inequality

dE:
dt

(62)

= = h
T T
) ) = ﬁ‘
where E;(t) = Trz(pz H H1)). In Eq. (62), o j( ~ and 6;:10) denote, respectively, the standard de-

viations of (H/N) and H as computed with the time averaged probability distribution pz. Thus,
we can qualitatively relate the uncertainty relations to the trivial general bounds of Egs. (51),
(53). That is, for any finite (system size independent) averaging time 7, the density matrix p; (¢)
will display o3 < 1/7. Eq. (62) will (in agreement with Egs. (51), (53)) then imply a finite oj(t)

whenever d;‘;f is extensive. As emphasized earlier, of physical relevance are finite time (T > 0)
window measurements.

While bounded system size independent frequencies are natural in quasi-classical and “typ-
ical” closed (energy conserving) quantum systems, that is certainly not the case for all con-
structible model states [82]. With this in mind, we consider the consequences of any one of two
additional conditions (labeled Assumption (3) and Assumption (3") in the below). Either of these
conditions will lead to a system size independent standard deviation for the energy density (when
the latter is evaluated with the instantaneous density matrix p).

Assumption (3): The closed hybrid system Z equilibrates at long times. Stated more precisely
(and automatically accounting for Poincare recurrence type events), the asymptotic long time
average of the probability density p7 in the larger closed hybrid system Z veers towards the mi-
crocanonical (mc) density matrix applicable for closed energy conserving systems in equilibrium
[83]. That is,

T
1
oz = lim = [ prtear. (63)

T —o0

with pme.7 the microcanonical ensemble density matrix for the closed hybrid system Z. ¢

In systems obeying Eq. (63), the uncertainty in the energy of Z at asymptotically long times
(i.e., as computed with pmc.7) will be system size independent,
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o5 =0(1). (64)

Eq. (64) constitutes the defining textbook property of the microcanonical ensemble [83]. Since
the closed system-environment hybrid Z is governed by the time independent Hamiltonian H,
the standard deviation o ; is time independent and Eq. (64) trivially holds at all times ¢ when the
variance o ; is computed with the density matrix 5(¢). Assumption (3) and the preceding discus-
sion may seem abstract. The semiclassical intuition underlying the somewhat axiomatic standard
definition of the microcanonical ensemble is rather trivial. We repeat anew some elements below.

For a classical ergodic hybrid system (e.g., that assumed for Z governed by the time inde-
pendent H), the probability density is that associated with the long time average. For a closed
conservative system, the total energy is conserved and the probability density defined in this
way exhibits zero variance of the total energy. In the quantum arena, if the closed ergodic sys-
tem exhibits non-trivial dynamics then the standard deviation of its Hamiltonian cannot vanish
(since the eigenstates of H are trivially stationary). Thus, the common assumption underlying
the microcanonical ensemble is that the standard deviation of H is finite (in order to allow for
non-vanishing frequencies) yet, for a closed system does not diverge as the size increases. This
intuition rationalizes the standard use of Eq. (64) defining the microcanonical ensemble. In the
spirit of the above maxim, we next introduce an alternate assumption that does not rely on the
closed hybrid system Z being ergodic (nor the use of the microcanonical ensemble):

Assumption (3'): A finite time step discretization (¢ = fx = kAr with integer k and Ar a suf-
ficiently small system size independent time step) may effectively simulate the evolution of Z.
Here, as before, the (pure) state of the closed hybrid system 7 may be described by a wave-
function. The uniform discretization of ¢ implies that any function f(¢) (including the associated
density matrix 5(z) of Eq. (60)) may be expressed as a Fourier sum f () =) » f (wp/)e_’wp”
with w, lying in the “first Brillouin zone” (lw,/| < w/At). Thus, the uncertainty in the energy
of the closed hybrid system 7 satisfies 05 < w//At — a realization of Eq. (64). Expectation
values of finite time gradients in Z (including the standard deviation of the discrete time gradient
approximation of the Hamiltonian H = ih%) are bounded from above by O(1/Ar) [84]. ¢

Assumptions (1-3) (as well as Assumptions (1, 2, 3")) [85] imply that when the energy density
varies at a finite rate (d E /dt = O(N)) then, from Egs. (56), (64), the standard deviation of the
energy density of S,

oery =0(). (65)

Thus, we discern from Eqgs. (3), (57) that long range correlations must appear during the cooling
or heating period at which the energy density of the system (&) is varied at a finite rate. Analogs
of Eq. (65) are also valid for any other intensive quantity g (different from the energy density €)
whenever fi—? # 0. Analogs of Eq. (65) are also valid for any other intensive quantity g (different

from the energy density €) whenever Z—? = 0. When the environment & is included for (as we
do now), the evolution of the system itself (Fig. 2) is, generally, non unitary; this non unitary
evolution lies in strong contrast to the earlier examples of Section 6 in which the system evolved
unitarily. One may, nonetheless, still make some non-rigorous pedagogical contact with the spin
models of Section 6 for a special case exhibiting unitary time evolution [86] for which all of the
above three assumptions hold. These assumptions are not met (in particular Assumption (3) does
not hold) for the rather artificial (yet exactly solvable) models of Section 7 [71]. Assumptions
(1-3) are often employed in standard textbook derivations of the canonical ensemble for open
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systems S by applying the microcanonical ensemble averages for the larger equilibrated closed
systems Z that include the relevant environments £ that are in contact (or “entangled”) with S. If,
as evinced by measurements in prototypical states in the composite hybrid system Z at asymp-
totically long times, ergodicity and equilibrium set in, then the microcanonical ensemble may
be invoked. We next turn to the scales of the righthand sides of Egs. (55), (56), (§7) and their
consequence for systems that are cooled/heat at finite rate. By Heisenberg’s equation for the time
independent Hamiltonian H,
agft i . .

T _h[H,H ]. (66)
Therefore, in order to obtain a finite rate of change of the system energy density de/dt (or an
extensive rate d E /dt), the total Hamiltonian H of the large hybrid system Z must have a com-
mutator with the Hamiltonian H of S that is of order N, i.e., Trz(s[H, H¥]) = O(N). Hence,
to achieve a finite global rate of cooling/heating, H must couple to an extensive number of sites
in the volume of S — it is not possible to obtain an extensive cooling/heating rate by a bounded
strength coupling that extends over an infinitesimal fraction of the system size (see also the dis-
cussion at the end of Section 4 and that appearing after Eq. (8) in Section 6. l) Effectively, a
finite fraction of the sites lying in the volume of S must couple to H whenever =0(). The
initial state of the system S prior to its cooling/heating (or variation in its other parameters) may
have a well defined energy density € and other state variables yet nonetheless still be far from
a typical equilibrium state. One may introduce various probes, clocks, etc., that start the cool-
ing/heating process in a particular way; the initial state need not be in equilibrium but may rather
be specially crafted. We further wish to underscore that the value of the (nearly) constant energy
of the closed hybrid Z (up to corrections that do not increase with the system size) as captured
by Assumption (3) (as well as Assumption (3’)) imply constraints between the environment &
and the system S. Thus, qualitatively, the resulting picture (literally and figuratively) is in accord
with the schematic of Fig. 3 with the same environment £ coupling to a finite fraction of all
sites in the system. Indeed, if this is not the case and the environment £ is composed of O(N)
microscopic decoupled reservoirs with each of these reservoirs independently, coupling to an-
other local region of S (such that O(N) independent local system-environment hybrids appear
each having a conserved energy up to O(1) fluctuations) then the total energy of Z will exhibit
O(NY2) fluctuations (a sum of the N independent random errors with each of these errors being
of order unity). In such instances, the energy of the closed hybrid Z would not, up to system size
independent errors, remain constant in time in the thermodynamic limit.

If Assumptions (1-3) are met then at asymptotically long times, memory of the initial state
will be lost and all observables may be computed via the microcanonical ensemble with its few
thermodynamic state variables. In particular, the defining feature of the microcanonical proba-
bility distribution of closed equilibrated systems holds, Eq. (64). For completeness, we note that
the Dyson type expansion of Section 8 may also be reproduced in the setting of the current sub-

section with a time independent H (for which the evolution operator is e "'H#'/" and the global
density matrix is given by p).

10.1.2. Remarks on causality

In the earlier part of this subsection, the effect of the environment £ driving the system was
explicitly included and, as in basic theories, the form of the terms in the system-environment hy-
brid (i.e., those in H) was time independent. While the form of the fundamental interactions in H
is time independent, tracing over the environment (Fig. 2) may lead to complex dynamical maps.
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We now revisit, yet again, the constraints implied by causality. As noted in Section 4, in models
with local interactions, compounding relativistic bounds, Lieb-Robinson inequalities [30] gener-
ally provide upper bounds on commutators in non-relativistic systems (such as those appearing in
Eq. (55)). These relations lead to bounds on correlations [8,9]. However, as we explained above,
in driven systems for which the energy density is made to vary at a finite rate, commutators such
as those of Eq. (55) must be extensive; such commutators may only appear at sufficiently long
times (we refer the reader, once again to Appendix B for an explicit proof of this assertion).
In diverse physical situations (i.e., when cooling/heating leads to a finite rate of change of the
system energy density or measured temperature), photons and/or other particles/quasiparticles
emitted/absorbed by an extensive volume of the surrounding heat bath effectively couple to the
system bulk (see Appendix A). In the spin model of Section 6.1 (in which the system evolution
was unitary), the time independent (for all times 7 > 0) transverse field (B,) Hamiltonian of
Eq. (8) played the role of H acting on all N sites (so as to have [H, H"]=O(N)).

10.2. Open system-environment hybrids

As noted above, for a closed system described by a wavefunction, a large o5 implies rapid
temporal fluctuations. By contrast, the density matrix describing an open system can be time in-
dependent yet exhibit large o [80]. “Canonical” open systems 7 feature a large (by comparison
to the energy uncertainties of the closed systems that we discussed earlier) o5 ~ N1/2 scaling.
This larger value of o renders the corollaries of Eq. (56) weaker for open systems. Nonetheless,
as we will next demonstrate by a simple “proof by contradiction” argument, if we consider an
initial open thermal system composite Z at an assumed temperature 7 (instead of Assumption (1)
for the closed systems of Section 10.1), then there exists a limiting cooling/heating rate beyond
which equilibration is impossible. The bound that we present encompasses the physical situation
of a general uniform medium that is heated or cooled via contacts with an external environment.
Our result pertains to what transpires if the subsystem S and the larger open hybrid system Z
containing it are in equilibrium with one another at a temperature 7' (see Fig. 6). Specifically, we
will invoke the following assumptions for open (°) systems:

Assumption (1°): When combined with their environment (or “heat bath”) £, these systems
constitute a larger open hybrid system Z =S U £ (of N sites) in which the sites in S do not
interact with any sites that are not in Z. The open system-environment hybrid Z is embedded in
a larger volume A (of size Np). ¢

We comment that with this assumption and definition of Z as a volume containing all sites
that S interacts with, when only short range interactions are present, we may choose, in the

thermodynamic limit, Z such that limy _, o % =1 with N denoting the number of sites in S.
Assumption (2°): The open hybrid system Z is in thermal equilibrium with its environment at a
fixed temperature 7. In particular, the fluctuations (as computed with initial probability density
matrix p) of extensive quantities are those of an equilibrated system at a temperature 7. ¢

Assumption (3°): The subsystem S C 7 is in thermal equilibrium with Z. ¢

This last assumption might be regarded as a consequence of Assumption (2°) for the equili-
brated hybrid system Z that includes S. Nonetheless, we wish to make Assumption (3°) explicit.
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“Open” (i.e., no)
boundary q

I=8SuU¢&

Fig. 6. An open system-environment hybrid Z. The degrees of freedom in S may only interact with others in S and/or
the environment €. Unlike the analysis of 10.1, however, the constituents of £ may now interact also with others not
in Z. (The shown open hybrid Z lies in a larger (possibly infinite) volume A.)

The open hybrid system Z (including S) may be taken to lie deep in a uniform medium so that it
is far from any external contacts that change its temperature. The Heisenberg picture Hamiltonian
H' evolves with an operator different from Eq. (54) — one that involves also the sites exterior
to Z. The latter coupling allows for a non-trivial time dependence. Equivalently, the Schrodinger
picture probability density matrix p(¢) is generally a function of time [87]. Macroscopic ex-
pectation values computed with p(¢) are those of equilibrated thermal systems yet measurable
dynamics also appear (as in, e.g., an equilibrated gas with mobile molecules having correlations
set by the diffusion equation). For a static p(¢), all expectation values will be trivially stationary.
Since, by Assumption (2?), the full hybrid system Z = S U £ is in equilibrium, the system &
must be in equilibrium with its environment £. From the zeroth law of thermodynamics, it then
follows that S is also described by a (canonical) probability density matrix at the same inverse
temperature f.

Because the sites in S only interact with those in Z (Assumption (1°)), Egs. (55), (56), (57)
(as well as the bound of Eq. (59) for correlators of the form of Eq. (58)) remain valid. In what
follows, following Assumption (2°), we will set, in Eq. (56), the equilibrium values of standard
deviations of the respective Hamiltonians in the appropriate (canonical) ensembles describing
the open systems Z and S. That is,

o =/ kgT*Cy 2(T) (67)

(with kp the Boltzmann constant and C, 7(T") the constant volume heat capacity of the large
system composite 7) to be the standard deviation of the large open hybrid system Z, and equate

o =/ kpT?Cy5(T), (68)

where C, s(T) is the heat capacity of the small system at temperature 7, to be the standard
deviation of the smaller subsystem S. We may repeat, mutatis mutandis, the steps that led to
Eq. (65) when Z was a closed system. Doing so and employing Eq. (56), we discover that if the
cooling/heating rate exceeds a threshold value for an equilibrated open hybrid system 7 (and any
subsystem S C Z that is in equilibrium with it (Assumption (3?))),

dE

ke kBT Vo, z(T)Cy 5(T), (69)

then a simple contradiction will be obtained. That is, an assumption of having a sharp equi-
librium energy density state variable (by coupling Z to a larger external bath at a well defined
temperature) [94] becomes inconsistent once Eq. (69) is satisfied. At sufficiently fast cooling or
heating rates (given by Eq. (69)), the inequality of Eq. (56) will be violated when we substitute
the equilibrium open system values of o,y and 0.
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Using the exact inequality of Eq. (69), it is illuminating to estimate the rate of the temperature
variation beyond which equilibration of an open system is rigorously impossible to arrive at a
typical thermalization bound. Towards that end, we assume that Z and S are of comparable size
(see also the comment following Assumption (19)), i.e., of size O(N), and that the heat capacity
of both is, up to factors of order unity, given by d Nkp and that the energy density is the order of
(dkpT). Hence, if the energy variations fulfill a “Planckian rate” inequality,

de
dt >O(
o~

2kBT>’ (70)

h

then, in any dimension d, it might be impossible to satisfy all of our assumptions in unison.
Interestingly, earlier work established that the thermalization rates for typical random states are
given by kf;lT [88]. The rigorous inequality of Eq. (69) and its common realization of Eq. (70)
augment these relations to rigorously demonstrate that in typical situations (when all energy den-
sities and heat capacities are set by the Boltzmann constant, the number of particles, and the
energy), whenever the heating/cooling rate is larger than O(kgT /h) then no thermalization of
the open system is possible. We arrived at this inequality by combining exact inequalities associ-
ated with the system dynamics (Egs. (55), (56)) with the standard deviations (Egs. (67), (68)) of
open thermal systems. Variations in the energy need not arise only as a result of an external drive.
Eq. (69) also holds true for any system in equilibrated open systems for which the variations in
the energy are thermally self-generated fluctuations typical to the equilibrium state. The bound
of Eq. (70) is similar that suggested in [20] as a bound on Lyapunov exponents (A;, <2mxkpT /h)
in thermal systems. At room temperature, 2k T /A ~ 10'* Hz. Thus, at low temperatures, pulsed
picosecond laser cooling/heating may, in principle, achieve these rates beyond which, as we just
demonstrated, quantum uncertainty relations forbid thermalization (even for open systems). Our
inequality of Eq. (69) is rigorous. By contrast, Eq. (70) only arises as an order of magnitude
estimate.

Our two results of Egs. (56), (69) for, respectively, the closed and open composites Z apply
for any rate of the energy change d E /dt. These include situations in which d E /dt scales as the
surface area of the system (O(N@~D/dy) for which an extension of Eq. (3) will, in turn, imply
that G > O(N~2/4). Egs. (65), (69) further apply to any function f(g) of an intensive quantity
g that is varied at a finite rate. In particular, setting f(g) = ¢", we find that the uncertainties
in all moments of g are, typically, finite if the rate dg/dt is finite. With a formal proof at our
disposal, we now briefly reflect back on the arguments of Section 4 in which we explained why
a varying quantity energy density (or any other intensive quantity ¢) with a finite rate of change
de/dt (or general dq/dt) naturally suggests an uncertainty. The arguments of Section 4 provide
an intuitive basis for the time-energy uncertainty type relations that we derived and employed in
this section for our two Hamiltonian system and, more generally for other intensive quantities.

We next discuss inequalities that may also be derived when Assumption (3°) is not invoked.
Replacing the energy density € in Egs. (55), (56), (57) by a general self-adjoint quantity Q having
its support on a region of arbitrary size N, we discover that thermal fluctuations evaluated with
the equilibrium many body density matrix p, must always satisfy

49 2,/k
‘EélE |<dt>| S( BCU‘I)T. 71)
oQ h

This inequality is exact at all temperatures and times. It is a “quantum thermodynamic uncertainty
relation” relating thermodynamic properties (the temperature 7" and the heat capacity C, 7 (with
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the latter given, e.g., by the temperature times the partial derivative of the entropy of Z at fixed
volume relative to the temperature or, equivalently, the derivative of the internal energy of 7

relative to the temperature)) to o and the fundamental constant of quantum mechanics 7. Both

the standard deviation o and the rate (d—?) are computed with the reduced density matrix p
after a partial trace over all degrees of freedom not in Z of the full density matrix describing
the equilibrated system A to which Z generally belongs. If 7 is any subvolume of a system
(A) that is in thermal equilibrium, then the Hamiltonian H exhibits its own variance given by
Eq. (67). Similar to Eq. (70), we find that if (i) Z is of comparable size to S (having O(N)

sites) and (ii) if C,, 7 < dNkp, then 7o cannot be shorter than 0(7% Tﬁ Jd_)' Barring critical
B N

points/transition regions and/or strong anharmonoticities, in most substances, heat capacities are
typically bounded by their (Dulong-Petit type) high temperature value of O(d Nkp) making this
order of magnitude inequality more stringent than might be suspected otherwise. As remarked
above, in Eq. (71), N may be of arbitrary size. Indeed, what matters is that in the uncertainty
relations we may still approximate the equilibrium energy fluctuations in the larger hybrid system
7 by Eq. (67) and that S only interacts with sites in Z. The environment £ may be chosen to be
the smallest volume such that all sites in S interact amongst themselves or with sites in S and
as long as all observables in Z (including fluctuations) are equal to those in thermal equilibrium.
Generally, the upper bound of Eq. (71) becomes more stringent as Z decreases (scaling with
N2, Eq. (71) also provides a lower bound on the average long distance correlators,

Go=o? %Z((Qi%)—(@)(gﬂ)—4kBTZCUz‘dt‘ "
L]

where g = % ZlNz 1 Q;. By the equilibrium fluctuation-response theorem, this inequality implies
a lower bound on the uniform susceptibility yo associated with a general order parameter or
field Q for an equilibrated open thermal system in which Q fluctuates at a rate (d Q/dt),

Xo =z (73)

4k% T3CUI‘ dt ‘

10.3. Bounds on the rate of change of general local operators in translationally invariant
thermal systems

To elucidate the meaning of the inequalities of Section 10.2 and illustrate how (a) the time-
energy uncertainty inequalities arising from dynamics and (b) equalities in thermal equilibrium
intertwine with one another, we next explicitly consider what occurs for the expectation values
of local quantities in translationally invariant systems (LTI).

Assumption (1277): We consider local quantities Q defined on a spatial region S C Z. The
operators  commute with all terms in the Hamiltonian that do not involve sites in Z. The open
system-environment hybrid Z is embedded in a larger volume A (of size N, ). Now, Z itself does
not need to constitute a sufficiently large region displaying typical thermal expectation values
(i.e., Assumption (2°) no longer holds). Instead of Assumption (2°), we impose an even weaker
condition:

Assumption (2577): Global expectation values in A are given by equilibrium thermal aver-
ages. ©
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Assumption (3277): The time independent Hamiltonian H, governing the dynamics of A is
translationally invariant.

With these assumptions, we discuss general (possibly infinite volume) theories on a spatial
region A that evolve according to a fixed translationally Hamiltonian H, and ask what occurs
when the initial probability density matrix to be p describes the large volume A in equilib-
rium. We will derive bounds only slightly weaker than those of Eq. (71) when only Assumptions
AETT) 2ETT) and (3LT1) are invoked instead of Assumptions (1°), (2°), and (3°). Towards that
end, we explicitly define H” c H} to be the set of all terms in Hy that do not commute with
the quantity Qff = e!Hat/h Qe=iHat/h and thus (by Heisenberg’s equation of motion) contribute
to its time derivative, L%H = %[FI H 0H]. As emphasized above, H may be the sum of all terms
in the global Hamiltonian H, that do not commute with Q and thus endow Q with dynamics.
To make the above explicit, we derive Eq. (71) in a general setting, longhand,

5 =

doH 2 ] 2
= |rron 2| =\Tr<pA(i[HA,Q”(r>]>>

= [rroacia o, 0" | < h2 LTy (74)

Eq. (74) is valid at all times and constitutes a minor twist of the standard time-energy uncertainty
relations. In the third equality of Eq. (74), we picked out of the full many body Hamiltonian
HI{'I (1) = e Hat/ g o= iHAt/R — 1, the sum (HH (1)) of all terms in Hy that do not commute
with QH (r). That is, [Hx, Q" (1)1 = [H" (t), Q" (1)]. The last inequality in Eq. (74) is, once
again, the standard uncertainty identity, now applied to the two self-adjoint operators AHH (1) =
(H2 @) = Tr(pa H? (t))) and AQF (t) = (QH (1) — Tr(pa O (1))) (the deviation, at time ¢, of
Q from its equilibrium value as computed with the density matrix pp), viz.,

~ 1 ~ 2
(Troaal" 1)) x Tripaa @™ W) = 7| Tr(eal A" @, 0" D[ (75)

As we remarked earlier (Section 10.1), such an uncertainty inequality applies both to pure states
(the typical case) as well as mixed states with general density matrices [58]. The above equations
were a consequence of the system dynamics. We next discuss what occurs in thermal equilib-

rium. If A is in thermal equilibrium, the variance 01%1 e will be that of the operator H% (r)

computed in the thermal state p,. Inserting Eq. (67) in Eq. (74) leads to Eq. (71) anew. The
heat capacity C, z(T) in Eq. (71) is that associated with the fluctuations o ;5 » ® when computed
w1th the density matrix pp (leading to Eq. (67)). It is important to explain the physical content
of ( ) For all quantities Q if the density matrix pp depends solely on the time independent
Hamﬂtoman Hy (e.g., the density matrix associated with the canonical ensemble) the evolution
operator U(t) = exp(—i Hat/h) will then commute with p, and all expectation values will be
stationary. This identical stationarity does not capture the local dynamics in thermal systems. In,
e.g., an equilibrated gas, the atomic positions of the particles are not stationary (i.e., the average
computed with the exact density matrix describing the gas will be time dependent). However,
the expectation value of the velocity of any given particle when computing this average with the
equilibrium canonical density matrices is identically zero; there is a finite probability density for
the particles to assume any velocity and only the mean velocity vanishes. By the “mean”, we may
refer to an (i) ensemble average or one over (ii) long times or as we will focus when Assumption
(2-LT1y holds, for systems with translationally invariant Hamiltonians H , (iii) a global average
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over all of space. Indeed, while the global velocity average in an equilibrated ideal gas is zero,
the local velocities are finite. The density matrix pf\am”ical = ";ﬂ, with Zx = Tr(e PHr) de-
noting the partition function, yields the correct average of local observables yet does not describe
the dynamics in the equilibrium system. That is, the global average

— 1
0=—>S (0" @)) (76)
W
of any Heisenberg picture expectation value of O evaluated with p, is stationary if A is an
equilibrium system with a value given by

N
— 1 '
0= 2_1: Tr(prneaoff). (7

Na

From Eqgs. (74), (75), for identical local operators {Q;};.",, each with a corresponding H i de-

fined on a region Z;, we have

Np 2 Na

~ h
D TripaAH @)% = -3

i=1 i=1

Tr(pa2l)
Tr(pa(AQT(1))2)

Invoking Eqgs. (76), (77), the rig~hthand side of Eq. (78) can be rewritten as a canonical thermal
average of the fluctuations (AHiH (1))> whose value is set by the correspodning heat capacity

Cy1, = %Tr(pf\a”"”ica'ﬁg,-) and temperature,

(78)

. ~ h2 Na Tr(,OAﬂ)
T canonical A 7 H 2 4
reRTT AR O 2 g 2 Tr(pa(AQf(1)?)

2

h
= kpT?Cy 1. > Z(’). (79)

Eq. (79) constitutes a bound on general local measures of the dynamics in thermal systems. In
going from Eq. (78) to the top line of Eq. (79), we invoked Assumption (2577): the expectation
value Tr(pf\am“ica'(AﬁiH (1))?) is the same for all 1 <i < N, (and is thus equal to N—lA times
the sum on the lefthand side of Eq. (78)) and, for the assumed time independent Hp, is also the
same at all times 7. In the bottom line of Eq. (79), on the righthand side, the global average of
Eqgs. (76), (77) is applied to the ratio

dof

< dt >
(ol (1)?
On the lefthand side of the last equality of Eq. (79), we applied, analogous to Eq. (67), the
identity Tr(plc\a”"“'ca'(AHiH ()% = kg TZCU,I,,. In Eq. (80), both the expectation value of the

o (80)

H
local temporal derivative (d% ) and the local variance of Ql.H are calculated with pp. Egs. (79),

(80) constitute an explicit local weaker rendition of Eq. (71) that require the use of the global
average of O as defined in Eq. (76). We stress that O'g’_ (t) is not an uncertainty due to purely

quantum effects. Rather, O'Si (#) is the standard deviation of QlH in the equilibrium system A
(.e., "51,- (t) depicts fluctuations of QiH (t) from its average value as computed with the thermal



44 Z. Nussinov / Nuclear Physics B 953 (2020) 114948

density matrix pp ). The global average of the local variances o (12{1 () is that given by the canonical

density matrix p$anonical,

To further clarify the physical content of Eq. (79), (80), we may consider Q to be a single
position coordinate Q = r;, of particle i of mass m in a general many body thermal system A.
The index £ = 1,2, ---,d labels the Cartesian component of the particle location in d spatial
dimensions. The full many body Hamiltonian Hy = T + V contains kinetic energies (7) and
any position dependent interactions V({7i}). At any time ¢, the Heisenberg picture Hamiltonian
H A1) may be chosen to be the kinetic term (p;; 1))? /(2m) since only this term in the Hamilto-
nian Hx does not commute with ri[Z (t). From Eq. (79), we observe that in an equilibrated system
at temperature 7', the equilibrium fluctuations (o, H) in any Cartesian component of the individual

particle locations (r ) about their average equlllbrlum values must obey a simple inequality,

(0,0 drfE )] < "B%fz 81)

if the heat capacity associated with I:Il.H in the exact quantum system is lower than that com-
puted in the classical limit C, 7(T) < C"j!aISSica' = %B By the equipartition theorem, for any

- . 2 .
interactions V ({r;}), the classical thermal average (f—m)dassicw = kBTT and the associated heat
capacity C l‘f'aIs_Sica' = kTB. Stated equivalently, Eq. (81) will hold if the fluctuations o in the
quantum system given by the exact pp are bounded from above by those of in the classi-
(kpT)

2

cal limit, 02~H = (U%H)classical =
A, i,

classical __ e PHA
- classical
Zy

. Here, (012; )classical denotes the variance as computed
i

with p§ (with Z§assid the classical partition function) instead of computing

the standard deviation of H with the exact density matrix p. For a classical thermal system,
irrespective of the spatial dependence of the interaction V, the phase space integrals for comput-
ing (oé)dassicm decouple into those over the position coordinates and those for the individual

momentum components; the single momentum integral that does not cancel identically when

classical

averaging with pi involves only a Gaussian distribution %e Pie/@mkpT) leading, as

2nmkpT
it must by the equipartition theorem, to Eq. (81). With a simple substitution, Eq. (71) is similarly

realized with C,, 7 = k £ if the self-adjoint Q is any periodic function of an angle 6, that, amongst
2

all terms in Hy, does not commute only with a single kinetic term H = 2 1 (as happens when

[6p, Hp] = [6p, H 1). A physical realization is that of a molecular system with 6, denoting, for
2

. o . . P S
any single molecule, the angle around a principal axis of rotation and % an angular contribution
to the kinetic energy with /, the associated moment of inertia. Here, pg, is the orbital angular

momentum conjugate to 6, (i.e., pg, = —ihi a%b). For such molecular systems, Eq. (81) will hold
anew when interchanging the Heisenberg picture riIZ — Q(QZJ ) with Q any 2x periodic function

2 (kBT)2

of the angle 0y, if, as earlier, O (02~ H)c|assica| = . The analogous inequalities for the

fluctuations o of the canonically conjugate momentum component of an individual particle

are typically more involved since, generally, the momentum of an individual particle does not
commute with multiple interaction terms (this becomes more acute in systems with long range
interactions) that include the said individual particle coordinate r;,. That is, the Hamiltonian H
giving rise to the dynamics of p;¢ (i.e., all potential energy terms whose sum is the associated

force component —; dpj} —7i¢) includes all interaction terms in V ({#;}) containing r;,.
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We conclude this Section by connecting our results concerning uncertainties in intensive quan-
tities to conventional (non-weak [89-92]) quantum measurements. Qualitatively, interactions
with the environment might be expected to mimic rapid repeated measurements that collapse
the wavefunction and not allow Schrodinger type mixing states of significantly different energies
to exist. Such a colloquial “paradox” is somewhat ill formed as we now explain. Continuous mea-
surements by an environment will indeed not enable large uncertainties to appear. However, the
putative existence of continuous collapses will also not allow for any change in the energy den-
sity or other intensive quantities. This situation is reminiscent to the well-known “Quantum Zeno
Effect” [93]. Progressively weaker continuous measurements [§9-92] may allow for a more rapid
evolution of various quantities hand in hand with larger uncertainties. We will discuss adiabatic
process, quantum measurements, and thermalization in Section 15.

11. Deviation from equilibrium averages

In the earlier Sections, we demonstrated that forcefully varying the set of intensive (typical
state variable) parameters {g’} characterizing the eigenstates of H (such as the energy and par-
ticle number densities) at a finite rate generally leads to a widening of the distributions P ({g’})
of these quantities. This was investigated for systems both in the presence and absence of an ex-
plicitly included external environment with similar conclusions. Indeed, the causal constraints on
the effective interactions associated with the environment was the greatest physical distinction
of interest. In this Section, we wish to underscore that such a widening of the distributions P
allows for a natural departure from equilibrium behaviors. That is, even if the expectation values
of general observables in individual eigenstates coincide with equilibrium averages [37-45] and
H has no special many body localized eigenstates [46-54], once a broad distribution P ({g'})
is present, all averages differ from those in true equilibrium ensembles. This will occur since
the broad probability distribution P({g’}) describing the driven system is different from the cor-
responding probability distribution in equilibrium systems (where all intensive quantities have
vanishingly small fluctuations); thus the broad distribution P ({g'}) will give rise to expectation
values of typical observables that are different from those found in equilibrium. We write the
equilibrium averages of quantities O, that commute with the Hamiltonian ([O,, H] = 0) [95] in
a general equilibrium ensemble WV for large systems of arbitrary finite size,

<Oc)eq;{q};W = / dq/Peq;{q}({q/}; W)O:({q'y: W). (82)

Here, the integration is performed over the full set of intensive variables {g’} and the function
Peq;{q}({q’ }; W) denotes the probability distribution in an equilibrium ensemble WV for which
the average of the various quantities ¢ = [ dq’(q'Peq:(qy({q'}: W)). Lastly, Oc.({g'}; W) =
(OdUq" ;WO NP ({q'}; W)). Augmenting the set of intensive quantities {¢'} defining any of
the standard equilibrium ensemble probability distributions, the index WV may specify any addi-
tional quantum numbers. These quantum numbers may be associated with symmetries in which
case W can label the orthogonal degenerate eigenstates {|¢ ({g'}; W))} of fixed energy or particle
number or other global observables giving rise to the intensive quantities ¢. For instance, in Ising
spin systems, the probability distribution P, (,/({g’}’; VW) may be finite only for states with a
positive magnetization % ZlN: 1(87) as it is in these systems at temperatures below the ordering
temperatures once time reversal symmetry is spontaneously broken. An essential feature of all
systems in equilibrium is that they exhibit well defined thermodynamic state variables {g’}. For
instance, as we alluded to in earlier Sections, the energy density exhibits O(N~!/2) fluctuations
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in the open systems described by the canonical ensemble while it displays O(N ") fluctuations
in closed systems described by the microcanonical ensemble. In all equilibrium ensembles, the
width o, of any intensive quantity g vanishes as N — oo. This sharp delta-function like charac-
teristic of the probability distribution P, (,/y({g"})’; W) is diametrically opposite of P({g'}) for
which o is finite. Consequently, the expectation value in the driven system (Oc)griven during
the period in which {g’} are made to vary with time (that will be given by Eq. (82) with the
replacement of the equilibrium probability distribution P, by its non-equilibrium counterpart
with P({qg’})) will generally differ from the equilibrium average (Oc)eq:igyw-

We now relate the equilibrium and non-equilibrium expectation values. Because the equilib-
rium distribution P,y ({g"}; W) is, for large systems, essentially a delta-function in {¢'} (and
all additional numbers W), we may explicitly write the expectation values in the driven system
as

(Oc)driven Z/dq/P(q/;W)<Oc>eq;{q/};W- (83)

That is, the expectation values of the observables O, in the driven system may be expressed as
weighted sums of the equilibrium averages (O¢)eq: (41w With the weights given by the finite
width o, distribution P(q’; W) that we focused on in the earlier Sections [96]. The equilibrium
expectation values (Oc)q: (/v Oof Eq. (82) are experimentally known in many cases. Thus, to
predict the expectation values in the driven system, we need to know P(g’; W). In Eq. (83),
we allowed the probability distribution of the driven system to depend both on the general state
variables characterizing the eigenstates of H along with any additional quantum numbers W that
might be selected to define various equilibrium ensembles (e.g., the sectors of positive and neg-
ative magnetization in low temperature Ising systems or qualitatively similar sectors describing
the broken translational and rotational symmetries of an equilibrium low temperature crystal).

We next consider what occurs if driven systems fail to equilibrate at times t' >ty (when the
parameters {q} are no longer forcefully varied at a finite rate) and the system is effectively gov-
erned by the time independent Hamiltonian H and the distribution P(e’) of energy densities
as measured by the Hamiltonian A will identically remain unchanged at all times ¢’ > 7. To-
wards this end, we remark that, for a system with any fixed time independent Hamiltonian H,
the long time average of a general bounded operator O (that, unlike O., need not commute with
the Hamiltonian) is given by

tr+T T
Ol_,_a.:Tr(L;f) / dﬂ(’)”(/)):Tr(@ f dz’OH(t’)). (84)
ty tr+t

Here, p(¢7) the density matrix at the final time ¢y after which the Schrodinger picture density
matrix no longer changes in time, the Heisenberg picture OF (1) = ¢/ HW'~1)/h Q= 1H ' ~11)/h
and (as we have invoked it earlier) 7 is the said long averaging time. The instantaneous density
matrix p(t’ > ) is constant in time if and only if the density matrix pz(¢') of Eq. (50) is constant
in time for ¢’ > 1y + 7. From the latter “if and only if” relation, the second line in Eq. (84) follows.

Now, by the Heisenberg equations of motion, for bounded operators O, as T — oo, the com-

mutator [H, £ [/ ar o ()1 =~ 12 [117 4 490 =~ (01 (1 +T) - 0" (1)) =0,
In other words, O; ;4. is trivially diagonal in the eigenbasis of the Hamiltonian [95]. (For classical
systems, similar results are obtained when invoking Hamilton’s equations with the commutators

replaced by Poisson brackets.) For finite T, there are corrections to the vanishing commutator
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that scale as 1/ 7. Since, in the long time limit, O; ; ,. commutes with the Hamiltonian, we may
apply Eqgs. (82), (83). In particular, with the substitution O, = Oy; 4., Eq. (83) will provide the
long time averages of arbitrary observables O. For any ergodic system in equilibrium, the ther-
mal average of the operator of any long time average O; ; , of Eq. (84) is the equilibrium average.
Substituting in Eq. (83), one thus explicitly has

Otra = / dq' P(@'s W) (O)egstan - (85)

Along other lines, a similar conclusion was drawn in [23]. Eq. (85) is a general relation that holds
true independent of the results derived in the earlier Sections and is true also in classical systems.
From this equality we see that, excusing many body localized states [46—54], the only way that
long time averages may be different from equilibrium averages is that the distributions P (g’; W)
are not simple delta functions or simple combinations thereof (e.g., if (O)y:(4}:v has no de-
pendence on some set of g’ values then these may be superposed) that reproduce equilibrium
expectation values. Eq. (85) holds for general local and global observables. In the special case in
which O = )", O; is a sum of local operators using Eq. (85) to evaluate the long time average of
© and O? implies that the long time average of the pair correlators (O; O ;) need not vanish for
large spatial distances |i — j| if the distribution P(q’; W) is associated with a broad distribution
in O values (equilibrium averages for different ¢’ and W yield disparate values of O). In what
follows, we will ask whether an initially driven system may effectively saturate to a distribution
P (€') that relative to time independent Hamiltonian H exhibits a vanishingly narrow (o¢ = 0 as
in equilibrium systems) or to a finite width (o # 0) distribution. In Section 13, we will consider
a temperature (7)) dependent P (¢').

12. Effective equilibrium in driven systems

We now consider a closed system sans an environment (procedure (1) of Section 2). In this
setting, given the time ordered exponential U/ (t) = T exp(—% fot H(t")dt"), the density matrix
evolves as p — p(t) =U(t) pU (). It follows that any initial (Schrodinger picture) equilibrium
probability distribution p = f(H) with f a function of the Hamiltonian will evolve as

p=f(H)— p(t) = f(Her (1)), (86)

where H.rr(t) =U (t)HU' (¢). Thus, e.g., a general (canonical) Boltzmann distribution f in
H will evolve into a corresponding one in H.sr(t). Eq. (86) may further enable the proof of
other relations [97]. If H(t) is time independent for # # 0 (different from the initial (¢ = 0)
Hamiltonian H) then H.pr(t) = H H_p) (e., H,zy is equal to the Heisenberg picture Hamil-
tonian H™ at time (—¢)). If H is a local Hamiltonian then H.r¢ will remain local in the
Heisenberg picture operators at time (—¢). Thus, if, e.g., the system starts from a thermal
state at inverse temperature 8 (and, by Eq. (86), with a (Schrodinger picture) canonical ensem-
ble density matrix p = pcanicd — 7=1,=BH then at general times ¢, the probability density
p(t) = Z le=BHerr ) = 7—1,=BH"(=1) \ith (given the unitary evolution) the (time indepen-
dent) partition function Z = Tr[e PHerr ] = Tr[e~PH]. Thus, within the Heisenberg picture,
all observables of the driven system (starting from thermal equilibrium at inverse temperature )
will satisfy

dO(—1) i

H J—
7 ﬁh[o (=0),Inp()]. 87)
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Thus, the logarithm of the density matrix generates the dynamics for the time reversed operators
OH(—1) in the Heisenberg picture. Eq (87) holds also in the classical limit (with commuta-
tors replaced by Poisson Brackets (PB), 7 [AH BH]— —{A,B}pp=— Do (% ;’Tli — 37‘1 %)

with the sum over all generalized coordinates x, and their conjugate momenta p,). Thus, for a

driven classical system that starts from thermal equilibrium at temperature 7 (having, at time

t = 0, a classical probability density pcanonicaly,
dO(—t)
P =kpT{lnp(t), O(—1)}p5. (88)

Similar to the quantum commutators, the appearance of both ¢ and (—¢) in Eq. (88) captures the
opposite sign partial time derivatives of the classical probability density (Liouville’s equation)
and time derivatives of general observables O (Hamilton’s equations) when expressed in terms
of classical PBs. (By Liouville’s theorem, the time derivative of the locally conserved probability
density 0 = dp/dt is the sum of the partial time derivative dp/dt and the classical PB between
p(t) and the Hamiltonian leading to the latter opposite sign.) Eq. (88) suggests a similar equa-
tion also for overdamped dissipative systems so long as their microscopics are governed by an
underlying Hamiltonian (as, indeed, all real physical systems are) and may thus relate to earlier
analysis (e.g., [98]) in particular limiting cases. Eqs. (87), (88) further call into focus the impor-
tant role of the modular Hamiltonian (— In p) studied in previous works [103]. If the temperature
varies with time then in Eqgs. (87), (88) the relevant value of T (and of the inverse temperature
B) is that of the initial equilibrium state [104]. We stress that the invariance of the partition func-
tion under the unitary temporal evolution does not imply that the states p(¢) do not change their
character as the system evolves [105,106].

If the system no longer varies (or varies weakly) in time (e.g., the system approaches a
nearly stationary Heisenberg picture Hamiltonian H,rr(¢)) then the probability density matrix
p(t)=f(H H(_t)) will become (nearly) time independent. In particular, all expectation values
computed with p(¢) will be (nearly) time independent in much the same way that they were
in the original equilibrium distribution. (Moreover, for an adiabatic evolution the density ma-
trix becomes (by the adiabatic or Gell-Mann Low theorems [107]) p®a"onical agsociated with
the final Schrodinger picture Hamiltonian.) If ¢/(¢) and initial Hamiltonian H are both spatially
uniform then the resulting H (—t) defining the effectively equilibrated system will also be
translationally invariant. For any f, the standard deviation of H¥(—t)/N as computed with
f(H H(_t)) will be identically zero. However, as explained in the earlier sections, the variance
of the original Hamiltonian H (not the variance of H(—t)) may scale as N 2 A large variance
(og = O(N)) allows for (yet does not mandate) rapid dynamics under H. The von Neumann
equation "%y) = +[p (1), H] allows for stationary p(¢) regardless of the magnitude of oy = Noe.
An example is afforded by a Schrodinger picture density matrix diagonal in the eigenbasis of H,
and thus trivially stationary once the system evolves under H in the absence of external driving
terms. Similar to the discussion following Eq. (60), the off-diagonal spread of p determines its
fluctuation frequencies. Indeed, some systems (e.g., glasses that we turn to next) do not adhere
to the same equations of state as their conventional equilibrium (e.g., equilibrium solid and fluid)
counterparts yet may, nonetheless, appear stationary on very long time scales.

13. ““To thermalize or to not thermalize?”

The above question alludes to possible differences between (i) an effective equilibrium den-
sity matrix associated with a density matrix p(¢) (including those for the systems discussed in
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Section 12) that becomes nearly stationary (and thus a nearly constant p;(¢)) at finite long times
t and (ii) the density matrix associated with the truly asymptotic long time equilibrium density
matrix p.,. Most of our focus thus far has been on intermediate times 0 < ¢ <ty during which
the energy density (or any other intensive quantity ¢) varied. We showed that during these times,
the standard deviation of g may be finite, 6, = O(1). Thus, the variation of general quantities
g (including, notably, the energy density or temperature) may trigger long range correlations.
As discussed in Appendix E, this effect may be further exacerbated by “non-self-averaging”
[99-102] found in disordered systems. Our inequalities of Egs. (65), (69) hold for general fluctu-
ations (regardless of the magnitude of their “classical” and “quantum” contributions [28] to the
variance). In most systems coupled to an external bath, after the temperature or field no longer
changes (e.g., when |de/dt| vanishes at times ¢ > t) thermalization rapidly ensues already at
short times after 7. Indeed, there are arguments (including certain rigorous results) that “typ-
ical” states [88] might thermalize on times set by Planck’s constant and the temperature, viz.
the “Planckian” time scale O(kBLT) encountered in Eq. (70). Other, exceedingly short (as well
as long), equilibration time scales may be present [108]. The Planckian rate of Eq. (70) appears
in a host of interacting systems, e.g., [109—114]. Various reaction times are often given by such
minimal Planckian time scales multiplied by e2¢/%87) with AG the effective Gibbs free energy
barrier for the reaction or relaxation to occur, e.g., [114,115]. However, some systems such as
glasses do not achieve true equilibrium: measurements on viable experimental time scales dif-
fer from the predictions of the microcanonical or canonical ensemble averages. (The difference
between the microcanonical and canonical ensembles is irrelevant for all intensive quantities
in the absence of long range interactions for which “ensemble inequivalence” is known to ap-
pear [116—119].) In such cases (including, e.g., rapid supercooling of liquids that can lead to
glass formation), the system may effectively exhibit self-generated disorder. Structural glasses
are disordered relative to their truly thermalized crystalline counterparts. It is important to stress,
however, that both structural glasses and crystalline solids are governed by the very same (dis-
order free) Hamiltonian. The effective disorder that glasses exhibit is not intrinsic but merely
self-generated by the rapid supercooling protocol of non-disordered liquids. Thus, as hinted in
Section 11, the question remains as to whether, once the energy density or other intensive quan-
tity no longer varies (e.g., once the glass is formed and its temperature not lowered), the system
will thermalize on experimental time scales (and display the rightmost distribution of Fig. 1) or
not be able to do so. Similar to Assumption (3) of Section 10.1, starting from a glassy state, super-
cooled liquids achieve their true equilibrium (crystalline) state only at asymptotically long times
[125]. In systems that do not thermalize on experimental time scales, the discrepancy between
equilibrium ensemble averages and empirical observables hints that the width o, of the energy
density might become smaller than it was during the cooling process yet is not vanishingly small.
Indeed, if o, = 0 and no special “many body localized” states [46—54] exist then the long time
averages of all observables must be equal their microcanonical expectation values. Specifically,
similar to Eq. (85), the time average of a general quantity O over a long (finite) time 7 during
which the probability distribution P(g’; W) is nearly stationary is identical to the equilibrium
average, i.e., Opr.q. = (O)eq;(q';: v When the distribution P(q’; W) is of a delta-function type
nature in the energy density € and all other intensive quantities g. If the expectation values of the
thermodynamic equilibrium observables depend on the temperature or energy density (and are
the same for all states related by symmetries of the Hamiltonian) then deviations of long time
average values of observables O from their true equilibrium average values [23],

O.1.a. #* <O)eq;{q};W (39)
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will imply that the width of the energy density may remain finite even after the system is no
longer driven, o > 0. In glassy systems that, by their defining character, cannot achieve true
equilibrium (and thus satisfy Eq. (89)) on relevant experimental time scales, the link to the exter-
nal bath is effectively excised since the dynamics are so slow that little flow may appear. Here,
the finite long time averages of Eq. (84) may be employed. If, in such instances, the probability
density becomes time independent on measurable time scales then only an effective equilibrium
(different from the true equilibrium defined by an equilibrium ensemble for the Hamiltonian
defining the system) may be reached. That is, in systems with an effective equilibrium at suf-
ficiently long times, see Section 12, the probability density P(e’) may be history independent
and be a function of only a few global state variables yet differ from the conventional equilib-
rium statistical mechanics probability density in which the standard deviations of all intensive
quantities vanish, e.g., o = 0. Since the probability density determines all observable properties
of the system, interdependences between the state variables (i.e., equations of state) may result
[23]. Such a nearly static effective long time equilibrium distribution bears some resemblance to
“prethermalization” in perturbed, nearly-integrable, models and other systems, e.g., [120-124].
Indeed, if local observables do not vary rapidly in time then, by the Heisenberg equations of mo-
tion, these observables nearly commute with the Hamiltonian (and constitute nearly integrable
constants of motion). We remark that by applying the Matsubara-Matsuda transformation [65]
(similar to that invoked in Section 6.2), we may map the prethermalized three-dimensional spiral
spin states of [124] to establish the existence of long-lived effective equilibrium crystals of hard-
core bosons. As stated above (see also Section 12), at asymptotically long times, systems such as
glasses finally truly thermalize to true equilibrium solids [125]. However, prior to reaching the
true equilibrium defined by the any of the canonical ensembles for the full system Hamiltonian,
over very long finite times, the supercooled liquid/glass may display a nearly static distribution
P and thus obeys equations of state, absence of memory effects and other hallmarks of effective
equilibrium. Even when the equilibrium averages (O),,.{4/);»v feature non-analyticities at spe-
cific ¢/, the smeared average of Eq. (85) can be analytic (e.g., no measurable phase transitions
might appear as 7 is varied). In [23], we introduced this notion of an effective long time distribu-
tion P of finite o, and employed it to predict the viscosity of glass formers. This prediction was
later tested [126,127] for the measured viscosity data of all known glass formers when these are
supercooled below their melting temperature. Fig. 7 reproduces the result. Here, the probability
density Pr(€) at temperature 7 is a normal distribution with the (finite) energy density width

oo = ZM' (90)

Tnetr — T

In Eq. (90), A > 0 is a liquid dependent constant (0.05 < A < 0.12 for all liquids with pub-
lished viscosity data [126,127]). In equilibrium, such values of A ~ 0.1 would be typically
anticipated for effective classical harmonic solids/clusters (displaying a Gaussian distribution
of the energy density with o, = kpT2C,/ N¢sr where the heat capacity C, = dN,srkp and
€ =dkpT) of Nerr ~ 30 atoms in d = 3 dimensions. Albeit emulating such effective finite size
equilibrium clusters, the energy densities € and €,,.;; in Eq. (90) are, respectively, those of the
genuinely macroscopic supercooled liquid or glass at temperature 7' < T,,.;; and at the melting
(or “liquidus”) temperature 7,.;;. The wide distribution of Eq. (90) mirrors that present in non-
self-averaging disordered classical systems with an approximately linear in 7' standard deviation
and energy density €(7T'). (All eigenstates of the density matrix may share the same energy while
displaying a finite standard deviation o..) In the models of Section 6 (with the distribution of
Eq. (13) that was far from the canonical normal form of equilibrium systems), the systems were



Z. Nussinov / Nuclear Physics B 953 (2020) 114948 51

BS2 [ Diopside Ls2 oTP x Salol O Anorthite = Zr57Nid3 © Pd40Ni40P20
0O Zr74Rh26 A Pd77.5Cu6Si16.5 Curve Albite Cu64Zr36 = Ni34Zr66 Zr50Cu48AR2 © Ni62Nb38
0 Vitl06a A Cu55Zrd5 H20 X Glucose O Glycerol Ti40Zr10Cu30Pd20 - Zr70Pd30 Zr80Pt20
NSs2 Cu60Zr20Ti20 Cu69Zr31 X Cud6Zr54 X Ni24Zr76 0O Cu50Zr42.5Ti7.5 + D Fructose =TNB1
= Selenium CN60.40 CN60.20 Pd825i18 Cu50Zra5Al5 Ti40Zr10Cu36Pd14 © Cu50Zr50 + Isopropylbenzene
18 ° Butylbenzene = Cu58Zr42 o Vit O Trehalose ASec-Butylbenzene - SiO2

16

14 Jgé o
P °

12
S
%
S 10 wE¥
gg c:{"g o
= ﬁ\%
3 8 o;zyg‘ﬁfo
) o L Ak
Q o < e
6 ) 3
=~ 09*:“9.
o o™
4 o Qs .4
od ':'.‘ g X
2 090 085k GE";'?D?
Qo e
N e
0 & S
0 1 2 3 4 5 6 7
-2
_ T-T
x= =
vzar

Fig. 7. (Color online.) Reproduced from [126]. On the vertical axis, we plot the experimentally measured viscosity data
divided by its value at the liquidus temperature (17(7})) as a function of a dimensionless temperature ratio. The viscosities
of 45 liquids of diverse classes/bonding types (metallic, silicate, organic, and others) collapse on a single curve. The
underlying continuous “curve” (more clearly visible at high viscosities where fewer data exist) is predicted by Eq. (91).
Since A varies from fluid to fluid (albeit weakly) [126], the shown collapse does not imply a corresponding collapse of
the viscosity as a function of 7j/T nor as a function of 7;/(AT) (due, relative to the latter, to an additional shift along
the x axis that is set by — 1/(X\/§)).

driven by an external source whose effect on general quantities was cyclic in time. The situation
may be radically different when the system is no longer forcefully driven out of equilibrium yet,
nonetheless, is still unable to fully equilibrate. If, as in equilibrium thermodynamics, the final
state maximizes the Shannon entropy for a given energy then the probability distribution of the

T/k5Cy
N

energy density will be a Gaussian of width o, = and standard LN fluctuations result

(with o o« T for a nearly constant C,,). For systems of temperature 7 that have not fully equili-
brated, we may (as illustrated in the earlier Sections) find finite width Pr(¢’). If the distributions
Pr(¢’) minimally differ in form from those in equilibrium then they may still be Gaussian with
oc « T. Indeed, the general distribution that maximizes the Shannon entropy given a finite stan-
dard deviation o, (and average energy density) is a Gaussian. Adhering to Occam’s razor, the sole
difference between the distribution of the energy density in equilibrium systems and those that
we assume here for systems that have not yet achieved equilibrium is that in the latter systems

= O(1) (while o, = 0 for equilibrium systems in their thermodynamic limit). Non-rigorous
considerations further suggest the appearance of a Gaussian distribution once the system is no
longer further cooled (or heated), see Appendix M [128,129]. Assuming a normal distribution
Pr(€’) of width o, the viscosity 1 of supercooled liquids at temperatures T < Tj,.;; Was pre-
dicted (by an application of Eq. (85)) to be [23],

Ns.c. (Tmeir) _ Nse. (Tonerr)
e ) ()

n(T) = 1)
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Eq. (91) is a direct consequence of Eqgs. (85), (90) and the Stokes’ law [23]. This prediction
is indicated by the continuous curve in Fig. 7. The coincidence between this non-perturbative
prediction and the experimental data extends 16 decades of the viscosity increase and is a com-
pilation of the analysis of the data of 45 fluids [126]; the corresponding dimensionless ratio in
the argument of Eq. (91), x = ﬁe” T/ (the abscissa of Fig. 7), varies up to a value of six. Unlike

well known data collapse forrns in equilibrium transitions and conventional critical phenomena
in particular, the agreement between Eq. (91) and the experimental data does not wane for the
larger x (and viscosity) values. In fact, beyond an intermediate temperature range at which some
scatter is seen in Fig. 7, the quality of the data collapse improves as one progresses to lower
temperatures more removed from the equilibrium melting temperature 7;,.;; Appendix L. At the
so-called “glass transition temperature” T, the viscosity n(7,) = 102 Pascal x second [130].
At lower temperatures 7' < Ty, the viscosity is so large that it is hard to measure it on experimen-
tal time scales. We note that at sufficiently low temperatures (energy densities), the deviations
of Pr(e) from a putative normal distribution (assumed in deriving Eq. (91)) will become more
important (since the probability of having states of energies lower than the ground state is strictly
zero); other distributions such as log-normal have a strict cutoff below which their value vanishes.
Furthermore, in deriving Eq. (91), an assumption [23] was made that the viscosity of the equilib-
rium solid is infinite; any finite contributions (no matter how small) to hydrodynamic transport
from the equilibrium solid eigenstates will lead to larger hydrodynamic flow rates and viscosities
lower than those predicted by Eq. (91). These effects may be of larger relevance at very low
temperatures where the viscosity as predicted by Eq. (91) (in which these effects were excluded)
becomes exceedingly large. Replicating the derivation for the viscosity in [23] when the equi-
librium solid displays activated flow and thus, at very low temperatures, the net contributions to
the long time velocities v; ;4. of [23] from the occupied solid states overwhelm those from the
sparsely populated equilibrium fluid states replaces, at these low energy densities, Eq. (91) by an
activated Arrhenius form. Apart from predictions for the viscosity, more general transition and
relaxation rates may be investigated along similar lines [23,131].

One may use other words to rationalize the same physics suggested here regarding the relevant
distributions of eigenstates of the Hamiltonian/classical modes/ ... of different energies/frequen-
cies, etc. The very same distribution Pr(¢’) invoked in deriving Eq. (91) may relate other
properties of supercooled liquids and glasses to those of equilibrium systems. For instance, the
measured thermal emission from supercooled fluids may differ in a subtle manner from that of
typical equilibrium fluids. This deviation may be found by replacing Planck’s law for the spec-
tral radiance I for photons of frequency v in a system with well defined equilibrium temperature
T by a weighted average of Planck’s law over effective equilibrium temperatures 7’ that are
associated with internal energy densities of equilibrium systems that are equal to €,

2y [ Pr(T") 5
I, T)= 3 Ty — 1 Iprez (v, T). (92)
Here, PT(T )= Pr(e’)cy! (with the equilibrium specific heat capacity )l = dT,) is the distribu-
tion of effective equilibrium temperatures T’ associated with the probability distribution Pr(¢”)

P . .
of the energy densities. The second term, Ipyez = Zhy iﬂ%f:é) captures viable contri-

butions from any “Phase Transition Energy Interval” [23] (wherein the energy density €’ of an
equilibrium system may vary by an amount set by the latent heat without concomitant changes
in the corresponding equilibrium temperature 7”). More accurately stated, in Eq. (92), we may

replace W by u(v, T') — the energy density carried by photons of frequency v when
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the equilibrium system is at a temperature 7’ [23]. We highlight that this prediction for the emis-
sion spectrum [ (v, T) is determined by the same distribution predicting the viscosity collapses
of Fig. 7 (the Gaussian Pr(¢’) of the width given by Eq. (90)). As such, this prediction may,
in principle, be experimentally tested. This prediction is akin to that having an effective locally
varying temperature (similar to that associated with observed heterogeneities) whose distribu-
tion is determined by Pr. Similarly, the temperature dependence of other observables (including
various response functions) may be expected to have the same increase in the time scale as that
characterizing the viscosity. Indeed, the time dependent heat capacity response follows exhibits
a dynamical time that increases with temperature in a manner similar to the viscosity, e.g., [132].
We suspect that this increase in the relaxation time scale as the temperature is dropped may ac-
count very naturally for the experimentally observed smooth specific heat peak [133] near the
glass transition temperature 7, when the system is heated from lower temperatures (consistent
with T, marking a dynamical crossover rather than a bona fide thermodynamic transition [126,
127]). This is so since, at temperatures 7 < Ty, on the time scales of the experiment, the system
is essentially static (e.g., the viscosity of the Eq. (91) and the associated measured relaxation
times are large). Consequently, the relatively stable nearly static structures that appear once the
glass is formed need not significantly respond to a small amount of external heat. The situa-
tion is somewhat reminiscent of the extensive latent heat that is required to melt equilibrium
crystals. Pronounced thermodynamic changes appear at the transition between equilibrium fluids
and crystals. Once the supercooled liquid or glass becomes effectively static on experimental
time scales at T, it may weakly emulate the latent heat signature of the equilibrium liquid to
solid transition sans having true latent heat required to elevate the temperature. Contrary to the
weak peak in the heat capacity on heating, when the system is cooled from temperatures above
T, the heat capacity typically drops monotonically near T, and does not exhibit a peak (this
may reflect a memory of larger mobility at higher temperatures). A finite o, may naturally al-
low for a finite width temperature interval about T, where the empirically observed crossover
in the heat capacity and/or other quantities can appear on experimental time scales. In line with
our earlier discussion concerning general properties stemming Pr(¢’), Egs. (83), (85) [23] fur-
ther suggest that similar features may appear at other temperature at which other crossovers
appear (i.e., the ratio of the width of the temperature range where a crossover is observed to the
crossover temperature itself may be set by the scale of dimensionless parameter A appearing in
Eq. (91) for the viscosity). Indeed, simple estimates illustrate that experimentally observed heat
capacity crossover region is of the same scale as ZTg [135]. More generally, by simple dimen-
sionless analysis if the dimensionless parameter A is the most important feature of the system, the
temperature window over which crossovers occur may scale as f(A) T, with f the appropriate
function. By dimensional arguments, as a function of the temperature o = kT F ({%}) where
{T,} are any relevant temperature or associated energy scales (e.g., the melting temperature T},
and any other) and F is a function of the dimensionless temperature ratios; far away special
temperature scales, one anticipates a largely linear dependence of o, on temperature. A broad-
ening due to the finite 0. may supplant any existing features of the equilibrium system (having
oc = 0). More general than heat capacity measurements alone, we stress that, experimentally,
supercooled liquids indeed exhibit effective smooth crossovers instead of true singularities asso-
ciated with thermodynamic phase transitions that appear at well defined transition temperatures.
Thus, our suggestion is that the size of the temperature interval over which these crossovers
arise/are enhanced as a result of smearing by the finite width distribution Pr(e’) is set by the
effective crossover temperature scale multiplied by A. An energy density distribution of a finite
width o, allows for a superposition of low energy density solid type eigenstates (that may break
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continuous translational and rotational symmetries) and higher energy density liquid type eigen-
states [23]. Such a general combination of eigenstates does not imply experimentally discernible
equilibrium solid (crystalline) order. Sharp Bragg peaks need not appear in states formed by su-
perposing eigenstates that, individually, display order [23,134]. This absence of ordering reflects
the possible lack of clear structure when, e.g., randomly superposing different Fourier modes
with each Fourier mode displaying its defining periodic order. In an interesting preprint [136]
that appeared after an earlier version of the current paper [137], it was found that effectively
superposing (periodically replicated) finite size states of 16 or 24 atoms (so as have these states
as unit cells that are repeated to span all space) according to their Boltzmann weights accurately
reproduces the structure factor of certain structural glasses. This latter result is in accord with our
approach to glasses; the size of these 16 and 24 atom states is not too dissimilar from the order of
magnitude estimate, provided earlier in this Section, of the requisite number of atoms N,rr ~ 30
in an effective equilibrium solid that would lead to a Gaussian distribution of a width consistent
with our theory of glasses and the ensuing collapse of Fig. 7. It will be interesting to examine in
more quantitative detail whether distributions associated with states similar to those examined in
[136] adhere to the normal form that we invoked for P.

The mixing of eigenstates of different energy densities over a range set by o, further sug-
gests the appearance of non-uniform dynamics both in space and in time. The superposition of
different modes suggests non-uniform spatial dynamics. Interestingly, in accord with this conse-
quence of our theory, dynamical heterogeneities are empirically ubiquitous in supercooled fluids
[138-142]; these large fluctuations are still present even after the fluids remain in contact with an
external bath for a long time. To examine temporal fluctuations, we may invoke Eq. (85) when
the operator O is set to be vi2 and vf (i.e., the scaled kinetic energy of particle i and its square),
one may anticipate the standard deviation of vl.2 divided by square of the average of vl.z itself (i.e.,

VOO~ (WD)11.0)?

))1.1.a
energy divided by the average local kinetic energy instead of similar ratios for the global energy

density €). Such a ratio may be naturally determined by the width of the total energy density
distribution Pr(e) divided by an energy scale set by the squared velocity to vary with A; in-
deed, in equilibrium systems at a temperature 7’ having potential energies that are independent
of the momentum, the average local kinetic energy is, by the equipartition theorem, linear in 7’
and from Eq. (85) this ratio will yield the corresponding ratios for the equilibrium result when
smeared by the weight Pr(e) (or a similar distribution in the effective equilibrium temperatures
T’ where the equilibrium internal energy density u matches the energy density, € = u(7")). (Of
course, in experiment, one typically does not directly measure vi2 in a given system but rather v;.)
The presence of a spatially non-uniform energy density is very natural during general heating or
cooling processes (e.g., the exterior parts of a system being supercooled may be colder than its
interior, see also the discussion towards the end of Section 4). Once supercooling stops, heat may
diffuse through the system yet heterogeneities (generated in our framework from a distribution
of finite o) may persist for a long time [143].

Eq. (85) that enabled the prediction of the viscosity of Eq. (91) and other quantities does not
rely on quantum effects. An advantage of the quantum approach described in this Section is that it
allows for an accurate definition of the (eigen)states of the systems as opposed to the more loosely
defined classical microstates in which Planck’s constant needs to be introduced by hand in order
to produce a dimensionless number of states from phase space volumes [144]. Furthermore, in
standard classical treatments, one often needs to integrate the equations of motion numerically in
order to obtain results for various particular systems (this is particularly time consuming for slow

the dimensionless ratio which emulates the fluctuations in the local kinetic
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glassy systems). Alternatively, if numerics are to be avoided, assumptions may be made about
the classical energy landscape and configurational entropies. The quantum treatment invoked in
this Section is devoid of such assumptions. Nonetheless, one may translate the more fundamental
and precise quantum description into a corresponding classical one [23,126].

14. Possible extensions to electronic and lattice systems

The spin and hard core Bose models of Section 6 were defined on lattices. In this Section,
we will speculate and further discuss possible extensions to other, experimentally relevant, the-
ories and lattice systems. The electronic properties of many materials are well described by
Landau Fermi Liquid Theory [145-148]. This theory is centered on the premise of well defined
quasiparticles leading to universal predictions. Recent decades have seen the discovery of vari-
ous unconventional materials displaying rich phases [149-166,145] that often defy Fermi liquid
theory. Given the results of the earlier Sections, it is natural to posit that as these systems are
prepared by doping or the application of external pressure and fields (in which case the var-
ied parameter ¢ may be the carrier density, specific volume, or magnetization), a widening oy
will appear during the process. This wide distribution might persist also once the samples are
no longer experimentally altered. In such cases, the density matrices (and associated response
functions) describing these systems may exhibit finite standard deviations o; > 0. The broad
distribution may trigger deviations from the conventional behaviors found in systems having
sharp energy and number densities (0, = 0) or, equivalently, sharp chemical potentials and other
intensive quantities. In flat band and other systems displaying a plethora of degenerate/nearly de-
generate low-energy states, these fluctuations may be further enhanced. Theoretically, non-Fermi
liquid behavior may be generated by effectively superposing different density Fermi liquids (with
each Fermi liquid having a sharp carrier concentration n) in an entangled state. Systems harbor-
ing such an effective distribution P (i) of chemical potentials may be described by a mixture of
Fermi liquids of different particle densities. Any non-anomalous Green’s function is manifestly
diagonal in the total particle number. Thus, the value of any such Green’s function may be com-
puted in each sector of fixed particle number and then subsequently averaged over the distribution
of total particle numbers in order to determine its expected value when oy, # 0. In particular, this
implies that the conventional jump (set by the quasiparticle weight Z; /) of the momentum
space occupancy [145-148], in the coherent part of the Green’s function (G = G¢on + Gincon)
will be “smeared out” when o, # 0. Similar to Eq. (83), a distribution of chemical potentials (in
a Lehmann representation like sum) will lead to the replacement of the coherent Green’s function
of ordinary Fermi liquids by

Ziw
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G eonlh, ) = / du/' P(u) (93)

Here, 7; is the quasi-particle lifetime in a system with sharp u’ at wave-vector k. The de-
nominator in Eq. (93) corresponds to the coherent part of the Green’s function of a Fermi liquid
of a particular chemical potential u" and quasi-particle weight Z = 1 [145-148]. Qualitatively,
Eq. (93) is consistent with indications of the very poor Fermi liquid type behavior reported
in [168]. The effective shift of the chemical potential in Eq. (93) is equivalent to a change in
the frequency dependence while holding the chemical potential p fixed; the resulting nontriv-
ial dependence of the correlation function on the frequency (with little corresponding additional
change in the momentum) is, qualitatively similar to that advanced by theories of “local Fermi
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liquids”, e.g., [145,167]. Our considerations suggest a similar smearing with the distribution
P () will appear for any quantity (other than the Green’s function of Eq. (93)) that is diag-
onal in the particle number. Analogous results will appear for a distribution of other intensive
quantities. The prediction of Eq. (93) (and similar others [23] in different arenas) may be tested
to see whether a single consistent probability distribution function P accounts for multiple ob-
servables. General identities relate expectation values in interacting Fermi systems to a weighted
average of the same expectation values in free fermionic systems [169]. These relations raise the
possibility of further related smeared averages, akin to those in Eq. (93), in numerous systems.
Numerically, in various models of electronic systems that display non-Fermi liquid type behav-
iors, the energy density differences between contending low energy states {|*)} (not necessarily
exact eigenstates) are often exceedingly small, e.g., [170]. Since these states globally appear to
be very different from one another, the matrix element of any local Hamiltonian between any
two such orthogonal states vanishes, (*|H|y#) =0 for a # . We notice that, given these
results, arbitrary superpositions of these nearly degenerate states, ), aq|¥®), will have similar
energies. Thus, for many body Hamiltonians modeling these systems, a superposition of differ-
ent eigenstates may be natural from energetic considerations. Towards the end of Section 13,
we remarked on the viable disordered character of the states formed by superposing eigenstates
that break continuous symmetries. We now briefly speculate on the corresponding situation for
eigenstates in electronic lattice systems that break discrete point group symmetries on a fixed
size unit cell. Here, due to the existence of a finite unit cell in reciprocal space, a superposition of
eigenstates that are related to each other by a finite number of discrete symmetry operations may
not eradicate all Bragg weights. In other words, order may partially persist when superposing
states on the lattice that, individually, display different distinct structures.

15. Thermalization and quantum measurements

As we demonstrated in the current work, rapidly driven systems may exhibit uncertainties
in their energy and/or other densities. We now close our circle of ideas and focus on the dia-
metrically opposite case of unitary evolutions — slow adiabatic processes (for which, obviously,
dg/dt = 0); this discussion will complement that of Section 12. In this Section, we will further
speculate on relations concerning thermalization that superficially emulate those of quantum
measurements. In line with the focus of the current work, the latter purely hypothetical connec-
tions suggest that the absence of thermalization may allow for broad distributions.

As well known, a basic tenet of quantum mechanics is that a measurement will project or “col-
lapse” a measured system onto an eigenstate of the operator being measured. A natural question
to ask is whether such effective projections may merely emerge as a consequence of an effective
very rapid thermalization of microscopic systems. To motivate this query and more generally
examine effectively adiabatic processes, we consider a Hamiltonian

Haup(t) = Ha+ Hap(t) + Hp 94)

describing the combined system of two systems and the coupling between them (H4p). This
Hamiltonian emulates H of the subsystem-environment hybrid of Eq. (4). We first examine
what occurs when the coupling H4p(¢) changes adiabatically from zero. Consider the situation
wherein, initially, at times ¢ <0, systems A and B were in respective eigenstates |¢,,) and |¢, )
of H4 and Hp. That is, at times ¢ < 0, the state of the combined system A U B was described
by the product state of these two eigenstates. We further assume that at times ¢ < 0, the coupling
Hyp(t) =0 and for times ¢ > 0 an adiabatic change of H4p(¢) ensues. Under these conditions,
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by the adiabatic theorem, at any later time ¢, the initial state evolves into a particular eigenstate
|@nap ()) of Haup(t), we have |¢,,)|Pny) — |@n, (). We may expand the density matrices
pa.p of the initial system A and B in terms of the eigenvectors of H4 and Hp. Expressing the
density matrix paup(#) of the combined system at time ¢ in the eigenbasis of Hyeqsure(?), the
density matrix evolves as

> P D01 Bng) Gl Bugl = D uanslbins O nys O (95)

nanp nang

Hence, if both systems A and B start from equilibrium (and thus have sharp energy densities —
i.e., if at r = O the eigenstates of H4 and Hp of significant amplitude were clustered around a
given energy density) then an adiabatic evolution of H4p(t) will yield a density matrix paup
having a sharp energy density, o¢, , () = 0. Thus, the notion that sufficiently slow processes en-
able systems to remain in equilibrium is indeed consistent with the adiabatic theorem of quantum
mechanics.

We next comment on how such adiabatic processes (and later briefly discuss more general
thermalization events that need not be adiabatic) may superficially emulate certain features of a
wavefunction collapse. Towards that end, we consider the extreme case of a microscopic system
A (“being measured”) and a macroscopic system B that we may regard as an environment that
includes a coupling to an experimental probe at the measurement time #,,¢q5ure. AS earlier, for a
general adiabatic evolution, |¢,,,(0)) = |¢n 5 (tneasure)). We now allow the coupling Hx g (1)
to be non-vanishing at all times ¢ (i.e., also including times ¢ < 0) and, due to its ease, first briefly
discuss the case when its evolution is adiabatic.

Under these circumstances, by the adiabatic theorem, [¢pAup (fmeasure)) Must be an eigenstate
of Haup (tmeasure)- Thus, such an adiabatic evolution emulates an effective “collapse” onto an
eigenstate of the Hamiltonian that measures the state of the microscopic system A. We emphasize
that the state |¢paup (tmeasure)), describing both the microscopic system A and the large system
B, will be in an eigenstate of Haoup (fmeasure) —1-€., not only the small system A will be altered by
the measurement. While, at any time ¢, the state |¢p4up (¢)) is an eigenstate of Hayp (¢), its highly
entangled content largely remains unknown. Thus, unique predictions for the outcome of other
future evolutions cannot be made. Certain “realistic” setups involving quantum measurements
often entail higher energy “thermal” states of the measurement device (e.g., the reaction between
silver ions and the screen that they strike in a Stern-Gerlach type experiment creating visible
spots on a screen). The collapsed system is in an excited state.

The effective “collapse” brought about by such an adiabatic process may be nearly imme-
diate for microscopic systems A. Typical lower bounds on time scales for adiabatic processes
defined by an energy difference AE are set by i/ AE (for precise bounds see, e.g., [175]). Such
scales are consistent with the uncertainty relations and our bounds of Section 10. For small
energy splittings AE, this adiabatic time scale may become large. The above discussion of a
hypothetical adiabatic evolution is merely illustrative. A potentially more practical question con-
cerning realistic Hp () is that of the thermalization of the full system. At room temperature, the
“Planckian time” scale for the equilibrium thermalization of random initial states [88] (see also
Section 10.2) is h/(kpT) ~ 10~13 seconds (e.g., the typical period of a thermal photon). The
latter time scale may be smaller than that required for an adiabatic evolution yet is still finite; one
may attempt to probe for such an effective finite time collapse produced by thermalization (cf.,
any such deviations from the textbook “instantaneous collapse”) only at extremely low temper-
atures. The very rapid thermalization evolution suggested here allows for multiple measurement
outcomes with different probabilities. A measurement provides only partial information on the
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many body entangled state |[¢p4up(f)) formed by A and B — it does not specify it. Conditional
probabilities may be assigned to the possible future evolutions of this entangled state (and thus of
future measurement outcomes thereof). Thus, our suggestion concerning thermalization is some-
what similar “Quantum Bayesianism” [176] and other frameworks relying on entanglement, e.g.,
[177,178].

Further parallels between equilibration and certain features of an effective collapse in quan-
tum measurements are motivated by the Eigenstate Thermalization Hypothesis [37-45]. When
valid, this hypothesis equates the results of local measurements of general observables O in pure
eigenstates {|¢;)} (of energies {E,}) of a general Hamiltonian (including Hamiltonians describ-
ing a coupling between a measurement device and a microscopic system) with expectation values
in equilibrated thermal systems defined by the full system Hamiltonian,

(@nlOlpn) = Tr(p(En)O). (96)

Here, p(E,) is an equilibrium density matrix associated with the energy E = E, (and, when
applicable, any other conserved quantities defining the state |¢,) and the thermal system). Taken
to the extreme, Eq. (96) suggests that we may relate two seemingly very different concepts:

(i) An effective collapse to an eigenstate. The lefthand side of Eq. (96) yields the results
of quantum expectation values associated with (projecting the system onto) eigenstates of the
Hamiltonian (also describing, as in a realization of Eq. (94), the measurement process — the
substantial coupling ||Hapgl|| > ||Ha|| of the environment (B) containing a measurement device
to the measured quantity (A) and) providing the dynamics.

(ii) Equilibration. The righthand side of Eq. (96) reflects the outcomes of equilibration (in
which, inasmuch as any observable O can inform, the system effectively becomes indistinguish-
able from an eigenstate of the very same Hamiltonian associated with item (i)). As noted above, in
a realization of Eq. (94) describing a typical measurement, this Hamiltonian displays a dominant
coupling between the measurement device and the quantity being measured, ||Hapgl|| > || Hall.

That is, denoting by pcoirapse the probability density matrix following the collapse to an eigen-
state of the measurement device and pequilibrarion that associated with equilibration of the small
system with the measurement device, Eq. (96) suggests a very qualitative relation,

)Ocollapse“z”pequilibration . o7

When Eq. (96) holds for general measurable observables O, then it will be consistent with
Eq. (97) (inasmuch as those observables are concerned). Unlike “collapsed” eigenstates of sys-
tem Hamiltonians, general equilibrated systems display dynamics. (In the Eigenstate Thermal-
ization Hypothesis, fluctuations are associated with assumed small random off-diagonal (in the
eigenbasis of the system Hamiltonian) matrix elements of general observables O.) More general
than adiabatic processes alone, thermalization shares other commonalities with quantum mea-
surements. Just as a quantum measurement (and ensuing collapse) is not a time reversal invariant
operation [179] so, too, is a typical finite 7 thermalization process. Indeed, even classically, as
the Szilard engine and other idealized constructs underscore, measurements mandate the trans-
fer of heat. The second law of thermodynamics is consistent with an evolution of the entangled
A U B system displaying a non-decreasing entropy upon performing consecutive measurements
(compatible with indeterminate outcomes for other subsequent measurements thereafter). What
we are suggesting/asking here is whether the evolution of a collapse to an eigenstate following a
quantum measurement (an eigenstate of H4p) is no different than a particular case of a unitary
evolution with a Hamiltonian (the latter having ||Hapg|| > ||H4||). A sufficiently long time evo-
Iution with H4yp leads, in systems that thermalize with this Hamiltonian, to an equilibrium state.
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Whenever the Eigenstate Thermalization Hypothesis applies, the resulting equilibrium thermal
state (to which the system will evolve) will be an eigenstate of the Hamiltonian H4yp. In other
words, after a (possibly very short) thermalization time after which the system equilibrates, the
system will indeed effectively “collapse” to an eigenstate of H4yup describing the coupling be-
tween A and B. If the system is already an eigenstate of H4p then it will remain stationary —
a “measurement” will lead to a constant outcome. If the system A is not an eigenstate of Hyp
then it may evolve and “precess” due to the applied external “field” H4p. In a simple setting, the
long time average of general observables will be the average over the measurements associated
with these “precessions” (mirroring the phase fluctuations of Eq. (60)). The long time average
associated with Hyp (or any other Hamiltonian) will be given by Eq. (85). If the Eigenstate
Thermalization Hypothesis holds then a far stronger result will appear: the longtime average over
microscopic precessions will correspond to an expectation value of the said observable within a
single eigenstate of the full Hamiltonian Hayp.

A notional link between (i) and (ii) is naturally compatible with the appearance of wide distri-
butions of various measurable quantities in non-equilibrium systems. Regardless of the validity
of the Eigenstate Thermalization Hypothesis of Eq. (96), any equilibrium expectation value is an
ensemble average over states having a sharp value of intensive state variables g. Thus, as alluded
to in Section 11, barring special eigenstates [46—54], the system may rather straightforwardly ex-
hibit non-equilibrium behaviors if the distribution of its intensive thermodynamic state variables
q is, quite simply, not a delta function. We conclude this Section by underscoring that (as we
explained in several of the previous Sections) the central result of the current paper regarding the
existence of wide distributions in non-equilibrium systems does not rely on quantum effects nor
the character of quantum measurement (on which we speculated above). Similar behaviors may
appear in classical systems. The use of the quantum language in the current article merely made
our considerations more precise and also gave rise to the bounds of Section 10.

16. Conclusions

We illustrated that a finite rate variation of general intensive quantities may lead to long range
correlations. In the simplest variant of this effect, in systems having varying intensive observ-
ables g (such as the energy density €) for which i—‘t’ = (O(1), an average connected two site
correlation functions need not vanish even for sites are arbitrarily far apart. Trivial extensions
hold for weaker variations of intensive quantities. For instance, if only short range effects of the
environment appear (e.g., fluids with local couplinf to their boundaries) and, consequently, for
an N site system residing in d spatial dimensions, - = O(N ~1/d) then the average value of the
connected two point correlation function for an arbitrary pair (i, j) of far separated sites may be
asymptotically bounded as G > O(N~%4) [201].

In the quantum arena, the general non-local correlations that we found relate to the macro-
scopic entanglement present in typical thermal states. Our results highlight that, even in seem-
ingly trivial thermal systems, one cannot dismiss the existence of long range correlations. Our
analysis of non-equilibrium systems does not appeal to conventional coarsening and spinodal de-
composition phenomena (although the departure from a spatially uniform true equilibrium state
in spinodal systems is very naturally consistent with a distribution of low energy solid like and
higher energy fluid like states). Cold atom systems may provide a controlled testbed for our ap-
proach. We speculate that our results may also appear in naturally occurring non-equilibrium
systems. As we explained (Section 13), the peculiar effect that we find may rationalize the un-
conventional behaviors of glasses and supercooled fluids. Our effect might further appear in
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electronic systems that do not feature Fermi liquid behavior (Section 14). Here, a broad distribu-
tion of effective energy densities and/or chemical potentials may appear. The validity of weighted
averages such as that of Eq. (93) may be assessed by examining whether a unique distribution P
simultaneously accounts for all measurable quantities. In Section 15, we illustrated how adiabatic
processes maintain sharp thermodynamic quantities and speculated that a nearly instantaneous
equilibration of small systems with macroscopic ones may emulate certain features of quantum
measurements. We hope that our suggested effect and analysis will be further pursued in light of
their transparent mathematical generality and ability to suggest new experimental behaviors (e.g.,
the universal viscosity collapse of supercooled liquids that it predicted and is indeed empirically
obeyed over sixteen decades (Fig. 7)).

While deriving the above, we arrived at other results. These include the finding of universal
bounds relating thermalization and time derivatives of general observables (Section 10.2), ex-
plaining how driven system may be described by an effective equilibrium distribution in which
the dynamics are universally generated by the logarithm of the corresponding probability den-
sity matrix (Section 12), and speculatively pointing to similarities between unitary dynamics,
thermalization, and quantum measurements (Section 15). Additional technical details have been
relegated to the Appendices. In Appendix M, we motivate the appearance of long time Gaussian
distributions in both equilibrium and non-equilibrium systems.
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Appendix A. Order of magnitude time estimates

For radiation traveling at a speed ¢, during a time interval Az, an extensive (i.e., volume
proportional) amount of radiative heat A Q,,4 may flow into a d dimensional system of linear
scale L if L < ¢(At). Thus, bulk effects from radiative heat exchange may only be present after a
sufficiently long time ¢ = L/c after radiative heating or cooling begins. Similarly, if the effective
radiative absorption lengths £g and ¢p of, respectively, the media comprising the system and
the surrounding heat bath satisfy £5 p 2 L then the total system radiative heat flow rate may
be proportional to its volume, AQ,,q/At = O(V). The existence of a minimal time scale in
non-relativistic systems may be proven from the Lieb-Robinson bounds (see Appendix B).

We now briefly provide order of magnitude estimates. If, e.g., L is the order of 1 cm for a
sample of index of refraction ~ 1 and the relevant velocity v = c is a typical radiation speed (as
in, radiative cooling or heating) then the requisite minimal time scale #pi, = % ~3x 10~ gec.
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Experiments on supercooled liquids typically involve cooling at a rapid finite rate (thus, the ex-
perimental time scale ¢ > #in). In metallic liquids (that form glasses when supercooled), often
in experiments one uses (radiative) laser beam heating. In typical metals, heat and charge effec-
tively travel at a finite fraction (typically of the order of 1072) of the speed of light ¢ reflecting
the effective speed of electrons in a metal. The effective heat and charge transport velocities may
be the equal to one another in conventional metals obeying the Wiedemann-Franz law. The heat
transfer rate is bounded by the rates of any of the individual (radiative/conduction/convection)
processes that contribute to it. Thus, if either the typical radiative or conductive processes occur
at speeds associated with a finite fraction of the speed of light ¢ then so, too, is the total heat
transfer. In metals as well as in systems where the radiative penetration depth is larger than or of
the scale of the linear dimension of the material, the speed associated with heat transfer is rather
large and, correspondingly, the minimal time scale can, in these instances, become very short.

The continuity equation for the local energy density, d;¢(X) + V. ]’(}) = 0 where X denotes a
spatial location in the continuum limit. If the average current flowing through the system surface
lj| = |e|lvg where € is the global average of the local energy density with vy a speed charac-
terizing heat or energy flow through a boundary of A) and the volume V = O(AL) then the
rate (dE/dt)/E = O(vg/L). That is, the time required to change the system energy density is
proportional to L.

Appendix B. A finite rate of change of intensive quantities and the Lieb-Robinson light
cone

In driven systems with de/dt = O(1), the commutators with expectation values equal to
d E /dt must be extensive. Specifically, both in (1) closed systems with a time dependent Hamil-
tonian (as in, e.g., Section 8), the commutator [H H(ty H] (where HE (¢) is the Heisenberg
picture Hamiltonian) as well as in (2) settings similar to those in Sections 4 (Eq. (4) therein)
and 10, namely a subsystem with Hamiltonian H in contact with the full system of Hamiltonian
H, where the relevant commutator is given by Eq. (55), the above two-Hamiltonian commu-
tators are of order O(N). In both (1) and (2), for local Hamiltonians, one may examine the
constraints implied by causality as these appear via the Lieb-Robinson bound [30] for commuta-
tors [Ag (¢), B(0)] of local Heisenberg picture operators .A and B that have their support centered
about sites i and j. In particular, whenever the Lieb-Robinson bound applies, the operator norm
(] - ]]) of commutators between any two local quantities .4 and B is bounded from above by

ILA# (1), BO)]|| < e Tali=iImunliD), (B.1)

Here, a and ¢’ are constants and v\ g is the Lieb-Robinson speed of Section 4. The Lieb-Robinson
speed plays the role of the velocity of light in relativistic theories. Since, by the Heisenberg
equations of motion, the commutators in both cases (1) and (2) have an average given by the
derivative of the energy d E/dt and since the latter is of order N, i.e., dE/dt = O(N) when
the energy density varies at a finite rate, the upper bounds on the two Hamiltonian commutators
must also be of order N. Equivalently, as we next detail, the Lieb-Robinson “light cone” [30],
during the times at which the energy density as measured by H/N varies at a non-zero rate,
is of the scale of the entire system. The Schrodinger picture Hamiltonian H of the combined
system (S) + environment (£) hybrid may be expressed as H =H + Hs_g + Hg where H
is the system Hamiltonian, Hs_¢ denotes the coupling of the system to its environment, and
Hg is the Hamiltonian of the environment. When only bounded local interactions appear in the
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system-environment hybrid, we will write the Hamiltonians (in the form of Eq. (1) (explicitly
rewritten below) and its generalization),

H=Y H (B.2)

and

Hs_g+He=) My (B.3)
J
as, respectively, sums of the bounded local operators {#;} and { ;/}. In what follows, as through-
out the main text of the paper, p will denote the density matrix of the system-environment hybrid.
By Heisenberg’s equations of motion, with € = ~%Tr[ﬁH H (1)] the energy density of the system
(where H (1) =UT (1) HU(r), with U(t) = e~ H/" for a time independent H in Eq. (54)), the
derivative i /i % is given by

1 ~
~ 2 T ®, HD
1
= 5 2 Tr@H @, H ) + HY @)+ HE 0)
1
= 5 2 Tr O (1), HY ¢ () + HE 0. (B4)

The first equality of Eq. (B.4) invoked the trivial invariance of H under time evolution with
U@)=e MM (e, H=U(t)HU(t) = H" (1)). The last equality in Eq. (B.4) follows since,
in the second commutator, H (1) = > ’HZH (t) similarly commutes with itself. For ¢ > 0, the
norm of the above commutator average

1
51 2 Tr @A 0, HE o) + HE 0

1

= Z Tr(BIH (1), 1 (0O)D)]
i,j’

¢ —a(li—j'|—vLrt
SNZ;E (li=j"I=vLr) (B.5)
ij
The decomposition of the system Hamiltonian H = ) ; H; is into a sum over local regions spans
N’ = O(N) terms — the number of sites in the system. In the last inequality, ¢’ is a constant,
and a and vy g denote the Lieb-Robinson decay constant (inverse correlation length) and speed
respectively of Eq. (B.1) [30]. Rather explicitly,

\Tr I @), 1 O] < 1T (1), H D111 (B.6)

In order to derive Eq. (B.5), we note that the Lieb-Robinson bounds of Eq. (B.1) [30] applied
to the local operators appearing in the Hamiltonian, ||[H/ (1), ’Hﬁ O] < leali=i"I=vLrD) jm.
ply Eq. (B.5). For each i € S, there is a minimum distance D (i) between i and the surrounding
region where the operator sum (Hs_g 4+ Hg) has its support. For any such i, we may bound
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(from above) the sum over all j’ of the exponential e~/ I=vLr) by a sum of this exponential
over the larger domain external to a sphere of radius D (i) around i (such a volume contains £
as a subset). For sufficiently short times 7, the sum over CN/ i e~alli=j'l=vLrt) in Eq. (B.5)
tends to zero for macroscopic systems (since the minimal distance D (i) of a typical i € S to its
surrounding environment is of the order of the system length). For vanishingly small times, the
latter sum of e~ (i=J'I=vLr!) gver such a larger domain of ;' values with |i — j'| > D(i) de-
cays exponentially in D(i). Specifically, in d spatial dimensions, LN/ Zi’ J e~ ai=J'I=vLRD) gcales
as O(D?e=P) for large distances D. Putting all of the pieces together, we see that the Lieb-
Robinson bounds imply that at vanishingly short times, %| Zi Tr(ﬁ[HIH ), H 1D is bounded
from above by a function that is exponentially small in the length of the system. In other words,
under the above specified locality conditions, the energy density of a macroscopic system cannot
change at a finite rate at sufficiently short times. A corollary of these inequalities is that in a
local theory in which the Lieb-Robinson bounds hold, a transient time Hamiltonian describing
the effects of the environment cannot change instantaneously in such a way as to give rise to
a finite change in the energy density of the system. Thus, generally, the environment may not
truly instantaneously couple to (nor decouple from) a finite fraction of a macroscopic system
(in the form of an effective instantaneously varying Hamiltonian H (t') (as in Section 6) when
procedure (1) of Section 2 is invoked). The influences of the environment (and variations in any
Hamiltonian that emulate the effects of the environment) are limited those associated with “light
cone” distances of size (v rt). The above calculations may be replicated, nearly verbatim, for
operators associated with other intensive quantities ¢ different from % of Eq. (B.2).

Appendix C. Relating equations of motion to correlations

In this Appendix, we will allow for the effects of an environment £ on the system S (as in
the system-environment hybrids of type (2) of Section 2) when all interactions (H) are time
independent. We will demonstrate that:

o If the energy density of the system changes at a finite rate then there must be system length
spanning correlations between the external environment and the system itself.

A formal proof of this assertion is straightforward. Using the notation of Appendix B and the
main text, by the Heisenberg equations of motion,
de

0 -
<dt

B %‘Tr(ﬁ[ﬁ, M| = %‘Tr(ﬁ[ﬁi, sH')|

1
- W‘ S TralsH (0, sHE o (1) +8H£{(t)])‘. (C.1)

For any of the Hamiltonians appearing in Eq. (C.1) which we now generally represent by Q, we
define Q0 = (Q — (Q)) = (Q — Tr(pQ)). Apart from trivial shifts by (—(Q)), Eq. (C.1) and

its derivation are identical to those of Eq. (B.4). For all operators A and Z%, ‘Tr(ﬁ[/i, lg])‘ <

3

2 X max {‘Tr(ﬁ(flé))

Tr(ﬁ(l’;'ft))‘ } Thus, from Eq. (C.1),
0< %Xi:max [ )Tr(ﬁ(aHﬁ(t)(aHg_g(t) + aHg’(r)))) ‘

77 (5G6HE )+ oHE @ysul )]}, (C2)
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Since the number (N') of system sites i associated with the bounded local operators HlH
(Eq. (1)) is N' = O(N), from Eq. (C.2), we see that the average correlator between the lo-
cal 8?—[{{ (that, apart from a set of vanishing measure, all lie in the system bulk at a distance
D = O(L) from the surrounding environment) and the fluctuations (§ H g_ g®)+3H g (t)) must
be finite. In other words (as is expected), the correlator between the bulk and the Hamiltonian
coupling it to the surrounding environment is of order unity. Given Eq. (C.2), this typical or-
der unity correlator (the average over all sites i) between (§ H g_ ¢ +48H 817 (t)) and SHiH (1)
is of a uniform sign. This uniform sign character is emulated by the uniform sign coupling
between the collective (environment) coordinate g in the solvable examples of Section 7 to
each of system degrees of freedom i (corresponding to a uniform sign coupling for each of
the spokes between the environment £ and the sites of the system S in the cartoon of Fig. 3).
For random sign couplings of uniform strength between the system and its environment, the

energy density might vary at an O(N~!/?) rate. The above holds irrespective of how large

N may be so long as (i—j) is non-vanishing. We next consider what occurs when, similar

to Appendix B, we invoke Eq. (B.3) and express the Hamiltonian of the environment and its
coupling to the system as a sum of local terms ({#;} with j ¢ S). In such a case, Eq. (C.2)
will imply that if there is an exponential decay length & associated with the larger of the
two connected correlations functions G (t) = (8H;(1)6H j(t)) = Tr(p(8H;(t)6H j(¢))) and
Gji(t) = (6H ;) ()6H; (1)) = Tr(p(8H j»(1)6H;)(¢)) then & 2 O(L). Similarly, if the correla-
tor decays algebraically, |G;;/| ~ |i — j'|~7, then Eq. (C.2) implies a finite rate of change of
the energy density for large systems sizes L only if p < d with d the spatial dimensionality of
the system and the environment. It is noteworthy that the commutator of Eq. (C.1) has (when
evaluated with p) an imaginary expectation value for the Hermitian Hamiltonian operators. For
semiclassical systems, the real component of the correlator G, is, typically, far larger than its
imaginary part (which we bounded in the above). Stated equivalently, the expectation value of
the anticommutator {67, (t), 6H j(¢)} is, in semiclassical systems, normally far larger than the
expectation value of the commutator [§H; (1), §H j ()]

Appendix D. Conditional probability arguments for long range correlations

As we explained in Appendix C, a driven system (one in which the intensive quantities change
at a finite rate) must exhibit long range correlations between observables (#;) at sites i in the
bulk to the environment (£). We now apply “classical” probability arguments to demonstrate that
when these long range correlations between different sites in the system and its environment are
present, then the local Hamiltonian terms #; at different sites in the system bulk may exhibit
long range correlations. Towards this end, we write the classical joint probability distribution
P(E¢, E;, E;) associated with the values (E; ;) of the energies H; and H; at the two sites i, j
in the bulk (in the system S) and the energy (H ‘gf s+ H g’ (7)) affiliated with the environment
& (denoted by E¢). In the context of Appendix C, the joint probability distribution

P(Eg, Ei, E)) =Tr| 5 8(HE o)+ HE (1) = Eg()8(H; — Ei(0) 8(H; — E; 1))
Other joint probabilities are defined similarly. By the chain rule of conditional probabilities,

P(Eg,Ei, Ej) = P(Ei|Eg, Ej) P(E¢|Ej)P(E)). (D.1)



Z. Nussinov / Nuclear Physics B 953 (2020) 114948 65

i N _ P(Ei.Eg.E))

Here, P(E;|Eg, Ej) = “PEs.E)
(with a local “thermometer”) of value E; given a value of the local energy (E) at site j and the
above defined energy E¢ associated with the environment £. Now, if 7 is independent of j then

is the conditional probability of measuring a local energy

P(Ei|Eg, Ej) = P(Ei|E¢). (D.2)
Subsequently, Eq. (D.1) reduces to

P(Eg,Ei,E;) = P(E;|Ec)P(E¢|E;)P(E)). (D.3)
The classical joint probability P(E;, E;) then reads

P(E;, Ej) = Y P(Eg,Ei, E))

Eg
:ZP(Ei|E£)P(E£|Ej)P(Ej)- (D.4)
Eg

This, in turn, implies that the conditional probability between the values of E; and E; at the two
sites in the system bulk is given by

P(E{|Ej) =) _ P(Ei|Eg)P(E¢|E;)
Eg
_ Yge P(Ei|Eg)P(E;|Eg) P(E¢) D.5)
> ke P(EJIEg)P(Eg) ' :

In the second (alternate form) line of Eq. (D.5), we invoked Bayes’ theorem. Appendix C demon-
strated that in a (quantum) system in which the energy density varies at a finite rate, there the
energy fluctuations in i and £ are not independent of one another. Similarly, the energy fluc-
tuations in j and in & are correlated and not independent of one another. Thus, in general, the
conditional probabilities

P(E;i|E¢) # P(E;) and P(E¢|E;) # P(E¢). (D.6)

(Analogously, for the conditional probabilities appearing in the second line of Eq. (D.5), a cou-
pling between the driving environment and the bulk implies (as formalized in Appendix C) that
P(Ej|Eg) # P(Ej).) These inequalities are expected to generally hold for both quantum as well
as classical systems since, at their core, these relations indeed reflect the bulk coupling between
the environment driving the system and the system itself necessary to induce a finite rate of
change of the energy density. (See also the discussion in Appendix C concerning semiclassical
systems.) When the inequalities of Eq. (D.6) are substituted in Eq. (D.5), we will generally have

P(Ei|E;) # P(E;). (D.7)

That is, the local energy fluctuations at (arbitrarily far separated) sites i and j in the system
bulk are not independent of one another as assumed in deriving Eq. (D.4). Thus, there may be
non-trivial correlations between any two such sites i and j in the driven system S. With reference
to Eq. (3), we now see that (even for large |i — j|) the covariance

Gij= Y (PUEIE) - P(ED) P(EDEE;, D.3)
Ei E,

need not vanish (and may be of order unity). If the coupling to the environment is the dominant
contribution to the correlations G;; when |i — j| is large then when the coupling between the
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environment and different sites i in the bulk is (nearly) constant, then all connected pair corre-
lators G;; appearing in Eq. (3) will be of (almost) uniform magnitude (and sign). Under these
conditions, o = O(1). The above conditional probability arguments may be extended verbatim
to general situations when general observables in £, i, and j may carry time and/or other indices
in addition to spatial ones. Indeed, in the simple conditional probability computations above the
specific physical content of these labels was irrelevant.

Appendix E. Other long range correlations

It has long been known that algebraic power law correlations may appear in non-equilibrium
steady states of fluids and other systems in which the energy density and other intensive quantities
do not vary with time and in which a coupling to spatially non-uniform external bath was a local
boundary effect [180-182]. The existence of a spatially non-uniform profile of the local energy
density may enhance the large fluctuations that we find in the current work. We will briefly touch
on related aspects towards the end of Section 13. In classical systems with local interactions,
broad distributions of various observables may also occur in the thermodynamic limit when these
systems are disordered. This phenomenon is known as “non-self-averaging”, e.g., [99-102]. In
these disordered systems, an ensemble average of a physical observable computed over different
disorder realizations may differ significantly from the expectation value of the same quantity in
any single member of the ensemble. The systems that we will focus on in the current work need
not be disordered nor critical. However, given the absence of self-averaging in such disordered
classical systems, we remark that the broadening that we find will also apply to various systems
when the (“ensemble of”’) eigenstates of the density matrix effectively describe these different
disorder realizations of classical critical systems. This is so since, in such cases, an average
computed with the probability density matrix p will reproduce the average associated with an
ensemble of disordered classical states.

In the driven system, the correlators G;; of Eq. (3) may be finite. By evolving (forward and
backwards) in time, one can examine the correlations of general quantities in the driven system.
Egs. (3), (4) allow for other non-local covariances to be finite. Specifically, whenever Eq. (3)
holds, regarded as a formal operator, the Heisenberg picture Hamiltonian H Hip) = Ut (tH)H u (),
evaluated for times ¢ at which Eq. (3) applies, will trivially, exhibit a standard deviation that is
O(N) when computed with the initial density matrix p at (i.e., prior to driving the system). The
proof of this assertion is straightforward. If (H (¢)) = Tr(5H" (t)) then,

Tr[pH" ) = (T 0D = Tr[dsut o - = 0)72)] E.1)
Whenever Eq. (3) holds,
Tr[5H" 0 — (H 0)7] = 0. (E2)

Thus, rather trivially, when evaluated with the initial probability density matrix p, the operator
(HH (t) — (H" (1)) exhibits an O(N?) variance. This allows for non-local correlations similar
to those in Eq. (3) for operators different from H also at initial times before the system is driven.
In special cases, when H H () will remain a sum of local terms similar to those in Egs. (1),
the simple derivation of Eq. (3) may imply non-local correlations for operators do not appear
in the Hamiltonian H at time ¢ = 0. We will indeed precisely encounter such correlations and
further elaborate on viable preparation of non-product form type states with these correlations
in the example of Section 6 (discussed in some detail in Appendix I and Appendix J) where
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the correlations in the initial state assume a particularly simple form. In certain other instances,
the operator H () may become non-local and thus the long range covariance might not be too
surprising.

It should be stressed that in the current work we explain how long range correlations of the
particular form of Eq. (3) for the local energetic terms {#;} may arise when the corresponding
energy density (% > ;{H;)) changes at a finite rate (and also explain how similar correlations
appear when other intensive quantities vary at a finite rate). With the exception of a brief dis-
cussion at the very end of Section 11, we will not discuss results concerning macroscopic range
correlations that are different from Eq. (3). That is, in this paper we will largely analyze only
correlations between the driven observables. For completeness, however, we must remark that
many other nontrivial correlations may appear between quantities that are not driven. Indeed,
long range correlations may even appear in equilibrated systems. As has been long known, sys-
tems such as the celebrated AKLT spin chains [183—187] as well as Hubbard [188—-190], t — J,
[191] the Kitaev honeycomb [192], and lattice Bose models [193] may indeed display nontrivial
long range correlations. For instance, the AKLT spin chains exhibit non-trivial long range string
correlations in their ground states [184—187] in addition to more mundane conventional short
range nematic type correlations [194,195]. In [194,195], a general algorithm was provided for
the construction of non-vanishing string type and other correlators for general entangled ground
states.

Appendix F. Entangled Ising chain eigenstate expectation values produce thermal
averages

In order to explicitly illustrate how macroscopic entanglement may naturally appear in typ-
ical thermal states (even those of closed systems that have no explicit contact with an external
bath), we turn to a simple example — that of the uniform coupling one dimensional Ising model
(the Hamiltonian H; of Section 5 on an open chain with uniform nearest neighbor coupling —
Jij = J). In these appendices, we will dispense with factors of 72/2 and use the conventional
definition of the Ising model Hamiltonian with the spin at any site r being S? = £1 (i.e., the
diagonal elements of the Pauli matrix o). In each Ising state product state, the value of (S7S°))
is either 1 or (-1). This single Ising product state expectation value differs from that of the equi-
librium system at finite temperatures. It is only if we compute the expectation value within a state
formed by a superposition of many such product states (i.e., an expectation value within such a
highly entangled state) or if we average under uniform translations of the origin (i.e., entangle
with equal weights all states related by translation) that we will obtain the equilibrium result.
The Ising operators S; are diagonal in the product basis; different product states are orthogonal
to each other. In a superposition of different product states, only the diagonal (i.e., weighted Ising
product expectation values) terms are of importance when computing (S7S7).

We consider a highly entangled eigenstate |W) of the one-dimensional Ising model. Such an
entangled state emulates, in real space, entangled eigenstates |vy; Sror, Sipp) With (for systems
in their thermodynamic limit) [S”/Smax| < 1 (i.e., not product states of all spins maximally
polarized up or down along the field direction) of the spin models discussed in Section 6. For
an Ising model H; on a one dimensional chain of length L, given an eigenstate of energy E,
the frequency of low energy nearest neighbor bonds (namely, S7 = S5, = £1 (“$1” or “{]”))
is p and that of having higher energy bonds (i.e., “4|” or “}1”) is ¢g. Clearly, p + g =1 and
(g — p) = E/(LJ) where J is the Ising model exchange constant and E is the total energy. In

the one dimensional Ising model there is no constraint on the nearest neighbor bonds S;S; 1
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(these products are all independent variables that are “+1” or “-1” that sum to the scaled total
energy E/J). Consider a spin at site » which is, say, “1”. We may now ask what is the aver-
age value of a spin at another site r’. Evidently, if there is an even number of domain walls (or
even number of energetic bonds) between sties r and r’ then the spin at site r’ is “4” while if
there is an odd number of domain walls between the two sites then the spin at site r’ is “}”.
The average (S7S7) = (p — @)Vl That is, if we have an even number of bad domain walls
(corresponding to an even power of ¢) then the contribution to the correlation function will be
positive while if we have an odd number of domain walls (odd power of ¢) then the contribu-
tion to the correlation function will be negative. The prefactors in the binomial expansion of
(p—q)r— 'Iaccount for all of the ways in which domain walls may be placed in the interval
(r,r'). However, (p —q) = (—E)/(LJ). Thus, the correlator (S7S7) = [(—E)/(LJ)]"~"'|. This
single eigenstate result using the binomial theorem indeed matches with the known results for
correlations in the Ising chain in the canonical ensemble at an inverse temperature 8 = kBLT where
E=—J(L—1)tanh8J and (Sfo,) = (tanh,BJ)"”,‘. The agreement of the spatially long dis-
tance correlator result in one eigenstate with the prediction of the fixed energy microcanonical
ensemble is obvious. The above probabilistic derivation for general sites r and r’ will hold so
long as the eigenstate |1) is a sum of numerous Ising product states (all having the same energy
or, equivalently, the same number of domain walls). If this result holds for all site pairs (r, r’)
then the entanglement entropy is expected to scale monotonically in the size (or “volume”) of this
one dimensional system. Indeed, a rather simple calculation (outlined in Appendix G) illustrates
that if the L site system is partitioned into subregions A and B of “volumes” L4 and Lp (with
L = Ly + Lp) then if, e.g., V) is an equal amplitude superposition |¥ ) of all Ising product
states (i.e., an equal amplitude superposition of the product states |s1s2 - - -sy) of Section 5) that
all have a given fixed energy then the entanglement entropy between regions A and B scales as
min{ln L 4,InLg}.

Broader than the specific example of this Appendix, the coincidence between the single (en-
tangled) eigenstate expectation values with the equilibrium ensemble averages is expected to
hold for general classical systems in arbitrary dimensions. To see why this is so consider the ex-
pectation value of a general observable (including any correlation functions) that is diagonal in
the basis of degenerate classical product states. When computed in a state formed by a uniform
modulus superposition of degenerate states (e.g., the equal amplitude sum of all local product
states of the same energy), the expectation value of such an observable may naturally emulate
the microcanonical ensemble average of this observable over all classical states of the same
energy. Finite energy density states (i.e., states whose energy density is larger than that of the
ground state) formed by a uniform amplitude superposition of all product states generally exhibit
macroscopic entanglement. As we have elaborated on in this Appendix, this anticipation is real-
ized for the classical Ising chain. For the classical Ising chains discussed above, the below two
general quantities are the same for a general observable O: (i) the mean of the expectation values
of O in all local product states that are superposed to form general (not necessarily an exact uni-
form modulus superposition of degenerate states) highly entangled states and (ii) the average of
O as computed by a classical microcanonical ensemble calculation. As we emphasized earlier,
general thermal states may exhibit “volume” law entanglement entropies [56]. However, not all
eigenstates that display the equilibrium value of the correlators (S7S%,) need to exhibit volume
law entanglement. As alluded to above, in the next Appendix, we will compute the entanglement
entropy associated with |V, ) and show that it is macroscopic even in one dimensional systems
albeit being logarithmic in the “volume”.
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Appendix G. Entanglement entropies of a uniform amplitude superposition of classical
product states

We next discuss the reduced density matrices and entanglement entropies associated with (1)
the eigenstates |¢y) = |Uy; Stor, Sip;) Of Section 6 when S;,; happens to be maximal (S;,; =
Smax), (2) the symmetric quantum states described of Appendix F, and a generalization thereof
that we now describe. Specifically, we will consider general Hamiltonians that may be expressed
as a sum of decoupled commuting local terms, H = Zf:] H; (i.e., N’ = L in the notation of the
Introduction) on a Hilbert space endowed with a simple local tensor product structure. We denote
the eigenstates (of energies ¢,,) of each of the local operators H; by {|v7i )}. For such systems,
any product state |c¢) = |v{"')) ® Ivénz)) Q- ® |v£"L)) is, trivially, a eigenstate of H (of total
energy E, = Zi[‘:l €n;). Formally, one may think of H; as decoupled independent commuting
“quasi-particle” operators (i.e., colloquially, H describes “an ideal gas” of such quasi-particles).
We now explicitly write the states that are equal amplitude superpositions of all such product
states |c) of a given total energy,

1
v, )= c). G.1
V1) = s E;; €) G.1)
Similar to the discussion of Appendix F, for observables O, that are diagonal in the {|c)} basis,
the single eigenstate expectation values (W, |Oy|W,) are equal to the microcanonical equilib-
rium averages of (Og) eq;me in which the energy E is held fixed. In Eq. (G.1), N (E) = eSE)/ks g
the number of product states |c) that have a total energy E (and S(E) is the associated Boltzmann
entropy). The states of Eq. (G.1) describe those of the Ising spin states alluded to in Appendix F.
Such states rear their head also in other arenas. For instance, since, in a many body spin system,
the state of maximal total spin S;,; = Smax 18 @ uniform amplitude superposition of all product
states having a given value of S’ (i.e., a uniform amplitude superposition of all states of de-
coupled spins in a uniform magnetic field that share the same energy), states of the type |Wy)
include the eigenstates that we analyzed in Section 6 (when these states are those of maximal
total spin). The entanglement entropy that we will compute for | W) will thus have implications
for these and other systems. We partition the L site system into two disjoint regions A and B and
examine the entanglement between these two subvolumes. To facilitate the calculation, we will
employ the symmetric combinations

Ea)s =~ > Head)
M VN ED E({caD=Ex m
1
E =— . G.2
Ep)+ = —rmes > Hesd (G.2)

E({cg)=Ep
In the first of Eqs. (G.2), the sum is over all product states {|c4)} having their support on the sites

1 <i < L4 that are of fixed energy E 4. Similarly, the symmetric state |Ep) extends over the
sites L4 + 1 <i < L. With these definitions, we rewrite Eq. (G.1) as

NA(EADNB(E — E
|W+>:Z A(EA)NB( A)

N(E) |EA)+|Ep =E — Ex)y. (G.3)

Ex

The density matrix associated with this state is p4 = |V, ) (W, |. To compute the entanglement
entropy, we next write the reduced density matrix
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1
pr+= Trape = s > WNA(EA)NB(Ep =E — Ey)
Ex

X|Ep=E — Ex)4(Ep=E — Eal4). (G.4)

If a given system is partitioned into two non-interacting subsystems A and B then the sole relation
linking the two subsystems will be the constraint of total energy E = E4 + Ep. Of all possible
ways of partitioning the total energy E = E 4 + Ep, one pair of energies E 4 and E g will yield
the highest value of S5 (E 4) + Sp(E ). The ratios appearing in Eq. (G.4),

NaEDNB(E —Ex) _ (s,(En+Sa(E-En)-S(E) ks
N(E) ’

follow, upon Taylor expanding the ratio to quadratic order about its maximum at Ejand Ep =
E — E 4, a Gaussian distribution with a standard deviation set by

op =\ kgT2C (1). (G.6)

In Eq. (G.6),

(G.5)

e (1)
P (1) + ¢ (1)
The latter Taylor expansion may be carried out for energy densities associated with finite tem-
peratures. (In the vicinities of either the ground state value of the energy density or the highest
energy density, the derivatives of the entropy relative to the energy diverge and the Taylor ex-
pansion becomes void.) The entropies S4(E4) and Sp(Ep) appearing in Eq (G.5) are those of
subsystems A and B that, as emphasized above, for non-interacting particles, are merely con-
strained by the condition that E4 4+ Ep = E. For this non-interacting system,

eSEV ks ZeSA(EA)/kBeSB(EB:E—EA)/kB’ (G.8)

Ea

Cf)jf(T) = (G.7)

and thus, trivially, S(E) > SA(E4) + Sp(Ep). As throughout the current work, in Egs. (G.6),
(G.7), T denotes the temperature (set by the condition that the canonical ensemble equilibrium
internal energy Tr(He PH)/Tr(e=PH) is equal to the total energy E). The entropy of the Gaus-
sian distribution scales as the logarithm of its width. Specifically, for the saddle point Gaussian
approximation of Egs. (G.5), (G.6), (G.7),

1
Sent.+ =—Tr(pp.+Inpp 1) = 5 InQ2rog + 1) ~Inog, (G.9)

where in the last asymptotic form, we made manifest the assumed extensive L4 g > 1 (and thus
o > 1). If SA(E4) = O(L,) and Sg(Ep) = O(Lp) when L4 p > 1 then, from Eqgs. (G.0),
(G.7), (G.9), the entanglement entropy for states of finite temperature (i.e., states exhibiting a
finite energy density above that of the ground state value),

Sent,+ =Omin{ln L 4, In L}). (G.10)

We reiterate that generic states of fixed total energy will exhibit an entanglement entropy pro-
portional to the system volume (see, e.g., the considerations of [56]). Even though a system of
non-interacting particles is trivial and its properties may, generally, be exactly computed, its en-
tanglement entropy may be macroscopic. We next discuss two specific realizations of Egs. (G.9),
(G.10).
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G.1. Maximal total spin eigenstates

As noted above, for any fixed S7,,, the eigenstates of Eq. (6), | W) corresponds to a maximal
total spin (Syor = Smax) state of the L = N spins (with the given value of S7,,). In order to relate
this to our general results of Egs. (G.9), (G.10) for the entanglement entropy, we consider the
local Hamiltonians H; forming the Hamiltonian H = va:l H; tobe givenby H; = —B.S;. With
this, |W,) of Eq. (G.1) is an eigenstate of S7,, (with each product state |c) being an eigenstate of
all {S7} operators). We consider what occurs if the N spins are partitioned into the two groups
A and B of approximately equal numbers L4 and Lp, and |w| = |S5,,/(AS;or)| < 1. In this
case, the saddle point approximation of Eq. (G.5) yields, as before, a Gaussian distribution and,
a consequent logarithmic entanglement entropy,

Sent.+ = O(In N). (G.11)

Thus, as highlighted in Section 6, initial states |I//2pm> of maximal total spin and |w| < 1 feature
logarithmic in volume entanglement entropies.

G.2. Ising chains

Returning to the considerations of Appendix F and the notation introduced in Section 5, we
now consider the symmetric sum of all Ising product states that share the same energy (as mea-
sured by the Ising Hamiltonian H; of Section 5). As in Appendix G.1, we can transform the
problem of computing the entanglement entropy of such symmetric states |\, ) into that involv-
ing eigenstates of decoupled local Hamiltonians H; that led to Egs. (G.10). Towards this end, we
focus on the nearest neighbor spin products that were crucial to our analysis in Appendix F, and
define the operators

l<i<L-1: R =SS,
RL =S]. (G.12)

The Ising Hamiltonian now explicitly becomes a sum of the above defined decoupled commut-
ing operators, Hy = —J Zf;l R;. Using the vocabulary that we employed earlier, the “quasi-
particle” operators {R,-}il‘::T1 are associated with the existence (R; = —1) or absence (R; = 1)
of domain walls between neighboring Ising spins. On the two subregions A and B, we define
Hpyp=—-J ZZL A Riand Hg; = —J ZiLz_LIA +1 Ri. The equal amplitude superposition of all Ising
product states of fixed energy can be rewritten as

1
Vi) =orm Do Inraeew), (G.13)

r1:72, 5L

where r; = £1 denote the eigenvalues of R;. When evaluating the reduced density matrix pp;4 =
TralWiy){W4], the trace over all Ising spins {s;< ,} that lie in the spatial region A is replaced
by that over {r;<r ,}. Repeating the earlier calculations we find, once again, the entanglement
entropy of Egs. (G.6), (G.7), (G.9) [196]. Equating the internal energy of a system given by Hy
to E we see that, when L > 1, the temperature appearing in Eqgs. (G.6), (G.7), (G.9) is given by

o= —tanh”! (%) (G.14)

In Eq. (G.7), the heat capacities of the Ising chain subsystems A and B (when L4 g > 1) are
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D) =kpLa g (67 - (BE2EY), (G.15)
Lap

Eq. (G.10) provides the asymptotic scale of the entanglement entropy; similar to Eq. (G.11), if
L4 and Lp are both of order of the system size, L4, g = O(N) then the entanglement entropy
Sent:+ of the symmetric state will scale logarithmically in N. General eigenstates may exhibit
larger entanglement entropies (see Appendix N).

Appendix H. The total spin of large systems

We now discuss the total spin sectors that may appear in the spin model of Section 6.1. Our
aim is to highlight both statistical and physical aspects of the total spin and its scaling with
the system size N. All states with maximal total spin and definite eigenvalues of the total S},
operator are eigenstates of the general Hamiltonian Hjp;, of Eq. (6). (These eigenstates span the
basis of all ferromagnetic spin states with spins uniformly polarized along different directions.)
ThlS assertion may be explicitly proven by the followmg snnple observations: (i) For any two spin

= 1/2 operators, the scalar product S S = h2( Pij — 4) where P;; is the operator permuting
the two spins, (ii) Any state of maximum total spin (St = Smax = N#/2) is a symmetric state
that is invariant under all permutations {P;;}. From properties (i) and (ii), it follows that any
state |Stor = Smax = N7/2, S;) is an eigenstate of both the first and second terms of Eq. (6)
and therefore of the full Hamiltonian Hyp;,. Thus, any state of maximal total spin S;o; = Smax
that is an eigenstate of S;,, is automatically an eigenstate of Hj,;, of Eq. (6). In general, when
Stor < Smax, only some linear combinations of the multiple states of given values of S;,; and
S5, are eigenstates of Hyp;, (hence the appearance of additional quantum numbers v, defining
general eigenstates |¢y)). To make this clear, we can explicitly write down the total spin for a
system of N spin S = 1/2 particles. That is,

N—2'1®1—1@0
Tt 2527 ’
N=3 1®1®1—3@1@1
- 2727272727
1 1 1
N=4 §®§®5®__2@1®1®1@0@0

(H.1)

The first (textbook type) equality of Eq. (H.1) states that singlet (S = 0) and triplet (S = 1)
total spin combinations may be formed by adding two (N = 2) spins of size S = 1/2. Other
well known relations are similarly tabulated for higher N. Since Hy;, is defined on a (25 + nHy
dimensional Hilbert space, its eigenstates span all states in the direct product basis on the lefthand
side of Eq. (H.1). For each N, the sector of maximal spin (S;o; = Smax = N S) is unique. However,
for N > 2, all other total spin sectors in Eq. (H.1) exhibit a multiplicity M, , larger than one.
While it is, of course, possible to simultaneously diagonalize the Hamiltonian of Eq. (6) with the
two operators Sy,; and S5, there are multiple states that share the same eigenvalues of S;,, and
Sfor- Using the characters X, ~of spin Sy, representations of SU(2), we find that there are
N N!(2S80r + 1)

rot (%+&W+DK%—&M!

sectors of total spin 0 < Sy, 5 5 on the righthand side of Eq. (H.1). The decomposition into
characters of SU(2) has a transparent physical content. Consider a global rotation by of all spins
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an arbitrary angle 6’ about the z axis. The trace of the operator that implements this rotation
is the same into the different basis appearing in Eq. (H.1): (1) the product basis (the lefthand
side of Eq. (H.1)) of N spins of size S = 1/2 and (2) the basis comprised of the total spin
sectors (the righthand side of Eq. (H.1)). When expressing the basis invariant trace of the arbitrary
rotation evolution operator in terms of the Laurent series in ¢'/2 that arises when taking the
trace of the rotation operator, the series must identically match in both of these bases of Eq. (H.1).

Equating the trace as evaluated in (1) and (2) as discussed above, we explicitly have (2 cos —)N
_ i — Sto / sin(2Sy,, +1)— .
> S, MS,(,,XS,O, with ¥g,, = > e 'St = # from which Eq. (H.2) follows by

Fourier transformation. Perusing Eq. (H.2), we see that for large N, the highest values of MN

occur for small S;,;; in Eq. (H.1), a “randomly” (“infinite temperature”) chosen state of N > 1
spins is most likely to have S;,; < O(v/N). Specifically, if we approximate, for fixed N >
Stor > 1, the distribution of binomial coefficients in Eq. (H.2) by a Gaussian, we trivially obtain

252
IN+3 o=
M{va ~ 726 S[gl. (I 13)
tot Nif

The binomial character of Eqs. (H.2) with the associated asymptotic Gaussian form of Eq. (H.3)
is not unexpected: a summation of N > 1 random classical spins (when these are viewed as
uniform length displacement vectors) leads to a total spin that, similar to that appearing for
the total displacement in random walks (sum of the uniform length displacements), follows a
Gaussian distribution. As seen in our equations, the situation for quantum spins is qualitatively
similar. Even though, when N > 1, states of low S;,; /N ~ O(N —1/2) are statistically preferred
in the entries of Eq. (H.1), physically finite S;,;/N ratios are naturally mandatory in numerous
instances (including the ability to cool/heat the energy density of the system at a finite rate). For
instance, sans symmetry breaking fields, in low temperature ferromagnetic states (having a finite
magnetization density or, equivalently, an extensive total spin), the total spin value S;,; = O(N).
In the presence of the applied symmetry breaking field in Hy,;, of Eq. (6), such a finite average
of (Sf,;/N) arises at general finite temperatures. Furthermore, as noted above, in order to have a
finite rate of change of the energy density by applying the transverse field By of Eq. (8), we must
have that the total spin S;,; = O(N).

Appendix I. Correlations in rotationally invariant spin systems driven by a uniform field
I.1. Long range correlations

We will now briefly underscore that any eigenstate of |¢,) of Eq. (6) having S;,; = O(N)
with |w| < 1 displays long range correlations. As we will further explain, such macroscopic
spin states with |w| < 1 must appear if the application of a transverse field in the example of
Section 6.1 leads to, e.g., either (1) finite second cumulants (i.e., variances) the change of the
energy density (in addition to a finite rate of variation of the energy density as required for the
systems that we analyze) or generally leads to (2) finite second derivatives of the energy density
for time dependent external fields (such as those of Eq. (I.9) below).

First, we make the correlations in these states explicit by writing down two simple equalities,

(502 = 5{(32 = (55)) = 3[Sir S+ D° = (57,0°], (LD
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and

Nh?
((St)?) = D (SFST)+ 3 (SHH =D USTS) + —— 12)
i#j i i#]j
Combining Egs. (I.1), (1.2), and noting that in any eigenstate |@,) of the S7,, operator, the expec-
tation value (Sl?‘ ) = 0, one finds that, on average, for all i # j, the pair correlator

1 rerr ey e St Sior + 1) = )% = (S7,)?
NE-D ;«S,- S5 = (SIS = : (13)

IN(N — 1)

For fully symmetric states |¢,) (those associated with a maximal total spin, S;o; = Smax = N°S),
all of the correlators when i % j are equal to each other and given by the righthand side of
Eq. (I.3). The possibility of correlations in the initial state is consistent with our discussion fol-
lowing Egs. (E.1), (E.2). In the exactly solvable model system of Section 6, these correlations
are of a particularly simple form of Eq. (I.3).

1.2. Cumulants and higher order derivatives of the energy density for various fields

We next explain how the correlations described in Appendix I.1 for initial states of the models
of Section 6.1 may be inevitable in various circumstances.

L2.1. Finite variances of the derivative of the energy density

As we noted earlier, in order for the system to display a finite rate of variation of its energy
density (the focus of the systems discussed in our work), the spin system of Eq. 6 must have
macroscopic (O(N)) total S7,, (as in a ferromagnet). While a finite average correlator for large
li — j'| (such as that resulting when S;,; = O(N) and |w| < 1) might appear paradoxical, one
must recall that for these states |¢y ), the application of the transverse field of Eq. (8) led to a finite
range of change of the energy density. That is, when evaluated in these states, the expectation

H
value of the time derivative of the Heisenberg picture Hamiltonian fl—f = %(%) # 0 for

general times 7. Indeed, the latter inequality defined our problem (that of a finite rate of change

H
of the energy density). Given that, at most times ¢, the first moment of % in the state |¢y ) is
finite, it is no surprise that its second cumulant (i.e., the variance) may also be finite at these or
other times. Indeed, when f(; By (t") dt’" = 0(mod m),

L i N dHT 0\ ByOB:Y o
W((( dt ) >_< dt > ) _< N ) <(St0t) > (1.4)
Thus, for those times ¢ at which 8(¢) = 0(mod 7) (which, coincidently, for w # 0, £1, are the

dH" (1)
dt

only times at which 'é—f = o = 0) if the second cumulant of % is finite then the initial

N
implies a finite average value of ((S} S}f ) —(S) (S;f )) for far separated sites i and j. Hence, the

correlations of Eq. (I.3) are not unexpected in systems generally exhibiting finite cumulants of
H H
% %. We must caution that, of course, the possibility of a finite first cumulant of % %

at general times does not mandate the existence of a finite second cumulant (i.e., a variance) yet

certainly does not preclude it (as is indeed the case for our example of Section 6.1). Generally, one
dH" (1)
dt

X 2 X 2
state ngin) = |¢y) must display a finite ((‘3’5’) ). From Eq. (I.2), a non-vanishing ((h) )

. These contributions

anticipates a finite variance from the different local contributions to
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are generally correlated due to the coupling between the local contributions (the local spins) to
the external drive (the transverse field of Eq. (8)) to all spins in the system so as to change the

energy density at a finite rate (as motivated by the qualitative discussion of Eq. (4)). That the

variance of 1 dH” T @ s given by Eq. (I.4) may be explicitly seen as follows. In the Heisenberg

picture, an evolutlon under the transverse field Hamiltonian of Eq. (8) leads to the precession

St (@) =S, cos0(t) — S5, sin6 (1), (L5)
where, as in the main text, 6(¢) = f(; By (t")dt’. Invoking Eq. (6), this yields

dHH (1)
dt
giving rise to Eq. (I.4) when 6(¢) = 0(mod 7).

=BZBy(t)< < sing () — SE, cos@(t)), L6)

1.2.2. Finite averages of the second order derivative of the energy density
Higher order derivatives may be similarly examined. We next discuss the average of the sec-
ond derivative of the energy density,

d>Sé,, (1) ) dB, .
dt"; = —S87,[B3(t) cost + d—ty sind]
dB
S By — d—ty cos6). (1.7)

In the following, we will very briefly discuss two special simple cases: (1) a time dependent and
(2) a constant external field.

Time dependent external field.
o 1 2S5 (02 2 dBy
From Eq. (1.7), if W«T) y = O(1) then whenever [By(t)cosé + =0, the

variance ((S,m)z) = O(N?). Since By (1) = %, this yields the ordinary differential equation

<d6)2 dzet ) 18)
— ) =——tanf. .
dt dr?

Explicitly integrating (4 dt2 Y ( ) Z—? cotd once implies In % = —In(sin®) + C1. An expo-

nentiation and a second mtegratlon result in cosf = C, — Ct (with C, Cy, arbitrary integra-
tion constants). Hence, if 6(0) = 0 then the solution to Eq. (I.8) is, for 0 <t < 2, given by
0(r) =cos~ (1 — Cr) for general C > 0. Thus, if an applied field

do 1

By(t)=— = —, L9
v = T 1.9)
C

not only trivially leads to a finite rate of change of the energy density but also to a ﬁnite (‘l —7)

on a continuous time interval then ((S m) y = O(N?) (e, |lw| < 1) signaling, as dlscussed in
Appendix I.1, the existence of long range correlations.

Constant external field.

If, apart from having a finite rate of change of the energy density, the square of the second

d*H
dr?

from Eq. (1.7), ((S}; 2y = O(N?),i.e., lw| < 1 (implying long range correlations once again).

order derivative —(( )2) > 0 when 6(¢) = 7/2 for a uniform time independent By then,
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Appendix J. Preparation of the initial spin states of Section 6.1

The results of Section 6.1 hold for any initial state |wgpm) that is an eigenstate of the Hamilto-
nian Hyp;, of Eq. (6) evolved under the transverse field Hamiltonian H;, of Eq. (8). We reiterate
that a finite rate of cooling or heating can be achieved by H;, only when the initial state ngin) is
of a macroscopic total spin S;,; = O(N) (e.g., a ferromagnet) and the ratio w = S5, /(7 S;0r) # 0.
Furthermore, as noted earlier, the inequality w # =1 must be satisfied in order for the initial
state to differ qualitatively from a product state in which all spins are polarized along the z di-
rection. Indeed, as we explained in Section 5, for initial product states, no spreading is possible
(i.e., o = 0). In a related manner, if w = %1 then the transverse field Hamiltonian H,, will
act as a pure displacement operator on the spin coherent state initially polarized along the z—
axis and lead to no spreading of the energy density as evaluated with Eq. (6). It is only for the
fully polarized states w = %1 that no spreading occurs. The states ngin> that we considered
are, obviously, somewhat special (see also Appendix I). In this Appendix, we describe a purely
gedanken experiment for preparing states (with either quantum or classical probability densities)
of high spin S;,; = O(N) with |w| < 1. Towards this end, we first consider the Hamiltonian of
Eg. (6) as that describing a typical ferromagnet F associated with the Hamiltonian Hpejsenperg
of Eq. (7) on a lattice of N sites (having, e.g., all of the couplings in Eq. (7) non-negative) that is
subjected to, at low temperatures, to a longitudinal external field (B;). The latter external field is
created by a large permanent magnet M of size Ny = O(N). The global magnetic field B, gen-
erated by M has small 8B, = O(N ~'/?) fluctuations in its magnitude. We consider the “F — M”
hybrid to be, initially, in contact with a thermal bath. In equilibrium, at low temperatures, the
spins in F become polarized with the resulting total magnetization being parallel to the applied
external field B, (viz., S5,; = Stor = O(N)). Next, we introduce a transverse field By, (captured
by Eq. (8) or Eq. (14)) that acts on F. Following the application of the transverse field, the total
spin will precess about the y axis (see Figs. 4 and 5). Next, we turn off the transverse field and
let the system evolve under Eq. (6). As earlier, we do so by considering the F — M hybrid which
is now closed (i.e., with no connection to an external heat bath). Now that the total spin is no
longer polarized along the z axis, the fluctuations in the values of B, will lead to a spread of
precession of the total spin about the z axis. After a time Tcoyper ~ 27/8 B, (assuming that this
time is larger than the Lieb-Robinson time of Section 4, T.yer > fLR), the probability distribution
for the total spin covers uniformly a “line of latitude” of fixed S;,, (see Fig. 4). This resulting
probability distribution for the total spin emulates that associated with ngin) of Section 6.1 or
that affiliated with the semi-classical distribution of Section 6.1.2. Once a strong transverse field
(I[H;r 11 > |1 Hspinl]) is applied anew to this state, the results Eqs. (9), (13) will follow (the ring
of Fig. 4 will rotate to that of Fig. 5). Similarly, Eq. (15) will yield the standard deviation of the
energy density for the more general situation of Eq. (14) for an arbitrary size H;, augmenting
Hp;n. The existence of a minimal time (beyond that required for the field to couple to all sites in
the system) is reminiscent of lower bounds that we found in other model systems (e.g., the time
scale required to have a fluctuation in the effective external field set by g satisfy o7 = O(1) in
Section 7.4.2).

The simple example in this Appendix is a particular realization of the schematic of Fig. 3. All
spins in the system couple uniformly to the external magnet (the “environment’) M. Fluctuations
in the “collective coordinate” of the external drive, the global magnetization of M, lead to a
distribution of precession frequencies of the total spin in the “system” F and, in the aftermath,
to the ensuing long range fluctuations of Eq. (I.3) within it [31]. If the environment acts like a
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uniform stationary field with no fluctuations on a product state form then correlations will not
arise as was seen in the example of Section 5.

Appendix K. Finite rate shifts of the energy density €

For Hamiltonians H (¢), the single condition % = 0 at all times may be satisfied by an infinite
number of special Hamiltonians and/or density matrices p. A solution is afforded by Hamiltoni-
ans H () that during the cooling/heating time have a commutator with H that is a non-vanishing
c-number. Under these circumstances, the evolution operator U/ has the form of a shift operator
for the energy (shifting, during each interval of time [¢, r + dt], the Heisenberg picture Hamilto-
nian so as to have H (1) — (H" (1) — %[H(t), H1)) that brings to life the intuitive analogy
with wave packets (Section 4). In order to obtain a general shift of the energy without widening
the width of the energy density distribution, one may apply a shift operator (an evolution with
a “momentum” conjugate to H). Indeed, the above evolution leads to a shift of the energy den-
sity with no additional changes. More comprehensive solutions to the equation %05 =0 at all
times ¢ (and thus solutions to o¢(;) = 0 at all ¢) given that o, = 0 at time ¢ = 0 are afforded by
combining multiple “shifts” of the above type with the product states of Section 5. That is, we
may set the initial state to be a general product of decoupled density matrices afforded by Eq. (5)
with general values of 1 < M < N. If all of the probability density matrices are local (have their
support on regions of size O(1)) then any Hamiltonian evolution is possible. Conversely, if the
density matrices cannot be factorized beyond a region of size O(N) then only an innocuous shift
with a constant [H (t), H] will be possible. General hybrids where for (1) all non-local density
matrices such innocuous shift appears while (2) the evolution of any local density matrices is ar-
bitrary further satisfy o) = 0 at all z. Generally, as Eq. (48) illustrates, as the system is cooled
or heated, an evolution from an initial sharp energy density will not only shift the initial delta
function distribution of the energy density but will also lead to a (non-vanishing) widening o.

Appendix L. Aspects of the viscosity fits for supercooled liquids

One may work backwards from the data to extract an effective o, needed to fit the exper-

imental viscosity data when using the first equality in Eq. (91). This leads to o7 = %

(which according to Eq. (90) is equal to AT) exhibits larger deviations from a linear in T near
Telr than at temperatures far below T,.;; where a nearly perfect linear behavior appears. Such
deviations from a nearly perfect linear increase of the effective o7 at lower temperatures are
seen in, e.g., Figure 3 in [126] and Figures 16, 17, and S1 in [127]. Indeed, above melting, non-
supercooled equilibrated high temperature fluids have (by virtue of being in equilibrium) a sharp
energy density (o7 = 0) implying a breakdown of any putative increase of o7 with temperature
and suggesting a possible departure from a perfect linear increase of o7 also before Tj,.;;. In
Fig. 7 of the current work, the logarithm of the scaled dimensionless viscosities of all liquids
must collapse onto the single ordinate log(n(7T")/n(Tierr)) =0 at T = T,,¢1;. The smaller devi-
ation from linear in T behavior of the effective extracted o7 at lower temperatures is consistent
with the better collapse at lower temperatures seen in Fig. 7. Indeed, at temperatures far below
Toels» the only natural temperature scale is T itself (suggesting by dimensional analysis a pos-
sibly better linear in 7 behavior). Indeed, it is also possible that the crossover to an even more
precise form similar to Eq. (91) includes temperatures that do not precisely coincide with T;,e/:.
In such a case, at temperatures much lower than 7,,.;;, such corrections will be irrelevant but
close to T,,¢;; such deviations may become more important. Furthermore, in the derivation of

€
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[23] for Eq. (91) an approximation was made that may become more accurate at the tempera-

tures become lower. Specifically, the long time average v; ; , of the speed of a dropped spherical

object into a viscous fluid, given (similar to Eq. (85)) by the integral f:f[ Pr (e/)veq (e)de’ was
melt

approximated by the product (veq (enteh) f :fl Pr(€’)de’). This approximation becomes more
melt

accurate if the distribution Pr(¢”) drops sharply as the energy density is increased for €’ > e;:elt;
in such instances, most of the weight in the first integral above occurs in a narrow region just
above e;geh so that the above replacement is justified. This is certainly the case for a Gaussian
distribution Pr(¢’) centered about energy densities far below €,,.;r; in such cases, most of the

weight of the integral f:f . Pr(e")de’ arises from a very narrow interval just above €,.;;. How-

ever, if the distribution Pr(¢’) is centered about energy densities close to €,,.;; (especially if the
standard deviation of Pr(¢’) is not too small) then the above approximation will become more
inaccurate. The above integrals were used in [23] (see also Appendix L) to compute the viscosity
as given in Eq. (91) using Stokes’ law, viz., n = const./v;; 4 (With const. denoting a temperature
independent constant).

Appendix M. Intuitive arguments for the appearance of long time Gaussian distributions

The prediction of Eq. (91) for the viscosity of quintessential non-equilibrium liquids (super-
cooled liquids and glasses) that yielded the 16 decade collapse of Fig. 7 was first derived [23] by
computing long time averages and invoking a Gaussian distribution of finite width o.. In equi-
librium systems, a Gaussian distribution of the energy density P(e’) is also found. In [23], we
motivated the possible presence of Gaussian distributions by maximizing the Shannon entropy
for a given o.. We now suggest that long time normal distributions (both in systems that exhibit
long time equilibrium and those that do not such as glasses) might also be natural from other
considerations. In general, the probability distribution P (¢’) may be calculated along lines simi-
lar to those that led to Eq. (13) in our toy example of Eq. (6) where the system was continuously
driven by an external transverse field. However, unlike the models studied in Section 6, at long
times, supercooled liquids and glasses are no longer driven by an external bath H,, that continu-
ously cools/heats them in a predetermined fashion. Instead, for supercooled liquids and glasses,
at long times, the external heat bath (similar to the situation in equilibrium thermodynamics),
becomes a source of stochastic noise (whose strength is set by its temperature T'). Thus, the ini-
tially driven (i.e., continuously cooled) supercooled fluids or glasses will, at these long times, be
effectively exposed to random noise. Following the reasoning that led to Eq. (13), we examine
general moments of the Heisenberg picture Hamiltonian

1 AHH
(H" — (H" )Py = ((

(A0)?) = N

)P) M.1)

when evaluated in the initial equilibrium state prior to cooling |1//0) =y, c2|¢n). Here, {cg} are
the amplitudes of the initial state |°) in the eigenbasis of the system Hamiltonian H. Writing

Eq. (M.1) longhand as a product of p factors of (#), we have

R S (CLy

niny-np

X((AHH)nz;w)m ((AHH)np—mp), (M.2)

N N
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where (AH™),;, are the matrix elements of AH¥ in the eigenbasis of H. If, at long times,
. . . o H .
the matrix elements of the scaled Heisenberg picture Hamiltonian % (now evolved with the

stochastic influence of the environment at long times) attain random phases relative to each
other then the only remaining contributions in Eq. (M.2) will be those in which all matrix el-

H H
ements come in complex conjugate pairs of the type (<AHN Jab ) (<AHN Jba ) More precisely, in

the calculation of the long time average of Eq. (M.2), only the temporal average of such complex
conjugate pairs will not vanish. Thus, similar to the calculation that led to Eq. (13), only even
moments p = 2g may be finite. Now, however, the number of non-vanishing contributions (the
number of ways in which the elements of H' may be matched in complex conjugate pairs) will

scale as ((2%2—‘2),') This, in turn, prompts us to consider the possibility that, approximately,

!
(Ae)%E) ~ (%)ajg. (M.3)
This is especially the case if the initial state [1+°) corresponds to a single eigenstate of the Hamil-
tonian H, i.e., c,(l?) =0p,,n and c,(g) =94
not, of course, change the average energy (E) nor ((H')?) at any time (implying the invariance
of the variance 062) due to identical phase cancellations for all 7. However, higher order moments
of HH will, generally, vary with time. For these higher order moments, the (essentially random)
phases will only cancel at large ¢ (not identically at all ¢) allowing for Eq. (M.3). If, for all g,
these moments of Ae are equal to those evaluated with a Gaussian distribution (as follows from
Wick’s theorem — the combinatorics of which essentially reappeared in the above), then the prob-
ability distribution P (¢”) for obtaining different energy densities in the final state must, indeed,
be a Gaussian. If the expectation value (H”) = E is held constant, then similar results may
still apply (the density matrix may now mix states [23] each with the aforementioned Gaussian
distribution in € subject to such constraints of fixed (H')). The above simple (non-rigorous)
derivation rationalizes the appearance of Gaussian distributions in systems that equilibrate at
long times (standard thermal systems) as well as the conjectured Gaussian form of P(¢’) for
supercooled liquids (Section 13) that led to Eq. (91).

Long time steady states with constrained conserved quantities may enable memory loss of
the initial conditions and the appearance of effective equations of state [23]. For thermal fluctu-
ations in standard (“canonical”) systems, the resulting Gaussian distribution in € is defined by
its average and a standard deviation linear in the temperature (o o< T') suggestive of Eq. (90).
In a somewhat qualitatively similar manner, the stochastic effects of the environment are often
simulated by Gaussian distributed forces whose standard deviation depends on the tempera-
ture 7. The assumption of random phases in the above derivation of the Gaussian form does
not, of course, imply small variances; the standard deviation of the energy density o, (possibly
still linear in the temperature) may be finite. As emphasized in Sections 10 and 13, in ther-
mal systems the (typically linear in T') standard deviation characterizing the distribution P (€”)
is 0c = \/kgT2C,/N ~ O(N~1/?). For the product states of Section 5, the energy is a sum
of O(N) independent variables (associated with decoupled Hamiltonians acting on different
states) for which, as discussed earlier, in accord with the central limit theorem (applicable to the
independent decoupled contributions to the total energy), o = O(N —1/2y 'While the above con-
siderations suggest a Gaussian distribution, the standard central limit theorem cannot be simply
applied for states that are not of a product form and o, may be finite. More complex multi-scale
probability distributions are possible (e.g., Appendix 6 of [23]). The above arguments for long

n,.n- The appearance of phases (c) — coe™ £/ does
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time Gaussian distributions may be replicated, by a change of variables, to general intensive
quantities g other than the energy density. For a general g, various distributions P(q’; VW) may
in some cases, lead to the same result in Eq. (85) for certain measured observables O.

Appendix N. High entanglement entropy states

As we underscored earlier, typical “thermal states” may exhibit an entanglement entropy that
scales with the system volume [56], not its logarithm. The eigenstates |, ) examined in Ap-
pendix G were special in two different ways: (i) The eigenstates were constructed as an equal
weight symmetric combination of all local product states and (ii) The systems that we examined
were endowed with a local “quasi-particle” structure embodied by the independent commuting
operators {H;} (and associated local product eigenstates). In general, even when only property
(1) is violated, larger entropies may arise. It is instructive to see why this is so and how the
state |W, ) is special inasmuch as the calculation of its entanglement entropy is concerned. In
the space spanned by all product states |c) that given energies Ep (instead of that performed in
Appendix G in the basis of the symmetric basis of Egs. (G.2)), the reduced density matrix pp, +
becomes block diagonal. Repeating the calculation of Appendix G in this basis, we find that in
each region of fixed energy E g, the block matrix is equal to

1 1 1 1
1 11 1
One = 1 (N.1)
. 1
1 11 1

multiplied by the factor eS4(E—Es)=S(E)/ks The dimensions of the matrix One are determined

by the number Ng(Ep) = eS8(EB)/kp of degenerate states {|Ep, ])}NB(EB) that have an energy
Ep on the spatial region B. We may perform a unitary transformatlon to the discrete Fourier basis
(spanned by the states |Eg, kg,) = (NB(EB)) 172 Zﬁ\[B(EB) ikepJ|Eg, j) with the wavenum-
ber k =2mxm/Np(Eg) where m =0,1,2,---, Ng(Ep) — 1). This transformation reduces the
matrices of the form of Eq. (N.1) to a single non-vanishing entry. Indeed, up to a constant pref-
actor (Mp(Ep)), the matrix One is the outer product |Eg, kg, = 0)(Ep, k%B = 0]. To make the
contact with Appendix G lucid, we remark that in the notation of Eqs. (G.2), the single non-
vanishing Fourier mode |Eg, kg, = 0) = |Ep)+. In each block of fixed energies Ep, all other
discrete Fourier (kg, # 0) modes have a vanishing amplitude. Such a Fourier transformation
yields the eigenvalue spectrum,

Spec{One} = {Np(Ep),0,0,0,---,0}. (N.2)
_\/_/
Np(Ep)—1

Thus, upon performing a unitary transformation to the Fourier basis, the block diagonal ma-
trix pp,+ becomes sparser (each vanishing eigenvalue of the reduced density matrix pp 4 does
not contribute to the entropy) and only the completely symmetric states of Eq. (G.2) are of
relevance. If the equal amplitude eigenstates |V ) are replaced by a general linear combina-
tion [Wig)) = E,—E dclc) (with ), lac|? = 1) then the associated reduced density matrix
PBa.y =174 |\I/{a(7}'>(\ll{ac}| will remain block diagonal. However, the block matrices that span
each region of fixed energy Ep will, generally, look very different from One. Intuition con-
cerning the larger entanglement entropies that may generally result can be gained by suggestive
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arguments. Towards this end, we may consider what occurs if each diagonal block of pp 4 of
the type One is replaced by other block diagonal matrices with a wider distribution of the eigen-
values such that, e.g., each of the non-vanishing eigenvalues of pp 4 for energies Ep (close to
the energy E p that maximizes the sum Sy (E4 = E — E) + Sp(Ep)) is, effectively, split into
K equal parts. In such a case, the entanglement entropy Se, (4} Will be larger than S,,; 1 by
an additive contribution of In K. If, for L < L 4, the logarithm (In K) = O(Sg(Ep)) = O(Lp)
then this additive contribution to the entanglement entropy may be linear in the volume Lp of
subsystem B.
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— D, —1 ./

Thus, if the range of arccosine extended over all real &’ then P(g") would equal Pleos e)je) “Folding” &’ back
ay/1—¢’

to [0, ] when using the principal arccosine branch (to physically capture the bounded energy density of the system

(=1 <& < 1) comprised of two-level states at each site), we sum over all consecutive intervals of width 7, i.e.,

_ —1 . 2 202)
P = 1 0, (wn+(cos™" &) /a))”/ 2oz
€) /27{0‘%&2(]—8’2) an o

Y y”zezni") leads to Eq. (29). Similar to Eq. (13) for the spin and related models of Section 6, the energy
density of the system comprised of two-level states at each site is trivially bounded (—1 < &’ < 1 in the above
distribution P (g”)).

[75] Variants of the model that we consider here may appear in other contexts. As such, similar (yet sill notably dif-
ferent) systems were discussed in the past, see, e.g., the Hamiltonian of Eq. (3.16) in C.M. Caves, K.S. Thorne,
R.W.P. Drever, V.D. Sandberg, M. Zimmerman, On the measurement of a weak classical force coupled to a quan-
tum mechanical oscillator. I. Issues of principle, Rev. Mod. Phys. 52 (1980) 341. As far as we are aware, the model
of Section 7.4.2 in the current paper and its very simple solution (Eq. (40)) are new.

[76] Z. Nussinov, Avoided phase transitions and glassy dynamics in geometrically frustrated systems and non-Abelian
theories, Phys. Rev. B 69 (2004) 014208.

[77] For a discussion of the standard uncertainty relations for mixed states see, e.g., L. Ballentine, Quantum Mechanics,
World Scientific, Singapore, 1998.

[78] We remark that a shorter, one line, proof of the uncertainty relations for mixed states follows from the fact that any
density matrix may be expressed in terms of pure states [57,58]. Thus if, in the notation of [58], we take Z C Z',
then the uncertainty relation for pure states implies the corresponding uncertainty relations for general mixed states
with arbitrary density matrices.

[79] M. Fagotti, On the size of the space spanned by a non-equilibrium state in a quantum spin lattice system, SciPost
Phys. 6 (2019) 059.

[80] In mixed states, all density matrices that are diagonal in the eigenbasis of H are trivially stationary under the
evolution with H . Such diagonal matrices may, however, display a standard deviation o j; that s large as (Emax —

. Performing the sum (and employing 93 (x, y) =

Enmin)/2 (where Emax and Eyi, denote the maximal and minimal eigenvalues of H). By contrast, if the pure state
density matrix p(¢) of Eq. (60) exhibits a large standard deviation oz then it also has high weight components
fluctuating rapidly in time (of frequency scale o /7).

[81] A simple example of a large closed (semi-classical) system with system size independent frequencies governing
the global evolution is that of nearly harmonic elastic solids. The frequencies of the eigenmodes do not scale with
the system size. (Note that in this closed system example, the different eigenmodes cannot couple independently
to different baths — the total energy of the (semi-classical) system is conserved.)

[82] For instance, one may concoct states |¥) (or density matrices p) in Z that exhibit large variances UI%? =

((@lﬁ 2|1/~/) — ((1/~/|I—? |IZ/))2) when the system size increases. This may be achieved by superposing eigenstates
that span an extensive (O(E) = O(N)) range of H eigenvalues. As discussed in Section 5, on their own, product
states with separable Hamiltonians will lead to o5 ~ O(+/N). The central spin models of Section 7 exhibit ex-
tensive o . The microcanonical ensemble (for which o i is bounded) will be rendered incompatible in states like
these for which the standard deviation scales with the system size.

[83] For textbook discussions, see, e.g., K. Huang, Statistical Mechanics, Wiley, New York, 1987 or F. Schwabl, Statis-
tical Mechanics, Springer Series, Berlin Heidelberg New York, 2002. As noted in [82], one can certainly construct
states with extensive uncertainties.

[84] The uncertainty relation of Eq. (56) was derived from Eq. (55) by expressing H = ifi % . The discrete time gradients

of bounded quantities such as (H/N) and the standard deviation of the time discretized version of H cannot


http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib524D5031393830s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib7A6E676C617373s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib7A6E676C617373s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib6D697831s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib6D697831s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4661676F747469s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4661676F747469s1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1
http://refhub.elsevier.com/S0550-3213(20)30034-1/bib4875616E672D626F6F6Bs1

86

[85]

[86]

[87]

[88]

[89]
[90]

[91]

Z. Nussinov / Nuclear Physics B 953 (2020) 114948

exceed O(1/At). However, the expectation values of gauge non-invariant quantities can be made arbitrarily large
or small. In non-relativistic systems studied in the current paper, the energy can be shifted by a constant without
altering the expectation values of all measurable observables Q so long as these observables are not explicitly time
dependent (% =0). A shift of the energy by a constant AE is tantamount to a trivial “gauge transformation” — a

multiplication of the wavefunction by a linear in time phase factor, |{) — e i(AE)/h |Y). We emphasize that the
measurable frequencies of these oscillations and their standard deviation are bounded in time discretized systems.
The standard deviation of the energy density is a physical gauge invariant quantity (as are general relative energy
differences) and all quantities evaluated with the density matrix o(¢) of Eq. (60).

Assumption (3) and Assumption (3) do not hold for the factorizable states of Section 5 when M = O(N) with a
Hamiltonian that acts disjointly on each of the M local regions. If a product state description exists for the closed
isolated hybrid system Z =S U £ (i.e., if the density matrix on Z factorizes into density matrices on disjoint
spatial regions) then we may focus on the primitive disjoint subhybrid system Zmax = Smax U Emax of Z (wherein
Tmax CZ, Smax €S, and Emax C £). For systems with short range bounded strength interactions, the subsystem
Smax spans a volume of size O(N) such that all sites in Smax only couple to those in Emax . For such systems, in
order for the energy density of S to vary at an extensive rate, Smax (and Emax) can have a volume of size O(N)
(and, respectively, of a volume that is at least O(N)); if all decoupled subvolumes of Z were local regions (i.e., of
volume O(1)) uncorrelated from one another then the rate of change of the energy density may scale as +/N (i.e.,
not as O(N)) as a sum of N independent random errors (each of which is of order unity). By its definition, the
density matrix on the maximal Zmax cannot be further factorized into density matrices on disjoint spatial regions.
It is for this density matrix on Zmax that we can then apply Assumptions (1-3) (or Assumptions (1, 2, 3')) and the
uncertainty inequalities that follow leading to Eq. (65).

Although Assumptions (1-3) of Section 10.1 are not always satisfied (see, e.g., [82]), rather general systems do
obey them and further exhibit a finite rate of change of the energy density | z—; |. To make contact with our earlier
examples of Section 6, as a case in point, we may consider a simple example. We take H to be Hjpip of Eq. (6)
with a short range Hgymm and in which the magnetic field B; is along the z direction over the entire volume
Z; in a similar spirit, we consider the Hamiltonian H in the region S to be given by Eq. (6) with an internal
applied field By parallel to the y direction. In this example (apart from “surface terms” arising from the short
range interactions in Hyymm ), the interaction between the system S and its external environment £ is dominated
by an external field (1§ = (0, =By, B;)) applied from sites exterior to S. This external field couples to all spins
in S; when added together with H, this field will reproduce the terms of H appearing in S. We further set the
density matrix to be p = |y) (|, with |i) corresponding to an equal amplitude superposition of two eigenstates
of maximal total spin S;o; = O(N) that differ by one quantum of / in their Sé”’ eigenvalues. In the convention
of Section 6, [¥) = %(h}a; Stot s Sipr) + Ve Stor, Siyy — ). 1t is readily verified that Assumptions (1-3) are

satisfied. The state |y) displays a standard deviation o ;7 = hlgd = O(1) (consistent with the finite standard

deviation of the total energy characterizing the microcanonical ensemble on the full volume 7). However, within
the smaller subvolume S, at all times 7, the standard deviation of the energy density (i.e., the standard deviation

of H/N) is 0¢ = %\/2 + % —(w?+ w— SL)Z) = O(1); the standard deviation of the total energy

tot
of S is generally extensive, oy = O(N). In the above, as in Section 6, w = Sfo,/(hS,m). The rate of change

of the energy density is |‘ZZ—§| = w\/ 1+ ﬁ —w(w — ﬁ). Thus, in this example, generally

|‘é—§| = O(1) for finite By and B; when Sy = O(N) and |w| < 1.

Generally, sites exterior to Z may give rise to an evolution as given by Eq. (86) applied to Z (and S). In systems
that exhibit non-equilibrium behavior, the time evolved HH (t) (and H H (t)) may not be similar to the initial H
(and H). Consequently, the resulting probability distribution o (¢) will give rise to averages that differ from those
in equilibrium. That is, Eq. (55) will always be satisfied. However, the time evolved H H (t)and H H (t) will, when
Eq. (69) holds, deviate from the initial Hamiltonians A and H and thus have expectation values and fluctuations
different from those in equilibrium.
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