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Abstract Discretization effects of lattice QCD are described
by Symanzik’s effective theory when the lattice spacing, a, is
small. Asymptotic freedom predicts that the leading asymp-

totic behavior is ∼ anmin [ḡ2(a−1)]γ̂1 ∼ anmin

[
1

− log(a�)

]γ̂1
.

For spectral quantities, nmin = d is given in terms of the
(lowest) canonical dimension, d + 4, of the operators in the
local effective Lagrangian and γ̂1 is proportional to the lead-
ing eigenvalue of their one-loop anomalous dimension matrix
γ (0). We determine γ (0) for Yang–Mills theory (nmin = 2)
and discuss consequences in general and for perturbatively
improved short distance observables. With the help of results
from the literature, we also discuss the nmin = 1 case of
Wilson fermions with perturbative O(a) improvement and
the discretization effects specific to the flavor currents. In all
cases known so far, the discretization effects are found to van-
ish faster than the naive ∼ anmin behavior with rather small
logarithmic corrections – in contrast to the two-dimensional
O(3) sigma model.
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1 Introduction

Lattice regularizations provide a definition of quantum field
theories beyond perturbation theory. Evaluating the associ-
ated path integral by Monte Carlo also represents a non-
perturbative calculational method to derive predictions from
the theory. One of the systematic effects that have to be taken
into account is the dependence of results on the lattice spac-
ing a (we assume a hyper-cubic lattice throughout) or in other
words the size of discretization errors,

�P (a) = P(a) − P(0) , (1.1)

associated with a dimensionless observable P of the theory.
As a start, one may consider the classical field theory. One
then has smooth fields, and the lattice-Lagrangian can be
simply Taylor expanded. It is the continuum one up to terms
suppressed by powers of a.

One may therefore think that also in the full, quantized,
theory the small-a behavior of the discretization errors is
�P (a) = p1anmin + p2anmin+1 + · · · with the integer nmin

given by the first non-zero power in the classical Taylor
expansion of the Lagrangian. However, the divergences of
quantum field theories spoil this behavior.

Still, precise statements can be made about the small-a
expansion, based on Symanzik’s effective theory (SymEFT)
[1–4], see also [5, p. 39ff.]. It describes the small-a behavior
by an effective field theory with a local Lagrangian

Leff(x) = L + aδL (1)(x) + a2δL (2)(x) + · · · . (1.2)
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The effective theory can be thought of as a continuum effec-
tive theory, regularized e.g. by dimensional regularization.
The first term is the continuum Lagrangian L of the fun-
damental field theory and δL (d)(x) are local Lagrangians
of higher mass dimension. The leading term in Eq. (1.1) is
then given by the one1with the lowest mass dimension in
Eq. (1.2), i.e. δL (1)(x), unless it vanishes. The corrections
δL (d)(x) can be written as a linear combination of basis
operators Bi (x) with the appropriate canonical mass dimen-
sions. Renormalization of the effective theory introduces
anomalous dimensions for the operators Bi . It may therefore
modify the small-a expansion to �P (a) = p1anmin+η + · · ·
with, in general, non-integer η. The (leading) anomalous
dimension η is in general a non-perturbative quantity, but
it may sometimes be estimated by perturbation theory in the
ε-expansion, see [6].

We now turn to asymptotically free theories such as QCD.
There, small a means weak coupling at the scale of the lattice
cutoff and the anomalous dimension can (1) be computed in
perturbation theory and (2) it leads to a modification of an

by logs [1,2,7,8],

�P (a) = p1[− log(a�)]−γ̂ anmin + · · · (1.3)

and not by fractional powers. The intrinsic scale of the the-
ory, �, is a renormalization group invariant and the exponent
γ̂ is proportional to a one-loop anomalous dimension. Since
the work of [9], continuum extrapolations are routinely per-
formed in order to obtain quantitative numbers for continuum
field theory observables. They have been carried out with
just powers2of a, thus implicitly assuming that γ̂ is small.
Of course this can not really be taken for granted until γ̂ is
known from a computation. Here we start to fill this gap.

Note that the logarithmic corrections in Eq. (1.3) can be
very relevant. An explicit example is provided by the seminal
work of Balog, Niedermayer and Weisz [7,8]. It concerns the
2-d O(3) sigma model where the leading term is γ̂ = −3 and
the logarithmic corrections change the naive a2 behavior to
a shape which numerically looks like a in a broad range of
a� [7,8]. This numerical behavior led to quite some concern
[10] and the computation of the logarithmic corrections by
Balog, Niedermayer and Weisz were essential to confirm that
the SymEFT description holds and put continuum extrapo-
lations on a solid ground. In lattice QCD, knowledge of the
leading power of the logarithms (and partially awareness of
the issue) are still missing; in particular it is important to have
a confirmation that γ̂ is small as is usually assumed. Let us
cite Peter Weisz [5]:

1 We will be more precise below.
2 Sometimes an additional power of ḡ2(a−1) ∼ [− log(a�)]−1 has
been used when a tree-level improved action is used. Here ḡ2 is the
running coupling in some scheme.

The program should be carried out for lattice actions used for
large scale simulations of QCD, when technically possible,
in order to check if potentially large logarithmic corrections
to lattice artifacts predicted by perturbative analysis appear.
Ten years later, as a first step, we do carry out the program in
the pure Yang–Mills (YM) theory as well as in Wilson’s lat-
tice QCD without non-perturbative O(a) improvement. The
latter case is rather simple and basically given by results in
the literature. We will therefore discuss only the YM the-
ory in detail and just mention the difference and results in
Wilson’s QCD in Sect. 7.

Scope

In addition to the discretization effects due to the terms δL (d)

in the effective Lagrangian, correlation functions of local
fields �(x) also get a-effects from corrections to the fields
�(x) represented in the SymEFT [11,12]. Apart from mostly
restricting ourselves to the YM theory, we also do not dis-
cuss these additional discretization effects. They are absent in
quantities which are independent of details of the local fields.
We call those spectral quantities, since the spectrum of the
Hamiltonian is the important application. In the YM theory,
correlation functions themselves have so far not played a rel-
evant role, apart from one notable exception. The exception
is the new sector of Gradient flow observables [13,14]. We
leave its treatment to future work.

2 Symanzik effective theory and logarithmic
corrections to an behavior

We consider YM theory in 4 dimensions defined by the action

Slat = 2

g2
0

3∑
x,μ>ν=0

p(x, μ, ν) ,

p(x, μ, ν) = Re tr(1−
U (x, μ)U (x + aμ̂, ν)U−1(x + aν̂ μ)U−1(x, ν))

(2.1)

in terms of the link variables U (x, μ) ∈ SU(N), connecting
x + aμ̂ and x . We assume a lattice with periodic boundary
conditions in space and infinite (or arbitrarily large) time
extent.3

As an example of a simple observable, P , take a ratio
of glue-ball masses, which may be defined as (∂ lat

μ f (x) =
[ f (x + aμ̂) − f (x)]/a and x = (x0, x))

3 In practice, finite lattices are of course needed for the Monte Carlo
evaluation. The appropriate modifications of equations such as Eq. (2.2)
are standard.
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P = mh
i /m

h
j , mh

i = − lim
x0→∞ ∂ lat

0 log

(
a3
∑
x

Ci (x)

)
,

(2.2)

in terms of a two-point function

Ci (x − y) = 〈�i (x)�i (y) 〉con
lat . (2.3)

The gauge invariant fields �i (x) are formed out of small
(with a maximal extent rw with rw/a fixed) spatial Wilson
loops, combined in such a way as to have a definite transfor-
mation under the lattice cubic group. A very simple example
is the scalar field �1(x) = ZF2

∑
k,l∈{1,2,3} p(x, k, l). For

simplicity we assume in the following that the renormaliza-
tion factors, such as ZF2 , are determined such that they do not
introduce any cutoff effects. In perturbation theory minimal
(lattice) subtraction has this property. Expectation values are
defined by the lattice path integral

〈F(U )〉lat = 1

Z
∫ ∏

x,μ

dU (x, μ)e−Slat(U )F(U ) , (2.4)

where Z normalizes such that 〈1〉lat = 1, F(U ) stands for
a function of any number of link variables U (x, μ) and
dU (x, μ) is the invariant Haar measure. The label “con”
stands for connected correlation functions, namely the sub-
traction of [〈�i (x) 〉lat]2 in Eq. (2.3)

Note that while Ci (x) depend on the details of the defini-
tion of �i (x), the masses mh

i only depend on the quantum
numbers of the field �i (x). Masses or more generally ener-
gies are spectral quantities.

SymEFT gives the small-a expansion of correlation func-
tions such as Ci (x) in the form of a continuum effective field
theory. The central statement is

C(x) = Ccont(x) + anminδC(x) + O(anmin+1) (2.5)

and the expansion on the r.h.s. can be obtained from the
effective continuum field theory with effective Lagrangian
Eq. (1.2) supplemented by correction terms which are due to
correction terms of the fields [11,12]

�eff(x) = �(x) + aδ�(1)(x) + a2δ�(2)(x) + · · · . (2.6)

Let us mention right away that nmin = 2 in the considered
YM theory.

For precise statements we need to specify

1. the rules of the EFT, i.e. how precisely are δC(x) defined
in terms of δL (d)(x), δ�(d)(x),

2. which local operators contribute to δL (d)(x), δ�(d)(x),
3. how are the parameters of the EFT determined, in other

words how are the coefficients of those operators con-
tributing to δL (d)(x), δ�(d)(x) determined.

We discuss these items in turn.

1. The correction terms δL (d)(x) etc. have canonical mass
dimension 4+d. A path integral with weight e− ∫

d4xLeff (x) is
thus not renormalizable. Path integral expectation values are
defined by expanding in the parameter a before integrating
over the fields. For our example, Eq. (2.5), we then have as
a definition of δC(x)

δC(x) = δCL (x) + δC�(x) , (2.7)

δCL (x − y) = −
∫

d4z 〈�(x)�(y) δL (2)(z) 〉con
cont, (2.8)

δC�(x − y) = 〈 δ�(x)�(y) 〉con
cont + 〈�(x)δ�(y) 〉con

cont

(2.9)

where 〈 X 〉con
cont is given by the standard continuum connected

correlation function with continuum Lagrangian

Lcont(A) = − 1

2g2
0

∑
μ,ν

tr(Fμν(A)Fμν(A)) ,

Fμν(A) = [Dμ(A), Dν(A)] , (2.10)

written in terms of the covariant derivative

Dμ(A) = ∂μ + Aμ . (2.11)

We have already anticipated that 2. leads to the vanishing of
δL (1), δ�(1) and used a shorthand δ� = δ�(2).

2. The correction Lagrangians δL (d) are linear combina-
tions

δL (d)(x) =
∑
i

ωi (g
2
0)Oi (x) (2.12)

of local operators Oi (x) which comply with the symmetries
of the underlying lattice theory and have a mass dimension
4 +d. Gauge invariance is one of the symmetries (gauge fix-
ing is needed only in Sect. 3 where we report on the pertur-
bative computation). One may further drop all combinations
of fields which vanish by the continuum equation of motion,
[Dμ, Fμν(x)] = 0, (such as O = tr([Dμ, Fμν] [DρFρν]))
[12] as well as all operators which can be written as total
derivatives of the form /O = ∂μKμ. After doing that, we
have a so called “on-shell” basis. For YM it consists of two
operators, which we may choose as

O1 = 1

g2
0

∑
μ,ν,ρ

tr([Dμ, Fνρ] [Dμ, Fνρ]) ,

O2 = 1

g2
0

∑
μ,ν

tr([Dμ, Fμν] [Dμ, Fμν]) , (2.13)

already known from Refs. [15,16].4 Note that O2 breaks
the O(4) rotational invariance of the continuum Lagrangian
Eq. (2.10) down to 90◦ rotations around the lattice axes.

4 That reference discusses the construction of a lattice improved action
such that the a2 terms in the SymEFT are absent. The basis of operators
is the same.
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Dropping it, one has the general effective Lagrangian of a
low energy theory with just gauge fields and O(4) invari-
ance. This is a (tiny) sector of the Lagrangian considered
for beyond the standard model phenomenology in Ref. [17].
The operator, 1

g3
0

tr(FμνFνρFρμ), considered there is seen to

be on-shell equivalent to

O1 = 2

g2
0

∑
μ,ν,ρ

(
tr([Dμ, Fμν][Dρ, Fρν]) − tr(FμνFνρFρμ)

)

+ (total divergences) (2.14)

using integration by parts and the Bianchi identity. Gauge
invariant dimension five operators do not exist and thus YM
theory has nmin = 2. The corrections to the continuum fields
�i will not be needed.

Now we consider the a expansion of our observable,

P = Pcont + a2[δPL + δP�] + O(a3) . (2.15)

Inserting the spectral representations into the ratiosCL
i /Ccont

i
which appear as one expands the r.h.s. of Eq. (2.2) in a, one
sees5

δPL = − 1

2
[〈i |δL (2)(0)|i〉−〈 j |δL (2)(0)| j〉] , δP� = 0 .

(2.16)

The states |i〉, | j〉 with 〈i |i〉 = 〈 j | j〉 = 2L3 are the ground
states of the Hamiltonian of the finite volume theory with spa-
tial volume L3 in the zero momentum sector of the Hilbert
space with the quantum numbers of �i , � j . The vanishing
of δP� was to be expected as the energy of a physical state
should not depend on the interpolating field used to create
it, including its renormalization. Since physical quantities
which do depend on δ� have so far not been in the focus of
lattice computations, and also because each field appearing
in the correlation functions has to be considered separately,
we will ignore the contribution of δ� from now on. We con-
centrate on spectral quantities.
3. The coefficients ωi are needed, in particular their depen-
dence on the parameters of the theory. Eq. (2.16) makes it
clear that actually we first have to renormalize the operators
Oi and then determine their coefficients by matching, which
will be discussed in Sect. 4. Renormalization introduces a
dependence on the renormalization scale μ (and scheme). By
renormalization group improvement we turn it into a depen-
dence on the lattice spacing, which we are seeking. In the
2-d O(N) sigma model, all this has been done to next-to-
leading order in the coupling [7]. Here we are content with
the leading order since it predicts the asymptotic behavior of
�P .

5 For intermediate steps in the derivation, see [18], sect. 9.4.1. In quan-
tum mechanics the relation given is the Feynman-Hellmann theorem.

Before proceeding it is convenient to switch to a basis of
operators, with elements Bi = ∑

j vi jO j which do not mix
at one-loop order, i.e.

BR
i (μ) = [1 + g2Z (1)

i + O(g4)]Bi , (2.17)

where BR
i (μ) denote the renormalized operators in some

scheme at renormalization scale μ. One may think of the
MS scheme.

In general, we then have �P = ∑
i c̄iMR

P,i , where at

leading order in the couplingω j = ω
(n)
j g2n

0 +O(g2n+2
0 ) , ω

(n)
j

= ∑
i c̄

(n)
i vi j and MR

P,i are matrix elements of the operators
Bi in the continuum field theory. The renormalized matrix
elements are denoted

MR
P,i (μ) = 〈ψP |BR

i (μ)|ψP 〉 , (2.18)

with some physical state |ψP 〉, analogous to |i〉, | j〉, see
Eq. (2.16). We have suppressed the spacetime argument of
Bi .

The coefficients c̄i depend on the renormalization scheme
adopted for BR

i as well as on μ and a. We may thus write
(dropping higher powers of a without notice)

�P (a) = −a2
∑
i

c̄i (ḡ(μ), aμ)MR
P,i (μ) , (2.19)

where the dependence of c̄i on μ cancels the one ofMR
P,i (μ).

In order to systematically learn about the behavior for
small a we use renormalization group improvement, namely
we set μ = 1/a, and introduce the renormalization group
invariant matrix elements

MRGI
P,i =

∑
j

ϕi j (ḡ(μ))MR
P, j (μ) = 〈ψP |BRGI

i |ψP 〉.

(2.20)

The matrix valued function (Pexp denotes path ordering:
terms with smallest x appear to the left)

ϕ(ḡ) =
[
2b0 ḡ

2
]−γ (0)/2b0

Pexp

{
−
∫ ḡ

0
dx

[
γ (x)

β(x)
−γ (0)

b0x

]}
,

(2.21)

=
[

2b0 ḡ
2
]−γ (0)/2b0 × [1 + O(ḡ2)] (2.22)

involves the anomalous dimension matrix γ defined by

μ
d

dμ
BR
i (μ) =

∑
j

γi j (ḡ(μ))BR
j (μ) . (2.23)

It has the expansion

γ (ḡ) = −ḡ2 [γ (0) + γ (1)ḡ2 + · · · ] , (2.24)
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where by our choice of basis γ (0) is diagonal,

1

2b0
γ (0) = diag(γ̂1, γ̂2) . (2.25)

Our convention for the β-function is β(ḡ(μ)) = μ d
dμ

ḡ(μ)

with expansion β(ḡ) = −ḡ3 (b0 + b1ḡ2 + · · · ).
Asymptotic freedom means that perturbation theory is

applicable at small a. The asymptotic behavior of Eq. (2.19)
can thus be inferred from (renormalized) perturbation theory.
The O(g2) term in Eq. (2.22) is then subdominant and further
we may expand

c̄i (ḡ(a
−1), 1) = c̄(0)

i + c̄(1)
i ḡ2(a−1) + · · · . (2.26)

Putting everything together and concentrating on the leading
term we arrive at

�P (a) = −a2
∑
i

c̄(0)
i

[
2b0 ḡ

2(a−1)
]γ̂i

×MRGI
P,i [1 + O(ḡ2(a−1)] + O(a4) . (2.27)

Ordering γ̂1 < γ̂2, the leading asymptotics is

�P (a) ∼ a2
[

2b0 ḡ
2(a−1)

]γ̂1 ∼ a2
[

1

− log(a�)

]γ̂1

,

(2.28)

unless c̄(0)
1 or the matrix element MRGI

P,1 vanish. Generically,
there is no reason for the latter to do so. A positive/negative γ̂1

leads to an accelerated/decelerated asymptotic convergence
as compared to naive a2 behavior.

3 One-loop computation of the anomalous dimension
matrix

We now turn to the anomalous dimension matrix γ (0).
Although the renormalization of composite pure gauge the-
ory operators has been discussed extensively [17,19], a new
computation is necessary because of the rotation symmetry
violating operator O2, Eq. (2.13), which is not found in the
literature. We thus employed dimensional regularization and
computed the renormalization matrix,

(O1

O2

)

R
=
(
Z11 0
Z21 Z22

)(O1

O2

)
, (3.1)

to one-loop order. Here Z12 vanishes because dimensional
regularization preserves rotational symmetry and thus (O1)R
can not have a rotational non-invariant piece Z12O2.

The Z -matrix is obtained from a perturbative computation
of a sufficient number of expectation values

CO
ik = 〈OiOprobe

k 〉 (3.2)

of the operators Oi together with suitable multi-local, renor-
malized, operators Oprobe

k . We may choose Oprobe
k including

their kinematics to simplify the computation. Unfortunately,
just choosing them to be composed of local gauge invariant
operators, e.g. trFμνFμν , one quickly discovers that one-loop
computations are insufficient, since the tree-level correlation
functions vanish.

As one option, we thus relaxed on manifest gauge invari-
ance of Cik and consider gauge dependent Green’s functions
with

Oprobe
1 = Ãa(p1) · η1 Ãb(p2) · η2 ,

Oprobe
2 = Ãa(p1) · η1 Ãb(p2) · η2 Ãc(p3) · η3 , (3.3)

in terms of the momentum space fields Ãμ(p)
= ∫

d4x e−i px Aμ(x). We have
∑

i pi = −q as indicated
in Fig. 1 and choose [(pi )0]2 = −(pi )2, pi · ηi = 0 for all i
with the Euclidean scalar product p ·η = ∑

μ pμημ. In prin-
ciple mixing of Oi with gauge-non-invariant operators then
has to be taken into account [20,21]. However, those do not
contribute to the on-shell Green’s functions selected by our
choice of kinematics. Since we want to restrict ourselves to
the two and three gluon Oprobe from above, we need to have
a non-zero momentum q of the operators Oi . Otherwise the
Green’s functions vanish by kinematics. The price to pay is
that Oi mix with the “total divergence operators”,

/O1 = 1

g2
0

∑
μ,ν,ρ

∂μtr(Fρν [Dμ, Fρν]) ,

/O2 = 1

g2
0

∑
μ,ν

∂μtr(Fμν [Dμ, Fμν]) , (3.4)

as

(O
/O
)

R
=
(
Z AO /O
0 Z /O

)(O
/O
)

, (3.5)

with a block-triangular structure.
As a second option, we considered the background field

method [22–25]. It consists of introducing a smooth classical
background field, Bμ(x). The gauge field,

Aμ = Bμ + g0Qμ , (3.6)

is split into the background field and the quantum fluctuations
Qμ. Note that the background field is not required to satisfy
the equation of motion. In addition to the Lagrangian

Lbf(B, q) = Lcont(B + g0Q) , (3.7)

one chooses the background field gauge with gauge-fixing
term

Lgf(B, Q) = −λ0

∑
μ,ν

tr([Dμ(B), Qμ][Dν(B), Qν] (3.8)
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p1 p2

q

(a) Two-point function.

p1

p2

p3

q

(b) Three-point function.

Fig. 1 Schematic representation of the needed two-point and three-
point functions with insertion of an operator Oi . The “blob” represents
all possible connected tree-level and one-loop graphs with given number
of external legs

instead of the standard −λ0 tr((∂μAμ)(∂ν Aν)) and adds a
Faddeev Popov term [26].

In this case, we can form

Oprobe
1 = B̃a

μ(p1) B̃b
ν (p2) ,

Oprobe
2 = B̃a

μ(p1) B̃b
ν (p2) B̃c

ρ(p3) , (3.9)

just in terms of the background field, and obtain gauge
invariant Cik by construction. We can remain with Euclidean
momenta and do not need a nonzero momentum to flow into
the operator Oi . Thus the mixing with total divergence oper-
ators does not contribute any more. The downside is that here
the equations of motion do not hold. Therefore, we have to
consider the mixing structure

(O
E
)

R
=
(
Z AOE
0 ZE

)(O
E
)

, (3.10)

with the extra operator

E = 1

g2
0

∑
μ,ν,ρ

tr([Dμ, Fμν] [Dρ, Fρν]) . (3.11)

Since we are just interested in the renormalization matrix
Z , it suffices to consider only OR, the first block row of
the above equations. Those define the renormalized (CO

ik )R,
replacing O with OR. We write the resulting equations as

(CO
ik )R =

2∑
j=1

Zi jC
O
jk +

∑
l

AilC
red
lk , (3.12)

where C red
lk is formed of the needed redundant operators

which mix into O. Without background field the redundant
operators are /O. With background field there is just the oper-
ator E . Expanding

Zi j = δi j + Z̄i j
g2

R

ε
+ O(ε0, g4

R) ,

A = Ā
g2

R

ε
+ O(ε0, g4

R) , (3.13)

CO
ik = (CO

ik )(0) + CO
ik

g2
R

ε
+ O(ε0, g4

R) ,

C red = (C red)(0) + O(g2
R) , (3.14)

and requiring the finiteness of (CO
ik )R, the desired Z̄i j (as

well as Ā) are obtained as the solution of the linear system
of equations (each i = 1, 2 and all k yield an equation),

2∑
j=1

Z̄i j (C
O
jk)

(0) +
∑
l

Āil(C
red
lk )(0) = −CO

ik . (3.15)

There is one subtlety in applying the above. The equations
assume that the observables CO

jk are infrared finite. With the
chosen on-shell kinematics in the first case, this is, however,
not true and the 1/ε terms contain in principle a mix of ultra-
violet and infrared divergences. Therefore we use the by now
common following trick, called infrared rearrangement [27–
29]. For each loop integral, we rewrite the denominators in
the form

1

(k + p)2 = 1

k2 + �
− 2kp + p2 − �

(k2 + �)(k + p)2 , (3.16)

where k is the loop momentum and � is an arbitrary pos-
itive constant. The second term on the r.h.s. is one power
less ultraviolet divergent and the first one has no source of
infrared divergence. We can usually restrict ourselves to the
first one since we are just interested in the ultraviolet diver-
gences which determine the renormalization. If necessary,
one can apply the transformation repeatedly. While for many
integrals this trick is not necessary, we carry it out in all
cases, since all integrals are then brought to the standard form∫

dDk
[
k2 + �

]−n
kμ1 . . . kμl up to the finite and infrared

divergent parts which we just drop. Note that the Z -factors
are independent of �. We have used this throughout as a
check on our results.

The computation was carried out with the help of com-
puter algebra packages. Feynman graphs were generated
by QGRAF [30,31], formally treating the operator inser-
tions with the help of additional non-propagating scalar
fields, ϕi (x), called “anchor”, through additional terms∑

i ϕi (x)Oi (x) in the Lagrangian. The Feynman rules were
generated using FORM [32], which we also used for tricks
such as Eq. (3.16), to reduce the Feynman graphs to standard
one-loop integrals, and to isolate the 1/ε poles.

The computed two-point and three-point functions with
operator insertions are shown schematically in Fig. 1. We
checked explicitly that the results for both cases, non-zero q
vs. background field, agree. They read

Z̄ = CA

(4π)2

(
7/3 0

−7/15 21/5

)
. (3.17)

The element Z̄11 agrees with the value found in the lit-
erature [33]. For completeness we also report the mixing
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Fig. 2 Graphical representations [5] of the loop geometries contribut-
ing to commonly used lattice gauge actions

terms (CA = N for gauge group SU(N))

ĀO /O = CA

(4π)2

( −6 0
−21/20 −9/5

)
, (3.18)

ĀOE = CA

(4π)2

(
23
6 − 3

2λR
7
15 − 1

2λR

)
, (3.19)

ZE = 1 + CA

(4π)2

(
5

4
− 3

4λR

)
g2

R

ε
. (3.20)

We read off that the choice of basis,

B1 = O1 , B2 = −1

4
O1 + O2 , (3.21)

renormalizes without mixing at one-loop order,

BR
i =

[
1 + Z̄B

i
g2

R

ε

]
Bi + O(g4

R) , (3.22)

Z̄B
1 = 7

3

1

(4π)2 , Z̄B
2 = 21

5

1

(4π)2 . (3.23)

The anomalous dimensions of Eq. (2.25) are6

γ̂1 = 7/11 ≈ 0.636 , γ̂2 = 63/55 ≈ 1.145 , (3.24)

independent of the number of colors.

4 Matching to lattice actions

The final ingredient needed to predict the form of the cutoff
effects are the coefficients of the higher dimensional oper-
ators in the effective Lagrangian, step “3.” in Sect. 2. At
leading order of perturbation theory considered here, we just
need the lowest order coefficients c̄(0)

i of the functions c̄i ,

6 At one-loop order we have γi = 2b0γ̂i = Z̄B
i .

Table 1 Commonly used gauge actions and their coefficients of the
operatorsB1,B2 in the SymEFT. The row “Symanzik improved” applies
to all actions with leading order in g2

0 coefficients as specified there

Action e1 e2 e3 c̄(0)
1 c̄(0)

2

Wilson, Eq. (2.1) 0 0 0 1
48

1
12

Symanzik improved − 1
12 0 0 0 0

Iwasaki [34] −0.331 0 0 −0.0619 −0.2477

DBW2 [35,36] −1.4088 0 0 −0.3314 −1.3255

Eq. (2.26). At tree-level, no divergences occur in the path
integral. One may therefore perform a naive classical expan-
sion of the lattice action in a, setting U (x, μ) = eaAμ(x)

with a smooth continuum gauge field Aμ. This expansion
has been carried out by Lüscher and Weisz [16] for a set of
gauge actions, in particular for those consisting of the lattice
loops depicted in Fig. 2. For each of these loops one sums
over all lattice points corresponding to the lower left corners
in the graph and over all orientations on the lattice, e.g. for
the plaquette term (0) one sums over μ > ν, for the rectangle
(1) over μ 
= ν etc. There are 6, 12, 16, 48 orientations for the
loops (0), (1), (2), (3). Apart from the overall pre-factor 2/g2

0,
we denote their coefficients at g0 → 0 as ei , i = 0, 1, 2, 3
(in Ref. [16] they are denoted ci (0)). With

e0 + 8e1 + 8e2 + 16e3 = 1 , (4.1)

the leading term in the a-expansion,

Sclass
lat =

∫
d4x

{
Lcont(x) + a2

2∑
i=1

ωiOi (x) + · · ·
}

,

(4.2)

has the conventional normalization. The ellipses summarize
terms that vanish upon the use of the equation of motion and
higher orders in a. From table 2 of [16] we find

c̄(0)
1 = ω

(0)
1 + 1

4
ω

(0)
2 = 1

48
+ 1

4
e1 + 1

3
e2 − 1

4
e3 , (4.3)

c̄(0)
2 = ω

(0)
2 = 1

12
+ e1 − e3 . (4.4)

The standard Wilson plaquette action, Eq. (2.1), has e0 =
1, e1 = e2 = e3 = 0 and both B1 and B2 contribute to
the order a2. Symanzik improved actions have c̄(0)

i = 0
by design. Other actions such as the Iwasaki action and the
“DBW2” action lead to quite large coefficients. We show a
summary in Table 1. All considered lattice actions just have
the plaquette and the rectangle terms. This turns out to lead to
vanishing coefficients e2, e3 and in the classical a2 expansion
onlyO1 contributes in theOi basis [16]. As discussed before
we have to go to the basis Bi with diagonal renormalization
at one-loop. The relevant coefficients for the asymptotics are
then related by c̄(0)

2 = 4c̄(0)
1 .

123



  200 Page 8 of 16 Eur. Phys. J. C           (2020) 80:200 

5 Examples for the asymptotic behavior

For convenience we combine here the main results of the
previous two sections and discuss some interesting sample
applications.

5.1 Generic form for spectral quantities

The cases considered in Table 1 are probably the most
relevant for the Yang–Mills theory. Since they all satisfy
c̄(0)

2 = 4c̄(0)
1 , we have the form

�P (a)

= −a2c̄(0)
1

{[
2b0 ḡ

2(a−1)
]γ̂1 MRGI

P,1 + 4
[

2b0 ḡ
2(a−1)

]γ̂2 MRGI
P,2

}

× [1 + O(ḡ2(a−1)] for Wilson, Iwasaki, DBW2 actions.

(5.1)

The entire computed leading behavior only depends on the
coefficient c̄(0)

1 . While we cannot predict the relative contri-
bution of the two powers γ̂1, γ̂2 because they depend on the
non-perturbative matrix elements MRGI, their mixture is the
same for any of the three different actions. The only action
dependence is in the coefficient of the rectangle term (geom-
etry (1) of Fig. 2) and thus the leading cutoff effects have a
relative size

Wilson : Iwasaki : DBW2 ≈ 1 : (−3) : (−16) . (5.2)

For a Symanzik improved action, the property c̄(0)
2 =

c̄(0)
1 = 0 and additionally for a one-loop improved action

c̄(1)
2 = c̄(1)

1 = 0 means

�P (a) = −a2
∑
i

c̄(nI)
i

[
ḡ2(a−1)

]nI
[

2b0 ḡ
2(a−1)

]γ̂i MRGI
P,i

× [1 + O(ḡ2(a−1)] , (5.3)

where nI = 1 for a tree-level improved action and nI = 2 for
a one-loop improved action and nI = 0 without perturbative
improvement. We illustrate the a behavior in Fig. 3. One
notices that over a typical range of a from a = 0.1 fm to a =
0.04 fm, one has 20, 40, 60% (for nI = 0, 1, 2, respectively)
reductions of �P (a) as compared to the naive a2 behavior.

We remind the reader, that gradient flow observables are
excluded and that we have restricted ourselves to energy lev-
els.

5.2 Short distance observables

Let us now consider the special case of a dimensionless short
distance observable depending on a single physical length
scale r . A simple example is PF = 4π

CF
r2F(r) , with F(r)

the force between static quarks assumed here to be defined in

terms of a discrete derivative of the potential which is correct
up to order a4 errors.7 In particular, we are interested in the
region of small r , which has two consequences. The ratio a/r
which determines the discretization errors is not as small as
in the large distance region. The discussion of discretization
errors is thus particularly important. Second, not only the
continuum P(�r, 0) can be expanded in perturbation theory,
but also the quantity at finite a/r - both in lattice theory and
in SymEFT. We want to summarize what one can learn from
this.

The perturbative expansion in the lattice theory is expected
to be of the form [1,38]

�P (�r, a/r)

= P(�r, a/r) − P(�r, 0)

= P(�r, 0) [δ0(a/r) + δ1(a/r) ḡ2
lat(r

−1) + · · · ] (5.4)

δl(a/r) = a2

r2

l∑
k=0

plk log(a/r)k + O((a/r)4) . (5.5)

On the other hand in SymEFT with renormalization group
improvement, dropping the O(ḡ2

lat(a
−1)) corrections, we

have

�P (�r, a/r) = −a2

r2

∑
i

c̄(0)
i

[
2b0 ḡ

2
lat(a

−1)
]γ̂i [r2MRGI

P,i (r)]

(5.6)

= −a2

r2 P(�r, 0)
∑
i

c̄(0)
i

[
ḡ2

lat(a
−1)

ḡ2
lat(r

−1)

]γ̂i

Ki (r) ,

Ki (r) = r2MR
P,i (r;μ)

P(�r, 0)
, μ = r−1 , (5.7)

where the second argument μ in MR is the renormalization
scale of the operator BR

i .
For comparison to the fixed order perturbation theory form

Eq. (5.4) we expand (remember γ̂i = γ
(0)
i /(2b0))

[
ḡ2

lat(a
−1)

ḡ2
lat(r

−1)

]γ̂i

= 1 + γ
(0)
i log(a/r) ḡ2

lat(r
−1) + O(ḡ4

lat),

(5.8)

Ki (r) = [K (0)
i + K (1)

i ḡ2
lat(r

−1) + O(ḡ4
lat)],

(5.9)

and find

p00 = −
∑
i

c̄(0)
i K (0)

i , (5.10)

p10 = −
∑
i

c̄(0)
i K (1)

i −
∑
i

c̄(1)
i K (0)

i (5.11)

7 Otherwise, if O(a2) errors are associated with the definition of the
lattice derivative, these can be taken into account explicitly.
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Fig. 3 Illustration of discretization errors, �P (a), Eq. (5.3) compared to naive a2 behavior. We use α(5/r0) = ḡ2(5/r0)/4π = 0.25, where
r0 ≈ 0.5 fm [37] and set matrix elements to one in units of r0 and set c(i)

1 = 1. On the right, we drop the overall naive power of a2/r2
0 and normalize

at a/r0 = 1/5 such that the shape is clearly visible

p11 = −
∑
i

c̄(0)
i K (0)

i γ
(0)
i . (5.12)

This demonstrates the standard use of EFT in the perturba-
tive domain. The EFT description and computation is more
efficient since first of all it provides renormalization group
improvement (l.h.s. of Eq. (5.8)) and second even the compu-
tation of coefficients plk may be simplified. Apart from the

one-loop matching coefficients of the action, c̄(1)
i , which can

be computed by matching any convenient set of observables,
only continuum perturbation theory quantities appear on the
r.h.s. of Eqs. (5.10) and (5.11).

Improved observables

For short distance observables it is rather common to attempt
a reduction of lattice spacing effects at the level of the expec-
tation values rather than at the level of the action. For the
static potential or PF, we refer the reader to [37,39]. Exam-
ples with higher orders in perturbation theory and with a
combination of improvement of action and observable are
found for example in [40–43].

To illustrate what is gained by considering SymEFT, it
is sufficient to define a tree-level improved short distance
observable,

P impr(�r, a/r) = P(�r, a/r)

1 + δ0(a/r)

= P(�r, a/r)

1 − a2

r2

∑
i c̄

(0)
i K (0)

i

+ O(a4/r4) .

(5.13)

By construction, cutoff effects in fixed order perturbation
theory are then suppressed by one power of ḡ2

lat (all orders in
a/r ) and therefore also the coefficient p00 of a2/r2 vanishes
irrespective of the action. However, this neither means that
the leading term (i = 1) in Eq. (5.6) vanishes nor that the

sum of the two O(a2) terms does. The sum of the two terms
vanishes only for a = r , which is not at all where the a2

expansion is applicable. In fact, inserting the denominator in
Eqs. (5.13) into (5.6) one obtains

�P impr (�r, a/r)

= −a2

r2 P(�r, 0)
∑
i

⎧⎨
⎩

[
ḡ2

lat(a
−1)

ḡ2
lat(r

−1)

]γ̂i

− 1

⎫⎬
⎭ K (0)

i c̄(0)
i .

(5.14)

The effect of tree level improvement is the subtraction of
the 1 in the curly bracket. For intermediate a/r , this will
reduce the magnitude (and change the sign) of each term
in the sum over i . However, asymptotically, for very small
a/r , the tree level improvement leads to an increase of the a2

effects. This behavior is tied to the sign of the γ̂i . For negative
γ̂i , we would always have a reduction of the magnitude of
the terms.

Usually the terms K (0)
i c̄(0)

i are known individually and one
can divide out the complete leading order term,

PRG−impr = P

1 − a2

r2

∑
i

[
ḡ2

lat(a
−1)

ḡ2
lat(r

−1)

]γ̂i

K (0)
i c̄(0)

i

, (5.15)

and have a renormalisation group and tree level improved
observable. It then has leading corrections which are truly

of order �P/P ∼ a2

r2 ḡ
2
lat(r

−1)

[
ḡ2

lat(a
−1)

ḡ2
lat(r

−1)

]γ̂1

as the name tree

level improvement suggests.
We return to PF. In this special case, the O(4) invariant

operatorO1 = B1 does not contribute at tree level, K (0)
1 = 0.

Specializing to the Wilson plaquette action and the force
along a lattice axes, we have c̄(0)

2 = 1/12 and K (0)
2 = −9. If

one chooses a different direction on the lattice, e.g. a body-
diagonal, the matrix element K (0)

2 is smaller, but the finite
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Fig. 4 Leading order discretization errors, �PF (a)/PF of the static
force, see the text. We use α(1/r) = ḡ2

lat(1/r)/(4π) = 0.2, and

K (0)
1 = 0, K (0)

2 c̄(0)
2 = −3/4, corresponding to the Wilson plaquette

action and the force along a lattice axes. The dotted line represents
fixed order perturbation theory, the full line the remainder (on top of
fixed order) predicted by SymEFT, and the dashed line shows a rough
approximation, linear in a2, to that latter

difference defining the force on the lattice has a larger dis-
cretization length. The various terms are illustrated in Fig. 4.
The dotted line is the fixed order perturbation theory for
�PF/PF and the full curve the remainder, Eq. (5.14). The
dashed line shows a rough linear approximation to the lat-
ter at large a. It extrapolates to a small value of −0.6% at
a = 0. We may think of this as an example for the relative
error one makes by approximating the cutoff effects of the
tree-level improved observable linearly in a2.8 Interpreting
PF as a running coupling as explained for example in [44],
this intercept represents a systematic (relative) uncertainty
on the coupling. It translates into an about 1.5% error in the
�-parameter of the theory, which is not entirely irrelevant
given today’s precision of results for it. Needless to say that
the full logarithmic term Eq. (5.14) is better eliminated by
use of Eq. (5.15).

6 Schrödinger functional

Short distance observables of particular interest can be
defined in the Schrödinger functional [45]. Fixed order per-
turbation theory has been used extensively to study dis-
cretization errors in this environment. Here we consider
their renormalization group improvement with the help of
the SymEFT. We just consider the pure gauge theory and
the Schrödinger functional with an abelian background field,
where - as we will see - we do not have to deal with operator
mixing.

8 Usually the tree-level improved force is defined through an improved
distance [37] rI. At the level of a2 terms this is equivalent to Eq. (5.13).

In the lattice regularization, the Schrödinger functional
can be defined by a path integral with action,

SSF
lattice = 2

g2
0

∑
0≤x0≤T−a

∑
x

3∑
μ>ν=0

p(x, μ, ν)

+ a(ct(g0)−1) a3
∑
x

[Ol
b(0, x)+Ol

b(T − a, x)] ,

(6.1)

with

Ol
b(x0, x) = 2

g2
0

1

a4

3∑
k=1

p(x, k, 0) . (6.2)

Space-time is a cylinder in the sense that we have periodic
boundary conditions in space with period L and Dirichlet
boundary conditions on the time-slices x0 = 0 and x0 = T ,

U (x, k)|x0=0 = eaCk (L ,η) , U (x, k)|x0=T = eaC
′
k (L ,η) .

(6.3)

For details we refer to [45], but we note that the dimensionless
quantity LCk(L , η) is just a function of the dimensionless
parameter η (and a here irrelevant second parameter ν) and
that the field strength Fkl vanishes at the two boundaries.

Under these conditions, which have been imposed for all
numerical applications so far, the SymEFT for the Yang–
Mills Schrödinger functional is given by the formal contin-
uum action

SSF
eff =

∫
d3x

{∫ T

0
dx0Lcont(x) + a ωb [Ob(0, x) + Ob(T, x)]

}

+ O(a2) (6.4)

with

Ob(x) = − 1

g2
0

tr(F0k(x)F0k(x)) . (6.5)

The presence of the boundary terms in Eq. (6.4) is the reason
for including the corresponding extra term proportional to ct

in the lattice formulation: the coefficients c(i)
t in

ct(g0) = c(0)
t + c(1)

t g2
0 + O(g4

0) , (6.6)

can be chosen such that ωb vanishes and there are no linear
terms in a in the lattice Schrödinger functional at the corre-
sponding order in perturbation theory [45].

A prominent observable in the Schrödinger functional is
the running coupling

ḡ−2(L−1) = 1

k
〈S′〉 , with S′ = ∂S

∂η

∣∣∣∣
η=0

. (6.7)

where k = 12π imposes the standard normalization of the
coupling, ḡ2 = g2

0 + O(g4
0) + O(a/L). We want to discuss

123



Eur. Phys. J. C           (2020) 80:200 Page 11 of 16   200 

the a-effects of ḡ2 as an example. The definition of the a-
effects requires to first renormalize. We here do this by lattice
minimal subtraction,

ḡ2
lat(μ) = Zg(ḡlat, aμ)g2

0 ,

Zg(ḡlat, aμ) = 1 − 2b0 log(aμ)ḡ2
lat(μ) + O(g4) . (6.8)

We can then define the function

K (ḡ2
lat(L

−1), a/L) = ḡ−2 , (6.9)

which relates the renormalized couplings of the two schemes.
It has a continuum limit and discretization errors

�K (ḡ2
lat, a/L) = K (ḡ2

lat, a/L) − K (ḡ2
lat, 0) . (6.10)

They have the expansion

�K (ḡ2
lat, a/L)

K (ḡ2
lat, 0)

= a

L
[p00 + (p10 + p11 log(a/L))ḡ2

lat(L
−1) + O(g4)]

+ O((a/L)2) , (6.11)

where analogously to before SymEFT predicts

p11 = γ
(0)
b p00 . (6.12)

An explicit one-loop computation [46] showed that

p00 = 0 for c(0)
t = 1 , (6.13)

p10 = 2 × (c(1)
t + 0.0890(2)) for c(0)

t = 1 . (6.14)

Thus c(0)
t = 1, c(1)

t = −0.0890(2) leads to the absence of
linear a-effects at one-loop. For this reason the perturbative
computations have been carried out with c(0)

t = 1 and from
the published one-loop computation we do not have access
to γ

(0)
b . We note that general c(0)

t was considered in [47] in

the context of aspect ratios T/L 
= 1, but again γ
(0)
b can’t be

extracted because in the one-loop computation c(0)
t was set

such that p00 = 0.
As was done in Sect. 3, the standard way to compute γ

(0)
b

is to compute the one-loop renormalization of Ob. Here we
extract it indirectly from the results of the two-loop compu-
tation of [48,49]. In contrast to Sect. 3 the computation thus
relies entirely on the lattice regularization. Consider Eq. (6.1)
with a lattice spacing a → af and then replace

ct(g0) − 1 → ζ . (6.15)

In this way ζ acts as a source for the lattice regularized oper-
ator Ob. The continuum function K (ḡ2

lat, 0) is given by

K (ḡ2
lat, 0) = lim

af→0

[〈S′〉af

]
ζ=0 (6.16)

and the first order correction in a by

�K (ḡ2
lat, a/L) = a lim

af→0

[
1

af

∂

∂ζ
〈S′〉R

af

]

ζ=0
+ O((a/L)2) .

(6.17)

The right hand side of Eq. (6.17) is the SymEFT prediction
written as the continuum limit of the lattice regularized theory
(with spacing af to distinguish it from a). Renormalization
is indicated by the superscript R. In addition to Eq. (6.8) it
affects the boundary operator Ob,

Olat
b = Zb(ḡlat, afμ)Ob , (6.18)

Zb(ḡlat, afμ) = 1 − γ
(0)
b log(afμ)ḡ2

lat(μ) + · · · . (6.19)

We are now ready to extract γ
(0)
b from the two-loop expan-

sion,

ḡ−2 = g−2
0

[
1 + k1g

2
0 + k2g

4
0 + O(g6

0)
]

(6.20)

k1 = −ma
1 + c(1)

t
2af

L
, (6.21)

k2 = −ma
2 − c(1)

t mb
2 −

(
c(1)

t

)2
mc

2 − c(2)
t md

2 , (6.22)

derived in [48,49] for c(0)
t = 1. We use the asymptotic expan-

sion of the coefficients mk
i in powers of af

L and log(af/L)

given in Ref. [48,49] and keep the notation of the coefficients
of these references. But first we note that with 〈S′〉 = k/ḡ2

we have

1

af

[
∂

∂ζ
〈S′〉af

]R

ζ=0

= 1

af
Zb(ḡlat, afμ)

[
∂

∂ζ
〈S′〉af

]

ζ=0

= Zb(ḡlat, afμ)
k

g2
0

[
2

L
− 1

af
mb

2(af/L) g2
0 + O(g4

0)

]

= k

ḡ2
lat(μ)

[
2

L
− 2

L
(γ

(0)
b + 2b0) log(afμ)ḡ2

lat(μ)

− 1

af
mb

2(af/L) ḡ2
lat(μ)

]
+ O(ḡ2

lat) (6.23)

since the computation [48,49] corresponds to ζ = c(1)
t g2

0 +
O(g4

0). Finally, requiring finiteness of Eq. (6.23) after insert-
ing

1

af
mb

2(af/L) = 1

L

[
rb

2 + sb
2 log(L/af) + O(af/L)

]
, (6.24)

with [49] rb
2 = 0.1683(8) , sb

2 = 0.2785(4) we obtain

γ
(0)
b = sb

2/2 − 2b0 and

γ̂b = 0.000(2) . (6.25)
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Note that this is the anomalous dimension of a boundary
operator. Assuming that γ̂b = 0, exactly, Eq. (6.18) can now
be written in the form (see also Eq. (5.14))

�K = a

L
[ḡ2(a−1)]nI 2 c̄(nI)

b [1 + O(g2)] , (6.26)

where c̄(nI )
b = −c(nI)

t is the leading coefficient in

c̄b = c̄(nI)
b [ḡ2(a−1)]nI + O([ḡ2(a−1)]nI+1) , (6.27)

as we are considering a theory where ct is chosen to achieve
O(a) improvement in perturbation theory, up to and including
the terms g2(nI−1)

0 . The O(ḡ2(L−1)) term in the SymEFT
matrix element is given by rb

2 ḡ
2/2, but it comes together with

the two-loop anomalous dimension of the boundary operator
and the next order correction in Eq. (6.27). Since these are
presently unknown, we only show the leading order in g2 in
Eq. (6.26).

In order to compute the non-perturbative running of the
coupling, one considers the step scaling function,

�(u, a/L) = ḡ2(1/(2L))|ḡ2(1/L)=u , (6.28)

where the choice of intermediate renormalization scheme
(we chose “lat”) disappears. Its leading discretization errors
are (see also [43], App. A)

��(u, a/L) = �(u, a/L) − �(u, 0) (6.29)

= u
a

L
c̄(nI)

b [ḡ2(a−1)]nI [1 + O(u)] (6.30)

Since we have seen that the one-loop anomalous dimension
of Ob vanishes, this is equivalent to the form used by the
ALPHA collaboration recently [43,50].

7 Wilson-QCD

Let us now briefly discuss the case of the original Wilson
action for QCD including the Wilson term in the fermion
action [51]. While this action is hardly used any more in the
original form it is still of interest because there are results
in the literature. More importantly, some large scale compu-
tations use the O(a)-improved version with an approximate
coefficient of the clover improvement term. One can gain
information on the scaling of δPL , Eq. (2.16), in that case.

The Wilson quark action breaks chiral symmetry and thus
allows for the dimension five Sheikholeslami–Wohlert term
[52]

δL (1)(x) = −ωsw
1

8
ψ(x)[γμ, γν]Fμν(x)ψ(x) (7.1)

in the SymEFT, Eq. (1.2). In principle there are additional
terms proportional to quark masses, but these “only” affect
quark-mass dependences [12] and are absent when one
takes the continuum limit along a physical scaling trajec-
tory defined by, for example, fixed ratios of Nf pseudo-scalar

masses in the Nf -flavor theory. We here neglect those O(amq)

effects; we set the quark masses to zero. There are no oper-
ators which violate rotational symmetry. Therefore, there is
no mixing at O(a) at all. The prediction for the asymptotic a
dependence can then immediately be written down,

�P (a) = −a c̄(0)
sw

[
2b0 ḡ

2(a−1)
]γ̂ sw

MRGI

×[1 + O(ḡ2(a−1))] ∼ a

[
1

− log(a�)

]γ̂ sw

. (7.2)

For the standard Wilson action, we have c̄sw = c̄(0)
sw +

O(g2) with c̄(0)
sw = −1. As in Eq. (6.30), there are additional

powers of ḡ2(a−1) when the theory is perturbatively O(a)

improved [12,52–54]. We find [55] (CA = N, CF = (N2 −
1)/(2N)),

γ̂ sw = 15CF − 6CA

11CA − 2Nf
(7.3)

for the anomalous dimension. It is rather small. For N = 3
this is in agreement with [33].

For the considered case of Wilson fermions, one may also
easily discuss the relevant contributions from corrections to
the vector and axial vector, non-singlet, flavor currents. In
SymEFT, they are represented by [12]

Vr,s
μ (x) = ψr (x)γμψs(x) + a ωV ∂νT

r,s
μν (x) , (7.4)

Ar,s
μ (x) = ψr (x)γμγ5ψs(x) + a ωA ∂μP

r,s(x) . (7.5)

Matrix elements of interest of the corresponding lattice cur-
rents are, e.g., leptonic decay constants and semi-leptonic
form factors. Using the anomalous dimensions of the non-
singlet pseudo scalar density and the tensor current [56,57],
the lattice artifacts receive contributions

�V
P (a) = a ḡ2(a−1)

[
2b0 ḡ

2(a−1)
]γ̂ T

× MRGI
T [c̄(1)

V + O(ḡ2(a−1)] , γ̂ T = 3CF

11CA − 2Nf
,

�A
P (a) = a ḡ2(a−1)

[
2b0 ḡ

2(a−1)
]γ̂ P

× MRGI
P [c̄(1)

A + O(ḡ2(a−1)] , γ̂ P = −3 γ̂ T , (7.6)

where MRGI
T is the RGI matrix element of ∂νT r,s

μν and MRGI
P

the RGI matrix element of ∂μP . There is an extra factor ḡ2, as
compared to previous expressions, since the O(a) term in the
classical expansion of the currents vanishes. The ω

(1)
V/A fac-

tors are the one-loop matching coefficients between SymEFT
and the considered lattice theory. An extended list of ref-
erences with results for improvement coefficients c(1)

V/A for
various actions is given in table 1 of [58]. The case of unim-
proved lattice currents, e.g. Vr,s

μ,latt(x) = ψr (x)γμψs(x), can

be obtained by setting c̄(1)
V/A = −c(1)

V/A in Eq. (7.6). These
coefficients are rather small.

123



Eur. Phys. J. C           (2020) 80:200 Page 13 of 16   200 

8 Summary

We have investigated the form of the leading discretization
errors in lattice gauge theory in a few specific cases. The
starting point is the leading contribution to the Symanzik
effective Lagrangian in the form

Leff (x)

= L (x) + anmin
∑
i

c̄(nI)
i g2nIBi (x) + · · · , nmin ≥ 1, nI ≥ 0,

(8.1)

where the ellipsis denotes higher powers in g2 for each term i
as well as higher powers in a. The basis operators are chosen
such that they do not mix at one-loop order and have one-
loop anomalous dimensions γ

(0)
i g2, γ

(0)
1 ≤ γ

(0)
2 ≤ · · · .

Once nmin, ci , γ
(0)
i , nI are known, the leading correction to

the continuum limit of spectral quantities is

�P (a) = anmin
[
ḡ2(a−1)

]nI
[

2b0 ḡ
2(a−1)

]γ̂1
c̄(nI)

1

×MRGI
P,1 [1 + O([ḡ2(a−1)]�γ̂ , ḡ2(a−1))]

+O(anmin+1) , (8.2)

with γ̂i = γ
(0)
i /(2b0) , �γ̂ = γ̂2 − γ̂1. The only unknown

is the a-independent renormalization group invariant matrix
elementMRGI

P,1 of the operatorB1. The most important ingre-
dient in the formula is the leading γ̂1. In almost all considered
cases, we find that γ̂1 ≥ 0 in stark contrast to the case of the 2d
O(3) model [7]. This is good news, as the leading corrections
accelerate the approach to the continuum limit compared to
the naive classical argumentation which neglects the overall[
ḡ2(a−1)

]nI+γ̂1 factor.
Let us briefly summarize the results for the individual

cases considered.

• Yang–Mills theory.
Discretization effects of order a2 (nmin = 2) are due
to two operators. Their anomalous dimensions, γ̂i , com-
puted in Sect. 3, are of order one, see Eq. (3.24). In
Eqs. (8.1–8.2), the original Wilson action, tree-level and
one-loop Symanzik improved actions have nI = 0, 1, 2
respectively.

• Yang–Mills theory with a boundary: Schrödinger func-
tional.
As discussed in Sect. 6 there are linear in a (nmin =
1) discretization errors due to one boundary opera-
tor. Using the literature on perturbation theory for
the Schrödinger functional, we extracted its anomalous
dimension and found that it vanishes within uncertain-
ties, γ̂b = 0.000(2). This means that the fixed order per-
turbation theory analysis of discretization errors carried
out by the ALPHA collaboration [50] receives no log-
corrections at leading order.

• Wilson O(a) effects due to the fermion action.
Here our analysis concerns O(a) effects (nmin = 1)
which come from an action with perturbative improve-
ment, i.e. with an improvement coefficient csw deter-
mined at n-loop perturbation theory. The Pauli term,
found to be the only contributing operator by Sheik-
holeslami and Wohlert, has nI = n + 1 in Eq. (8.2).
Its anomalous dimension, γ̂1 = γ̂ sw = 15CF−6CA

11CA−2Nf
, could

be taken from the literature [33]. It is rather small. Inter-
estingly, as one approaches the conformal window [59]
by increasing Nf , the anomalous dimension γ̂ sw grows.

• Wilson O(a) effects due to the flavor currents.
Weak decay (and other) matrix elements receive addi-
tional discretization errors from correction terms in the
effective weak Hamiltonian. We just considered the flavor
currents with perturbative O(a) improvement in Sect. 7.
For the axial current, the (derivative of the) pseudo-
scalar field governs the correction term. Its γ̂P is nega-
tive, but relatively small in magnitude. Since the coef-
ficient of the correction operator starts at order g2 in
perturbation theory, the total logarithmic modification,[
ḡ2(a−1)

]nI
[

2b0 ḡ2(a−1)
]γ̂P , again accelerates conver-

gence due to nI ≥ 1 and nI + γ̂P > 0. For the vector
current the O(a) correction involves the tensor current
with γ̂T which is positive and rather small. This leads
to an even better a-dependence. Note that this analysis
holds also for a non-perturbatively improved action but
only perturbatively improved currents.

Short distance observables P(r�) with r� � 1 are spe-
cial. Their matrix elements MRGI

P,i (r�) are computable in
renormalized perturbation theory in terms of the coupling
at scale μ = 1/r and one can make parameter free predic-
tions for the leading corrections. As discussed in Sect. 5.2
the usual tree-level improved observables do not always lead
to a reduction of the asymptotic cutoff effects, but this is easy
to fix so as to have cutoff-effects suppressed by one power
of ḡ2(r−1) at short distances.

As a general conclusion, our results are very positive
because the so-far known logarithmic corrections are rela-
tively small. This lends support to some of the continuum
extrapolations performed in the literature. For example, the
BMW collaboration has performed continuum extrapola-
tions of data obtained with tree-level coefficient, csw = 1
of the Sheikholeslami–Wohlert term [60]. In principle, the

asymptotic behavior is then c̄(1)
sw ḡ2(a−1)

[
2b0 ḡ2(a−1)

]γ̂ sw

.
In one of their continuum extrapolations they used this form
but with γ̂ sw → 0, which we now see is a rather good approx-
imation. Of course, the difficult question in such extrapola-
tions is whether one is in the region where the asymptotics
dominates. For this reason they also used alternative extra-
polation functions.
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Despite the small values of γ̂ that we found, with tree-
level or one-loop Symanzik improved action, the

[
ḡ2(a−1)

]nI

[
2b0 ḡ2(a−1)

]γ̂1 effects are non-negligible when MC results
are accurate, see the right part of Fig. 3. In any case, when the
leading behavior is known, it should be incorporated into the
fit function. Still, we emphasize that the asymptotically lead-
ing behavior can be predicted, not the region where exactly
this dominates over formally suppressed terms.

Of course the most interesting application of SymEFT is
lattice QCD with nmin = 2 in Eq. (1.3). In that case the basis
of contributing operators is considerably larger. Work on
determining their anomalous dimensions is in progress [55].
Also Gradient flow observables are of high interest. Their
discretization errors are surprisingly large [61–63]. Now that
it is known that standard pure gauge theory operators are not
the source of this behavior, since they have positive γ̂i , a nat-
ural suspicion is that there is an unusually large and negative
anomalous dimension γ̂ of the additional dimension six oper-
ator at t → 0, present in the 5-d formulation of the Gradient
Flow, see [64] for more details. We also plan to investigate
this issue.
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