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Abstract: Through the years, the market for mobile devices has been rapidly increasing, and as

a result of this trend, mobile malware has become sophisticated. Researchers are focused on the

design and development of malware detection systems to strengthen the security and integrity of

sensitive and private information. In this context, deep learning is exploited, also in cybersecurity,

showing the ability to build models aimed at detecting whether an application is Trusted or malicious.

Recently, with the introduction of quantum computing, we have been witnessing the introduction of

quantum algorithms in Machine Learning. In this paper, we provide a comparison between five state-

of-the-art Convolutional Neural Network models (i.e., AlexNet, MobileNet, EfficientNet, VGG16,

and VGG19), one network developed by the authors (called Standard-CNN), and two quantum

models (i.e., a hybrid quantum model and a fully quantum neural network) to classify malware. In

addition to the classification, we provide explainability behind the model predictions, by adopting

the Gradient-weighted Class Activation Mapping to highlight the areas of the image obtained from

the application symptomatic of a certain prediction, to the convolutional and to the quantum models

obtaining the best performances in Android malware detection. Real-world experiments were

performed on a dataset composed of 8446 Android malicious and legitimate applications, obtaining

interesting results.

Keywords: malware; quantum; deep learning; security; Android

1. Introduction

In 2022, Android became the most popular operating system in the world, with over
2.5 billion active users spanning over 190 countries https://www.businessofapps.com/
data/android-statistics/ (accessed on 16 November 2022). In the past decade, Google
Play (https://play.google.com/ (accessed on 16 November 2022)), the official platform for
downloading mobile applications for Android-powered devices, has grown enormously,
reaching USD 38.6 billion in revenue only in 2020. In the same year, there were more than
2.9 million apps in the store that had been downloaded 108 billion times [1]. Although
it has struggled to overtake Apple in Japan and the U.S. currently, Android is the most-
popular platform in most places in the world. In countries such as Brazil, India, Indonesia,
Iran, and Turkey, it has an over 85% market share [1]. Thanks to this spread, malicious
developers are finding new ways to embed malicious payloads into legitimate applications
to exfiltrate private and sensitive data from our mobile devices (and to obtain revenue
from the gathered information) [2]. For this reason, the adoption of malicious samples
containing Trojans, adware, and ransomware malicious payloads is not a surprise for
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malware analysts [3]. As demonstrated by Kaspersky, every year, there is a proliferation
of malicious payloads devoted to exfiltrating data from Android-powered devices. In
particular, the experts found more than 880,000 malicious installation packages only in
the second quartile of 2021 (https://securelist.com/it-threat-evolution-q2-2021-mobile-
statistics/103636/ (accessed on 16 November 2022)). One of the trends in 2021 has been
the introduction of malicious code into third-party advertising modules, which developers
of various useful apps often insert to monetize their work. For example, in the spring
of 2021, malicious code writers used a malicious advertising SDK to infect APKPure
(https://m.apkpure.com/(accessed on 16 November 2022)), a popular alternative Android
app store well known to Android users. A similar story happened with the popular
FMWhatsApp WhatsApp mod (https://sxprojects.net/fmwhatsapp-fouad-whatsapp/
(accessed on 16 November 2022)): one of the app versions hosted the Triada Trojan within
an advertising SDK. This Trojan malware is famous for being very difficult to remove
from an infected device. Furthermore, Triada is a malware known for its ability to silently
download several additional malicious apps to the victim’s device [4]. Malware can also
sneak into official app stores. To pass all checks and reach users, malicious code writers
employ, for example, loading malicious code into an approved program under the guise of
an update [5]. In fact, in 2021, analysts found loaders for various Trojans in applications on
Google Play, which included the Joker and Facestealer malware. Joker stealthily takes paid
subscriptions for the user, while Facestealer, as the name suggests, specializes in stealing
Facebook credentials (https://securelist.com/mobile-malware-evolution-2021/105876/
(accessed on 16 November 2022)). In most cases, to spread their creations via Google Play,
malicious code developers add tiny injections of malicious code to an otherwise harmless
app that has already been approved by the store [6]. For example, the authors of the Joker
Trojan (https://usa.kaspersky.com/blog/mobile-malware-2021/26294/ (accessed on 16
November 2022)) took advantage of the popularity of the Korean TV series Squid Game to
hide the malware in an app that offered themed wallpapers. After the spotting of Joker,
more than 200 apps on Google Play were identified. In particular, many of them borrowed
features from each other. Unsurprisingly, while scanning for such programs, the store
moderators let a malicious “update” go unnoticed. Small injections of malicious code
are difficult to detect during moderation, which cybercriminals are constantly trying to
exploit. Banking Trojans have been on the hunt for several years, not just for bank accounts,
but also for online store accounts and other digital services. In 2021, we assisted also in
the diffusion of the Gamethief malware, which aimed to steal the login credentials of the
mobile version of the PlayerUnknown’s Battlegrounds game. This represents the first
mobile Trojan specialized in the theft of gaming accounts; just a few years ago, this type of
malware was exclusive to desktop computers [7]. Malicious writers have also improved
the functionality of the developed malicious payloads: as a matter of fact, the fake calls
banking Trojan can drop the call whether the infected user tries to contact their bank, and
replace it with a pre-recorded response from a fake bank representative [8]. In this way,
the malware lulls the victim into believing that a bank employee answered the call. These
mobile threats continue to spread because free, and commercial mobile antimalware is not
adequate to detect new malicious payloads whose signatures are not included within the
antimalware repository [9].

Due to all of the previously described cases of malware discovered in the technology
environment, it is necessary to develop methods aimed at detecting malicious behaviors,
with particular regard to the Android environment. To solve those problems, academic
and industrial researchers are proposing constantly working in this research direction,
mostly proposing techniques aimed at detecting malware. Recently, they started to build
antimalware with Machine Learning support. Machine Learning is a very wide field,
but the most promising in this context is deep learning, which showed that interesting
performances can be obtained with respect to the so-called shallow Machine Learning
techniques in many classification tasks [10]: as a matter of fact, they obtained a great interest
from researchers involved in malware analysis [11]. Considering that deep-learning-based
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techniques have been demonstrated to obtain better results in image analysis, security
researchers are proposing methods to analyze applications in terms of images [12].

A criticism raised for deep learning techniques is due to the so-called lack of ex-
plainability [13,14], aimed to provide a kind of explanation behind a certain classification
performed by deep learning models. We consider the explanation in terms of capturing
the high-level visual patterns to describe the areas of the input image that have influenced
most of the classifier prediction.

In very recent times, we have been witnessing the introduction of quantum computing
Machine Learning, devoted to exploiting quantum computing concepts in the Machine
Learning field [15], i.e., to perform classification tasks by considering quantum theory [16].

In this paper, we propose several Android malware detectors based on deep learning
architectures and quantum computing ones. The main idea is to introduce the concept of
quantum computing in malware detection, comparing quantum and classical convolutional
models in terms of accuracy for the malware detection task in the Android environment. At
the current state-of-the-art, according to the knowledge of the authors, this paper represents
the first attempt to introduce quantum computing in image-based malware detection.

This paper represents an extension of the research entitled “Introducing Quantum
Computing in Mobile Malware Detection” [17], accepted for publication at the 17th Inter-
national Workshop on Frontiers in Availability, Reliability, and Security (FARES 2022) to
be held in conjunction with the 17th International Conference on Availability, Reliability,
and Security (ARES 2022). Concerning the work in [17], we explain the novel contributions
introduced in this paper:

• A fully quantum Machine Learning network is presented and considered in the
experimental analysis, while in the previous paper, a quantum hybrid network was
considered. The latter represents the main contribution of the paper: in fact, this
represents the first attempt to apply a fully quantum Machine Learning model to
a malware detection task;

• A comparison between two different quantum architectures, i.e., the full and the
hybrid quantum one;

• Comparison between state-of-the-art Convolutional Neural Network and quan-
tum architectures;

• We extend the number of experiments presented in [17] by tuning the models with
the aim to empirically obtain better detection performances;

• Three state-of-the-art deep learning models are added (i.e., VGG19, MobileNet, and
EfficientNet) to perform a more complete comparison:

• To provide explainability behind the model decision, we resort to an algorithm aimed
to highlight the areas of the application under analysis (represented as an image) that
mostly contributed to a certain prediction (i.e., malware or Trusted). To the best of the
knowledge of the authors, this is the second main contribution of the paper. Indeed,
this is the first attempt to apply explainability to a quantum Machine Learning model;

• We freely release for research purposes the source code we developed for the fully
quantum architecture, to encourage researchers to investigate this area.

The remainder of the paper proceeds as follows: In the next session, preliminary
notions about malware detection, quantum computing, quantum Machine Learning, and
Gradient-weighted Class Activation Mapping are reported. In Section 3, we present the
models we considered; the results are reported in Section 4, while in Section 5, the latter are
discussed. Finally, in the last section, the conclusions and future research plans are drawn.

2. Background

This section reports preliminary information about the technique exploited for mal-
ware detection in the Android environment (i.e., image-based malware detection) and
background notions about quantum Machine Learning. For interested readers, we refer to
the literature for further information [18,19].
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2.1. Image-Based Malware Detection

In recent years, a popular method to classify malware consists of converting malicious
software into images and then applying deep learning models based on images to perform
classification tasks [20,21]. This process starts from the executable file, which is transformed
into an array of values by grouping the bits in blocks and casting the bytes to unsigned
integers. Then, the array of values is scaled into a 2D matrix and converted to a grayscale
(or RGB) image, by casting each value to a pixel [1].

Most of the malware is a variant of previous malware samples, with some differences
in the source code to mislead signature-based antimalware: this is the reason why malware
variants of the same original malicious sample are grouped into malware families. Assum-
ing that the malware of the same family shares part of the code, also its corresponding
images will have patterns in common. Similar to the classical classification of objects within
images, a deep learning model trained on a large number of input samples will be able to
recognize the pattern that characterizes one malware family rather than another.

Figure 1 reports two samples of two Android malware converted to images, belonging
to two different families (i.e., Mecor and Airpush, respectively). The images may look like
random noise, but the information coming from the input executables is preserved.

Figure 1. Two examples of Android malware converted into grayscale images: in detail on
the left, a sample belonging to the Mecor family, while on the right, a sample obtained from
the Airpush family.

2.2. Quantum Computing

Quantum computing was born to give answers to unsolvable problems with the use
of classic computing, and it takes into account quantum mechanics laws, i.e., the part of
physics that studies the smallest particles and how they assume more than one state at
the same time [22]. In a nutshell, we can state that quantum mechanics is the basis of
quantum computing. Indeed, it refers to the scientific laws that regulate the behavior of
molecules, atoms, and subatomic particles and uses the related physical phenomena known
as superposition and entanglement for the calculation [23].

Computers normally process information in bits that are zeros and one sequence
(i.e., on and off), while quantum computers use Quantum Bits (i.e., qubits), which imple-
ment the concept of superposition. Simply speaking, the latter is when a bit can assume
a value of zero, one, or even both at the same time. The superposition state represents
a combination of all possible configurations. Overlapping groups of qubits can create
complex and multidimensional computational spaces. It is in these spaces that complex
problems are represented in new ways.
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Mathematically, a qubit can be seen as a unit vector described in a two-dimensional
complex Hilbert vector space C2. To represent a complex vectorial space, the use of the
notation of Dirac is opportune. It is also possible to obtain the qubit visual representation
using the Sphere of Bloch. In that, we can imagine that all possible states are placeable on the
surface of a sphere of unit radius, where the two poles represent the two fundamental states,
respectively. Starting from Figure 2, it is possible to establish a bi-univocal correspondence
between the representation of a generic qubit state:

|ψ〉 = α |0〉+ β |1〉

and its representation on the surface of the sphere in R3:

|ψ〉 = cos(θ/2) |0〉+ eιϕ sin(θ/2) |1〉

where θ and ϕ are real numbers that identify the spherical coordinates of the point. This
formula has its correspondence to the real physical world: any physical system with at
least two discrete and sufficiently separated energy levels can indeed be used for the
qubit representation.

Figure 2. The Bloch Sphere, the geometrical representation of the pure state space of a
two-level quantum mechanical system, i.e., a qubit [24].

Another important difference between classical and quantum computing is that, in
the traditional field, the system remains constant from measurement to measurement and
the outcome never changes. Indeed, in the quantum world, each operation is irreversible,
and the result of a measurement is uncertain. A similarity between classical and quantum
computing can be found in the usage of a register. A register is a collection of n qubits that
can be represented in 2n different states. The same happens in classic binary encoding. To
represent registers and the qubit union, the tensor product is represented by the following
symbol: ⊗.

Due to its unusual processing capacity, quantum computing is aimed at sectors that are
traditionally computationally intensive, such as Machine Learning. Machine Learning mod-
els themselves can have generalization problems, and given the task of making more and
more precise predictions, they become more complex, require more data, and their compu-
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tations become more expensive. In this case, quantum computing represents an interesting
development, as it promises improved performance and better generalization.

2.3. Quantum and Classical Machine Learning

The increasing importance of Machine Learning in recent years has led to many
relevant studies that investigate the promise of quantum computers for Machine Learn-
ing [25–27]. Quantum Machine Learning (QML) is the field that concerns the integration of
quantum algorithms into classical Machine Learning models. Classical Machine Learning
algorithms are used to analyze large amounts of data, and quantum computing helps by
using qubits and quantum operators to increase the computation and data storage speed
of these algorithms. The QML field is still at the forefront of computer science research,
and some improvements (the so-called “Quantum Advantage”) have not been proven
theoretically, yet. With the concept of the “Quantum Advantage”, the researchers refer
to the advantage of Quantum Models over classical approaches, by leveraging quantum
effects. While some attainable advantage of the Quantum Models over generic classical
computations has been proven, there is no certainty that the “advantage” may bring com-
plete “supremacy” in the future; the question is still an open debate. The strong quantum
speedup is still debatable if a lower bound for the classical algorithms has not been found
yet. Indeed, even if the Quantum Advantage was demonstrated for some problems (such as
Shor’s factoring algorithm [28]), the demonstration represents a quantum speedup over the
best-known classical counterpart, but it may be, theoretically, disrupted by improvements
in classical calculation techniques and lower bound verifications.

The main difference between a quantum and a classical calculator is the basic unit of
calculation. In the classic case, a process is based on the bit, which can assume only two
states, generally represented as 0 and 1, corresponding to the state of charge of a transistor.
On the other hand, in the quantum scenario, the equivalent of the bit is the quantum bit
(or qubit), which follows properties deriving from the postulates of quantum mechanics.
Superposition and entanglement are two of the key concepts of quantum theory and
contribute to the great computational capacity of quantum computers. The combination
of these two principles allows one to create computer systems characterized by a great
calculation capacity and speed of execution. While in classical computer science, a system
consisting of two bits can store only one of the four possible binary combinations (00, 01,
10, 11), a two-qubit quantum system can store all four combinations.

In [29], the authors conducted research in which they distinguished four ways to
combine quantum computing and Machine Learning. There are several approaches to
applying quantum principles. Those methodologies are reported in Figure 3 and differ
on whether the data are generated by a Quantum (Q) or Classical (C) system and if the
information processing device is Quantum (Q) or Classical (C). Briefly, In summary, case
CC refers to classical data treated conventionally, case CQ employs quantum computing
to process classical datasets, and case QQ uses quantum data processed by a Quantum
Computer. In this paper, we focus our attention on quantum data processed by classical
algorithms (i.e., QC). The quantum Machine Learning algorithms can be a quantum version
of conventional ML or a completely new algorithm that addresses a classical problem in
a quantum scenario. However, also hybrid classical–quantum methods can be used, where
parts of the process, usually computationally expensive ones, are assigned to QC. The aim
is to combine quantum and classical algorithms to obtain higher performance and decrease
the learning cost. One more classification can be performed on the type of input data,
which can be encoded with classical or quantum representation; thus, also the data type
generates more hybrid approaches between the classical and quantum worlds.
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Figure 3. Depending on the type of data and the algorithms used, there are four possible
approaches to combine the Machine Learning and Quantum Computing fields.

2.4. Quantum Neural Network

A neural network is inspired by the biological model of information processing in the
brain; it can be summarized as a graph consisting of a set of xm elements linked together by
weighted connections with wml parameters, which represent the equivalent of the synapses
of a biological neuronal model.

xl =
n

∑
m=1

wml ∗ xm

An activation function defines the value of a neuron based on the current value of
all other states weighted by the Wml values, and the dynamics of the network unfold
as the neurons are continuously updated through the activation function. This kind of
model can be seen as a real computational tool, and its programming can be performed by
setting the wml weights and using an activation function that encodes a certain relationship
between the input and output. For pattern classification, we usually consider a feed-
forward neuronal network, in which neurons are organized into layers (layers) and each
layer feeds its information to the next one. A set of initial values is used to feed the input
layer, and after subsequent updates on each layer, it is possible to read the final value on the
output layer. Feed-forward neural networks often use sigmoid as the activation function:

sgm(a, k) =
1

(1 − e−ak)

The network is initialized with a set of inputs, and the initial output is compared
with the expected values to adjust the value of the weights to minimize the error of the
classification. If an appropriate set of weights is given, these kinds of networks can classify
new inputs extremely well. Despite various approaches and ideas in an attempt to adapt
neural networks to quantum computation, there is no known concrete proposal describing
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a quantum classification method with neural networks that is sufficiently performant and
functional. Finding this adaptation remains one of the most interesting challenges.

2.5. Grad-CAM

The classical image classification problem is one of the most popular tasks for Deep
Learning models. It consists of classifying images that contain items or generic shapes
(such as typewritten letters) with the highest accuracy possible. The deep learning model
completes the task by leveraging the information of a dataset of input samples. In the
training phase, the deep learning models extract and memorizes features and patterns
peculiar to a specific output class, thus learning how to distinguish between the different
input samples.

One of the most widely used deep learning models for image classification is the Con-
volutional Neural Network (CNN), which exploits mathematical convolutional operators
on the input image to extract features. The input images pass through several layers of
convolution, to combine the pixels with the neighboring ones, and subsampling, to reduce
the size of the two-dimensional matrix while preserving the most relevant information.
Finally, the last part of the CNN is usually composed of dense layers, which are formed by
a variable number of perceptrons); this last part of the model performs the classification, and
it is trainable with the standard backpropagation algorithm. We refer to the literature for
further information on CNNs [30,31].

Many complex CNN variants were proposed in the literature; mainly, they differ in
the size of the architecture and the number of convolutional layers. For instance, AlexNet
introduced the use of ReLU as the activation function instead of the then function and
optimization for multiple GPUs. It also addresses overfitting by using data augmentation
techniques and the dropout layer. In this paper, we experimented with this architecture
and other architectures, by considering also a CNN designed by the authors. We refer to
the original papers for further information on their architectures [32,33].

Gradient-weighted Class Activation Mapping (Grad-CAM) is a technique to extract
the gradients of the deep learning models’ convolutional layers and use them to provide
graphical information on the inference step. Briefly, the gradients capture high-level visual
patterns and can describe which areas of the input image have influenced most of the
model output decision. Furthermore, the convolutional layer preserves spatial information;
thus, Grad-CAM uses this data to provide a heat map of the input image. This heat map
highlights the input image area that was used by the deep learning model to classify
a specific input; it provides a visual “explanation” to a certain decision. The Grad-CAM
adopted in this work is an implementation of the one introduced by the paper [34].

3. Method

This section aims to present the proposed method, devoted to directly comparing
different deep learning models to discriminate between malicious and legitimate Android
applications. Furthermore, those networks are also able to distinguish between malware
belonging to different malicious families. To perform our experiments, in addition to the
commonly Convolutional Neural Network, we also employed two quantum Machine
Learning models, i.e., a hybrid model and a fully quantum one. Figure 4 shows the
workflow of the proposed method, composed of four main steps.
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Figure 4. The workflow of the proposed method: starting from a dataset of Android
applications, converted to grayscale images, a set of convolutional and quantum models
is considered to build classifiers aimed to discriminate between malware and Trusted
applications, by considering Grad-CAM to provide explainability in terms of graphical
information about the area of the images that influenced the prediction.

3.1. Dataset

The idea behind this step is to obtain a dataset of real-world legitimate and malicious
Android applications and convert each application into a grayscale image (as introduced
in Section 2.1). We developed a script to automatically unzip an Android application and
consider only the .dex file for the image conversion. We confirmed the maliciousness and
the trustworthiness of the Android application under analysis by submitting the dataset to
the Virustotal (https://www.virustotal.com/(accessed on 16 November 2022)) web service,
aimed to check an application under analysis against more than 60 antimalware engines.
It is crucial to gather an extended dataset free of bias and duplicated applications to have
consistent results.

3.2. Model Research and Implementation

This step is aimed at defining the convolutional and quantum models for the design’s
comparison. In particular, we considered the following deep learning models: AlexNet,
a Convolutional Neural Network developed by the authors in [17] (i.e., Standard-CNN),
VGG16, a Hybrid Quantum Convolutional Neural Network (i.e., CNN with a layer that uses
transformations in circuits to simulate a quantum convolution), and a Quantum Neural
Network (i.e., a fully quantum model considering two-qubit gates, with the readout qubit
always acted upon). In the following, we introduce in detail the considered (convolutional
and quantum) deep learning models:

• Standard-CNN: From 2012, CNNs conquered a plethora of of the ICISSP, 22 gen–24
gen 2018 2018 tasks and are currently growing at a rapid pace. There are differences in
their architecture, but all the CNN models are based on the principle of the convolu-
tional filter. This filter, called the kernel, is applied to the pixel matrix that composes
the image on the three RGB levels. We report the structure of the CNN proposed by
the authors in [17] in Listing 1. The idea is to consider a lighter model if compared to
state-of-the-art models (as, for instance, VGG16 also exploited in the comparison). For
the Standard-CNN, the following layers (usually considered by typical CNN models)
are exploited: convolutional, Maxpooling, Dropout, and Dense layers;

• Visual Geometry Group 16: This network, also known as VGG-16 [33], was designed
and developed in 2014 to solve difficult image classification tasks by exploiting Im-
ageNet, an extended dataset composed of 1000 different output labels belonging to

https://www.virustotal.com/
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different domains. The VGG16 network demonstrated that network depth is a crucial
factor to increase classification accuracy in deep learning. The VGG16 model is com-
posed of several convolution layers, each one with a 3 × 3 filter and Maxpooling layers
considering a 2 × 2 filter. The 16 in VGG16 is related to the 16 layers with trainable
weights in its architecture. The last model part is composed of 2 fully connected
(Dense) layers with a softmax activation to perform the classification task. One of
the most typical approaches for VGG16’s training is devoted to keeping the convo-
lutional part of the model with the weights obtained from training the model on the
ImageNet dataset, while the Dense layers part is trained for the specific classification
task required;

• Visual Geometry Group 19: Also known as VGG19, it was introduced by Oxford
University following VGG16 [33]. This network differs from the previous because it
exploits 19 layers: sixteen convolutional layers and three fully connected ones;

• MobileNet: was introduced in 2017 by Google [35]. This model is based on depthwise
separable convolutions, with a single filter applied to each input channel. Different
from the standard convolution, MobileNet splits the inputs into two layers, where one
layer filters and separates (called depthwise convolutions) and the other combines
(called pointwise convolutions). Deeper, the latter layer, allows the creation of a linear
combination of the output of the depthwise layer. This strategy significantly reduces
the computation and model size. MobileNet can be used in different fields, such as
object detection, fine-grained classification, face attributes, and landmark recognition,
where the model can obtain good results;

• EfficientNet: This was presented in 2019 [36] and is based on the MobileNet-V2 scale-
up models in a simple, but effective way using a technique known as the compound
coefficient. Using this technique, it is possible to scale each dimension (i.e., depth,
width, and resolution) uniformly using a preset set of scaling factors;

• Hybrid Quantum Convolutional Neural Network, i.e., Hybrid-QCNN: this model
is the first one introducing a quantum computation in deep learning. It consists of
quantum and classical neural-network-based function blocks; for this reason, we called
it hybrid. In this network, the inner workings (variables, component functions) of
the various functions are abstracted into boxes, where the edges represent the flow of
classical information through the metanetwork of quantum and classical functions [37].
In a nutshell, it adds to the classic convolutional network a first layer aimed to
simulate computations performed by a quantum computer, by performing a quantum
convolution. The first layer implements a quantum convolution, aimed to use the
transformations in circuits to simulate the quantum computer behavior. Listing 2
shows the implementation of the Hybrid-QCNN, where the first layer represents
a convolutional layer built to work on quantum circuits;

• The Quantum Neural Network, also known as QNN, was introduced in 2018 by
Farhi et al. [38], and it represents a deep learning network exploiting only quantum
operation (for this reason, we refer to the QNN also as a fully quantum model).
Considering that the classification is based on the expectation of the readout qubit,
the authors in [38] proposed the usage of two-qubit gates, with the readout qubit
always acted upon. This is similar in some ways to running a small Unitary RNN
across the pixels. The proposed QNN for malware detection exploits this approach,
where each layer uses n instances of the same gate, with each of the data qubits acting
on the readout qubit, by starting with a simple class that will add a layer of these
gates to a circuit. Figure 5 shows an example of a circuit layer to better understand
how it looks. The quantum circuit consists of a sequence of parameter-dependent
unitary transformations, which act on an input quantum state. The input quantum
state is an n-bit computational basis state corresponding to a sample string. The idea
is to design a circuit made from two-qubit unitaries that can correctly represent the
label of any Boolean function of n bits. Listing 3 shows the Python code related to the
Quantum Neural Network we implemented. In particular, in Listing 3, two different



Appl. Sci. 2022, 12, 12025 11 of 23

layers are exploited: the first one is a Parametrized Quantum Circuit (PQC) layer,
typically related to the fully quantum model, and the last one is a Dense layer used
to perform the classification (as happens in a classic Convolutional Neural Network).
The PQC level is considered for the training of parameterized quantum models. Given
a parameterized circuit, this level initializes the parameters. We define a simple
quantum circuit on a qubit. This circuit parameterizes an arbitrary rotation on the
Bloch Sphere in terms of three angles, i.e., a, b, and c. The source code of the Quantum
Neural Network developed by the authors is available, for research purposes, at the
following link: https://github.com/vigimella/Quantum-Neural-Network (accessed
on 16 November 2022).

Figure 5. Circuit layer example, where the quantum circuit is composed of a sequence of
parameter-dependent unitary transformations aimed to work as an input quantum state.
The input quantum state is composed of an n-bit computational basis state that corresponds
to a sample string.

Listing 1. The Standard-CNN network designed by the authors is composed of convolu-
tional and Maxpooling layers for the feature extraction part and the Dropout, Flatten, and
Dense layers relating to the classification part.

model = models.Sequential ()

model.add(layers.Conv2D (30, (3, 3), \

activation='relu',

input_shape =(self.input_width_height ,

self.input_width_height ,

self.channels)))

model.add(layers.MaxPooling2D(pool_size =(2, 2)))

model.add(layers.Conv2D (15, (3, 3), \

activation='relu'))

model.add(layers.MaxPooling2D(pool_size =(2, 2)))

model.add(layers.Dropout (0.25))

model.add(layers.Flatten ())

model.add(layers.Dense (128, activation='relu'))

model.add(layers.Dropout (0.5))

model.add(layers.Dense (50, activation='relu'))

model.add(layers.Dense(self.num_classes , \

activation='softmax '))

https://github.com/vigimella/Quantum-Neural-Network
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Listing 2. The hybrid Convolutional Neural Network, with the QConv layer aimed at
performing a quantum convolution, followed by a convolutional layer, a Flatten layer, and
two Dense layers for the classification part.

NEW_SIZE = 10

[...]

model = models.Sequential ()

model.add(QConv(filter_size =2, depth=8, \

activation='relu', name='qconv1 ', \

input_shape =(NEW_SIZE , NEW_SIZE , self.channels)))

model.add(layers.Conv2D (16, (2, 2), \

activation='relu'))

model.add(layers.Flatten ())

model.add(layers.Dense (32, activation='relu'))

model.add(layers.Dense(self.num_classes , \

activation='softmax '))

Listing 3. The quantum neural network, composed by a PQC layer devoted to the training
of parameterized quantum models.

[...]

model = models.Sequential ()

model.add(PQC(model_circuit , model_readout))

model.add(layers.Dense(self.num_classes , activation='softmax '))

Considering that quantum Machine Learning requires huge computational resources
if compared to Convolutional Neural Networks, we reduced the image input size for the
CNN models to adopt an image size closer to the Hybrid-CNN one, which was 25 × 25
× 1. Relating to the QNN, the image size we considered was 4 × 4 × 1 due to the more
extended huge amount of computational resources required from the fully quantum model.
Once having evaluated all the quantum and convolutional models, the obtained results are
discussed to provide suggestions and insights.

3.3. Experimental Analysis

To implement the proposed comparison between quantum and convolutional deep
learning models, we used Python as a programming language, and we considered two
different open-source libraries, Tensorflow and Tensorflow Quantum, to develop the deep
learning models. More details on Tensorflow Quantum can be found in [37]. Briefly, Tensor-
flow Quantum is a framework that offers high-level abstractions for the design and training
of both discriminative and generative quantum networks, compatible with existing Tensor-
Flow APIs, along with quantum circuit simulators. In addition, the authors demonstrated
that this library can be applied to tackle advances in many fields, i.e., quantum learning
tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling ther-
mal states, variational quantum eigensolvers, classification of quantum phase transitions,
generative adversarial networks, and reinforcement learning.

3.4. Gradient-Weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) is a technique to provide
graphical information on the parts of the input image that have influenced most of the
classification output of a CNN. The output of Grad-CAM is a heat map, which can be
overlayed on the input image to highlight the relevant part. The heat map is generated using
the gradients of the final convolutional layers, which are the one that capture higher-level
visual patterns and preserve spatial information on the input image.

The Grad-CAM we adopted [34] is a generalization of the approach proposed in [39].
Grad-CAM does not require any modification to the model architecture and provides
a clear way to understand if the model has learned correctly, that is if the model is using the
discriminative pattern in the input image to classify that sample. Intuitively, in an image-
based malware classification task, the deep learning model should highlight the payload



Appl. Sci. 2022, 12, 12025 13 of 23

(i.e., the malicious code) of the malware, which is the shared pattern with the other malware
of the family. Otherwise, if the model is classifying that sample because of another part
of the input image than the payload, the malware could be easily modified by cutting out
that highlighted part, preserving the malicious behavior (expressed by the payload), and
so generating a new malware variant, which will pass the model check as legitimate.

As a matter of fact, the application of Grad-CAM can be useful to understand in which
part of the image under analysis are located the bytes that, from the model point of view,
are symptomatic of the malicious payload. It can also be of interest to the security analyst
for studying malware families: since samples belonging to the same family share the same
payload, Grad-CAM for these samples should highlight the same area of the image with
similar color intensities. It can also be useful for identifying malware variants belonging
to the same family attackers develop new variants to evade signature-based detection
provided by antimalware by applying code obfuscation techniques [40,41]. Therefore,
the highlighting of different areas among various samples of the same family can be
symptomatic of a new variant of an existing malware family.

4. Results

In this section are shown the results obtained from the experimental analysis. We
executed the experiments using the following hardware and software characteristics: Intel
Xeon Gold 6140M CPU at 2.30 GHz, 64 GB RAM, and Ubuntu 22.04.01 LTS distro as
the Operating System. Different from the preliminary research work [17], in this paper,
we considered more experiments with different settings, where we changed the sample
dimension and learning rate regarding the models such as AlexNet, Standard-CNN, and
VGG16. In addition, we also performed a comparison with other state-of-the-art methods,
e.g., VGG19, EfficientNet, and MobileNet. The image dimension used during the training
phase increased from 100 × 100 × 1 to 110 × 110 × 1, while the learning rate went from
0.010 to 0.001, to understand whether different values related to the image dimension and
the learning rate can be helpful to obtain better performances in malware detection. The
best settings given as the input to each model, such as image size, epochs number, and batch
dimension, are reported in Table 1. In Table 2 are shown the experimental analysis results.
The dataset used was composed of 8446 Android applications, divided into six different
Android malware families: Airpush (1170), Dowgin (763), FakeInst (2129), Fusob (1275),
Jisut (550), and Mecor (1499). In addition, we also dedicated a class for the Trusted (1060)
family, which contains legitimate Android applications. Each application was analyzed
using different free and commercial antimalware to avoid possible mistakes in dataset
labeling. For this task, we exploited the VirusTotal web service (https://www.virustotal.
com/ (accessed on 16 November 2022)), which aggregates more than 60 antimalware and
performs an online scan. After the division of all applications into the correct class, we
divided them into the training (6759) and test (1687) set, with a percentage of 80–20. In
addition, we also included in the training folder another sub-folder called “VAL”, where
1351 samples were stored. During the training session, the validation technique helped
us to understand if the model was learning well or not. Usually, the validation was also
used to prevent over-fitting. The last phase of this process was to convert all applications
into an image in PNG format. The latter was possible using a Python script developed by
the authors.

https://www.virustotal.com/
https://www.virustotal.com/
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Table 1. The hyperparameters of the models employed in the experimental analysis
to compare convolutional and quantum deep learning networks for Android malware
detection.

Model Image Size Batch Epochs Learning Rate
Training Time
(HH:MM:SS)

AlexNet 110 × 1 32 50 0.001 0:47:14

Standard-CNN 110 × 1 32 50 0.001 1:11:54

Standard-CNN 25 × 3 64 20 0.001 0:01:34

VGG16 110 × 3 32 25 0.001 2:56:45

MobileNet 110 × 3 64 25 0.001 0:22:45

VGG19 110 × 3 64 25 0.001 3:35:56

EfficientNet 110 × 3 64 25 0.001 0:36:25

EfficientNet 25 × 3 64 20 0.001 0:07:26

Hybrid-CNN 25 × 1 32 20 0.010 1 day, 5:39:14

QNN 4 × 1 64 10 0.010 0:10:34

As emerges from the settings in Table 1, we used the smallest images for the Hybrid-
QCNN and QNN models to perform the experiments. To make a better comparison of
the different models, we also executed Standard-CNN and EfficientNet using an image
with a 25 × 25 × 1 dimension. Although one of our intents was to compare also the
fully quantum model, this did not happen because of the smallest image dimension. The
convolutional models and the hybrid model cannot execute experiments using an image
dimension such as 4 × 4 × 1. The models were evaluated using several metrics such as the
loss, accuracy, precision, recall, F-measure, and Area Under the Curve (AUC). Table 3 shows the
experimental results on the test set concerning the output classes (the malware families
and the Trusted category). In the case of multi-class classification, where there is no binary
choice between positive and negative classes, the analysis targets one class at a time: the
true positive is the correct class (the cell cross between the predicted and true label in
the confusion matrix representation); the false positive is the sum of target class samples
misclassified to another class (the Y-axis sum); the false negative is the sum of target class
samples of other classes. Table 3 displays the experimental findings for the output classes
on the test set (the malware families and the Trusted category).

Table 2. Experimental results obtained with all the models involved in the evaluation by
exploiting the test dataset.

Model Loss Accuracy Precision Recall F-Measure AUC

AlexNet 0.435 0.912 0.920 0.908 0.914 0.983

Standard-CNN (110 × 3) 0.205 0.970 0.972 0.970 0.971 0.993

Standard-CNN (25 × 3) 0.260 0.915 0.927 0.910 0.919 0.993

VGG16 0.182 0.952 0.959 0.949 0.954 0.993

MobileNet 0.124 0.966 0.969 0.963 0.966 0.996

VGG19 0.187 0.951 0.953 0.947 0.950 0.994

EfficientNet (110 × 3) 23.738 0.065 0.065 0.065 0.065 0.455

EfficientNet (25 × 3) 2.343 0.251 0.135 0.022 0.038 0.535

Hybrid-QCNN 1.045 0.905 0.905 0.903 0.904 0.962

QNN 1.584 0.413 0.623 0.103 0.176 0.762
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Table 3. Experimental results obtained with the convolutional and the quantum model
obtaining the best performances for the family classification task.

Output Classes Models Accuracy Precision Recall F-Measure AUC

Airpush
Standard-CNN 0.979 0.906 0.952 0.929 0.968

Hybrid-QCNN 0.951 0.837 0.811 0.824 0.893

Dowgin
Standard-CNN 0.978 0.902 0.848 0.874 0.919

Hybrid-QCNN 0.945 0.694 0.703 0.699 0.836

FakeInst
Standard-CNN 0.997 0.990 1.0 0.995 0.998

Hybrid-QCNN 0.991 0.985 0.978 0.982 0.987

Fusob
Standard-CNN 0.999 0.996 1.0 0.998 0.999

Hybrid-QCNN 0.998 0.988 1.0 0.994 0.998

Jisut
Standard-CNN 0.996 0.956 0.990 0.973 0.993

Hybrid-QCNN 0.994 0.971 0.936 0.953 0.967

Mecor
Standard-CNN 0.999 1.0 0.996 0.998 0.998

Hybrid-QCNN 0.998 0.996 0.996 0.996 0.997

Trusted
Standard-CNN 0.976 0.930 0.882 0.905 0.936

Hybrid-QCNN 0.930 0.714 0.745 0.729 0.851

In Table 2, we report the best results obtained from several experiments. From it, we
can see that the best model is the Standard-CNN, with a precision equal to 0.972 and a recall
value of 0.970. In addition, also good performances were obtained using the MobileNet,
VGG16, and VGG19 models. The Hybrid-QCNN model exhibited a precision equal to
0.905 and a recall of 0.903, while the fully quantum model, labeled as QNN, obtained lower
results, such as a precision value of 0.623 and a recall value of 0.103. Due to the limited
computing resources, to perform a better comparison between the fully convolutional and
hybrid models, we also executed experiments using Standard-CNN and EfficientNet with
a size of 25 × 25 × 1. From Table 2, we can see, albeit by a little, that the Standard-CNN
model performed better than the Hybrid model. We can also say that the results obtained
from the Hybrid models were far superior than the EfficientNet results. In addition, it is
worth noting also the interesting results obtained after the usage of the AlexNet model.
Although it usually does not give back a high score for the metrics, in this case, we achieved
a precision value equal to 0.920 and a recall value equal to 0.983. We, respectively, report
in Figures 6 and 7 the confusion matrix of the Standard-CNN and Hybrid-QCNN models.
The images help to perform a more accurate direct comparison of the best deep learning
model (in this work) and the quantum model.

In Figure 6, we report the confusion matrix obtained from the Standard-CNN model.
In that, we can see that the Deep Learning model produced a small number of misclassifi-
cations. The higher number of items classified incorrectly was for the Airpush family, with
11 samples classified as Trusted. The confusion matrix obtained after the execution of the
Hybrid-QCNN model is shown in Figure 7.

The Hybrid-QCNN model had a significantly larger number of misclassified samples
than the Standard-CNN model. Similar to what happened with the Standard-CNN model,
the majority of misclassified samples belonged to the Airpush and Dowgwin malware
families and were designated as Trusted by the Hybrid-QCNN model. A possible reason
for this result is that, by reducing both sets of images, the Airpush and Dowgin malware
looks similar to the Trusted applications. As we can see from the confusion matrix shown
in Figure 2, the number of Airpush and Dowgwin malware applications labeled as Trusted
is, respectively, 24 and 25 samples.
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Figure 6. Confusion matrix obtained with the Standard-CNN model for the family classifi-
cation task.

Figure 7. Confusion matrix obtained with the Hybrid-QCNN model for the family classifi-
cation task.
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5. Discussion

Unfortunately, due to hardware limitations, we were not able to experiment with
the quantum models (i.e., Hybrid-QCNN and the QNN) using images with dimensions
bigger than 25 × 1. Anyway, when we trained the quantum and convolutional models by
using the same image dimensions, we can note that the quantum models can obtain better
performances. This result is highlighted in Figure 2, in particular by observing the results
obtained from the EfficientNet(25 × 3) and Hybrid-QCNN networks, with an accuracy,
respectively, equal to 0.251 (for the EfficientNet model) and 0.905 (for the Hybrid-QCNN
one). The Standard-CNN model, with images of a size of 25 × 3, obtained an accuracy equal
to 0.915, which is slightly higher if compared with the one obtained from the Hybrid-QCNN
ones, but the Standard-CNN model was trained with 64 as the dimension of the batch,
while the Hybrid-QCNN with a batch size equal to 32. For these reasons, we observed that
quantum Machine Learning can be promising in the malware detection task.

After the execution of each experiment, we decided to apply the Grad-CAM algorithm
to the best convolutional and quantum models, i.e., the Standard-CNN and Hybrid-QCNN
ones. Using this algorithm, it is simple to understand which areas of one image are most
influential at the end of the discrimination. Below, we report some examples of a single
image that included the PNG image of the file, the activation map, and the image generated
by overlaying the initial PNG image with its activation map. The activation map consisted
of three unique colors: yellow, green, and blue. The regions colored yellow symbolize the
most interesting area, while green designates the sections in the center. Finally, to highlight
a section of the image that is unrelated to the model, we used the blue shadow.

In Figure 8, we can see the detection of a sample belonging to the Airpush family with
a high precision of 100%. As is possible to see, the most significant area is at the top of the
image. In fact, there, the pixels are overlayed with the yellow shadow, while other parts
of the image do not appear to be very important to classify the malware. As is described
in Section 4, the models can make mistakes in terms of identification. Figure 9 show the
wrong classification of malware belonging to the Airpush family recognized as a member
of the Downgin family with an accuracy slightly less than 100% (99.9%).

Figure 8. Sample classified as belonging to the Airpush family
(4a985c341e1ee08f647395d00640c1f2) with 100%, where we can note that the yel-
low areas are on the upper side of the image, obtained with the model built using the
Standard-CNN network.
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Figure 9. The wrong classification of the sample Airpush
(da46241dde7209feb52ff1b37e8f5080) misclassified as belonging to the Dowgi fam-
ily with 99.9%, where we can note the yellow areas are in the middle part of the image,
obtained with the model built using the standard-CNN network.

In Figure 10, we report an example of the classification of a Dowgin malicious sample
with a precision value equal to 100%. In that picture, it is possible to understand why in
eighteen cases of the images related to this family were classified as Airpush. In fact, as
is possible to see in Figures 8 and 10, pixels at the top of the images are highlighted with
the yellow shadow. Instead, in Figure 11, the models are classified as Trusted dangerous
applications belonging to the Dowgin family.

Figure 10. Sample classified as belonging to the Downgin family
(0d1366528bf2276fdc686b1f3deb38e5) with 100%, where we can note the yellow ar-
eas are really small and in the middle part of the image, obtained with the model built
using the Hybrid-QCNN network.

In conclusion, we can affirm that, as it did not achieve higher results, using the Hybrid-
QCNN makes more mistakes during the classification than the Standard-CNN model. In
addition, thanks to the usage of the Grad-CAM algorithm, even inexperienced people can
understand where the model has confusion.

Assuming that malware belonging to the same family shares the malicious payload
(i.e., the dangerous action), the idea at the bottom of Grad-CAM is to highlight similar areas
in the images. Differently, samples belonging to different families should exhibit different
areas highlighted by Grad-CAM. The rationale is to find regions of the images obtained
from malware symptomatic of certain malicious behaviors: in this way, the security analyst
can focus his/her manual effort on a reduced section of the application under analysis. We
are aware that images obtained from application source code can be more informative from
this point of view; as a matter of fact, in this case, the areas highlighted will be related to
code snippets and, for this reason, more understandable from the security analysis.
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Figure 11. The wrong classification of sample Dowgin (6afbe9d4c41fd46a3c516a9203dc4393)
misclassified as Trusted with 100%, where we can identify really small yellow areas are
in the middle part of the image, obtained with the model built using the Hybrid-QCNN
network.

6. Related Work

In this section, we provide the current state-of-art use of deep learning to detect mobile
malware and the adoption of quantum Machine Learning for general tasks.

The use of quantum computing is significant in several fields, such as medicine. In fact,
after the global pandemic in 2020, the usage of deep learning helped during the evaluation
of the thoracic CT exam. To improve that performance, Amin et al. in [42] used QML.
The authors concluded that, through the use of quantum algorithms, the performances in
spotting the infection in its early stages increased.

The authors in [25] implemented Support Vector Machine (SVM) in a quantum com-
puter with the complexity logarithmic in the size of the vectors and the number of training
examples. In circumstances when classical sampling algorithms need polynomial time, an
exponential speedup is obtained. At the core of this quantum network, the big data algo-
rithm is a non-sparse matrix exponentiation technique for efficiently performing a matrix
inversion of the training data inner-product (kernel) matrix. In contrast to them, we used
a Hybrid QCNN model with a high level of accuracy, i.e., 0.905.

The researchers in [26] demonstrated that, by using quantum computing, the time
required to train a deep restricted Boltzmann machine was reduced and the learning results
were better than classical computing. As a result, the optimization of the underlying
objective function improved significantly. In addition, quantum computer techniques have
been demonstrated to efficiently handle some problems that are intractable on ordinary,
classical computers. Furthermore, the quantum method demonstrated may efficiently train
entire Boltzmann machines and multilayer, fully connected models for which there are no
efficient classical counterparts.

In [43], Seymour and his colleague created a minimalist malware classifier using
cross-validation. The accuracy obtained was comparable with the standard Machine
Learning algorithms.

The authors in [27] showed that quantum Machine Learning algorithms exponentially
increased their speed, opposite the classical models, performing their tasks in logarithmic
time both with the number of vectors and their dimension. This study was conducted on
supervised and unsupervised quantum Machine Learning algorithms for cluster assignment.

In [44], the researchers proposed a mix of software used to discover the most common
hashes and n-grams between benign and malicious software and a quantum search method.
The latter will be utilized to find the desired hash value by searching through every
permutation of the entangled key and value pairs. This eliminates the need to recompute
hashes for a set of n-grams.

The authors in [45] proposed a federated learning approach aimed to detect malware
in IoT devices, by modeling the network traffic of several real IoT devices affected by
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malware. Both supervised and unsupervised federated models (multi-layer perceptron
and autoencoder) were exploited by the authors.

The researchers in [46] compared the performance obtained from 26 state-of-the-art
pre-trained Convolutional Neural Network models in Android malware detection, by also
including the performance obtained by large-scale learning with the SVM and RF classifiers.
The model obtaining the best performance was the EfficientNet-B4 one.

The authors in [47] proposed a hybrid multi-level deep learning model, formed
by unsupervised and supervised DL models, to encode X86 malware binary files and
classify them. It uses similarity matrices to detect relevant similarity patterns between
input samples.

Several studies tried to propose methods for malicious malware family detection. More
specifically, the authors in [48] presented a solution that is based on the BIRCH clustering
algorithm. After extracting static and dynamic analysis features from the malware samples,
they constructed the necessary vectors for the clustering algorithm and grouped the samples
into families based on this information. Another study that used the call graph clustering
was proposed in [49].

In [50], the authors extracted n-gram features from the binary code of the samples.
These features were selected using the Sequential Floating Forward Selection (SFFS) method
with three classifiers, and the accuracy of the method reached 96.64%. However, their
methodology was different from the one presented in this paper, and they did not provide
results specifically referring to ransomware.

In [51], the authors made use of the PrefixSpan algorithm to create groups of malware
families, based on sequence patterns. However, these patterns are related only to network
traffic packets and not to the overall behavior of the malware. In [6] also, malware samples
were assigned to a specific family by exploiting model checking. In [52], ARIGUMA was
proposed, a malware analysis system for family classification. The authors considered
the number of functions being called in a function and the number of functions that call
a specific function. Furthermore, the local variables, the arguments, and the instructions
were taken into account. Even though this method can also detect obfuscated APIs, the
classification accuracy was only 61.6%. In [53], the authors presented a malware family
classification system that was based on the instruction sequence.

The researchers in [54] adopted supervised classification algorithms for ransomware
family identification. Moreover, they considered the binary trees generated by these
algorithms to infer the phylogenetic relationships.

As emerged from the current state-of-the-art analysis, this paper represents the first
attempt to introduce quantum Machine Learning in the malware detection research field.
Moreover, this is the first paper devoted to introducing an explanation behind the decision
made by a quantum Machine Learning classifier.

7. Conclusions and Future Works

In the last few years, we have been witnessing an increase in mobile malware, with
particular regard to malicious payloads targeting the Android platform, the most diffused
one. Considering the inefficiency of the currently adopted signature-based approach
in the detection of zero-day malicious behaviors, the research community, from both the
academic and industrial sides, is focused on proposing new techniques to mitigate malware,
mainly exploiting deep learning. In this last context, deep learning recently has introduced
quantum computing to train models using the integration of quantum algorithms within
Machine Learning algorithms. For these reasons, we proposed to apply quantum Machine
Learning models for Android malware detection. We considered a comparison between
five state-of-the-art deep learning models, i.e., AlexNet, MobileNet, EfficientNet, VGG16,
VGG19, and a deep learning network developed by the authors, which we called Standard-
CNN, and two quantum models, the first one being a hybrid quantum model and the
second one a fully quantum model: all these (convolutional and quantum) models were
trained to perform the malware detection in the Android environment. The input for the
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models was a set of images obtained from the conversion of Android applications into
grayscale images. In the experimental analysis, 7386 applications belonging to six different
malicious families and 1060 legitimate applications were considered. As a result of the
experiments, we obtained that the architecture obtaining the best performance was the
Standard-CNN model, with an accuracy equal to 0.970. Relating to the quantum models, the
best model in terms of accuracy was the Hybrid-QCNN model, with an accuracy of 0.905.
In future work, more complex quantum models (in terms of PQC layers) will be considered.
Furthermore, considering that the proposed method is not operating as system-dependent
(as a matter of fact, the images are generated directly from the application bytes), we will
evaluate whether the proposed approach is working in ransomware detection. Additionally,
to provide more explainability, different images will be proposed, for instance an interesting
improvement of the proposed method is represented by the adoption of an image obtained
from the application code; in this case, Grad-CAM will be able to highlight areas that are
immediately traceable to code snippets and, presumably, the malicious payload.
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