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Abstract

There remain several unanswered questions about gravity in our universe: Does gen-

eral relativity accurately describe gravity? Do supermassive black holes ever merge?

What is the dark matter? Can it be explained by an alternative theory of gravity?

This dissertation develops several astrophysical tests that serve to further our under-

standing of gravity, black holes, and dark matter. The first section of the thesis de-

velops two tests using gravitational waves: 1) using a recent gravitational wave event,

GW170817, to place limits on extra spatial dimensions; 2) using a newly discovered

supermassive black hole binary to place limits on the gravitational wave background

and its implications for the ‘final parsec problem’. The second half of this thesis de-

velops three tests of alternative theories for the dark matter: 1) self-interacting dark

matter using galaxy warps; 2) a specific modified gravity theory, Verlinde’s Emergent

Gravity theory, using isolated dwarf galaxy kinematics; 3) general modified gravity

theories using the cosmic microwave background polarization spectrum and the low-

redshift galaxy correlation function. As we enter the next era of galaxy survey data

and gravitational wave observations, these tests and others like them will hopefully

bring us closer to answering these questions about gravity and our universe.
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Chapter 1

Introduction

Over the last several centuries, we have gathered an incredible amount of data about

our universe. From the data that we collect, we create theories for how the universe

works. Of course, as soon as we create a new model for our universe, we soon find

evidence that this may not be the full picture. For example, it was believed that New-

tonian gravity could perfectly explain the planets’ movements around the Sun. Then,

Uranus’ orbit was found to have certain irregularities that could not be accounted

for by applying Newtonian gravity to the 7 known planets of the solar system at

the time. This led astronomers to posit that there must be another planet that we

had not yet identified (Le Verrier, 1846b,a) – this turned out to be Neptune (Galle,

1846; Adams, 1846). Mercury also has an irregular orbit that was noticed not long

after (Le Verrier, 1859). Again, astronomers believed it was an extra planet, named

Vulcan, that must be perturbing its orbit (Le Verrier, 1859); however, this was ac-

tual evidence for a departure from Newtonian gravity. Einstein’s theory of general

relativity (GR) beautifully predicts the correct deviation of Mercury’s orbit from the

Newtonian prediction (Misner et al., 2017; Nobili & Will, 1986).

The moral of these stories is two-fold: 1) data can illuminate new, totally unex-

pected, departures from our current models and we should continue to look for tools
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that can help us find these issues; 2) our first theories for how to explain phenomena

may not always be correct – we must continue to test theories and develop new ones

that may explain those phenomena that are not yet fully understood.

In this thesis, I will touch on both of these themes. The first half of my thesis

is dedicated to gravitational waves, disturbances in spacetime caused by events like

black hole mergers. These distortions of spacetime are a new way of seeing the

universe that will hopefully lead to new, unexpected discoveries. I will discuss how

we can use gravitational waves to learn more about the structure of spacetime and the

dynamics of black holes. The second half of my dissertation focuses on dark matter.

This substance is a signal that our theories for the universe may not be correct, and

it is one for which we still do not have an adequate explanation. I will discuss how

we have tested a few different theories for dark matter.

1.1 Gravitational Waves as a Tool for Testing New

Theories

Until recently, all of our observations of the universe were made using electromagnetic

signals (i.e. light). On September 14th, 2015, the Laser Interferometer Gravitational-

Wave Observatory (LIGO) observed gravitational waves for the first time (Abbott

et al., 2016). Gravitational waves are distortions of spacetime that are predicted

by GR (Einstein, 1916, 1918). When extreme events, like the collision of two black

holes, occur they release energy into spacetime itself, which leads to a propagating

wave of distortions in spacetime. LIGO measures these distortions by monitoring the

length of two ‘arms’ very precisely. Gravitational waves lengthen distances in one

direction while shortening distances in the perpendicular direction. These waves are

now another way we can observe the universe.
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1.1.1 GW170817

On August 17th, 2017, a very special gravitational wave event occurred: two neutron

stars merged with each other and produced both gravitational waves and light (Ab-

bott et al., 2017c,b). This event, known as GW170817, allowed us to directly compare

how gravitational waves and electromagnetic waves move through spacetime. In par-

ticular, we can use this event to place constraints on the damping of gravitational

waves, which is predicted by some theories with extra spatial dimensions (Deffayet

& Menou, 2007). These theories predict that gravitational waves should decrease in

amplitude as they travel through spacetime; however, the same should not happen

to photons. In GR, this does not occur, and so the distance to a gravitational wave

event is related to the amplitude of the signal by1 ∝ 1/distance (Misner et al., 2017).

This formula does not account for any damping that may occur if gravity behaves

differently than GR. Thus, if we use this formula and there is damping, we would pre-

dict the wrong distance with the gravitational waves – we would think it was further

away than the true distance.

Without other observations, we would not be able to measure the true distance and

we would not know if gravitational waves are damped. But, we also received photons

from GW170817, which are not biased by the damping that affects gravitational waves

in these theories. Thus, given a few other reasonable assumptions about our universe,

we can exactly measure the distance to GW170817 using just the photons. If the

gravitational wave distance is very different from this electromagnetic distance, then

that would be evidence for damping of gravitational waves. In Chapter 2, I discuss

how we use GW170817 to place constraints on these extra-dimensional theories.

1Note that this is the same as the electromagnetic relation; however, we normally see the equation
for light in terms of flux instead of amplitude. The flux is related to the distance as ∝ 1/distance2.
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1.1.2 Supermassive Black Holes and Nanohertz Gravita-

tional Waves

The gravitational waves that LIGO measures are created by neutron stars and stellar

mass black holes; but, these are not the only sources of gravitational waves in the uni-

verse. We know that most massive galaxies host supermassive black holes (SMBHs),

black holes that are 1 million times the mass of the sun or greater, at their centers

(e.g., Kauffmann et al., 2003). As galaxies evolve, they tend to merge with other

galaxies to form even larger galaxies (Volonteri et al., 2003; Springel et al., 2005).

We expect their supermassive black holes to also merge (Begelman et al., 1980). As

these SMBHs get very close together (. 0.1 pc) they emit gravitational waves at

very low frequencies – more than a billion times lower than the frequencies LIGO

measures. These can be measured by Pulsar Timing Arrays (PTAs), which monitor

pulsars. These are rapidly spinning neutron stars that are incredibly accurate clocks.

If a gravitational wave were to move through our galaxy, then we would see these

clocks ‘glitch’ in a coherent pattern. Thus, by monitoring these pulsars, we hope to

someday detect these low-frequency gravitational waves.

We think that our first detection of these nanoherz gravitational waves will not be

of a single gravitational wave, but rather the collection of gravitational waves emitted

by all SMBH pairs that are inspiralling towards each other (cf. Taylor et al., 2016).

This creates what we call the gravitational wave background, which we expect to have

a very specific signal (Hellings & Downs, 1983; Phinney, 2001). The PTAs around

the world have been looking for this signal and have not yet found it (Arzoumanian

et al., 2018).

In fact, it is unknown if these SMBH binaries can merge. At large separations,

stars can easily help take away angular momentum from the SMBH binary orbit;

however, once the binary is within 1 pc, it is unclear how they shed the extra energy

(Begelman et al., 1980; Yu & Tremaine, 2003). This is referred to as the ‘final parsec
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problem’. There are some suggestions for how this barrier can be overcome – either

with gas or other orbital mechanics (i.e. three body interactions with additional

SMBHs that enter the system through later mergers Bonetti et al., 2018; Ryu et al.,

2018). Given that we do see evidence for extreme SMBHs in nearby galaxies, it is

likely that the final parsec problem can be overcome in some way. Gravitational

waves detected with PTAs will tell us definitively whether the final parsec problem

is solved.

Meanwhile, astronomers have been looking for systems that might be emitting

these gravitational waves – close-separation SMBHs (Rodriguez et al., 2006; Liu et al.,

2013; Koss et al., 2018; Woo et al., 2014). So far, none have been found that contribute

directly to the GWB. In Chapter 3, we discuss our discovery of an SMBH binary that

points to a population of these binaries that would contribute to the GWB. This

then lets us place bounds on the strength of this background and when we expect

to measure it, given that mergers do occur. As we find more of these systems and

finally detect the GWB, this will allow us to either rule out or confirm the final parsec

problem.

1.2 Testing Dark Matter Theories

It is exciting to have gravitational waves as a new medium with which to search for

evidence of new physics. However, there are still mysteries we have yet to explain from

our observations with electromagnetic waves. Most of the matter in our universe is

made of a substance that we cannot yet properly explain: dark matter. This was first

noticed by observations that showed irregularities, like the irregular orbits of Uranus

and Mercury. The effects of dark matter are apparent by looking at the velocities

of galaxies in galaxy clusters (Zwicky, 1933) and stars within galaxies (Rubin et al.,

1980). In both cases, the objects move much too fast given the number of stars and
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amount of gas we measure in these systems. This shows that there must be extra

matter there. The ‘dark’ part of the name refers to how we cannot see it with light

– it does not interact electromagnetically.

1.2.1 Cold Dark Matter – its successes and failures

The preferred theory for dark matter is cold dark matter (CDM), which is a particle

that ‘decoupled’2 from all other matter at a very early stage in the Universe’s history

and does not interact with itself or any other matter. This seems to fit the data at

large scales quite well (e.g., Spergel et al., 2003). However, we have yet to find any

particles that fit this description (or any new particles outside of the Standard Model;

e.g., Akerib et al., 2017; Aprile et al., 2018).

There are also hints of some issues with CDM at small scales (see Bullock &

Boylan-Kolchin, 2017, for a recent review). The two classical problems here are the

‘missing satellites’ problem and the ‘cusp versus core’ problem. CDM predicts a large

number of satellite galaxies around the Milky Way; however, we have so far only found

a small portion of them. In addition, the satellites we seem to be missing are the

largest ones, which we would expect to see most easily3. Although ,there is evidence

that there may be no problem here at all (Kim et al., 2018). The other possible

problem for CDM is the cusp versus core problem – CDM predicts ‘cuspy’ density

profiles in the central parts of galaxies (Navarro et al., 1997, 2010). Observations of

nearby dwarfs show that the density profiles only rise slowly in the central regions

(e.g., McGaugh et al., 2001). However, this flattening of the density profile could also

be due to baryonic feedback – if supernovae or SMBHs are able to push out large

quantities of gas, this may affect the dark matter density profile (Mashchenko et al.,

2Decoupling refers to when a particle falls out of thermal equilibrium from the other particles in
the universe. We expect all particles to be in thermal equilibrium at the ‘beginning’. As the universe
expands and cools down, particles will decouple once the temperature of the universe is less than
the interaction energy between the particles and the rest of the particles in the universe.

3This is often referred to as a separate, but related problem: ‘too big to fail’ (Boylan-Kolchin
et al., 2011).
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2008). Regardless of the existence of these small scale issues, we have yet to find a

suitable dark matter particle and we should be open to testing other types of particles

or even non-particle theories that could explain dark matter.

1.2.2 Another Particle Explanation for Dark Matter

In the second half of this thesis, I will focus on tests of three types of dark matter

theories. The first is a common particle theory – self-interacting dark matter (SIDM).

In this theory, the dark matter has self-interactions – in other words, it can scatter

off of itself. SIDM was first proposed as a way of solving the small-scale problems

with CDM mentioned above (Spergel & Steinhardt, 2000). By allowing for interac-

tions amongst dark matter particles, it allows for the evaporation of halos and the

thermalization (and subsequent coring) of halo centers. There have been many limits

placed on self-interacting dark matter throughout the intervening decades (Gnedin &

Ostriker, 2001; Markevitch et al., 2004; Randall et al., 2008; Miralda-Escudé, 2002).

However, none have definitively ruled out this property of dark matter as an astro-

physically impactful DM property. In Chapter 4, I discuss how we use galaxy shapes,

specifically the warping of stellar disks, to place limits on the strength of DM self-

interactions. We discuss how future data may let us finally rule out this property as

astrophysically interesting.

1.2.3 Modified Gravity as an Explanation of Dark Matter

Another way of possibly explaining dark matter is by modifying GR. There is a

long history of these types of theories, starting from Modified Newtonian Dynamics

(MOND; Milgrom, 1983). These models have the attractive possibility that we do not

need to account for another particle in our theories – gravity can be fully explained

by the visible matter, as long as we have the correct theory for gravity. For the most

part, these theories have fallen out of fashion because they fail to predict cosmological
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signatures well (e.g., Dodelson, 2011). In addition, the relativistic counterparts, such

as TeVeS (Bekenstein, 2004), have recently been ruled out by GW170817, since they

rely on the speed of gravitational waves differing from the speed of light (Ezquiaga

& Zumalacárregui, 2017; Baker et al., 2017). Of course, until we have a definitive

detection of a dark matter particle or definitive proof that modified gravity could

never explain dark matter, it is worthwhile to consider these theories. The last two

chapters of this thesis focus on modified gravity explanations for dark matter.

Recent years have seen some interesting new theories, such as Verlinde’s Emergent

Gravity (Verlinde, 2017). Like MOND, Emergent Gravity does not have a cosmology

associated with it. In its current formulation, it specifies a force law that is applicable

only in the nearby universe. In this case, one of the best tests of the theory involves

using the rotation curves of dwarf galaxies, which are galaxies with 30% the stellar

mass or less than the Milky Way. Most massive galaxies seem to have very close to

the same ratio of dark matter to normal (baryonic) matter regardless of their stellar

mass (Faber & Jackson, 1976; Tully & Fisher, 1977). However, dwarf galaxies do not

seem to follow this trend. Modified gravity theories must then explain how dwarf

galaxies with the same baryonic mass somehow show different dark matter effects.

Chapter 5 focuses on testing Emergent Gravity with isolated dwarf galaxies.

Many modified gravity theories also have difficulties explaining the growth of

structure in the universe – how structure evolves from the tiny fluctuations we see in

the cosmic microwave background to the galaxies and galaxy clusters we see today.

Dark matter is absolutely pivotal in this process and we have found that CDM explains

this process well (Lifshitz, 1946; Peebles & Yu, 1970; Sunyaev & Zeldovich, 1970; Bond

& Efstathiou, 1984). In the early universe, the temperature of the universe is very

high and baryons are coupled to photons – in other words, baryons are constantly

feeling pressure from all of the radiation. CDM does not interact with photons, so

it is able to collapse into self-gravitating halos. The baryons attempt to fall toward
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these halos, but the radiation pressure of the photons pushes them out. Likewise, the

photons feel the gravitational force of the CDM through their coupling to the baryons.

This causes sound waves to form in the baryon and photon structures. These sounds

waves, called baryonic acoustic oscillations (BAO), are seen as oscillations in both

the cosmic microwave background and in the positioning of galaxies around us today.

Although on very large scales the universe is homogeneous, we see an overdensity of

galaxies on scales of about 150 Mpc. This exactly matches the predictions of CDM

and is a hallmark of the theory. The penultimate chapter of this thesis, Chapter 6,

focuses on how we can use the BAO signal to describe the necessary form any modified

gravity trying to explain the dark matter must take.

The final chapter, Chapter 7, gives a brief summary of this dissertation, including

the main takeaways from each of the previous chapters.
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Chapter 2

GW170817 & the Propagation of

Gravitational Waves

Gravitational wave (GW) events with electromagnetic (EM) counterparts are power-

ful tests of modified gravity theories. Importantly, such joint observations are sensitive

to differences between the propagation of GW and EM waves through spacetime. The

recent detection of the first multi-messenger GW system, GW170817 (Abbott et al.,

2017c), allows us to constrain modified gravity in this way for the first time.

From the time delay between the electromagnetic and GW signals, powerful limits

can be placed on the speed of GW propagation (Abbott et al., 2017b). Many papers

have already discussed how this constrains specific modified gravity theories (e.g.,

Lombriser & Taylor, 2016; Lombriser & Lima, 2017; Ezquiaga & Zumalacárregui,

2017; Baker et al., 2017; Creminelli & Vernizzi, 2017; Visinelli et al., 2018; Sakstein

& Jain, 2017; Nersisyan et al., 2018).

The independent distance measures of the GW source and its EM counterpart

can also place constraints on the damping of GWs. Since GWs are standard sirens,

we can directly extract the luminosity distance to the GW source (Schutz, 1986;

Holz & Hughes, 2005; Dalal et al., 2006; Nissanke et al., 2010, 2013; Chen et al.,
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2018a). In addition, we can make an independent measurement of the distance to

the source by measuring the redshift of the EM counterpart and using our knowledge

of cosmology (in particular, the Hubble constant, since GW170817 is at low redshift)

to convert the observed redshift into a luminosity distance. By comparing these two

distances, we can place limits on the damping of GWs. A number of authors have

discussed the power of gravitational waves sources to place these sorts of constraints

(Nishizawa, 2018; Arai & Nishizawa, 2018; Belgacem et al., 2018; Amendola et al.,

2018; Linder, 2018); in what follows we focus on general constraints provided by the

recent observations of GW170817 and its associated EM counterpart.

In this chapter, we constrain GW damping by considering modifications to the

signal’s attenuation with luminosity distance. According to GR, the GW amplitude

decreases inversely with luminosity distance. However, extra-dimensional theories

of gravity with non-compact extra dimensions generally predict a deviation from

this relationship. Comparing the luminosity distance of GW170817 extracted under

the assumption of GR to the EM-measured distance to its host galaxy, NGC 4993,

we find stringent constraints on theories with gravitational leakage. We use these

limits to set bounds on the number of additional non-compact spacetime dimensions

and characterize properties of the modifications, such as the screening scale and the

lifetime of the graviton. Section 2.1 describes the waveforms that we consider and

gives a qualitative description of our analysis. Section 2.2 describes our methods.

Section 2.3 gives our results and explores other applications.

2.1 Gravitational leakage and gravitational waves

In this section, we summarize the effects of gravitational leakage on the GW waveform

and its relation to higher-dimensional theories. We also give a qualitative introduction

11



to how GW170817 constrains gravitational leakage. This section relies heavily on the

work of Deffayet & Menou (2007).

In GR, the strain goes as:

hGR ∝
1

dL
, (2.1)

where dL is the luminosity distance of the GW source. For a higher-dimensional theory

where there is some leakage of gravity we would expect, due to flux conservation,

damping of the wave in the form of a power-law(Deffayet & Menou, 2007):

h ∝ 1

dγL
, (2.2)

where γ is related to the number of dimensions, D, by:

γ =
D − 2

2
. (2.3)

More generally, we may consider theories that have an associated screening scale,

Rc. These theories behave like GR below this scale, but exhibit gravitational leakage

above Rc. In such theories the GW strain scales as (Deffayet & Menou, 2007):

h ∝ 1

dL

[
1 +

(
dL
Rc

)n(D−4)/2
]1/n

, (2.4)

where n gives the transition steepness. This waveform reduces to Equation 2.2 for

dL � Rc.

Finally, we consider theories in which the graviton has a decay channel. In this

case, the amplitude of the GW would scale as:

h ∝ exp [−dL/Rg]

dL
, (2.5)
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where Rg is the ‘decay-length’ (i.e. the distance a graviton travels during its average

lifetime).

If we assume that, outside of these overall damping factors, the waveforms remain

unchanged from the predicted GR form, then the gravitational leakage would simply

result in a measured dL greater than the true dL for the source (i.e. the GW would

appear to have come from farther away because it would have a smaller amplitude in

the detectors). An event only measured in GWs would not allow us to distinguish the

measured dL from the true value. However, GW170817 was also detected electromag-

netically; thus, we have an independent measurement of the luminosity distance for

this source. By comparing the measured GW distance and the measured EM distance,

we can constrain the gravitational leakage parameter γ (defined in Equation 2.2) and

therefore place limits on the number of spacetime dimensions, the screening scale, or

the lifetime of the graviton. In this we implicitly assume that the luminosity distance

inferred from EM observations is the true luminosity distance: dEM
L = dL; in practice,

our approach quantifies the difference between the EM and GW distance estimates,

and is insensitive to the true value of dL.

Since the GW170817 standard siren measurement of the Hubble constant is con-

sistent with expectations (Abbott et al., 2017a), this implies that, for reasonable

assumed values of the Hubble constant, the inferred GW and EM distances are sim-

ilarly consistent. We therefore expect that general relativity provides an excellent

description, and we would not expect strong evidence for gravitational leakage and

extra dimensions. In what follows we quantify this expectation.

2.2 Method

To measure gravitational leakage, we compare the EM luminosity distance to the

source, dEM
L , with the GW luminosity distance, dGW

L , extracted from the waveform
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under the assumption that GR is the correct theory of gravity. To find the EM lumi-

nosity distance to the source, we use Hubble’s law to relate the host galaxy’s “Hubble

velocity”, vH , to its luminosity distance. In the nearby universe, this relationship can

be approximated by:

vH = H0d
EM
L . (2.6)

The Hubble velocity is the recessional velocity that the galaxy would have if it was

stationary with respect to the Hubble flow. To find the Hubble velocity of the host

galaxy NGC 4993, we follow Abbott et al. (2017a) and correct the recessional velocity

of the galaxy group to which NGC 4993 belongs, ESO-508, by its peculiar velocity.

The EM observables are then the measured recessional velocity, vr, of the group of

galaxies to which NGC 4993 belongs, and the measured peculiar velocity, 〈vp〉, in

the neighborhood of NGC 4993. We denote the true peculiar velocity by vp, so that

the true recessional velocity is the sum of vH and vp. We adopt the conservative

uncertainty on vp from Guidorzi et al. (2017), which sets the Hubble velocity to be

vH = 3017±250 km s−1. Together with a prior measurement of the Hubble constant,

the measured velocities, vr and 〈vp〉, yield a measurement of the EM luminosity

distance to the system.

Meanwhile, the GW data, xGW, gives the posterior probability of the GW lumi-

nosity distance, dGW
L , marginalized over all other waveform parameters, except the

sky position, which is fixed to the position of the optical counterpart. We recover the

GW distance posterior from the LIGO-Virgo Collaboration’s publicly available H0

posterior samples (Abbott et al., 2017a). The H0 posterior is given by marginalizing

the joint probability of H0, the GW distance posterior probability, p(dGW
L | xGW),

and the velocities vH and vp, over all parameters except H0 (Equation 9 of Abbott

et al., 2017a). We recover the GW distance posterior (marginalized over inclination

angles) from the H0 posterior by deconvolving the vr and vp terms, which are given

by Gaussians. We approximate the integral in Equation 9 of Abbott et al. (2017a) by
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Figure 2.1: Posterior probability distribution for the number of spacetime dimen-
sions, D, using the GW distance posterior to GW170817 and the measured Hubble
velocity to its host galaxy, NGC 4993, assuming the H0 measurements from Planck
Collaboration et al. (2016) (blue curve) and Riess et al. (2016) (green curve). The
dashed lines show the symmetric 90% credible intervals. The equivalent constraints
on the damping factor, γ, are shown on the top axis. GW170817 constrains D to be
very close to the GR value of D = 4 spacetime dimensions, denoted by the solid black
line.

a Riemann sum. Then the term p(xGW | dGW
L )p(dGW

L ) is obtained by solving a system

of linear equations.

We carry out a Bayesian analysis to infer the posterior of the gravitational leakage

parameter, γ, and the number of spacetime dimensions, D, given the GW and EM

measurements described above. The statistical framework is described in detail in

the Appendix.
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H0 prior γ D

km s−1 Mpc
−1

H0 = 73.24± 1.74 (Riess et al., 2016) 1.01+0.04
−0.05 4.02+0.07

−0.10

H0 = 67.74± 0.46 (Planck Collaboration et al., 2016) 0.99+0.03
−0.05 3.98+0.07

−0.09

Table 2.1: Constraints on the damping parameter, γ, and the number of dimensions,
D, assuming a waveform of the type Equation 2.2 from GW170817.

2.3 Results & Discussion

The posterior for D assuming a waveform with the scaling shown in Equations 2.2

and 2.3 is given in Figure 2.1. Since the results depend on the assumed H0 prior,

we compute the D posterior for both the SHoES H0 value (Riess et al., 2016) and

the Planck H0 value (Planck Collaboration et al., 2016). The maximum a posteriori

(MAP) values and minimal 68% credible interval values for γ and D are given in

Table 2.1. As can be seen, the results are completely consistent with GR.

We can also use these constraints to place limits on waveforms with a scaling

given by Equation 2.4. For the higher-dimensional theories that give rise to such

waveforms, the dGW
L measured under the assumption of GR will be greater than the

true luminosity distance, dEM
L . Thus, while our posterior for γ allows for both γ > 1

and γ < 1 (allowing for the relative damping of both the GW and EM signals),

in the following analysis we restrict γ > 1. Using our joint posterior on dGW
L and

dEM
L = (dGW

L )1/γ for GW170817, we can apply Equation 2.4 to constrain the screening

radius, Rc:

Rc =
dEM
L[(

dGW
L

dEM
L

)n
− 1
] 2

n(D−4)

. (2.7)

Thus, given our posterior samples for dGW
L and γ (restricted to γ > 1), we can calculate

the associated Rc for a fixed transition steepness, n, and number of dimensions, D.

Marginalizing over H0 and vp, this gives us a joint posterior on Rc and dGW
L .
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Figure 2.2: Top: Measured luminosity distance from
GWs, dGW

L , versus the gravitational screening scale,
Rc, for a number of spacetime dimensions given by D =
5 (blue), D = 6 (green), and D = 7 (purple). The
solid lines assume a transition steepness of n = 1 and
the dotted lines assume n = 2. The black horizontal
lines give the 95%, 85% and 50% upper limits on dGW

L ,
after restricting our samples to dGW

L > dEM
L . Bottom:

Allowed parameter regions for the transition steepness,
n, and screening scale Rc, for D = 5 (blue), D = 6
(green), and D = 7 (purple), assuming a waveform of
the type Equation 2.4. The vertical black line gives the
2.5% lower limit for dEM

L . We use the 5% lower limit
for Rc to set these constraints.

Figure 2.2 (top panel) shows

the correlation between dGW
L

and Rc for D = 5 (blue), D =

6 (green), and D = 7 (pur-

ple), and for n = 1 (solid) and

n = 2 (dashed). As can be

seen, a steeper transition (i.e.

larger value of n) allows for the-

ories to have a smaller screen-

ing scale; the steeper the tran-

sition, the closer the distance

must be to the screening scale

for a difference in the physics to

be noticeable. Increasing num-

bers of dimensions also allow for

smaller screening radii given the

same transition steepness; how-

ever, the screening radii cannot

be much smaller than the min-

imum EM distance. This is il-

lustrated in the bottom panel

of Figure 2.2, where we plot

the allowed regions of parame-

ter space within the n–Rc plane

for D = 5–7. We use the 5%

lower limit for Rc, which corresponds to the 95% upper limit on dGW
L after restricting

dGW
L > dEM

L , or the 97.5% upper limit for dGW
L (and 2.5% lower limit for dEM

L ) for the
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unrestricted samples. For Rc & dEM
L,min = (dGW

L,min)1/γmax (black, solid line), larger di-

mensions allow for softer transitions between GR and the higher-dimensional theories.

If Rc � dEM
L,min, then these higher dimensional theories are not allowed. As seen in

the upper left of Figure 2.2, the minimum screening radius increases with increasing

numbers of dimensions. These results show that theories with extra dimensions that

have no screening mechanisms and that affect gravitational propagation at all scales

are disfavored by GW170817. In addition, theories with screening mechanisms must

have Rc & 20 Mpc regardless of the transition steepness.

The final modification to GR we consider is theories in which the graviton has a

finite lifetime. In such theories, the GW strain scales as Equation 2.5, so that setting

dL = dEM
L , the decay-length is given by:

Rg =
dEM
L

log (dGW
L /dEM

L )
. (2.8)

Using our posterior samples for dGW
L and dEM

L = (dGW
L )1/γ, and again restricting γ > 1

to enforce dGW
L > dEM

L , we find a 5% lower limit for the decay length of the graviton

of Rg > 138 Mpc. Since we know that gravitons must travel at the speed of light

(Abbott et al., 2017b), we infer that the lifetime of the graviton can be given as

t = Rg/c > 4.50× 108 yr.

We have only considered waveforms that are the same as GR, up to some overall

multiplicative factor. It could be possible to evade these constraints by changing

the waveforms in other ways. A full analysis of the LVC data using a more general

framework (Agathos et al., 2014; Loutrel et al., 2014; Berti et al., 2015) would provide

more insight into non-GR waveforms.

Our analysis relies on a crossing scale for the EM and GW luminosity distances.

Equation 2.2 implicitly sets the crossing scale to 1 Mpc, assuming that h ∝ 1/dL ×

(1 Mpc/dL)γ−1. This ensures the correct units for the strain. From a theoretical per-
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spective, the choice of scale is completely arbitrary; our choice of 1 Mpc is motivated

by typical galaxy length scales. Figure 2.3 shows the effects on the posterior for γ

as a function of different choices for the crossing scale. For scales that are compara-

ble to the distance to GW170817, our constraints degrade considerably, since if the

crossing occurs at precisely the distance of the binary then we would be unable to

measure deviations as the theory would preclude them by assumption. A crossing

scale that happened to be similar to the distance to this particular event would be

quite fine-tuned. Scales smaller than a Mpc or larger than a Gpc give similar, or

tighter, constraints to what we found above. As we accumulate GW events at dif-

ferent distances, we will be able to fit for the crossing scale directly, in addition to

constraining γ.

We stress that our results do not hold for extra-dimensional theories with com-

pact extra dimensions (e.g. string theory or the ADD model). The extra dimensions

need to be at least on the order of the wavelength of the gravitational waves (∼ 100

km) in order to have a damping effect. In addition, there may be complications for

theories with larger extra dimensions. For example, we find that Randall-Sundrum II

and DGP are poorly constrained by GW170817. In Randall-Sundrum II, the massless

mode for the graviton is constrained to the 3D-brane; thus, energy cannot efficiently

leak into extra non-compact dimension (Randall & Sundrum, 1999). For DGP, only

very low frequency waves (i.e. ones with wavelengths on the scale of the cosmic hori-

zon) are allowed to leak into the extra dimension (Dvali et al., 2001). Our calculation

is a phenomenological one—it gives the total damping allowed considering a very

general type of leakage for large extra dimensions. Applying these limits to specific

theories is beyond the scope of this paper; however, these constraints should be con-

sidered carefully by extra-dimensional theories with dimensions of sizes ∼ 100 km

and greater.
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Figure 2.3: Posterior probability distribution for the number of spacetime dimensions,
D, assuming different implicit crossing scales. The constraints degrade considerably
for a crossing scale equal to the distance to the object, ∼ 40 Mpc. However, scales
either much smaller or larger than this show results that agree well with our choice
of crossing scale of 1 Mpc.

In principle any higher-dimensional theories would allow for extra polarization

modes (see, for example, Andriot & Lucena Gómez, 2017). However, the polarization

constraints for GW170817 are quite poor, since the signal was not detected in Virgo

and the LIGO detectors are aligned (Abbott et al., 2017c). Future events observed

by three or more detectors would provide for tighter constraints on extra dimensions.

In this chapter, we have derived constraints from GW170817 on gravitational

leakage by searching for a discrepancy between the measured gravitational luminosity

distance, dGW
L , and the measured EM luminosity distance, dEM

L . We quantify the

gravitational leakage via a damping parameter, γ, which can be related to the number
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of non-compact spacetime dimensions, D, through which gravity propagates. We find

that D = 4.02+0.07
−0.10 (for SHoES) and D = 3.98+0.07

−0.09 (for Planck). In addition, we

use these constraints to place bounds on extra-dimensional theories with screening

mechanisms or decaying gravitons. We find the graviton decay length to be Rg >

138 Mpc, implying a lifetime of the graviton of t > 4.50× 108 years. In summary, we

find that GW170817 is fully consistent with GR.

Appendix

Statistical Model

Variable Value Variable Value

dGW
L prior ∝ (dGWL )2 vr 3,327 km/s

γ prior flat, [0.75, 1.15] σvr , σvp 72, 239 km/s

H0 prior (SHoES) N (µH0 = 73.24 km/s Mpc−1, σH0 = 1.74 km/s Mpc−1) 〈vp〉 310 km/s

H0 prior (Planck) N (µH0 = 67.74 km/s Mpc−1, σH0 = 0.46 km/s Mpc−1) vp prior flat, [-1,000,1,000] km/s

Table 2.2: Values & Priors Assumed for the MCMC Analysis

In the following, we describe the statistical framework assuming a waveform scal-

ing as in Equation 2.2; however, this is easily extended to any other type of waveform

that would cause the GW measurements and EM measurements of the luminosity

distance to differ.

We can write the joint likelihood for the GW data, xGW, and EM observables,

〈vp〉 and vr, given γ, H0, dGW
L , and vp as:

p(xGW, 〈vp〉, vr | γ,H0, d
GW
L , vp) = p(xGW | dGW

L )p(〈vp〉 | vp)p(vr | γ,H0, d
GW
L , vp) ,

(2.9)
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where we have assumed that all three observations, xGW, 〈vp〉, and vr are statistically

independent. We can write the third factor in the above equation as:

p(vr | γ,H0, d
GW
L , vp) = p(vr | vtr = vp +H0d

EM
L = vp +H0(dGW

L )1/γ) , (2.10)

where vtr is the true recessional velocity of the source. The likelihoods p(〈vp〉 | vp)

and p(vr | vtr) are assumed to be Gaussians (Abbott et al., 2017a), and are given as:

p(〈vp〉 | vp) = N (vp, σ
2
vp)(〈vp〉) , (2.11)

p(vr | vtr) = N (vtr, σ
2
vr)(vr) . (2.12)

Applying Bayes’ theorem, the joint posterior for γ, H0, dGW
L , and vp is then:

p(γ,H0, d
GW
L , vp | xGW, 〈vp〉, vr) ∝ p(xGW | dGW

L )p(〈vp〉 | vp)

× p(vr | γ,H0, d
GW
L , vp)p0(γ,H0, d

GW
L , vp) .

(2.13)

The posterior for γ is found by marginalizing over all other parameters:

p(γ | xGW, 〈vp〉, vr) =
1

pdet(γ)

∫
p(xGW | dGW

L )p(〈vp〉 | vp)

p(vr | γ,H0, d
GW
L , vp)p0(γ,H0, d

GW
L , vp)dH0dd

GW
L dvp ,

(2.14)

where pdet(γ) is a normalization term to account for selection effects and ensure that

the integral over all detectable datasets integrates to unity. As shown below, this

term is negligible for our analysis.

We choose the prior:

p0(γ,H0, d
GW
L , vp) = p0(vp)p0(dGW

L )p0(γ)p0(H0) . (2.15)
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This assumes a flat prior for the peculiar velocity, p0(vp) ∝ constant. For the GW

distance, we use the default “volumetric” prior used in the LVC analysis, p0(dGW
L ) ∝

(dGW
L )2. For the prior on the Hubble constant, p0(H0), we take either the SHoES

measurement or the Planck measurement. We choose the prior on γ to be flat, so

the marginal posterior is proportional to the marginal likelihood. Our results are

mildly sensitive to these prior choices; for example, taking a flat prior on dGW
L shifts

the posteriors towards slightly lower values of γ, so that the MAP and minimal 68%

credible intervals become 1.00+0.04
−0.06 (SHoES H0) and 0.98+0.04

−0.06 (Planck H0) for a flat

dGW
L prior. (This alternative prior choice also leads to stricter lower limits on the

screening scale Rc.) Except for the conservative value of σvp = 239 km s−1 from

Guidorzi et al. (2017), all other variable values and priors are the same as those given

in Abbott et al. (2017a). All of our values and priors are given in Table 2.2.

The normalization term, pdet(γ), in Equation 2.14 is given by the integral of the

marginal likelihood over all detectable datasets (Loredo, 2004; Mandel et al., 2019):

pdet(γ) =

∫
detectable

p(xGW, 〈vp〉, vr | γ)dxGWd〈vp〉dvr

=

∫
detectable

∫
p(xGW | dGW

L )p(〈vp〉 | vp)p(vr | γ,H0, d
GW
L , vp)p0(vp)

× p0(H0)p0(dGW
L )dH0dd

GW
L dvpdxGWd〈vp〉dvr.

(2.16)

We follow Abbott et al. (2017a) and neglect the EM selection effects. This is

justified because the GW horizon for a BNS system during O2 was only 190 Mpc,

whereas an EM counterpart would have been observable at distances greater than

400 Mpc. Thus, the integrals over detectable EM datasets, 〈vp〉 and vr integrate to

unity. If we neglect the effects of GW redshifting on the detectability of the GW

source (which is valid at these low redshifts), the GW selection effects are a function
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of GW luminosity distance alone. Defining:

∫
detectable xGW

p(xGW | dGW
L )dxGW ≡ pdet(d

GW
L ) , (2.17)

we have:

pdet(γ) =

∫
pdet(d

GW
L )p0(vp)p0(H0)p0(dGW

L )dH0dd
GW
L dvp . (2.18)

The above equation is independent of γ, and so we can ignore this term in our analysis.

However, if we had chosen to carry out the analysis by setting a prior on the redshift

or vH rather than GW distance, Equation 2.18 would have a γ dependence in the

term pdet(d
GW
L = (vH

H0
)γ), which varies significantly over the posterior support for γ.

In this case, pdet(γ) cannot be neglected.

To compute the posterior for γ, we sample directly from the joint posterior given

by Equation 2.13 with an MCMC analysis using the python package PyMC3 (Salvatier

et al., 2016).
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Chapter 3

A Binary Supermassive Black Hole

System & the Stochastic

Gravitationl Wave Background

Cosmological models of structure formation predict that galaxies undergo frequent

mergers throughout their history (Volonteri et al., 2003; Springel et al., 2005). Super-

massive black holes (SMBHs) from each progenitor quickly sink towards the central

0.1–1 kpc region of the merger remnant due to dynamical friction. This SMBH pair

may eventually form a bound binary system capable of emitting gravitational waves

(GWs) before final coalescence (Begelman et al., 1980). SMBH binaries with masses

of MBH ≈ 108–109M� are expected to comprise the dominant contribution to the

as-yet undetected GW background (GWB) signal at the nanohertz frequencies acces-

sible to pulsar timing arrays (PTAs; Sesana et al. 2008; Burke-Spolaor et al. 2019).

The current theoretical predictions on the precise amplitude and composition of the

GWB vary dramatically, and are limited, in part, by the lack of overall empirical

constraints on the occurrence of high-mass SMBH pairs.
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Figure 3.1: Analysis of the central region of J1010+1413. Upper panel: SDSS 2′′

fiber spectrum, overlaid are the WFC3/UVIS transmission curves for the F612M
(blue) and F689M (green) filters. Middle panels left to right: WFC3/UVIS medium-
bands F621M; F689M; [OIII]=F621M–F689M; F160W. Lower panels left to right:
zoom and contrast rescaling of the middle panels. Contours of F689M continuum
(black) and [OIII] images (blue) are shown in the lower-right panel. Both the F689M
stellar continuum-only image and the [OIII] images clearly show two distinct point
sources, suggesting two nuclei each with their own accreting SMBHs.

Emission produced through accretion acts as a useful signpost for evidence of

SMBHs. Indeed, extremely high-resolution radio observations have serendipitously

identified very close separation sub-parsec scale SMBH binary candidates (Rodriguez

et al., 2006). While there have been several claims of binary SMBHs in some nearby

galaxies (e.g., Fabbiano et al. 2011), these have subsequently been challenged with

expanded datasets and/or improved analysis techniques (e.g., Finlez et al. 2018 and

references therein). AGN surveys have identified wider-separation (several to tens

kpc) SMBH-pair candidates by harnessing highly-penetrating X-rays and follow-up

with ground-based near-IR adaptive optics systems (Liu et al., 2013; Koss et al.,
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2018). Due to limitations in angular resolution, these investigations are typically per-

formed at lower redshifts, where the AGN studied tend to be relatively low-luminosity

(LAGN < 1044 erg s−1). Consequently, these dual SMBH systems are predisposed to

lower masses (MBH ≈ 107M�), often at kiloparsec separations (Liu et al., 2010; Woo

et al., 2014), such as the well-studied nearby merging galaxy NGC 6240, which hosts

two actively growing SMBHs separated by ∼1 kpc (Müller-Sánchez et al., 2018).

Systems such as NGC 6240 do not appreciably contribute to the GWB that will be

detected in the PTA band due to their low MBH (Sesana et al., 2008). Much larger

volumes must be searched to find the most luminous quasars, and hence most mas-

sive binary BHs, that contribute to the PTA signal. Utilizing high spatial-resolution

observations with the Hubble Space Telescope (HST ), studies have begun to identify

a more massive population of kpc-scale separation SMBH pairs through the detection

of distinct multiple nuclear cores coincident with unresolved AGN emission (Xu &

Komossa, 2009; Fu et al., 2012). However, to begin to place empirical constraints

on the GWB we must characterize the number of 108 − 109M� SMBH pairs with

sufficiently small separations that they may merge before the present day.

Here we present an observational anchor to predictions for a GWB signal that can

be detected in the PTA band. SDSSJ101022.96+141300.9 (hereafter, J1010+1413)

is a late-stage merging galaxy at z ∼ 0.198 (angular scale of 3.27kpc/′′) with high

equivalent-width emission lines (Mullaney et al., 2013) in the Sloan Digital Sky Survey

(SDSS; York et al., 2000). At mid-infrared wavelengths (22µm), it is one of the most

luminous systems (LAGN & 6× 1046 erg s−1) at z ∼ 0.2 identified with the Wide-field

Infrared Survey Explorer (WISE). Using high spatial resolution (0.03′′/pixel) multi-

band imaging from HST’s Wide Field Camera 3 (WFC3) instrument, we identified two

distinct quasar-produced [OIII]5007-emitting regions that are spatially co-incident

with two nuclear stellar cores buried close to the center. These two point sources

are separated by 0.13′′, a projected separation of only 430 parsecs at the distance of
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J1010+1413, providing strong evidence for a central SMBH pair at the heart of this

merging galaxy.

3.1 Target Selection and Observations

J1010+1413 was initially characterized as having strong asymmetries in its [OIII]5007

emission line profile as part of an in-depth study of nearby accreting SMBHs identified

in SDSS (Mullaney et al., 2013). It is one of the most luminous quasars at z ∼ 0.1–

0.2 based on both [OIII] (L[OIII],dered ∼ 1.2 × 1044erg s−1) and 22µm emission. The

central few kpc of J1010+1413 is strongly AGN dominated ([OIII]/Hβ ∼ 12.4) and

was previously found to be irregular and kinematically complex, with broad, spatially

unresolved [OIII] and Hβ emission (W80 ∼ 1350− 1450 km s−1) based upon Gemini-

GMOS IFU data (Harrison et al., 2014).

3.1.1 HST medium & broad-band imaging

J1010+1413 was imaged on October 17 2017 with WFC3/IR in the F160W filter, and

with the WFC3/UVIS instrument in two optical medium bands, F621M and F689M

for a total of one orbit (Proposal:14730; PI:Goulding). Our F160W observation with a

spatial resolution of 0.13′′/pixel provides a relatively clean measure of the stellar light

(rest-frame 1.3µm). An azimuthally-symmetric surface brightness (SB) profile was

constructed from the F160W image to measure the stellar light of J1010+1413. The

SB profile is detected to r ∼ 7.1′′ (∼ 23 kpc), and is dominated by inhomogeneous low

SB emission beyond r ∼ 2.25′′, consistent with tidal debris from a merger event. We

measure a total flux of f160W ∼ 3.23±0.03×10−12 erg s−1cm−2, i.e., a total luminosity

of L160 ∼ 1.1 × 1011L�, from which we infer a total stellar mass of M∗ ∼ 0.7–

1.5× 1011M�.
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The WFC3/UVIS F621M observation (0.04′′/pixel) provides a detailed image

of the continuum galaxy light combined with emission from the AGN-dominated

[OIII]4959+5007Å emission line doublet, which is redshifted into the filter. By con-

trast, the F689M filter covers no significant emission lines and thus only detects

emission arising from the galaxy continuum. On small scales, the F689M filter image

reveals two distinct and resolved stellar-continuum point sources that are separated

by 0.13′′ in the nuclear region of J1010+1413 (Figure 3.1). The amplitudes of the

two nuclear cores are very similar, 1:1.2, suggesting similar stellar masses but the two

cores are not uniquely resolved in the F160W image due to the lower resolution and

S/N.

We subtracted the F621M from the F689M image to investigate the spatial dis-

tribution of the combined [OIII] doublet emission, and test for the presence of two

distinct narrow-line regions (NLR) in the center of J1010+1413. We solved for the

marginal (<0.02′′) astrometric offset between the two F621M and F689M filters, and

normalized the flux-calibrated images to give a net-zero sum of the extended galaxy

light. Within the central kpc region (r.0.3′′), we identify two distinct [OIII]-emitting

regions that are spatially co-incident with the two nuclear point sources observed in

the F689M continuum image. We interpret this as evidence for two remnant cores

from the galaxy merger that each possess a central accreting SMBH, producing two

distinct [OIII]-luminous NLRs.

Using the [OIII] image, we confirm the presence of the extended emission line

region at large radial scales of r ∼ 4” (14 kpc), the kinematics of which was previously

studied in Sun et al. (2017). Their previous Magellan IMACS spectroscopy shows that

the extended [OIII] emission is kinematically cold and not necessarily an outflow from

the central galaxy. Combined with our sensitive WFC3/UVIS observations, the large-

scale [OIII] appears to be emitted from gas that was tidally stripped during the galaxy

merger (Harrison et al., 2014), and is now being illuminated by the central quasars.
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Figure 3.2: Morphological analysis of emission in the central 1′′x1′′ region of
J1010+1413 using the galfit software package. Upper: our preferred 4-parameter
model (two PSFs and two extended Gaussians). The residual image (data – model)
consists of only unstructured Poisson noise with no distinct features. Lower: Sersic
profile with a (presumed) dust lane (represented by a mask; green line) splitting the
observed emission in two. The residuals show significant structure with a high RMS
noise.

Indeed, we find evidence for two collimated emission features oriented at ∼11 and

342 degrees from North, consistent with the presence of two distinct accretion disks

(Figure 3.2).

3.1.2 Chandra ACIS-S observations

J1010+1413 was observed on January 20, 2016 with the Advanced CCD Imaging

Spectrometer (ACIS) on board the NASA Chandra X-ray Observatory (Pro-

posal:17700576; PI:Pardo). The data were reduced following standard procedures

using the Chandra Interactive Analysis of Observations (CIAO) software package
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provided by the Chandra X-ray Center. After standard grade filtering, the total

exposure in good time intervals was ∼24.1 ks. The native spatial resolution of

ACIS-S (0.492′′/pixel) is insufficient to resolve two distinct point sources separated

by only 0.13′′, even when using more sophisticated sub-resolution techniques, and

hence, the quasars should appear as a single X-ray point source. The soft-band image

(0.5–3.5 keV) is characterized by marginally extended (r ∼ 1.9′′) diffuse emission

with 59±8 counts. A spectral analysis of the X-ray emission (extracted from a 2′′

aperture and grouped to 1 photon/bin using grppha) involving a simple absorbed

power law combined with a Galactic foreground absorber (NH = 3.4 × 1020cm−2)

produces a best-fit Γ ∼ 2.8 ± 0.3 and NH < 1019cm−2, which is inconsistent with

X-ray emission arising directly from an AGN. An APEC plasma model is also

found to be a reasonable description of the data with kT ∼ 3.1 ± 0.6, although

the soft power law model is marginally preferred (∆Cstat ∼2.2). The best-fit X-ray

flux is only fX,0.5−7keV ∼ 2.0 ± 0.5 × 10−14erg s−1 cm−2, i.e., a low luminosity of

L0.5−7keV ∼ 1.5 × 1042erg s−1, and is a factor & 650 below the naive expectation

based upon the L6µm–LX relation (Chen et al., 2017). Such a deficit in the observed

X-ray emission compared with other mid-IR/optical LAGN indicators (Alexander

et al., 2008; Goulding et al., 2011) suggests obscuration by heavily Compton-thick

(NH ∼ 1025 cm−2) gas. The additional inclusion of a second absorbed power

law to assess the presence of a heavily obscured Compton-thick quasar was left

unconstrained due to the small number of photons.

Given its low luminosity, spectral shape, and the fact that it is resolved, the soft X-

ray emission most likely arises from star formation or quasar-produced scattered light,

similar to the well-studied quasar SDSSJ1356+1026 (Greene et al., 2014). However,

the observed Hα emission (LHα ∼ 1.3× 1042erg s−1) allows us to place a conservative

upper limit (i.e., assuming no AGN contribution to Hα) on the star-formation rate

(SFR) of .10M�/yr. When coupled with the total stellar mass and the relation
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of Lehmer et al. (2010), we can place an upper limit on the X-ray emission from

star formation of LX . 3 × 1040erg s−1. Hence, the slightly higher observed X-ray

luminosity is more suggestive of a scattered light origin.

3.2 Morphological Evidence for a Pair of Accret-

ing SMBHs

Due to the presence of two distinct nuclear stellar cores with cospatial [OIII] emission

radiating at quasar-like luminosities, our preferred interpretation is that J1010+1413

contains two rapidly accreting SMBHs close to its photometric center. Such a scenario

is consistent with the very late-stage merging galaxy found from previous SDSS and

Gemini-IFU data. However, even though both the F689M continuum and [OIII]

images strongly suggest two distinct, spatially-separated point sources, complicated

structures and morphologies in the NLRs can make the identification of SMBH pairs

ambiguous (Shen et al., 2011a).

To better elucidate the nature of the nuclear region in J1010+1413, we performed

an imaging decomposition in the F689M and [OIII] images using the galfit package

(Peng et al., 2010). The galfit analysis requires an accurate representation of the

WFC3/UVIS point spread function (PSF) to convolve with the model components.

We constructed the PSF using a hybrid methodology (Grogin et al., 2011), which

combines a model of the instrument PSF (produced by the STScI software package

TinyTim) with real point-like stellar objects detected in the observation. We con-

firmed that our PSF model produces an accurate subtraction of a point source in the

WFC3 images, with no clear systematic residuals beyond the image noise.

The [OIII] emission is not well fit using only two PSF functions; rather it re-

quires the inclusion of two extended Gaussians, centered close to each of the point

sources. Conversely, a fit using only two Gaussians produces a significantly lower
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quality fit (∆χ2 = (χ2
4comp − χ2

2comp) ∼ −189) leaving residual point sources in the

image, and hence, two PSF functions are also required. The best-fit solution from

the 4-component model is shown in Figure 3.2 (upper panel), producing an excellent

fit to the data; the residual is consistent with Poisson noise. Each Gaussian com-

ponent is a factor ∼2-3 brighter than its associated PSF component; this is to be

expected as NLRs are typically observed on scales of several hundred parsecs in local

galaxies and should therefore require a bright component extended beyond the PSF.

Furthermore, one of the Gaussian components is marginally offset ∼0.1′′ north of the

northern nucleus, and is consistent with the termination of a stream of stellar mate-

rial, presumably the result of the on-going merging of the two cores. This component

is observed in both the F689M and [OIII] images, while a continuation of this stream

is clearly visible to the west of the core in the F689M image shown in Figure 3.1.

A potential alternative scenario for the observed features could be a single SMBH

residing at the center of a large extended stellar bulge and NLR, split along the minor

axis by a dust lane. This dust lane would fully obscure the would-be point source

emission arising from a single quasar. If the gas is uniformly distributed, the [OIII]

emission arising from a single SMBH would appear as an elongated component above

and below the dust lane. To test this, we attempted to model both the continuum

and [OIII] images using a single Sersic component with the centroid constrained to

the region hidden by an artificial dust lane (represented by a galfit mask region;

Figure 3.2 lower panels). The resultant Sersic component has an extremely flat profile

(n ∼ 0.4), similar to that of a Gaussian. However, in comparison to our best-fit model,

the Sersic+dust-lane model is an extremely poor fit ∆χ2 = (χ2
Best − χ2

DL+Sersic) ∼

−564.3; the residual RMS noise is a factor & 5 larger than our best-fit model, and

the two previously determined point sources are strongly under-subtracted in the

residual image. Hence, the HST data do not support a scenario involving a single

SMBH hidden by a dust lane.
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Figure 3.3: Dynamical timescales for J1010+1413 as a function of binary semi-major
axis (assuming a circular orbit). Dynamical friction, stellar hardening, and GW
emission phases are shown with blue, green, and pink lines, respectively. Current
pair semi-major axis is shown with the black, dashed line. The PTA band for an
object of J1010+1413’s chirp mass is indicated by the pink region.

We further tested whether the very luminous [OIII] emission could be produced by

shock heating from powerful starburst-driven winds, ignited as a result of the galaxy

merger. Given either the [OIII] or 22µm luminosities, such a scenario would require

SFR� 103M�/yr in the central 500 pc region. However, this is inconsistent with the

non-detection of J1010+1413 at 100µm in IRAS, and is orders of magnitude higher

than the upper limit of .10M�/yr set by Hα. We thus conclude that the [OIII] and

IR emission must arise from quasar activity.

Our galfit simulations confirm the presence of two continuum and [OIII]-

emitting cores in the nuclear region of J1010+1413. The southern nuclear region is
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Figure 3.4: Schematic of GWB amplitude assumptions given the SMBH pair in
J1010+1413. Dynamical friction and stellar hardening will drive SMBH pairs like
J1010+1413 to merge by z = 0 (Fig.3), implying that there is at least one local
SMBH binary emitting GWs. The expectation of this one GW source is used to es-
timate nbinary(z = 0), which is extrapolated to z = 1 to compute a pessimistic GWB
amplitude estimate, A ∼ 1.8 × 10−17. Alternately, a more optimistic nbinary(z = 0)
can be estimated based on the population of known luminous quasars similar to
J1010+1413 within 0.18 ≤ z ≤ 0.22, producing A ∼ 3× 10−16.

marginally more luminous in [OIII] than the northern nucleus with ∆m[OIII] ∼ 0.14,

i.e., a flux ratio of 1:1.3. Using the previously measured Balmer decrement (Mul-

laney et al., 2013) and an extinction-corrected bolometric correction (Kauffmann &

Heckman, 2009), we measure intrinsic quasar luminosities of LAGN,N ∼ 4.2 × 1046

and LAGN,S ∼ 5.4 × 1046 erg s−1 for the north and south nucleus, respectively. The

combined luminosities are consistent with Lbol determined in the mid-IR. Under the

presumption that both quasars are accreting at L/LEdd = 1, we are able to place a

minimum mass of 4× 108M� for each SMBH in the pair.

We conclude that when all lines of evidence are taken together – (1) the measured

mid-IR and [OIII] luminosity; (2) the morphology of the [OIII] emission; and (3) the

spatial coincidence of the stellar-continuum and [OIII] point sources – J1010+1413, in

all likelihood, harbors two roughly equal-mass MBH & 4× 108M� SMBHs separated

in projection by ∼430pc. Further evidence for a pair of SMBHs in J1010+1413
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Figure 3.5: Left: Number density n(z) of AGN binaries pessimistically assuming
J1010+1413 is the only binary AGN in SDSS to z < 0.2 and constant number density
(blue) or assuming an evolving n(z) normalized to the number of J1010+1413-like
systems at z ∼ 0.18–0.22 in SDSS for our most optimistic (orange) and best-case
(black) scenarios, which themselves differ by the assumed SMBH mass function (cen-
ter panel). Shaded regions provide estimated uncertainties. Center: Assumed SMBH
mass functions for binary AGN. Right: Estimated characteristic strain (hc) of the
GWB following our well-motivated n(z) and n(MBH) assumptions. For reference, we
provide hc (95% lower limit) assuming the blazar OJ287 is a true SMBH binary (Zhu
et al., 2019; Dey et al., 2019).

must await on-going follow-up with JVLA, HST, and ground-based adaptive optics

telescopes.

3.3 Relevance to Gravitational Waves

J1010+1413 is not currently emitting GWs in the PTA band. However, as we de-

scribe below, the predicted time to the PTA band for J1010+1413 is less than the

lookback time to the object (Figure 3.3). Thus, we expect a population of objects like

J1010+1413 that would be emitting GWs in the PTA band today (Figure 3.4). Using

well-motivated assumptions on their number density (nbinary), we can place limits on

the GWB (Fig. 3.5).

3.3.1 Coalescence predictions

The evolution of SMBH pairs is expected to proceed through three main stages leading

to coalescence: (1) dynamical friction, (2) stellar hardening, and (3) GW emission
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(Begelman et al., 1980). The SMBH pair in J1010+1413, currently separated by

430 pc, should be nearing the end of its dynamical friction phase (Figure 3.3). This

phase has a timescale given by (Binney & Tremaine, 2008):

tdyn =
19 Gyr

ln Λ

(
a

5 kpc

)2
σ

200 km/s

108 M�
M2

, (3.1)

where a is the semi-major axis of the binary, σ is the velocity dispersion of the stars,

and M2 is the mass of the lighter SMBH. We use the virial theorem with our measured

values for the M∗ and rgal to estimate the stellar velocity dispersion. We expect the

SMBH pair will enter the stellar hardening phase within ∼10 Myr, at which time the

SMBH pair’s angular momentum will be transferred to slower-moving stars that pass

close to the pair, decreasing the orbital separation. This stellar hardening happens

on a timescale given by (Sesana & Khan, 2015):

tsh =
σinf

GHρinfa?/gw

, (3.2)

where σinf is σ at the BH influence radius, ρinf is the mass density at this radius,

H = 15 is a dimensionless hardening rate constant (see Quinlan, 1996, for more

details), and a?/gw is the semi-major axis at which GW emission begins to dominate

the decay of the orbit. We follow the usual procedure of assuming a Dehnen profile

with γ = 1 for the stars (Dehnen, 1993; Sesana & Khan, 2015; Mingarelli et al., 2017).

However, there may be insufficient stars to eject for the pair to reach the sub-pc scale,

and merge via GW emission (Yu & Tremaine, 2003). In this ‘final parsec problem’

scenario, the time to coalescence becomes significantly longer than a Hubble time,

causing the pair to stall. Without taking this effect into account, the expected hard

binary timescale is ∼ 2 Gyr. Large quantities of gas surrounding the SMBH pair will

decrease the binary’s time to coalescence. For approximately equal-mass systems, the

timescale for migration is about equal to the accretion timescale (Gould & Rix, 2000).
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Assuming the SMBH pair in J1010+1413 continues to accrete at λEdd = 0.1–1.0, the

gas accretion phase will require (Begelman et al., 1980):

tgas ∼
M1

M�

(
Ṁ

1 M�/yr

)−1

yr , (3.3)

where Ṁ is the accretion rate, i.e., a gas accretion timescale of tgas ∼ 100 Myr. Thus,

we expect the SMBH pair to reach sub-parsec separations within 0.1− 2 Gyr. Once

rsep . 0.1 pc, GW emission will lead to final coalescence within ∼700 Myr. If merging

SMBH binaries do not stall, by the present day we expect J1010+1413-like systems at

z ∼ 0.2 to be emitting GWs, anchoring the number of possible GW-emitting SMBH

binaries since z ∼ 0.2.

3.3.2 Contribution to the GWB

A GWB produced by the incoherent superposition of GWs from all inspiralling SMBH

binaries over cosmic history is expected to be observed by PTAs in the next few years

(Taylor et al., 2016; Kelley et al., 2017). SMBH pairs at z < 1 and in the 108−109M�

range, i.e., systems similar to J1010+1413, are expected to be the primary source

population of this signal. The GWB amplitude depends strongly on the SMBH

mass function, SMBH occupation fraction, and galaxy-galaxy merger rates, while the

shape of the characteristic strain (hc) spectrum holds clues to the final parsec problem

(Sampson et al., 2015; Arzoumanian et al., 2016). See Mingarelli (2019) for a brief

review and Burke-Spolaor et al. (2019) for a comprehensive one.

Here we use the existence of the SMBH pair in J1010+1413 to put limits on the

space density of similar objects.

As a lower limit, we assume that J1010+1413 is the only > 108M� SMBH binary

detectable in the SDSS to z = 0.2. This would imply that an analogous system would

be merging today i.e., nbinary(z = 0) = 1× 10−9 Mpc−3, Figure 3.4. Assuming nbinary
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is constant with both MBH and z, we estimate there are ∼ 300 binary AGN that

contribute to the GWB to z < 1.

Our most optimistic scenario assumes that J1010+1413 is representative of lumi-

nous Type-2 quasars (Lbol & 1046 erg s−1) in merging systems that are detectable by

SDSS, WISE and the NRAO VLA Sky Survey at z ∼ 0.18–0.22. By selecting all Type-

2 AGN from Mullaney et al. (2013) at z ∼ 0.18–0.22, and assuming L/LEdd = 0.3

(typical of SDSS quasars; Shen et al. 2011b) and the z = 0.2 observed fraction of AGN

in merging systems (fmerge = 0.25; Hickox et al. 2014), we predict there are potentially

112 binary AGN with MBH > 108M� in SDSS, i.e., nbinary(z = 0) = 2× 10−7 Mpc−3.

Uncertainties are estimated using a range of Eddington ratios (L/LEdd = 0.1− 1.0).

We predict the evolution of nbinary to z = 1 by normalizing the quasar number density

of Hopkins et al. (2007) to nbinary(z = 0), providing a total of ∼ 1.2×106 binary AGN

to z < 1.

Our more realistic (“best”) scenario also accounts for the dependence of nbinary on

MBH. We expect SMBHs in binaries to follow an MBH function (Marconi et al., 2004),

which corrects for the smaller number of very massive (MBH > 1010 M�) SMBHs in

the Universe. Our limits do not differ greatly if we instead adopt the observed quasar

luminosity function and a fixed Eddington ratio. Allowing the number density to vary

with MBH and z gives the same total number of binary AGN, but distributes their

MBH differently. We do not expect the SMBH mass function to vary significantly to

z < 1 in the range MBH = 108 − 1010M� (Merloni & Heinz, 2008).

We use our three scenarios to compute the GWB hc using the Phinney (2001)

formalism:

h2
c(f) =

4G5/3

3π1/3c2

1

f 4/3

∫
n(z,M)

(M)5/3

(1 + z)1/3
dz dM , (3.4)

whereM = (1/(1+q)2)3/5M1 is the chirp mass of the binary, q is the binary mass ratio,

and M1 is the primary mass. We integrate over z = 0− 1 andM = 107.6− 109.6 M�,
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where this mass range corresponds to MBH = 108−1010 M� and q = 1. We note that

computing the integral to z = 2 increases our final hc estimate by a factor .2.

We predict a range of limits on hc(f = 1 yr−1) from 9.2 × 10−18 to 4.0 × 10−16,

with a best estimate of hc(f = 1 yr−1) = 1.1× 10−16. This is ∼1− 10% of the most

recent upper limit on the GWB, hc(f = 1 yr−1) < 1.45× 10−15 (Arzoumanian et al.,

2018), and well within the reach of PTAs in the next decade (Taylor et al., 2016).

Our predicted range for hc brackets the theoretical lower limit of ∼10−16, which

would be produced by SMBH binaries stalled at the last parsec, assuming conservative

MBH estimates (Sesana et al., 2016; Shankar et al., 2016). These stalled SMBHs

ultimately merge via many body interactions with SMBHs introduced by additional

galaxy mergers (Bonetti et al., 2018; Ryu et al., 2018). There are therefore two

intriguing implications for the GWB following our discovery of J1010+1413: (1) if

the true GWB amplitude is marginally below the current sensitivity limits, then

SMBH pairs similar to that of J1010+1413 contribute 1 − 10% of the GWB signal,

and thus there must be little stalling of the SMBH pairs in nature; or (2) if the

GWB amplitude is lower than our predicted limits, then we would have evidence that

MBH have been overestimated and/or that nature does not have a solution to the

final parsec problem. In concert with future simulations and/or the improving GWB

upper-bound, the SMBH pair in J1010+1413 will anchor source population estimates,

merger rates, and even the volume of the GWB.

The identification of the SMBH pair in J1010+1413 has yielded new empirical

insight into the nature of the nanohertz GWB. Our investigation has highlighted

the benefit of combining quasar detections made in the mid-IR with high-resolution

optical imaging to confirm the presence of a SMBH pair. However, our current es-

timates for hc are limited by our ability to (1) accurately measure the number of

J1010+1413-like systems in the redshift slice z ∼ 0.18 − 0.22, and (2) constrain the

evolution of such merging systems out to z < 1 where the GWB signal may peak.
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The combination of sensitive large-scale surveys that are optimized for AGN detection

and/or galaxy morphologies (e.g., SphereX; WFIRST) will allow the future discov-

ery and characterization of a population of small-separation SMBH pairs, similar to

J1010+1413.
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Chapter 4

Galaxy Disk Warps &

Self-Interacting Dark Matter

All particles in the Standard Model have non-gravitational interactions, which makes

it reasonable to consider self-interactions in the dark sector as well. In addition, self-

interacting dark matter (SIDM) could alleviate the possible small-scale CDM issues

by redistributing dark matter out of the centers of halos and suppressing small-scale

structure formation (Spergel & Steinhardt, 2000). For velocity-independent interac-

tions, SIDM cross sections per unit DM mass of σ/m ∼ 0.1−1 cm2/g would be needed

to fit the current observations (Rocha et al., 2013). However, there are constraints on

SIDM from a wide variety of systems and experiments (for a comprehensive review,

see Tulin & Yu, 2018). For example, SIDM would lead to the evaporation of halos

due to high-momentum-transfer collisions. Thus, the existence of DM halos in dwarf

galaxies places constraints on the cross section (Gnedin & Ostriker, 2001; Kahlhoefer

et al., 2014). SIDM would also allow for the spherical relaxation of cluster halos. The

observation of elliptical cluster halos places strong limits on the SIDM cross section

from cluster ellipticites (Miralda-Escudé, 2002), although these are disputed (Peter

et al., 2013).
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SIDM also modifies the distribution of DM in galaxy and galaxy cluster collisions.

In the canonical CDM picture, the DM halos do not interact but pass through one

another without collision, while the gas shock-heats and decelerates. If DM has self-

interactions, then we would expect the DM to experience a drag as well, with a

magnitude depending on the interaction cross section. Thus, the centroid of the DM

compared to that of the gas could be used to constrain the SIDM cross section. This

method has been employed successfully for galaxy cluster collisions: most famously

for the Bullet Cluster, which disfavors interaction cross sections σ/m > 0.7−1 cm2/g

(Markevitch et al., 2004; Randall et al., 2008), although some simulations contend

that these constraints may be overstated (Robertson et al., 2017).

We can also expect this effect to leave imprints in the subhalos of clusters – from

galaxies falling into clusters. Specifically, we can look for the separation between

the centroid of the stars and the DM. The centroid separation technique has been

successfully used in simulations (Massey et al., 2011). Unfortunately, a clear detection

of this effect in data is challenging due to the weak-lensing accuracy required, as well

as other systematics (Harvey et al., 2013). However, recent work has shown that the

infall of galaxies into clusters can leave signatures at larger scales (Banerjee et al.,

2019).

Instead, we can try to look for other markers of this centroid separation. Secco

et al. (2018) recently considered the SIDM dynamics of a disk galaxy falling into a

large galaxy cluster. Using numerical simulations, they found that the separation

between the DM and stellar centroids should also produce a warp in the stellar disk

of the galaxy. This would be a U-shaped warp facing in the direction of motion –

a signature difficult to mimic with baryonic effects. The largest warps should occur

in galaxies on first infall into galaxy clusters. The dark matter densities are highest

in galaxy clusters and the first infall allows for ample time to form the warp before

the direction of the drag force changes at periapsis. However, warps are most easily
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measured in disk galaxies, which are typically not found in galaxy clusters. Although

at lower magnitude, this warping should in fact occur in any galaxy moving in a dark

matter medium. There have been no observational searches for this signal in data

thus far.

In this chapter, we place constraints on the SIDM cross section by measuring

the warps of stellar disks. Section 4.1 presents the different types of interaction and

physical effects that we consider. Section 4.2 describes our methods, including our

forward-modelling of SIDM warps and measurements of real warps. Section 4.3 gives

our results, while Section 4.4 discusses these results and concludes.

4.1 Theory

DM self-interactions will generally induce a drag force on the DM halo of a galaxy

traveling through some background over-dense region. The form of the drag force

will depend on the type of self-interaction. For a contact (velocity-independent)

interaction, we expect a fluid-type drag force1 ∝ ρbgv
2, where ρbg is the density

of the background dark matter and v is the relative velocity between the halo and

the background. For a long-range interaction (velocity and angle-dependent), we

expect a drag force ∝ ρbg/v
2 (e.g., Kahlhoefer et al., 2014). For intermediate-range

interactions (i.e. where the mass of the mediator is close to the mass of the DM

particle), we expect a force law between the contact and long-range cases.

Other physics will also affect the final force law. For any one collision between

particles, there is a probability of the halo particle being ejected. Over time, this

leads to an evaporation of the halo, which will damp the drag force. Finally, we

expect some velocity dispersion in both the halo and the background. This will cause

a distribution of incoming particle velocity directions, further damping the drag force.

1This assumes the interaction times are small enough for the fluid approximation to hold. We
discuss this further in Section 4.4.
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In this section, we develop the equations for the expected stellar warp produced

by self-interactions between the DM in a galactic halo and a background overdensity.

We begin by finding the drag force per particle mass for the three different types

of DM self-interactions (contact, long-range, and intermediate-range), along with the

modifications due to evaporation and velocity dispersion of the halo. We then describe

the warp this produces within the galaxy’s stellar disk.

4.1.1 Halo deceleration from DM self-interactions

Consider a halo moving through some background medium with relative velocity ~v.

We would like to find the force per unit mass on the halo in the direction of ~v from DM

self-interactions between particles in the halo and particles in the medium. This drag

force law will depend on several factors, such as the angular and velocity dependencies

of the self-interaction and the effects of evaporation and velocity dispersion.

Contact interactions

Let us first consider velocity-independent interactions arising from a contact force.

For now, focus on a two-particle interaction: one particle from the halo and one from

the background overdensity. In the center of mass (COM) frame, the velocity of the

halo particle in the direction of the relative velocity will change by:

δv|| = |~v|(cos θ − 1) , (4.1)

where θ is the scattering angle in the COM frame. Note that δv||/|~v| ≤ 0 always.

The total number of interactions is given by:

dN =
ρbg

mDM

dσ

dΩ
|~v| dt dΩ , (4.2)
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where ρbg is the density of the background overdensity and dσ/dΩ is the differential

cross section.

The total drag acceleration is given by integrating over all interactions, which can

be written as:

~adrag =
~Fdrag

mDM

=
ρbg

mDM

|~v|2
∫

dσ

dΩ
(cos θ − 1) dΩ v̂ (4.3)

As Secco et al. (2018) show, for an isotropic interaction, this leads to a drag

acceleration of the form:

~adrag = −1

4

(
σ̃

mDM

)
ρbg~v

2 , (4.4)

where σ̃ =
∫
dσ/dΩ dΩ is the total cross section. Since we are assuming an isotropic

cross section here, σ̃ is just a constant.

However, this does not take into account the effects of evaporation on the halo. If

we allow for evaporation, the drag acceleration is given by (Markevitch et al., 2004;

Kummer et al., 2018):

~adrag = −χd

4

(
σ̃

mDM

)
ρbg~v

2 , (4.5)

where χd is the fraction of events that lead to deceleration rather than evaporation.

Markevitch et al. (2004) find this fraction by considering the momentum change per

collision and comparing this to the escape velocity of the halo. This gives:

χd = 1− 4

∫ 1

√
x2/(1+x2)

dy y2
√
y2 − x2(1− y2) , (4.6)

where x ≡ |~vesc|/|~v| and vesc is the escape velocity for the halo. If we assume a

virialized halo, then vesc = 2vdisp, where vdisp is the velocity dispersion of the halo.

Both of these cases assume that all of the particles in the halo are traveling

with velocity ~v. More realistically, the particles in the halo will have some velocity

dispersion. Kummer et al. (2018) find that, for a Maxwellian velocity distribution,
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this leads to a suppression of the drag force, which is well approximated by:

χp =
|~v|3

|~v|3 + |~vdisp|3
(4.7)

where vdisp is again the velocity dispersion of the particles. The background should

also have a velocity dispersion, but we ignore this for the purposes of this paper since

it will be small compared to the dispersion of the halo.

Our final equation for the contact drag acceleration is then:

~a contact
drag = −1

4
χdχp

(
σ̃DM

mDM

)
ρbg~v

2 . (4.8)

Long-range interactions

Long-range interactions describe DM that interacts via a massless mediator. This

introduces angle and velocity dependencies in the cross section, which can be written

as (Kummer et al., 2018; Tulin & Yu, 2018):

dσ

dΩ
=

σ0 sin θ(
v
c

)4
sin4

(
θ
2

) , (4.9)

where σ0 describes the coupling strength of the interaction. This is the well-known

Rutherford scattering formula.

To find the drag force, we now proceed similarly as in Sec. 4.1.1. Using Equa-

tion 4.3, we find that the drag acceleration given by long-range interactions is:

~a long
drag = −1

4

(
σ̃

mDM

)
ρbg

c4

|~v|2 v̂ , (4.10)

where we define an effective cross section σ̃ ≡ −32π(2 + π)σ0 (see Kahlhoefer et al.,

2014, for a similar approach).
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Unlike the drag force from contact interactions, the drag force from long-range

interactions is maximized for small relative velocities. The lack of high-momentum-

transfer collisions (for suitably small σ̃/mDM) means that evaporation is negligible in

this case (see, for example, Kummer et al., 2018). The velocity dispersion correction

does not depend on cross section, and so is the same as for the contact case. This

gives a full long-range interaction drag acceleration of:

~a long
drag = −1

4
χp

(
σ̃

mDM

)
ρbg

c4

|~v|2 v̂ . (4.11)

Intermediate-range interactions

As our final case, we consider intermediate-range interactions, where the mediator

mass can range from massless to infinitely massive (i.e. the contact limit). We do

this by interpolating the drag acceleration between the two previous cases:

~a inter
drag = −1

4

(
σ̃DM

mDM

)
ρbg~v

2

(
c

|~v|

)m
v̂ , (4.12)

where 0 ≤ m ≤ 4. When m = 0, this exactly equals the contact case; when m = 4,

this exactly equals the long-range case. We do not assume a particular differential

cross section equation; however, we presume that any actual differential cross section

would map onto this form for the drag force. For example, a common cross section

for this type of interaction is (e.g., Kummer et al., 2018):

dσ

dΩ
=

σ0 sin θ

2
(

1 + (v/c)2

w2 sin2 θ
2

)2 , (4.13)

where w = mφ/mχ, φ is the mediator, χ is the DM particle, σ0 = (4πα2m2
χ)/m4

φ, and

α is the coupling constant. We find that this gives similar results to our interpolating

case (see Section 5.3).

48



As with the previous cases, we would like to include the effects of both velocity

dispersion and evaporation. The velocity dispersion does not depend on the cross

section, so this is trivial to add. However, the evaporation effect requires some more

thought. The evaporation fraction calculation requires knowing the differential cross

section equation (Markevitch et al., 2004; Kummer et al., 2018). We circumvent this

by noting that the evaporation rate should be bracketed by the contact and long-

range cases, which means it must be a rapidly decreasing function of the variable m

that governs the range of the interaction. We adopt:

χinter
d = 1− (1− χd) exp[−2m] . (4.14)

When m = 0, χinter
d = χd; however, when m = 4, χinter

d ∼ 1 and there is no evapora-

tion. Unless there is some extra physics leads to interesting behavior, the evaporation

fraction should smoothly interpolate between the two cases and this function should

approximately capture its effect.

Then our final equation for this interaction, including all physics, is:

~a inter
drag = −1

4
χinter
d χp

(
σ̃

mDM

)
ρbg~v

2

(
c

|~v|

)m
. (4.15)

4.1.2 Galaxy warping in SIDM

We now know the force on the galaxy halo from these self-interactions. However,

we cannot measure the force directly – we must instead examine its effect on the

morphology of the galaxy. In particular, the displacement between the halo and disk

induced by dark matter self-interactions sets up a potential gradient across the disk,

which warps it into a U-shape. We calculate this warp by considering the difference

in acceleration between the disk’s center and a general point along the disk, following

the methods of Desmond et al. (2018a).
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Figure 4.1: Cartoon of how a warp is induced by SIDM. In this picture, the galaxy’s
stellar disk (orange) and its halo (the center of mass, CM, of the halo is given as
the black circle) are falling within an ambient dark matter medium with the relative
velocity indicated by the blue arrow. As they fall, the halo experiences a drag force
from DM self-interactions, but the stars are collisionless and continue unimpeded.
This causes a separation between the centers of the disk and halo, which bends the
disk into a U-shaped warp.

Let us define the center of the halo to be at the origin of an x − z plane, where

ẑ points along the disk normal (see Figure 4.1). The stars are collisionless, but the
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halo is subject to the drag force derived above. The total acceleration of the halo is:

~ah = ~abg − ~adrag , (4.16)

where ~abg is the gravitational acceleration due to surrounding matter and ~adrag is the

drag acceleration due to SIDM. The total acceleration of a point on the stellar disk

is:

~a? = ~abg −
GMh

r2
?

r̂ , (4.17)

where r? is the equilibrium distance from the point to the center of the halo and Mh

is the halo mass enclosed within r?. The second term is the restoring force caused by

the offset of the disk from the halo center.

Since we are looking for the equilibrium positions of the stars, we will require that

the stars and DM halo move together. This sets ~a? = ~ah, which gives:

~adrag =
GMh

r2
?

ẑ . (4.18)

If we assume a spherically-symmetric halo, then the points along the stellar disk

will experience different accelerations:

~adrag =
GMh

r2
?

ẑ cos θ =
GMh

r2
?

ẑ
(z
x

)
. (4.19)

We will assume that the warp is slight and thus x ≈ r?. This now allows us to write

an equation for the z positions of the stars in terms of the drag and the mass of the

background halo:

z = adrag
|x|3
GMh

(4.20)
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To go further, we must assume a mass profile for the halo. We will use a power-law

density profile

ρ(r) = ρs

(rs
r

)n
(4.21)

within the extent of the disk, with scale radius rs, ρ(rs) ≡ ρs, and a free index n (e.g.,

n = 1 for an NFW profile). This gives an enclosed mass Mh = 4πρs/(3 − n)r3−n
∗ .

Substituting this in to our equation for the warp curve above, we find:

z = adrag
3− n
4πρs

|x|n . (4.22)

In order to compare to observations, we would like a summary statistic that can

quantitatively describe the warp. We will employ the w1 statistic used by Vikram

et al. (2013) & Desmond et al. (2018a) – this is essentially a measure of the average

z position across the disk:

w1 =
2

L3

∫ L

0

z′x dx , (4.23)

where z′ = z − 〈z〉, 〈z〉 is the average z(x) value across the disk, and we implicitly

assume a stellar disk that is symmetric about the z axis. Substituting in Equation 4.22

and integrating, we find:

w1 =
n(3− n)

(n+ 1)(n+ 2)

adrag

4πGρs

(
L

rs

)n
1

L
. (4.24)

4.2 Methods

In this section, we describe the construction of our galaxy sample and explain how

we measure the warp curve. Then we describe our model for the estimated warp

produced by SIDM.
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4.2.1 Candidate selection & warp measurement

We use the NASA Sloan Atlas (NSA) (Blanton et al., 2011) v.1.0.1 catalog2, a catalog

based mainly on Sloan Digital Sky Survey (SDSS) photometry, to select our galaxies.

This catalog contains 641,409 galaxies. General quality cuts (positive mass, radius,

flux, and redshift measurements) reduce this number to 640,566. We select only those

galaxies that have stellar mass greater than 109 M� and an axis ratio of b/a = 0.15,

which leaves us with 22,414 galaxies. This mass cut allows us to use abundance

matching to set the dark matter halo masses for our galaxies: the galaxy–halo con-

nection for lower-mass galaxies is considerably more uncertain. The axis ratio cut

selects galaxies that are both thin and viewed edge-on. There is some degeneracy

between inclination and warp – an inclined galaxy will always have a smaller warp

measurement if we do not properly account for the inclination. Selecting only edge-

on galaxies therefore makes the warp curve measurement more robust. We select

galaxies within 250 Mpc, which allows us to use the BORG algorithm to estimate

the background density at their positions (see below). Finally, we cut 5 galaxies with

defects in their images (cosmic ray streaks across the disk or no galaxy in the r-band

image at the NSA catalog position or corrupted image file). This leaves a final sample

of 3,213 galaxies.

To measure the warp curves, we employ the methods of Desmond et al. (2018a).

We give a short summary of the procedure here. First, we rotate the r-band image

of a galaxy such that the major axis is aligned with the ‘x-axis’. The warp curve is

given by the intensity-weighted z value at each x slice. We then measure the warp

using the w1 statistic introduced in Vikram et al. (2013):

w1,obs =

∫ L
−L

x
L
z
L
dx
L∫ L

−L
x
L
dx
L

=
1

L3

∫ L

−L
xz dx , (4.25)

2https://www.sdss.org/dr13/manga/manga-target-selection/nsa/
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where integration from −L to L allows for asymmetry across the ‘z-axis’ (perpendic-

ular to x on the plane of the sky). In practice, we set L = 3Reff , where Reff is the

stellar effective radius.

4.2.2 Parameters for estimating the warp

To calculate the expected warp due to SIDM, we require several pieces of information

for each galaxy: the effective radius of the stellar disk (Reff), the density of the

background at the position of the galaxy (ρbg), the relative velocity between the

galaxy and the background overdensity (v), the angle between this relative velocity

and the disk normal (θ), the scale radius of the DM halo (rs), the density of the DM

halo at the scale radius (ρs), the power-law index for the DM density profile (n), and

the velocity dispersion of the halo (vdisp).

We estimate Reff by multiplying the measured Sersic half-light radius from the

NSA catalog, SERSIC TH50, by the angular diameter distance to the galaxy3, with

the redshift given by the NSA parameter ZDIST.

We find the halo parameters (rs, ρs, and vdisp) using halo abundance matching and

N-body simulations. Abundance matching (AM) assigns dark matter halos to galaxies

by assuming a positive, monotonic relationship between the luminosity or stellar mass

of the galaxy and the ‘proxy’, a function of the halo mass and concentration (Kravtsov

et al., 2004). Specifically, we use the AM model of Lehmann et al. (2017), which

maps the r-band absolute magnitude, Mr, to a halo proxy given by vvir(vmax/vvir)
α,

with a Gaussian scatter σAM. We take the values α = 0.6 and σAM = 0.16 dex,

which best reproduce clustering statistics. We use the DARKSKY-400 simulation

(Skillman et al., 2014) post-processed with the ROCKSTAR halo finder (Behroozi

et al., 2013) for the halo properties. For each matched galaxy–halo pair we calculate

rs and ρs from the ROCKSTAR output, assuming an NFW profile (Navarro et al.,

3We assume a flat ΛCDM cosmology with h = 0.7, ΩΛ = 0.7, and Ωm = 0.3 for this calculation.
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1997). Velocity dispersions, vdisp, are calculated by applying the virial theorem to the

halos.

The density of the background, ρbg, is estimated from the Bayesian Origin Recon-

struction from Galaxies (BORG) algorithm (Jasche et al., 2010; Jasche & Wandelt,

2012, 2013; Jasche et al., 2015; Jasche & Lavaux, 2015; Lavaux & Jasche, 2016; Jasche

& Lavaux, 2019). This algorithm reconstructs the dark matter density field with a

resolution of ∼2.3 Mpc/h out to ∼250 Mpc by forward-modeling primordial density

perturbations with a particle–mesh code and comparing this to the number density

field of galaxies in the 2M++ survey (Lavaux & Hudson, 2011). To fill in the smaller-

scale power, we also include the mass associated with the 2M++ galaxies themselves,

which are linked to halos using the same AM routine as above (Desmond et al.,

2018b).

We use one of two models for galaxy velocities. First, we set v to the same constant

for all of our galaxies, where we consider velocities from 50 − 10, 000 km/s. This is

clearly an idealized case, but it gives us a basic idea of the constraining power of

our dataset. Second, we use the CosmicFlows-3 (CF3) catalog (Tully et al., 2016) of

peculiar velocities. We first assign each galaxy a peculiar velocity, vpec, belonging to

the CF3 galaxy closest to it in 3D space. We then assume that the galaxy is falling

towards the nearest 2M++ galaxy. The SIDM prediction for the warp we see on the

sky is proportional to the relative velocity projected onto the sky. We assign the

galaxy velocity in the plane of the sky to be equal to the peculiar velocity.

We must then subtract the velocity of the ambient dark matter medium. We

use the public large-scale velocity maps of (Carrick et al., 2015) for this purpose,4

evaluated at the positions of our galaxies. These maps are estimated using linear

perturbation theory and a reconstruction of the large-scale density in the nearby

Universe from the 2M++ catalog. They have resolution 4 Mpc/h, and do not provide

4https://cosmicflows.iap.fr/
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uncertainty information. We take each of these background velocities and project

them onto the sky. We then subtract this velocity from the total galaxy velocity on

the sky. The magnitude of this projected velocity is what we call v. We then assign

the on-sky angle between this velocity and the disk normal, θ, again assuming that

our galaxy is falling towards the nearest 2M++ galaxy. The CF3 peculiar velocities

and 2M++ galaxy directions should give us a better idea of the order of magnitude of

these relative velocities. However, we also consider fractions f of the relative velocity

when we use the CF3 velocities – from 1 − 500%. Note that all of our velocities are

in the CMB restframe.

We note that the relative velocities we find here are similar to those seen in

simulations. We find that the distribution of fractional velocity differences ((vhalo −

vLS)/vhalo, with vhalo the average velocity of DM particles within Rvir and vLS the

average velocity of DM particles out to 10 Rvir in the direction of halo velocity) in

the Horizon-AGN simulation (Dubois et al., 2014) is similar to that of the galaxies

in our model, with vhalo approximated by vCF3 and vLS from the large-scale velocity

reconstruction described above. This indicates that the level of halo velocity bias

(Biagetti et al., 2014; Baldauf et al., 2015; Chen et al., 2018b) in our model is similar

to that predicted by cosmological hydrodynamical simulations.

Parameter Source of Uncertainty Model Used

P (n) Inner DM halo density slope Uniform prior n ∈ [0.5, 1.5]

P (ρs, rs |Mr;α, σAM) Stochasticity in galaxy–halo connection 200 mock AM catalogs at fixed α and σAM

P (ρbg|~x) Background DM density 10 draws from BORG posterior

P (v) Galaxy relative velocity Delta function at set velocity (see Sec. 4.2.2)

P (θ) Unknown relative velocity direction Delta function at set angle (see Sec. 4.2.2)

Table 4.1: Priors used to find the likelihood of the warp statistic for given σ̃/mDM

and m.

With all of these parameters, we can calculate the predicted w1 statistic for each

galaxy using Equation 4.24, for any given σ̃/mDM. However, this equation is for a
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single set of parameter values. We instead want a likelihood function for w1 that takes

into account the uncertainties on these parameters. For each parameter, we either

set it directly (v, θ, Reff) or we sample over some prior distribution (all the rest).

For the halo parameters, we perform the AM step independently 200 times, in each

case producing a slightly different galaxy–halo connection due to the stochasticity

introduced by σAM. This generates distributions for ρs and rs, separately for each

galaxy. We then build our prior for the background density, ρbg, by finding the density

within BORG at the position of the galaxy, ~x, at 10 independent steps of the BORG

Markov chain. Finally, we use a uniform prior for n from 0.5 to 1.5 independently

for each galaxy. This range is chosen to include the NFW value (n = 1) as well as

profiles that are slightly shallower or steeper.

We then perform Monte Carlo sampling for each galaxy independently to deter-

mine the w1 likelihood function. Since w1 ∝ σ̃/mDM, we can generate the likelihood

function at σ̃/mDM = 1 cm2/g and then simply scale it up or down when sampling

σ̃/mDM:

L
(
w1

∣∣∣∣∣ σ̃

mDM

= 1 cm2/g,m

)
=

∫
L
(
w1

∣∣∣∣∣ σ̃

mDM

= 1 cm2/g,m, ρs, rs, n, ρbg, v, θ

)

× L (ρs, rs |Mr;α, σAM)L(ρbg, v | ~x)

× P (θ)P (n) dρs drs dρbg dv dθ dn ,

(4.26)

where the probability distributions for each of these priors is given in Table 4.1.

We test for convergence of the likelihood function for each galaxy by requiring that

the mean, variance, and skew of L(w1|σ̃/mDM = 1 cm2/g,m) does not change by

more than 1% in the last 10% of the samples, which we find requires at least 100,000

Monte Carlo draws from the prior distributions. Note that by building these distribu-
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tions directly into the likelihood we are effectively sampling from the priors in these

quantities rather than the posteriors, which would be computationally too expensive.

4.2.3 Parameter inference

We now have a measured warp statistic for each galaxy, w1,obs, and the likelihood

of a given warp statistic under an SIDM model with σ̃/mDM = 1 cm2/g. This en-

ables us to derive constraints on σ̃/mDM and m using Bayes’ theorem and a Markov

Chain Monte Carlo (MCMC) algorithm. Note that Equation 4.24 is linear in σ̃/mDM

and in the other factors that affect the particular physics of the interactions, out-

side of m. Thus, for our parameter estimation of σ̃/mDM, we simply sample from

L(w1|σ̃/mDM = 1 cm2/g,m) and then scale by the particular σ̃/mDM value the

Markov chain is sampling. We then compare this to the measured w1,obs value for

each galaxy, as described below. In the contact and long-range cases, we fix m at the

appropriate values and do not sample over it.

For the most part, the measured warp values are many orders of magnitude larger

than the estimated warp parameters, given a reasonable cross section. In other words,

noise dominates the warp signal. Given that we have no reasonable model for how

other processes may produce U-shaped warps, we assume that the noise is normally

distributed and marginalise over its variance, σ2
w1

. This modifies the w1 likelihood to:

L
(
w1,obs

∣∣∣∣∣ σ̃

mDM

,m, σw1

)
=

∫
dw1√
2πσ2

w1

× L
(
w1

∣∣∣∣∣ σ̃

mDM

,m

)
exp

[−(w1,obs − w1)2

2σ2
w1

]
,

(4.27)

In practice, we evaluate this integral by discretizing w1 into 50 bins between its

minimum and maximum values, separately for each galaxy.

We sample this likelihood using the emcee affine-invariant Markov sampler

(Foreman-Mackey et al., 2013). We set the flat prior σ̃/mDM ∈ (0, 104) and check

that varying this prior does not significantly change the results. For the intermediate-
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range results, we sample log10(σ̃/mDM/[cm2 g−1]) ∈ (−20, 2). The power-law index,

m, has a flat linear prior over m ∈ [0, 4]. Finally, we sample in log10 σw1 , with no

restrictions on its range.

For the contact and long-range interactions, we use 10 walkers and take 20,000

samples, after burn-in. This gives a Gelman-Rubin convergence parameter R < 0.01.

For the intermediate-range case we require & 25, 000 samples after burn-in to give

the same level of convergence.

4.3 Results

Our main results are:

1. There is no preference for SIDM (σ̃/mDM > 0) over the null hypothesis that

warps are generated purely by astrophysical or measurement noise. This in-

dicates no net correlation between the direction of the warps and the galaxy

velocities on the plane of the sky, or between the warp magnitude and the

expectation of Equation 4.24.5

2. For contact interactions, we find a 1σ limit of σ̃/mDM < 0.5 cm2/g for fixed

galaxy velocity v = 300 km/s. Assuming all galaxies have the same velocity,

this limit scales as ∼v−2 for v < 1000 km/s. If we use the fractions of the CF3

velocities, we find that the limit scales as ∼v−1.8. Overall, we place a range of

68% upper bounds on the cross section from σ̃/mDM . 0.2−60 cm2/g, assuming

a galaxy velocity from v ∼ 104 km/s − 50 km/s or alternatively considering a

galaxy-by-galaxy variation in v, in accordance with the CF3 results.

3. For long-range interactions, we place a limit of σ̃/mDM(v = 300 km/s) < 3 ×

10−13 cm2/g, scaling as ∼v1.0 assuming a constant velocity v < 1000 km/s. This

5This is predictable from the results of Ref. Desmond et al. (2018a), who show that there is a
positive correlation between the warp direction and the orientation of the fifth-force field in thin-
shell-screened modified gravity theories, which is largely anti-aligned with galaxies’ velocities.
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scaling goes as∼v−0.028 for the velocities set using fractions of the CF3 velocities.

Including the possibility of variation in the galaxy velocities, we find a range of

68% upper bounds on the cross section from σ̃/mDM . 2×10−13−10−10 cm2/g,

with assumed median galaxy velocity from v ∼ 50 km/s− 104 km/s.

4. For intermediate-range interactions we find that contact-like drag forces are

marginally preferred, with a corresponding constraint on the cross section.

In the rest of this section, we use different assumptions about the relative veloc-

ities of our galaxies to give more detailed results. These results are summarized in

Figures 4.2–4.5, and Table 4.2. Note that in all cases we marginalize over the vari-

ance of the noise term, σw1 . We find that σw1 is not degenerate with any other model

parameter and its posterior is invariant for all of the models we consider. It is peaked

at the measured variance of w1,obs, indicating that it picks up the overall magnitude

of the measured warps. The constraints on SIDM parameters instead depend on the

correlation of ŵ1 with environment and galaxy/halo properties.

For the contact interactions case, we give our main results in Figure 4.2. As

described in Section 4.2.2, we use either of two assumptions for the velocities: 1) we

set all velocities to the same value; or 2) we set the velocities to some fraction of the

measured velocities from the CF3 data. The limit on the cross section differs by at

most a factor ∼ 2 between these models. Our limits for average velocities greater

than ∼ 500 km/s are tighter than the Bullet Cluster constraints (Markevitch et al.,

2004; Randall et al., 2008; Kahlhoefer et al., 2014). In Figure 4.3, we show how

the evaporation and velocity dispersion effects change our limits. Adding both of

these effects, as is done in all other figures, weakens our limits by about one order of

magnitude, regardless of the velocity scale.

Our long-range limits are given in Figure 4.4. As with the contact case, we

report our limits as a function of the assumed velocity and include two curves with

the different velocity models. The results in Figure 4.4 include the effects of velocity
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Figure 4.2: 68% upper limits on the SIDM cross section assuming a contact interaction
versus the median assumed velocity. We show our limits assuming all galaxies have the
same relative velocities (pink) and assuming they have velocities set by some fraction
of their CF3 velocities (blue). The grey, hatched region gives the range of constraints
on the cross section from the Bullet Cluster (Markevitch et al., 2004; Randall et al.,
2008; Kahlhoefer et al., 2014). The dotted-dashed line gives the minimum SIDM
cross section needed to provide astrophysically interesting effects (i.e., suppression of
small scale structure and DM halo cores; Rocha et al., 2013).

dispersion but not evaporation (see Section 4.1). We find our limits to be considerably

stronger than those from dwarf galaxy evaporation (Kahlhoefer et al., 2014).

Finally, we consider the intermediate case in Figure 4.5. This shows the posterior

distributions for σ̃/mDM and m, the power-law index for the velocity dependence of

the interaction. Contact interactions (low m values) are slightly preferred, although

this may be solely because they allow a larger volume of the σ̃/mDM prior. As in

the other cases, the limits on σ̃/mDM strengthen when higher velocities are assumed;
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Figure 4.3: 68% upper limits on the SIDM cross section assuming a contact interaction
versus the median assumed velocity. Here we show the effects of velocity dispersion
and evaporation on our results. The black line shows the limits if we do not consider
either of these physical effects. The pink, dotted-dashed line includes evaporation
and the orange, dashed line includes velocity dispersion. The blue region shows the
same limits as Figure 4.2, which includes both effects.

however, this does not significantly affect the m posterior. Note that we use a log-

prior on the cross-section in this case due to the enormous width of the posterior as

m varies. However, since the posterior peaks at σ̃/mDM = 0 cm2/g, confidence limits

depend on the arbitrary lower limit of the prior and are therefore not reliable. The

shapes of the posteriors and their dependence on velocity are nevertheless robust.
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Interaction Type Assumed Velocity Evaporation? Dispersion? 68% Upper Limit 95% Upper Limit

km/s cm2/g cm2/g

contact

v = 300

- - 0.19 0.43

X - 0.35 0.76

- X 0.27 0.61

X X 0.46 1.0

v = vCF3

- - 0.032 0.071

X - 0.26 0.49

- X 0.033 0.073

X X 0.28 0.53

long-range

v = 300
N/A - 2.0× 10−13 4.4× 10−13

N/A X 2.7× 10−13 6.1× 10−13

v = vCF3

N/A - 4.7× 10−14 1.2× 10−13

N/A X 3.9× 10−13 9.4× 10−13

Table 4.2: Limits on the self-interaction cross section for contact and long-range
interactions

4.4 Discussion

Our results in the previous section show that we can place new constraints on the

SIDM cross section by measuring the warps of stellar disks. In this section, we

discuss possible systematics and how we attempt to mitigate them. We also discuss

the prospects for improving constraints with next-generation surveys.

As shown in Figures 4.2 and 4.4, the bounds on the cross section are dictated

by the magnitudes of the galaxies’ relative velocities. We have provided a range of

constraints based on different reasonable assumptions, but more robust limits require

more precise velocity measurements. The CF3 velocities have very large errors, in

excess of 100% at times. In addition, the CF3 catalog does not include most of the

galaxies in our sample, forcing us to assign velocities by means of a nearest neighbour

algorithm. Most of our sample is within ∼ 10 Mpc of a CF3 galaxy. We find that,

within the CF3 catalog, the velocities are well-correlated on these scales. We therefore

expect this to be an adequate estimator of the true velocity, but caution that it must
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Figure 4.4: 68% upper limits on the SIDM cross section assuming a long-range inter-
action versus the median assumed velocity. We show our limits assuming all galaxies
have the same relative velocities (dashed, pink) and assuming they have velocities set
by some fraction of their CF3 velocities (solid, blue). The black, dotted-dashed line
gives an upper limit from dwarf galaxy evaporation rates (Kahlhoefer et al., 2014).

introduce some uncertainty. Note also that we do not include uncertainties on the

peculiar velocities in our likelihood function. Since the warp depends on the square

of the velocity, including Gaussian (or log-normal) uncertainties always leads to a

larger predicted warp and hence a tighter constraint on the cross section. Our model

is therefore conservative in this regard.

Another possible systematic is the effect of baryonic physics on galaxy morphology.

Most warps caused by tidal or baryonic effects are S-shaped (Binney, 1992), and

are therefore effectively filtered out by our choice of warp statistic. Any non-SIDM

contribution to w1 is captured to leading order by our noise model (marginalization
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over σw1), but only under the assumption that this contribution is Gaussian and

independent of environment and galaxy/halo properties. Baryonic and tidal effects

are likely to break this assumption to some degree. In addition, gas in the galaxy

will experience hydrodynamical drag from interaction with gas in the intergalactic

medium (IGM), which will lead to a U-shaped warp in the same direction as SIDM.

Thus, including this IGM contribution would tighten our limits, making our current

results again conservative. The location of the gas as well as the dependence of the

measured warp on gas mass would help break the degeneracy between these two types

of physics in the context of future, more precise constraints.

We also neglect the effects of tidal interactions, which could contribute to

anisotropy in halo and galaxy profiles. However, this effect would be largest within

clusters while our galaxies are mainly in the field, so we do not expect it to

significantly bias our results..

On the theory side, we use the fluid approximation to derive the SIDM prediction

for the warp. However, given the low background densities (like most late-types, our

galaxies tend to reside in the field), the fluid approximation is likely not valid for the

contact interaction case. The average background densities near our galaxies is ρbg =

330 M�/kpc3 ∼ 2.4ρcrit, where ρcrit is the critical density today. For v = 300 km/s

and σ̃/mDM = 1 cm2/g this gives an interaction time larger than 1/H0. We thus

caution that the contact interaction results are subject to larger uncertainty. The

long-range results also depend on the fluid approximation, but there are many more

interactions because of the nature of the force – the interaction times for this case are

closer ∼ 50 Myr, which is less than the typical dynamical times for these galaxies.

These results are therefore more robust.

Finally, we neglected to include the self-gravity of the disk in our calculations.

Desmond et al. (2018a) found this to be a negligible effect, thus we do not include
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those calculations here. However, as imaging and analysis techniques improve, disk

self-gravity may become a relevant systematic.

With the coming era of large and deep photometric surveys (e.g., LSST6 (LSST

Science Collaboration et al., 2009), WFIRST7 (Spergel et al., 2013), and Euclid8

(Laureijs et al., 2012)), we can expect to have a much larger sample of edge-on galax-

ies to test in the future. Assuming that we can continue to measure the properties of

the DM background (density and velocity) in these survey volumes and the galaxies’

peculiar velocities, we can expect these samples to yield considerably tighter con-

straints. To quantify this, we repeat our analysis for the contact interaction case

(with v = 300 km/s and without the velocity dispersion and evaporation effects) us-

ing random subsets of size N of our galaxy sample. This produces a range of results

depending on the subset of galaxies chosen. For each subset size, we record the 68%

upper limits on σ̃/mDM. We find that the upper 16% of these limits is well fit by

σ/mDM|1σ ∝ N−0.9 . In other words, in the worst case scenario that all of the future

galaxies we obtain have the same constraining power as our least-constraining few

hundred galaxies, we will tighten our limits by a factor of ∼2.8 with 10,000 galaxies.

The median limits show that with this same number we can more likely expect at

least an order of magnitude better constraints. Thus, with just 10,000 galaxies, we

can expect limits capable of totally ruling out self-interactions as an astrophysically

interesting DM property. This is even without accounting for any improvements in

the velocity determination and other modeling. We can further improve these con-

straints by finding more thin, edge-on galaxies in high density environments – these

would be expected to have the largest warp signature and thus the greatest constrain-

ing power. We would also want to choose galaxies at relatively low redshifts and with

6https://www.lsst.org/
7https://wfirst.ipac.caltech.edu/
8https://www.euclid-ec.org/
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high stellar masses, which would reduce uncertainties both in measuring the warps

and assigning halo properties to the galaxies.

In summary, we calculate the expected stellar disk warp due to DM self-

interactions for a variety of interaction types and additional physical processes. We

then compare these to the measured warps of edge-on disk galaxies in the SDSS to

place constraints on SIDM parameters. Our constraints are competitive with limits

from the Bullet Cluster and dwarf galaxy evaporation. These results are conservative

given our treatment of the interstellar medium and velocity uncertainties, although

there remain modeling challenges (e.g., the use of the fluid approximation and the

precise values of galaxies’ peculiar velocities). Given the strong constraints we have

found so far, we believe this to be a fruitful avenue for future work. With more

galaxies, better photometry, and more accurate velocities, we can hope to use galaxy

structure either to detect SIDM or to rule it out as an astrophysically interesting

possibility.
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Figure 4.5: Corner plots for the intermediate-range interaction. We show our limits
assuming all galaxies have v = 300 km/s (pink) and assuming they have velocities
set by their CF3 velocities (blue). m determines the dependence of adrag on the
relative velocity of the halo and background (Equation 4.12). Note that because we
use a Jeffrey’s prior here for σ̃/mDM and the posterior peaks at σ̃/mDM = 0 cm2/g,
the confidence levels depend sensitively on the arbitrary lower limit of the prior and
should not be used: the contour lines in the off-diagonal panel are meant merely to
show the degeneracy direction.
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Chapter 5

Isolated Dwarf Galaxies &

Emergent Gravity

In Emergent Gravity (EG) theory (Verlinde, 2017), gravity emerges from the entan-

glement of spacetime. According to this theory, dark energy has some entanglement

entropy. Baryonic matter displaces dark energy and, due to the volume law contri-

bution to entropy, this causes an elastic response force on the matter. This manifests

itself as an extra gravitational force around massive objects. Verlinde (2017) uses this

elastic response force ansatz to produce an equation for the “apparent dark matter”

given some baryonic mass distribution.

In the limit of a point-source mass, the equation for the apparent dark matter

(DM) in EG converges to the weak limit equation from Modified Newtonian Gravity

(MOND) (Milgrom, 1983). Thus, Verlinde (2017) manages to derive the Tully-Fisher

relation within his theory using no free parameters and directly connects the MOND

acceleration, a0, to the energy density in dark energy.

However, EG in its current formulation only applies to the current, deSitter-like

Universe. The equations given in Verlinde (2017) are also only valid for spherically

symmetric, isolated systems. Nonetheless, there have been several tests of this theory.
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Brouwer et al. (2017) study the weak lensing of galaxy clusters, and find it to be

consistent with EG. Ettori et al. (2017) find EG to agree with two large, roughly

spherical galaxy clusters, and Diez-Tejedor et al. (2018) also find agreement with the

mass-to-light ratios of the classical dwarf spheroidal satellite galaxies. Several studies

claim that EG is inconsistent with observations: the initial mass functions of massive

early-type galaxies (Tortora et al., 2018), the radial acceleration within the inner

regions of spiral galaxies Lelli et al. (2017), and the perihelia of Solar system planets

Hees et al. (2017). However, all of these tests attempt to apply EG outside of the

currently narrow regime where it makes robust predictions: spherically symmetric,

isolated systems in the nearby Universe.

In this paper, I extend the EG formalism to include more sophisticated mass

profiles that are suitable for predicting the maximum velocities within isolated dwarf

galaxies. I then compare these predictions to observations. These systems fulfill all

of the requirements of the current formulation of EG, and thus provide the strongest

constraints on EG. In Section 2, I derive the equations for specific spherical mass

distributions along with the corresponding “apparent” dark matter predicted from

EG. In Section 3, I describe how I apply these equations to isolated dwarf galaxies.

In Section 4, I compare EG’s predictions for the velocities within isolated dwarf

galaxies to those measured in a recent 21 cm study (Bradford et al., 2015). I discuss

these results and conclude in Section 5.
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5.1 Apparent DM Distribution Predictions from

EG for Two Realistic Baryonic Mass Distribu-

tions

The goal of this section is to describe the velocity curve for an extended mass distri-

bution in EG. Conservation of energy tells us that the circular velocity, v(r), is given

solely by the mass distribution. For standard ΛCDM, we simply use the mass distri-

butions of both the baryonic and DM mass. In EG, we instead derive the apparent

dark matter mass distribution from the baryonic mass distribution and then use both

of these to find the velocity curve. In this section, I will derive the apparent dark

matter mass distributions for a spherically symmetric baryonic mass distribution.

5.1.1 Spherically Symmetric Mass Distribution

For a spherically symmetric, isolated system, the apparent DM predicted by EG

(Verlinde, 2017) is ∫ r

0

GM2
D(r′)

r′2
dr′ =

a0r

6
MB(r) , (5.1)

where G is Newton’s gravitational constant, and a0 = cH0. By taking the derivative

of both sides with respect to r, we find an equation for MD(r),

M2
D(r) =

a0r
2

6G

d

dr

(
rMB(r)

)
. (5.2)

Note that if we allow MB to be a point-mass, then M2
D(r) = a0r2

6G
MB, which would

give a gravitational acceleration of

gD(r) =
GMD(r)

r2
=

√
a0

6
gB(r) . (5.3)
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This is just the MOND acceleration in the weak-field limit (Milgrom, 1983) with

aM = a0
6

. I only include this as an aside – dwarf galaxies are of course not describable

as point-masses.

Instead, let us consider an extended mass distribution. In particular, let us employ

a deprojected Sérsic profile. These profiles fit the stellar light of galaxies well, and

since we are assuming there is no dark matter, this should also be a good measure of

the mass.

The Sérsic profile of a galaxy is given by

I(R) = Ie exp

[
1− bn

(
R

Re

)1/n
]
, (5.4)

where Ie and Re are the intensity and projected radius at the half-light slice, respec-

tively, and n is the so-called Sérsic index, which is a measure of the concentration

of the light about the center. The constant bn is given by gamma functions (see

Appendix 5.A).

To find the mass profile, we must first deproject the Sérsic profile to give the lu-

minosity density. Assuming spherical symmetry, we can then integrate in the angular

directions to give the radial luminosity profile. Mazure & Capelato (2002) first found

the exact solution for the radial luminosity profile given a general Sérsic profile, and

I use their results here.

Since we are assuming that there is no dark matter, the mass must follow the

light. Then, the stellar mass profile should be the same as the luminosity profile

except for some scaling factor, the baryonic mass-to-light ratio, Υ. This ratio, along

with the effective intensity simply give the normalization of the function, and thus

we let Σ = IeΥ, where the process for setting this normalization constant is given in
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Section 5.2.2. The final equation for the baryonic mass profile is

MB(r) =2πc1ΣR2
e

(
r

Re

) 2n+1
n

×G2n,1
1,2n+1

c2

(
r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{−
(

1
2n

)
}, {}

{βs}, {−
(

2n+1
2n

)
}

 ,

(5.5)

where Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 is the Meijer G function (described in Appendix 5.A.2),

and the c1, c2, and βs are constants (described in Appendix 5.A.3). Then, the ap-

parent DM predicted by EG due to this realistic mass distribution is given exactly

by

M2
D(r) =

πa0c1ΣR2
e

3G

(
r

Re

) 2n+1
n

r2

×
[
G2n,1

1,2n+1

c2

(
r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{−
(

1
2n

)
}, {}

{βs}, {−
(

2n+1
2n

)
}



+ 2G2n,0
0,2n

c2

(
r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{} {}

{βs} {}


]
.

(5.6)

For a detailed description of these methods, see Appendix 5.A.

Since this is a spherically symmetric mass distribution, the circular velocity is

given by

v(r) = ±
√
G(MD(r) +MB(r))

r
(5.7)
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5.2 Modeling Isolated Dwarf Galaxy Rotation

Curves with EG

In this section, I apply my equations from Section 5.1 to real isolated dwarf galaxies.

First, I describe the equations employed in the analysis and then I discuss the data.

5.2.1 Theory

Isolated dwarf galaxies contain a significant amount of HI gas that often exceeds the

amount of stellar mass in the galaxy (Geha et al., 2006). This HI gas in dwarf galaxies

typically extends far beyond the stellar disk (Broeils & Rhee, 1997). Thus, we must

include the mass profiles of both the stellar mass and the HI gas mass to properly

model the baryonic content of these galaxies.

In addition, real galaxies are not perfect spheres. The equations we have developed

here are thus not entirely accurate. However, we expect them to give reasonable

approximations. In the Newtonian case, the axisymmetric maximum rotation velocity

differs from that of the spherical case by only 15%.

I model the starlight profile as a Sérsic profile with index, n. I model the HI mass

profile as a sphere with an exponential density profile – a Sérsic profile with n = 1.

The scale lengths for each case, R? and RHI, and the normalization constants, Σ? and

ΣHI, are given by measured quantities, as described in the next section.

5.2.2 Data

To test EG, I use the Bradford et al. (2015) sample of isolated dwarf galaxies in

SDSS DR 8. They choose all galaxies within the NASA Sloan Atlas1 (NSA) catalog

(Blanton et al., 2011) that have z > 0.002 andMr < 17.72. They then select according

to an isolation criteria: for stellar mass M? < 109.5M�, a galaxy is isolated if dhost >

1http://www.nsatlas.org
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1.5 Mpc. The full Bradford et al. (2015) sample has 546 isolated dwarf galaxies

(M? < 109.5 M�). For each of these galaxies, Bradford et al. (2015) measure the 21

cm peak flux and line width. The HI gas masses are calculated from the peak fluxes.

The inferred maximum circular velocity in each galaxy is given by

vmax =
W20

2 sin i (1 + z)
, (5.8)

where W20 is the width of the 21 cm line at 20% peak flux, i is the inclination of the

galaxy, and z is the redshift.

It has been found that face-on galaxies (i.e. galaxies with inclinations below ∼ 40

degrees), can have significant errors induced by inclination effects (c.f. Stark et al.,

2009). To mitigate any effects from inclination, I select all galaxies with inclinations

i > 45 degrees from the Bradford et al. (2015) sample. This leaves us with a final

sample of 452 galaxies.

For each of the galaxies in the sample, I use the NSA catalog Sérsic fit values

for n, R?, and M?, and I use the Bradford et al. (2015) values for the HI mass and

the measured maximum circular velocities. There are no direct observations of the

normalization constants, Σ?, Σd,?, ΣHI, and Σd,HI. Instead these must be inferred from

other quantities. I set the normalization constant by assuming that the measured

mass is contained within five effective radii.

To set the effective radius of the HI gas, RHI, I employ the relation by Lelli et al.

(2016):

log10MHI = (1.87± 0.03) log10RHI − (7.20± 0.03) , (5.9)

where MHI is given in solar masses, and RHI is given in kpc. The intrinsic scatter of

the relation is σint = 0.06± 0.01 dex.
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5.3 Results

Here I present the velocity curves predicted by EG. I also compare the predicted

maximum circular velocities from EG to those measured in Bradford et al. (2015).

This is a preliminary analysis and should be followed by a full analysis with rotation

curves of these galaxies.

To give an idea of the typical velocity curve produced by EG, let us consider

the velocity curve of a sample dwarf galaxy with the median values from the data

described in Section 5.2.2. These values are all given in Table 5.1.

Parameters Values

M? 3.98× 108 M�

R? 2.27 kpc

n 1.14

Σ? 2.33× 107 M�

Σd,? 1.49× 107 M�

MHI 1.24× 109 M�

RHI 10.31 kpc

ΣHI 1.95× 106 M� kpc−2

Σd,HI 1.86× 106 M� kpc−2

vmeas 82 km/s

Table 5.1: Median values for isolated dwarf galaxies in sample

The predicted velocity curves from EG for the spherical (solid) and point-source

(dotted) cases are given as the blue curves in Figure 5.1. For comparison, I also include

the prediction from Newtonian gravity (assuming only baryonic matter), which is

given by the black line. The median measured maximum velocity from Bradford

et al. (2015) is given by the orange, solid line as a reference.

Note that the maximum for all of the cases occurs at r ∼ 5 − 18 kpc. This is

many times the effective radius of the stellar content. However, it is ∼ 0.5− 1.7RHI.
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Thus, it is clear that the HI gas is the main driver behind the shape of the velocity

curves, which agrees with the large gas fractions that are observed in these galaxies.

0 2 4 6 8 10
R/RHI [kpc]
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v c
[k
m
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Newtonian Sphere
EG Point Source
EG Sphere
Median Measured Velocity

Figure 5.1: Circular velocity as a function of radius for an isolated dwarf galaxy. The
blue lines give the prediction from EG assuming a spherical baryonic mass distribution
(solid line) or point-source mass distribution (dotted line). The black line gives the
Newtonian prediction (i.e. assuming there is only baryonic mass) for a spherical mass
distribution. The orange, dashed line gives the median measured maximum velocity
from Bradford et al. (2015).

Figure 5.2, shows the estimated maximum circular velocity from EG for the spher-

ical case versus the measured maximum circular velocities from Bradford et al. (2015).

If the theory and observations were perfect, then all of the points would lie on the

line y = x (black line).

I fit a best fit line to the model (assuming all of the galaxies can be treated

independently) using a Markov chain Monte Carlo (MCMC) routine and plot this

as the dashed line in Figure 5.2. The best fit slope for the spherical model (blue) is
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m = 0.83± 0.02 and the best fit intercept is b = 16.01± 1.35. This fit does not allow

for the “perfect agreement” line with m = 1 and b = 0. Even if we conservatively

allow for twice the estimated error on the estimated velocities, the spherical model

would not agree with the “perfect agreement” line. Overall, these are preliminary

results and a more careful analysis with rotation curves is needed to provide robust

statements.

5.4 Discussion & Conclusions

In this paper, I develop the equations for EG’s velocity curve predictions based on

a realistic baryonic mass profile. I then apply this model to isolated dwarf galaxies.

These galaxies contain large amounts of HI gas, which must be treated separately

from the stellar mass. Finally, I compare EG’s predictions for the velocities with the

HI 21-cm line width measurements from Bradford et al. (2015) for 452 isolated dwarf

galaxies. As I show in the results section, the predicted velocities from EG do not

agree with the measured velocities.

There are many assumptions made when modeling the baryonic gas mass and it

is entirely possible that any of these could be biasing the EG predictions. Perhaps

the most error-prone parts of the analysis are the choices for the distributions and

the normalization routine.

The baryonic distribution I choose, a spherical distribution based on the Sérsic

profile is highly idealistic. Since these galaxies are mostly composed of HI gas, we do

expect them to be closer to thin disks than spheres. Specifically, HI gas tends to follow

either an exponential or Gaussian distribution within galaxies (Swaters et al., 2002;

Martinsson et al., 2016). Equation 5.2 shows that the apparent dark matter surface

density increases for larger baryonic potential flux losses through a surface. In other

words, the steeper the baryonic distribution, the more apparent dark matter should

78



0 50 100 150 200 250 300
vmeas [km/s]

0

50

100

150

200

250

300

v E
G

[k
m
/s

]

Best-fit Line
Spherical Baryon Model

Figure 5.2: Binned predicted maximum circular velocity from EG versus measured
maximum circular velocities for isolated dwarf galaxies. The blue points give the
results for the spherically symmetric case. The best-fit line to the points is given as
the blue, dashed line. The region around the line gives the 1σ confidence interval.
If there was a perfect agreement with the measurements, all of the points would lie
along the black line.
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be in the system, according to EG. Thus, using Sérsic profiles, which are steeper

than Gaussian profiles, gives an upper limit on the velocities EG would predict for

a profile that mimicked these disk profiles. The use of a steeper distribution may

alleviate some of the tension seen in Figure 5.2; however, it is not well supported by

observational data.

As I describe in Section 5.2.2, I normalize the mass distribution functions by as-

suming that all of the mass is contained within five effective radii. This normalization

routine for each of the profiles is somewhat arbitrary, and it does have a large effect

on the final predicted rotation curves. However, it is not clear that changing the

normalization routine would allow the predictions to match the data while remaining

consistent with observations of the HI content in disk galaxies. The velocities scale

as v ∝ (Σ? + ΣHI)
1/2. To achieve the measured velocities, we would need to increase

the surface densities by a factor of at least four. This increase would also be mass-

dependent, with the more massive galaxies requiring much greater surface densities.

However, this does not agree with observations of HI in dwarf galaxies – many surveys

have found that there exists a tight relationship between the HI mass and effective

radius (Broeils & Rhee, 1997; Lelli et al., 2016). This implies a constant HI surface

density. To be consistent with these observations, a constant normalization increase

would need to be applied. This would only shift the points upward in Figure 5.2

but would not change the shape of the relationship. Thus, either the lowest mass

galaxies would have overpredicted velocities or the highest mass galaxies would have

underpredicted velocities.

In conclusion, I find a discrepancy between the predicted maximum circular veloc-

ities from EG and the measured maximum circular velocities around isolated dwarf

galaxies for the most realistic mass distributions. We need rotation curves of these

galaxies to identify if this discrepancy is due to modeling errors or the inability of EG

to describe these systems. Given that EG is only equipped to handle systems of this
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type, it seems that these discrepancies should be taken seriously as a possible issue

with the theory. The next step is to obtain rotation curves of these isolated dwarf

galaxies. The framework provided in this chapter should allow for a robust test of

EG with these rotation curves. This would provide the best test of EG at this time.
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Appendix

Appendix 5.A Derivations of the EG Equations

for a Deprojected Sérsic Profile

5.A.1 The Sérsic Profile

First, I repeat the equation describing the Sérsic profile

I(R) = Ie exp

[
1− bn

(
R

Re

)1/n
]
, (5.10)

where bn is defined by Γ(2n) = 2γ(2n, bn).

Note that I(R) and R are projected quantities. They do not give the 3D, physical

radius or intensity. To find the physical luminosity (and then the physical mass), we

must deproject the Sérsic profile.

I begin by relating the intensity, I(R), to the luminosity density, n(r),

I(R) = 2

∫ ∞
0

dz n(r) , (5.11)

where I assume the luminosity density is symmetric in z. Note that r is the radius

in spherical coordinates and R is the projected radius (i.e. the radius in cylindrical

coordinates). Now, we can change variables using r2 = R2 + z2. This gives

I(R) = 2

∫ ∞
R

rn(r)√
r2 −R2

dr . (5.12)

82



I find n(r) by inverting Equation 5.12 using the Abel Identity (cf. Appendix B.5 of

Binney & Tremaine, 2008)

n(r) = − 1

π

∫ ∞
r

dI

dR

dR√
R2 − r2

(5.13)

This is unsolvable for generic I(R). However, the analytic solution to this integral

for the I(R) given in Equation 5.10 can be expressed in terms of Meijer G functions

(Mazure & Capelato, 2002).

5.A.2 The Meijer G functions

The Meijer G functions (see http://functions.wolfram.com/HypergeometricFunctions/

MeijerG/ and http://dlmf.nist.gov/16 for more formulae involving the Meijer

G functions) are generalized hypergeometric functions that give most of the spe-

cial functions we know (i.e. trigonometric functions, Bessel functions, exponential

function, etc.) as special cases. The Standard Meijer G function is defined as

Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 =
1

2πi

∫
L

(
∏m

k=1 Γ(s+ bk))
∏n

k=1 Γ(1− ak − s)
(
∏p

k=n+1 Γ(s+ ak))
∏q

k=m+1 Γ(1− bk − s)
z−sds

(5.14)
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A few useful identities of the Meijer G functions are [from DLMF]

Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 ≡ z−cGm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1 + c, . . . , ap + c

b1 + c, . . . , bq + c

 (5.15)

Gm,n
p,q

1

z

∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 ≡ Gn,m
q,p

z
∣∣∣∣∣∣∣∣∣∣

1− b1, . . . , 1− bq

1− a1, . . . , 1− ap

 (5.16)

Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 ≡ Gm,n+1
p+1,q+1

z
∣∣∣∣∣∣∣∣∣∣
a0, a1, . . . , ap

b1, . . . , bq, a0

 (5.17)

The derivative of the Meijer G function leads to another Meijer G function [from

Wolfram Functions]

∂Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq


∂z

=

Gm,n+1
p+1,q+1

z
∣∣∣∣∣∣∣∣∣∣
−1, a1 − 1, . . . , an − 1, an+1 − 1, . . . , ap − 1

b1 − 1, bm − 1, 0, bm+1 − 1, . . . , bq − 1


(5.18)
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By combining Equations 5.18 & 5.15, I find the following useful formula

∂

z1−a1Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq




∂z
= z−a1Gm,n

p,q

z
∣∣∣∣∣∣∣∣∣∣
a1 − 1, a2, . . . , ap

b1, . . . , bq

 . (5.19)

By differentiating the left side of Equation 5.19, I find

z
∂

∂z
Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 = Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1 − 1, a2, . . . , ap

b1, . . . , bq



+ (a1 − 1)Gm,n
p,q

z
∣∣∣∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 .

(5.20)

5.A.3 The Radial Mass Profile

Here I will give the radial mass profile for a generic Sérsic profile following the treat-

ment of Mazure & Capelato (2002). This is easily modified to give either the stellar

or HI mass profiles using the correct n, Re, and Σ.

Define the Sérsic profile in terms of dimensionless quantities

x ≡ r

Re

(5.21)

s ≡ r

Re

(5.22)

i(x) =
I(R)

Ie
= exp[−bn(x1/n − 1)] (5.23)

ν(s) = n(r)
Re

Ie
= − 1

π

∫ ∞
s

di

dx

1√
x2 − s2

dx . (5.24)
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Then, the deprojected radial luminosity profile is given by

L(s) = 4π

∫ s

0

s′2ν(s′)ds′ . (5.25)

Since I am assuming that the mass follows the light, the radial mass profile is Equation

5.25 times the mass-to-light ratio, Υ,

M(s) = 4πΥ

∫ s

0

s′2ν(s′)ds′ . (5.26)

Mazure & Capelato (2002) find that the analytic solution to this integral for a Sérsic

profile is

M(s) = 2πΥc1s
2n+1

n G2n,1
1,2n+1

c2s
2

∣∣∣∣∣∣∣∣∣∣
{−
(

1
2n

)
}, {}

{βs}, {−
(

2n+1
2n

)
}

 , (5.27)

where

c1 ≡
bn exp[bn]

(2π)n
√
n

(5.28)

c2 ≡
(
bn
2n

)2n

(5.29)

βs ≡
{(

j − 1

2n

)
1≤j≤n

;

(
j − 2

2n

)
n+1≤j≤2n

}
. (5.30)
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5.A.4 EG Predictions

To give values predicted by EG, I must find dM
dr

. First, I differentiate Equation 5.27

using Equation 5.20, which gives

dM

ds
= 4πΥc1s

n+1
n G2n,0

0,2n

c2s
2

∣∣∣∣∣∣∣∣∣∣
{} {}

{βs} {}

 . (5.31)

Now, I need to express dM/ds and M(s) in terms of r instead. This is done using

the definition for s given in Equation 5.21 and accounting for the extra factor of 1/Re

from the change of variable in the derivative. However, I also need to account for

how I began with a dimensionless luminosity density by multiplying both dM/ds and

M(s) by IeR
2
e. Then,

M(r) = 2πc1ΣR2
e

(
r

Re

) 2n+1
n

G2n,1
1,2n+1

c2

(
r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{−
(

1
2n

)
}, {}

{βs}, {−
(

2n+1
2n

)
}

 ,

dM

dr
= 4πc1ΣRe

(
r

Re

)n+1
n

G2n,0
0,2n

c2

(
r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{} {}

{βs} {}

 ,

M2
D(r) =

πa0c1ΣR2
e

3G

(
r

Re

) 2n+1
n

r2

[
G2n,1

1,2n+1

c2

( r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{−
(

1
2n

)
}, {}

{βs}, {−
(

2n+1
2n

)
}



+ 2G2n,0
0,2n

c2

( r

Re

)2

∣∣∣∣∣∣∣∣∣∣
{} {}

{βs} {}


]
,

where Σ = IeΥ.
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Chapter 6

Baryon Acoustic Oscillations &

General Modified Gravity Theories

of Dark Matter

In Chapter 5, I discuss one particular type of modified gravity theory that attempts

to explain dark matter. This is just one of many, wildly different theories, which

are difficult to test in bulk. However, almost all of these theories specify a different

gravitational force law that uniquely depends on the baryon and photon density fields.

If we can directly measure how the baryon and photon density fields evolve with time,

then we can calculate the predicted signal from these theories.

Cold dark matter (CDM) accurately explains how structure forms from initial

density perturbations and how these perturbations are imprinted in the cosmic mi-

crowave background (CMB; Lifshitz, 1946; Peebles & Yu, 1970; Sunyaev & Zeldovich,

1970; Bond & Efstathiou, 1984). In short, CDM forms potential wells early in the

Universe’s history. Baryons attempt to fall into these potential wells and are then

pushed out by the radiation, to which the baryons are coupled. This causes sound

waves to form in the baryon and radiation structure. These baryon acoustic oscilla-
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tions (BAO) are seen as oscillations in the CMB and in large-scale structure at low

redshift. After recombination, the baryons are allowed to fall toward the CMB po-

tential wells, eventually forming galaxies and clusters. Any modified gravity theory

for dark matter must also explain this evolution.

In this chapter, here outline how to determine the infrared (IR; i.e., low-energy)

behavior of any theory that does not have dark matter based on linking the baryon

density field at recombination (z ∼ 1100) to the baryon power spectrum at low

redshift (z ∼ 0). Any successful theory for dark matter must properly explain how

the baryon density field at z ∼ 1100 evolves to the one at z ∼ 0. These density

fields are typically probed indirectly through fitting the CMB power spectra and the

matter power spectrum in tandem (e.g., Spergel et al., 2003; Planck Collaboration

et al., 2018). This necessarily assumes ΛCDM (or some simple extension) as well as

general relativity (GR). The test we propose here does not invoke GR nor a specific

cosmology. Instead it relies solely on small-scale physics – Thomson scattering and

the Newtonian continuity equation. Note that while similar tests have been proposed

before (McGaugh, 2004; Dodelson, 2011), they have not been explicitly laid out or

calculated for general modified gravity theories.

The polarization of the CMB on small scales is exclusively due to Thomson scat-

tering, which itself only relies on the velocities of the electrons. Because protons and

electrons are tightly coupled via Coulomb scattering at early times, we can assume

that the velocities of the electrons exactly equals that of the protons. The CMB

polarization spectrum then directly measures the velocity of the baryons at z ∼ 1100.

The Newtonian continuity equation relates the velocities of the baryons to their den-

sity field and is valid at small scales. Thus, the CMB polarization spectrum is a

direct measurement of the small-scale baryon density field at z ∼ 1100. At z ∼ 0,

the galaxy-galaxy correlation function traces the baryon density field at large scales.

With these two direct measures of the baryon density field, it is straightforward to
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then define the form an alternate theory of dark matter must take in the IR. We will

combine observations of the CMB and the galaxy power spectrum at low-redshift to

determine the required Green’s function of structure formation between these red-

shifts for these alternate theories. This Green’s function has a distinctive form as it

must suppress the baryon acoustic oscillations by nearly an order of magnitude, as

well as greatly increase power on small scales.

Our chapter is organized as follows: Section 6.1 describes our theoretical frame-

work for this test; Section 6.2 describes the data we use for our test; Section 6.3 gives

our preliminary results and discusses our planned future work.

6.1 Theory

In this section, we describe the theoretical framework for determining the IR behavior

of modified gravity theories for dark matter. We first outline the steps for finding the

baryon power spectrum at both z ∼ 1100 and z ∼ 0. We then show how to use these

both to define the IR behavior.

6.1.1 The Baryon Power Spectrum at z ∼ 1100

The polarization of the CMB can be related to the velocity of the baryons as (Zal-

darriaga & Harari, 1995):

∆p(n̂, ~x) = Q(n̂) + iU(n̂) ≈ 0.17∆τ∗m̂
im̂j∂ivj (6.1)

where ∆p is the polarization fluctuation, Q and U are Stokes parameters, n̂ is the

direction of observation (i.e. into the sky), ∆τ∗ is the width of the last scattering
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surface, m̂ is a 2D unit vector on the plane of the sky, and v is the baryon velocity

on the sky1.

As an example to gain more intuition, let m̂ = x̂+ iŷ and consider n̂ = ẑ. Then:

Q(n̂) + iU(n̂) ≈ 0.17∆τ∗ [(∂xvx − ∂yvy) + i(∂xvy + ∂yvx)] . (6.2)

In other words, Q ∝ ∇ · v and U ∝ ∇ × v. Note that the velocity due to density

perturbations is irrotational, which implies that U = 0. However, this is only for one

particular direction (along the ẑ-axis). In general, we must consider all directions on

the sky and there will be both Q and U polarization.

Now consider the small-angle approximation. Here we specify that all wavevectors,

~k, are close to our n̂. In Fourier space, this gives the equation:

∆p(n̂, ~k) ≈ 0.17∆τ∗ikvb , (6.3)

where k = |~k|. Then, the polarization power spectrum on small scales is:

〈∆p(n̂, ~k)∆∗p(n̂,
~k)〉 ≈ (0.17)2∆τ 2

∗ k
2v2
b (6.4)

Typically, polarization results are reported using E and B-modes, which are just

a rotation of the Q-U basis. This basis is specifically chosen such that there are no

B-modes on small scales in the early Universe – instead all of the polarization is

given by E-modes. Thus, the polarization power spectrum is just the E-mode power

spectrum2:

PEE(k) ≈ (0.17∆τ∗)
2k2v2

b (k) (6.5)

1Note that the dipole moment of the CMB temperature gives us the final component of the
velocity, vr.

2Note that there is an extra term related to fixing the basis for the E-B decomposition. However,
this should be ∼ 1 under the small-angle approximation.
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Now we must connect this equation to the baryon density power spectrum. The

continuity equation is a natural choice. At small scales, we can ignore any changes in

the potential and simply treat the baryon-photon fluid as a normal Newtonian fluid.

Then the continuity equation in Fourier space is:

δ̇b(k) + ikvb(k) = 0 , (6.6)

where ˙ ≡ d
dτ

(conformal time).

We can simplify this equation by considering δ̇b(k) further. All linear modes evolve

independently, thus we can parameterize δ(k, τ) = δb(k, τ = τ∗)D(τ), where D(τ) is

the growth function and we set D(τ = τ∗) = 1. Then:

δ̇b(k) = δb(k, τ = τ∗)
dD(τ)

dτ
= δb(k, τ)f∗H∗ , (6.7)

where f∗ is the growth factor and H∗ is the Hubble factor normalized such that they

are both unity at τ∗.

Equating our two expressions for δ̇b(k, τ) then gives an equation for the baryon

density in terms of the velocity:

δb(k, τ) =
−ikvb(k, τ)

f∗H∗
(6.8)

With this formalism, the baryon density power spectrum is:

Pbb(k, z ∼ 1100) =
k2v2

b (k, τ)

f 2
∗H

2
∗

. (6.9)

Finally, we can equate this to the EE power spectrum using Equation 6.5:

Pbb(k, z ∼ 1100) =
PEE(k)

(0.17∆τ∗)2f 2
∗H

2
∗
. (6.10)
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In other words, the baryon power spectrum at z ∼ 1100 is, up to a normalization

factor, equal to the EE power spectrum.

6.1.2 The Baryon Power Spectrum at z ∼ 0

The baryon power spectrum at z ∼ 0 is more straightforward to deduce. The baryons

at low redshift and large scales (& 10 Mpc) are well-traced by the galaxies. Thus, we

can take the 3D power spectrum of galaxies as the baryon power spectrum. This is

given by:

Pbb(k, z ∼ 0) = b2
bgPgg(k, z ∼ 0) , (6.11)

where bbg is the bias of baryons relative to galaxies and Pgg is the 3D galaxy-galaxy

power spectrum.

To find the galaxy-galaxy power spectrum, we measure the correlation function,

ξ(~θ) – this is just the Fourier transform of the 2D power spectrum. This must then be

de-projected using the window function appropriate for the particular galaxy survey

(see, e.g., Dodelson, 2003).

In reality, the galaxies are a biased tracer of the baryons. Most of the baryonic

mass in the universe is in gas (de Graaff et al., 2019). However, we expect that for

k < 0.1 Mpc−1 the bias, bbg, approaches 1. This is seen in numerical simulations

(e.g., Springel et al., 2018), and violating this would require moving baryons large

distances. Thus, the galaxy-galaxy power spectrum should be a good measure of the

baryonic power spectrum at these large scales.

6.1.3 Infrared Behavior of Modified Gravity

We now have the baryon power spectrum at z = 1100 and z ∼ 0 from directly

measurable quantities. Our goal is to use both to determine the necessary IR behavior
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of modified gravity theories. We use the formalism of the transfer function for this

purpose.

In the absence of CDM, the cosmological evolution of large-scale structure is

simple. We observe the large-scale distribution of baryons at z ∼ 1100 and at z ∼ 0.3.

Any successful theory for dark matter must explain how the universe evolved between

these two redshifts. Since the fluctuations on large scales are small, we expect that

the theory will be perturbative and we can describe the growth of fluctuations by a

linear transfer function.

In ΛCDM, baryons fall into the dark matter potentials. This imprints the large-

scale distribution of the dark matter on the baryons. Thus, the transfer function of

CDM, along with the initial spectrum of fluctuations, is all that is needed to accurately

describe the matter power spectrum. The baryon power spectrum follows directly by

using the CDM potential created by the evolution of these perturbations. However,

if we no longer have CDM in our model, the baryon transfer function itself must

encode all of this information. In modified gravity theories of dark matter, the baryon

transfer function must account for all of the changes in the baryon perturbations from

early to late times.

The matter power spectrum depends on the transfer function as: P (k) ∝

Pφ(k)T 2(k), where Pφ is the primordial spectrum of perturbations. In analogy to

this, we can define the transfer function:

T̂ 2
b (k) =

Pbb(k, z ∼ 0)

Pbb(k, z = 1100)
. (6.12)

T̂ 2
b (k) describes how the baryon perturbations evolve from z = 1100 to z ∼ 0. We

use the hat here indicate this is different from the normal transfer function.

Any theory for dark matter must adequately explain both the shape and normal-

ization of T̂ 2
b (k). Our transfer function can be exactly represented with measurable
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data and does not rely on any assumptions about underlying theories, outside of the

small-scale physics described above. It is also possible to find the theoretical solutions

for any well-formed dark matter or modified gravity theories3. In this chapter, we

will focus solely on the shape of T̂ 2
b (k) – a more precise analysis is required to use the

normalization as well.

As a way of building intuition, we will also consider the Fourier pair of the transfer

function – the Green’s function:

Ĝb(r) = G0

∫
dk

k2

2π2
T̂b(k)j0(kr) , (6.13)

where G0 is a normalization term that we arbitrarily set such that Ĝ(r = 0) = 1.

This functions shows, in real space, how the perturbations evolve between these two

redshifts.

6.2 Data

We require two main pieces of data: the EE power spectrum from the CMB and the

galaxy-galaxy 3D power spectrum at low redshift. We describe how we obtain each

of these and our modifications to the data below.

For the EE power spectrum, we use the Planck 2018 angular power spectrum

(Planck Collaboration et al., 2019a). The data is given as multipoles, CEE
l , of the

2D power spectrum. We must convert this to the 3D power spectrum, PEE(k). We

approximate l = kη∗, where η∗ is the conformal distance to the last scattering surface4

3We take “well-formed” to mean that a theory has a cosmology associated with it that allows for
the evolution of initial perturbations to today.

4Note, that this does require setting a cosmology. We use the Planck Collaboration et al. (2018)
measured distance to the last scattering surface. In principle, it may be possible to set η∗ without
setting a cosmology – instead, we might be able to use the alignment of the peaks in each of the
power spectra. We leave this issue to future work.
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Then, to order unity, the 3D power spectrum is (Bond & Efstathiou, 1984):

PEE(k) ∼ (2π)3η2
∗

k
CEE
l=kη∗ . (6.14)

We bin the CEE
l data into 50 l-bins to increase the signal-to-noise. We also only use

l < 1200, due to the high noise seen in the data above this point.

We use the data from Beutler et al. (2016) for the galaxy-galaxy power spectrum

at low-z. Beutler et al. (2016) measures the BAO signal from galaxies in from z =

0.2 − 0.75 using the Sloan Digital Sky Survey-III (SDSS-III; Eisenstein et al., 2011)

Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data set (Dawson et al., 2013;

Alam et al., 2015). As part of this measurement, they also calculate the 3D galaxy-

galaxy power spectrum in 3 different redshift bins. We use the lowest redshift bin,

z = 0.2 − 0.5, which has an effective redshift of z = 0.38. The galaxy-galaxy 3D

power spectrum is calculated from the correlation function, as explained briefly in

Section 6.1.2. This is measured from k = 0.016−0.15 h Mpc−1. We use their fiducial

value of h = 0.676 to transform to physical units.

When the 3D power spectrum is measured, it is typically decomposed into multi-

poles:

Pl(k) =
∑
l

P (k)Ll(k) , (6.15)

where Ll(k) are the Legendre polynomials. We here consider just the monopole, l = 0

moment of the power spectrum, which is the angle-averaged power spectrum. This

effectively removes ‘fingers of god’ and other non-linear effects.

We only use the data from each survey where they both overlap in k. This range,

k = 0.01 − 0.126 h Mpc−1, corresponds to small scales (i.e. much smaller than the

horizon) today and at recombination.

In Figure 6.1, we show the baryon power spectrum at z = 1100 and z = 0.38. As

can be seen, the proper dark matter theory must somehow explain how the z = 1100
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Figure 6.1: Left: Baryon power spectra at z = 0.38 (black) and z = 1100 (blue). The
low-redshift power spectrum is derived from Beutler et al. (2016). The high-redshift
power spectrum is derived from the Planck Collaboration et al. (2019a) EE power
spectrum using Equation 6.10. The black, dashed line gives the acoustic scale, as
given by Planck Collaboration et al. (2018). Right: The baryon power spectrum at
z = 0.38 normalized by the smoothed power spectrum, as given by the no-wiggle
form in Eisenstein & Hu (1998). This emphasizes the BAO signal in the low-redshift
spectrum and it roughly agrees with previous simulations work (Seo et al., 2008).
Note that the k-range in this panel is larger than in the left panel.

spectrum smooths out and increases in power on small scales. Note that the BAO

‘wiggles’ in the low-redshift power spectrum look much weaker than those in the

CMB-derived spectrum. This is just due to the normal evolution of perturbations

over time. Some authors plot the BAO spectrum in a way that emphasizes the wiggles

(see, for example, Seo et al., 2008) by dividing out the ‘smooth’ power spectrum. We

show this in the right panel of Figure 6.1, where we use the no-wiggle form of the

transfer function given by Eisenstein & Hu (1998).

We also indicate the acoustic scale as the dashed, black line on all plots in this

chapter. We use the (Planck Collaboration et al., 2018) value for θ∗ to set the angular

scale of the sound horizon. We then convert this to an l value via l∗ = π/θ∗. Finally,

we obtain the k value using k∗ = l∗/η∗.
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6.3 Results & Discussion

Our transfer function is shown in Figure 6.2. This makes the exact evolution of

perturbations needed apparent. Power should grow the most on small scales. This

aligns with the standard CDM picture.

Figure 6.2: Baryon transfer function from z = 1100 to z = 0.38. This shows how
the baryons perturbations must evolve. Any dark matter theory must reproduce this
transfer function.

We show the associated Green’s function in Figure 6.3. This shows, in physical

space, how the matter must move between these two redshifts. Namely, we expect

extra matter at centrally peaked positions. This is exactly the effect we expect from

CDM. Note that the exact form of the Green’s function depends heavily on the

behavior of the transfer function at high-k. We cannot directly probe this with our

current data and so we try a few different assumptions: 1) T 2(k > kmax) = 0 (black

line); 2) T 2(k > kmax) = T 2(kmax) (blue, solid line); 3) T 2(k > kmax) > T 2(kmax),

with a cubic spline fit used to find the form (blue, dashed line). These assumptions

mostly change the height and phase of the secondary peaks in the Green’s function.
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Regardless of the form at high-k, the Green’s function shows oscillations near the

BAO scale. Thus, any alternative gravity theory would need to contain this scale to

suppress the BAO features over time – changing them from dominant at z ∼ 1100 to

very low amplitude at z ∼ 0.4.

Figure 6.3: Green’s function for the transfer function in Figure 6.2. This shows, in
real space, where the extra mass must be located to produce the correct perturbations
at z = 0.38. Note that the shape here depends on the assumed shape of the transfer
functions at k & 0.1 Mpc−1. The black line shows the results when we set this range
to 0. The blue line gives the results if we set T 2(k > kmax) = T 2(k = kmax). The
dashed, blue line shows the results if we use a cubic spline fit to extrapolate the
transfer function – this assumes that the transfer function continues to increase at
higher k.

We can go one step further here. First, consider the momentum equation:

v̇ +
Ṙ

R
v = a , (6.16)
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where R is the scale factor and a is the acceleration. Taking the time derivative of

Equation 6.6, the divergence of Equation 6.16, and combining we find:

a =
iδ̈

k
− Ṙ

R
v . (6.17)

In GR, ika = k2Ψ, where Ψ is the Newtonian potential. This produces the

equation δ̈ + ik Ṙ
R
v = −k2Ψ = 4πGρ.

If a modified gravity theory is just a linear modification of GR, then we can write

the acceleration as:

a = F (k)aGR = −ikF (k)Φ = −ikF (k)TGR(k)D(t)Φp(k) , (6.18)

where F (k) is the modification to GR, TGR is the GR transfer function, D(t) encodes

all of the time dependence, and Φp(k) is the primordial potential (again, assuming

GR).

In other words, if we measure the transfer function accurately, we get:

T (k) = F (k)TGR(k) . (6.19)

Thus, if we can accurately measure the transfer function, we can determine the

form the acceleration equation of a modified gravity theory must take.

Any local modified gravity theory must satisfy the constraint we have laid out in

this chapter. However, it is possible for nonlinear theories to evade this test – we

assumed that modes were independent. A more general version of this test would

include mode-mixing. Namely, the transfer function would be:

Pbb(k, z ∼ 0.3) =

∫
dk′Pbb(k

′, z = 1100)T 2(k, k′) . (6.20)
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We can also consider this in terms of the acceleration picture we discuss above.

It must be linear to first order since we see that fluctuations on large scales (and at

early times) are linear. If we make the further assumption that the acceleration at

δ = 0 is a = 0, then, to second-order the acceleration relation must be:

a(k) = f1(k)δ(k) +

∫
f2(k, k′)δ(k)δ(k′)dk′ . (6.21)

From the Equation 6.18, we see that F can act as a either a transfer function or

as a modification to the primordial spectrum. Thus, f2(k, k′) can be constrained by

limits on primordial non-Gaussianity.

However, this would be subject to the constraints on primordial non-Gaussianity.

The best current constraints on local non-Gaussianity are f local
NL = −0.9± 5.1 (Planck

Collaboration et al., 2019b), where fNL is defined as:

δ(~k) = δG(~k) +
3

5
fNL

1

(2π)3

∫
d3~k′δ(~k)δ(~k′) (6.22)

There is also a low-redshift constraint on fNL using a combination of large-scale

structure data (mostly galaxy surveys) of −29 < fNL < 70 (Slosar et al., 2008). We

defer further discussion of these issues to future work.

Two popular theories of modified gravity, modified Newtonian dynamics (MOND;

Milgrom, 1983) and Emergent Gravity (Verlinde, 2017), do not seem to have forms

suitable for the Green’s function we show here. While neither of these theories have

actual cosmologies associated with them, their Newtonian forms at large scales do

not seem promising. The accelerations in both theories scale as ∼
√
GM/R. This

would then predict a power-law Green’s function: nothing like what is needed to fit

the cosmological observations noted in this chapter. In particular, neither predict a

special scale at the BAO scale. Perhaps, mode-mixing at early times could allow for

this to be remedied (McGaugh, 2004); however, it is unclear how this could occur
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while still leading to the 1/R force law and not defying primordial non-Gaussianity

constraints.

The work in this chapter is preliminary. In the future, we would like to make

our calculations more robust, particularly the transformation of the Cl’s to a 3D

power spectrum. We also hope to make our test totally independent of cosmology

by mapping the l’s to k’s without the use of the distance to last scattering. Finally,

we would like to develop the acceleration picture further, particularly with respect to

using the primordial non-Gaussianity constraints to place limits on nonlinear theories.

In fact, it might be possible to show that a nonlinear theory that produces the BAO

feature at the correct scale is incompatible with current non-Gaussianity constraints.

In this chapter, we outline the steps needed to test modified gravity theories

using the baryon power spectra at z ∼ 1100 and z ∼ 0.4. We found the high-redshift

power spectrum by using the CMB EE polarization spectrum, as measured by Planck

Collaboration et al. (2019a). We take our low-redshift power spectrum from the SDSS

BOSS galaxy power spectrum results (Beutler et al., 2016). We find that whatever

modified gravity theory for dark matter that takes us from z ∼ 1100 to z ∼ 0.4

must have a very peculiar and specific form, as illustrated by the transfer function in

Figure 6.2. This work is preliminary, but we think it shows promise for determining

the necessary IR behavior of modified gravity theories without dark matter.
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Chapter 7

Conclusion

This dissertation contributes some ways we can use gravitational waves to test theories

of gravity and black hole dynamics, and some tests of dark matter theories. Hopefully,

the tests outlined here will be useful as we continue to gather more data on our

universe. In summary, here are the main takeaways from each chapter:

• Chapter 2: The agreement between the distances derived from gravitational

waves and electromagnetic waves to GW170817 show that we do not live in

extra spatial dimensions – or at least, if we do, then they must be very small

or behave just like 3+1 dimensions until very large scales. We also know that

the graviton must have a lifetime greater than ∼ 500 Myr.

• Chapter 3: We found a binary supermassive black hole system and we use it

to predict that we should observe the gravitational wave background within a

decade. If we do not see the signal by that point, then there may be a final

parsec problem.

• Chapter 4: Self-interacting dark matter would produce U-shaped warps in disk

galaxies. We do not see these warps in the galaxies that should have them, so

we can place competitive limits on the strength of dark matter self-interactions.
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With more galaxies, we will be able to totally rule out self-interacting dark

matter as an interesting candidate for dark matter.

• Chapter 5: Verlinde’s Emergent Gravity theory does not properly predict the

rotation velocities of isolated dwarf galaxies, which are perfectly suited for test-

ing the theory. The results are not conclusive, but the formalism given in the

chapter should allow for conclusive results once enough rotation curves are ob-

tained for these galaxies.

• Chapter 6: We can use both the cosmic microwave background polarization

spectrum and the low-redshift galaxy power spectrum to show the form a mod-

ified gravity theory must take to explain the evolution of structure in the uni-

verse.

What are the interesting next steps? I think there are two avenues that are exciting

to pursue after this work: 1) continue to look for more binary supermassive black holes

and further develop what a pulsar timing array detection of the gravitational wave

background will tell us about supermassive black holes; 2) find more tests of dark

matter properties.

For the binary supermassive black hole work, we have already begun this next

step. We recently obtained data for many objects like the one featured in Chapter 3.

A preliminary analysis seems to show that this is indeed a good method for finding

supermassive black hole pairs reliably. Another work I have been involved in shows

that several different estimates for the stochastic background, based on supermassive

black hole populations, seem to give remarkably similar answers. This is all tentative,

but I am excited to see what we can learn about the GWB and what it can teach us

about black hole dynamics and supermassive black hole evolution.

The next decade will bring several new survey telescopes (e.g., WFIRST, LSST,

and Euclid) that will give us invaluable data on the structure of matter in our galaxy
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and the universe. How can we best use this data to learn more about dark matter?

Can we totally rule out modified gravity theories? Can we confirm any other prop-

erties of dark matter? Compelling data for a specific property of dark matter would

totally revolutionize our understanding of this mysterious substance, and perhaps

lead us closer to its true nature. I am eager to keep working on these tests.
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Vikram, V., Cabré, A., Jain, B., & Vand erPlas, J. T. 2013, J. Cosmology Astropart.
Phys., 2013, 020

Visinelli, L., Bolis, N., & Vagnozzi, S. 2018, Phys. Rev. D, 97, 064039

Volonteri, M., Haardt, F., & Madau, P. 2003, ApJ, 582, 559

Woo, J.-H., Cho, H., Husemann, B., et al. 2014, MNRAS, 437, 32

113



Xu, D., & Komossa, S. 2009, ApJL, 705, L20

York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579

Yu, Q., & Tremaine, S. 2003, ApJ, 599, 1129

Zaldarriaga, M., & Harari, D. D. 1995, Phys. Rev. D, 52, 3276

Zhu, X.-J., Cui, W., & Thrane, E. 2019, MNRAS, 482, 2588

Zwicky, F. 1933, Helvetica Physica Acta, 6, 110

114


	Abstract
	Acknowledgements
	Relation to Published Work
	Contents
	List of Tables
	List of Figures
	Introduction
	Gravitational Waves as a Tool for Testing New Theories
	GW170817
	Supermassive Black Holes and Nanohertz Gravitational Waves

	Testing Dark Matter Theories
	Cold Dark Matter – its successes and failures
	Another Particle Explanation for Dark Matter
	Modified Gravity as an Explanation of Dark Matter


	GW170817 & the Propagation of Gravitational Waves
	Gravitational leakage and gravitational waves
	Method
	Results & Discussion
	Appendices

	A Binary Supermassive Black Hole System & the Stochastic Gravitationl Wave Background
	Target Selection and Observations
	HST medium & broad-band imaging
	Chandra ACIS-S observations

	Morphological Evidence for a Pair of Accreting SMBHs
	Relevance to Gravitational Waves
	Coalescence predictions
	Contribution to the GWB


	Galaxy Disk Warps & Self-Interacting Dark Matter
	Theory
	Halo deceleration from DM self-interactions
	Galaxy warping in SIDM

	Methods
	Candidate selection & warp measurement
	Parameters for estimating the warp
	Parameter inference

	Results
	Discussion

	Isolated Dwarf Galaxies & Emergent Gravity
	Apparent DM Distribution Predictions from EG for Two Realistic Baryonic Mass Distributions
	Spherically Symmetric Mass Distribution

	Modeling Isolated Dwarf Galaxy Rotation Curves with EG
	Theory
	Data

	Results
	Discussion & Conclusions
	Appendices
	Derivations of the EG Equations for a Deprojected Sérsic Profile
	The Sérsic Profile
	The Meijer G functions
	The Radial Mass Profile
	EG Predictions


	Baryon Acoustic Oscillations & General Modified Gravity Theories of Dark Matter
	Theory
	The Baryon Power Spectrum at z1100
	The Baryon Power Spectrum at z0
	Infrared Behavior of Modified Gravity

	Data
	Results & Discussion

	Conclusion
	Bibliography

