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The excitation of Eoup]ed-bunch longitudinal modes in PEP by the
accelerating cavities has been examined. It is found that some modes
may be driven unstable either by the impedance of the main resonance of

the accelerating cavities, or by the higher-order parasitic resonances.
Estimates of the driving strengths are given.
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1. INTRODUCTION

Coupled-bunch longitudinal instabilities have been observed in many
synchrotrons and storage rings -- notably in Adonel which, like PEP, has
three bunches per beam. The theory of the instability mechanism is well
known -- see, for instance, Sacherer? or Pellegrini and Renierid where
references to earlier work will also be found. In this note we make
some estimates of the damping coefficients of the possibly unstable
modes in PEP. We find that anti-damping effects are sufficiently strong
that some modes may become unstable at stored currents below the desian
~goals. o ,, o
Longitudinal instabilities have been controlled?s5,6 by passive
cavities or by active feedback systems. It is likely that some such
feedback system will be required for PEP. )

The mathematical formalism becomes quite cumbersome for the general
case of two counter-rotating beams each containing many bunches.4 For
our estimates we consider only the special case of a single beam of
three equal bunches in which the "rigid bunch” oscillations -- the so-
called "dipole" motions -- are coupled and driven by their interactions
with longitudinal impedances in the vacuum chamber. (We are not con-
cerned with coherent motion within the bunches.) We may expect, however,
that the driving terms for beams of somewhat unequal bunches, and for
two-beam modes will not be very different from those for our special
case. We give in Appendix A a simplified -- and, hopefully, relatively
transparent -- treatment of the theory for our special case.

We present in the following section the result of the theory for
the most general longitudinal impedance Z(w), and then apply the results
for the expected impeaances of PEP. We shall be assuming that the
efforts to make a "smooth" chamber for PEP will be successful and that
the longitudinal impedance will be dominated by the impedance of the
accelerating cavities. In our estimates we take into account the im-
pedance contributed both by the fundamental (accelerating) mode, and by
the higher, parasitic modes. For the parasitic modes -- see Sect. 5 --
a statistical approach is  ~d. 3
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2. NORMAL MODES AND DAMPING COEFFICIENTS

The coupled, longitudinal oscillations of a beam of three bunches
are most conveniently described as the superposition of the motion of
three normal modes in each of which the oscillations of each bunch have
the same frequency Qu and the same damping coefficient oy (the inverse
of the damping time constant ) where the index u identifies each mode by

its mode number. For the special case of three equal bunches, egually
spaced around the ring the oscillation amplitudes of the three bunches
are also equal for each mode, and the phase of the oscillation of each
bunch relative to the preceeding bunch is the same for all bunches, and
is, in particular, an integral multipule of 1200 = 2%/3.

We choose to identify each bunch by a bunch number 2, which we give

the values 0, +1 or -1. Bunch 2 = 0 is the "reference" bunch, bunch

£ = +1 preceeds it and bunch g = -1 follows it. Similarly we label the
modes by the number y = 0, *1, chosen so that the phase shift (of the
longitudinal motion) from the reference bunch to bunch g = 1 is zero for
mode p = 0, is +2n/3 = 1200 for mode pu = +1, and is -2%/3 for mode p = -1.
In general, the phase shift from bunch "Q0" to bunch "+1" can be written

(o,y), = +Ey. (1)

Adopting the time displacement t as our longitudinal coordinate’,
we can, then, express the motion of bunch £ in each mode u by,

’

= 1 et 2m
Tow = T e %t cos (Qut + 5 2u), (2)

“where %u is the amplitude of the oscillation of each bunch in mode u.
The total motion of bunch 2 is the sum of the Tiu for the three modes
u =0, =1.
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We are interested primarily in the damping coefficients au. We may
consider that each consists of two parts: a part Crag due to radiation
damping of the motion of each particle and a second part Aau that is
driven by the chamber impedance:

. rad Aau . (3)

A negative Aau is destabilizing, and an unstable oscillation will occur

when

Aau < "arad . (4)
As we shall see, Aau is proportional to the average beam current
Iav so the inequality (4) also defines a threshold current for the in-
stability. If we write
Ba, = K, Iy (5)

the mode can become unstable if Ku is negative; and the onset of unstable
oscillations will occur in mode u at the threshold current I given by

1 = rad (6)

We consider that any feedback system can be treated as a part of the
chamber "impedance" and will, therefore, be included in Aau.

The mode freguencies Qﬂ will be, in general, different from Q, the
frequency of the single particle longitudinal oscillations at low currents.
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We shall, for our present purposes, however, ignore this difference and
take Qp = Q. So long as the "beam Toading" of the rf system is small,
we may expect that the difference }QU - 2] will be of the same order as
}Aap[, which we shall assume is always much less than Q. (See the end of
Appendix A.) If beam loading is large (that is, if the power to the beam
is comparable to or larger than the power dissipated in the cavities) we
may sti}l expect that the frequency shift will be comparable to Aau for
mode "+1", it may, however, be much larger for mode "0". See, for in-
stance, Baryshev and Kheifetz8 or Sands9.

With these preliminaries we can write a relatively simple expression
for the damping coefficients:

el o w
ba, = —_aveco g (7)
4w E v H .
S
where

I., = average beam current (a1l bunches)
O = momentum compaction factor
W, = 21r/T0 = rotation angular frequency

E = beam particle energy
Vg = Szlwo = synchrotron number

The chamber driving resistance Sp is

R - +
S, = m)_;jl (3m -p) R - (3m+u) R (8)
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with

R% R [}3m - W= v) wO]

e
it

R [(Sm + o+ \)S) wo]

3

where m is any integer, u = 0, *1 is the mode number, and R[m] is the real
partof the chamber impedance Z[w] at the frequency . Evidently, the re-
sistances R& and R; depend also gn the mode u, but we shall simplify our
notation by leaving that dependance implicit.

The driven contribution to the longitudinal damping, Auu, of Eq. (7)
is proportional to the stored current Iav’ to a factor O wO/EvS that is
a characteristic of the ring, and to the factor Su that we have called the
"driving resistance". This factor is a sum of terms each proportional to

the resistive parts of the chamber impedance evaluated at certain parti-

cular frequencies that are all near the harmonics of the rotation fre-
quency w,. The specific frequencies are, in fact, all separated from
the harmonics of Wy by plus or minus the synchrotron frequency = Vg Wy
Let's look at how the terms of Su go for each mode.

Mode y =0

In this mode the three bunches all oscillate in phase. (It is some-
times called the "baricentric" mode since it is the only mode in which
there is an oscillation of the "center of gravity", that is, of the
average longitudinal displacement, of the three bunches.) For this mode

1

S - > Sm{R‘ [(3m - vs)w§j~ R [(3&1 + ) “’o]} (9)

° m

Each term in the sum is the difference between the resistances at the lower
and upper sidebands of all harmonics of the bunch frequency 3&0 -- not of
the rotation frequency Wy Since the difference is of resistances at two
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frequencies separated by the relatively small interval 20, the "zerc"
mode is driven only by impedances that vary relatively rapidly. An in-
stability of the "zero" mode was first discussed by RobinsonlO, who con-
sidered, however, only the impedance of the fundamental of the accelerat-
ing cavity.

The contribution of the terms Ré are shown schematically in Fig. 1,
where an upward pointing arrow jdentifies the side-band where a resistance
is damping and a downward arrow, one which is anti-damping. (The upper-
most set of arrows refers to mode p = 0.)

‘ i p— ()

' 7

.

N

N

7

,;:i//

Rlw)

-

/;
MODES i
p=0— 7 ! : //
,L:‘*"-——.- ‘ K,
p: =} s t / )
/i
3m 3m+l 3{m+D)
077 ‘ “9“”0 330841
Fig.1 A plot of R{w) against w/w_ showing the values that contribute
to the sum S,. Upward arfows indicate a positive contribution
to the damping of the particular mode labled at the left. Down-
ward arrows indicate a negative contribution to the damping ...
and, therefore, anti-damping. Frequencies in the middle zone
without cross-hatching belong to the order m of the sum. Those
in the hatched zones belong to orders (m-1) and {aw+1).
Mode p = +1

In this mode synchrotron oscillation of each bunch lags by 1200 the
oscillation of the bunch that preceeds it around the ring. The driving
resistance for this mode is
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Sy = Emj{(m - 1) R [(Bm -1y wo]
(10)

- (3m+ 1) R [(3m +14 ) wg]}

The damping of this mode is increased by a resistance at the lower side-

band of the harmonic of we, Jjust below 3m Wy and decreased by the resist-

ance at the upper sidebdﬁalgﬁ the harmonic just above 3m W - The con-

tributions of the two terms on either side of the harmonic 3m w,, are also

indicated in Fig. 1, using the same convention as for the "zero" mode.

Mode y = -1

In this mode the oscillation of each bunch leads by 1200 the oscil-
lation of the bunch that preceeds it. The driving resistance is

S, = Emj {am+ 1R [(Sm +1 =) wo]

(11)
- (3m-1)R [(Bm -1+ v) wo]}

Notice that the damping term is now at the negative sideband of (3m+1)w0

and the anti-damping term is at the positive sideband of (3m-1)w_.

o See,

again, Fig. 1.

We call attention to two important aspects of the damping of modes
"+1". First, notice that there is a separation of very nearly Wy between
the frequencies that make opposite contributions to the damping -- which
is larger by the factor wO/ZQ than the separation for mode "zero". This
means that more slowly varying impedances will be much more important for
the mode "+1" than for the mode "0".
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Second, notice that resistances at each harmonic (3nxt1)w0 are
damping for one of the "#1" modes and anti-damping by the same amount
for the other. There is only a difference in the effects if the resis-
tance is varying rapidly between the two side-bands displaced from
(3m+1) W, by +0. Generally, then, we may expect that incidental im-
pedances in the ring will damp one of the "#1" modes and antidamp the
other -- as was, for example, observed at Adone.

We consider in the next two sections the influence of the fundamental
resonance of the rf cavities on the various modes.

3. DAMPING OF MODE u = O BY THE CAVITY FUNDAMENTAL

The impedance in the ring will be highest at the fundamental resonant
frequency of the accelerating cavities. We consider first the case in
which all cavities are tuned to the same frequency w,. near hwo -- with h
the operating harmonic. (For PEP, h = 3 x 864 = 2592.) The real part of
the impedance of a high-Q resonant cavity is described very nearly by

Rolw) = —2 : (12)

where W, is the resonant frequency, T' is the half-width of the resonance,
Ir= wr/ZQz s with QQ the loaded quality factor, and ZO is the character-
istic impedance of the cavity. (The parallel resistance at resonance is
Z0 wr/ZF = Qz ZO.)

In PEP there are Nr = 24 separate resonators. When they are all
tuned to the same frequency, the total resistive impedance is just the
resistance of Eq. (12) multiplied by the number of resonators:

R(w) = N.R. (w). (13)
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For the PEP resonators we may take that

Z0 = 750 ohm

w. = 2m f_ =2.23x 10° s71

Qg = 8,000 (14)
I = 0.139 x 10 s71

Nr = 24

w, = 0.8 x 108 7!

Notice that TI' is about three times as large as the synchrotron (angular)
frequency ©=0.04 x 10% s~! at 15 GeV, and about 1/6 of the rotation fre-
quency wg- The relative magnitudes are illustrated roughly in the graph
of Fig. 2, where the "detuning" of the cavities, Aw = th -, has been
taken about equal to Q. This is approximately the situation that would
obtain when the cavity is detuned enough to "compensate" for the reactive
component of the beam current -- for two 55 mA beams.

A

R{w)

—

{h"'”wo (h‘”)wg

©-77 330842

Fig.2 The resistive impedance of the fundamental resonance of the
v system, with & typical detuning, 4w = {hwgy - wr), about
equal to .
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In these more-or-less representative circumstances the difference in

R{w) between the two side-band frequencies is about equal to one-half the
peak value of R. The driving resistance of Eq. (9) is then deminated by

the m = h/3 term, and we may take that

Then the damping coefficient of Eq. (7) becomes

.
eo . I N w,. Z0

0
4nE 4vST

Let's take a look at 15 GeV operation. We take

E/e = 15 x 10° volt,

Iav = (0.055 amp,
0. = 0.0030,
Vg = 0.0051.

Using, as well, the values in (14) we get

v -1
Aoco = 2800 s—*.

This term is much larger than the radiation damping o
- s0 the driven damping dominates, and coherent synchrotron oscillations
will be damped with a time-constant of about 360 usec.
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The driven coherent damping is quite strong -- with several con-
sequences. First, if the cavities were to be detuned even a rather small
amount to the "wrong" side (mr > h wo) the negative driven term é&g would
swamp the radiation damping Opad and the beam would become unstable.
Second, the strong damping will provide insurance against any anti-damping
effects from other impedances in the ring and, in particular, from the
many parasitic resonances of the accelerating cavities. We may expect
that so long as the parasitic resonances have somewhat randomized re-
sonant frequencies, their combined effect would not be as strong as the
damping provided by the fundamental resonance, so the total effect will
be damping.

(We have made a rough estimate of the possible effect of the para-
sitic resonances on the y = 0 mode -- using arguments similar to those
described below in Sect. 5. Our result is that we expect to have a con-
tribution -~ either damping or anti-damping -- to Aot from the parasitic
resonances of about 4 percent of the contribution from the principle

resonance. ) ,
If the detuning is somewhat larger than Q, both sidebands will be

on the same shoulder of the resonance curve and we can approximate AR
by

(19)

]
X
!
!
x
+
i
'
-
™~
to)

AR

where the derivative is to be evaluated at h(go. When R is given by N,
times the resonance function of Eq. (12), we get that

N 7. w ,
S, = -2ho (“R> = 2hQ ro.r X - (20)
dw /hy r2 (1+x2)
where x = Aw/T, and Aw = hmo - W
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Then

ea I. N Z ne w
Ao = cav r o 0 . 2X — (21)
47E T2 (1 + x2)

Notice that now Aao is independent of Voo and would also be in-

dependent of energy in PEP -- where Iav is proportional to E. We can get
a representative value by taking Aw = T, then

el N Z h? w3
AC‘O = ay ' 'O 0 (22)
4nE 2T?

Taking values from (14) and (17)

Aoy = 1700 s-1. (23)

The coherent damping time would be about 600 microseconds at all energies.
One further remark: we expect that when PEP is operated at low
energies -- say 4 GeV -- it will be expedient to deactivate many of the
rf stations. The cavities of these stations would then be tuned well
off resonance, Aw > I', to avoid their being driven by the beam. The
contributions of these cavities to Amy will be decreased -- and may, in
fact, be negative if they are detuned on the other side of hwg - Since
the ratio of I/E is expected to be constant, the only change in Eq. (22,
at low energies, will be, in effect, a reduction of Nr' The driven damp-
ing will then be less at lower energy. And if Nr is decreased too far,
an antidamping contribution from the parasitic cavity resonances -- which
still remain in a detuned cavity -- might dominate.
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4. DRIVING OF MODES u = +1 BY THE CAVITY FUNDAMENTAL

Imagine the resonant curve for Rr(w) of Fig. 2 superimposed on Fig. 1.
The tails of the fundamental rescnance of the rf cavities will extend to
the frequencies (h:tl)wo, and so long as the cavities are tuned away from
hwo, the resistive impedance, R{w), will be different at the two relevant
driving frequencies for modes p = =1. From Figs. (1) and (2) we see that
for "normal® detuning, mode u = 1 will be damped and mode u = -1 will be
anti-damped. We now estimate the magnitude of this effect.

In the sums of Egs. (10) and (11), we keep only the terms for m = h/3,
we neglect 1 in comparison with h, and we evaluate R(w) at (hz1l)w,. (The
displacement of the sidebands by 2 will not be significant here.) We may
write, then, that

S,y = Fh(RY - R°) (24)

where RY we mean R (h:tl)wo and for R{w) we take N. times the resonance
function Rr(w) of Eq. (12), with w, = (hm0 - Aw). Then R* is given by

Rt = N, R, (wr + Aw + wo) (25)

Using a Taylor expansion of R for frequencies near (mrﬁ:wo), and remember-
ing that Rr(w) is symmetric about w., we get that

+ o ) (26)

S = F2h fw N, R, (mr o

+]
where Rr' means dR, /dw. Since Wy >> I', we may take

N 7 w T
' _ r o r
R, (w¥~ + mO) = - . (27)

© 2
0O
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Then

Aw (28)

So for the driven damping due to the fundamental resonance we have

ea | N Z 2
A = 4 c av . r o . 2h°T Aw (29)

41 E Vo w,,

Suppose we choose Aw =T as we did for Aao at the end of the pre-
ceeding section. This circumstance corresponds to high-energy operation
with all rf stations on-line. Then the ratio of the damping coefficients
of (29) and (22) is

Ao,
— - 4 (I (30)

Aa v Wy

From (14) the ratio I/w, is 0.162, so

fayy 2.7 x 1073 1)
Ao \Y

In the range of energies from 4 GeV to 15 Gev,\)s will vary from, perhaps,
0.010 to 0.051, and the ratio of (31) will vary from 0.27 to 0.053.

Typical values might then be as follows:
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E Tav Vs bay — bogy %rad
(Gev)  (mA) (s=1) (s~} (s-1)

4 15 0.010 1700 480 11

15 55 0.051 1700 95 245

Notice that at high energies the radiation damping dominates; so
that, for normal tuning, all modes will be stable. On the contrary, at
the Towest operating energy the mode u = -1 will (for normal tuning) be
highly antidamped and be unstable. Using Eqs. (5) and (6) we would esti-
mate that the threshold current for unstable oscillation at 4 GeV would
be about 0. 34 mA!

The discussion above assumed that all accelerating cavities were
"on-line" at low energies. As mentioned in Section 3, there are reasons
for wanting to de-activate most of the 24 stations when running at low
energies. We might expect to take cavities out of operation by detuning
them so that Aw >> T'. If this is done, however, Aa_; will have its magni-
tude increased and the mode will be even more unstable than just calcu-
lated. An alternative would be to detune one half of the de-activated
cavities on one side of hwo and the other half in the opposite direction.
As you can see by reference to Fig. 1, the contribution of each pair of
detuned cavities to Su would be zero. In effect, the number Nr of
cavities contributing to Aau would be reduced to the number of active
cavities. Unfortunately, even reducing Nr from 24 to, say 4, would
only increase the threshold of instability by a factor of six -- to 1 mA.

One can, of course, gain a little by decreasing somewhat the de-
tuning Aw. If one goes too far in that direction however -- especially
if one had only 4 active cavities, the y = 0 mode might then become
unstable.

It seems clear that some more specific corrective measures will be
required to stabilize the y = -1 mode. The results of the next section

reinforce this conclusion.
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5.  DRIVING OF MODES ¥ = +1 BY PARASITIC RESONANCES

We have until now considered only the influence of the fundamental
resonances of the accelerating cavities. The remaining large contribution
to the longitudinal impedance of the vacuum chamber is expected to come
from the higher-order, parasitic modes of the accelerating cavities. We
will now make an estimate of the contribution of these resonances to the
anti-damping of the coupled longitudinal oscillations. As mentioned in
Section 3, we have estimated that the effects on the baricentric modey =
0 will be much less than the driven damping from the fundamental cavity
resonance; so we consider here only the damping of the mode ¥ = #],

For our estimate we shall make several simplifying, but reasonable,
assumptions. First, we consider that the parasitic resonances have Q*s
at lTeast similar to the main resonance, so that the resonance widths are
at least somewhat less than W+ A typical resonant frequency might be
1 GHz,and a Qof 10,000 would give a T of 0.3 x 10® which is less than
w, = 0.86 x 10°. Next, we assume that the resonances of each cell of the
accelerating structures act independently. (Actually, there may be strong
coupling of corresponding modes across the 5 cells of an rf station. But
this coupling would probably not change the results by a large factor.)
Finally, we assume that the resonant frequencies of any given parasitic
mode are different from one cavity (cell) to the next, and are, in parti-
cular, spread more or less randomly across a range that is at least as
large as 3w0. This means that the relative frequency variations are
assumed to be about 4 x 10~3%, or somewhat more.

This last assumption means that the resonant frequency of each cavity
(cell) is equally likely to fall near each of the 3 harmonics of w, where
one of the 3 modes of the longitudinal oscillation is driven. (See again
Fig. 1).

Consider a given parasitic resonance of frequency W, and width T.

We assume its impedance varies with ¢ according to Eq. (12), which has a
peak value of
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Ry = —>—— = @, (32)

and, roughly speaking, a width of 2T'. Now ask: What is the likely effect

of this resonance on the u = *1 mode of the longitudinal oscillations?

The probability is 2?/3@0 that this resonance will land on some (3m - 1)

harmonic of W, and give damping to mode u = 1. There 1is equal probability

that it will land on some (3m + 1) harmonic of Wy and give anti-damping.
If we now consider the combined effect of all of the NC corresponding

resonances in the NC cavity cells™, we can say that the probable number

n of resonances landing on the harmonic (3m - 1) is NC times the proba-

bility just mentioned.

2T
= N_ - 33
"7 e 3wo (33)

In the sum of Eq. (10) these resonances will make an expected contribution
of 3m RY, where the expectation value of R* is

<R*> = n Rg (34)

We are here assuming that all the resonances will be near the same 3m
harmonic, with 3m >> 1 so that a factor (3m - 1) can be replaced by 3m.

Similarly, n resonances will, on the average, land on the (3m + 1)
harmonics and give a contribution to the sum of Eq. (10) whose expected
value is 3m<R>, with

<R™> = n R (35)

* For PEP NC = 5 x24 = 120.
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The expectation value for S+1 is then

<S> = 3m {<R-> - <R*>} (36)

which is clearly zero. Not surprisingly the expected damping is zero,
since there is equal likelihood that the damping will be positive or
negative.

On the other hand, we must expect that any given set of resonances
will have a damping or anti-damping effect somewhere in the range of the

standard deviation of S, which we shall call here og- We may write that

o = (a2 [(R1)2 + (or7)7] (37)

where (6R*)2 and (§R-)2 are the variances of R* and R-.

Under our assumptions, the two variances are uncorrelated, and we
can take that the number of resonances contributing to Rt (or to R-)
follows a Poisson distribution with a variance given by n RSZ. Then

6.2 = (3m)?2 (2n Rsz) . (38)

S

We may take for 3m the ratio wr/wo' Then taking Rs and n from
Eqs. (32) and (33), we, get that

2 - 2 2{jjr
s 3 NeQ Z, ( W,

)’ (39)

g

This, remember, is the contribution from one particular cavity resonance.

The contributions to 052 from each family of resonances must be added to
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get the overall 032. We can approximate that sum by assuming that Eq.(39)
refers to the parameters of a "typical" resonance, and that there are N

such resonances in each cavity. Then for the total effect, we can take
that

(40)

A typical value of the driven damping of mode u = +1 is obtained by using
og in place of S in Eq. (7).

Although we have been discussing mode u = +1, it is clear that pre-
cisely the same arguments would apply to mode pu = -1. In a particular
situation either mode may be damped or anti-damped, but, since S+1 and
S_1 will be almost exactly equal in magnitude but with opposite signs,
one of the two modes will almost certainly be anti-damped with a typical
driving strength equal to the O of Eq. (40). We write then that

ea. 1. w
Doy = c av.o . o (41)
4 Ve

We want now to evaluate Og- We could make some reasonable guesses
for the parameters, but we will, rather, make use of some information
provided us by Perry Wilson from computer calculations he has made to
determine the properties of higher-order modes in a model PEP cavity.
Wilson has found that there are some 17 resonances with longitudinal
impedance on the axis and with frequencies between the fundamental
(358 MHz) and the cut-off frequency of the beam pipe (near 2,000 MHz),
and has listed their resonant frequencies and characteristic impedances.
There are 8 resonances with characteristic impedances ZO between 2 ohms

and 30 ohms, with a typical value like 5 ohms, and a typical frequency
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T1ike 1,000 MHz. The quality factor Q is harder tc come by. Since the
unloaded § of the fundamental is 26,000, we may guess that the Q's of
the higher modes*should also be some 20,000 -~ or, probably more. For
our estimate of ﬁ&1, we then take the following numbers:

p= 8 Q=2 x 10"
- — 9 -
N, = 120 w, =6 x 10° 57! (42)
= - 6 -1
ZQ 5 ohms W, 0.8 x 10 S
From these we obtain
oo, = 1l.1x 10 ohms. (43)

We have also made a more refined calculation of o that yields a
similar result. A more careful statistical calculation shows that the
factor of 2 in Eq. (39) should be replaced by 1.56. Also, using Wilson's
information, and assuming that the Q of each mode is proportional to the
square root of its frequency, we have calculated the sum of all the in-
dividual contributions to O - The result we get is a little larger than
(43), namely, that*

o, = 2.5 x 10'° ohms. (44)
(The larger value comes primarily from larger assumed Q's.)
Using this last value in Eq. (41) we get the following results.

L) v, aag(sth) e {sD)

E(GeV) av 5
4 15 OtOEO 2,000 11
15 o 55 0.051 380 245

* See "note added in proof" at end of the text.
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We see that we must expect an instability of one of the modes p = %1
at all energies. And our best estimate for the threshold currents would
‘be 35 mA at 15 GeV, and 0.08 mA at 4 GeV. We emphasize, however, that
because of the statistical nature of our estimate -- as well as un-

certainties in the relevant parameters -- the actual driving strengths
encountered could well be different from our estimates by a factor of
three or more.

The driving strength of Aa = 2,000 obtained above is quite large.
It is, in fact, already becoming comparable to the synchrotron fre-
quency Q = Vo = 9,000 s”! at 4 GeV. Under such circumstances the
theoretical formalism leading to the formula of Section 2 is no longer
quite applicable. (See discussion of Section 2 and of Appendix A.)

Our results should, however, be roughly correct, nevertheless.

One final remark. The contributions of the parasitic resonance is,
statistically speaking, independent of the tuning of the main rescnance.
It will be the same whether cavities are tuned on-Tine for acceleration
or not. (In fact, of course, tuning the main resonance will shift the
parasitic resonances around, and the actual Aail will vary in some un-

predictable way, but the rms fluctuation ¢_ will remain unchanged.)

S

6. CONCLUSION

We have made estimates of the driven damping or anti-damping of the
three normal modes y = 0, *1 of the dipole oscillations of the three
bunches in one stored beam. We found that (a) the baricentric mode
p = 0 is adequately damped by the normal detuning of the main resonance
of the accelerating cavities; (b) the mode u = -1 will be driven unstable
at low energies by the normal detuning of the main cavity resonance;

(c) the stastical effects of parasitic cavity resonances is likely to

drive either mode py = +1 or mode u = -1 unstable at any energy. The

last effect is the strongest of all considered, and might give anti-

damping coefficients Aa of perhaps 400 sec™'at 15 GeV & 2,000 sec~*at 4 GeV.
We have not considered complications that may result from the inter-

actions between two stored beams, nor have we looked at the various
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possible feedback systems that might be used to control the potential
instabilities. It seems certain that some such system will be required
in PEP for stable three-bunch operation, particularly at Tow energies.
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Note Added in Proof: It now appears that the information on parasitic
resonances given us by Wilson may contain an arithmetic error, which, if
corrected, would increase o of Eq.(44) by a factor of 1.2. On the other
hand, we now think that it may be incorrect to use the unloaded Q's for
determining g (on p. 20), and that, perhaps a somewhat lower Q should

be taken -- say, one-half or so of the unloaded Q. Since I depends on
/Q, using a lower effective Q would lower the o of Egs.(43) or (44) by

- 1.2, or so.
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Appendix A.  Derivation of the Damping Coefficients

We consider the coupled longitudinal oscillations of a beam of three
idealized, point-1ike bunches which have equal charges and are equally
spaced around the ring. The bunches are assumed to interact via the
longitudinal impedance of the vacuum chamber, and the coupling forces are
assumed to be weak so that the normal {rf) forces dominate and each bunch
executes nearly sinusoidal oscillations about its synchronous position
with the synchrotron frequency .

For the ideal case being considered here, symmetry allows us to
identify immediately the normal modes. Since all bunches are equivalent,
the phase advance of the longitudinal oscillations must be the same from
one bunch to the next. There are, clearly, only three possibilities, and
they are the three modes identified in Section 2. Ignoring for the
moment the damping (which is assumed to be small) the longitudinal motion
of bunch & (2 = 0, 1) in mode y is -- see Eq.(2) -~

_ o~ 2m
Top = T €OS @t+5 Qu)’ (A1)

We are also setting Qu = 2, the low current synchrotron frequency.
Consider the passage of the reference bunch (2 = 0) through an

element of impedance Z located at some point in the ring. When there

are no longitudinal oscillations the bunch passes at regular intervals

with the period To = Zﬁ/wo. If we choose our origin of t at one of these

passages the current I{t) through Z can be written as the Fourier series

1 21 o .
I(t) = av + av Z e"’l n (ﬂo t’ (AZ)
3 3 n=1

where it is understood that we are to take the real part of the right-
hand side, and where I_, means the average current carried by all three

bunches.
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We are, here, not interested in this "normal"™ current, but, rather,
want to consider only the effect of the perturbation current i(t) which
is the difference between the current when the beam is advanced by the
time displacement t and the normal current of (A2). The spectrum of the
perturbation can, when 1 is small, be written as

21 @ .
i(t) = I(t+r) - (1) = -~} ing el TPt (A3)
3 n=l

So long as the longitudinal displacement varies slowly -- that is
for Q << w, -- we may still use Eq.(A3) for the current. We have then
that the effective perturbing current of bunch 2 = 0 can be taken as

21 N
i(t) = - 3V T cos Qt 5: in w, ™1 N Wy t (A4)
3

The bunch 2 =-1 which follows the reference bunch arrives at Z with
a delay of one-third of the rotation period. The n-th Fourier component
of its current is shifted in phase by -2wn/3. Similarly, the bunch ¢ =1
which preceeds the reference bunch will have its phases advanced by 2mwn/3.
When the bunches are oscillating in one of the normal modes p described
by EQ.(A1), the perturbing current of each bunch £ at the impedance Z is

'

211

. 27
P(8) = - =2 cos (ot + 20y Tin g e MOt T T (s)
3 3 n 0

The total current through Z is the sum of the three bunch currents,
which we write as
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Tiotal = " ""j;““'?p fw, Jp(t) (A8)
with
om i (ot - 20 g)
Ju(t} = 2. > cos(at + j;‘ui) ne 0 3 . (A7)
n 4

In evaluating the sum over & it is convenient to express the cosine
factor in exponential form. Then

. 2 . 21
‘Ju(t) - Zg_ %’:{e'l(Qt + —511 HZ) +e~](9t + ~—:~;- }12)] (AB)
n
ominlot - -2-31‘- 2)
or
) o1
J (t) = n -if{ng. -t - = 2(n+y)
® ;Z%:Ie [(n : ] -

+e-'i[(nwo )t - em ?,(n—u)]}Q

This final form shows that the phase modulation at the synchrotron fre-

quency Q splits each Fourier component at nw_ into a pair of components

displaced to the "side-band" frequencies nwgoisz.

Equation ( A9) shows another important aspect of the currents from
the three bunches. The lower side-band component (at the frequency
3w, - ©) contributed by each bunch is shifted in phase by 2w(n + u) from
one bunch to another. That means that when we sum over 2 for a given
mode u we are adding three terms whose relative phases are integer multi-

ples of 2n/3. Such a sum will give zero unless the integer (n +u) is a

whole multiple of 3 -- let's say, unless
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n+y = 3m (A1G)

with m any positive integer.

In other words, when we sum over 2 we get zero for two of every
three values of n, and triple the single bunch amplitude for the third
value of n, with the surviving value of n depending on the mode u being
considered. The Tower side-band eneray of each mode is concentrated at
a different harmonic of w,, according to the following scheme:

Lower Sideband

‘Mode Number p -1 0 + 1
Surviving Harmonic n 3m+ 1 3m 3m - 1

If you look now at the upper sideband terms in Eg.(A9), you will see
that the same arguments hold again with the exception that after summing
over £ the surviving terms will be those with

n-u = 3m (A11)

And the energy of the upper side-band appears at the harmonics of w,
given by this scheme:

Upper Sidebands

Mode Number u : -1 0 + 1
Surviving Harmonic n, : 3m -1 3m 3m + 1

The Tocation of the non-zero components is also shown in Fig. 1 of Section
2.

Since for any particular mode there is only one contribution to each
sideband for one of every three harmonics, we can replace the sum over n
by a sum over m. When we have summed over %, Eq.(AS) becomes
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J(t) = 22 2 { m - ) el [(3m-;j)wo-g]t

m

™~

(A12)

3 . 5 f Y +
+(3m + ) e L3m+““o Q]t}

Apart from the common factor of (A6) these are the components of the
beam current through the impedance Z.

The beam current i{w) at a particular frequency w will give a voltage
drop across Z of

viw) = i(e) Z(w) = i(w) [R(w) ‘3 X(w)] (A13)

where Z(w) is the complex impedance at the frequency w and R{y) is its
real part. The first term in the curly bracket of A(12) will give a
voltage proportional to the impedance at the frequency |(3m -u)wo - Q],
and the second term, at the frequency [(Bm +u)w0 —52]. Let's define

= = 1 [(Sm-u) w, - sz]
(A14)
-+
I, = 1 [(3m+-u) wy * Q].
Putting (A6), (A12) and (A13) together we write the voltage drop as
’V = ’Iav T i Wy Hu(t) (A15)
with
' - i om- - olt
H(t) = ZGn-w) 7, e (3m = e ]
n (A16)
+ (3m+U) Z; e"}. L{ém‘f”g)wg + Q}t} .
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This is the voltage that couples the longitudinal motion, since it produces
energy changes proportional to T,

Once the modes have been defined, as we have done, we can obtain the
growth rate of any given mode by looking at the motion of any one bunch --
say the reference bunch, £ = 0. This bunch crosses the impedance element
Z at the times tj =3 7y = J 2n/wys so on each revolution it will gain the
energy -e v(tj). The sign 1is negative because v is a voltage drop. Also,
we are ignoring the small displacement T in the time of the bunch passage,
since this would give us a term that is second order in 1 -- one order
from v itself and the other from the time-derivative of v with the dis-
placement t. For the reference bunch, then, the terms (3mi:u)w0 t in the
exponents are always multiples of 27 and can be dropped, and we are left
with only the slowly varying terms + Qt. We get that the energy gain 8¢

per revolution of the reference bunch (for a given mode u) is

e = el 1 i, Z{(Bm-u) z o1t
m .

av 'u
(A17)

+(3m+u) 7,

We remind you now that for the actual energy change we are to take
the real part of the right-hand side. HWriting Zé as R; + i X;. we get

e = e Iayru{%) %; (3m-u)(~xm cos ot -R_ sin ot)
(A18)
+(3m+-u)(-xg cos Ot +R; sin Qt)¢.

Or, rearranging terms,
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— r'\ - \+ .
se = el T, Y %;{~i}om-u}x + (3m+ p)X } cos 0t
(A19)

—[k3m-u)R" - (3m4-u)R+} sin Ot

We are almost there! We have one set of terms in the sum that is pro-
portional to T itself (?he terms in cos Qt) and another set proportional
to dt/dt (the terms in sin Qt). The first set will produce a change in
the coherent synchrotron frequency -- which is not our main interest here.
The second set gives us the contribution to the damping term Aau defined
in Section 2. To see how that works we make a brief diversion to look
at the equations of motion of a bunch.

Using the notation of Sands7, Section 3, the energy deviation of the
bunch changes according to '

de el 8¢
= T + (A20)
dt T

and the longitudinal displacement, according to

L | (A21)

We are interested in energy perturbations &e that vary like 1 and dr/dt,
so let's write

¢ = AT + B dt/dt (A22)

Pulling the pieces together, we get
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B
d?T % dr c .
+ + i+ M) = 0. »
d t? ETo dt ET, (e ) (A23)

As we said, A gives a contribution to the frequency and B gives damping.
The coefficient of dv/dt is twice the damping coefficient, so

Aa = ._.._..(}_,..._....,. = .....‘.g.—._..q__ - B. (A24)

Referring back to the perturbation energy gain of (Al9), B is 1/Q
times the factor that multiplies T sin Qt. Our result is that

° % Lav % i ke - (e (R25)
Ao 3m-u)R_. - {3m+yu . A25
H dn E Q m m Rm

)

Our derivation assumed that Z was an impedance element localized at
some azimuth of the ring. Since we have used a perturbation treatment,
keeping only linear terms in T, the damping coefficients Aau and also the
AQ due to successive impedance elements will just add. We can then rein-
terpret Ao, in Eq.(A24) as representing the total damping due to all longi-
tudinal impedances, and the resistances R% as representing the total longi-
tudinal impedance.

For comp]eteness,?we point out that the term with A in Eq.(A22) gives
us the coherent frequency shift of mode u. Specifically, the frequency
of mode @, is obtained from the coefficient of t in (A22):

92 = ¢ (eV + A). (A26)

H
ET,
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With our weak coupling approximation we can write

2 = + 2 o 2 +
2, ( AQu) QF + 20 A2 s (A27)

where @ is the undisturbed synchrotron frequency. Clearly,

AR = —S% A = — & p (A28)

Taking for A the factor multiplying T, €OS Qt in (A19), we find that

2
ea I, w,

A = - 22 (3m- X+ (3m+ )Xt A29
H 47E @ m " ; e

Comparing this equation with (A25), we see that so long as X and R are
comparable in magnitude (as we would normally expect), AR, and Ao, will
have similar magnitudes -- as we affirmed in Section 2. The statement
is not valid for u = 0 because (A25) contains the difference of resis-
tances of two nearby frequencies, while (A29) contains the sum of the

corresponding reactances. For modes u = %1, the two frequencies are

far apart and R™ - R" is likely to be similar in magnitude to X~ + Xt
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