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Abstract

PINT is a pure-Python framework for high-precision pulsar timing developed on top of widely used and well-
tested Python libraries, supporting both interactive and programmatic data analysis workflows. We present a new
frequentist framework within PINT to characterize the single-pulsar noise processes present in pulsar timing data
sets. This framework enables parameter estimation for both uncorrelated and correlated noise processes, as well as
model comparison between different timing and noise models in a computationally inexpensive way. We
demonstrate the efficacy of the new framework by applying it to simulated data sets as well as a real data set of
PSR B1855+09. We also describe the new features implemented in PINT since it was first described in the
literature.

Unified Astronomy Thesaurus concepts: Pulsars (1306); Astronomy software (1855); Astronomy data
analysis (1858)

1. Introduction

Since their discovery, pulsars have been used as celestial
laboratories to probe a wide range of time-domain phenomena,
owing to their remarkable rotational stability. This is especially
true for millisecond pulsars (MSPs), which are pulsars with
millisecond-scale rotational periods spun up by accretion from
their companion stars (Manchester 2017). Such applications
include constraints on the neutron star equation of state (e.g.,
Cromartie et al. 2020), the discovery of exoplanets (Wolszczan
& Frail 1992), tests of theories of gravity (e.g., Kramer et al.
2021), probing the interstellar medium (e.g., Donner et al.
2020) and solar wind (e.g., Tiburzi et al. 2021), the creation of
an international time standard (Hobbs et al. 2019),

characterizing the uncertainties present in the solar system
ephemerides (e.g., Caballero et al. 2018), and more. These
exciting results were produced with the help of pulsar timing,
the technique of tracking a pulsar’s rotational phase using the
measured times of arrival (TOAs) of its pulses, allowing it to be
used as a celestial clock (Lorimer & Kramer 2012). Pulsar
timing was instrumental in the recent evidence for a nanohertz
gravitational-wave background (Agazie et al. 2023b, 2024a;
Antoniadis et al. 2023; Reardon et al. 2023; Xu et al. 2023) by
Pulsar Timing Array (PTA) experiments (Sazhin 1978; Foster
& Backer 1990), inaugurating the era of nanohertz gravita-
tional-wave astronomy.
High-precision pulsar timing experiments such as PTAs and

tests of gravity require modeling the TOAs down to
nanosecond-level precision. A pulsar timing model or pulsar
ephemeris is a generative mathematical description of the
deterministic astrophysical processes influencing the measured
TOAs. These processes include pulsar rotation, pulsar binary
dynamics, interstellar dispersion, solar system dynamics,
proper motion, and solar wind, etc., and they must be
accurately incorporated into the timing model to achieve the
required precision (Edwards et al. 2006). The timing model is
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often accompanied by a noise model, which incorporates
stochastic processes affecting the TOAs, such as radiometer
noise, pulse jitter, rotational irregularities, interstellar medium
variability, and radio frequency interference (RFI), etc. (Agazie
et al. 2023a).

In practice, pulsar timing involves the creation and
incremental refinement of a pulsar timing model that matches
the observed TOAs, typically using frequentist methods. This is
usually performed using one of the three standard software
packages: tempo (Nice et al. 2015), tempo2 (Edwards et al.
2006; Hobbs et al. 2006), or PINT (Luo et al. 2021), often in
an interactive manner. Noise characterization is usually
performed separately in the Bayesian paradigm, using software
packages such as ENTERPRISE (Johnson et al. 2024) and
TEMPONEST (Lentati et al. 2014), starting from a post-fit
timing model. ENTERPRISE can also be used to characterize
deterministic and stochastic signals common across multiple
pulsars, such as the stochastic gravitational-wave background
and solar system ephemeris errors (e.g., Vallisneri et al. 2020;
Agazie et al. 2023b). Since accurate noise characterization is
necessary for accurate timing and vice versa (e.g., Coles et al.
2011), the timing and noise characterization steps must be
repeated alternately to ensure that the results remain accurate
and stable, and this turns out to be expensive both in time and
computation.

PINT22 is a flexible pure-Python framework for pulsar
timing that is written on top of widely used scientific
computing libraries, such as numpy (Harris et al. 2020),
scipy (Virtanen et al. 2020), astropy (Price-Whelan et al.
2022), and matplotlib (Hunter 2007), developed under the
aegis of the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav: Demorest et al. 2012).
The reliability of this package is ensured via its reliance on
these well-tested libraries, strict version control, and an
extensive continuous integration and testing suite. PINT is
primarily designed to be used as a Python library to ensure that
(a) all of its functionality remains easily accessible to the user;
(b) it is easily extensible; and (c) it can be easily composed with
other Python packages. It also provides a graphical user
interface (named pintk) and command-line tools for specific
tasks. In comparison, tempo and tempo2, written in
FORTRAN and C-style C++, respectively, are primarily
designed to be used as command-line applications (tempo2
also has a graphical user interface named plk and a Python
wrapper named libstempo; Vallisneri 2020).

In this paper, we present a new frequentist framework in
PINT for characterizing the noise processes affecting pulsar
timing, allowing the noise parameters to be fit together with the
timing model parameters in a maximum-likelihood way for a
single pulsar. Our framework also enables model comparisons
within PINT using the Akaike Information Criterion (AIC:
Burnham & Anderson 2004). The new framework should allow
us to easily incorporate noise characterization into pulsar
timing pipelines and interactive workflows, obtaining relatively
quick noise estimates and enabling swift refinement of noise
models. This is in contrast to conventional Bayesian noise
characterization, which is performed as a separate step from

pulsar timing and is relatively more computationally expensive,
but can also include common noise terms between pulsars (e.g.,
Agazie et al. 2023a). Our framework can complement the
Bayesian methods for noise characterization in the following
ways. During the initial data preparation and combination
stages, our method can hasten the iterative refinement of noise
models. The frequentist estimates can be used to cross-check
the Bayesian results. They can also act as starting points for
Markov Chain Monte Carlo (MCMC) samplers (e.g., Jones &
Qin 2022), allowing them to burn in faster. Finally, in cases
where Bayesian analysis is not considered worth the cost, our
method provides an inexpensive alternative for noise
characterization.
This paper is arranged as follows. Section 2 provides a quick

overview of pulsar timing. Section 3 briefly describes the fitting
methods used in PINT. The newly implemented methods for
estimating noise parameters are described in Section 4. Model
comparison using the AIC is described in Section 5. We
demonstrate the new framework using simulations in Section 6
and using a real data set in Section 7. In Section 8, we discuss
some of the new developments in PINT, implemented since the
publication of Luo et al. (2021), which initially described the
package. Finally, we summarize our work in Section 9.

2. A Brief Overview of Pulsar Timing

2.1. TOAs

The primary measurable quantity in pulsar timing is the
TOA. In conventional pulsar timing, the pulsar time-series data
are coherently averaged (“folded”) into an integrated pulse
profile to improve its signal-to-noise ratio and to mitigate the
effects of pulse-to-pulse variations (Lorimer & Kramer 2012).
A TOA can be measured from an integrated pulse profile by
matching it against a noise-free template (Taylor 1992). In the
traditional narrowband paradigm, the observation is split into
multiple frequency sub-bands, and the TOAs are estimated in
each sub-band independently. On the other hand, in the more
recently developed wideband paradigm, a frequency-resolved
integrated pulse profile is cross-correlated against a two-
dimensional template in frequency and pulse phase to
simultaneously measure a TOA and a dispersion measure
(DM)23 for the whole observation (Pennucci et al. 2014;
Pennucci 2019). Algorithms for folding and manipulating
integrated pulse profiles and for measuring TOAs are available
in packages like DSPSR (van Straten & Bailes 2011), PRESTO
(Ransom 2001), PSRCHIVE (Hotan et al. 2004), and
PulsePortraiture (Pennucci et al. 2014; Pennucci 2019).
We restrict ourselves to the narrowband paradigm in this work
for the sake of simplicity, unless explicitly stated otherwise.
The TOAs are generally recorded against local observatory

clocks. PINT applies a series of clock corrections to the
measured TOAs, bringing them to the Barycentric Dynamical
Time (TDB), a relativistic timescale defined at the solar system
barycenter (SSB). Detailed descriptions of clock corrections
may be found in Hobbs et al. (2006) and Luo et al. (2021).
Note that tempo2 uses the Barycentric Coordinate Time
(TCB) by default, which differs from TDB by a constant factor,
and timing models using TCB need to be converted to TDB to
be PINT-compatible (see Section 8.1 for the newly available
TCB-to-TDB conversion feature).

22 Available as pint-pulsar via pip and conda package managers. The
source code is available at https://github.com/nanograv/PINT. The docu-
mentation is available at https://nanograv-pint.readthedocs.io/. This paper
corresponds to PINT v1.0.0 (Agazie et al. 2024b). “PINT” is an acronym for
“PINT Is Not TEMPO3.”

23 DM quantifies the interstellar dispersion of the radio waves and is
proportional to the electron column density along the line of sight to the pulsar.
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In PINT, a set of observed TOAs is represented by the TOAs
class in the pint.toa module. See Luo et al. (2021) for
details on the internal representation of TOAs. They are usually
stored in human-readable text files known as “tim” files, which
can be read using the pint.toa.get_TOAs() function.

2.2. The Timing and Noise Model

Pulsar timing involves connecting the pulse number N,
related to the rotational phase of the pulsar as Φ(N)= 2πN, to
the time of emission tem, as

N N f t t f t t
1

2
..., 10 em 0 em 0

2( ) ( ) ( )= + - + - +

where f is the rotational frequency, f is the rotational frequency
derivative, and t0 is a fiducial time. The right-hand side of the
above equation may also include higher-order frequency
derivative terms and rotational irregularity effects such as
glitches (Hobbs et al. 2006). The measured TOA tarr is related
to tem by

t t . 2arr em B DM ( )= + D + D + D + +

Here, the delayΔB originates from the motion of the pulsar in a
binary system and includes the Rømer delay, Shapiro delay,
and Einstein delay (Damour & Deruelle 1986). ΔDM denotes
the delay caused by interstellar dispersion and is given by

DDM
2 nD = , where ν is the observing frequency, D is the

DM, and  is known as the DM constant (Lorimer &
Kramer 2012). Δe denotes the delays caused by the solar
system motion, including the Rømer delay and the Shapiro
delay,24 and they are computed using the solar system
ephemerides published by space agencies (e.g., Park et al.
2021). Detailed descriptions of the various timing model
components can be found in Edwards et al. (2006) and Luo
et al. (2021). Finally,  denotes the noise present in the TOA,
including correlated and uncorrelated noise components (see
Section 4.1). Note that in Equation (2), we have ignored an
unmeasurable constant term corresponding to the light travel
time in vacuum from the pulsar (or the binary barycenter in the
case of binary pulsars) to the SSB at some fiducial epoch.

The various timing and noise model components available in
PINT are listed in Table 1, and the new/updated components
are highlighted therein. These are available in the pint.
models module of PINT. The timing and noise model as a
whole, comprising these components, is represented by the
TimingModel class in the pint.models module. Pulsar
ephemerides are usually stored in human-readable text files
known as “par” files and can be read using the pint.
models.get_model() function. A pair of “par” and “tim”

files belonging to the same pulsar can be read together using
the pint.models.get_model_and_toas() function.25

2.3. Timing Residuals

The timing model can be used to predict the phase Φi

associated with each TOA, and this allows us to compute the

timing residuals:

r
N

F

2
, 3i

i i[ ] ( )p
=

F - F

where N[Φi] is the integer closest to Φi/2π and F is the pulse
frequency.26 The procedure for computing a timing residual
can be summarized as follows:

1. Apply the various clock corrections to convert the
measured TOA from the observatory timescale to a
timescale defined at the SSB.

2. Successively correct for the various delays influencing
the TOA, bringing it to the pulsar frame (Equation (2)).

3. Compute the pulsar rotational phase at the corrected TOA
using the rotational frequency and its derivatives
(Equation (1)).

4. Successively correct for the other effects that influence
the rotational phase of the pulsar.

5. Compute the phase residual by subtracting the closest
integer from the estimated rotational phase. The timing
residual is the phase residual divided by the instantaneous
rotational frequency (Equation (3)).

In the pint.residuals module, narrowband timing
residuals are represented by the Residuals class, and
wideband residuals are represented by the WidebandTOAR-
esiduals class.
How we fit a timing model to the observed TOAs using

timing residuals is described in the next section.

3. Fitting for Timing Model Parameters

3.1. Fitting in the White-noise-only Case

If the initial (pre-fit) timing model is sufficiently close to its
best-fit counterpart, the pre-fit timing residuals r and the post-fit
timing residuals s are related by the linear relation

r s M , 4( )b- =

where r and s are n-dimensional vectors containing elements ri
and si, respectively, M is the n× p-dimensional pulsar timing
design matrix containing partial derivatives s

b
i¶

¶ a
with respect to

the p timing model parameters bα, and β is a p-dimensional
vector containing timing model parameter deviations βα from
their best-fit values b̂a (i.e., b bˆb = -a a a), where n is the
number of TOAs, and p is the number of timing model
parameters. In the absence of correlated noise, the log-
likelihood function can be written, up to an additive constant,
as

s N s NLln
1

2

1

2
lndet , 5T 1 ( )= - --

24 Solar system Einstein delay is corrected for while converting the TOAs into
TDB, since it is part of the definition of the TDB.
25 The latter is the preferred way, since some parts of the timing model, such as
clock and solar system ephemeris information, can affect how the TOAs object
is constructed.

26 In PINT, F can be the rotational frequency F0 at some fiducial epoch, the
instantaneous rotational frequency F(ti) computed incorporating the rotational
frequency derivatives, or the topocentric pulse frequency F t d dti arr¯ ( ) = F
incorporating all delay and phase corrections computed using finite differences.
On the other hand, tempo2 uses F = F0, and tempo uses the instantaneous
rotational frequency that also incorporates the first rotational frequency
derivative. The topocentric frequency is the most accurate option in principle,
but it is more expensive to compute and the differences between different
options are negligible for MSPs in most cases. However, not using the
topocentric frequency can have a significant impact on the timing accuracy in
the case of young or accreting pulsars with large frequency derivatives (e.g.,
Ray et al. 2019).
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Table 1
Updated List of Timing Model Components Available in PINT (in the pint.models Module)

Component Description References

Pulsar rotation, rotational phase, and rotational irregularities

Spindown Taylor-series representation of the pulsar rotation Backer & Hellings (1986)

PiecewiseSpindown § Piecewise-constant corrections to pulsar rotation

Glitch Pulsar glitches Hobbs et al. (2006)

IFunc Piecewise-constant or spline representation of rotational period Deng et al. (2012)

WaveX § ‡ Fourier series representation of ARN Hobbs et al. (2006)
(supersedes the deprecated Wave model) Sections 4.1.3, 4.3

PLRedNoise Fourier GP representation of ARN Lentati et al. (2014)

AbsPhase Reference TOA with respect to which the rotational phase
is measured

PhaseOffset § ‡ Overall phase offset between reference TOA and the physical Section 4.2
TOAs

PhaseJump ¶ Phase offsets between TOAs measured using different systems Hobbs et al. (2006)

Binary system

BinaryBT Simple parameterized post-Keplerian binary model Blandford & Teukolsky (1976)
(only Rømer delay)

BinaryBTPiecewise § ‡ Similar to BinaryBT, but with piecewise-constant
orbital parameters

BinaryDD Parameterized post-Keplerian model (with Shapiro Damour & Deruelle (1986)
delay and Einstein delay)

BinaryDDGR § Similar to BinaryDD, but assumes General Relativity Taylor & Weisberg (1989)

BinaryDDH § Similar to BinaryDD, but uses a harmonic representation Freire & Wex (2010)
of Shapiro delay (for low-inclination systems) Weisberg & Huang (2016)

BinaryDDK Similar to BinaryDD, but includes Kopeikin delay Damour & Taylor (1992)
Kopeikin (1995, 1996)

BinaryDDS § Similar to BinaryDD, but uses an alternative representation Kramer et al. (2006)
of Shapiro delay (for almost edge-on orbits) Rafikov & Lai (2006)

BinaryELL1 † Binary model specialized for nearly circular orbits using Lange et al. (2001)
Laplace–Lagrange parameters (includes up to third-order Zhu et al. (2018)
terms in eccentricity) Fiore et al. (2023)

BinaryELL1H Similar to BinaryELL1, but uses a harmonic representation Freire & Wex (2010)
of Shapiro delay (for low-inclination systems)

BinaryELL1k § Similar to BinaryELL1, but includes an exact treatment of Susobhanan et al. (2018)
advance of periastron (for highly relativistic or tidally
interacting binaries)

Interstellar dispersion and DM variations

DispersionDM ¶ Taylor-series representation of DM Backer & Hellings (1986)

DispersionDMX ¶ Piecewise-constant representation of DM variations Arzoumanian et al. (2015)

DMWaveX § ‡ Fourier series representation of DM variations Sections 4.1.3, 4.3

PLDMNoise § Fourier GP representation of DM variations Lentati et al. (2014)

DispersionJump § Offsets between wideband DMs measured using different Alam et al. (2021)
systems (no delay)

FDJumpDM § DM offsets between narrowband TOAs measured using
different systems

Astrometry and solar system delays
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where N diag i
2[ ]V= is the diagonal uncorrelated (white-) noise

TOA covariance matrix, and ςi represents the scaled TOA
uncertainties (see Section 4 for a detailed explanation). The
quantity sTN−1s appearing in the first term is usually referred to
as the chi-squared (χ2).

The parameter deviations β can be estimated by maximizing
the above likelihood function. If N is fixed, the maximum-
likelihood estimate involves minimizing the χ2, and this turns
out to be

M N M M N r, 6T T1 1 1ˆ ( ) ( )b = - - -

with a parameter covariance matrix

K s N s M N M
n p

1
. 7T T1 1 1( )( ) ( )=

-
b

- - -

The conventional fitting algorithm for the pulsar timing model
involves updating the parameter values b b b̂ - . In
practice, the right-hand side of Equation (6) is evaluated with
the help of a singular value decomposition (SVD) in PINT (see
also Section 3.3.1; Press et al. 1992). In contrast, tempo2 uses
a QR decomposition for this purpose.

This method is usually referred to as weighted least-squares
(WLS). See, e.g., Coles et al. (2011) for a detailed discussion
on this method.

3.2. Fitting in the Presence of Correlated Noise

The more general case of the above fitting algorithm that
accounts for the presence of correlated noise involves
maximizing the likelihood function

s C s CLln
1

2

1

2
lndet , 8T 1 ( )= - --

where C is the nondiagonal covariance matrix that incorporates
both white and correlated noise. Given fixed noise parameters (i.e.,
fixed C), the maximum-likelihood values for the parameter
deviations can be written formally as (Coles et al. 2011)

M C M M C r, 9T T1 1 1ˆ ( ) ( )b = - - -

along with the parameter covariance matrix

K s C s M C M
n p

1
. 10T T1 1 1( )( ) ( )=

-
b

- - -

Once b̂ are computed, the parameter values can be updated as
b b b̂ - , similar to the WLS case, and this method is

Table 1
(Continued)

Component Description References

AstrometryEcliptic Astrometry in ecliptic coordinates Edwards et al. (2006)

AstrometryEquatorial Astrometry in equatorial coordinates

SolarSystemShapiro Solar system Shapiro delay Shapiro (1964)

Solar wind

SolarWindDispersion † Solar wind model assuming a radial power-law relation for Edwards et al. (2006)
the electron density You et al. (2007, 2012)

SolarWindDispersionX § ‡ Similar to SolarWindDispersion, but with a piecewise- Madison et al. (2019)
constant representation of the electron density. Hazboun et al. (2022)

Troposphere

TroposphereDelay Tropospheric zenith hydrostatic delay Davis et al. (1985)
Niell (1996)

Time-uncorrelated noise

ScaleToaError Modifications to the measured TOA uncertainties Lentati et al. (2014)

ScaleDMError § Modifications to the measured wideband DM uncertainties Alam et al. (2021)

EcorrNoise † Correlation between TOAs measured from the same Arzoumanian et al. (2015)
observation. Johnson et al. (2024)

Frequency-dependent profile evolution

FD ¶ Frequency-dependent profile evolution Arzoumanian et al. (2015)

FDJump § System and frequency-dependent profile evolution Appendix

Notes. “§” denotes newly implemented components and “†” denotes components that have had significant changes since the publication of Luo et al. (2021). The
BinaryELL1 component now includes up to e3( ) terms in orbital eccentricity. The SolarWindDispersion component now allows electron density radial
power-law indices other than 2. The EcorrNoise component now incorporates a faster algorithm for inverting the TOA covariance matrix. “¶” denotes components
that were renamed after the publication of Luo et al. (2021). “‡” denotes components only available in PINT. The choice of the binary model is specified in the “par”
files using the “BINARY” keyword, e.g., “BINARY ELL1.” Additionally, there is a generic timing model in tempo2 called the “T2” model, which chooses the
underlying binary model based on the available binary parameters. When “BINARY T2” is encountered, PINT emits an informative error message indicating the best
guess for the underlying binary model. It can also construct the binary timing model based on this guess optionally.
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usually referred to as generalized least-squares (GLS). Note
that Equation (9) is evaluated in PINT using a Cholesky
decomposition for nondegenerate systems and using an SVD
for degenerate systems (see Section 3.3.1 for details).

Since C is in general not diagonal, computing C−1 is much
more expensive than computing N−1, and scales as n3( ) as
opposed to n( ) in the worst-case scenario. Fortunately, C can
be represented in most cases as a rank-m update to the diagonal
matrix N, as (van Haasteren & Vallisneri 2014a)

C N U U , 11T ( )F= +

where U is an n×m-dimensional correlated noise basis matrix
and Φ is an m×m-dimensional diagonal matrix containing the
correlated noise weights. In this case, C−1 can be written using
the Woodbury identity as

C N N U U N , 12T1 1 1 1 1 ( )S= -- - - - -

where

U N U. 13T1 1 1 ( )S F= +- - -

Additionally, Cdet appearing in the Lln expression can be
computed using the identity

C Ndet det det det . 14( )S F= ´ ´

This allows us to evaluate Lln , b̂, and Kβ with nm2( ) time
complexity, assuming m= n.

3.3. Failure Modes of Linear Fitting and the Downhill Fitter
Algorithm

3.3.1. Handling Parameter Degeneracies

The above-described fitting algorithm, while successful in
the vast majority of cases, can nevertheless fail to correctly
estimate the maximum-likelihood parameters under certain
conditions. The most obvious such scenario is parameter
degeneracy, which leads to MTC−1M being singular. Ideally,
this should be addressed by reparameterizing the timing model
to avoid the degeneracy. Alternatively, it can be addressed in
an ad hoc manner by restricting the fitting algorithm to operate
only in a subspace of the parameter space where the fitting
problem is nonsingular. This is done by replacing the inverse

M C MT 1 1( )- - by the pseudoinverse VS UT1¯- , where
MTC−1M=USVT is an SVD such that U and VT are
orthogonal matrices, S is a diagonal matrix containing the
singular values, and S 1¯- is obtained by replacing the diagonal
elements of S−1 that are greater than a certain threshold by 0.

3.3.2. The Downhill Fitter Algorithm

Unfortunately, the fitting algorithm can fail even in the
absence of parameter degeneracies under the following
conditions: (a) the linear approximation underlying
Equation (4) breaks down and the nonlinear terms become
important; and (b) the b b b̂ - update brings a parameter
outside its physically meaningful range (e.g., orbital eccen-
tricity e ä [0, 1), Shapiro delay shape sin 0, 1[ ]i Î ), such that
the likelihood function becomes ill-defined. PINT implements
a robust fitting algorithm, named the Downhill fitter, to deal
with such cases, and it is briefly described below.
In the Downhill fitter, the usual b b b̂ - update is

replaced by a more general update b b b̂l - , with λ ä (0,
1]. Even in the problematic cases mentioned above, it may be
possible to find a value of λ that leaves the likelihood function
both well-defined and improved, even if λ= 1 does not provide
an acceptable solution. In practice, this is done by reducing λ
iteratively by some factor, starting from 1, until an acceptable
solution is found. If an improved solution cannot be found even
after a certain maximum number of iterations of reducing λ, the
original solution is retained.

The various fitting methods available in PINT (in the
pint.fitter module) are listed in Table 2 and the new/
updated features are highlighted therein. We have also added a
method pint.fitter.Fitter.auto() that selects the
appropriate type of fitter, depending on the input data
(narrowband versus wideband, white noise versus correlated
noise), with a preference for the downhill fitter variants.

4. Fitting for Noise Parameters

The fitting methods discussed in Section 3 assume that the
TOA covariance matrix C (or N in the absence of correlated
noise) is fixed. However, the noise characteristics of a given set
of TOAs are not usually known a priori and must be

Table 2
Fitting Methods Available in PINT (in the pint.fitter Module)

Fitter Description References

PowellFitter Fitting using the modified Powell algorithm (uses scipy) Powell (1964)

WLSFitter WLS fitting Hobbs et al. (2006)

DownhillWLSFitter § Downhill WLS fitting Section 3.3.2
Allows fitting for noise parameters

GLSFitter GLS fitting Coles et al. (2011)

DownhillGLSFitter § Downhill GLS fitting Section 3.3.2
Allows fitting for noise parameters

WidebandTOAFitter GLS fitting for wideband TOAs Alam et al. 2021

WidebandDownhillFitter § Downhill GLS fitting for wideband TOAs Section 3.3.2

MCMCFitter † MCMC optimization (uses emcee) Foreman-Mackey et al. (2013)

Note. “†” denotes fitters that have had significant changes since the publication of Luo et al. (2021) and “§” denotes newly implemented fitters. MCMCFitter was
updated to use the emcee package, providing parallel processing capabilities
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determined from the data themselves. In practice, this is
handled by ignoring the noise parameters during the initial data
preparation stages, then performing a separate Bayesian noise
analysis step on the data once a reasonable (but not necessarily
optimal) timing solution is found. The timing model is then
refined by applying the estimated noise parameters, and this
process is iterated.

In this section, we develop a framework within PINT to
estimate noise parameters together with timing model para-
meters, obviating the need for computationally expensive
Bayesian noise analysis iterations during pulsar timing. Note
that the noise estimates obtained using these methods may still
need to be refined after the data preparation stage using
Bayesian methods. Still, the convergence of such analyses can
be accelerated by providing the initial noise estimates as
starting points for MCMC samplers.

4.1. Types of Noise

We begin by briefly discussing the different types of noise
seen in pulsar timing. These processes can be divided into three
broad categories, as described below.

4.1.1. Uncorrelated (White) Noise

Uncorrelated noise or white noise refers to the component of
the noise that is independent for each TOA. It may arise from
radiometer noise, pulse jitter, RFI, or polarization miscalibra-
tion, etc. It is characterized by the diagonal matrix N, which is
populated by the scaled TOA variances i

2V , given by

F Q , 15i i i i
2 2 2 2( ) ( )V s= +

where

F f , 16i
a

a
ia ( )=

Q q . 17i
a

a ia
2 2 ( )å=

The quantities fa and qa are known as EFACs (“error factors”)
and EQUADs (“errors added in quadrature”), respectively. ia
and ia represent TOA selection masks, which can be 0 or 1,
based on some criterion, which may depend on the observing
epoch, observing frequency, or observing system, etc. EFACs
and EQUADs are implemented in the ScaleToaError
component (see Table 1).

4.1.2. Time-uncorrelated Correlated Noise

Time-uncorrelated correlated noise refers to the component
of the noise that is correlated among the TOAs derived from
the same observation, but that are uncorrelated otherwise. This
is usually referred to as ECORR and may arise from pulse
jitter, RFI, polarization miscalibration, or interstellar scattering,
etc., which are correlated across different frequency sub-bands
of the same observation. Since ECORR is uncorrelated across
different observations, it is possible to express its contribution
to the TOA covariance matrix as a sparse block-diagonal
matrix. This allows us to evaluate C−1 using the Sherman–
Morrison identity (the rank-1 special case of the Woodbury
identity), which turns out to be less expensive than the general
case. The TOA covariance matrix contribution arising from

ECORR can be expressed as (Johnson et al. 2024)

C v vc , 18
ab

a ab ab
T

ECORR
2 ( )å=

where ca represents the ECORR parameter for each selection
group, the index b represents the various TOA epochs, and the
basis vector vab contains “1”s for each TOA belonging to the
epoch b and selection group a, and “0”s otherwise. ECORRs
are implemented in the EcorrNoise component (see
Table 1).

4.1.3. Time-correlated Noise

Time-correlated noise in pulsar timing may arise due to the
rotational irregularities of the pulsar (spin noise/achromatic red
noise or ARN), time-variable interstellar dispersion (DM noise
or DMN), time-variable interstellar scattering (scattering
noise), or long-timescale RFI (system/band noise), etc. This
type of noise can be represented either as a deterministic signal
(such as a piecewise-constant function or Fourier expansion,
etc.) or as a Gaussian process (GP) that contributes a dense
component to the TOA covariance matrix, usually represented
using a reduced rank approximation (see Equation (11); van
Haasteren & Vallisneri 2014b). The deterministic signal
representation provides a delay of the form Uj, where U is a
basis matrix and j is an amplitude vector. For example, the
Fourier basis matrix corresponding to a time-correlated noise
component is given by

⎜ ⎟

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎧

⎨

⎪⎪

⎩
⎪
⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

U

j t t

T
j

j t t

T
j

sin
1

odd

cos even ,

19ij
i

i

i

ref

ref

span

ref

span

( )( )

( )
( )n

n

p

p
=

+ -

-

a

where νi is the observing frequency, νref is an arbitrary reference
frequency (conventionally taken as 1400MHz), α is known as
the chromatic index (α= 0 for the ARN and α= 2 for the
DMN), ti is the TOA, tref is an arbitrary reference time, and Tspan
is the total time span of the TOAs. The deterministic
representation can be converted into a GP representation by
analytically marginalizing the amplitudes j assuming Gaussian
priors (van Haasteren & Vallisneri 2014b). The deterministic
Fourier representation of the ARN is implemented as the
WaveX component and that of the DMN is implemented as
the DMWaveX component. Their GP counterparts assuming a
power-law spectral density are PLRedNoise and PLDMNoise,
respectively (see Table 1).

4.2. Fitting for White-noise Parameters and ECORRs

If the time-correlated noise components are treated using a
deterministic representation, as discussed above, the covariance
matrix can be written as

C N v vc , 20
ab

a ab ab
T2 ( )å= +

which turns out to be block-diagonal. Each block Cab

can be inverted using the Sherman–Morrison identity
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(Johnson et al. 2024):

C N v v

N
N v v N

v N v

c

c

1
, 21

ab ab a ab ab
T

ab
a ab ab ab

T
ab

ab
T

ab ab

1 2 1

1
2 1 1

1

( )

( )

= +

= -
+

- -

-
- -

-

where Nab is the portion of N corresponding to the selection
group a and observing epoch b. Similarly, the determinant of
each block can be computed using the identity

C N v N vdet det 1 . 22ab ab ab
T

ab ab
1( ) ( )= ´ + -

Defining the inner product x y x N yT 1( ∣ ) = - , the log-likelihood
can be expressed as L Lln lnab ab= å , where

⎫
⎬⎭

s s N

s v

v v
v v

L

c

ln
1

2
lndet

1
ln 1 . 23

ab ab ab ab

a ab ab

ab ab
ab ab

2 2

{( ∣ )

( ∣ )
( ∣ )

[ ( ∣ )] ( )

=- +

-
+

+ +

We estimate the white-noise and ECORR parameters by
numerically maximizing the above expression over the
parameters fa, qa, and ca, while fixing the timing model
parameters. In practice, we alternate the above maximization
procedure with the timing model parameter fitting described in
Section 3 several times. The covariance matrix of the noise
parameters f q c, ,i a a a{ }b Î can be computed by inverting the
Hessian matrix H of the log-likelihood function, whose

elements are Hij
Lln

i j

2

=
b b

¶
¶ ¶

(the Hessian is computed in practice

by numerically differentiating Lln ). This method is implemen-
ted in DownhillWLSFitter (without ECORR) and Down-
hillGLSFitter (with ECORR), as mentioned in Table 2.

The pulse phases corresponding to the observed TOAs are
computed with respect to a fiducial TOA. Since the choice of
this fiducial TOA is arbitrary, there can be an overall phase
offset between the measured TOAs and the fiducial TOA.
Traditionally, this offset has been taken care of by subtracting a
weighted mean from the timing residuals. Unfortunately, this
procedure is inadequate when correlated noise (including
ECORR) is present, since the weighted mean does not account
for the correlated noise. Hence, we treat this offset as a free
parameter while fitting for correlated noise parameters (this is
implemented in the PhaseOffset component; see Table 1).

While the iterative method described in this section
effectively maximizes the likelihood function over both timing
and noise parameters, the estimated parameter uncertainties
may be underestimated, because the timing parameters are kept
fixed while estimating noise parameters and vice versa. This
effect is usually small, since most timing parameters are
determined by the entire data set, while the white noise and
ECORR are time-uncorrelated. Nevertheless, this caveat can
become important while employing timing parameters whose
effect is time-localized, such as epoch-wise DM measurements
using DispersionDMX (e.g., Tarafdar et al. 2022).

We note here in passing that a white-noise characterization
utility is available in tempo2 via the fixData plugin
(Hobbs 2014). However, the PINT functionality described
herein differs from the fixData plugin in the following ways:
(a) the fixData plugin cannot estimate ECORR parameters;
(b) it does not provide uncertainties associated with noise
parameter estimates; and (c) noise parameter estimation in

PINT is integrated into the usual interactive pulsar timing
procedures, whereas fixData is to be run as a separate step.

4.3. Fitting for Time-correlated Noise Parameters

Recalling the basis given in Equation (19), we can express
the deterministic Fourier representation of a time-correlated
noise in the following way:
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+
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a

=

We estimate the coefficients aj and bj by treating them as free
parameters and fitting them simultaneously with the timing
model parameters. Note that the noise components with
frequencies less than Tspan

1- will be absorbed while fitting for
the pulsar rotational frequency and its first derivative in the
case of the ARN when the spectral index is less than 7.
Similarly, such low-frequency components will be absorbed
into the first two DM derivatives in the case of the DMN. In the
case of steeper spectra (γ> 7), higher derivatives of rotational
frequency and/or DM may be required (Blandford et al. 1984;
van Haasteren & Levin 2012; van Haasteren & Vallisneri
2014a; Keith & Nitu 2023).
The power spectrum of a time-correlated noise component is

often modeled using a power-law function of the form (Lentati
et al. 2014)

⎛
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⎞
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⎟P f a b

A

f T

f

f12
, 25j j j

j

2 2
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2
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= á ñ = á ñ =
g

where A is the power-law amplitude, γ is the spectral index (not
to be confused with the chromatic index α), and fyr= 1 yr−1. In
our framework, the power-law parameters A and γ can be
estimated by maximizing the log-likelihood function:

⎧
⎨
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where ajˆ and bĵ are the maximum-likelihood estimates of the
Fourier coefficients obtained by fitting Equation (24) to the
TOAs as part of the timing model, and òaj and òbj are the
measurement uncertainties thereof. Here, we are modeling the
measured Fourier amplitudes ajˆ and bĵ as Gaussian random
variables with zero mean whose variance is the sum of the
intrinsic variance P( fi) and the measurement variance aj

2 or bj
2 .

The uncertainties in the A and γ measurements can be estimated
using the Hessian of lnL, similar to how the EFAC, EQUAD,
and ECORR uncertainties are estimated in Section 4.2. We
note in passing that the likelihood function given in
Equation (26) is analogous to the frequency-domain likelihood
given in Laal et al. (2023).
The likelihood function of Equation (26) will, in general,

provide different parameter estimation results than the
likelihood function of Equation (8) (including the GP
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representation of the time-correlated noise), since the latter acts
directly on the timing residuals, whereas the former acts on the
estimated Fourier coefficients. Additionally, the interpretation
of P( fj) as the variance of the Fourier coefficients aj and bj is
imposed in Equation (26) after estimating aj and bj, whereas it
is imposed as a prior distribution in the Bayesian analysis
involving the GP representation. Nevertheless, we expect their
results to be broadly consistent.

These computations are implemented in the pint.utils.
plrednoise_from_wavex() function for the ARN and in
the pint.utils.pldmnoise_from_dmwavex() func-
tion for the DMN.

Certain caveats regarding the issues that may arise while
applying these techniques to real data sets are in order. The
astrometric parameters of the pulsar, which determine the solar
system Rømer delay with a 1 yr period, are covariant with the
Fourier coefficients of the ARN corresponding to the frequency
closest to 1 yr−1 (and possibly its higher harmonics). Similarly,
some of the binary orbital parameters will be covariant with the
ARN Fourier coefficients corresponding to the frequency
closest to the orbital frequency (and possibly its higher
harmonics), if the orbital period is long enough to be between
Tspan/Nharm and Tspan. If the solar wind electron density is
included in the timing model as a free parameter, it can be
covariant with the Fourier coefficients of the DMN corresp-
onding to the frequency closest to 1 yr−1. We recommend
excluding such Fourier coefficients while estimating the
spectral parameters using Equation (26) to avoid bias. Further,
our technique assumes that the Fourier basis given in
Equation (19) is orthogonal. Although this assumption is
exactly true only in the case of uniformly sampled data sets, it
will remain approximately true as long as there are no large
data gaps or discrepancies in data quality over time. How to
handle cases where this assumption breaks down will be
explored in a future work. Finally, there can be large
covariances between WaveX and DMWaveX coefficients of
the same frequency when the observing bandwidth is low or
when only high-frequency observations are available.

A similar utility for estimating the red-noise spectrum is
available in tempo2 via the spectralModel plugin (Coles
et al. 2011). In terms of usage, it differs from our method in the
following ways: (a) spectralModel only performs the
spectral characterization of the ARN, whereas our method also
handles the DMN; (b) in spectralModel, the optimal
spectral index is estimated by manual iteration, whereas our
method estimates it automatically; (c) spectralModel uses
a model that is a power law at high frequencies but saturates to
a constant at low frequencies, whereas our method uses a
simple power-law model; and (d) spectralModel does not
provide uncertainties on the estimated spectral parameters.

5. Model Comparison

An important problem in creating and refining a timing
model is determining what configuration of model components
produces the optimal fit to the data. In a Bayesian setting, this
comparison is accomplished by computing Bayes factors,
through techniques such as nested sampling (Ashton et al.
2022) and product-space sampling (Hee et al. 2015). Since
PINT follows a frequentist maximum-likelihood approach to
parameter estimation, these techniques are not suitable to be
used within PINT, in addition to being too computationally
expensive to be used during interactive pulsar timing. Hence,

we implemented the AIC in PINT to perform model
comparison. The AIC is defined as

q LAIC 2 2 ln , 27ˆ ( )= -

where q is the total number of free parameters, including the
timing model parameters and the noise model parameters, and
L̂ is the maximum value of the likelihood for the given model.
Given multiple models applied to the same data, the preferred
model is the one that minimizes the AIC (with a minimum
value AICmin). The ith model can be said to be
exp AIC AICimin[ ]- times as probable as the favored model
in minimizing information loss (the quantity AIC AICimin - is
usually referred to as the AIC difference). See, e.g., Burnham
& Anderson (2004) for a detailed description and interpretation
of the AIC. The AIC can be computed in PINT using the
akaike_information_criterion() function available
in the pint.utils module.
The application of the AIC in selecting the applicable noise

components and the estimation of noise parameters is
demonstrated in the next section. Although these examples
only involve noise components, the AIC can be used for other
types of comparisons, e.g., between different binary models.

6. Simulation Studies

In this section, we demonstrate the efficacy of our
maximum-likelihood noise estimation methods by applying
them to simulated data sets and comparing the results with
Bayesian estimates obtained using the ENTERPRISE package
(see Table 3 for the prior distributions used in the Bayesian
analyses). In what follows, we investigate five cases: (a) white-
noise only; (b) white noise + ECORR; (c) ARN only; (d)
DMN only; and (e) ARN + DMN.
The simulations are performed using the pint.simula-

tion module of PINT (see Section 8.3). Each simulation
corresponds to a fictitious isolated pulsar with a spin frequency
of 100 Hz and a spin frequency derivative of −10−15 Hz2,
located at R.A. 05h00m00s and decl. 15°00′00″, with a DM of
15 pc cm−3. The solar system delays are estimated using the
DE440 solar system ephemeris (Park et al. 2021). Each
simulation contains 2000 narrowband TOAs taken at 250
equally spaced epochs spanning an MJD range of
53000–57000 taken at the Green Bank Telescope (GBT). Each
epoch contains TOAs from eight equally spaced frequency sub-
bands in the 500–1500MHz range. The unscaled TOA

Table 3
Prior Distributions used for the Bayesian Noise Analysis using ENTERPRISE

in Sections 6 and 7

Noise Parameter Units Prior Distribution

EFAC Uniform[0.5, 2.0]
EQUAD μs Uniform[0.01, 100]
ECORR μs Uniform[0.01, 100]
TNREDAMP Uniform[−20, −11]
TNREDGAM Uniform[0, 7]
TNDMAMP Uniform[−20, −11]
TNDMGAM Uniform[0, 7]

Note. Note that EFAC, EQUAD, and ECORR are expressed in linear scale,
whereas TNREDAMP and TNDMAMP are expressed in log scale in this table.
The parameter names used here correspond to how they are represented in
“par” files.
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uncertainties (σi) are drawn uniformly from the interval
0.5–2.0 μs. Table 4 lists the noise parameters injected into
each simulation.

These simulations are intentionally kept simplistic, so that
the demonstrations focus on one aspect at a time and remain
clear. Please see Section 7 for an application of our method on
a real data set.

6.1. Simulation (a): White-noise Only, EFAC and EQUAD

In this simulation, we modify the TOA uncertainties by an
EFAC and an EQUAD (see Table 4). We fit the generated
TOAs for both timing and noise parameters, starting from an
initial model with EFAC = 1 and EQUAD = 10−3 μs (a small
positive value close to 0). To determine which noise parameters
are necessary, we explore four versions of this fit, where: (a)
the parameters are frozen at EFAC = 1 and EQUAD = 0; (b)
EFAC is allowed to vary but EQUAD is frozen at 0; (c)
EQUAD is allowed to vary but EFAC is frozen at 1; and (d)
both EFAC and EQUAD are allowed to vary. The AIC
differences for these configurations are listed in Table 5.

Clearly, both the EFAC and the EQUAD are required to
model the white noise in this data set. The comparison of the
measured EFAC and EQUAD values with the injected values is
shown in Figure 1(b). Figure 1(b) also shows the posterior
distribution obtained from a Bayesian analysis performed using
ENTERPRISE and PTMCMCSampler (Johnson et al. 2024);
see Table 3 for the prior distributions used. We see that the
maximum-likelihood EFAC and EQUAD estimates are con-
sistent with the injected values and the Bayesian estimates
within error bars.

To ensure that the results are robust, we generated 1000
instances of this simulation and estimated the maximum-
likelihood noise parameters for each instance. These measure-
ments, along with the injected values, are shown in Figure 1(c).

Comparing the measured EFAC and EQUAD values with their
injected values using Student’s t-test, we find no evidence that
the estimates are biased (the p-values are around 0.8 for EFAC
and 0.9 for EQUAD). The covariance between EFAC and
EQUAD seen in the Bayesian posterior distribution in
Figure 1(b) is also seen in Figure 1(c).

6.2. Simulation (b): EFAC and ECORR

In this simulation, we modify the TOA uncertainties by an
EFAC and include an ECORR noise component. Similar to the
white-noise-only case, we fit the generated TOAs for both
timing and noise parameters, starting from an initial model with
EFAC = 1 and ECORR = 10−3. We explore four versions of
this fit, where each noise parameter is allowed to be free or
frozen. The AIC differences for these configurations are listed
in Table 6.
Clearly, both the EFAC and the ECORR are required to

model the noise in this data set. The comparison of the
measured EFAC and ECORR values with the injected values is
shown in Figure 2(b), along with the posterior distribution
obtained from a Bayesian ENTERPRISE analysis; see Table 3
for the prior distributions used. We see that the maximum-
likelihood estimates are consistent with the Bayesian estimates
within error bars, whereas both estimates are offset from the
injected values.
To check the robustness of our method, we ran 1000

instances of this simulation and estimated the parameters for
each. The results of this exercise are shown in Figure 2(c).
Comparing the measured values of the EFAC and ECORR with
their injected values using Student’s t-test, we find that there is
no evidence for bias in the EFAC estimations, whereas the
ECORRs are underestimated by around 0.2σ (the p-values are
around 0.8 and 3× 10−11, respectively). The parameter
estimates in Figure 2(b), while more than 1σ away from the
injected value, are still within the distribution seen in
Figure 2(c), implying that the apparent offset can be attributed
to random chance.

Table 4
Noise Parameters Injected into Various Simulations

Simulation # Noise Parameter Units Injected Value

(a) EFAC[tel gbt] 1.3
EQUAD[tel gbt] μs 0.9

(b) EFAC[tel gbt] 1.3
ECORR[tel gbt] μs 0.9

(c) TNREDAMP −13
TNREDGAM 3.5
TNREDC 30

(d) TNDMAMP −13.5
TNDMGAM 4.0
TNDMC 30

(e) TNREDAMP −13
TNREDGAM 3.5
TNREDC 30
TNDMAMP −13.5
TNDMGAM 4.0
TNDMC 30

Note. The parameter names used here correspond to how they are represented
in “par” files. TNREDAMP, TNREDGAM, and TNREDC represent the GP
log-amplitude, spectral index, and number of harmonics of the ARN.
TNDMAMP, TNDMGAM, and TNDMC represent the GP log-amplitude,
spectral index, and number of harmonics of the DMN.

Table 5
AIC Differences for Different Noise Model Configurations for Simulation (a)

with EFAC and EQUAD (White-noise Only)

Configuration AIC Difference

Free EFAC, Free EQUAD 0
Free EFAC, EQUAD = 0 44
EFAC = 1, Free EQUAD 198
EFAC = 1, EQUAD = 0 5191

Note. See Section 6.1 for more details.

Table 6
AIC Differences for Different Noise Model Configurations for Simulation (b)

with EFAC and ECORR

Configuration AIC Difference

Free EFAC, Free ECORR 0
Free EFAC, ECORR = 0 228
EFAC = 1, Free ECORR 331
EFAC = 1, ECORR = 0 1238

Note. See Section 6.2 for more details.
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6.3. Simulation (c): ARN Only

In this simulation, we inject a realization of the ARN
component with a power-law spectrum, modeled as a Fourier
GP (implemented in PINT as the PLRedNoise model), into
the TOAs. We model this noise using the WaveX model, where
the component frequencies are taken to be the harmonics of a
fundamental frequency Tspan

1- , where Tspan is the total observa-
tion span. To determine the optimal number of harmonics
needed to model the noise, we fit the simulated TOAs using
different numbers of harmonics and compute the AIC value
corresponding to each case. These AIC values are plotted in
Figure 3(a), and the optimum number of harmonics turns out to

be 17 (the injected value is 30; see Table 4). The maximum-
likelihood estimates for the Fourier coefficients aiˆ and bî are
plotted in the top panel of Figure 3(c), along with the power
spectrum in the bottom panel. In Figure 3(c), we see an outlier
in the frequency bin containing 1 yr−1. This can be attributed to
the covariance of these Fourier coefficients with the astrometric
parameters, as discussed in Section 4.3. We fit a power law to
the estimated Fourier coefficients, as described in Section 4.3,
estimating the power-law amplitude and the spectral index
while ignoring the 1 yr−1 bin. The best-fit power-law model is
also shown in the bottom panel of Figure 3(c), along with its
Bayesian counterpart obtained using ENTERPRISE, as well as

Figure 1. Timing residuals (panel (a)) and parameter estimation results (panel (b)) for the simulation (a) with EFAC + EQUAD (see Section 6.1). In panel (b), the blue
lines show the injected values, the red point with error bars shows the maximum-likelihood estimate obtained using PINT, and the corner plot (black) shows the
posterior distribution obtained from the ENTERPRISE analysis. Panel (c) shows the results of 500 repetitions of this simulation; the red points with error bars show
the maximum-likelihood estimates for each realization, the blue lines indicate the injected values, and the black contours indicate the distribution of the maximum-
likelihood values.
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the injected power-law spectrum for comparison. Further
comparisons of these spectral parameter estimates are shown in
Figure 3(d), where the posterior distribution obtained from the
ENTERPRISE analysis and the injected values are also plotted.

To assess the robustness of our method, we created 1000
instances of this simulation and estimated the parameters for
each. The distribution of the measured values is plotted in
Figure 3(e). We see that the mean of this distribution is
consistent with the injected value (the Student t-test p-values
are around 0.6 and 0.7 for the log-amplitude and the spectral
index, respectively). However, the distribution has a long tail
toward lower amplitudes and steeper spectral indices. Based on
Figure 3(e), we see that the offset between the injected and
measured values seen in Figure 3(d) is consistent with it being
due to random chance.

6.4. Simulation (d): DMN Only

In this simulation, we inject a realization of the DMN with a
power-law spectrum, modeled as a Fourier GP (implemented in
PINT as the PLDMNoise model), into the TOAs. We model
this noise using the DMWaveX model, where the component
frequencies are taken to be harmonics of Tspan

1- . We begin by
determining the optimal number of harmonics using the AIC,
and the AIC differences for different numbers of harmonics are
plotted in Figure 4(a). The optimal number of harmonics turns
out to be 22 (the injected value is 30). Figure 4(c) shows the
estimated Fourier coefficients in the top panel and the estimated
spectral powers, the injected power-law spectrum, and the
estimated power-law spectra (both using PINT and ENTER-
PRISE) in the bottom panel. Figure 4(d) shows the corresp-
onding power-law amplitude and spectral index estimates. We

Figure 2. The timing residuals (panel (a)) and the parameter estimation results (panel (b)) for simulation (b) with EFAC and ECORR (see Section 6.2). Panel (c)
shows the results of 500 repetitions of this simulation. The plotting conventions are identical to Figure 1.
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Figure 3. Panel (a) shows the AIC AIC 1min- + values for the different numbers of harmonics for simulation (c) with only the ARN (see Section 6.3). The red
vertical line indicates the optimum number of harmonics. The injected value is indicated by the black dashed vertical line. The Y-axis is plotted in a log scale for better
visibility (the +1 term is added to AIC AICmin- to enable this). Panel (b) shows the post-fit timing residuals. Panel (c) shows the parameter estimation results. The
top sub-panel shows the maximum-likelihood estimates of the Fourier sine (blue points) and cosine (red points) coefficients ajˆ and bj

ˆ appearing in Equation (24). The
bottom panel shows the corresponding spectral powers (black points) and the power-law fit thereof (orange line) obtained by maximizing the likelihood function given
in Equation (26). For comparison, the bottom panel also shows the injected power-law spectrum (blue line) and the power-law spectrum estimated using
ENTERPRISE in a Bayesian way (green line). The black dotted line corresponds to 1 yr−1. Panel (d) shows the comparison of the power-law spectral parameters
obtained using PINT and ENTERPRISE. The plotting conventions here are identical to Figure 1. Panel (e) shows the results of 1000 repetitions of this simulation,
with identical plotting conventions as Figure 1(c).
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Figure 4. Panel (a) shows the AIC AIC 1min- + values for the different numbers of harmonics for simulation (d) with only the DMN (see Section 6.4). The plotting
conventions are identical to Figure 3(a). Panel (b) shows the post-fit timing residuals. Panel (c) shows the parameter estimation results. The plotting conventions are
identical to Figure 3(c). The error bars in the top sub-panel are too small to be visible. Panel (d) shows the comparison of the power-law spectral parameters obtained
using PINT and ENTERPRISE. The plotting conventions here are identical to Figure 1. Panel (e) shows the results of 1000 repetitions of this simulation, with
identical plotting conventions as Figure 1(c).
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see that the power spectra estimated using PINT and
enterprise are consistent with each other as well as with
the injected values within the uncertainty levels.

We repeated this simulation 1000 times and measured the
noise parameters in each case, and the results of this exercise
are plotted in Figure 4(e). The means of the measured log-
amplitude and spectral index are both offset from the injected
values by around 0.1σ (Student’s t-test p-values are approxi-
mately 4× 10−6 and 2× 10−4, respectively).

6.5. Simulation (e): ARN and DMN

In this simulation, we inject realizations of the DMN and the
ARN with power-law spectra, modeled as Fourier GPs, into the
TOAs. We model this noise using the DMWaveX and WaveX
models, where the component frequencies are taken to be
harmonics of Tspan

1- . We begin by determining the optimal
number of harmonics using the AIC, and the AIC differences
for different numbers of harmonics of the DMN and the ARN
are plotted in Figure 5(a) using a color map. The optimal
numbers of harmonics turn out to be 5 for the DMN and 7 for
the ARN (the injected values are 30 and 30, respectively).
Figure 4(c) shows the estimated Fourier coefficients in the top
panels, and the estimated spectral powers, the injected power-
law spectra, and the estimated power-law spectra (both using
PINT and ENTERPRISE) in the bottom panels, for both the
DMN (right panels) and the ARN (left panels). Figure 4(d)
shows the corresponding estimates for the power-law ampli-
tudes and the spectral indices. We see that the power spectra
estimated using PINT and enterprise are consistent with
each other for both the DMN and ARN. However, the ARN
spectral parameter estimates are offset from their injected
values, although the DMN parameter estimates show good
agreement with the injected values.

We repeated this simulation 1000 times and measured the
DMN and ARN spectral parameters for each instance. The
results of this exercise are plotted in Figure 5(e). We find that
the mode of the measured DMN parameter values is close to
the injected values (the spectral index measurements are offset
by approximately 0.1σ from the injected value, whereas there is
no clear evidence that the log-amplitude measurements are
offset; the Student t-test p-values are approximately 4× 10−3

and 0.2, respectively). However, the measured ARN parameter
values are more visibly offset from the injected values, namely
the spectral index is offset by 0.4σ (p∼ 10−36) and the log-
amplitude is offset by 0.7σ (p∼ 10−83). Further, we find
covariance between the measured amplitude and spectral index
for the ARN and DMN in Figure 5(e), similar to what is seen in
the posterior distribution in Figure 5(d).

These results indicate that the correlated noise spectral
parameter estimates can be biased when both the ARN and
DMN are present in a data set.

7. Application to PSR B1855+09

We now proceed to demonstrate and test our methods on the
NANOGrav 9 yr (NG9) narrowband data set of PSR B1855
+09. This data set contains 4005 TOAs taken using the
Arecibo telescope during 2004–2013 (Arzoumanian et al.
2015). It was chosen because it is distributed as an example
data set together with the PINT source code.

We used the “par” file from the NG9 data set as a starting
point for our analysis, after removing the DMX parameters

representing piecewise-constant DM variations. We begin our
analysis by fitting the timing model parameters, including:

(a) Astrometric parameters (sky location, proper motion, and
parallax);

(b) DM and its time derivatives (up to the second derivative);
(c) Pulsar binary parameters for the BinaryDD model

(binary period and period derivative, projected semimajor
axis of the pulsar orbit, eccentricity, argument of
periapsis, epoch of periapsis passage, companion mass,
and orbital sine inclination);

(d) Frequency-dependent profile evolution parameters (up to
third order);

(e) Pulsar rotational frequency and its derivative;
(f) Phase jump between different receivers (430 and

L-wide); and
(g) Overall phase offset.

Thereafter, we included the DMWaveX and WaveX models
with 40 harmonics each to model the DMN and ARN, along
with EFAC, EQUAD, and ECORR parameters for each
observing system (receiver–backend combinations, denoted as
430_ASP, 430_PUPPI, L-wide_ASP, and L-wide_PUPPI). We
have used Tspan

1- as the fundamental frequency of the DMWaveX
and WaveX components.
We then used the AIC to determine which noise parameters

are necessary for the given data set, as demonstrated in
Sections 6.1 and 6.2, and it turned out that EQUAD parameters
were not needed for 430_ASP and 430_PUPPI. This was
verified using the Savage–Dickey ratio (Dickey 1971) for these
parameters, obtained from a Bayesian analysis performed using
ENTERPRISE and PTMCMCSampler. Similarly, the optimal
number of DMWaveX harmonics was determined to be 10 using
the AIC, similar to Section 6.4, and this is shown in
Figure 6(a). The optimal number of WaveX harmonics turned
out to be only 1, with an AIC difference of ∼16 against a
model without WaveX but including DMWaveX and time-
uncorrelated noise parameters, as mentioned above. The sine
amplitude ai associated with this single harmonic turned out to
be consistent with zero, and we found high covariances
between these parameters and the rotational frequency and
frequency derivative. Hence, we excluded WaveX from our
subsequent analysis.
Finally, we performed a maximum-likelihood fit using the

optimal model. The spectral parameters of the DMN were
estimated following Section 4.3. The post-fit timing residuals
are plotted in Figure 6(b), and the maximum-likelihood DMN
parameter estimates are plotted in Figure 6(c). Figure 6(d)
shows a comparison between the maximum-likelihood noise
parameter estimates and their Bayesian counterparts (see
Table 3 for the prior distributions used) using a corner plot.
These plots show that the frequentist and Bayesian estimates
agree with each other within their respective uncertainties.

8. New Features in PINT

In this section, we briefly summarize the new features that
have been implemented in PINT since the publication of Luo
et al. (2021). The new timing model components and new
fitting methods were discussed in Sections 2.2 and 3–4,
respectively, and are not included here.
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Figure 5. Panel (a) shows the AIC differences in log scale as a function of the number of harmonics of the ARN and DMN. Panel (b) shows the post-fit timing
residuals. Panel (c) shows the comparison between the injected and measured power-law spectra. Panel (d) shows the comparison between the injected and measured
noise parameters. Panel (e) shows the results of 1000 repetitions of this simulation. The plotting conventions are identical to Figure 3.
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Figure 6. Parameter estimation results for the NG9 data set of PSR B1855+09 (see Section 7). Panel (a) shows the AIC AIC 1min- + values for the different
numbers of the DMN harmonics, with identical plotting conventions to Figure 3(a). Panel (b) shows the post-fit timing residuals. The different colors in this panel
represent different receiver–backend combinations. Panel (c) shows the parameter estimation results for the DMN, with identical plotting conventions to Figure 3(c).
Panel (d) shows the comparison of the noise parameters obtained using PINT and ENTERPRISE, with identical plotting conventions as Figure 1. Note that the
EQUAD and ECORR parameters have units of microseconds.
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8.1. Timing Model Comparison and Conversion Utilities

Different timing models can be compared with each other
using the TimingModel.compare() function. This func-
tionality is also available via the compare_parfiles
command-line utility.

The convert_binary() function in the pint.binar-
yconvert module allows the user to convert between
different binary models (see Table 1). This functionality can
also be accessed via the convert_parfile command-line
utility. convert_parfile also allows the user to convert
between different “par” file formats.

PINT only supports the TDB timescale internally, unlike the
tempo2 package, which supports both TDB and TCB
timescales (Hobbs et al. 2006). However, PINT can now read
“par” files in the TCB timescale and convert them to TDB
automatically. This conversion can also be performed using the
tcb2tdb command-line utility.

8.2. Global Repository for Clock Files

Since the TOAs are usually measured against local
observatory clocks, a series of clock corrections must be
applied to bring them to a particular realization of the
Terrestrial Time timescale and then to the TDB timescale
(see Luo et al. 2021 for details). These clock corrections are
usually distributed as “clock files,” containing a series of
measured differences between the local observatory clock and
an international time standard (usually UTC(GPS)) over time.
PINT now accesses these files from a central repository27

maintained by the International Pulsar Timing Array con-
sortium (Verbiest et al. 2016). This allows PINT to retain
access to the most up-to-date clock corrections without the user
having to manually update the clock files.

8.3. TOA Simulations

PINTʼs simulation functionality is implemented in the
pint.simulation module, and can be invoked using the
zima command-line utility. This module now provides a wide
range of functionality on top of simple TOA generation,
including the simulation of wideband TOAs, the simulation of
white noise incorporating EFACs and EQUADs, and the
simulation of different types of single-pulsar correlated noise,
including ECORR, ARN, and DMN. Note that this module can
only simulate single-pulsar signals, and it cannot simulate
signals that are correlated across pulsars, such as the
gravitational-wave background.

8.4. Bayesian Interface

The BayesianTiming class in the pint.bayesian
module can be used to perform Bayesian parameter estimation
and model selection for pulsar timing data sets. This interface
can be used to evaluate the likelihood function, prior
distribution, and prior transform function, and is compatible
with both MCMC and nested samplers. This interface supports
Bayesian inference on both narrowband and wideband data sets
and allows the user to estimate the timing model and white-
noise parameters. However, estimating correlated noise para-
meters (in their GP representation) is not yet supported.

8.5. χ2 Grids

In some cases, rather than determine the best-fit values of all
parameters, it is desirable to fit for all but a few parameters
while stepping over a grid of a subset of the parameters. This is
commonly done with post-Keplerian binary parameters
(Damour & Deruelle 1986) that can constrain the pulsar and
companion masses (e.g., Cromartie et al. 2020; Fonseca et al.
2021), since these parameters are often only marginally
significant and give overlapping constraints on the masses.
To facilitate this, we have implemented within the pint.

gridutils module several methods. These enable the χ2 to
be computed over grids of intrinsic parameters (such as Shapiro
delay companion mass and range) or derived parameters
created from combinations of intrinsic parameters (such as
characteristic age). The individual model fits are done with the
help of the concurrent.futures module (de Groot 2020),
which enables the asynchronous launching and tracking of
multiple jobs and has extensions like clusterfutures28

that enable deployment on high-performance computing
clusters with batch scheduling using slurm (Yoo et al. 2003).

8.6. Publication Output

The publish() function in the pint.output.pub-
lish module can be used to generate a LaTEX table summary
of a data set comprising a timing model and a set of TOAs. The
same functionality is also available through the pintpub-
lish command-line utility.

9. Summary and Discussion

In this paper, we describe the new developments in the
PINT pulsar timing package, with a focus on frequentist
parameter estimation methods. This includes the newly
implemented timing model components (Table 1), fitting
algorithms (Table 2), and features for performing specific
tasks, such as simulation and Bayesian inference, etc.
(Section 8). In particular, we described the Downhill fitter
algorithm, an improved version of the linear fitting algorithm
commonly used in pulsar timing that is robust against
significant nonlinearity in the likelihood function as well as
regions of the parameter space where the likelihood function is
ill-defined.
We presented a new framework within the PINT pulsar

timing package to perform frequentist pulsar timing noise
characterization, involving the maximum-likelihood estimation
of both uncorrelated and correlated noise parameters together
with timing model parameters, as well as a model comparison
functionality using the AIC. We demonstrated our parameter
estimation and model comparison methods using simulated
data sets as well as the NG9 data set of PSR B1855+09. The
results obtained from these exercises show good agreement
between our methods and conventional Bayesian methods,
indicating the reliability of our methods. However, we find
small parameter estimation biases (within 1σ, but still
statistically significant) in our simulations. In future work, we
plan to explore these biases and the various covariances that
may arise due to data gaps and low observing bandwidth, etc.
Additionally, we also present other new features of PINT,

such as new timing model components, timing model
comparison and conversion utilities, a global repository for

27 https://github.com/ipta/pulsar-clock-corrections 28 https://github.com/sampsyo/clusterfutures
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clock files, TOA simulation, an interface for Bayesian analysis,
χ2 grids, and a publication output utility.

The new noise characterization framework should improve
the task of pulsar timing in two ways. In pulsar timing projects
where Bayesian analysis is deemed not worth the cost, noise
characterization is either not done at all or is only done in an
ad hoc manner. In such projects, our new framework can
provide a convenient and inexpensive alternative for noise
characterization, ensuring more robust timing solutions. In
high-precision applications where Bayesian noise characteriza-
tion is necessary, our framework can help accelerate the data
preparation/combination stage, by integrating noise character-
ization into interactive pulsar timing workflows and pulsar
timing pipelines without needing a Bayesian analysis step. The
quick parameter estimates and model comparisons provided by
our framework can quicken the iterative refinement of noise
models. Further, the frequentist noise parameter estimates can
act as independent cross-checks for Bayesian results and as
starting points for MCMC samplers to help them converge
faster.
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Appendix
System and Frequency-dependent Delays

The phenomenological model used to account for frequency
profile evolution is given by
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where p is an index and pF is known as a frequency-dependent
(FD) parameter. In large data sets containing TOAs obtained
using many different observing systems, it is often insufficient
to model the frequency-dependent profile evolution using
global FD parameters that affect all TOAs. The need for
system-dependent FD parameters can arise due to: (a) the data
reduction procedures used for different observing systems
being different; and (b) different template profiles being used to
compute TOAs for different systems, etc. The system-
dependent FD delay is given by
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where pqF is known as a system-dependent FD parameter (also
known as an FD jump), and q is a TOA selection mask. An
alternative model for ΔFDJump, originally implemented in
tempo2, is also available:
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The two expressions above can be toggled using a Boolean
parameter FDJUMPLOG.
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