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The excitation of coupled-bunch longitudinal modes in PEP by the 
accelerating cavities has been examined. It is found that some modes 
may be driven unstable either by the impedance of the main resonance of 

the accelerating cavities, or by the higher-order parasitic resonances. 
Estimates of the driving strengths are given. 
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1. INTRODUCTION 

Coupled-bunch longitudinal instabilities have been observed in many 

synchrotrons and storage rings -- notably in Adonel which, like PEP, has 
three bunches per beam. The theory of the instability mechanism is well 
known -- see, for instance, Sacherer2 or Pellegrini and Renieri3 where 

references to earlier work will also be found. In this note we make 
some es mates of the ng coefficients of the possibly unstable 

modes in PEP. We find that anti-damping effects are sufficiently stronq 

that some modes may become unstable at stored currents below the desiqn 
goals. 

Longitudinal instabilities have been controlled4,5,6 by passive 

cavities or by active feedback systems. It is likely that some such 
feedback system will be required for PEP. 

The mathematical formalism becomes quite cumbersome for the general 

case of two c~unter-rotating beams each containing many bunches.4 For 
our estimates we consider only the special case of a single beam of 
three equal bunches in which the "rigid bunch" oscillations -- the so­

called 11 dipole 11 motions -- are coupled and driven by their interactions 
with longitudinal impedances in the vacuum chamber. (We are not con­
cerned with coherent motion within the bunches.) We may expect, however, 

that the driving terms for beams of somewhat unequal bunches, and for 
two-beam modes will not be very different from those for our special 

case. We give in Appendix A a simplified -- and, hopefully, relatively 

transparent -- treatment of the theory for our special case. 
We present in the following section the result of the theory for 

the most general longitudinal impedance Z(w), and then apply the results . 
for the expected impedances of PEP. We shall be assuming that the 

efforts to make a "smooth 11 chamber for PEP will be successful and that 
the longitudinal impedance will be dominated by the impedance of the 

accelerating cavities. I our estimates we take into account the im-
pedance contributed both the fundamental (accelerating) mode, and by 

the higher, parasitic For the parasitic modes -- see Sect. 5 --

a s stical is 
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2. 

The coupled, longitudinal oscillations of a beam of three bunches 

are most conveniently described as the superposition of the motion of 

three normal modes in each of which the oscillations of each bunch have 
the same frequency $'\

1 
and the same damping coefficient aµ (the inverse 

of the damping time constant) where the indexµ identifies each mode by 

its mode number. For the special case of three ___._ ___ _ 

spaced around the ring the oscillation amplitudes of the three bunches 
are also equal for each mode, and the phase of the oscillation of each 

bunch relative to the preceeding bunch is the same for all bunches, and 
is, in particular, an integral multipule of 120° = 2TI/3. 

We choose to identify each bunch by a bunch number t, which we give 

the values O, +1 or -1. Bunch t = 0 is the 11 reference 11 bunch, bunch 
t = +1 preceeds it and bunch t = -1 follows it. Similarly we label the 
modes by the number µ = 0, ± 1, chosen so that the P.hase shift (of the 

longitudinal motion) from the reference bunch to bunch t = 1 is zero for 
mode µ = 0, is +2~/3 = 1200 for mode µ = +l, and is -2~/3 for mode µ = -1. 
In general, the phase shift from bunch 11 011 to bunch 11 ±1 11 can be written 

= + 2~ - -3-µ 

Adopting the time displacement T as our longitudinal coordinate?, 

we can, then, express the motion of bunch t in each modeµ by, 

A 

where Tµ is the amplitude of the oscillation of each bunch in mode µ. 

The total motion of bunch i is the sum of the Ttµ for the three modes 
µ = 0, ±1. 

( 1) 

(2) 
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We are interested primarily in the damping coefficients aµ. We may 

consider that each consists of two parts: a part a.rad due to radiation 
damping of the motion of each particle and a second part Ila that is 

µ 
driven by the chamber impedance: 

A negative ~a is destabilizing, and an unstable oscillation will occur µ 
when 

As we shall see, ~a is proportional to the average beam current 
µ 

Iav so the inequality {4) also defines a threshold current for the in-
stability. If we write 

(3) 

(4) 

(5) 

the mode can become unstable if K is negative; and the onset of unstable 
µ -

oscillations will occur in modeµ at the threshold current I given by 

Iµ = 
-a rad 

K µ 

(6) 

We consider that any feedback system can be treated as a part of the 
chamber 11 impedance 11 and will, therefore, be included in Ila. . 

µ 
The wi 11 be, in general , different from n, the 

single cle 1 itudinal oscill ons at low currents. 
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our present purposes, however, ignore this difference and 

So long as the 11 loading 11 of rf sys is small, 

We sha 11 , for 

take nµ = n. 
we may expect that the difference IQ - Q ! wi 11 be of the same order as µ 
jAa I, which we shall assume is always much less than n. {See the end of µ 
Appendix A.) If beam loading is large (that is, if the 
is comparable to or larger than the power dissipated in 
may still expect that frequency shi will 

power to the beam 
the cavities) we 

le to for 
mode 11 ±1 11

, it may, , be much la for mode "O". See, for in-
stance, Baryshev and Kheifetz8 or Sands9. 

With these preliminaries we can write a relatively simple expression 

for the damping coefficients: 

where 
1av = average beam current {all bunches) 

ac = momentum compaction factor 

WO = 2~/T0 = rotation angular frequency 

E = beam particle energy 

vs = fl /w
0 

= synchrotron number 

The chamber driving resistance Sµ is 

s 
µ · f l(3m-µ)Rm-(3m+µ)R: 

m=l 

( 7} 

(8) 
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with 

R~ = R [(3m - µ - \)s) WO J 
R + = R [( 3m + µ + v ) w J m s o , 

where m is any integer, µ = 0, is the mode number, and R[w] is the real 
partof the chamber impedance Z[w] at the frequency 

- + sistances Rm and Rm depend also qn the mode µ, but we 
notation by leaving that dependance implicit. 

Evidently, the re­

shall simplify our 

The driven contribution to the longitudinal damping, ~a , of Eq. (7) µ 
is pr.oportional to the stored current Iav' to a factor ac w0 /Evs that is 
a characteristic of the ring, and to the factor Sµ that we have called the 
"driving resistance". This factor is a sum of terms each proportional to 

the resistive parts of the chamber impedance evaluated at certain parti­
cular frequencies that are all near the harmonics of the rotation fre­
quency w

0
. The specific frequencies are, in fact, all separated from 

the harmonics of w
0 

by plus or minus the synchrotron frequency n = vs w0 . 

Let's look at how the terms of Sµ go for each mode. 

Mode µ = 0 

In this mode the three bunches all oscillate in phase. (It is some­
times called the 11 baricentric11 mode since it is the only mode in which 

there is an oscillation of the 11 center of gravity", that is, of the 
average longitudinal displacement, of the three bunches.) For this mode 

(9) 

of all harmonics of the bunch 3w -- not of 
~- .::,___.....:;;_:.::,___.::,____ ----'--~ 0 

fference is of resistances two 



SLAC AHO 2008-009B2f19

6 -

frequencies separated by the relatively l i 1 "zero" 

mode is driven only by impedances that vary relatively rapidly. An in­
stability of the "zero" mode was first discussed by RobinsonlO, who con-
sidered, however, only the impedance 
ing cavity. 

of the fundamental of the accelerat-

The contribution of are s cally i Fig. 1, 
a resi nting arrow fies the si 

is damping and a downward arrow, one which is anti-damping. (The upper­
most set of arrows refers to mode 11 = 0.) 

R(w) 

MODES 

µ.= o-

µ.=+I-

µ.=-1-

3{m-I) 

Fig. 1 

Mode 11 = +1 

t 

3m-I 

--i i--.n 
11 

I 
I 

t • 

3m 
wjw0 

Wo 

' t 

3m+I 3(m+I) 

A plot of R(w) against wlw showing the values that contribute 
to the sum Sµ. Upward arPows indicate a positive contribution 
to the damping of the particular mode labled at the left. Oown­
ward,arrows indicate a negative contribution to the 
and. therefore, anti-damping. in the 
wfthout cross-hatching belong to order m of 
in the hatched zones be long to orders (111-l} and 

»0941 

In this mode synchrotron oscillation of each bunch by 120° the 

oscillation of the bunch that preceeds it around the ring. The driving 
resistance for this mode is 
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( 10) 

The damping of this mode is increased by a resistance at the lower side­

band of the harmonic. of w
0 

just below 3m w
0 

and decreased by the resist­
ance at the upper sideband of the harmonic ust above 3m w

0
. The con­

tributions of the tvm terms on either side of the harmonic 3m w
0 

are also 

indicated in Fig. 1, using the same convention as for the 11 zero 11 mode. 

Mode µ = -1 

In this mode the oscillation of each bunch leads by 1200 the oscil­
lation of the bunch that preceeds it. The driving resistance is 

(11) 

Notice that the damping term is now at the negative sideband of (3m+l)w
0 

and the anti-damping term is at the positive sideband of (3m-l)w
0

. See, 
again, Fig. 1. 

We call attention to two important aspects of the damping of modes 
11 ±1 11

• First, notice that there is a separation of very nearly w
0 

beti'ieen 
the frequencies that make opposite contributioos to the damping -- which 

is larger by the factor w
0

/2<J than the separation for mode 11 zero". This 

means that more slowly varying impedances will be much more important for 
the mode 11 ±1 11 for 
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Second, notice resis at ic ± 1 are 
damping for one of the 11 ±1 11 modes and anti- by same 

for the other. There is only a difference in the effects if the resis-
tance is varying dly the two si dis aced from 
(3m ±1) w

0 
by ±Q. Generally, then, we may expect that incidental im-

pedances in the ri wi 11 one of anti 
other -- as was, e, 

We consider in the next two sections the influence of the fundamental 
resonance of the rf cavities on the various modes. 

3. DAMPING OF MODE µ = 0 BY THE CAVITY FUNDAMENTAL 

The impedance in the ring will be highest at the fundamental resonant 
frequency of the accelerating cavities. He consider first the case in 
which all cavities are tuned to the same frequency wr near hw

0 
-- with h 

the operating harmonic. (For PEP, h = 3 x 864 = 2592.) The real part of 
the impedance of a high-Q resonant cavity is described very nearly by 

(w-w )2 + r 2 
r 

(12) 

where wr is the resonant frequency, r is the half-width of the resonance, 

r = wr/2Qt , with Q£ the loaded quality factor, and Z
0 

is the character­
istic impedance of the cavity. (The parallel resistance at resonance is 
Z0 wr/2r =Qt Z0 .) 

In PEP there are Nr = 24 separate resonators. rlhen they are a 11 
tuned to the same frequency, the total resistive impedance is just the 
resistance of Eq. (12) multiplied by the number of resonators: 

(13} 
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For the PEP resonators we may take that 

zo = 750 ohm 

wr = 2n f = 2.23 x lQ9 s-1 
r 

QR, = 8,000 (14) 
r = 0.139 x 10 6 s-1 

Nr = 24 

WO = o. 86 x 10 6 s- 1 

Notice that r is about three times as large as the synchrotron (angular) 
frequency Q ~ 0.04 x 106 s- 1 at 15 GeV, and about 1/6 of the rotation fre­
quency w

0
• The relative magnitudes are illustrated roughly in the graph 

of Fig. 2, where the 11 detuning 11 of the cavities, b.w = hw0 - wr has been 
taken about equal to n. This is approximately the situation that would 
obtain when the cavity is detuned enough to 11 compensate 11 for the reactive 

component of the beam current -- for two 55 mA beams. 

R(w) 

10-11 

Fig.2 The 
rf 

equal 

n. --I 
I 
I 
I 
I 
I 
I 

(h+1>w0 
w-

, about 
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In these more-or-less representative circumstances the difference in 

R(w) between the two side-band frequencies is about equal to one-half the 
peak value of R. The driving resistance of Eq. (9) is then dominated by 
the m = h/3 term, and we may take that 

2 

= 

Then the damping coefficient of Eq. (7) becomes 

let's take a look at 15 GeV operation. We take 

E/e = 15 x 109 volt, 

lav = 0.055 amp, 
ac = 0.0030, 

v
5 

= 0.0051. 

Using, as well, the values in (14) we get 

This term is much larger than the radiation damping arad = 250 s-
1

, 

so the driven damping dominates, and coherent synchrotron oscillations 
wi11 a time-cons of about 360 µsec. 

(15) 

(16) 

(17) 

(18) 
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The driven ng is s several con-
sequences. First, if the cavities were to be detuned even a rather small 
amount to the 11 wrong 11 side (wr > h w

0
) the negative driven would 

swamp the radiation damping arad and the would become unstable. 
Second, the strong damping will provide insurance nst any anti ng 
effects from i in ri cul r, 

many parasitic resonances of the es. 
that so long as the parasitic resonances have somewhat randomized re­
sonant frequencies, their combined effect would not be as strong as the 

damping provided by the fundamental resonance, so the total effect will 
be damping. 

(We have made a rough estimate of the possible effect of the para­

sitic resonances on the µ = 0 mode -- using arguments similar to those 
described below in Sect. 5. Our result is that we expect to have a con­
tribution -- either damping or anti-damping -- to ~a0 from the parasitic 

resonances of about 4 percent of the contribution from the principle 
resonance.) 

If the detuning is somewhat larger than n , both sidebands wi 11 be 

on the same shoulder of the resonance curve and we can approximate ~R 
by 

dR 
dw • 2 n s (19) 

where the derivative i~ to be evaluated at hw
0

. When R is given by Nr 
times the resonance function of Eq. (12), we get that 

s
0 

= -2hn ( dR \ = 2hn 
\dw}hw 

0 

(20) 

x = ' a = 
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Then 

6.a.o = 

Notice that now 

dependent of 

4nE 

is i 

in p 

zo 

12 

I av 

-

h2 3 
WO 2x 

r2 (1 + x2)2 

t , and would also 

is E. 

a representative value by taking /:,w = r, then 

6.a.o = 

Taking values from (14) and (17) 

h2 w 3 
0 

2 r 2 

in­
can 

(21) 

{22) 

(23) 

The coherent damping time would be about 600 microseconds at all energies. 

One further remark: we expect that when PEP is operated at low 

energies -- say 4 GeV -- it will be expedient to deactivate many of the 

rf stations. The cavities of these stations would then be tuned well 

off resonance, 6.w > r, to avoid their being driven by the beam. The 

contributions of these cavities to ~a.0 will be decreased -- and may, in 
fact, be negative if they are detuned on the other side of hw

0
• Since 

the ratio of I/E is expected to be constant, the only change in Eq. (22, 

at low energies, will be, in effect, a reduction of Nr. The driven damp­

ing will then be less at lower energy. And if Nr is decreased too far, 

an antidamping contribution from the parasitic cavity resonances -- which 

still remain in a detuned cavity -- might dominate. 
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Imagine the resonant curve Rr{w) of Fig. 2 superimpos on Fig. 1. 

The tails of the fundamental resonance of the rf cavities will extend to 

the freq es (h ± 1) • and so 1 as the cavi es are tuned from 

hw
0

, the resistive impedance, R( , will be different at the two relevant 

driving frequencies µ = ±1. From Fi . (1) (2) we see that 

for 11 norma '1 i = 1 11 µ = -1 wi 11 be 

anti-damped. We now esti the itude this effect. 

In the sums of Eqs. (10) and (11), we keep only the terms form= h/3, 

we neglect 1 in comparison with h, and we evaluate R(w) at (h ± l)w0 • (The 

displacement of the sidebands by n will not be significant here.) We may 

write, then, that 

(24) 

where R± we mean R (h ± l)w
0 

and for R(w) we take Nr times the resonance 

function Rr(w) of Eq. (12), with wr = (hw
0 

- ru.u). Then R± is given by 

(25) 

Using a Taylor expansion of Rr for frequencies near (wr ± w
0
), and remember­

ing that Rr(w) is symmetric about wr, we get that 

{26) 

where Rr means dRr /dw. Since w
0 

>> r, we may take 

(27) 
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Then 

(28) 

to 

(29) 

Suppose we choose '1w = r as we did for !.::.a
0 

at the end of the pre­

ceeding section. This circumstance corresponds to high-energy operation 
with all rf stations on-line. Then the ratio of the damping coefficients 
of (29) and (22) is 

= ( 30) 

From (14) the ratio f/w
0 

is 0.162, so 

2.7 x 10- 3 

:::! ±-----' (31) 
\) s 

In the range of energies from 4 GeV to 15 GeV, vs wi 11 vary from, perhaps, 
0.010 to 0.051, and the ratio of {31) will vary from 0.27 to 0.053. 

Typical values might then be as follows: 
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E Iav v bao _, __ 
(GeV) (mA) (s-1) (s-1} {s-1) 

4 15 0.010 1700 480 11 
15 55 0.051 1700 95 245 

Notice that hi es the iation ; so 
that, for normal tuning, all modes will stable. On the contrary, at 

the lowest operating energy the mode µ = -1 will (for normal tuning) be 
highly antidamped and be unstable. Using Eqs. (5) and (6) we would esti­

mate that the threshold current for unstable oscillation at 4 GeV would 
be about 0.34 mA! 

The discussion above assumed that all accelerating cavities were 
11 on-line 11 at low energies. As mentioned in Section 3, there are reasons 

for wanting to de-activate most of the 24 stations when running at low 
energies. We might expect to take cavities out of operation by detuning 
them so that !J.w >> r. If this is done, however, lla._ 1 will have its magni­

tude increased and the mode will be even more unstable than just calcu­
lated. An alternative would be to detune one half of the de-activated 
cavities on one side of hw

0 
and the other half in the opposite direction. 

As you can see by reference to Fig. 1, the contribution of each pair of 
detuned cavities to Sµ would be zero. In effect, the number Nr of 
cavities contributing to Aa would be reduced to the number of active µ 
cavities. Unfortunately, even reducing Nr from 24 to, say 4, would 
only increase the threshold of instability by a factor of six -- to 1 mA. 

One can, of cours~, gain a little by decreasing somewhat the de­

tuning Aw. If one goes too far in that direction however -- especially 
if one had only 4 active cavities, the µ = 0 mode might then become 

unstable. 
It seems clear that some more specific corrective measures will be 

required to stabilize the µ = -1 mode. The results of the next section 

reinforce this conclusion. 
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We have until now considered only the influence of fundamental 

con bution 
to come 
es. 

resonances of the accel 
to the longitudinal i 

from the hi 

will now an es 

ng cavi es. The remaining la 

nee of the vacuum chamber is 
itic 

the 

e accelera 

on 
anti-damping of the coupl longitudinal oscillations. 

resonances 
mentioned in 

Section 3, we have estimated that the effects on the baricentric modeµ= 
0 will be much less than the driven damping from the fundamental cavity 

resonance; so we consider here only the dar.ipi nq of the mode µ = ± 1. 

For our estimate we shall make several simplifying, but reasonable, 
I 

assumptions. First, we consider that the parasitic resonances have Q s 
at least similar to the main resonance, so that the resonance widths are 
at least somewhat less than w

0
• A typical resonant frequency might be 

1 GHz,and a Q of 10,000 would give a r of 0.3 x 106 which is less than 
w0 = 0.86 x 106 • Next, we assume that the resonances of each cell of the 
accelerating structures act independently. (Actually, there may be strong 

coupling of corresponding modes across the 5 cells of an rf station. But 
this coupling would probably not change the results by a large factor.) 
Finally, we assume that the resonant frequencies of any given parasitic 

mode are different from one cavity (cell) to the next, and are, in parti­
cular, spread more or less randomly across a range that is at least as 
large as 3w

0
. This means that the relative frequency variations are 

assumed to be about 4 x 10- 3 , or somewhat more. 
This last assumpti?n means that the resonant frequency of each cavity 

(cell) is equally likely to fall near each of the 3 harmonics of w
0 

where 

one of the 3 modes of the longitudinal oscillation is driven. (See again 
Fig. 1). 

Consider a given 

We assume its impedance 
peak value of 

rasitic resonance of frequency and width r. 
varies with w according to Eq. (12), which has a 
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(32) 

and, roughly speaking, a width of 2r. Now ask: What is the likely effect 

of this resonance on µ ::::: ±1 of 1 ongi inal os llations? 

The probabili is is resonance wi l l on some ( - 1) 

harmonic of w
0 

and give to mode µ = 1. There is equal probability 

that it will land on some (3m + 1) harmonic of w
0 

and give anti-damping. 

If we now consider the combined effect of all of the Nc corresponding 

resonances in the Nc cavity cells*, we can say that the probable number 

n of resonances landing on the harmonic (3m - 1) is Nc times the proba­
bility just mentioned. 

n = N • 
c 

2r 
3wo 

(33) 

In the sum of Eq. (10) these resonances will make an expected contribution 

of 3m R+, where the expectation value of R+ is 

(34) 

We are here assuming that all the resonances will be near the same 3m 

harmonic, with 3m >> 1 so that a factor (3m - 1) can be replaced by 3m. 

Similarly, n resonances will, on the average, land on the (3m + 1) 

harmonics and give a contribution to the sum of Eq. (10) whose expected 

value is 3m <R->, with 

( 35) 

* For PEP Ne = 5 x = 120~ 
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The on value \i is then 

<\1> = 3m { <R-> - <R+>} ( 36) 

which is clearly zero. Not s singly is zero, 
since there is equal likelihood that the damping will be positive or 
negative. 

On the other hand, we must expect that any given set of resonances 
will have a damping or anti-damping effect somewhere in the range of the 
standard deviation of S, which we shall call here as. We may write that 

where (0R+) 2 and (oR-) 2 are the variances of R+ and R-. 
Under our assumptions, the two variances are uncorrelated, and we 

can take that the number of resonances contributing to R+ {or to R-) 
follows a Poisson distribution with a variance given by n Rs 2 • Then 

We may take for 3m the ratio wr/w
0

. Then taking R
5 

and n from 
Eqs. (32) and (33), we.get that 

cr 2 = s 
2 
3 

{ 37) 

(38) 

( 39) 

This, remember, is the contribution from one particular cavity resonance. 

The contri ons to as 2 each family of resonances must be added to 
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get the overall 0
5

2 • We can approxi t sum ass ng .( ) 
refers to the parameters of a "typical" resonance, and that there are N p 
such resonances in cavity. Then for the total effect we can take 

that 

0 2 ~ 
s 

2 
3 

( 40) 

A typical value of the driven damping of mode µ = +l is obtained by using 

os in place of S in Eq. (7). 
Although we have been discussing modeµ= +l, it is clear that pre­

cisely the same arguments would apply to mode µ = -1. In a particular 

situation either mode may be damped or anti-damped, but, since S+l and 
s_l will be almost exactly equal in magnitude but with opposite signs, 
one of the two modes will almost certainly be anti-damped with a typical 

driving strength equal to the crs of Eq. (40). We write then that 

• as. (41) 

We want now to evaluate os. We could make some reasonable guesses 
for the parameters, but we will, rather, make use of some information 
provided us by Perry Wilson from computer calculations he has made to 
determine the properties of higher-order modes in a model PEP cavity. 
Wilson has found that there are some 17 resonances wi 1 ongitudina l 
impedance on the axis and with frequencies between the fundamental 
(358 MHz) and the cut-off frequency of the pi (near 2,000 MHz), 
and has listed their resonant frequencies and characteristic impedances. 
There are 8 resonances with characteristic impedances Z

0 
between 2 ohms 

and 30 a cal value li 5 , and a cal frequency 
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like 1,000 MHz. lity Q is come by. Since the 
unloaded Q of the fundamental is 26,000, we may guess the Q's of 
the higher modes*should also be some 20,000 -- or, ly more. For 

our esti ~ we the fo 11 

Np= 8 Q = 2 x 104 

Ne = 120 w = r 6 x 109 s-1 (42) 

z = 5 
9 

ohms w
0 

= 0.86 X 10 6 s-1 

From these we obtain 

a 
5 

~ 1. 1 x 10 10 ohms . (43) 

We have also made a more refined calculation of o
5 

that yields a 
similar result. A more careful statistical calculation shows that the 
factor of 2 in Eq. (39) should be replaced by 1.56. Also, using Wilson's 
information, and assuming that the Q of each mode is proportional to the 
square root of its frequency, we have calculated the sum of all the in­
dividual contributions to crs. The result we get is a little larger than 
(43), namely, that* 

a ~ 2.5 x 10 10 ohms. s 

(The larger value comes primarily from larger assumed Q's.) 

Using this last value in (41) we get foll ng results. 

Iav(mA) "s Ao.(s- 1 ) 1 a (s- 1 ) rad 
4 15 0.010 2,000 11 

15 55 0.051 380 245 

* See "note added in proof 11 at end of the text. 

(44) 
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We see th we must 
at all s. And our best --
be 35 mA at 15 GeV, and 0.08 

21 -

an instability 
estimate for 

one µ = ±1 
d curren would 

at 4 GeV. vJe emphasize, however, that 
because of the statistical nature of our es as l as un-
certainties in the relevant parame rs -- the actual driving strengths 

d l our es a r of 
three or more. 

The driving strength of ~ 2,000 obtained above is quite large. 
It is, in fact, already becoming comparable to the synchrotron fre­

quency n = vswo ~ 9,000 s- 1 at 4 GeV. Under such circumstances the 
theoretical formalism leading to the formula of Section 2 is no longer 
quite applicable. (See discussion of Section 2 and of Appendix A.) 
Our results should, however, be roughly correct, nevertheless. 

One final remark. The contributions of the parasitic resonance is, 
statistically speaking, independent of the tuning of the main resonance. 
It will be the same whether cavities are tuned on-Tine for acceleration 
or not. (In fact, of course, tuning the main resonance will shift the 
parasitic resonances around, and the actual ~a±l will vary in some un­
predictable way, but therms fluctuation as will remain unchanged.) 

6. CONCLUSION 

We have made estimates of the driven damping or anti-damping of the 

three normal modes µ = 0, ±1 of the dipole oscillations of the three 
bunches in one stored beam. We found that (a) the baricentric mode 

µ = 0 is adequately damped by the normal detuning of the main resonance 
of the accelerating cavities; (b) the modeµ = -1 will be driven unstable 
at low ene ies by the normal detuning of the main cavity resonance; 

(c) the stastical effects of parasitic cavity resonances is likely to 
drive either mode µ = +1 or mode µ = -1 unstable at energy. The 
last effect is the strongest of all considered, and t give anti­

damping coefficients t:,a, of perhaps 400 sec 1 at 15 GeV 2,000 sec- 1 4 
We have not considered complications that may result from the inter-

actions stored , nor have we 1 the various 
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possible feedback systems that t be used to control the potential 

instabilities. It seems certain that some such sys 11 be requi 

in PEP for stable three-bunch operation, particularly at low energies. 
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- Al 

We consider the coupled longitudinal 
idealized, point-li b whi have 

spaced around the ring. The bunches are ass 

longitudinal i vacuum are 

assumed to so 1 f 
\ 

executes nearly s inusoi osci 11 ons i it ion 

with the synchrotron frequency n. 
For the ideal case being considered here, symmetry allows us to 

identify im~ediately the normal modes. Since all bunches are equivalent, 
the phase advance of the longitudinal oscillations must be the same from 
one bunch to the next. There are, clearly, only three possibilities, and 

they are the three modes identified in Section 2. Ignoring for the 
moment the damping (which is assumed to be smail) the longitudinal motion 
of bunch i {t = 0, ±1) in modeµ is -- see Eq.(2) 

A 2n ) 
Tµ COS (n t + J £µ • 

We are also setting n = n, the low current synchrotron frequency. µ 
Consider the passage of the reference bunch (i = 0) through an 

element of impedance Z located at some point in the ring. When there 

(Al) 

are no longitudinal oscillations the bunch passes at regular intervals 

with the period 1
0 

= 2n/w
0

. If we choose our origin of t at one of these 
passages the current I(t) through Z can be written as the Fourier series . 

21 
I(t) = +---

3 
(A2) 

where it is understood that we are to take the real part of the right­
hand side, and where Iav means the average current carried by all three 
bunches. 
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We are here, not i in is "normal , but, 
want to consider only the effect of the on current i(t) ich 
is the di e 

time displacement T and e normal 
perturbation can, T is 11' as 

i(t) :::: I ( t+T) - I ( t) 
2Iav 

= - --T 

3 n=l 

) . 

i n w 
0 

s of 

So long as the longitudinal displacement varies slowly -- that is 

for Q << w
0 

-- we may still use Eq.(A3) for the current. We have then 
that the effective perturbing current of bunch i = 0 can be taken as 

i( t) 
2Iav "' . t = - -- T cos Qt L i n w e - l n wo 

3 0 

(A3) 

{A4) 

The bunch t =-1 which follows the reference bunch arrives at Z with 
a delay of one-third of the rotation period. The n-th Fourier component 

of its current is shifted in phase by -2Tin/3. Similarly, the bunch t = 1 
which preceeds the reference bunch will have its phases advanced by 211n/3. 
When the bunches are oscillating in one of the normal µ described 
by EQ.(Al), the perturbing current of each bunch~ at the impedance Z is 

The total current through Z is the sum 
which we write as 

the three bunch currents, 



SLAC AHO 2008-009B2f19

- A3 -

i to ta 1 ( } 

with 

J ( t 
µ LL cos(~t 

n X-

-i ( ( ) 

In evaluating the sum over £ it is convenient to 
factor in exponential form. Then 

s the cosine 

= {AS) 

-in(w t - 2
1T i) 

• e o 3 

or 

J {t) = ):!! L /e-i [(nw0 -n)t -
2
31T i(n +µ)] 

µ n 2 R. 

- i [< nw +n) t -
2

TI 9- ( n - µ ~ j 
+e o 3 j . 

(A9) 

This final form shows that the phase modulation at the synchrotron fre­
quency n splits each Fourier component at nw

0 
into a pair of components 

displaced to the 11 side-band 11 frequencies nw
0 

±Q. 

Equation ( A9) shows another important aspect of the currents from 
the three bunches. The lower side-band component (at the frequency 
3nw

0 
- n) contributed by each bunch is shifted in phase by n + µ) from 

one bunch to another. That means that when we sum over i for a given 
mode µ we are adding three terms whose re 1 ati ve phases are i multi-

ples of 2TI/3. a the (n +µ) i a 
l IS unless 
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with m any positive i 

- A4 

n + µ = 3m 

In other v1ords, when we sum over £ we 
ree values n, si e 

value n, s ue n 

zero 

(AlO) 

of every 
i r i 

µ 

consi red. lower si energy of mode is concentrated at 
a different harmonic of w

0 
according to the following scheme: 

Lower Sideband 

Mode Number µ 

Surviving Harmonic n 
1 

3m + 1 

0 

3m 
+ 1 

3m - 1 

If you look now at the upper sideband terms in Eq.(A9), you will see 
that the same arguments hold again with the exception that after summing 

over£ the surviving terms will be those with 

n - 11 = 3m. 

And the energy of the upper side-band appears at the harmonics of w
0 

given by this scheme: 

Upper Sidebands 

Mode Number µ 

Surviving Harmonic n, 

1 

3m 1 

0 

3m 
+ 1 

3m + 1 

(All) 

The location of the non-zero components is also shown in Fig. 1 of Section 

2. 
Since for any particular mode there is only one contribution to each 

sideband for one of every three harmonics, we can replace the sum over n 

by a s over s over £,, • (A9) becomes 
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Jl!{t) L: f ( 3m - µ) 
-i [( - µ) -Q J t ::::: e 

m 2 l (A12) 

+ ( + µ) -i [< + µ) + J t} e 

( e 

current z. 
The beam current i{w) at a particular uency w will give a voltage 

drop across Z of 

v(w) = i(w) Z(w) ::: i(w) [R(w) + i X{w)J (A13) 

where Z(w) is the complex impedance at the frequency w and R(w) is its 
real part. The first term in the curly bracket of A(12) will give a 
voltage proportional to the impedance at the frequency [{3rn -µ)w

0 
- Q J, 

and the second term, at the frequency [(3rn +µ)w
0 

- Q J· Let's define 

z~ = z [ (3m - µ) w0 - n J 

z~ = z [ (3m + µ) w
0 

+ n]. 

Putting (A6), (A12) and (A13) together we write the voltage drop as 

v = -Iav Tµ i w0 H) t) 

with 

H ( t' ~ (( - µ) 
-i [( - µ)wo - n]t 

= e µ I 

+ ( + µ) i F +" µ)w0 + ll Jt l · 

(A14) 

{A15) 

(A16) 
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This is 

energy changes proportional 
Once the modes have 

growth rate of any given 

say the t = 0. 
Z at the t j 

-e v(t). is 

i i 

ned, as we have done, can 
ing at on any 

This crosses 

we are ignoring small splacement Tin e me bunch 
since this would give us a term that is second order in T -- one order 
from v itself and the other from the time-derivative of v with the dis­
placement -r. For the reference bunch, then, the terms (3m±µ)w

0 
tin the 

exponents are always multiples of 2» and can be dropped, and we are left 
with only the slowly varying terms± Qt. We get that the energy gain ot: 
per revolution of the reference bunch (for a given µ) is 

OE = e Iav Tµ i WO ~1(3m-µ) z- eint 
m 

(All) 

z~ .-;Qt j +(3m+µ) 

We remind you now that for the actual energy change we are to take 

the real part of the right-hand side. Writing Z~ as R~ + i X~. we get 

L: !( 3m - µ)(-x- cos rtt -R~ sin nt) 
m m 

+( 3m + µ){-X~ cos r.t sin nt)}. 
(A18) 

Or, rearranging terms, 
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- [( 3m - µ) 

We are al t one 
portional T i 1 ( in cos ) 

in sum 
set 

l 
(Al9) 

is 

onal 
to dT/dt (the terms in sin ) . The first set will produce a change in 
the coherent synchrotron frequency -- which is not our main interest here. 
The second set gives us the contribution to the damping term 6a defined µ 
in Section 2. To see how that works we make a brief diversion to look 
at the equations of motion of a bunch. 

Using the notation of Sands?, Section 3, the energy deviation of the 
bunch changes according to 

and the longitudinal displacement, according to 

d-r 
dt 

a.c 
= - -- £. 

E 

{A20) 

(A21) 

We are interested in energy perturbations 0£ that vary like T and dT/dt, 

so let 1 s write 

(A22) 

Pulling the pieces together, we get 
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- AB -

-- + 
dt 

ac -- (ev + Ah = o. 
ET0 

As we said, A gives a contribution to e freq 
The coeffici of dT/dt is twice the 

= 
a B c = 

41T E 

gives 
ci ' so 

• B. 

Referring back to the perturbation energy gain of (Al9), B is 1/n 
times the factor that multiplies Tµ sin nt. Our result is that 

(A23) 

(A24) 

(A25) 

Our derivation assumed that Z was an impedance element localized at 

some azimuth of the ring. Since we have used a perturbation treatment, 

keeping only linear terms in T, the damping coefficients 6a and also the 
µ 

~ due to successive impedance elements will just add. We can then rein-

terpret ~C\t in Eq.(A24) as representing the total damping due to all longi­

tudinal impedances, and the resistances Rfu as representing the total longi­
tudinal impedance. 

For completeness, ,we point out that the term with A in Eq.(A22) gives 

us the coherent frequency shift of modeµ. Specifically, the frequency 
of mode nµ is obtained from the coefficient of T in (A22): 

n 2 = µ 
_a_c_ (eQ + A). (A26) 
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With our weak coupling approxima on we can wri 

(A27) 

re Q is s ron Cl 

Aftµ = 
a c 

A = A. (A28) 
2E T

0 
n 

Taking for A the factor multiplying Tµ cos nt in (Al9), we find that 

f, { ( 3m - µ) x; + ( 3m + µ) x~ } . (A29) 

Comparing this equation with (A25), we see that so long as X and Rare 

comparable in magnitude (as we would normally expect), ~nµ and ~av will 
have similar magnitudes -- as we affirmed in Section 2. The statement 
is not valid forµ= 0 because (A25) contains the difference of 'resis­

tances of two nearby frequencies, while (A29) contains the sum of the 
corresponding reactances. For modes µ = ±1, the two frequencies are 
far apart and R- - R+ is likely to be similar in magnitude to x- + x+. 




