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Abstract

There remain several unanswered questions about gravity in our universe: Does gen-
eral relativity accurately describe gravity? Do supermassive black holes ever merge?
What is the dark matter? Can it be explained by an alternative theory of gravity?
This dissertation develops several astrophysical tests that serve to further our under-
standing of gravity, black holes, and dark matter. The first section of the thesis de-
velops two tests using gravitational waves: 1) using a recent gravitational wave event,
GW170817, to place limits on extra spatial dimensions; 2) using a newly discovered
supermassive black hole binary to place limits on the gravitational wave background
and its implications for the ‘final parsec problem’. The second half of this thesis de-
velops three tests of alternative theories for the dark matter: 1) self-interacting dark
matter using galaxy warps; 2) a specific modified gravity theory, Verlinde’s Emergent
Gravity theory, using isolated dwarf galaxy kinematics; 3) general modified gravity
theories using the cosmic microwave background polarization spectrum and the low-
redshift galaxy correlation function. As we enter the next era of galaxy survey data
and gravitational wave observations, these tests and others like them will hopefully

bring us closer to answering these questions about gravity and our universe.
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Chapter 1

Introduction

Over the last several centuries, we have gathered an incredible amount of data about
our universe. From the data that we collect, we create theories for how the universe
works. Of course, as soon as we create a new model for our universe, we soon find
evidence that this may not be the full picture. For example, it was believed that New-
tonian gravity could perfectly explain the planets’ movements around the Sun. Then,
Uranus’ orbit was found to have certain irregularities that could not be accounted
for by applying Newtonian gravity to the 7 known planets of the solar system at
the time. This led astronomers to posit that there must be another planet that we
had not yet identified (Le Verrier} [1846bla) — this turned out to be Neptune (Galle,
1846; Adams|, |1846)). Mercury also has an irregular orbit that was noticed not long
after (Le Verrier] 1859)). Again, astronomers believed it was an extra planet, named
Vulcan, that must be perturbing its orbit (Le Verrier, [1859); however, this was ac-
tual evidence for a departure from Newtonian gravity. Einstein’s theory of general
relativity (GR) beautifully predicts the correct deviation of Mercury’s orbit from the
Newtonian prediction (Misner et al., 2017; |Nobili & Will, [1986)).

The moral of these stories is two-fold: 1) data can illuminate new, totally unex-

pected, departures from our current models and we should continue to look for tools



that can help us find these issues; 2) our first theories for how to explain phenomena
may not always be correct — we must continue to test theories and develop new ones
that may explain those phenomena that are not yet fully understood.

In this thesis, I will touch on both of these themes. The first half of my thesis
is dedicated to gravitational waves, disturbances in spacetime caused by events like
black hole mergers. These distortions of spacetime are a new way of seeing the
universe that will hopefully lead to new, unexpected discoveries. I will discuss how
we can use gravitational waves to learn more about the structure of spacetime and the
dynamics of black holes. The second half of my dissertation focuses on dark matter.
This substance is a signal that our theories for the universe may not be correct, and
it is one for which we still do not have an adequate explanation. I will discuss how

we have tested a few different theories for dark matter.

1.1 Gravitational Waves as a Tool for Testing New
Theories

Until recently, all of our observations of the universe were made using electromagnetic
signals (i.e. light). On September 14th, 2015, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) observed gravitational waves for the first time (Abbott
et al., 2016). Gravitational waves are distortions of spacetime that are predicted
by GR (Einstein, 1916, [1918)). When extreme events, like the collision of two black
holes, occur they release energy into spacetime itself, which leads to a propagating
wave of distortions in spacetime. LIGO measures these distortions by monitoring the
length of two ‘arms’ very precisely. Gravitational waves lengthen distances in one
direction while shortening distances in the perpendicular direction. These waves are

now another way we can observe the universe.



1.1.1 GW170817

On August 17th, 2017, a very special gravitational wave event occurred: two neutron
stars merged with each other and produced both gravitational waves and light (Ab-
bott et al.,[2017¢,b)). This event, known as GW170817, allowed us to directly compare
how gravitational waves and electromagnetic waves move through spacetime. In par-
ticular, we can use this event to place constraints on the damping of gravitational
waves, which is predicted by some theories with extra spatial dimensions (Deffayet
& Menou, [2007). These theories predict that gravitational waves should decrease in
amplitude as they travel through spacetime; however, the same should not happen
to photons. In GR, this does not occur, and so the distance to a gravitational wave
event is related to the amplitude of the signal by{'| oc 1/distance (Misner et al., 2017).
This formula does not account for any damping that may occur if gravity behaves
differently than GR. Thus, if we use this formula and there is damping, we would pre-
dict the wrong distance with the gravitational waves — we would think it was further
away than the true distance.

Without other observations, we would not be able to measure the true distance and
we would not know if gravitational waves are damped. But, we also received photons
from GW170817, which are not biased by the damping that affects gravitational waves
in these theories. Thus, given a few other reasonable assumptions about our universe,
we can exactly measure the distance to GW170817 using just the photons. If the
gravitational wave distance is very different from this electromagnetic distance, then
that would be evidence for damping of gravitational waves. In Chapter [2] I discuss

how we use GW170817 to place constraints on these extra-dimensional theories.

INote that this is the same as the electromagnetic relation; however, we normally see the equation

for light in terms of fluz instead of amplitude. The flux is related to the distance as o< 1 /distancez.



1.1.2 Supermassive Black Holes and Nanohertz Gravita-

tional Waves

The gravitational waves that LIGO measures are created by neutron stars and stellar
mass black holes; but, these are not the only sources of gravitational waves in the uni-
verse. We know that most massive galaxies host supermassive black holes (SMBHs),
black holes that are 1 million times the mass of the sun or greater, at their centers
(e.g., [Kauffmann et al. [2003)). As galaxies evolve, they tend to merge with other
galaxies to form even larger galaxies (Volonteri et al., 2003} [Springel et al. 2005).
We expect their supermassive black holes to also merge (Begelman et all [1980). As
these SMBHs get very close together (< 0.1 pc) they emit gravitational waves at
very low frequencies — more than a billion times lower than the frequencies LIGO
measures. These can be measured by Pulsar Timing Arrays (PTAs), which monitor
pulsars. These are rapidly spinning neutron stars that are incredibly accurate clocks.
If a gravitational wave were to move through our galaxy, then we would see these
clocks ‘glitch’ in a coherent pattern. Thus, by monitoring these pulsars, we hope to
someday detect these low-frequency gravitational waves.

We think that our first detection of these nanoherz gravitational waves will not be
of a single gravitational wave, but rather the collection of gravitational waves emitted
by all SMBH pairs that are inspiralling towards each other (cf. [Taylor et al., 2016).
This creates what we call the gravitational wave background, which we expect to have
a very specific signal (Hellings & Downs, (1983} |Phinney, [2001). The PTAs around
the world have been looking for this signal and have not yet found it (Arzoumanian
et al., 2018).

In fact, it is unknown if these SMBH binaries can merge. At large separations,
stars can easily help take away angular momentum from the SMBH binary orbit;
however, once the binary is within 1 pc, it is unclear how they shed the extra energy

(Begelman et al., [1980; Yu & Tremaine, [2003). This is referred to as the ‘final parsec
4



problem’. There are some suggestions for how this barrier can be overcome — either
with gas or other orbital mechanics (i.e. three body interactions with additional
SMBHs that enter the system through later mergers |Bonetti et al.| 2018} |Ryu et al.
2018). Given that we do see evidence for extreme SMBHs in nearby galaxies, it is
likely that the final parsec problem can be overcome in some way. Gravitational
waves detected with PTAs will tell us definitively whether the final parsec problem
is solved.

Meanwhile, astronomers have been looking for systems that might be emitting
these gravitational waves — close-separation SMBHs (Rodriguez et al., [2006; Liu et al.|
2013; Koss et al., [2018; Woo et al.|2014)). So far, none have been found that contribute
directly to the GWB. In Chapter [3| we discuss our discovery of an SMBH binary that
points to a population of these binaries that would contribute to the GWB. This
then lets us place bounds on the strength of this background and when we expect
to measure it, given that mergers do occur. As we find more of these systems and
finally detect the GWB, this will allow us to either rule out or confirm the final parsec

problem.

1.2 Testing Dark Matter Theories

It is exciting to have gravitational waves as a new medium with which to search for
evidence of new physics. However, there are still mysteries we have yet to explain from
our observations with electromagnetic waves. Most of the matter in our universe is
made of a substance that we cannot yet properly explain: dark matter. This was first
noticed by observations that showed irregularities, like the irregular orbits of Uranus
and Mercury. The effects of dark matter are apparent by looking at the velocities
of galaxies in galaxy clusters (Zwicky, |1933)) and stars within galaxies (Rubin et al.

1980). In both cases, the objects move much too fast given the number of stars and



amount of gas we measure in these systems. This shows that there must be extra
matter there. The ‘dark’ part of the name refers to how we cannot see it with light

— it does not interact electromagnetically.

1.2.1 Cold Dark Matter — its successes and failures

The preferred theory for dark matter is cold dark matter (CDM), which is a particle
that ‘decoupledﬂ from all other matter at a very early stage in the Universe’s history
and does not interact with itself or any other matter. This seems to fit the data at
large scales quite well (e.g., Spergel et al., [2003). However, we have yet to find any
particles that fit this description (or any new particles outside of the Standard Model;
e.g., Akerib et al., 2017} |Aprile et al., 2018]).

There are also hints of some issues with CDM at small scales (see Bullock &
Boylan-Kolchin|, 2017, for a recent review). The two classical problems here are the
‘missing satellites’ problem and the ‘cusp versus core’ problem. CDM predicts a large
number of satellite galaxies around the Milky Way; however, we have so far only found
a small portion of them. In addition, the satellites we seem to be missing are the
largest ones, which we would expect to see most easilyE]. Although ,there is evidence
that there may be no problem here at all (Kim et al., 2018). The other possible
problem for CDM is the cusp versus core problem — CDM predicts ‘cuspy’ density
profiles in the central parts of galaxies (Navarro et all (1997, 2010)). Observations of
nearby dwarfs show that the density profiles only rise slowly in the central regions
(e.g., McGaugh et al.,[2001)). However, this flattening of the density profile could also
be due to baryonic feedback — if supernovae or SMBHs are able to push out large

quantities of gas, this may affect the dark matter density profile (Mashchenko et al.|

2Decoupling refers to when a particle falls out of thermal equilibrium from the other particles in
the universe. We expect all particles to be in thermal equilibrium at the ‘beginning’. As the universe
expands and cools down, particles will decouple once the temperature of the universe is less than
the interaction energy between the particles and the rest of the particles in the universe.

3This is often referred to as a separate, but related problem: ‘too big to fail’ (Boylan-Kolchin
et al., 2011)).



2008)). Regardless of the existence of these small scale issues, we have yet to find a
suitable dark matter particle and we should be open to testing other types of particles

or even non-particle theories that could explain dark matter.

1.2.2 Another Particle Explanation for Dark Matter

In the second half of this thesis, I will focus on tests of three types of dark matter
theories. The first is a common particle theory — self-interacting dark matter (SIDM).
In this theory, the dark matter has self-interactions — in other words, it can scatter
off of itself. SIDM was first proposed as a way of solving the small-scale problems
with CDM mentioned above (Spergel & Steinhardt, 2000). By allowing for interac-
tions amongst dark matter particles, it allows for the evaporation of halos and the
thermalization (and subsequent coring) of halo centers. There have been many limits
placed on self-interacting dark matter throughout the intervening decades (Gnedin &
Ostriker, 2001; Markevitch et al| 2004; Randall et al., 2008; Miralda-Escudé), 2002]).
However, none have definitively ruled out this property of dark matter as an astro-
physically impactful DM property. In Chapter |4, I discuss how we use galaxy shapes,
specifically the warping of stellar disks, to place limits on the strength of DM self-
interactions. We discuss how future data may let us finally rule out this property as

astrophysically interesting.

1.2.3 Modified Gravity as an Explanation of Dark Matter

Another way of possibly explaining dark matter is by modifying GR. There is a
long history of these types of theories, starting from Modified Newtonian Dynamics
(MOND; Milgrom, 1983). These models have the attractive possibility that we do not
need to account for another particle in our theories — gravity can be fully explained
by the visible matter, as long as we have the correct theory for gravity. For the most

part, these theories have fallen out of fashion because they fail to predict cosmological
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signatures well (e.g., [Dodelson, 2011). In addition, the relativistic counterparts, such
as TeVeS (Bekenstein, 2004), have recently been ruled out by GW170817, since they
rely on the speed of gravitational waves differing from the speed of light (Ezquiaga
& Zumalacéarregui, [2017; Baker et al., 2017). Of course, until we have a definitive
detection of a dark matter particle or definitive proof that modified gravity could
never explain dark matter, it is worthwhile to consider these theories. The last two
chapters of this thesis focus on modified gravity explanations for dark matter.

Recent years have seen some interesting new theories, such as Verlinde’s Emergent
Gravity (Verlinde, 2017)). Like MOND, Emergent Gravity does not have a cosmology
associated with it. In its current formulation, it specifies a force law that is applicable
only in the nearby universe. In this case, one of the best tests of the theory involves
using the rotation curves of dwarf galaxies, which are galaxies with 30% the stellar
mass or less than the Milky Way. Most massive galaxies seem to have very close to
the same ratio of dark matter to normal (baryonic) matter regardless of their stellar
mass (Faber & Jackson [1976; Tully & Fisher| 1977). However, dwarf galaxies do not
seem to follow this trend. Modified gravity theories must then explain how dwarf
galaxies with the same baryonic mass somehow show different dark matter effects.
Chapter 5| focuses on testing Emergent Gravity with isolated dwarf galaxies.

Many modified gravity theories also have difficulties explaining the growth of
structure in the universe — how structure evolves from the tiny fluctuations we see in
the cosmic microwave background to the galaxies and galaxy clusters we see today.
Dark matter is absolutely pivotal in this process and we have found that CDM explains
this process well (Lifshitz, |1946; |[Peebles & Yul,[1970; Sunyaev & Zeldovich, |1970; Bond
& Efstathiou) [1984). In the early universe, the temperature of the universe is very
high and baryons are coupled to photons — in other words, baryons are constantly
feeling pressure from all of the radiation. CDM does not interact with photons, so

it is able to collapse into self-gravitating halos. The baryons attempt to fall toward



these halos, but the radiation pressure of the photons pushes them out. Likewise, the
photons feel the gravitational force of the CDM through their coupling to the baryons.
This causes sound waves to form in the baryon and photon structures. These sounds
waves, called baryonic acoustic oscillations (BAO), are seen as oscillations in both
the cosmic microwave background and in the positioning of galaxies around us today.
Although on very large scales the universe is homogeneous, we see an overdensity of
galaxies on scales of about 150 Mpc. This exactly matches the predictions of CDM
and is a hallmark of the theory. The penultimate chapter of this thesis, Chapter [6]
focuses on how we can use the BAO signal to describe the necessary form any modified
gravity trying to explain the dark matter must take.

The final chapter, Chapter [7] gives a brief summary of this dissertation, including

the main takeaways from each of the previous chapters.



Chapter 2

GW170817 & the Propagation of

Gravitational Waves

Gravitational wave (GW) events with electromagnetic (EM) counterparts are power-
ful tests of modified gravity theories. Importantly, such joint observations are sensitive
to differences between the propagation of GW and EM waves through spacetime. The
recent detection of the first multi-messenger GW system, GW170817 (Abbott et al.,
2017¢)), allows us to constrain modified gravity in this way for the first time.

From the time delay between the electromagnetic and GW signals, powerful limits
can be placed on the speed of GW propagation (Abbott et al., 2017b). Many papers
have already discussed how this constrains specific modified gravity theories (e.g.,
Lombriser & Taylor, 2016; [Lombriser & Limal, [2017}; Ezquiaga & Zumalacarregui,
2017} [Baker et al., 2017; Creminelli & Vernizzi, 2017; Visinelli et al., 2018; [Sakstein
& Jain, 2017; [Nersisyan et al., 2018]).

The independent distance measures of the GW source and its EM counterpart
can also place constraints on the damping of GWs. Since GWs are standard sirens,
we can directly extract the luminosity distance to the GW source (Schutz, 1986;

Holz & Hughes, 2005; [Dalal et all [2006; Nissanke et al.. 2010, 2013; |(Chen et al.,
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2018a)). In addition, we can make an independent measurement of the distance to
the source by measuring the redshift of the EM counterpart and using our knowledge
of cosmology (in particular, the Hubble constant, since GW170817 is at low redshift)
to convert the observed redshift into a luminosity distance. By comparing these two
distances, we can place limits on the damping of GWs. A number of authors have
discussed the power of gravitational waves sources to place these sorts of constraints
(Nishizawa, 2018; |Arai & Nishizawa, 2018 Belgacem et al., 2018; |Amendola et al.,
2018; Linder, [2018); in what follows we focus on general constraints provided by the
recent observations of GW170817 and its associated EM counterpart.

In this chapter, we constrain GW damping by considering modifications to the
signal’s attenuation with luminosity distance. According to GR, the GW amplitude
decreases inversely with luminosity distance. However, extra-dimensional theories
of gravity with non-compact extra dimensions generally predict a deviation from
this relationship. Comparing the luminosity distance of GW170817 extracted under
the assumption of GR to the EM-measured distance to its host galaxy, NGC 4993,
we find stringent constraints on theories with gravitational leakage. We use these
limits to set bounds on the number of additional non-compact spacetime dimensions
and characterize properties of the modifications, such as the screening scale and the
lifetime of the graviton. Section describes the waveforms that we consider and
gives a qualitative description of our analysis. Section describes our methods.

Section gives our results and explores other applications.

2.1 Gravitational leakage and gravitational waves

In this section, we summarize the effects of gravitational leakage on the GW waveform

and its relation to higher-dimensional theories. We also give a qualitative introduction
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to how GW170817 constrains gravitational leakage. This section relies heavily on the
work of Deffayet & Menou, (2007).
In GR, the strain goes as:
1

h — 2.1
GR X dL’ ( )

where d, is the luminosity distance of the GW source. For a higher-dimensional theory
where there is some leakage of gravity we would expect, due to flux conservation,

damping of the wave in the form of a power-law(Deffayet & Menou, [2007)):

h < — (2.2)

. (2.3)

More generally, we may consider theories that have an associated screening scale,
R.. These theories behave like GR below this scale, but exhibit gravitational leakage

above R.. In such theories the GW strain scales as (Deffayet & Menou, 2007)):

h o ! (2.4)

4\ (D=2 1/n’
a |1+ (%)

where n gives the transition steepness. This waveform reduces to Equation for
dr > R..
Finally, we consider theories in which the graviton has a decay channel. In this

case, the amplitude of the GW would scale as:

_ exp[=di/R)

i : (2.5)
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where R, is the ‘decay-length’ (i.e. the distance a graviton travels during its average
lifetime).

If we assume that, outside of these overall damping factors, the waveforms remain
unchanged from the predicted GR form, then the gravitational leakage would simply
result in a measured dj greater than the true d; for the source (i.e. the GW would
appear to have come from farther away because it would have a smaller amplitude in
the detectors). An event only measured in GWs would not allow us to distinguish the
measured dy, from the true value. However, GW170817 was also detected electromag-
netically; thus, we have an independent measurement of the luminosity distance for
this source. By comparing the measured GW distance and the measured EM distance,
we can constrain the gravitational leakage parameter v (defined in Equation and
therefore place limits on the number of spacetime dimensions, the screening scale, or
the lifetime of the graviton. In this we implicitly assume that the luminosity distance
inferred from EM observations is the true luminosity distance: d¥™ = dy; in practice,
our approach quantifies the difference between the EM and GW distance estimates,
and is insensitive to the true value of dj.

Since the GW170817 standard siren measurement of the Hubble constant is con-
sistent with expectations (Abbott et al., 2017a)), this implies that, for reasonable
assumed values of the Hubble constant, the inferred GW and EM distances are sim-
ilarly consistent. We therefore expect that general relativity provides an excellent
description, and we would not expect strong evidence for gravitational leakage and

extra dimensions. In what follows we quantify this expectation.

2.2 Method

To measure gravitational leakage, we compare the EM luminosity distance to the

source, d¥™, with the GW luminosity distance, d¥", extracted from the waveform
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under the assumption that GR is the correct theory of gravity. To find the EM lumi-
nosity distance to the source, we use Hubble’s law to relate the host galaxy’s “Hubble
velocity”, vy, to its luminosity distance. In the nearby universe, this relationship can
be approximated by:

vy = Hod™. (2.6)

The Hubble velocity is the recessional velocity that the galaxy would have if it was
stationary with respect to the Hubble flow. To find the Hubble velocity of the host
galaxy NGC 4993, we follow |Abbott et al. (2017a) and correct the recessional velocity
of the galaxy group to which NGC 4993 belongs, ESO-508, by its peculiar velocity.
The EM observables are then the measured recessional velocity, v,, of the group of
galaxies to which NGC 4993 belongs, and the measured peculiar velocity, (v,), in
the neighborhood of NGC 4993. We denote the true peculiar velocity by v, so that
the true recessional velocity is the sum of vy and v,. We adopt the conservative
uncertainty on v, from |Guidorzi et al.| (2017)), which sets the Hubble velocity to be
vy = 30174250 km s~!. Together with a prior measurement of the Hubble constant,
the measured velocities, v, and (v,), yield a measurement of the EM luminosity
distance to the system.

Meanwhile, the GW data, xqw, gives the posterior probability of the GW lumi-
nosity distance, d$V, marginalized over all other waveform parameters, except the
sky position, which is fixed to the position of the optical counterpart. We recover the
GW distance posterior from the LIGO-Virgo Collaboration’s publicly available H,
posterior samples (Abbott et al., [2017a). The Hy posterior is given by marginalizing
the joint probability of Hy, the GW distance posterior probability, p(d$WV | zaw),
and the velocities vy and vy, over all parameters except Hy (Equation 9 of |Abbott
et al., 2017a)). We recover the GW distance posterior (marginalized over inclination
angles) from the H, posterior by deconvolving the v, and v, terms, which are given

by Gaussians. We approximate the integral in Equation 9 of Abbott et al.| (2017a)) by
14
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Figure 2.1: Posterior probability distribution for the number of spacetime dimen-
sions, D, using the GW distance posterior to GW170817 and the measured Hubble
velocity to its host galaxy, NGC 4993, assuming the H, measurements from
(Collaboration et al. (2016)) (blue curve) and Riess et al.| (2016)) (green curve). The
dashed lines show the symmetric 90% credible intervals. The equivalent constraints
on the damping factor, v, are shown on the top axis. GW170817 constrains D to be
very close to the GR value of D = 4 spacetime dimensions, denoted by the solid black
line.

a Riemann sum. Then the term p(zaw | dSW)p(d$W) is obtained by solving a system
of linear equations.

We carry out a Bayesian analysis to infer the posterior of the gravitational leakage
parameter, v, and the number of spacetime dimensions, D, given the GW and EM
measurements described above. The statistical framework is described in detail in

the Appendix.
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Hy prior y D
km s~! Mpc~
Hy = 73.24 £ 1.74 (Riess et al., 2016) 1.017505  4.0240%

1

Hy = 67.74 £ 0.46 (Planck Collaboration et al., 2016) | 0.997502 3.9870-07

Table 2.1: Constraints on the damping parameter, v, and the number of dimensions,
D, assuming a waveform of the type Equation from GW170817.

2.3 Results & Discussion

The posterior for D assuming a waveform with the scaling shown in Equations [2.2
and is given in Figure Since the results depend on the assumed H, prior,
we compute the D posterior for both the SHoES Hj value (Riess et al., 2016|) and
the Planck Hj value (Planck Collaboration et al., 2016)). The maximum a posteriori
(MAP) values and minimal 68% credible interval values for v and D are given in
Table 2.1} As can be seen, the results are completely consistent with GR.

We can also use these constraints to place limits on waveforms with a scaling
given by Equation 2.4 For the higher-dimensional theories that give rise to such
waveforms, the d$V measured under the assumption of GR will be greater than the
true luminosity distance, d¥™. Thus, while our posterior for v allows for both v > 1
and v < 1 (allowing for the relative damping of both the GW and EM signals),
in the following analysis we restrict v > 1. Using our joint posterior on d¥%V and

dP™M = (dFW)Y/7 for GW170817, we can apply Equation [2.4to constrain the screening

radius, R,:
EM
dy

—
dGW\ " w(D—4)
aw) 1

GW
dL

R.= (2.7)

Thus, given our posterior samples for and 7y (restricted to y > 1), we can calculate

the associated R, for a fixed transition steepness, n, and number of dimensions, D.

Marginalizing over Hy and v,, this gives us a joint posterior on R, and d$".
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Figure 2.2: Top: Measured luminosity distance from
GWs, d%w, versus the gravitational screening scale,
R,, for a number of spacetime dimensions given by D =
5 (blue), D = 6 (green), and D = 7 (purple). The
solid lines assume a transition steepness of n = 1 and
the dotted lines assume n = 2. The black horizontal
lines give the 95%, 85% and 50% upper limits on d%W,
after restricting our samples to dgw > d%M. Bottom:
Allowed parameter regions for the transition steepness,
n, and screening scale R., for D = 5 (blue), D = 6
(green), and D = 7 (purple), assuming a waveform of
the type Equation 2.4 The vertical black line gives the
2.5% lower limit for d¥™. We use the 5% lower limit
for R. to set these constraints.

lower limit for R., which corresponds to the 95% upper limit on

Figure [2.2| (top panel) shows
the correlation between d$W
and R, for D = 5 (blue), D =
6 (green), and D = 7 (pur-
ple), and for n = 1 (solid) and
n = 2 (dashed). As can be
seen, a steeper transition (i.e.
larger value of n) allows for the-
ories to have a smaller screen-
ing scale; the steeper the tran-
sition, the closer the distance
must be to the screening scale
for a difference in the physics to
be noticeable. Increasing num-
bers of dimensions also allow for
smaller screening radii given the
same transition steepness; how-
ever, the screening radii cannot
be much smaller than the min-
imum EM distance. This is il-
lustrated in the bottom panel
of Figure where we plot
the allowed regions of parame-
ter space within the n—R, plane
for D = 5-7. We use the 5%

d$W after restricting

d$WV > d¥M or the 97.5% upper limit for d$W (and 2.5% lower limit for d¥™) for the
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unrestricted samples. For R. 2 dfi, = (dFV.)"/ 7 (black, solid line), larger di-
mensions allow for softer transitions between GR and the higher-dimensional theories.
If R, < dfyy,, then these higher dimensional theories are not allowed. As seen in
the upper left of Figure 2.2 the minimum screening radius increases with increasing
numbers of dimensions. These results show that theories with extra dimensions that
have no screening mechanisms and that affect gravitational propagation at all scales
are disfavored by GW170817. In addition, theories with screening mechanisms must
have R. 2 20 Mpc regardless of the transition steepness.

The final modification to GR we consider is theories in which the graviton has a
finite lifetime. In such theories, the GW strain scales as Equation so that setting
dr, = d®™ | the decay-length is given by:

EM
B = o g )

(2.8)

Using our posterior samples for d$W and d¥™ = (d$WV)'/7, and again restricting v > 1
to enforce d¥WV > d™ we find a 5% lower limit for the decay length of the graviton
of R, > 138Mpc. Since we know that gravitons must travel at the speed of light
(Abbott et al. 2017b), we infer that the lifetime of the graviton can be given as
t=R,/c> 450 x 10®yr.

We have only considered waveforms that are the same as GR, up to some overall
multiplicative factor. It could be possible to evade these constraints by changing
the waveforms in other ways. A full analysis of the LVC data using a more general
framework (Agathos et al., 2014; Loutrel et al.| 2014} Berti et al., [2015) would provide
more insight into non-GR waveforms.

Our analysis relies on a crossing scale for the EM and GW luminosity distances.
Equation implicitly sets the crossing scale to 1 Mpc, assuming that h oc 1/d, ¥

(1 Mpc/dy,)”~!. This ensures the correct units for the strain. From a theoretical per-
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spective, the choice of scale is completely arbitrary; our choice of 1 Mpc is motivated
by typical galaxy length scales. Figure [2.3] shows the effects on the posterior for ~
as a function of different choices for the crossing scale. For scales that are compara-
ble to the distance to GW170817, our constraints degrade considerably, since if the
crossing occurs at precisely the distance of the binary then we would be unable to
measure deviations as the theory would preclude them by assumption. A crossing
scale that happened to be similar to the distance to this particular event would be
quite fine-tuned. Scales smaller than a Mpc or larger than a Gpc give similar, or
tighter, constraints to what we found above. As we accumulate GW events at dif-
ferent distances, we will be able to fit for the crossing scale directly, in addition to
constraining -y.

We stress that our results do not hold for extra-dimensional theories with com-
pact extra dimensions (e.g. string theory or the ADD model). The extra dimensions
need to be at least on the order of the wavelength of the gravitational waves (~ 100
km) in order to have a damping effect. In addition, there may be complications for
theories with larger extra dimensions. For example, we find that Randall-Sundrum II
and DGP are poorly constrained by GW170817. In Randall-Sundrum II, the massless
mode for the graviton is constrained to the 3D-brane; thus, energy cannot efficiently
leak into extra non-compact dimension (Randall & Sundrum, |[1999)). For DGP, only
very low frequency waves (i.e. ones with wavelengths on the scale of the cosmic hori-
zon) are allowed to leak into the extra dimension (Dvali et al.,[2001). Our calculation
is a phenomenological one—it gives the total damping allowed considering a very
general type of leakage for large extra dimensions. Applying these limits to specific
theories is beyond the scope of this paper; however, these constraints should be con-
sidered carefully by extra-dimensional theories with dimensions of sizes ~ 100 km

and greater.
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Figure 2.3: Posterior probability distribution for the number of spacetime dimensions,
D, assuming different implicit crossing scales. The constraints degrade considerably
for a crossing scale equal to the distance to the object, ~ 40 Mpc. However, scales
either much smaller or larger than this show results that agree well with our choice
of crossing scale of 1 Mpc.

In principle any higher-dimensional theories would allow for extra polarization

modes (see, for example, Andriot & Lucena Gémez, [2017). However, the polarization

constraints for GW170817 are quite poor, since the signal was not detected in Virgo

and the LIGO detectors are aligned (Abbott et al., 2017c). Future events observed

by three or more detectors would provide for tighter constraints on extra dimensions.

In this chapter, we have derived constraints from GW170817 on gravitational
leakage by searching for a discrepancy between the measured gravitational luminosity
distance, d$V, and the measured EM luminosity distance, d®™. We quantify the

gravitational leakage via a damping parameter, v, which can be related to the number
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of non-compact spacetime dimensions, D, through which gravity propagates. We find
that D = 4.0270% (for SHoES) and D = 3.987007 (for Planck). In addition, we
use these constraints to place bounds on extra-dimensional theories with screening
mechanisms or decaying gravitons. We find the graviton decay length to be R, >
138 Mpc, implying a lifetime of the graviton of ¢ > 4.50 x 10® years. In summary, we

find that GW170817 is fully consistent with GR.

Appendix

Statistical Model

Variable Value Variable Value
d$W prior o (d§™)? vy 3,327 km/s
~ prior flat, [0.75, 1.15] Tupy O, 72, 239 km/s
H, prior (SHoES) | N (g, = 73.24 km/s Mpc™', on, = 1.74 km/s Mpc™) (vp) 310 km/s
Hy prior (Planck) | N (uug, = 67.74 km/s Mpc ™", oy, = 0.46 km/s Mpc ') || v, prior | flat, [-1,000,1,000] km/s

Table 2.2: Values & Priors Assumed for the MCMC Analysis

In the following, we describe the statistical framework assuming a waveform scal-
ing as in Equation 2.2} however, this is easily extended to any other type of waveform
that would cause the GW measurements and EM measurements of the luminosity
distance to differ.

We can write the joint likelihood for the GW data, xgw, and EM observables,

(v,) and v,, given v, Hy, d$V, and v, as:

p(zaw, <Up>7vr | %HO?d%WvUp) = p(zaw | dgw)p(@p) | U:D)p(vr |7, HOadngvp) )

(2.9)
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where we have assumed that all three observations, zgw, (v,), and v, are statistically

independent. We can write the third factor in the above equation as:
p(vy |7, Ho,di™, 0,) = plv, | 0] = v, + Hodp ™ = v, + Ho(dg™)'7) , (2.10)

where v is the true recessional velocity of the source. The likelihoods p({v,) | v,)

and p(v, | vt) are assumed to be Gaussians (Abbott et al., 2017a), and are given as:

p({vp) [ vp) = N(“paggp)(@p» ) (2.11)

plur | vp) = N(v, o) (vr) . (2.12)

Applying Bayes’ theorem, the joint posterior for v, Hy, d$%, and v, is then:

p(PY?HO?d(L;WaUP ’ TGW, <Up>7v7“) X p(-TGW ’ d%w)p(@p) ’ UP)

(2.13)
X p(vr ’ Y5 HOa dgwa vp)p0(77 HOa d%W’ Up) :
The posterior for v is found by marginalizing over all other parameters:
1
0w (o) =~ [ placw | 4¥p((0) | 1)
Paet (V) (2.14)

p(vr | e H07 dgwa Up)p0(77 H07 dgwa vp>dH0dd%WdUp )

where pget(y) is a normalization term to account for selection effects and ensure that
the integral over all detectable datasets integrates to unity. As shown below, this
term is negligible for our analysis.

We choose the prior:

po(7, Ho, d7™ ,vp) = po(vy)po(di™ )po(v)po(Ho) - (2.15)
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This assumes a flat prior for the peculiar velocity, py(v,) o< constant. For the GW
distance, we use the default “volumetric” prior used in the LVC analysis, po(d$V) oc
(d$W)2. For the prior on the Hubble constant, po(Hy), we take either the SHoES
measurement, or the Planck measurement. We choose the prior on v to be flat, so
the marginal posterior is proportional to the marginal likelihood. Our results are
mildly sensitive to these prior choices; for example, taking a flat prior on d¥W shifts
the posteriors towards slightly lower values of 7, so that the MAP and minimal 68%
credible intervals become 1.00700s (SHoES Hy) and 0.98700s (Planck Hy) for a flat
d$W prior. (This alternative prior choice also leads to stricter lower limits on the
screening scale R..) Except for the conservative value of o,, = 239 km s™! from
Guidorzi et al.| (2017), all other variable values and priors are the same as those given
in |Abbott et al.|(2017a)). All of our values and priors are given in Table

The normalization term, pqe(7y), in Equation is given by the integral of the

marginal likelihood over all detectable datasets (Loredo, |2004; Mandel et al.| 2019):

paa) = [ placw, )0 | Vdzawd(uy)d
detectable

/ / xGW | dG (<UP> | Up)p(vr | 77 H07 dngvp)pO(Up> (216)
detectable

x po(Ho)po(d$VY)dHodd$™ dv,drgwd(v,)dv,.

We follow Abbott et al. (2017a) and neglect the EM selection effects. This is
justified because the GW horizon for a BNS system during O2 was only 190 Mpc,
whereas an EM counterpart would have been observable at distances greater than
400 Mpc. Thus, the integrals over detectable EM datasets, (v,) and v, integrate to
unity. If we neglect the effects of GW redshifting on the detectability of the GW

source (which is valid at these low redshifts), the GW selection effects are a function
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of GW luminosity distance alone. Defining:

/ placw | dS%)draw = pae(dS™) (2.17)
detectable xgw

we have:

Paar(y) = / Paer (5™ Y po vy po Ho)po(dS™)dHoddS™ du, (2.18)

The above equation is independent of 7, and so we can ignore this term in our analysis.
However, if we had chosen to carry out the analysis by setting a prior on the redshift
or vy rather than GW distance, Equation [2.18 would have a v dependence in the
term pae; (d$V = (%)), which varies significantly over the posterior support for 7.
In this case, pqet(y) cannot be neglected.

To compute the posterior for v, we sample directly from the joint posterior given
by Equationwith an MCMC analysis using the python package PyMC3 (Salvatier
et al., 2016).
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Chapter 3

A Binary Supermassive Black Hole
System & the Stochastic

Gravitationl Wave Background

Cosmological models of structure formation predict that galaxies undergo frequent
mergers throughout their history (Volonteri et al., 2003} |Springel et al., 2005). Super-
massive black holes (SMBHs) from each progenitor quickly sink towards the central
0.1-1 kpc region of the merger remnant due to dynamical friction. This SMBH pair
may eventually form a bound binary system capable of emitting gravitational waves
(GWs) before final coalescence (Begelman et al., [1980). SMBH binaries with masses
of Mgy =~ 10%-10°M,, are expected to comprise the dominant contribution to the
as-yet undetected GW background (GWB) signal at the nanohertz frequencies acces-
sible to pulsar timing arrays (PTAs; Sesana et al.[[2008; Burke-Spolaor et al.[[2019).
The current theoretical predictions on the precise amplitude and composition of the
GWB vary dramatically, and are limited, in part, by the lack of overall empirical

constraints on the occurrence of high-mass SMBH pairs.

25



Observed Wavelength 6/3)
6500 7000

o« 5500 6000 7500 8000
g 600' T T T T T
@ 500F F621M
w400 F689M
@ 300}
= 200f
o 100f A\
Z o e — , —
“10n10m23.3s  23.0s  22.8s 232s 23.0s 22.8s 232s 23.0s 22.8s 232s 23.0s 22.8s
06s [ T T T T T T T T T T T T T T T T T T T T T T T ™
F621M o F689M fom] ®
04s I I ;
oesf ¢
» R
13m005-. 5 & e & --. ‘)’
= P ,
014d12m58s | A + 1
2
g T P TN TN
= sk i i % (o)
2 1.4sf + k3 3 F689M
1.3sF + 1 3
1.2sF =2 . 0 @ 3
n o
1.1sF + + =0 3
o"”I Q) i
1osf i i o< E

0.9sf

14d13m0.8s E L 3

10h10m23.00s 22.98s  22.96s 22.99s  22.97s  22.95s 22.99s  22.97s  22.95s 22.99s  22.97s  22.95s
Right Ascension

Figure 3.1: Analysis of the central region of J10104+1413. Upper panel: SDSS 2”
fiber spectrum, overlaid are the WFC3/UVIS transmission curves for the F612M
(blue) and F689M (green) filters. Middle panels left to right: WFC3/UVIS medium-
bands F621M; F689M; [OII]=F621M-F689M; F160W. Lower panels left to right:
zoom and contrast rescaling of the middle panels. Contours of F689M continuum
(black) and [OIII] images (blue) are shown in the lower-right panel. Both the F689M
stellar continuum-only image and the [OIIl] images clearly show two distinct point
sources, suggesting two nuclei each with their own accreting SMBHs.

Emission produced through accretion acts as a useful signpost for evidence of
SMBHs. Indeed, extremely high-resolution radio observations have serendipitously
identified very close separation sub-parsec scale SMBH binary candidates
2006). While there have been several claims of binary SMBHs in some nearby

galaxies (e.g., Fabbiano et al|2011)), these have subsequently been challenged with

expanded datasets and/or improved analysis techniques (e.g., [Finlez et al.|2018 and

references therein). AGN surveys have identified wider-separation (several to tens

kpc) SMBH-pair candidates by harnessing highly-penetrating X-rays and follow-up

with ground-based near-IR adaptive optics systems (Liu et al., 2013; Koss et al.|
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2018). Due to limitations in angular resolution, these investigations are typically per-
formed at lower redshifts, where the AGN studied tend to be relatively low-luminosity
(Lagn < 10* erg s71). Consequently, these dual SMBH systems are predisposed to
lower masses (Mpy = 107 M), often at kiloparsec separations (Liu et al.; 2010; Woo,
et al, 2014), such as the well-studied nearby merging galaxy NGC 6240, which hosts
two actively growing SMBHs separated by ~1 kpc (Miller-Sanchez et al., 2018).
Systems such as NGC 6240 do not appreciably contribute to the GWB that will be
detected in the PTA band due to their low Mgy (Sesana et al., [2008)). Much larger
volumes must be searched to find the most luminous quasars, and hence most mas-
sive binary BHs, that contribute to the PTA signal. Utilizing high spatial-resolution
observations with the Hubble Space Telescope (HST), studies have begun to identify
a more massive population of kpc-scale separation SMBH pairs through the detection
of distinct multiple nuclear cores coincident with unresolved AGN emission (Xu &
Komossal, 2009; [Fu et al) 2012). However, to begin to place empirical constraints
on the GWB we must characterize the number of 10® — 10°M, SMBH pairs with
sufficiently small separations that they may merge before the present day.

Here we present an observational anchor to predictions for a GWB signal that can
be detected in the PTA band. SDSSJ101022.96+141300.9 (hereafter, J1010+1413)
is a late-stage merging galaxy at z ~ 0.198 (angular scale of 3.27kpc/”) with high
equivalent-width emission lines (Mullaney et al 2013)) in the Sloan Digital Sky Survey
(SDSS; [York et al.l [2000). At mid-infrared wavelengths (22um), it is one of the most
luminous systems (Lagy = 6 X 10% erg s71) at 2z ~ 0.2 identified with the Wide-field
Infrared Survey Explorer (WISE). Using high spatial resolution (0.03”/pixel) multi-
band imaging from HST’s Wide Field Camera 3 (WFC3) instrument, we identified two
distinct quasar-produced [OIII]5007-emitting regions that are spatially co-incident
with two nuclear stellar cores buried close to the center. These two point sources

are separated by 0.13”, a projected separation of only 430 parsecs at the distance of
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J1010+1413, providing strong evidence for a central SMBH pair at the heart of this

merging galaxy:.

3.1 Target Selection and Observations

J1010+1413 was initially characterized as having strong asymmetries in its [OII1}5007
emission line profile as part of an in-depth study of nearby accreting SMBHs identified
in SDSS (Mullaney et al, 2013). It is one of the most luminous quasars at z ~ 0.1-
0.2 based on both [OIII] (Lionm,derea ~ 1.2 X 10*erg s7!) and 22pum emission. The
central few kpc of J1010+1413 is strongly AGN dominated ([OIIl]/HS ~ 12.4) and
was previously found to be irregular and kinematically complex, with broad, spatially
unresolved [OIIT] and HB emission (Wgo ~ 1350 — 1450 km s™!) based upon Gemini-
GMOS IFU data (Harrison et al., 2014).

3.1.1 HST medium & broad-band imaging

J1010+-1413 was imaged on October 17 2017 with WFC3/IR in the F160W filter, and
with the WFC3/UVIS instrument in two optical medium bands, F621M and F689M
for a total of one orbit (Proposal:14730; PI:Goulding). Our F160W observation with a
spatial resolution of 0.13” /pixel provides a relatively clean measure of the stellar light
(rest-frame 1.3pm). An azimuthally-symmetric surface brightness (SB) profile was
constructed from the F160W image to measure the stellar light of J10104+1413. The
SB profile is detected to r ~ 7.1” (~ 23 kpc), and is dominated by inhomogeneous low
SB emission beyond r ~ 2.25”, consistent with tidal debris from a merger event. We

measure a total flux of figow ~ 3.2340.03x107!2 erg s tem—2

,i.e., a total luminosity
of Ligy ~ 1.1 x 10" Ly, from which we infer a total stellar mass of M, ~ 0.7-

1.5 x 101 M.
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The WFC3/UVIS F621M observation (0.04”/pixel) provides a detailed image
of the continuum galaxy light combined with emission from the AGN-dominated
[OT11]4959+4-5007A emission line doublet, which is redshifted into the filter. By con-
trast, the F689M filter covers no significant emission lines and thus only detects
emission arising from the galaxy continuum. On small scales, the F689M filter image
reveals two distinct and resolved stellar-continuum point sources that are separated
by 0.13” in the nuclear region of J10104+1413 (Figure [3.1). The amplitudes of the
two nuclear cores are very similar, 1:1.2, suggesting similar stellar masses but the two
cores are not uniquely resolved in the F160W image due to the lower resolution and
S/N.

We subtracted the F621M from the F689M image to investigate the spatial dis-
tribution of the combined [OIII] doublet emission, and test for the presence of two
distinct narrow-line regions (NLR) in the center of J10104+1413. We solved for the
marginal (<0.02") astrometric offset between the two F621M and F689M filters, and
normalized the flux-calibrated images to give a net-zero sum of the extended galaxy
light. Within the central kpc region (r<0.3"), we identify two distinct [OIII]-emitting
regions that are spatially co-incident with the two nuclear point sources observed in
the F689M continuum image. We interpret this as evidence for two remnant cores
from the galaxy merger that each possess a central accreting SMBH, producing two
distinct [OIII}-luminous NLRs.

Using the [OIII] image, we confirm the presence of the extended emission line
region at large radial scales of  ~ 4”7 (14 kpc), the kinematics of which was previously
studied in Sun et al.|(2017)). Their previous Magellan IMACS spectroscopy shows that
the extended [OIII] emission is kinematically cold and not necessarily an outflow from
the central galaxy. Combined with our sensitive WFC3/UVIS observations, the large-
scale [OIII] appears to be emitted from gas that was tidally stripped during the galaxy

merger (Harrison et al. 2014), and is now being illuminated by the central quasars.
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Figure 3.2: Morphological analysis of emission in the central 1”x1” region of
J1010+1413 using the GALFIT software package. Upper: our preferred 4-parameter
model (two PSFs and two extended Gaussians). The residual image (data — model)
consists of only unstructured Poisson noise with no distinct features. Lower: Sersic
profile with a (presumed) dust lane (represented by a mask; green line) splitting the
observed emission in two. The residuals show significant structure with a high RMS
noise.

Indeed, we find evidence for two collimated emission features oriented at ~11 and

342 degrees from North, consistent with the presence of two distinct accretion disks

(Figure [3.2).

3.1.2 Chandra ACIS-S observations

J1010+1413 was observed on January 20, 2016 with the Advanced CCD Imaging
Spectrometer (ACIS) on board the NASA Chandra X-ray Observatory (Pro-
posal:17700576; PI:Pardo). The data were reduced following standard procedures

using the Chandra Interactive Analysis of Observations (CIAO) software package
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provided by the Chandra X-ray Center. After standard grade filtering, the total
exposure in good time intervals was ~24.1 ks. The native spatial resolution of
ACIS-S (0.492" /pixel) is insufficient to resolve two distinct point sources separated
by only 0.13”, even when using more sophisticated sub-resolution techniques, and
hence, the quasars should appear as a single X-ray point source. The soft-band image
(0.5-3.5 keV) is characterized by marginally extended (r ~ 1.9”) diffuse emission
with 59+8 counts. A spectral analysis of the X-ray emission (extracted from a 2"
aperture and grouped to 1 photon/bin using grppha) involving a simple absorbed
power law combined with a Galactic foreground absorber (Ny = 3.4 x 10*cm™?)
produces a best-fit I' ~ 2.8 & 0.3 and Ny < 10'9cm™2, which is inconsistent with
X-ray emission arising directly from an AGN. An APEC plasma model is also
found to be a reasonable description of the data with kT ~ 3.1 4+ 0.6, although
the soft power law model is marginally preferred (ACga.: ~2.2). The best-fit X-ray

flux is only fxos-mev ~ 2.0 £ 0.5 x 107 erg s7! em ™2, i.e., a low luminosity of

LO.5—7keV ~ 1.5 x 104zerg Si1

, and is a factor = 650 below the naive expectation
based upon the Lg,m—Lx relation (Chen et al., 2017). Such a deficit in the observed
X-ray emission compared with other mid-IR/optical Lagn indicators (Alexander
et al., 2008; |Goulding et al) 2011) suggests obscuration by heavily Compton-thick
(Ng ~ 10%® cm™2) gas. The additional inclusion of a second absorbed power
law to assess the presence of a heavily obscured Compton-thick quasar was left
unconstrained due to the small number of photons.

Given its low luminosity, spectral shape, and the fact that it is resolved, the soft X-
ray emission most likely arises from star formation or quasar-produced scattered light,
similar to the well-studied quasar SDSSJ1356+1026 (Greene et al., [2014). However,
the observed Ha emission (L, ~ 1.3 x 10%erg s71) allows us to place a conservative

upper limit (i.e., assuming no AGN contribution to Ha) on the star-formation rate

(SFR) of <10Mg/yr. When coupled with the total stellar mass and the relation
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of Lehmer et al. (2010), we can place an upper limit on the X-ray emission from

star formation of Ly < 3 x 10%rg st

~

Hence, the slightly higher observed X-ray

luminosity is more suggestive of a scattered light origin.

3.2 Morphological Evidence for a Pair of Accret-
ing SMBHs

Due to the presence of two distinct nuclear stellar cores with cospatial [OIII] emission
radiating at quasar-like luminosities, our preferred interpretation is that J10104+-1413
contains two rapidly accreting SMBHs close to its photometric center. Such a scenario
is consistent with the very late-stage merging galaxy found from previous SDSS and
Gemini-IFU data. However, even though both the F689M continuum and [OIII]
images strongly suggest two distinct, spatially-separated point sources, complicated
structures and morphologies in the NLRs can make the identification of SMBH pairs
ambiguous (Shen et al., [2011a)).

To better elucidate the nature of the nuclear region in J1010+1413, we performed
an imaging decomposition in the F689M and [OIII] images using the GALFIT package
(Peng et al., 2010). The GALFIT analysis requires an accurate representation of the
WEFC3/UVIS point spread function (PSF) to convolve with the model components.
We constructed the PSF using a hybrid methodology (Grogin et al., |2011]), which
combines a model of the instrument PSF (produced by the STScl software package
TinyTim) with real point-like stellar objects detected in the observation. We con-
firmed that our PSF model produces an accurate subtraction of a point source in the
WFC3 images, with no clear systematic residuals beyond the image noise.

The [OIII] emission is not well fit using only two PSF functions; rather it re-
quires the inclusion of two extended Gaussians, centered close to each of the point

sources. Conversely, a fit using only two Gaussians produces a significantly lower
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quality fit (Ax* = (Xeomp — X3comp) ~ —189) leaving residual point sources in the
image, and hence, two PSF functions are also required. The best-fit solution from
the 4-component model is shown in Figure (upper panel), producing an excellent
fit to the data; the residual is consistent with Poisson noise. Each Gaussian com-
ponent is a factor ~2-3 brighter than its associated PSF component; this is to be
expected as NLRs are typically observed on scales of several hundred parsecs in local
galaxies and should therefore require a bright component extended beyond the PSF.
Furthermore, one of the Gaussian components is marginally offset ~0.1” north of the
northern nucleus, and is consistent with the termination of a stream of stellar mate-
rial, presumably the result of the on-going merging of the two cores. This component
is observed in both the F689M and [OIII] images, while a continuation of this stream
is clearly visible to the west of the core in the F689M image shown in Figure [3.1]

A potential alternative scenario for the observed features could be a single SMBH
residing at the center of a large extended stellar bulge and NLR, split along the minor
axis by a dust lane. This dust lane would fully obscure the would-be point source
emission arising from a single quasar. If the gas is uniformly distributed, the [OIII]
emission arising from a single SMBH would appear as an elongated component above
and below the dust lane. To test this, we attempted to model both the continuum
and [OIII] images using a single Sersic component with the centroid constrained to
the region hidden by an artificial dust lane (represented by a GALFIT mask region;
Figure lower panels). The resultant Sersic component has an extremely flat profile
(n ~ 0.4), similar to that of a Gaussian. However, in comparison to our best-fit model,
the Sersict+dust-lane model is an extremely poor fit Ax* = (XBest — XDLSersic) ™~
—564.3; the residual RMS noise is a factor 2 5 larger than our best-fit model, and
the two previously determined point sources are strongly under-subtracted in the

residual image. Hence, the HST data do not support a scenario involving a single

SMBH hidden by a dust lane.
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Figure 3.3: Dynamical timescales for J10104-1413 as a function of binary semi-major
axis (assuming a circular orbit). Dynamical friction, stellar hardening, and GW
emission phases are shown with blue, green, and pink lines, respectively. Current
pair semi-major axis is shown with the black, dashed line. The PTA band for an
object of J1010+1413’s chirp mass is indicated by the pink region.

We further tested whether the very luminous [OIII] emission could be produced by
shock heating from powerful starburst-driven winds, ignited as a result of the galaxy
merger. Given either the [OIII] or 22pm luminosities, such a scenario would require
SFR>> 103M,, /yr in the central 500 pc region. However, this is inconsistent with the
non-detection of J1010+1413 at 100um in IRAS, and is orders of magnitude higher
than the upper limit of <10M, /yr set by Ha. We thus conclude that the [OIII] and
IR emission must arise from quasar activity.

Our GALFIT simulations confirm the presence of two continuum and [OIII]-

emitting cores in the nuclear region of J1010+1413. The southern nuclear region is
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Figure 3.4: Schematic of GWB amplitude assumptions given the SMBH pair in
J10104-1413. Dynamical friction and stellar hardening will drive SMBH pairs like
J1010+1413 to merge by z = 0 (Fig.3), implying that there is at least one local
SMBH binary emitting GWs. The expectation of this one GW source is used to es-
timate Npinary (2 = 0), which is extrapolated to z = 1 to compute a pessimistic GWB
amplitude estimate, A ~ 1.8 x 10717 Alternately, a more optimistic npinary(z = 0)
can be estimated based on the population of known luminous quasars similar to
J1010+1413 within 0.18 < z < 0.22, producing A ~ 3 x 10716,

marginally more luminous in [OIII] than the northern nucleus with Amopy ~ 0.14,
i.e., a flux ratio of 1:1.3. Using the previously measured Balmer decrement (Mul-
laney et al. 2013) and an extinction-corrected bolometric correction (Kauffmann &
Heckman|, 2009), we measure intrinsic quasar luminosities of Lagnn ~ 4.2 x 101
and Lagns ~ 5.4 x 10% erg s7! for the north and south nucleus, respectively. The
combined luminosities are consistent with Ly, determined in the mid-IR. Under the
presumption that both quasars are accreting at L/Lgqq = 1, we are able to place a
minimum mass of 4 x 108M, for each SMBH in the pair.

We conclude that when all lines of evidence are taken together — (1) the measured
mid-IR and [OIII] luminosity; (2) the morphology of the [OIlI] emission; and (3) the
spatial coincidence of the stellar-continuum and [OIII] point sources — J1010+1413, in
all likelihood, harbors two roughly equal-mass Mpy = 4 x 108M, SMBHs separated

in projection by ~430pc. Further evidence for a pair of SMBHs in J101041413
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Figure 3.5: Left: Number density n(z) of AGN binaries pessimistically assuming
J1010+1413 is the only binary AGN in SDSS to z < 0.2 and constant number density
(blue) or assuming an evolving n(z) normalized to the number of J1010+1413-like
systems at z ~ 0.18-0.22 in SDSS for our most optimistic (orange) and best-case
(black) scenarios, which themselves differ by the assumed SMBH mass function (cen-
ter panel). Shaded regions provide estimated uncertainties. Center: Assumed SMBH
mass functions for binary AGN. Right: Estimated characteristic strain (h.) of the
GWB following our well-motivated n(z) and n(Mgy) assumptions. For reference, we
provide h. (95% lower limit) assuming the blazar OJ287 is a true SMBH binary (Zhu
et al., 2019; Dey et al., [2019).

must await on-going follow-up with JVLA, HST, and ground-based adaptive optics

telescopes.

3.3 Relevance to Gravitational Waves

J1010+1413 is not currently emitting GWs in the PTA band. However, as we de-
scribe below, the predicted time to the PTA band for J1010+1413 is less than the
lookback time to the object (Figure . Thus, we expect a population of objects like
J1010+1413 that would be emitting GWs in the PTA band today (Figure . Using
well-motivated assumptions on their number density (npinary), we can place limits on

the GWB (Fig. [3.5)).

3.3.1 Coalescence predictions

The evolution of SMBH pairs is expected to proceed through three main stages leading

to coalescence: (1) dynamical friction, (2) stellar hardening, and (3) GW emission
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(Begelman et al.) 1980). The SMBH pair in J1010+1413, currently separated by
430 pc, should be nearing the end of its dynamical friction phase (Figure . This

phase has a timescale given by (Binney & Tremaine, 2008)):

(3.1)

- 19 Gyr < a >2 o 108 M, 7
InA \5kpc/ 200 km/s M,
where a is the semi-major axis of the binary, ¢ is the velocity dispersion of the stars,
and M, is the mass of the lighter SMBH. We use the virial theorem with our measured
values for the M, and 7,4, to estimate the stellar velocity dispersion. We expect the
SMBH pair will enter the stellar hardening phase within ~10 Myr, at which time the
SMBH pair’s angular momentum will be transferred to slower-moving stars that pass
close to the pair, decreasing the orbital separation. This stellar hardening happens

on a timescale given by (Sesana & Khan| 2015):

Oinf

___ Twt 3.2
GHpinfa*/gw ( )

tsh

where oy,¢ is o at the BH influence radius, py,¢ is the mass density at this radius,
H = 15 is a dimensionless hardening rate constant (see |Quinlan| {1996, for more
details), and a, /gy is the semi-major axis at which GW emission begins to dominate
the decay of the orbit. We follow the usual procedure of assuming a Dehnen profile
with v = 1 for the stars (Dehnen) 1993; Sesana & Khan, 2015; Mingarelli et al., 2017)).
However, there may be insufficient stars to eject for the pair to reach the sub-pc scale,
and merge via GW emission (Yu & Tremaine, 2003). In this ‘final parsec problem’
scenario, the time to coalescence becomes significantly longer than a Hubble time,
causing the pair to stall. Without taking this effect into account, the expected hard
binary timescale is ~ 2 Gyr. Large quantities of gas surrounding the SMBH pair will
decrease the binary’s time to coalescence. For approximately equal-mass systems, the
timescale for migration is about equal to the accretion timescale (Gould & Rix; 2000)).
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Assuming the SMBH pair in J1010+1413 continues to accrete at Aggq = 0.1-1.0, the

gas accretion phase will require (Begelman et al., |1980):

. -1
M, M
Lgas ~ , .
§ Me (1 M@/W) w (3:3)

where M is the accretion rate, i.e., a gas accretion timescale of t4,5 ~ 100 Myr. Thus,
we expect the SMBH pair to reach sub-parsec separations within 0.1 — 2 Gyr. Once
Tsep S 0.1 pc, GW emission will lead to final coalescence within ~700 Myr. If merging
SMBH binaries do not stall, by the present day we expect J1010+1413-like systems at
z ~ 0.2 to be emitting GWs, anchoring the number of possible GW-emitting SMBH

binaries since z ~ 0.2.

3.3.2 Contribution to the GWB

A GWB produced by the incoherent superposition of GWs from all inspiralling SMBH
binaries over cosmic history is expected to be observed by PTAs in the next few years
(Taylor et al., [2016} Kelley et al 2017). SMBH pairs at 2 < 1 and in the 10® — 109 M,
range, i.e., systems similar to J10104-1413, are expected to be the primary source
population of this signal. The GWB amplitude depends strongly on the SMBH
mass function, SMBH occupation fraction, and galaxy-galaxy merger rates, while the
shape of the characteristic strain (h.) spectrum holds clues to the final parsec problem
(Sampson et al., [2015; Arzoumanian et al., 2016). See Mingarelli| (2019) for a brief
review and Burke-Spolaor et al.| (2019)) for a comprehensive one.

Here we use the existence of the SMBH pair in J1010+1413 to put limits on the
space density of similar objects.

As a lower limit, we assume that J1010+1413 is the only > 10®M, SMBH binary
detectable in the SDSS to z = 0.2. This would imply that an analogous system would

be merging today i.e., Npinary(z =0) =1 x 1077 Mpc™3, Figure . Assuming npinary
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is constant with both Mgy and z, we estimate there are ~ 300 binary AGN that
contribute to the GWB to z < 1.

Our most optimistic scenario assumes that J10104-1413 is representative of lumi-
nous Type-2 quasars (Ly, = 10 erg s7') in merging systems that are detectable by
SDSS, WISE and the NRAO VLA Sky Survey at z ~ 0.18-0.22. By selecting all Type-
2 AGN from Mullaney et al.| (2013)) at z ~ 0.18-0.22, and assuming L/Lgqq = 0.3
(typical of SDSS quasars; |Shen et al.|2011b)) and the z = 0.2 observed fraction of AGN
in merging systems (fierge = 0.25; Hickox et al.|2014), we predict there are potentially
112 binary AGN with Mgy > 108M;, in SDSS, i.e., Npinary (2 = 0) = 2 x 1077 Mpc >,
Uncertainties are estimated using a range of Eddington ratios (L/Lgqq = 0.1 — 1.0).
We predict the evolution of npinary to 2 = 1 by normalizing the quasar number density
of Hopkins et al.| (2007) t0 npinary (2 = 0), providing a total of ~ 1.2 x 10° binary AGN
to z < 1.

Our more realistic (“best”) scenario also accounts for the dependence of npinary On
Mgy. We expect SMBHs in binaries to follow an Mgy function (Marconi et al., [2004),
which corrects for the smaller number of very massive (Mg > 10'° M) SMBHs in
the Universe. Our limits do not differ greatly if we instead adopt the observed quasar
luminosity function and a fixed Eddington ratio. Allowing the number density to vary
with Mgy and z gives the same total number of binary AGN, but distributes their
Mgy differently. We do not expect the SMBH mass function to vary significantly to
z < 1 in the range Mpy = 10° — 10'°M, (Merloni & Heinz, [2008)).

We use our three scenarios to compute the GWB A, using the Phinney| (2001)

formalism:

4G 1 (M)>/3

where M = (1/(14q)?)%/°Mj is the chirp mass of the binary, ¢ is the binary mass ratio,

and M, is the primary mass. We integrate over z = 0 — 1 and M = 107¢ — 10%¢ M,
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where this mass range corresponds to Mgy = 108 — 10! M and ¢ = 1. We note that
computing the integral to z = 2 increases our final h, estimate by a factor <2.

We predict a range of limits on h.(f = 1 yr™!) from 9.2 x 10718 to 4.0 x 10716,
with a best estimate of h.(f =1 yr™') = 1.1 x 107'%. This is ~1 — 10% of the most
recent upper limit on the GWB, h.(f =1 yr™!) < 1.45 x 1071 (Arzoumanian et al.,
2018), and well within the reach of PTAs in the next decade (Taylor et al., 2016]).

Our predicted range for h. brackets the theoretical lower limit of ~107!¢, which
would be produced by SMBH binaries stalled at the last parsec, assuming conservative
Mgy estimates (Sesana et al., 2016; Shankar et al., 2016). These stalled SMBHs
ultimately merge via many body interactions with SMBHs introduced by additional
galaxy mergers (Bonetti et al |2018; Ryu et al) [2018). There are therefore two
intriguing implications for the GWB following our discovery of J1010+1413: (1) if
the true GWB amplitude is marginally below the current sensitivity limits, then
SMBH pairs similar to that of J1010+1413 contribute 1 — 10% of the GWB signal,
and thus there must be little stalling of the SMBH pairs in nature; or (2) if the
GWB amplitude is lower than our predicted limits, then we would have evidence that
Mgy have been overestimated and/or that nature does not have a solution to the
final parsec problem. In concert with future simulations and/or the improving GWB
upper-bound, the SMBH pair in J1010+1413 will anchor source population estimates,
merger rates, and even the volume of the GWB.

The identification of the SMBH pair in J101041413 has yielded new empirical
insight into the nature of the nanohertz GWB. Our investigation has highlighted
the benefit of combining quasar detections made in the mid-IR with high-resolution
optical imaging to confirm the presence of a SMBH pair. However, our current es-
timates for h. are limited by our ability to (1) accurately measure the number of
J1010+1413-like systems in the redshift slice z ~ 0.18 — 0.22, and (2) constrain the

evolution of such merging systems out to z < 1 where the GWB signal may peak.
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The combination of sensitive large-scale surveys that are optimized for AGN detection
and/or galaxy morphologies (e.g., SphereX; WFIRST) will allow the future discov-
ery and characterization of a population of small-separation SMBH pairs, similar to

J1010+1413.

41



Chapter 4

Galaxy Disk Warps &

Self-Interacting Dark Matter

All particles in the Standard Model have non-gravitational interactions, which makes
it reasonable to consider self-interactions in the dark sector as well. In addition, self-
interacting dark matter (SIDM) could alleviate the possible small-scale CDM issues
by redistributing dark matter out of the centers of halos and suppressing small-scale
structure formation (Spergel & Steinhardt, 2000). For velocity-independent interac-
tions, SIDM cross sections per unit DM mass of 0 /m ~ 0.1—1 cm?/g would be needed
to fit the current observations (Rocha et al. [2013). However, there are constraints on
SIDM from a wide variety of systems and experiments (for a comprehensive review,
see Tulin & Yu, 2018)). For example, SIDM would lead to the evaporation of halos
due to high-momentum-transfer collisions. Thus, the existence of DM halos in dwarf
galaxies places constraints on the cross section (Gnedin & Ostriker], 2001; Kahlhoefer
et al., 2014)). SIDM would also allow for the spherical relaxation of cluster halos. The
observation of elliptical cluster halos places strong limits on the SIDM cross section
from cluster ellipticites (Miralda-Escudé, 2002), although these are disputed (Peter

et al., 2013).
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SIDM also modifies the distribution of DM in galaxy and galaxy cluster collisions.
In the canonical CDM picture, the DM halos do not interact but pass through one
another without collision, while the gas shock-heats and decelerates. If DM has self-
interactions, then we would expect the DM to experience a drag as well, with a
magnitude depending on the interaction cross section. Thus, the centroid of the DM
compared to that of the gas could be used to constrain the SIDM cross section. This
method has been employed successfully for galaxy cluster collisions: most famously
for the Bullet Cluster, which disfavors interaction cross sections o/m > 0.7—1 cm?/g
(Markevitch et al., 2004; Randall et al., 2008), although some simulations contend
that these constraints may be overstated (Robertson et al., 2017).

We can also expect this effect to leave imprints in the subhalos of clusters — from
galaxies falling into clusters. Specifically, we can look for the separation between
the centroid of the stars and the DM. The centroid separation technique has been
successfully used in simulations (Massey et al.,|2011)). Unfortunately, a clear detection
of this effect in data is challenging due to the weak-lensing accuracy required, as well
as other systematics (Harvey et al., 2013). However, recent work has shown that the
infall of galaxies into clusters can leave signatures at larger scales (Banerjee et al.
2019).

Instead, we can try to look for other markers of this centroid separation. Secco
et al.| (2018) recently considered the SIDM dynamics of a disk galaxy falling into a
large galaxy cluster. Using numerical simulations, they found that the separation
between the DM and stellar centroids should also produce a warp in the stellar disk
of the galaxy. This would be a U-shaped warp facing in the direction of motion —
a signature difficult to mimic with baryonic effects. The largest warps should occur
in galaxies on first infall into galaxy clusters. The dark matter densities are highest
in galaxy clusters and the first infall allows for ample time to form the warp before

the direction of the drag force changes at periapsis. However, warps are most easily
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measured in disk galaxies, which are typically not found in galaxy clusters. Although
at lower magnitude, this warping should in fact occur in any galaxy moving in a dark
matter medium. There have been no observational searches for this signal in data
thus far.

In this chapter, we place constraints on the SIDM cross section by measuring
the warps of stellar disks. Section presents the different types of interaction and
physical effects that we consider. Section describes our methods, including our
forward-modelling of SIDM warps and measurements of real warps. Section gives

our results, while Section discusses these results and concludes.

4.1 Theory

DM self-interactions will generally induce a drag force on the DM halo of a galaxy
traveling through some background over-dense region. The form of the drag force
will depend on the type of self-interaction. For a contact (velocity-independent)
interaction, we expect a fluid-type drag forcel] X ppgv?, where phg is the density
of the background dark matter and v is the relative velocity between the halo and
the background. For a long-range interaction (velocity and angle-dependent), we
expect a drag force o phg/v? (e.g., [Kahlhoefer et al., 2014). For intermediate-range
interactions (i.e. where the mass of the mediator is close to the mass of the DM
particle), we expect a force law between the contact and long-range cases.

Other physics will also affect the final force law. For any one collision between
particles, there is a probability of the halo particle being ejected. Over time, this
leads to an evaporation of the halo, which will damp the drag force. Finally, we
expect some velocity dispersion in both the halo and the background. This will cause

a distribution of incoming particle velocity directions, further damping the drag force.

!This assumes the interaction times are small enough for the fluid approximation to hold. We
discuss this further in Section
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In this section, we develop the equations for the expected stellar warp produced
by self-interactions between the DM in a galactic halo and a background overdensity.
We begin by finding the drag force per particle mass for the three different types
of DM self-interactions (contact, long-range, and intermediate-range), along with the
modifications due to evaporation and velocity dispersion of the halo. We then describe

the warp this produces within the galaxy’s stellar disk.

4.1.1 Halo deceleration from DM self-interactions

Consider a halo moving through some background medium with relative velocity v.
We would like to find the force per unit mass on the halo in the direction of ¥ from DM
self-interactions between particles in the halo and particles in the medium. This drag
force law will depend on several factors, such as the angular and velocity dependencies

of the self-interaction and the effects of evaporation and velocity dispersion.

Contact interactions

Let us first consider velocity-independent interactions arising from a contact force.
For now, focus on a two-particle interaction: one particle from the halo and one from
the background overdensity. In the center of mass (COM) frame, the velocity of the

halo particle in the direction of the relative velocity will change by:

dv = |U](cosf — 1) , (4.1)

where 6 is the scattering angle in the COM frame. Note that dv;/|0] < 0 always.

The total number of interactions is given by:

pbg do —
dN = — || dt d2 4.2
Loz S| dt a9 (42)
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where py, is the density of the background overdensity and do/dS is the differential
cross section.
The total drag acceleration is given by integrating over all interactions, which can

be written as:

- ]_;irag Pbg | =2 / do ~
g = = % — 6 —1) dS) 4.3
(drag mpM  MDM 141 dQ(COS ) v (4.3)

As |Secco et al.| (2018]) show, for an isotropic interaction, this leads to a drag

acceleration of the form:

1 o

adrag = _Z (—) pbg772 s (44)

mpwm

where & = [ do/d§) dSQ is the total cross section. Since we are assuming an isotropic
cross section here, ¢ is just a constant.

However, this does not take into account the effects of evaporation on the halo. If
we allow for evaporation, the drag acceleration is given by (Markevitch et al., 2004;

Kummer et al., 2018)):

Adrae = —— | —— v, 4.5
i =5 (0 ) (45)
where x4 is the fraction of events that lead to deceleration rather than evaporation.
Markevitch et al.| (2004)) find this fraction by considering the momentum change per

collision and comparing this to the escape velocity of the halo. This gives:

1
=1-4 dy >\ y? — 22(1 — 2 4.6
Xa /xQ/(1+x2)yy\/y 22(1—y?) (4.6)

where z = |Uese|/|U] and ves. is the escape velocity for the halo. If we assume a

virialized halo, then vesc = 2v4isp, Where vgisp is the velocity dispersion of the halo.
Both of these cases assume that all of the particles in the halo are traveling

with velocity U. More realistically, the particles in the halo will have some velocity

dispersion. [Kummer et al| (2018) find that, for a Maxwellian velocity distribution,
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this leads to a suppression of the drag force, which is well approximated by:

o= (47)
T+ o

where vg;sp 1S again the velocity dispersion of the particles. The background should
also have a velocity dispersion, but we ignore this for the purposes of this paper since
it will be small compared to the dispersion of the halo.

Our final equation for the contact drag acceleration is then:

- 1 OpM —
contact 2
a = —— — | p . 4.8
drag A XdXp <m ) bgV ( )

Long-range interactions

Long-range interactions describe DM that interacts via a massless mediator. This
introduces angle and velocity dependencies in the cross section, which can be written

as (Kummer et al., [2018; Tulin & Yu, [2018):

do opsinf
— = 4.9
0 (1) s () Y

c 2

where oy describes the coupling strength of the interaction. This is the well-known
Rutherford scattering formula.
To find the drag force, we now proceed similarly as in Sec. [£.1.1 Using Equa-

tion [4.3| we find that the drag acceleration given by long-range interactions is:

1 o ct
»long = [ © I 4.10
Adrag 4 (mDM> pbgw»’g v, ( )
where we define an effective cross section 6 = —327(2 + 7)oy (see |[Kahlhoefer et al.|

2014, for a similar approach).
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Unlike the drag force from contact interactions, the drag force from long-range
interactions is maximized for small relative velocities. The lack of high-momentum-
transfer collisions (for suitably small &/mpy;) means that evaporation is negligible in
this case (see, for example, [Kummer et al.; 2018). The velocity dispersion correction
does not depend on cross section, and so is the same as for the contact case. This

gives a full long-range interaction drag acceleration of:

1 o ct
— long _ _ = Y I 4 11

Intermediate-range interactions

As our final case, we consider intermediate-range interactions, where the mediator
mass can range from massless to infinitely massive (i.e. the contact limit). We do

this by interpolating the drag acceleration between the two previous cases:

: 1 &DM C "
— inter —2 ~
i — 4.12
adrag 4 (mDM) Pog¥ (|"(7|) v ( )

where 0 < m < 4. When m = 0, this exactly equals the contact case; when m = 4,
this exactly equals the long-range case. We do not assume a particular differential
cross section equation; however, we presume that any actual differential cross section
would map onto this form for the drag force. For example, a common cross section

for this type of interaction is (e.g., [Kummer et al., 2018):

do opsind
do _ .
LU (14 ©L" sin? )

(4.13)

where w = mg/my, ¢ is the mediator, x is the DM particle, oo = (4wa*m?)/my, and
« is the coupling constant. We find that this gives similar results to our interpolating

case (see Section [5.3)).
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As with the previous cases, we would like to include the effects of both velocity
dispersion and evaporation. The velocity dispersion does not depend on the cross
section, so this is trivial to add. However, the evaporation effect requires some more
thought. The evaporation fraction calculation requires knowing the differential cross
section equation (Markevitch et al., [2004; Kummer et al., [2018). We circumvent this
by noting that the evaporation rate should be bracketed by the contact and long-
range cases, which means it must be a rapidly decreasing function of the variable m

that governs the range of the interaction. We adopt:

inter

Xqg " =1—(1— xa)exp[—2m]. (4.14)

When m = 0, " = y4; however, when m = 4, " ~ 1 and there is no evapora-

tion. Unless there is some extra physics leads to interesting behavior, the evaporation
fraction should smoothly interpolate between the two cases and this function should
approximately capture its effect.

Then our final equation for this interaction, including all physics, is:
a inter __ _lxinterx a b 172 i " (4 15)
drag 4 d p MpMm g |77’ ' '

4.1.2 Galaxy warping in SIDM

We now know the force on the galaxy halo from these self-interactions. However,
we cannot measure the force directly — we must instead examine its effect on the
morphology of the galaxy. In particular, the displacement between the halo and disk
induced by dark matter self-interactions sets up a potential gradient across the disk,
which warps it into a U-shape. We calculate this warp by considering the difference
in acceleration between the disk’s center and a general point along the disk, following

the methods of Desmond et al. (2018al).
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Figure 4.1: Cartoon of how a warp is induced by SIDM. In this picture, the galaxy’s
stellar disk (orange) and its halo (the center of mass, CM, of the halo is given as
the black circle) are falling within an ambient dark matter medium with the relative
velocity indicated by the blue arrow. As they fall, the halo experiences a drag force
from DM self-interactions, but the stars are collisionless and continue unimpeded.
This causes a separation between the centers of the disk and halo, which bends the
disk into a U-shaped warp.

Let us define the center of the halo to be at the origin of an x — z plane, where

Z points along the disk normal (see Figure . The stars are collisionless, but the
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halo is subject to the drag force derived above. The total acceleration of the halo is:

_’h = _’bg - (_idrag ) (416>

where @, is the gravitational acceleration due to surrounding matter and Ggyag is the
drag acceleration due to SIDM. The total acceleration of a point on the stellar disk
is:

Ly ) (4.17)

where r, is the equilibrium distance from the point to the center of the halo and M,
is the halo mass enclosed within r,. The second term is the restoring force caused by
the offset of the disk from the halo center.

Since we are looking for the equilibrium positions of the stars, we will require that

the stars and DM halo move together. This sets a, = @y, which gives:

Qdrag = — 5 < - (418)

If we assume a spherically-symmetric halo, then the points along the stellar disk

will experience different accelerations:

5 GMhA GMhA V4
Adrag = —5— 2 COs 0 = z( > .

2 2
Ty T

. (4.19)

We will assume that the warp is slight and thus z ~ r,. This now allows us to write
an equation for the z positions of the stars in terms of the drag and the mass of the
background halo:

(4.20)
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To go further, we must assume a mass profile for the halo. We will use a power-law

density profile

o) =ps ()" (4.21)

r

within the extent of the disk, with scale radius 74, p(rs) = ps, and a free index n (e.g.,
n = 1 for an NFW profile). This gives an enclosed mass M, = 4mwp,/(3 — n)r3=".

Substituting this in to our equation for the warp curve above, we find:
z= &drag#]x\" : (4.22)

In order to compare to observations, we would like a summary statistic that can
quantitatively describe the warp. We will employ the w; statistic used by [Vikram
et al| (2013) & Desmond et al| (2018a)) — this is essentially a measure of the average

z position across the disk:
9 L

=— [ Zazdz, (4.23)
L3 J,

w1

where 2/ = z — (2), (z) is the average z(x) value across the disk, and we implicitly
assume a stellar disk that is symmetric about the z axis. Substituting in Equation 4.22

and integrating, we find:

w, =

n(3—n) Qg <L)”

(n+1)(n+2)4xGp, \rs

. (4.24)

e~ =

4.2 Methods

In this section, we describe the construction of our galaxy sample and explain how
we measure the warp curve. Then we describe our model for the estimated warp

produced by SIDM.
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4.2.1 Candidate selection & warp measurement

We use the NASA Sloan Atlas (NSA) (Blanton et al., [2011)) v.1.0.1 catalog?} a catalog
based mainly on Sloan Digital Sky Survey (SDSS) photometry, to select our galaxies.
This catalog contains 641,409 galaxies. General quality cuts (positive mass, radius,
flux, and redshift measurements) reduce this number to 640,566. We select only those
galaxies that have stellar mass greater than 10° Mg and an axis ratio of b/a = 0.15,
which leaves us with 22,414 galaxies. This mass cut allows us to use abundance
matching to set the dark matter halo masses for our galaxies: the galaxy—halo con-
nection for lower-mass galaxies is considerably more uncertain. The axis ratio cut
selects galaxies that are both thin and viewed edge-on. There is some degeneracy
between inclination and warp — an inclined galaxy will always have a smaller warp
measurement if we do not properly account for the inclination. Selecting only edge-
on galaxies therefore makes the warp curve measurement more robust. We select
galaxies within 250 Mpc, which allows us to use the BORG algorithm to estimate
the background density at their positions (see below). Finally, we cut 5 galaxies with
defects in their images (cosmic ray streaks across the disk or no galaxy in the r-band
image at the NSA catalog position or corrupted image file). This leaves a final sample
of 3,213 galaxies.

To measure the warp curves, we employ the methods of [Desmond et al.| (2018al).
We give a short summary of the procedure here. First, we rotate the r-band image
of a galaxy such that the major axis is aligned with the ‘z-axis’. The warp curve is
given by the intensity-weighted z value at each x slice. We then measure the warp

using the w; statistic introduced in [Vikram et al.| (2013):

Z zax 1 L

LILLL

Wiobs = — [ o= = ﬁ/ xz dz | (4.25)
it -L

Zhttps://www.sdss.org/dr13/manga/manga-target-selection/nsa/
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where integration from —L to L allows for asymmetry across the ‘z-axis’ (perpendic-
ular to = on the plane of the sky). In practice, we set L = 3R, where Reg is the

stellar effective radius.

4.2.2 Parameters for estimating the warp

To calculate the expected warp due to SIDM, we require several pieces of information
for each galaxy: the effective radius of the stellar disk (Reg), the density of the
background at the position of the galaxy (pbg), the relative velocity between the
galaxy and the background overdensity (v), the angle between this relative velocity
and the disk normal (6), the scale radius of the DM halo (r), the density of the DM
halo at the scale radius (p;), the power-law index for the DM density profile (n), and
the velocity dispersion of the halo (vgisp)-

We estimate R.g by multiplying the measured Sersic half-light radius from the
NSA catalog, SERSIC_TH50, by the angular diameter distance to the galaxyf} with
the redshift given by the NSA parameter ZDIST.

We find the halo parameters (7, ps, and v4;sp) using halo abundance matching and
N-body simulations. Abundance matching (AM) assigns dark matter halos to galaxies
by assuming a positive, monotonic relationship between the luminosity or stellar mass
of the galaxy and the ‘proxy’, a function of the halo mass and concentration (Kravtsov
et al., 2004). Specifically, we use the AM model of [Lehmann et al. (2017)), which
maps the r-band absolute magnitude, M,., to a halo proxy given by vyir(Vmax/Vvir)%,
with a Gaussian scatter oay. We take the values @ = 0.6 and oAy = 0.16 dex,
which best reproduce clustering statistics. We use the DARKSKY-400 simulation
(Skillman et al., [2014)) post-processed with the ROCKSTAR halo finder (Behroozi
et al., |2013)) for the halo properties. For each matched galaxy—halo pair we calculate

rs and ps from the ROCKSTAR output, assuming an NFW profile (Navarro et al.,

3We assume a flat ACDM cosmology with h = 0.7, Q = 0.7, and €,,, = 0.3 for this calculation.
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1997). Velocity dispersions, vaisp, are calculated by applying the virial theorem to the
halos.

The density of the background, pg, is estimated from the Bayesian Origin Recon-
struction from Galaxies (BORG) algorithm (Jasche et al., 2010; |Jasche & Wandelt,
2012, 2013; Jasche et al., 2015}, |Jasche & Lavaux, 2015; Lavaux & Jasche, 2016; |Jasche
& Lavaux, 2019). This algorithm reconstructs the dark matter density field with a
resolution of ~2.3 Mpc/h out to ~250 Mpc by forward-modeling primordial density
perturbations with a particle-mesh code and comparing this to the number density
field of galaxies in the 2M++ survey (Lavaux & Hudson, 2011). To fill in the smaller-
scale power, we also include the mass associated with the 2M++ galaxies themselves,
which are linked to halos using the same AM routine as above (Desmond et al.
2018b).

We use one of two models for galaxy velocities. First, we set v to the same constant
for all of our galaxies, where we consider velocities from 50 — 10,000 km/s. This is
clearly an idealized case, but it gives us a basic idea of the constraining power of
our dataset. Second, we use the CosmicFlows-3 (CF3) catalog (Tully et al., [2016) of
peculiar velocities. We first assign each galaxy a peculiar velocity, vpec, belonging to
the CF3 galaxy closest to it in 3D space. We then assume that the galaxy is falling
towards the nearest 2M-++ galaxy. The SIDM prediction for the warp we see on the
sky is proportional to the relative velocity projected onto the sky. We assign the
galaxy velocity in the plane of the sky to be equal to the peculiar velocity.

We must then subtract the velocity of the ambient dark matter medium. We
use the public large-scale velocity maps of (Carrick et al., [2015) for this purposeE]
evaluated at the positions of our galaxies. These maps are estimated using linear
perturbation theory and a reconstruction of the large-scale density in the nearby

Universe from the 2M++ catalog. They have resolution 4 Mpc/h, and do not provide

‘https://cosmicflows.iap.fr/
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uncertainty information. We take each of these background velocities and project
them onto the sky. We then subtract this velocity from the total galaxy velocity on
the sky. The magnitude of this projected velocity is what we call v. We then assign
the on-sky angle between this velocity and the disk normal, 8, again assuming that
our galaxy is falling towards the nearest 2M++ galaxy. The CF3 peculiar velocities
and 2M-++ galaxy directions should give us a better idea of the order of magnitude of
these relative velocities. However, we also consider fractions f of the relative velocity
when we use the CF3 velocities — from 1 — 500%. Note that all of our velocities are
in the CMB restframe.

We note that the relative velocities we find here are similar to those seen in
simulations. We find that the distribution of fractional velocity differences ((vpao —
ULS)/Vhalo, With vhae the average velocity of DM particles within Ry;, and vpg the
average velocity of DM particles out to 10 R,; in the direction of halo velocity) in
the Horizon-AGN simulation (Dubois et al., 2014)) is similar to that of the galaxies
in our model, with v,,, approximated by vors and vrg from the large-scale velocity
reconstruction described above. This indicates that the level of halo velocity bias
(Biagetti et al., 2014; Baldauf et al., [2015; |Chen et al., 2018b) in our model is similar

to that predicted by cosmological hydrodynamical simulations.

Parameter Source of Uncertainty Model Used

P(n) Inner DM halo density slope Uniform prior n € [0.5,1.5]

P(ps,rs | My;o,0a0m) | Stochasticity in galaxy—halo connection | 200 mock AM catalogs at fixed v and oam

(
P(ppglZ) Background DM density 10 draws from BORG posterior
P(v) Galaxy relative velocity Delta function at set velocity (see Sec. [4.2.2
P(0) Unknown relative velocity direction Delta function at set angle (see Sec. 4.2.2

Table 4.1: Priors used to find the likelihood of the warp statistic for given &/mpy
and m.

With all of these parameters, we can calculate the predicted w, statistic for each

galaxy using Equation [4.24] for any given &/mpy. However, this equation is for a
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single set of parameter values. We instead want a likelihood function for w; that takes
into account the uncertainties on these parameters. For each parameter, we either
set it directly (v, 0, Reg) or we sample over some prior distribution (all the rest).
For the halo parameters, we perform the AM step independently 200 times, in each
case producing a slightly different galaxy—halo connection due to the stochasticity
introduced by oay. This generates distributions for p, and r,, separately for each
galaxy. We then build our prior for the background density, ppg, by finding the density
within BORG at the position of the galaxy, Z, at 10 independent steps of the BORG
Markov chain. Finally, we use a uniform prior for n from 0.5 to 1.5 independently
for each galaxy. This range is chosen to include the NFW value (n = 1) as well as
profiles that are slightly shallower or steeper.

We then perform Monte Carlo sampling for each galaxy independently to deter-
mine the w; likelihood function. Since w; o &/mpy, we can generate the likelihood
function at ¢/mpy = 1 cm?/g and then simply scale it up or down when sampling
& /mpu:

L (U)l

mpwm

7 - cm2/g,m> :/E <w1
mpm

X »C(Psﬂ”s | Mr;aagAM) ﬁ(pbgav | f)

=1 cm2/g, m, ps, T's, 1, Phg, V, 9)

x P(0)P(n) dps drs dpyg dv df dn ,

(4.26)

where the probability distributions for each of these priors is given in Table [4.1]
We test for convergence of the likelihood function for each galaxy by requiring that
the mean, variance, and skew of L(w:|6/mpy = 1 cm?/g, m) does not change by
more than 1% in the last 10% of the samples, which we find requires at least 100,000

Monte Carlo draws from the prior distributions. Note that by building these distribu-
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tions directly into the likelihood we are effectively sampling from the priors in these

quantities rather than the posteriors, which would be computationally too expensive.

4.2.3 Parameter inference

We now have a measured warp statistic for each galaxy, w;obs, and the likelihood
of a given warp statistic under an SIDM model with ¢/mpy = 1 ¢cm?/g. This en-
ables us to derive constraints on 6 /mpy and m using Bayes’ theorem and a Markov
Chain Monte Carlo (MCMC) algorithm. Note that Equation is linear in 6 /mpm
and in the other factors that affect the particular physics of the interactions, out-
side of m. Thus, for our parameter estimation of &/mpy, we simply sample from
L(wi|6/mpy = 1 cm?/g,m) and then scale by the particular /mpy value the
Markov chain is sampling. We then compare this to the measured w; ops value for
each galaxy, as described below. In the contact and long-range cases, we fix m at the
appropriate values and do not sample over it.

For the most part, the measured warp values are many orders of magnitude larger
than the estimated warp parameters, given a reasonable cross section. In other words,
noise dominates the warp signal. Given that we have no reasonable model for how
other processes may produce U-shaped warps, we assume that the noise is normally

distributed and marginalise over its variance, o2, . This modifies the w; likelihood to:
= 2
o —(w —w

£ (wl,obs T m) €xXp |: ( Lobs 1) :| )

mpwm 20'121)1
(4.27)
In practice, we evaluate this integral by discretizing w; into 50 bins between its

o dw1 ,C
—,m, o = [ —— X wy
Y ) w1
mMpMm \/2mo2,

minimum and maximum values, separately for each galaxy.
We sample this likelihood using the emcee affine-invariant Markov sampler
(Foreman-Mackey et all [2013). We set the flat prior &/mpy € (0,10%) and check

that varying this prior does not significantly change the results. For the intermediate-
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range results, we sample log;,(/mpu/[cm? g7]) € (—20,2). The power-law index,
m, has a flat linear prior over m € [0,4]. Finally, we sample in log,, 0,,, with no
restrictions on its range.

For the contact and long-range interactions, we use 10 walkers and take 20,000
samples, after burn-in. This gives a Gelman-Rubin convergence parameter R < 0.01.
For the intermediate-range case we require = 25,000 samples after burn-in to give

the same level of convergence.

4.3 Results

Our main results are:

1. There is no preference for SIDM (&/mpy > 0) over the null hypothesis that
warps are generated purely by astrophysical or measurement noise. This in-
dicates no net correlation between the direction of the warps and the galaxy

velocities on the plane of the sky, or between the warp magnitude and the

expectation of Equation [4.24]f]

2. For contact interactions, we find a 1o limit of 6/mpy < 0.5 cm?/g for fixed
galaxy velocity v = 300 km/s. Assuming all galaxies have the same velocity,
this limit scales as ~v~2 for v < 1000 km/s. If we use the fractions of the CF3
velocities, we find that the limit scales as ~v~1%. Overall, we place a range of
68% upper bounds on the cross section from ¢ /mpy < 0.2—60 cm? /g, assuming
a galaxy velocity from v ~ 10% km/s — 50 km/s or alternatively considering a

galaxy-by-galaxy variation in v, in accordance with the CF3 results.

3. For long-range interactions, we place a limit of &/mpy(v = 300 km/s) < 3 X

0

10713 ecm? /g, scaling as ~v'? assuming a constant velocity v < 1000 km/s. This

This is predictable from the results of Ref. Desmond et al.| (2018a), who show that there is a
positive correlation between the warp direction and the orientation of the fifth-force field in thin-
shell-screened modified gravity theories, which is largely anti-aligned with galaxies’ velocities.
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scaling goes as ~v 0% for the velocities set using fractions of the CF3 velocities.
Including the possibility of variation in the galaxy velocities, we find a range of
68% upper bounds on the cross section from ¢ /mpy < 2x 1078 —10710 cm? /g,

with assumed median galaxy velocity from v ~ 50 km/s — 10* km/s.

4. For intermediate-range interactions we find that contact-like drag forces are

marginally preferred, with a corresponding constraint on the cross section.

In the rest of this section, we use different assumptions about the relative veloc-
ities of our galaxies to give more detailed results. These results are summarized in
Figures [4.2H4.5] and Table [4.2] Note that in all cases we marginalize over the vari-
ance of the noise term, o,,. We find that o,, is not degenerate with any other model
parameter and its posterior is invariant for all of the models we consider. It is peaked
at the measured variance of w; qs, indicating that it picks up the overall magnitude
of the measured warps. The constraints on SIDM parameters instead depend on the
correlation of w; with environment and galaxy/halo properties.

For the contact interactions case, we give our main results in Figure 1.2l As
described in Section [£.2.2] we use either of two assumptions for the velocities: 1) we
set all velocities to the same value; or 2) we set the velocities to some fraction of the
measured velocities from the CF3 data. The limit on the cross section differs by at
most a factor ~ 2 between these models. Our limits for average velocities greater
than ~ 500 km/s are tighter than the Bullet Cluster constraints (Markevitch et al.
2004; Randall et al., [2008; Kahlhoefer et al., 2014)). In Figure we show how
the evaporation and velocity dispersion effects change our limits. Adding both of
these effects, as is done in all other figures, weakens our limits by about one order of
magnitude, regardless of the velocity scale.

Our long-range limits are given in Figure [£.4] As with the contact case, we
report our limits as a function of the assumed velocity and include two curves with

the different velocity models. The results in Figure [4.4] include the effects of velocity
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Figure 4.2: 68% upper limits on the SIDM cross section assuming a contact interaction
versus the median assumed velocity. We show our limits assuming all galaxies have the
same relative velocities (pink) and assuming they have velocities set by some fraction
of their CF3 velocities (blue). The grey, hatched region gives the range of constraints
on the cross section from the Bullet Cluster (Markevitch et al., 2004; Randall et al.
2008 [Kahlhoefer et al., |2014). The dotted-dashed line gives the minimum SIDM
cross section needed to provide astrophysically interesting effects (i.e., suppression of
small scale structure and DM halo cores; Rocha et al., 2013).

dispersion but not evaporation (see Section [4.1)). We find our limits to be considerably

stronger than those from dwarf galaxy evaporation (Kahlhoefer et al., [2014]).

Finally, we consider the intermediate case in Figure [£.5] This shows the posterior
distributions for 6 /mpy and m, the power-law index for the velocity dependence of
the interaction. Contact interactions (low m values) are slightly preferred, although
this may be solely because they allow a larger volume of the &/mpy prior. As in

the other cases, the limits on &/mpy strengthen when higher velocities are assumed;
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Figure 4.3: 68% upper limits on the SIDM cross section assuming a contact interaction
versus the median assumed velocity. Here we show the effects of velocity dispersion
and evaporation on our results. The black line shows the limits if we do not consider
either of these physical effects. The pink, dotted-dashed line includes evaporation
and the orange, dashed line includes velocity dispersion. The blue region shows the
same limits as Figure which includes both effects.

however, this does not significantly affect the m posterior. Note that we use a log-
prior on the cross-section in this case due to the enormous width of the posterior as
m varies. However, since the posterior peaks at 6 /mpy = 0 cm?/g, confidence limits
depend on the arbitrary lower limit of the prior and are therefore not reliable. The

shapes of the posteriors and their dependence on velocity are nevertheless robust.
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Interaction Type | Assumed Velocity | Evaporation? | Dispersion? || 68% Upper Limit | 95% Upper Limit
km /s em?/g cm?/g
- - 0.19 0.43
v - 0.35 0.76
v = 300
- v 0.27 0.61
v v 0.46 1.0
contact
- - 0.032 0.071
v - 0.26 0.49
U = VUcr3
- v 0.033 0.073
v v 0.28 0.53
N/A - 2.0 x 10712 4.4 x 10718
v = 300 ) )
N/A v 2.7 x 10713 6.1 x 10713
long-range
N/A - 4.7 x 10714 1.2x 1071
U = Vcr3 :
N/A v 3.9x 10713 9.4 x 10713

Table 4.2: Limits on the self-interaction cross section for contact and long-range
interactions

4.4 Discussion

Our results in the previous section show that we can place new constraints on the
SIDM cross section by measuring the warps of stellar disks. In this section, we
discuss possible systematics and how we attempt to mitigate them. We also discuss
the prospects for improving constraints with next-generation surveys.

As shown in Figures and [4.4] the bounds on the cross section are dictated
by the magnitudes of the galaxies’ relative velocities. We have provided a range of
constraints based on different reasonable assumptions, but more robust limits require
more precise velocity measurements. The CF3 velocities have very large errors, in
excess of 100% at times. In addition, the CF3 catalog does not include most of the
galaxies in our sample, forcing us to assign velocities by means of a nearest neighbour
algorithm. Most of our sample is within ~ 10 Mpc of a CF3 galaxy. We find that,

within the CF3 catalog, the velocities are well-correlated on these scales. We therefore

expect this to be an adequate estimator of the true velocity, but caution that it must
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Figure 4.4: 68% upper limits on the SIDM cross section assuming a long-range inter-
action versus the median assumed velocity. We show our limits assuming all galaxies
have the same relative velocities (dashed, pink) and assuming they have velocities set
by some fraction of their CF3 velocities (solid, blue). The black, dotted-dashed line
gives an upper limit from dwarf galaxy evaporation rates (Kahlhoefer et al., [2014).

introduce some uncertainty. Note also that we do not include uncertainties on the
peculiar velocities in our likelihood function. Since the warp depends on the square
of the velocity, including Gaussian (or log-normal) uncertainties always leads to a
larger predicted warp and hence a tighter constraint on the cross section. Our model
is therefore conservative in this regard.

Another possible systematic is the effect of baryonic physics on galaxy morphology.
Most warps caused by tidal or baryonic effects are S-shaped , , and
are therefore effectively filtered out by our choice of warp statistic. Any non-SIDM

contribution to wy is captured to leading order by our noise model (marginalization
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over g,,), but only under the assumption that this contribution is Gaussian and
independent of environment and galaxy/halo properties. Baryonic and tidal effects
are likely to break this assumption to some degree. In addition, gas in the galaxy
will experience hydrodynamical drag from interaction with gas in the intergalactic
medium (IGM), which will lead to a U-shaped warp in the same direction as SIDM.
Thus, including this IGM contribution would tighten our limits, making our current
results again conservative. The location of the gas as well as the dependence of the
measured warp on gas mass would help break the degeneracy between these two types
of physics in the context of future, more precise constraints.

We also neglect the effects of tidal interactions, which could contribute to
anisotropy in halo and galaxy profiles. However, this effect would be largest within
clusters while our galaxies are mainly in the field, so we do not expect it to
significantly bias our results..

On the theory side, we use the fluid approximation to derive the SIDM prediction
for the warp. However, given the low background densities (like most late-types, our
galaxies tend to reside in the field), the fluid approximation is likely not valid for the
contact interaction case. The average background densities near our galaxies is ppy =
330 Mg /kpc3 ~ 2.4peit, where peiy is the critical density today. For v = 300 km/s
and 6 /mpy = 1 cm?/g this gives an interaction time larger than 1/H,. We thus
caution that the contact interaction results are subject to larger uncertainty. The
long-range results also depend on the fluid approximation, but there are many more
interactions because of the nature of the force — the interaction times for this case are
closer ~ 50 Myr, which is less than the typical dynamical times for these galaxies.
These results are therefore more robust.

Finally, we neglected to include the self-gravity of the disk in our calculations.

Desmond et al| (2018a)) found this to be a negligible effect, thus we do not include
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those calculations here. However, as imaging and analysis techniques improve, disk
self-gravity may become a relevant systematic.

With the coming era of large and deep photometric surveys (e.g., LSSTE] (LSST
Science Collaboration et al) 2009), WFIRST[| (Spergel et al) 2013), and Euclidf|
(Laureijs et al., [2012)), we can expect to have a much larger sample of edge-on galax-
ies to test in the future. Assuming that we can continue to measure the properties of
the DM background (density and velocity) in these survey volumes and the galaxies’
peculiar velocities, we can expect these samples to yield considerably tighter con-
straints. To quantify this, we repeat our analysis for the contact interaction case
(with v = 300 km/s and without the velocity dispersion and evaporation effects) us-
ing random subsets of size N of our galaxy sample. This produces a range of results
depending on the subset of galaxies chosen. For each subset size, we record the 68%
upper limits on ¢/mpy. We find that the upper 16% of these limits is well fit by
o/mpmlie X N —99 Tn other words, in the worst case scenario that all of the future
galaxies we obtain have the same constraining power as our least-constraining few
hundred galaxies, we will tighten our limits by a factor of ~2.8 with 10,000 galaxies.
The median limits show that with this same number we can more likely expect at
least an order of magnitude better constraints. Thus, with just 10,000 galaxies, we
can expect limits capable of totally ruling out self-interactions as an astrophysically
interesting DM property. This is even without accounting for any improvements in
the velocity determination and other modeling. We can further improve these con-
straints by finding more thin, edge-on galaxies in high density environments — these
would be expected to have the largest warp signature and thus the greatest constrain-

ing power. We would also want to choose galaxies at relatively low redshifts and with

Shttps://www.lsst.org/
"https://wfirst.ipac.caltech.edu/
Shttps://www.euclid-ec.org/
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high stellar masses, which would reduce uncertainties both in measuring the warps
and assigning halo properties to the galaxies.

In summary, we calculate the expected stellar disk warp due to DM self-
interactions for a variety of interaction types and additional physical processes. We
then compare these to the measured warps of edge-on disk galaxies in the SDSS to
place constraints on SIDM parameters. Our constraints are competitive with limits
from the Bullet Cluster and dwarf galaxy evaporation. These results are conservative
given our treatment of the interstellar medium and velocity uncertainties, although
there remain modeling challenges (e.g., the use of the fluid approximation and the
precise values of galaxies’ peculiar velocities). Given the strong constraints we have
found so far, we believe this to be a fruitful avenue for future work. With more
galaxies, better photometry, and more accurate velocities, we can hope to use galaxy
structure either to detect SIDM or to rule it out as an astrophysically interesting

possibility.

67



U = UCF3
v =300 km/s

0.4
i\ A
0.3
=\ 502 7] A
\‘\ Q‘
| 0.1 1
¥
i 0.0 -
O | | I — ) |
—10 -5 0 0 2 4
logy & /mpn [cm?/g] m

Figure 4.5: Corner plots for the intermediate-range interaction. We show our limits
assuming all galaxies have v = 300 km/s (pink) and assuming they have velocities
set by their CF3 velocities (blue). m determines the dependence of ag.g on the
relative velocity of the halo and background (Equation [4.12)). Note that because we
use a Jeffrey’s prior here for &/mpy and the posterior peaks at ¢/mpy = 0 cm?/g,
the confidence levels depend sensitively on the arbitrary lower limit of the prior and

should not be used: the contour lines in the off-diagonal panel are meant merely to
show the degeneracy direction.
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Chapter 5

Isolated Dwarf Galaxies &

Emergent Gravity

In Emergent Gravity (EG) theory (Verlinde, 2017), gravity emerges from the entan-
glement of spacetime. According to this theory, dark energy has some entanglement
entropy. Baryonic matter displaces dark energy and, due to the volume law contri-
bution to entropy, this causes an elastic response force on the matter. This manifests
itself as an extra gravitational force around massive objects. |Verlinde| (2017)) uses this
elastic response force ansatz to produce an equation for the “apparent dark matter”
given some baryonic mass distribution.

In the limit of a point-source mass, the equation for the apparent dark matter
(DM) in EG converges to the weak limit equation from Modified Newtonian Gravity
(MOND) (Milgroml, [1983)). Thus, Verlinde (2017)) manages to derive the Tully-Fisher
relation within his theory using no free parameters and directly connects the MOND
acceleration, ag, to the energy density in dark energy.

However, EG in its current formulation only applies to the current, deSitter-like
Universe. The equations given in |Verlinde (2017)) are also only valid for spherically

symmetric, isolated systems. Nonetheless, there have been several tests of this theory.
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Brouwer et al. (2017)) study the weak lensing of galaxy clusters, and find it to be
consistent with EG. |[Ettori et al.| (2017) find EG to agree with two large, roughly
spherical galaxy clusters, and [Diez-Tejedor et al.| (2018)) also find agreement with the
mass-to-light ratios of the classical dwarf spheroidal satellite galaxies. Several studies
claim that EG is inconsistent with observations: the initial mass functions of massive
early-type galaxies (Tortora et al., [2018]), the radial acceleration within the inner
regions of spiral galaxies Lelli et al. (2017, and the perihelia of Solar system planets
Hees et al.| (2017). However, all of these tests attempt to apply EG outside of the
currently narrow regime where it makes robust predictions: spherically symmetric,
isolated systems in the nearby Universe.

In this paper, I extend the EG formalism to include more sophisticated mass
profiles that are suitable for predicting the maximum velocities within isolated dwarf
galaxies. I then compare these predictions to observations. These systems fulfill all
of the requirements of the current formulation of EG, and thus provide the strongest
constraints on EG. In Section 2, I derive the equations for specific spherical mass
distributions along with the corresponding “apparent” dark matter predicted from
EG. In Section 3, I describe how I apply these equations to isolated dwarf galaxies.
In Section 4, I compare EG’s predictions for the velocities within isolated dwarf
galaxies to those measured in a recent 21 cm study (Bradford et al., 2015)). I discuss

these results and conclude in Section 5.
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5.1 Apparent DM Distribution Predictions from
EG for Two Realistic Baryonic Mass Distribu-
tions

The goal of this section is to describe the velocity curve for an extended mass distri-
bution in EG. Conservation of energy tells us that the circular velocity, v(r), is given
solely by the mass distribution. For standard ACDM, we simply use the mass distri-
butions of both the baryonic and DM mass. In EG, we instead derive the apparent
dark matter mass distribution from the baryonic mass distribution and then use both
of these to find the velocity curve. In this section, I will derive the apparent dark

matter mass distributions for a spherically symmetric baryonic mass distribution.

5.1.1 Spherically Symmetric Mass Distribution

For a spherically symmetric, isolated system, the apparent DM predicted by EG
(Verlinde| 2017) is

"GM(r) ,,  aor
A Tdr = ?MB(T) s (51)

where G is Newton’s gravitational constant, and ay = cHy. By taking the derivative

of both sides with respect to r, we find an equation for Mp(r),

Mp(r) = T (rMp(r)) (5.2)

Note that if we allow Mp to be a point-mass, then M?%(r) = “6982 Mg, which would

give a gravitational acceleration of

_ G _ [ (5.3)

gD(r) r2 6
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This is just the MOND acceleration in the weak-field limit (Milgrom, 1983) with
ay = 4. Tonly include this as an aside — dwarf galaxies are of course not describable
as point-masses.

Instead, let us consider an extended mass distribution. In particular, let us employ
a deprojected Sérsic profile. These profiles fit the stellar light of galaxies well, and
since we are assuming there is no dark matter, this should also be a good measure of
the mass.

The Sérsic profile of a galaxy is given by

I(R) = I exp [1 — b, (ﬁ) "

i : (5.4)

where I, and R, are the intensity and projected radius at the half-light slice, respec-
tively, and n is the so-called Sérsic index, which is a measure of the concentration
of the light about the center. The constant b, is given by gamma functions (see
Appendix .

To find the mass profile, we must first deproject the Sérsic profile to give the lu-
minosity density. Assuming spherical symmetry, we can then integrate in the angular
directions to give the radial luminosity profile. Mazure & Capelato| (2002)) first found
the exact solution for the radial luminosity profile given a general Sérsic profile, and
I use their results here.

Since we are assuming that there is no dark matter, the mass must follow the
light. Then, the stellar mass profile should be the same as the luminosity profile
except for some scaling factor, the baryonic mass-to-light ratio, Y. This ratio, along
with the effective intensity simply give the normalization of the function, and thus

we let ¥ = I.T, where the process for setting this normalization constant is given in
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Section [5.2.2] The final equation for the baryonic mass profile is

2n+1

Mp(r) =27, S R? (RLG) '

X G1,27n+1

ot | () -G} 0 (5.5)
( > {63, {=(%5))

A1y...,0p
where G | 2 is the Meijer G function (described in Appendix|5.A.2]),

bi, ..., b,
and the ¢;, co, and [ are constants (described in Appendix [5.A.3). Then, the ap-

parent DM predicted by EG due to this realistic mass distribution is given exactly
by

2n+1

Y R? "
Mp(r) =T (_) 2

T AN -Gy
< ) {83, =037} (5.6)

e OO
T (ﬁ) AN ]

For a detailed description of these methods, see Appendix [5.A]

Since this is a spherically symmetric mass distribution, the circular velocity is

given by

r
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5.2 Modeling Isolated Dwarf Galaxy Rotation

Curves with EG

In this section, I apply my equations from Section to real isolated dwarf galaxies.

First, I describe the equations employed in the analysis and then I discuss the data.

5.2.1 Theory

Isolated dwarf galaxies contain a significant amount of HI gas that often exceeds the
amount of stellar mass in the galaxy (Geha et al.,[2006). This HI gas in dwarf galaxies
typically extends far beyond the stellar disk (Broeils & Rhee| [1997). Thus, we must
include the mass profiles of both the stellar mass and the HI gas mass to properly
model the baryonic content of these galaxies.

In addition, real galaxies are not perfect spheres. The equations we have developed
here are thus not entirely accurate. However, we expect them to give reasonable
approximations. In the Newtonian case, the axisymmetric maximum rotation velocity
differs from that of the spherical case by only 15%.

I model the starlight profile as a Sérsic profile with index, n. I model the HI mass
profile as a sphere with an exponential density profile — a Sérsic profile with n = 1.
The scale lengths for each case, R, and Ryy, and the normalization constants, >, and

Yy1, are given by measured quantities, as described in the next section.

5.2.2 Data

To test EG, I use the Bradford et al. (2015) sample of isolated dwarf galaxies in
SDSS DR 8. They choose all galaxies within the NASA Sloan Atlad]] (NSA) catalog
(Blanton et al., 2011)) that have z > 0.002 and M, < 17.72. They then select according

to an isolation criteria: for stellar mass M, < 109'5M@, a galaxy is isolated if dyoe >

Thttp://www.nsatlas.org
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1.5 Mpc. The full Bradford et al. (2015) sample has 546 isolated dwarf galaxies
(M, < 1095 My). For each of these galaxies, Bradford et al. (2015) measure the 21
cm peak flux and line width. The HI gas masses are calculated from the peak fluxes.

The inferred maximum circular velocity in each galaxy is given by

W

2sini (1+2) (5:8)

VUmax =

where Wy is the width of the 21 cm line at 20% peak flux, 4 is the inclination of the
galaxy, and z is the redshift.

It has been found that face-on galaxies (i.e. galaxies with inclinations below ~ 40
degrees), can have significant errors induced by inclination effects (c.f. [Stark et al.|
2009). To mitigate any effects from inclination, I select all galaxies with inclinations
i > 45 degrees from the Bradford et al| (2015) sample. This leaves us with a final
sample of 452 galaxies.

For each of the galaxies in the sample, I use the NSA catalog Sérsic fit values
for n, R,, and M,, and I use the Bradford et al.| (2015) values for the HI mass and
the measured maximum circular velocities. There are no direct observations of the
normalization constants, X, ¥4, X1, and ¥y pr. Instead these must be inferred from
other quantities. I set the normalization constant by assuming that the measured
mass is contained within five effective radii.

To set the effective radius of the HI gas, Ry, I employ the relation by |Lelli et al.
(2016)):

log,y My = (1.87 +0.03) logyq Rur — (7.20 £ 0.03) (5.9)

where My is given in solar masses, and Ryp is given in kpc. The intrinsic scatter of

the relation is oy, = 0.06 & 0.01 dex.
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5.3 Results

Here I present the velocity curves predicted by EG. I also compare the predicted
maximum circular velocities from EG to those measured in Bradford et al.| (2015).
This is a preliminary analysis and should be followed by a full analysis with rotation
curves of these galaxies.

To give an idea of the typical velocity curve produced by EG, let us consider

the velocity curve of a sample dwarf galaxy with the median values from the data

described in Section [5.2.2] These values are all given in Table

Parameters Values

M, 3.98 x 10% M,
R, 2.27 kpc

n 1.14

PN 2.33 x 107 My,
Y 1.49 x 107 M,
My 1.24 x 10° M,
Ry 10.31 kpc

Y 1.95 x 10% Mg kpc™2
S qHI 1.86 x 10% M, kpc™2
Upmeas 82 km/s

Table 5.1: Median values for isolated dwarf galaxies in sample

The predicted velocity curves from EG for the spherical (solid) and point-source
(dotted) cases are given as the blue curves in Figure[5.1] For comparison, I also include
the prediction from Newtonian gravity (assuming only baryonic matter), which is
given by the black line. The median measured maximum velocity from |Bradford
et al.| (2015) is given by the orange, solid line as a reference.

Note that the maximum for all of the cases occurs at r ~ 5 — 18 kpc. This is

many times the effective radius of the stellar content. However, it is ~ 0.5 — 1.7 Ry;.
76



Thus, it is clear that the HI gas is the main driver behind the shape of the velocity

curves, which agrees with the large gas fractions that are observed in these galaxies.
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Figure 5.1: Circular velocity as a function of radius for an isolated dwarf galaxy. The
blue lines give the prediction from EG assuming a spherical baryonic mass distribution
(solid line) or point-source mass distribution (dotted line). The black line gives the
Newtonian prediction (i.e. assuming there is only baryonic mass) for a spherical mass
distribution. The orange, dashed line gives the median measured maximum velocity
from Bradford et al.| (2015).

Figure[5.2, shows the estimated maximum circular velocity from EG for the spher-

ical case versus the measured maximum circular velocities from |Bradford et al.|(2015).

If the theory and observations were perfect, then all of the points would lie on the
line y = z (black line).

I fit a best fit line to the model (assuming all of the galaxies can be treated
independently) using a Markov chain Monte Carlo (MCMC) routine and plot this

as the dashed line in Figure The best fit slope for the spherical model (blue) is
7



m = 0.83 £ 0.02 and the best fit intercept is b = 16.01 £ 1.35. This fit does not allow
for the “perfect agreement” line with m = 1 and b = 0. Even if we conservatively
allow for twice the estimated error on the estimated velocities, the spherical model
would not agree with the “perfect agreement” line. Overall, these are preliminary
results and a more careful analysis with rotation curves is needed to provide robust

statements.

5.4 Discussion & Conclusions

In this paper, I develop the equations for EG’s velocity curve predictions based on
a realistic baryonic mass profile. I then apply this model to isolated dwarf galaxies.
These galaxies contain large amounts of HI gas, which must be treated separately
from the stellar mass. Finally, I compare EG’s predictions for the velocities with the
HI 21-cm line width measurements from Bradford et al.| (2015)) for 452 isolated dwarf
galaxies. As I show in the results section, the predicted velocities from EG do not
agree with the measured velocities.

There are many assumptions made when modeling the baryonic gas mass and it
is entirely possible that any of these could be biasing the EG predictions. Perhaps
the most error-prone parts of the analysis are the choices for the distributions and
the normalization routine.

The baryonic distribution I choose, a spherical distribution based on the Sérsic
profile is highly idealistic. Since these galaxies are mostly composed of HI gas, we do
expect them to be closer to thin disks than spheres. Specifically, HI gas tends to follow
either an exponential or Gaussian distribution within galaxies (Swaters et al., 2002;
Martinsson et al., 2016). Equation shows that the apparent dark matter surface
density increases for larger baryonic potential flux losses through a surface. In other

words, the steeper the baryonic distribution, the more apparent dark matter should
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Figure 5.2: Binned predicted maximum circular velocity from EG versus measured
maximum circular velocities for isolated dwarf galaxies. The blue points give the
results for the spherically symmetric case. The best-fit line to the points is given as
the blue, dashed line. The region around the line gives the 1o confidence interval.
If there was a perfect agreement with the measurements, all of the points would lie
along the black line.
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be in the system, according to EG. Thus, using Sérsic profiles, which are steeper
than Gaussian profiles, gives an upper limit on the velocities EG would predict for
a profile that mimicked these disk profiles. The use of a steeper distribution may
alleviate some of the tension seen in Figure however, it is not well supported by
observational data.

As T describe in Section [5.2.2] I normalize the mass distribution functions by as-
suming that all of the mass is contained within five effective radii. This normalization
routine for each of the profiles is somewhat arbitrary, and it does have a large effect
on the final predicted rotation curves. However, it is not clear that changing the
normalization routine would allow the predictions to match the data while remaining
consistent with observations of the HI content in disk galaxies. The velocities scale
as v o (X, + EHI)I/ 2. To achieve the measured velocities, we would need to increase
the surface densities by a factor of at least four. This increase would also be mass-
dependent, with the more massive galaxies requiring much greater surface densities.
However, this does not agree with observations of HI in dwarf galaxies — many surveys
have found that there exists a tight relationship between the HI mass and effective
radius (Broeils & Rhee, |1997; Lelli et al., 2016). This implies a constant HI surface
density. To be consistent with these observations, a constant normalization increase
would need to be applied. This would only shift the points upward in Figure [5.2
but would not change the shape of the relationship. Thus, either the lowest mass
galaxies would have overpredicted velocities or the highest mass galaxies would have
underpredicted velocities.

In conclusion, I find a discrepancy between the predicted maximum circular veloc-
ities from EG and the measured maximum circular velocities around isolated dwarf
galaxies for the most realistic mass distributions. We need rotation curves of these
galaxies to identify if this discrepancy is due to modeling errors or the inability of EG

to describe these systems. Given that EG is only equipped to handle systems of this
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type, it seems that these discrepancies should be taken seriously as a possible issue
with the theory. The next step is to obtain rotation curves of these isolated dwarf
galaxies. The framework provided in this chapter should allow for a robust test of

EG with these rotation curves. This would provide the best test of EG at this time.
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Appendix

Appendix 5.A Derivations of the EG Equations
for a Deprojected Sérsic Profile

5.A.1 The Sérsic Profile

First, I repeat the equation describing the Sérsic profile

I(R) = I, exp [1 —b, (ﬁ)w , (5.10)

R

where b, is defined by I'(2n) = 2v(2n, b,).

Note that I(R) and R are projected quantities. They do not give the 3D, physical
radius or intensity. To find the physical luminosity (and then the physical mass), we
must deproject the Sérsic profile.

I begin by relating the intensity, I(R), to the luminosity density, n(r),

I(R) =2 /OOO dz n(r) (5.11)

where I assume the luminosity density is symmetric in z. Note that r is the radius
in spherical coordinates and R is the projected radius (i.e. the radius in cylindrical

coordinates). Now, we can change variables using r? = R? + 2. This gives

< ra(r)

R)=2 | s

dr . (5.12)
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I find n(r) by inverting Equation using the Abel Identity (cf. Appendix B.5 of

Binney & Tremaine, |2008)

1 [>*dl dR
L . 1
i) T /’r dR\/R? —r? (5:13)

This is unsolvable for generic I(R). However, the analytic solution to this integral
for the I(R) given in Equation can be expressed in terms of Meijer G functions
(Mazure & Capelatol, 2002)).

5.A.2 The Meijer G functions

The Meijer G functions (see http://functions.wolfram.com/HypergeometricFunctions/
MeijerG/ and http://dlmf.nist.gov/16 for more formulae involving the Meijer
G functions) are generalized hypergeometric functions that give most of the spe-
cial functions we know (i.e. trigonometric functions, Bessel functions, exponential

function, etc.) as special cases. The Standard Meijer G function is defined as

Gm,n > - 7a73 — L / (H;;:nzl F(S + bk’)) HZ:l F(l — ag — 5) >3ds
P 2mi L (Hi:n-}—l F(S + ak)) H%:m—ﬁ-l F(l - bk - S)

bi, ..., b

(5.14)
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A few useful identities of the Meijer G functions are [from DLMF]

m,n
Gpvq

m,n
GP,‘I

m,n
Gpvq

A1y ..., Qp
z

bi,..., b,

A1y...,0p
<z

by,....b,

A1y ..., Qp
z

bi, ... b

a1 +¢,...,ap+cC
Gyt | 2 (5.15)

b1+C,...,bq+C

1—by,...,1—b,

G| 2 (5.16)
l—ay,...,1—a,
. Ap, A1, ..., 0p
m,n—+
Gpiige | 2 (5.17)
bl,...,bq,ao

The derivative of the Meijer G function leads to another Meijer G function [from

Wolfram Functions]

ar,...,0p
m,n
3Gp7q z
by, ..., b
0z

m,n+1
Gp+1,q+1

-l —-1,...,ap, - 10,1 —1,...,0,—1

by —1,by —1,0,bpyy — 1,..., b, — 1

(5.18)
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By combining Equations & 15.15, T find the following useful formula

l—a; Ym,n
O z27G | 2

"7bq al—l,ag,...

0z

By differentiating the left side of Equation I find

a ag, ..

m,n
z GM z

0z

by, ...
S,y ay — 1,ag,...,q,
_ m,n
_Gp,q <
» bi,.... b,
Q1,...,0p
m,n
+ (a1 =G | 2
bi,..., b,

5.A.3 The Radial Mass Profile

(5.19)

(5.20)

Here I will give the radial mass profile for a generic Sérsic profile following the treat-

ment of Mazure & Capelato (2002). This is easily modified to give either the stellar

or HI mass profiles using the correct n, R, and X.

Define the Sérsic profile in terms of dimensionless quantities
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Then, the deprojected radial luminosity profile is given by

L(s) = 4x /OS sv(s')ds’ . (5.25)

Since I am assuming that the mass follows the light, the radial mass profile is Equation

times the mass-to-light ratio, T,
M(s) = 47TT/ s?v(s")ds’ . (5.26)
0

Mazure & Capelato (2002)) find that the analytic solution to this integral for a Sérsic

profile is

2n+1 on.1 {_ (%)}7 {}
M(s)=21Ycis n Gl | 28 : (5.27)

{ﬁs}v {_ (%)}

where

o = lzgi}){s[b;] (5.28)
B bn 2n
_ J—1 (J—2

Pe = { ( 2n )1<j<n,( 2n >n+1<j<2n} . (5:50)
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5.A.4 EG Predictions

To give values predicted by EG, I must find %. First, I differentiate Equation

using Equation which gives

M i O
o5 = 47TT013%G372’2 Cos” . (5.31)

{63 {3

Now, I need to express dM/ds and M(s) in terms of r instead. This is done using
the definition for s given in Equation and accounting for the extra factor of 1/R,
from the change of variable in the derivative. However, I also need to account for
how I began with a dimensionless luminosity density by multiplying both dM/ds and
M(s) by I.R% Then,

P\ A e O
M(r) = 27rc12R3(—) G5 cz(—e) I ;

A e 0
T = Amash. (ﬁ) o | (E) 6y o]

2n+1

M(r) = ﬂ<_> T GIC I

3G R. s | €2 (éf

{BS}v {_ (%)}

r o\ 2

{+ {
Re ] ’

{ssr {3

where ¥ = I.T.
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Chapter 6

Baryon Acoustic Oscillations &
General Modified Gravity Theories
of Dark Matter

In Chapter 5, I discuss one particular type of modified gravity theory that attempts
to explain dark matter. This is just one of many, wildly different theories, which
are difficult to test in bulk. However, almost all of these theories specify a different
gravitational force law that uniquely depends on the baryon and photon density fields.
If we can directly measure how the baryon and photon density fields evolve with time,
then we can calculate the predicted signal from these theories.

Cold dark matter (CDM) accurately explains how structure forms from initial
density perturbations and how these perturbations are imprinted in the cosmic mi-
crowave background (CMB; |Lifshitz, |1946; Peebles & Yu, |1970; Sunyaev & Zeldovich,
1970; [Bond & Efstathiou), [1984). In short, CDM forms potential wells early in the
Universe’s history. Baryons attempt to fall into these potential wells and are then
pushed out by the radiation, to which the baryons are coupled. This causes sound

waves to form in the baryon and radiation structure. These baryon acoustic oscilla-
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tions (BAO) are seen as oscillations in the CMB and in large-scale structure at low
redshift. After recombination, the baryons are allowed to fall toward the CMB po-
tential wells, eventually forming galaxies and clusters. Any modified gravity theory
for dark matter must also explain this evolution.

In this chapter, here outline how to determine the infrared (IR; i.e., low-energy)
behavior of any theory that does not have dark matter based on linking the baryon
density field at recombination (z ~ 1100) to the baryon power spectrum at low
redshift (z ~ 0). Any successful theory for dark matter must properly explain how
the baryon density field at z ~ 1100 evolves to the one at z ~ 0. These density
fields are typically probed indirectly through fitting the CMB power spectra and the
matter power spectrum in tandem (e.g., [Spergel et al., 2003; Planck Collaboration
et al., 2018). This necessarily assumes ACDM (or some simple extension) as well as
general relativity (GR). The test we propose here does not invoke GR nor a specific
cosmology. Instead it relies solely on small-scale physics — Thomson scattering and
the Newtonian continuity equation. Note that while similar tests have been proposed
before (McGaugh, 2004; Dodelson, 2011)), they have not been explicitly laid out or
calculated for general modified gravity theories.

The polarization of the CMB on small scales is exclusively due to Thomson scat-
tering, which itself only relies on the velocities of the electrons. Because protons and
electrons are tightly coupled via Coulomb scattering at early times, we can assume
that the velocities of the electrons exactly equals that of the protons. The CMB
polarization spectrum then directly measures the velocity of the baryons at z ~ 1100.
The Newtonian continuity equation relates the velocities of the baryons to their den-
sity field and is valid at small scales. Thus, the CMB polarization spectrum is a
direct measurement of the small-scale baryon density field at z ~ 1100. At z ~ 0,
the galaxy-galaxy correlation function traces the baryon density field at large scales.

With these two direct measures of the baryon density field, it is straightforward to
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then define the form an alternate theory of dark matter must take in the IR. We will
combine observations of the CMB and the galaxy power spectrum at low-redshift to
determine the required Green’s function of structure formation between these red-
shifts for these alternate theories. This Green’s function has a distinctive form as it
must suppress the baryon acoustic oscillations by nearly an order of magnitude, as
well as greatly increase power on small scales.

Our chapter is organized as follows: Section describes our theoretical frame-
work for this test; Section [6.2] describes the data we use for our test; Section [6.3| gives

our preliminary results and discusses our planned future work.

6.1 Theory

In this section, we describe the theoretical framework for determining the IR behavior
of modified gravity theories for dark matter. We first outline the steps for finding the
baryon power spectrum at both z ~ 1100 and z ~ 0. We then show how to use these

both to define the IR behavior.

6.1.1 The Baryon Power Spectrum at z ~ 1100

The polarization of the CMB can be related to the velocity of the baryons as (Zal-
darriaga & Harari, [1995):

A, (R, %) = Q) +iU(R) ~ 0.1TAT ' 11! O;v; (6.1)

where A, is the polarization fluctuation, () and U are Stokes parameters, n is the

direction of observation (i.e. into the sky), A7, is the width of the last scattering
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surface, m is a 2D unit vector on the plane of the sky, and v is the baryon velocity
on the skyﬂ.

As an example to gain more intuition, let m = & + iy and consider n = 2. Then:
Q(n) +iU(n) = 0.1TAT, [(0yv; — Oyvy) + 1(04v, + Oyvs)] - (6.2)

In other words, ) x V - v and U & V x v. Note that the velocity due to density
perturbations is irrotational, which implies that U = 0. However, this is only for one
particular direction (along the Z-axis). In general, we must consider all directions on
the sky and there will be both ) and U polarization.

Now consider the small-angle approximation. Here we specify that all wavevectors,

E, are close to our n. In Fourier space, this gives the equation:
A, (7, k) =~ 0.17TArikv, , (6.3)
where k = |E |. Then, the polarization power spectrum on small scales is:
(A (7, k)AL (R, k) & (0.17)2 ATk} (6.4)

Typically, polarization results are reported using £ and B-modes, which are just
a rotation of the Q)-U basis. This basis is specifically chosen such that there are no
B-modes on small scales in the early Universe — instead all of the polarization is

given by E-modes. Thus, the polarization power spectrum is just the E-mode power

spectrumﬂ:

Prp(k) = (0.17AT)? kv (k) (6.5)

!Note that the dipole moment of the CMB temperature gives us the final component of the
velocity, v,..

2Note that there is an extra term related to fixing the basis for the E-B decomposition. However,
this should be ~ 1 under the small-angle approximation.
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Now we must connect this equation to the baryon density power spectrum. The
continuity equation is a natural choice. At small scales, we can ignore any changes in
the potential and simply treat the baryon-photon fluid as a normal Newtonian fluid.

Then the continuity equation in Fourier space is:

where " = £ (conformal time).
We can simplify this equation by considering 5b(k) further. All linear modes evolve
independently, thus we can parameterize 6(k,7) = 0p(k, 7 = 7.)D(7), where D(7) is

the growth function and we set D(7 = 7,.) = 1. Then:

0(k) = ok, T = 7.)

= 6y(k, 7). H, (6.7)

where f, is the growth factor and H, is the Hubble factor normalized such that they
are both unity at 7.
Equating our two expressions for 5b(kz,7') then gives an equation for the baryon

density in terms of the velocity:

—ikvy(k, T)
ok, 7) = ———= 6.8
(k) = = (©5)
With this formalism, the baryon density power spectrum is:
k*vi(k,T)

Py (k, z ~ 1100) = W (6.9)

Finally, we can equate this to the EFE power spectrum using Equation [6.5}

Ppg(k

Py(k, z ~ 1100) = e () (6.10)

(0.17AT,)2f2H?
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In other words, the baryon power spectrum at z ~ 1100 is, up to a normalization

factor, equal to the EFE power spectrum.

6.1.2 The Baryon Power Spectrum at z ~ (

The baryon power spectrum at z ~ 0 is more straightforward to deduce. The baryons
at low redshift and large scales (2 10 Mpc) are well-traced by the galaxies. Thus, we
can take the 3D power spectrum of galaxies as the baryon power spectrum. This is
given by:

Py(k,z ~0) = by, Pyy(k,z ~0) (6.11)

where by, is the bias of baryons relative to galaxies and Py, is the 3D galaxy-galaxy
power spectrum.

To find the galaxy-galaxy power spectrum, we measure the correlation function,
13 (5) — this is just the Fourier transform of the 2D power spectrum. This must then be
de-projected using the window function appropriate for the particular galaxy survey
(see, e.g., [Dodelsonl 2003).

In reality, the galaxies are a biased tracer of the baryons. Most of the baryonic
mass in the universe is in gas (de Graaff et al) |2019)). However, we expect that for
k < 0.1 Mpc™! the bias, byg, approaches 1. This is seen in numerical simulations
(e.g., [Springel et al. 2018), and violating this would require moving baryons large

distances. Thus, the galaxy-galaxy power spectrum should be a good measure of the

baryonic power spectrum at these large scales.

6.1.3 Infrared Behavior of Modified Gravity

We now have the baryon power spectrum at z = 1100 and z ~ 0 from directly

measurable quantities. Our goal is to use both to determine the necessary IR behavior
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of modified gravity theories. We use the formalism of the transfer function for this
purpose.

In the absence of CDM, the cosmological evolution of large-scale structure is
simple. We observe the large-scale distribution of baryons at z ~ 1100 and at z ~ 0.3.
Any successful theory for dark matter must explain how the universe evolved between
these two redshifts. Since the fluctuations on large scales are small, we expect that
the theory will be perturbative and we can describe the growth of fluctuations by a
linear transfer function.

In ACDM, baryons fall into the dark matter potentials. This imprints the large-
scale distribution of the dark matter on the baryons. Thus, the transfer function of
CDM, along with the initial spectrum of fluctuations, is all that is needed to accurately
describe the matter power spectrum. The baryon power spectrum follows directly by
using the CDM potential created by the evolution of these perturbations. However,
if we no longer have CDM in our model, the baryon transfer function itself must
encode all of this information. In modified gravity theories of dark matter, the baryon
transfer function must account for all of the changes in the baryon perturbations from
early to late times.

The matter power spectrum depends on the transfer function as: P(k)
Py(k)T?(k), where P, is the primordial spectrum of perturbations. In analogy to

this, we can define the transfer function:

X Po(k. 2 ~
T2(0) = i

- . 6.12
Py (k, z = 1100) (6.12)

T, 2(k) describes how the baryon perturbations evolve from z = 1100 to z ~ 0. We
use the hat here indicate this is different from the normal transfer function.
Any theory for dark matter must adequately explain both the shape and normal-

ization of T2(k). Our transfer function can be exactly represented with measurable
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data and does not rely on any assumptions about underlying theories, outside of the
small-scale physics described above. It is also possible to find the theoretical solutions
for any well-formed dark matter or modified gravity theoriesﬂ In this chapter, we
will focus solely on the shape of Tlf(k) — a more precise analysis is required to use the
normalization as well.

As a way of building intuition, we will also consider the Fourier pair of the transfer

function — the Green’s function:
k2 .
Gur) = Go [ dh o Tik)ia(hr) (613)

where Gy is a normalization term that we arbitrarily set such that G(r = 0) = 1.
This functions shows, in real space, how the perturbations evolve between these two

redshifts.

6.2 Data

We require two main pieces of data: the F'E power spectrum from the CMB and the
galaxy-galaxy 3D power spectrum at low redshift. We describe how we obtain each
of these and our modifications to the data below.

For the FE power spectrum, we use the Planck 2018 angular power spectrum
(Planck Collaboration et al., 2019a)). The data is given as multipoles, CFE. of the
2D power spectrum. We must convert this to the 3D power spectrum, Ppg(k). We

approximate [ = kn,, where 7, is the conformal distance to the last scattering surfacdﬂ

3We take “well-formed” to mean that a theory has a cosmology associated with it that allows for
the evolution of initial perturbations to today.

4Note, that this does require setting a cosmology. We use the |Planck Collaboration et al.| (2018
measured distance to the last scattering surface. In principle, it may be possible to set 7, without
setting a cosmology — instead, we might be able to use the alignment of the peaks in each of the
power spectra. We leave this issue to future work.
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Then, to order unity, the 3D power spectrum is (Bond & Efstathiou, [1984)):

(2m)°n?
2

Prp(k) ~ CEL. - (6.14)

We bin the CFF data into 50 [-bins to increase the signal-to-noise. We also only use
[ < 1200, due to the high noise seen in the data above this point.

We use the data from [Beutler et al. (2016) for the galaxy-galaxy power spectrum
at low-z. Beutler et al| (2016) measures the BAO signal from galaxies in from z =
0.2 — 0.75 using the Sloan Digital Sky Survey-III (SDSS-III; Eisenstein et al., 2011))
Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data set (Dawson et al., 2013;
Alam et al., [2015). As part of this measurement, they also calculate the 3D galaxy-
galaxy power spectrum in 3 different redshift bins. We use the lowest redshift bin,
z = 0.2 — 0.5, which has an effective redshift of z = 0.38. The galaxy-galaxy 3D
power spectrum is calculated from the correlation function, as explained briefly in
Section This is measured from k = 0.016 —0.15 h Mpc™'. We use their fiducial
value of h = 0.676 to transform to physical units.

When the 3D power spectrum is measured, it is typically decomposed into multi-

poles:

Bi(k) =) Pk)Li(k), (6.15)

where £;(k) are the Legendre polynomials. We here consider just the monopole, [ = 0
moment of the power spectrum, which is the angle-averaged power spectrum. This
effectively removes ‘fingers of god’ and other non-linear effects.

We only use the data from each survey where they both overlap in k. This range,
k = 0.01 —0.126 h Mpc™', corresponds to small scales (i.e. much smaller than the
horizon) today and at recombination.

In Figure [6.1 we show the baryon power spectrum at z = 1100 and z = 0.38. As

can be seen, the proper dark matter theory must somehow explain how the z = 1100
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Figure 6.1: Left: Baryon power spectra at z = 0.38 (black) and z = 1100 (blue). The
low-redshift power spectrum is derived from Beutler et al. (2016]). The high-redshift
power spectrum is derived from the Planck Collaboration et al. (2019a) E'E power
spectrum using Equation [6.10f The black, dashed line gives the acoustic scale, as
given by [Planck Collaboration et al. (2018). Right: The baryon power spectrum at
z = 0.38 normalized by the smoothed power spectrum, as given by the no-wiggle
form in [Eisenstein & Hul (1998). This emphasizes the BAO signal in the low-redshift
spectrum and it roughly agrees with previous simulations work (Seo et al., 2008).
Note that the k-range in this panel is larger than in the left panel.

spectrum smooths out and increases in power on small scales. Note that the BAO
‘wiggles” in the low-redshift power spectrum look much weaker than those in the
CMB-derived spectrum. This is just due to the normal evolution of perturbations

over time. Some authors plot the BAO spectrum in a way that emphasizes the wiggles

(see, for example, Seo et al. [2008) by dividing out the ‘smooth’ power spectrum. We

show this in the right panel of Figure 6.1 where we use the no-wiggle form of the

transfer function given by [Eisenstein & Hul (1998).

We also indicate the acoustic scale as the dashed, black line on all plots in this

chapter. We use the (Planck Collaboration et al., 2018) value for 6, to set the angular

scale of the sound horizon. We then convert this to an [ value via [, = 7/6,. Finally,

we obtain the k value using k, = . /..
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6.3 Results & Discussion

Our transfer function is shown in Figure [6.2] This makes the exact evolution of
perturbations needed apparent. Power should grow the most on small scales. This

aligns with the standard CDM picture.

10t 4
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Figure 6.2: Baryon transfer function from z = 1100 to z = 0.38. This shows how
the baryons perturbations must evolve. Any dark matter theory must reproduce this
transfer function.

We show the associated Green’s function in Figure 6.3l This shows, in physical
space, how the matter must move between these two redshifts. Namely, we expect
extra matter at centrally peaked positions. This is exactly the effect we expect from
CDM. Note that the exact form of the Green’s function depends heavily on the
behavior of the transfer function at high-k. We cannot directly probe this with our
current data and so we try a few different assumptions: 1) T?(k > kyax) = 0 (black
line); 2) T*(k > kmax) = T?(kmax) (blue, solid line); 3) T?(k > kmax) > T?(kmax),
with a cubic spline fit used to find the form (blue, dashed line). These assumptions

mostly change the height and phase of the secondary peaks in the Green’s function.
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Regardless of the form at high-k, the Green’s function shows oscillations near the
BAO scale. Thus, any alternative gravity theory would need to contain this scale to
suppress the BAO features over time — changing them from dominant at z ~ 1100 to

very low amplitude at z ~ 0.4.

Only k-values in data
 THE = dpax) = T2k = bpax )

.8 ---- Extrapolation

0.6

G(r)
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0 20 10 60 80 100 120 140 160
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Figure 6.3: Green’s function for the transfer function in Figure This shows, in
real space, where the extra mass must be located to produce the correct perturbations
at z = 0.38. Note that the shape here depends on the assumed shape of the transfer
functions at & > 0.1 Mpc™'. The black line shows the results when we set this range
to 0. The blue line gives the results if we set T*(k > kpax) = T?(k = kmax). The
dashed, blue line shows the results if we use a cubic spline fit to extrapolate the
transfer function — this assumes that the transfer function continues to increase at

higher k.

We can go one step further here. First, consider the momentum equation:

v+ —=v=a, (6.16)
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where R is the scale factor and a is the acceleration. Taking the time derivative of

Equation the divergence of Equation [6.16] and combining we find:
a=———=uv. (6.17)

In GR, ika = k*¥, where ¥ is the Newtonian potential. This produces the
equation & + ik%v = —k*VU = 47Gp.
If a modified gravity theory is just a linear modification of GR, then we can write

the acceleration as:
a=F(k)agr = —tkF(k)® = —ikF(k)Ter(k)D(t)®,(k) , (6.18)

where F'(k) is the modification to GR, Tgr is the GR transfer function, D(t) encodes
all of the time dependence, and ®,(k) is the primordial potential (again, assuming
GR).

In other words, if we measure the transfer function accurately, we get:
T(k) = F(k)Tgr(k) . (6.19)

Thus, if we can accurately measure the transfer function, we can determine the
form the acceleration equation of a modified gravity theory must take.

Any local modified gravity theory must satisfy the constraint we have laid out in
this chapter. However, it is possible for nonlinear theories to evade this test — we
assumed that modes were independent. A more general version of this test would

include mode-mixing. Namely, the transfer function would be:

Pp(k,z ~0.3) = /dk’Pbb(k/, 2z =1100)T%*(k, k) . (6.20)
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We can also consider this in terms of the acceleration picture we discuss above.
It must be linear to first order since we see that fluctuations on large scales (and at
early times) are linear. If we make the further assumption that the acceleration at

0 =0 is a = 0, then, to second-order the acceleration relation must be:

a(k) = f(k)5(k) + / ok, K3 (R)S (KK . (6.21)

From the Equation [6.18] we see that F' can act as a either a transfer function or
as a modification to the primordial spectrum. Thus, fo(k, k") can be constrained by
limits on primordial non-Gaussianity.

However, this would be subject to the constraints on primordial non-Gaussianity.
The best current constraints on local non-Gaussianity are fi2r* = —0.94 5.1 (Planck

Collaboration et al., 2019b), where fyr, is defined as:

5(R) = 60 () + g fNLﬁ / BRS(E)S(F) (6.22)

There is also a low-redshift constraint on fy;, using a combination of large-scale
structure data (mostly galaxy surveys) of —29 < fx1, < 70 (Slosar et al., 2008). We
defer further discussion of these issues to future work.

Two popular theories of modified gravity, modified Newtonian dynamics (MOND;
Milgrom), |1983) and Emergent Gravity (Verlinde, |2017), do not seem to have forms
suitable for the Green’s function we show here. While neither of these theories have
actual cosmologies associated with them, their Newtonian forms at large scales do
not seem promising. The accelerations in both theories scale as ~ vVGM /R. This
would then predict a power-law Green’s function: nothing like what is needed to fit
the cosmological observations noted in this chapter. In particular, neither predict a
special scale at the BAO scale. Perhaps, mode-mixing at early times could allow for
this to be remedied (McGaugh, [2004)); however, it is unclear how this could occur
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while still leading to the 1/R force law and not defying primordial non-Gaussianity
constraints.

The work in this chapter is preliminary. In the future, we would like to make
our calculations more robust, particularly the transformation of the C;’s to a 3D
power spectrum. We also hope to make our test totally independent of cosmology
by mapping the [’s to k’s without the use of the distance to last scattering. Finally,
we would like to develop the acceleration picture further, particularly with respect to
using the primordial non-Gaussianity constraints to place limits on nonlinear theories.
In fact, it might be possible to show that a nonlinear theory that produces the BAO
feature at the correct scale is incompatible with current non-Gaussianity constraints.

In this chapter, we outline the steps needed to test modified gravity theories
using the baryon power spectra at z ~ 1100 and z ~ 0.4. We found the high-redshift
power spectrum by using the CMB E F polarization spectrum, as measured by Planck
Collaboration et al. (2019a). We take our low-redshift power spectrum from the SDSS
BOSS galaxy power spectrum results (Beutler et al., 2016]). We find that whatever
modified gravity theory for dark matter that takes us from z ~ 1100 to z ~ 0.4
must have a very peculiar and specific form, as illustrated by the transfer function in
Figure [6.2] This work is preliminary, but we think it shows promise for determining

the necessary IR behavior of modified gravity theories without dark matter.
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Chapter 7

Conclusion

This dissertation contributes some ways we can use gravitational waves to test theories
of gravity and black hole dynamics, and some tests of dark matter theories. Hopefully,
the tests outlined here will be useful as we continue to gather more data on our

universe. In summary, here are the main takeaways from each chapter:

e Chapter 2} The agreement between the distances derived from gravitational
waves and electromagnetic waves to GW170817 show that we do not live in
extra spatial dimensions — or at least, if we do, then they must be very small
or behave just like 3+1 dimensions until very large scales. We also know that

the graviton must have a lifetime greater than ~ 500 Myr.

e Chapter [3; We found a binary supermassive black hole system and we use it
to predict that we should observe the gravitational wave background within a
decade. If we do not see the signal by that point, then there may be a final

parsec problem.

e Chapter 4} Self-interacting dark matter would produce U-shaped warps in disk
galaxies. We do not see these warps in the galaxies that should have them, so

we can place competitive limits on the strength of dark matter self-interactions.
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With more galaxies, we will be able to totally rule out self-interacting dark

matter as an interesting candidate for dark matter.

e Chapter [5} Verlinde’s Emergent Gravity theory does not properly predict the
rotation velocities of isolated dwarf galaxies, which are perfectly suited for test-
ing the theory. The results are not conclusive, but the formalism given in the
chapter should allow for conclusive results once enough rotation curves are ob-

tained for these galaxies.

e Chapter [6f We can use both the cosmic microwave background polarization
spectrum and the low-redshift galaxy power spectrum to show the form a mod-
ified gravity theory must take to explain the evolution of structure in the uni-

verse.

What are the interesting next steps? I think there are two avenues that are exciting
to pursue after this work: 1) continue to look for more binary supermassive black holes
and further develop what a pulsar timing array detection of the gravitational wave
background will tell us about supermassive black holes; 2) find more tests of dark
matter properties.

For the binary supermassive black hole work, we have already begun this next
step. We recently obtained data for many objects like the one featured in Chapter [3]
A preliminary analysis seems to show that this is indeed a good method for finding
supermassive black hole pairs reliably. Another work I have been involved in shows
that several different estimates for the stochastic background, based on supermassive
black hole populations, seem to give remarkably similar answers. This is all tentative,
but I am excited to see what we can learn about the GWB and what it can teach us
about black hole dynamics and supermassive black hole evolution.

The next decade will bring several new survey telescopes (e.g., WFIRST, LSST,
and Euclid) that will give us invaluable data on the structure of matter in our galaxy
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and the universe. How can we best use this data to learn more about dark matter?
Can we totally rule out modified gravity theories? Can we confirm any other prop-
erties of dark matter? Compelling data for a specific property of dark matter would
totally revolutionize our understanding of this mysterious substance, and perhaps

lead us closer to its true nature. I am eager to keep working on these tests.
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