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Abstract

This dissertation deals with the study of Lie and Noether symmetries of
Kantowski-Sachs, static plane symmetric and locally rotationally symmetric
Bianchi type I spacetimes using Rif tree approach. In each case, instead of
directly integrating the symmetry equations, a computer algorithm is used
to transform these equations to a simplified form. The interesting feature of
this algorithm is that it provides all metrics admitting Lie and Noether sym-
metries other than the minimum ones. The set of Lie and Noether symmetry
equations is solved for all these metrics to find the explicit form of symmetry
vector fields. Moreover, we have calculated the conservation laws for all the
obtained symmetries.

Comparing our obtained results with the existing results of direct integration
technique, it is observed that this new approach of Rif algorithm recovers all
the metrics obtained by direct integration technique and also this approach
gives rise to some new physically realistic metrics.

To add some physical implications, the obtained metrics are used in Ein-
stein’s field equations to compute their energy-momentum tensor and it is
shown how the parameters involved in the obtained spacetime metrics are

associated with certain important energy conditions.
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Chapter 1

Introduction

Newton is believed to be the first one to study gravitation and its nature.
According to him, gravity was nothing but an attractive force between mas-
sive objects. He proposed his law of gravitation in 1687 which was accepted
by all. It was believed that mass is the real source of gravity. According
to Newton’s physics, space and time are absolute and do not depend on the
aspects of objective reality. His law was very successful in explaining the
mechanics of solar system and astronomy in general for more than two cen-
turies [1].

In 1905, Einstein gave the idea of unification of space and time as a single
4-dimensional entity known as spacetime. This was the first step towards
construction of his special theory of relativity. This theory puts a universal
speed limit on every possible physical effects and on gravity as well. This
was in conflict with the Newton’s notion that gravity acts instantaneously
over large distances. Thus these two theories couldn’t be combined.

It took Einstein ten more years to present a generalized version of both New-



ton’s classical theory and special relativity, as a result he proposed the general
theory of relativity in 1915. According to this theory, gravity is the curvature
of spacetime which defines a gravitational field. That gravitational field acts
on neighboring matter, causing it to move. Moreover, spacetime’s geometric
properties are determined by the matter and exclusively by a mass, such
properties make the curvature of spacetime. Therefore in general relativity,
object’s mass does not affect the position of the object in the spacetime (with
the assumption that it is not that much large to change the spacetime cur-
vature) and depends on the spacetime’s geometry. This leads us to the idea
that gravity is a geometrical phenomenon rather than simply a force.

In 1979, Johan Wheeler summarized the relationship between space and mat-
ter in general theory of relativity in a single sentence: ”Space tells matter
how to move and matter tells space how to curve” [2].

The mathematical expression of the above relationship is provided by the
Einstein’s field equations (EFEs) [3]:

R
Gij = Rij — 5 9i5 = kT, (1.0.1)

where G;; and Tj; denote the Einstein and energy-momentum tensors re-
spectively and £ defines the gravitational coupling. Moreover, R;;, ¢;; and
R symbolize the Ricci tensor, metric tensor and the Ricci scalar respectively.
Though their appearance is simple, it is quite challenging to obtain the ex-
act solutions of EFEs because they are highly non-linear partial differential
equations. If we consider the most simple case of vacuum, that is 7;; = 0,
even there the EFEs may be very difficult to solve. Due to this reason, only
few exact solutions of EFEs have been found in the literature [3-5].

Spacetime symmetries are not only used to find new exact solutions of EFEs,



they are also helpful in the classification of the known solutions. Besides this,
these symmetries have a direct relation with conservation laws in a dynamical
system. Symmetries usually demand some form of preserving property such
as preserving geodesics of a spacetime, metric and the curvature tensors.
Depending upon these preserving properties, spacetime symmetries are de-
fined in terms of specific type of vector fields such as Killing, homoth-
etic, conformal Killing vector fields and Ricci, matter, affine and curvature
collineations. All these symmetries are defined by some relations involving
Lie derivatives, therefore these symmetries are usually known as Lie symme-
tries.

Noether symmetries, also known as variational symmetries, play a pivotal role
in finding solutions and conservation laws admitted by differential equations
(DEs) [6]. In case of ordinary differential equations (ODEs), they are help-
ful in reducing order of DEs, while for partial differential equations (PDEs)
these symmetries are used to reduce the number of independent variables [7].
Apart from this, these symmetries are also used in the linearization of non-
linear DEs [8,9]. In addition, Noether symmetries are useful because they
provide double reduction in case of DEs and are directly related to conser-
vation laws via Noether theorem [10].

To find the Lie and Noether symmetries of spacetimes, one needs to solve a
system of PDEs. In literature, these equations are usually solved by direct
integration technique. In this approach of studying Lie and Noether sym-
metries, there is always a chance of losing interesting metrics. Instead of
this technique, here we use a new method, known as Rif tree approach, to

study Lie and Noether symmetries of some spacetimes. In this method, first



a computer algorithm is developed to convert the determining equations to
a simplified form and getting a tree, known as Rif tree, imposing the condi-
tions on the metric functions. These conditions are then used to solve the
determining equations, giving the explicit form of symmetry vector fields.

We came upto the conclusion of general theory of relativity and in the fol-
lowing chapter, the discussion will revolve around some basic concepts of
general relativity supporting our thesis. Furthermore, the spacetimes and
Noether symmetries literature and details of Rif algorithm will be discussed

in details.



Chapter 2

Preliminaries

In this chapter, we present some basic concepts of general relativity, which
will give a deep insight of the knowledge. Also the spacetimes and Noether
symmetries along with their literature will be discussed as well as a brief

introduction of a computer program, Rif algorithm will be explained.

2.1 Tensors

Tensor is a concept in mathematical physics which is the generalization of
vectors and dual vectors. Tensors play a central role in solving physical
problems by providing a complete mathematical background. In general

relativity, tensors play a pivotal role because EFEs are tensor equations.



Tensors as Mulltilinear Map

Let V' be a finite dimensional vector space. A tensor T of type (m,n) is a

multilinear map:

T:V'xV*xV*x. . .VxVxVxVx.V-—R, (2.1.1)

m—times n—times
where ” x” represents the Cartesian product, m and n are non-negative in-
tegers and m + n represents rank or order of the tensor 7' [11]. Moreover,
V* is the dual space of the vector space V. By multilinear, we mean that T’

satisfies the relation:

T(v1, ooy @1p+00q, ooy Vi) = 1T (U1, ey Py ooy U ) F Q2T (U1, oo @ ooy U

(2.1.2)
where «; and «y are scalars and vy, ..., Vp4p, p and ¢ are elements of V' or

V* as appropriate.

Types of Tensors

Tensors of type (0, 1), (1,0), (0,m), (n,0), (m,n) are called covariant vector,
contravariant vector, covariant tensor, contravariant tensor and mixed tensor

respectively and a tensor of type (0,0) is defined as a scalar.

Tensor Product

Tensor product of two covariant tensors 1" of rank m and 7" of rank n is

denoted by T'® T" and is defined as [12]:

T R T (01,02, ooy Upyy W1, Wa, ooy Wy) = T(01, V2, ooy U )T (w1, W,y oy W)

(2.1.3)



Similar expressions are valid for all types of tensors. The tensor product is

not commutative but it is distributive and bilinear.

Symmetric and Antisymmetric Tensors

If the indices of a tensor remain unchanged by exchanging any two of its
contravariant or covariant indices then it is said to be symmetric, while it
is antisymmetric when it changes sign with the exchange of any two of its

contravariant or covariant indices [11].

Some Important Tensors

There is a vast variety of tensors but in general relativity the most important
tensors are metric, Riemannian curvature, Ricci, Weyl, energy-momentum

and Einstein tensors.

Metric Tensor: The metric tensor of type (0,2) is a symmetric bilinear
scalar function of two vectors. It takes two vectors from tangent space and
returns a scalar.

It is one of the important tensors in general relativity which shows the in-
finitesimal squared distance along a curve. Let ds be the infinitesimal dis-
tance between two points on a curve. Let dr’ be the vector joining the two

points, then ds? may be written as:

ds® = di - dF. (2.1.4)



If dx® represent contravariant components of di" and €; are the coordinate
basis vectors, then we can write:
di = ¢ dx". (2.1.5)

Similarly, for covariant components dz; and the dual basis vectors e?, one can

write:

—

dr = et dz;. (2.1.6)
Thus for the contravariant components dz‘, we get:
ds* = dr-dr
= ¢ dzt- €; da’
= (¢ -¢€;) da' da?
= gy da’ da?, (2.1.7)

where g;; denote the covariant components of the metric tensor. Similarly,

one may use the covariant components dz; to get:
ds® = g” dw; dz;. (2.1.8)

The signs of + and — appearing in the metric represent signature of the met-
ric. Particularly, a metric of signature (—, +,...,+) or (4, —, ..., —) is called
a Lorentzian metric and a metric with signature (4, +, ..., +) is positive def-

inite or Riemannian metric. Spacetime metric is always Lorentzian [13].

Riemannian curvature tensor: Another important tensor in general rel-
ativity is the Riemannian curvature tensor which is of type (1,3) and is

expressed as [13]:

m _ m m n m n m
ik = Ligy — Ui + T 0 — DDy, (2.1.9)

8



where I'J} represents Christoffel symbol which is defined as follows:

1
I = §9md (9idj + 9aji — Gijd) - (2.1.10)

Riemannian curvature tensor vanishes if a spacetime is flat.

Ricci Tensor: The contraction of the Riemann curvature tensor R} in the
first and third indices gives rise to the Ricci tensor of type (0,2), which is
defined as:

Rij = Rfy; =T, — Tl + ThTh, — TRk (2.1.11)

Ricci Scalar: The contraction of the Ricci tensor with metric is known as

Ricci scalar:

R = g" Ry, (2.1.12)

where R represents the Ricci scalar.

Weyl Tensor: Weyl tensor is a type (0,4) tensor, also known as conformal

tensor, which is defined as:

1 1
Cijem = Rijkm+§[giijk + gixRim — ginRjm — gijik]+6R[gikgjm — GimYjk)-
(2.1.13)
If all the components of Cjjin, vanishes, then a spacetime is said to be con-

formally flat.

Energy-Momentum Tensor: The energy-momentum tensor, which is also
termed as stress-energy tensor is symbolized by T;; and it describes the pres-

sure, energy density and flux of momentum in a spacetime. The spacetime



is said to be vacumm if 7;; = 0.

Einstein Tensor: Einstein tensor, which is denoted by G;, is a symmetric

tensor of rank 2 which explains the spacetime curvature and it is defined as:

1

2.2 Tangent vector and Tangent spaces

A tangent vector w at a point p of manifold M is a mapping w : C*°(M) —

R, which satisfies the following properties [3]:
iow(ky 4+ ko) = w(ky) +w(ks), k1, ko € C*(M)
i, w(kiks) = kow(ky) + kyw(ks),
ili. w(ciky) = cqw(ky), where ¢; represents a constant.

A tangent space is the collection of all tangent vectors at a point p on M,
which is denoted as T, M and a tangent bundle is the union of all T,,M at all

points of M and is given by:

™ = | T, M. (2.2.1)

peM

2.3 Vector Field

A vector field £ on a smooth manifold M is a map £ : M — T'M, which
associates a tangent vector §, € T,M to each point p of M. Moreover, the

vector field £ is said to be global or local if it is defined on the whole M or

10



on some subset of M respectively [14].

Lie Brackets: Lie bracket is an operator, used to combine two vector fields
and get another vector field. For example, if § and &; are two vector fields

on a manifold M, then their Lie bracket (also known as Lie commutator) is

defined as [15]:
(€ G1(F) = &(& () = &(&(F)),

for all smooth functions f : M — R. The Lie bracket has the following

properties:

i. Bilinearity: If &, &, &, & are vector fields on M and o, 8, 7, 0 are

constants , then:
[a&; + B, &k + 0&] = a[&i, &kl + ad&, & + BIE;, &) + BOLE;, &
ii. Skew symmetry: If & and ; are vector fields on a manifold M, then:
(6, &1 = —1&5, &l
iii. Jacobi identity: If &;, &;, & are vector fields on M, then:

(166, €51, k] + 11E55 Skl &l + [[€r5 &l €] = 0.

2.4 Lie Derivative

For a real-valued function F(t), its derivative at some point p € R is defined

as:

F/(p) = lim ~(F(t + p) — F(p). (2.4.1)

t—0 t

11



This definition cannot be generalized to define the derivative of a vector
field on a manifold M because if £ is a vector field on M and p; and p, are
two nearby points on M, then the tangent vectors ,, and §,, belong to the
tangent spaces T,, M and T, M, which are different vector spaces. Thus it
is not possible to subtract &,, and ¢,,. To overcome this difficulty, the local
flow ¢, of another vector field Y is used to transport the vector &,, to the
tangent space T, M at p;. This leads to the definition of Lie derivative of a
vector field.

For a smooth manifold M, Let T be a global smooth tensor field on M and
¢ be a global smooth vector field on M. For some appropriate ¢, Let ¢; be
the local diffeomorphisms of £ with ¢; as the corresponding pullback maps.
Then the following limit defines the Lie derivative of T" along £ at a point
p € M [14].

T, — T
,Cng = llm —¢t P p'

lim ==, (2.4.2)

It is to be mention here that £:7" is a global smooth tensor field on M and its
type is same as that of 7. If in some coordinate system, 7% and £® are the

components of T" and & respectively, then the components of LT are given

by:
(LTl =Top & = Toget  —Tohgeh + Tepgs, +Tobes.  (2.4.3)

The left hand side of above equation can also be written as L7122, Moreover,

Lie derivative has the following properties:
i Leg =£(9)-

i Le& = [&1, &)

12



111 ,Cg(Tl ® TQ) = £§T1 ® T2 —|— T1 ® £€T2
iV. ,Ca & +b & T = CL,C&T —|— b,CgQT.

V. ‘C[fl,fQ]T = ‘C& (‘C§2T) - ‘C§2 (‘C&T)'

2.5 Spacetime Symmetries in General Rela-
tivity

The EFEs governe the theory of general relativity which are highly non-linear
differential equations. These equations are the core of general relativity but
due to their non-linear nature, finding the exact solutions for these equations
is a cumbersome work. Though the solution of EFEs is a difficult task but
is very important. To solve these equations, one needs to assume the pos-
session of certain symmetries in these equations. Symmetries are important
in finding not only the exact solutions of EFEs but in their classification as
well.

In 2004, Hall [14] defined spacetime symmetries as vector fields preserving
some features of a spacetime, like metric, geodesics, Ricci or Riemann cur-

vature tensor. Generally, such vector fields satisfy the following relation:
LoV = A, (2.5.1)

where £ denotes the Lie derivative operator, ¢ is the symmetry vector field
and ¥ is one of the quantities ¢, Tmn Or R, and the tensor A has the

same index symmetries as V.

13



For ¥ = g,,,, and A = 2a(2%)gymn, Eq. (2.5.1) defines conformal vector fields
(CVFs) which reduce to homothetic vector fields (HVFSs) if « is constant
and to Killing vector fields (KVFs) if & = 0. Similarly, if ¥ = T,,,,, and
A = 2a(z") T, in Eq. (2.5.1), it gives rise to conformal symmetries of the
matter tensor, which reduce to matter and homothetic matter collineations
for & = 0 and « constant respectively [16]. Moreover, if we put ¥ = R,,,, and
A =2a(z") Ry in Eq. (2.5.1), the corresponding spacetime symmetries are
called conformal Ricci collineations, which specialize to Ricci collineations
when a = 0 and homothetic Ricci collineations when « is a constant.

Since the focus of this thesis is an Lie symmetries of the metric tensor, so

here we discuss these symmetries in detail.

2.5.1 Killing Vector Fields

A vector field ¢ is said to be a KVF if the metric tensor g;; is invariant under

the Lie operator, that is [14]:

Legij = 958" + Giall; + gjali = 0. (2.5.2)

Wilhelm Killing in 1892 obtained the above equations and are known as
Killing equations, where the solutions of Killing equations are termed as
KVFs. For an m-dimensional manifold M, the maximum dimension of K (M)
is @, where K (M) denotes the collection of all KVFs on M which forms
a Lie algebra. For a spacetime, dim K (M) < 10. Killing algebra attains the
maximum dimension if the spacetime is flat [3].

In the literature, KVF's are used not only in constructing the new exact so-

lutions of EFEs, but also in the classification of known solutions. Moreover,

14



the physical importance of KVFs cannot be ignored as they give rise to the
conservation laws and their study is pivotal in understanding the physics of
the gravitational fields. For a more comprehensive study of KVFs and their
physical importance, we refer [5].

KVF's have been studied by different researchers. Petrov [5] was the first who
solved the Killing equations and found Killing vectors in four-dimensional
spaces. Bokhari and Qadir [17] studied Killing symmetries for static spheri-
cally symmetric spacetimes. Ali and his collaborators [18] explored KVFs of
Bianchi type VI, and VI, spacetimes. Ali et. al. [19] investigated KVFs
for non-static spherically symmetric spacetimes. Bokhari and his collabo-
rators [20] studied Killing symmetries in three- dimensional circularly sym-
metric static metric. Feroze et. al. [21] got complete classification of plane
symmetric Lorentzian manifolds after solving Killing equations for these sym-
metries. Khan et. al. [22] investigated Killing vector fields for LTB spacetime.
The classification of static cylindrically symmetric and non-static spherically

symmetric spacetimes via KVFs was given by Qadir and Ziad [23,24].

2.5.2 Homothetic Vector Fields

A vector filed ¢ on a manifold M which preserves the metric of spacetime
up to a constant factor is known as a HVF. Such vector fields satisfy the
relation [14]:

Legij = 98" + 9iaS’%s + 95aS = 20935, (2.5.3)
where « is a constant. For an m-dimensional manifold M, the maximum

dimension of H (M) is m(TgH) + 1, where H(M) denotes the collection of all

HVFs on M which forms a finite-dimensional Lie algebra, called homothetic
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algebra. Particularly, for a spacetime manifold M, we have dim H (M) < 11.
The maximum dimension of homothetic algebra H (M) is when the spacetime
is of constant curvature or it is flat.

As for as the Lie symmetries are concerned, they have useful applications in
both general relativity and mathematical physics. For example, HVF's are
important in the study of singularities in general relativity. Also, HVFs are
helpful in finding the new exact solutions of EFEs and in classifying them
by their conservation laws. Though few solutions of EFEs have been found
by assuming, in advance, that they possess a proper homothety, there are
many solutions of these equations which admit proper homothety whose ex-
istence accounts for the comparatively simple forms of their line elements
and consequently for their discovery [3]. Moreover, HVFs are regarded as
a kind self-similar solutions of EFEs, known as similarity of the first kind.
The study of self similar solutions of EFEs is important because of two main
reasons. First, the self-similarity reduces the mathematical complexity of
these equations, usually leading to the reduction of partial differential equa-
tions to ordinary differential equations, which are then comparatively easy to
study. Second, self-similar solutions play important role in describing asymp-
totic behaviors of more general non-self-similar solutions. Apart from this,
various astrophysical and cosmological applications of self similar solutions
(homotheties) can be found in literature [25].

Like KVFs, different researchers explored HVFs for different spacetimes.
Proper HVFs of Bianchi type [ spacetime were explored by Shabbir and
Amur [26]. Ali et al. [27,28] studied proper HVFs of Bianchi type IV and V'
spacetimes. Ahmad and Ziad [29] investigated the HVFs of spherically sym-
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metric spacetimes. The contribution of Shabir and Ramzan [30] was their
exploration of HVFs of static cylindrically symmetric spacetimes. Hall et
al. [31] explored that the maximum dimension of homothetic algebra is 11
in four- dimensional spacetime. Shabbir and Fouzia [32] studied Kantowski-
Sachs and Bianchi type III spacetimes and concluded that these spacetimes
admit five independent HVFs. Qadir et al. [33] studied HVFs of cylindri-
cally symmetric static manifolds and their global extension. Ali et al. [34]
investigated proper HVFs for circularly symmetric static spacetimes on a
three-dimensional Lorentzian manifold. Ziad [35] studied the plane symmet-

ric spacetimes’ classification via their HVFs.

2.5.3 Conformal Killing Vector Fields

A vector field ¢ is said to be a CVF if it satisfies the following relation [14]:
£§gij = 204{]@‘, (254)

where o : M — R is some smooth function, known as conformal function of
&. Some particular forms of CVFEs are HVFs and KVFs for which oo = const.
and o = 0, respectively. The CVFs other than the homothetic and Killing
vector fields are known as proper CVFs. Moreover, if o;; = 0 then a CVF
¢ is called a special CVF. One drawback of CVF is that they do not keep
the Einstein’s tensor invariant as homothetic and Killing vector fields do,
but they preserves the casual character of the spacetime manifold [36]. If
CVF(M) denotes the set consisting all CVFs on M, then CVF(M) gives the
structure of a finite-dimensional Lie algebra of smooth vector fields, called

the conformal algebra, such that dim C'(M) < 15. The conformal algebra
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attains its maximum dimension if and only if the spacetime is conformally
flat; that is, its Weyl tensor vanishes. For non-conformally flat spacetimes,
dim C(M) < 7.

Earlier the conformal symmetry was considered just a mathematical tool for
integrating EFEs but its physical usage was ignored in the study of cos-
mology and astrophysics. Recently, some work has been done that shows the
usage of conformal symmetry in the study of cosmology and astrophysics [37].
Chrobok et al. [38], made an assumption for temperature vector to be CKV
in the theory of irreversible and he got satisfying results thermodynamical
processes and he got interesting results. Bohmer et al. [39] proved that the
conformal factor for conformally symmetric spacetimes with moveable vector
fields can be explained in terms of tangential velocity of the test particles
that move in circular orbits. Its according to an assumption of spherically
symmetry that admits one parameter group of conformal vector. Mak et
al. [40] discovered a correct solution that describes and explains the inner
part of charged strange quark star. Moreover, Usmani and other scientists
suggested an astrophysical model named as gravastar, that admits CKV [41].
Arising of KVFs, usually ensures the conservation laws in spacetimes. How-
ever, in some circumstances, KVFs almost fail to find the conservation laws
and in these situations, conformal transformations are used to find conserva-
tion laws in place of KVFs. For instance, in Friedman metric case, translation
invariance is not present to provide the energy with conservation law, instead
conformal analogue of energy conservation law is ensured by conformal time-
translation invariance. Conformal motion symmetry is also a source of study

of kinematic variables including but not limited to expansion, rotation and
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shear in spacetimes [42-45].

Shortly, conformal symmetry has many usages which are helpful in under-
standing physical and geometrical properties of spacetimes physics.

Like KVFs and HVFs, different researchers explored conformal symmetry for
some spacetimes. CVFs are explored by Maartens et al. [46] for Friedmann-
Robertson-Walker spacetimes. Hall and Steele [47] pointed out that if a
spacetime has zero curvature (flat), then conformal symmetries will be 15
while for non-conformally flat spacetimes, the dimension of conformal al-
gebra will be less than or equal to 7. Khan et al. [48, 49] investigated
the CVFs on a four-dimensional Lorentzian manifolds of plane symmetric
and locally rotationally symmetric (LRS) Bianchi type V spacetimes. Hall
and Capocci [50] worked on the maximum dimension of conformal alge-
bra for three-dimensional spacetimes and found that dim C(M) < 14 for
non-conformally flat three-dimensional spacetime. Saifullah and Yazdan [51]
studied conformal symmetries of static plane symmetric spacetimes and con-
cluded that these spacetimes do not admit any proper CVFs. Later on,
Hussain et al. [52] investigated that non-conformally flat static plane sym-
metric spacetime metrics have proper CVF. Coley and Tupper [53,54] studied
proper inheriting CKVF of spherically symmetric spacetimes in both perfect
and anisotropic fluids. Moreover, Coley et al. [55] studied perfect fluid, plane
symmetric spacetimes admitting a proper inheriting CKVF. For the analysis

of conformal motions of some other spacetimes, we refer [56-61].

19



2.6 Noether Symmetries

Apart from the conventional symmetries, there exist some other symmetries
which are associated with differential equations (DEs). These symmetries are
known as Noether symmetries, whose idea was given by Emmy Noether in
1918 [10]. Such symmetries admit conservation laws and describe the physi-
cal features of DEs in terms of these conservation laws. To study in detail the
basic theory along with the advanced concepts of Noether symmetries and
conservation laws of DEs, one can refer to the references [7,10,15,62-70].

Noether proved a theorem, on the basis of Euler-Lagrangian (geodesic) sys-
tem, which states that there is always a conservation law for every continuous
symmetry admitted by the Lagrangian of a physical system. Consequently,
this theorem gives conservation of energy and linear and angular momenta of
a physical system if it is invariant under time translation and spacial trans-
lations and rotations. Noether’s theorem helps to find out the conserved
quantity for a continuous transformation of a symmetry that makes the ac-

tion constant.

A vector field ¢ of the form £ = 77% + & aim defines a Noether symmetry

which leaves the Lagrangian L of a dynamical system invariant and satisfies

the following condition [15]:
¢WL + LD(n) = DF. (2.6.1)

In the above expression, £ is the first prolongation of & which is defined

as £l = ¢ + 52%, where £ = D¢ — 2iDn and D = % + a;ia‘zi. More-

over, the functions 7, ' and F' (gauge function) all depend on five variables

(5,29 2t 22, 23) and 2% = (2°, 2!, 22, 23) is dependent on the affine parameter
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ekl

s such that z¢ = -

Moreover, there exist some well known relations of Noether symmetries with
KVFs and HVF's in such a way that every KVF is a Noether symmetry but
the converse is not true. If ¢ is a HVF if and only if £ 4 2¢s0; is a Noether
symmetry, where ¢ represents the homothety constant. A Noether symmetry
which is not a KVF and does not correspond to a HVF is known as a proper
Noether symmetry. The most important feature of the Noether symmetries
is that each Noether symmetry vector field corresponds to a conservation
law and using the Noether’s theorem, such conservation law is given by the
expression [10]:

oL

[=nL+ (5" - xn) o F (2.6.2)

As the algebra of Noether symmetries contains the set of Killing and homo-
thetic vector fields, we always expect to get some conservation laws in space-
times with the help of Noether symmetries which are not given by Killing
and homothetic vector fields.

The Noether symmetries attain the maximum dimension of Noether algebra
that is 17, if the spacetime is flat.

The importance of Noether’s work is not limited to its feature that for every
symmetry there is a conservation law, but is applicable in different fields such
as classical and quantum mechanics, electromagnetism, continuous group,
particle physics and general relativity etc.

In literature, Noether symmetries are explored for some well known space-
times. Hickman and Yazdan [71] explored Noether symmetries of Bianchi
type II spacetimes. Ali et al. [72-74] investigated Noether symmetries of

static spherical, cylindrical and plane symmetric spacetimes. A detailed
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study of Bianchi type V spacetimes via Noether symmetries was given in [75].
Bokhari and Kara [76] gave a complete classification of conformally flat Fried-
mann metric via Noether symmetries and their results were compared with
KVFs. They pointed out that this type of metric admits additional conser-
vation laws not given by KVFs. A similar comparison of Noether symmetries
and KVFs was given by Bokhari et al. [77] and shown that the Noether sym-
metries obtained by considering the Larangians give additional symmetries
which are not given by the Killing vectors. Camci [78] gave a classification of
Godel type spacetimes according to Noether symmetries of their geodesic La-
grangian. Camci et al. [79] explored Noether symmetries of the Lagrangian
for some classes of pp-wave spacetimes. A relationship between Lie symme-
tries of Klein-Gordon equation and conformal Killing vectors of the under-
lying geometry was established by Paliathanasis et al. [80], where they also
stated that the resulting Lie symmetries of the conformal algebra are also
Noether symmetries. Usamah et al. [81] explored the Noether symmetries
of non-static plane symmetric spacetimes. Jamil and his collaborators [82]
gave the geometrical and physical interpretation of the conserved quanti-
ties corresponding to each Noether symmetry of the geodetic Lagrangian
of plane symmetric spacetimes. Hussain et al. [83,84] investigated Noether
symmetries for the Lagrangians of Kantowski-Sachs and non-static spheri-
cally symmetric spacetimes. A complete classification of the LRS Bianchi
type I and V spacetimes via Noether symmetries was given by Hussain and
Akhtar [85, 86].

Moreover, the role of Noether symmetry approach is also noticeable in the

classification of exact solutions of EFEs, for details we refer [87-96].
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2.7 Energy Conditions

All the states of matter possess certain properties which are described by
the energy conditions and are strong enough to rule out many un-physical
solutions of the EFEs. The energy conditions have different forms i.e. null,
weak, dominant and strong energy conditions which are actually restrictions
on the eigenvalues and eigenvectors of the energy-momentum tensor. For a
known spacetime metric, one can determine the source of matter through
energy-momentum tensor, which in turn can be used to find bounds for
different energy conditions. Consequently, the physical importance of the
models can be determined through these energy conditions. The inequalities
for different energy conditions for an anisotropic fluid matter are as follows

97]:

Null energy condition (NEC) : p+p; =0, p+pL >0,
Weak energy condition (WEC) p>0, p+p; >0, p+pL >0,
Strong energy condition (SEC) : p+p; >0, p+pL >0,

p+p+2pL =0,
Dominant energy condition (DEC) : p=>0, p>1pyl, p=>lpol,

(2.7.1)

where p denotes the energy density and p, and p) respectively represent the
perpendicular and parallel pressures to spacelike unit vector n,.
Moreover, if p| = py, then the above expressions give the bounds for energy

conditions for a perfect fluid.
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2.8 Rif Algorithm

In different fields of science and technology, DEs play an important role.
Mathematically, DEs are studied from different perspectives, but the main
focus always remains on their solutions. Moreover, DEs may be linear or
non-linear. It requires less effort to get the solution of DEs for linear prob-
lems as compared to non-linear problems. As far as non-linear problems
are concerned, the construction of their solution requires some general ap-
proach. The most general approach is to study their Lie group of symmetries
for constructing such solutions [98]. Sophus Lie was the first who started
the symmetry analysis of DEs in 1870 and Lie symmetry methods become
major tools for finding solutions of ordinary and partial differential equa-
tions [15,99,100].

The involvement of systematic algebric manipulation and tedious calcula-
tion in symmetry analysis makes method of symmetry analysis relevant to
computer algebra. Moreover, for symmetry analysis, a number of computer
algebra packages have been developed which give a basis to analyze and solve
DEs [101-103].

Computer algebra usage for symmetry analysis started in 1980 which devel-
oped some new packages used for symmetry analysis and finding the sym-
metries of DEs. These symmetry analysis packages were used for three pur-
poses: (i) to find the determining equations of DEs, (ii) to reduce these
determining equations, and (iii) to solve these reduced determining equa-
tions to get symmetries. The purpose (ii) of symmetry analysis packages,was
to to simplify the determining equations and getting much chances for their

solutions. For this purpose, differential reduction and completion (DRC)
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methods [104-106] were included in symmetry analysis. The DRC methods
help to reduce DEs into a simple form, called reduced form, having some
information about the solutions of DEs. Several kinds of DRC methods in-
cluding Rosenfeld-Grébner algorithm [104], differential Grobner basis [105]
and Rif algorithm [106] are implemented using computer algebra systems
such as Maple. These packages are widely used by the users. For example,
to solve DEs, the Maple package "rifsimp” has achieved the status of front
end procedure, which itself uses Rif algorithm [107].

Rif algorithm is one of the DRC algorithms which transforms the analytic
systems of non-linear PDEs into a reduced involutive form, also referred to
as Rif form [106]. The Rif algorithm has some interesting features. To be-
gin with, the algorithm ends in a finite number of steps [108]. Second, the
process consists only of differentiation and elimination with no integration.
Furthermore, the Rif form which is the outcome of the Rif process, incorpo-
rates geometric properties of PDE systems. Despite the fact that Rif form is
coordinate-dependent, it can easily be converted into a system with involu-
tive geometric properties.

The Rif algorithm was first developed by Reid et al. [106] in 1996. To deal
with linear systems, the standard form of Rif algorithm is used, where as
for non-linear cases, further extensions of Rif algorithm are used. Reid et
al. implemented the Rif algorithm as a Maple package, known as "rifsimp”
and later on it modified by Wittkof [109]. The advantages of this algorithm
include reducing the complexity of the system and extracting the informa-
tion from the system, such as the number of its solutions without solving it.

The output of the Rif algorithm can be viewed graphically by a command
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‘caseplot’. Such a plot is known as classification tree or Rif tree. The nodes
of the Rif tree denote pivots which are actually the coefficients of the highest
order derivatives involved in the system of equations.

While developing the Rif algorithm to get a workable Rif tree, some impor-
tant operational issues need to be addressed. The most important issue is the
variable ordering. Different ordering of the variables produces different Rif
trees and no theory is available that assists in variable ordering and getting
a simplified Rif tree. Trial and error is the only option to get a workable Rif

tree.

2.9 Dissertation’s Qutline

In this dissertation, the main focus is on finding the Lie and Noether sym-
metries of different spacetimes by using Rif tree approach and to compare
our results with those of direct integrating technique. Finding the bounds
for different energy conditions for the obtained metrics during classification

is also the focus of this dissertation. The dissertation is designed as follows:
1. In chapter 1, a brief discussion of Einstein’s theory of relativity is given.

2. In chapter 2, the basics of general relativity, spacetime and Noether
symmetries and their related literature and an overview of Rif algorithm

are given.

3. The complete classification of Kantowski-Sachs spacetimes, static plane
symmetric and LRS Bianchi type I spacetimes with respect to their Lie

and Noether symmetries are given in chapters 3, 4 and 5 respectively.
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The bounds for different energy conditions for the obtained metrics and
the comparison of our findings with the conventional method are also

given in these chapters.

3. The last chapter concludes the whole dissertation.

27



Chapter 3

Lie and Noether Symmetries of

Kantowski-Sachs Spacetimes

In this chapter, we have investigated homothetic, conformal and Noether
symmetries of Kantowski-Sachs spacetimes. Instead of directly integrating
the determining equations of each symmetry, first we have developed an algo-
rithm in Maple, which reduces the system of these equations to the reduced
involutive form (Rif) and produces a tree, known as Rif tree. The branches
of this Rif tree yield the potential metrics that may possess the symmetries
other than the minimum ones. The set of determining equations is integrated
for each branch of the Rif tree to obtain the final form of the homothetic,

conformal and Noether symmetries admitted by the corresponding metrics.
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3.1 Homothetic Symmetries

In this section, we calculate the homothetic symmetries of Kantowski-Sachs
spacetimes. This work has been published in an ISI journal [110]. The

Kantowski-Sachs cosmological model is given by [111]:
ds® = —dt* + G* dr* + H?[ d§* + sin® 0 d¢?], (3.1.1)
where G = G(t) # 0 and H = H(t) # 0. The minimum KVFs for this metric

are:

0 0 9, 0 0 0
4 {ar,ad),sm(bag+c0t9(:os¢a¢, cosq580+cot95m¢—a¢}

Without mentioning any particular source, the non-zero components of en-

ergymomentum tensor for the metric (3.1.1) are:

G/Hl H/2 1

To = gt

H// H/2 1
Th = —-G*(2=— —
; G(H+H2+H2),

G// H// G/Hl
Toy = —H?(— +—
2 (G M IRNe) ] >
T33 = sinQQng, (312)

which take specific form for different sources of matter. For example, if the
source is an anisotropic fluid, then 7o, = (p+p.L)uqtis+ (P —PL)ab+ D1 Gab,
where p denotes the energy density, u, and n, respectively are the four-
velocity and spacelike unit vector and p; and pj respectively represent the
perpendicular and parallel pressures to n,. For this particular source, the

components of energy-momentum tensor (3.1.2) become:
TO() = pP, Tll = G2p||7 TQQ = Hzpj_, T33 = Sin2 QTQQ. (313)
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Moreover, if p; = p, then these expressions give a perfect fluid matter.

Comparing (3.1.2) and (3.1.3), we have:

2G'H'  H" 1

P = G "Twm T HY
2H// Hl2 1
p||——(H+H2+ﬁ)a
Q" g GH
= —| =4+ — . 1.4
PL (G TET GH> (3:-1.4)

Thus, for any Kantowski-Sachs metric with an anisotropic fluid source, one
can find the bounds for null, strong, weak and dominant energy conditions by
using the above values in the inequalities given in (2.7.1). Using the metric

(3.1.1) in Eq. (2.5.3), we obtain:

G = « (3.1.5)

G.-G ¢, =0, (3.1.6)

Gy—H*& = 0, (3.1.7)

GY% — H? sin®0¢, = 0, (3.1.8)
Ge&+GE = aG, (3.1.9)

G*&y+H € = 0, (3.1.10)

G* &+ H? sin® 08 = 0, (3.1.11)

H +HE = aH, (3.1.12)

¢ +sin? 065 = 0, (3.1.13)

H &+ H cot6 + H & = aH. (3.1.14)

where « is a constant. To find the HVFs of Kantowski-Sachs spacetimes,

we need to solve the above system of equations. Certainly, if one tries to
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integrate the system of these equations directly, many cases will arise de-
pending upon the nature of the metric functions G and H. In literature,
such systems for finding the HVFs for different spacetimes are usually solved
by direct integration technique [26-30]. However, here we develop a Maple
algorithm which uses the Exterior package and transforms the set of these
equations to the reduced involutive form. The details about the procedure
of transforming a system of equations to the reduced involutive form is given
in Ref. [106]. As a result of the developed Maple Rif algorithm, we have
obtained the Rif tree given in Fig. 3.1 and the corresponding pivots.

m = H,

po = GH +G'H,
p3s = GG" -G'G",
ps = G'H—-GH'",
ps = GH —G'H,
pe = GH'—G'H',
po= GG -G

ps = G*H"—G"H,
p = G,

po = HH"—H"
pu = HH'—HH",
p2 = HH"—H? -1,
ps = G'H —G"H,
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pu = G'HH-GH?-G.

pl
<
p2
< = ="
< =" = b=
pé pe
< = <> = 16 17
03 B7 pi3
.1. - < = = =
pé p o d
203 2y N\= <3 = 13 o\
B3 2y
4 < _ < — 12 14 13
J 161 < = < =
pld
7 3 @
a ..q:' =

Figure 3.1: Rif Tree for HVFs

The branches of the Rif tree impose restrictions on the pivots, represented
by the signs "=" and ”<>", which, respectively signify whether the corre-
sponding pivot is zero or non-zero.

As explained in chapter 2, variable ordering is most important in obtaining
the simplified Rif tree and it can only be obtained by trial and error. For
this particular problem we have deduced that the ordering £ > &' > €2 > ¢3
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for dependent variables and ¢ > r > 6 > ¢ for independent variables gives
the simplified Rif tree. By these orderings, we mean that the rank derivative
of €0 is considered higher than equivalent derivative of ! and so on. Simi-
larly, the derivative with respect to t is ranked higher than a derivative with
respect to r and so on.

Another issue that we faced during the development of the Rif algorithm is
that some branches in the Rif tree give expressions like H? + 1 = 0. Such
expressions do not give any real value of the metric function H, hence the
corresponding metric is not meaningful for our study. Such situations arise
because the Rif algorithm works in the field of complex numbers. To exclude
such cases, we have added the constraints like H2? + 1 # 0 in the algorithm.
For a complete classification, we have solved Egs. (3.1.5)- (3.1.14) for the
constraints of all branches of the Rif tree. The branches other than those
labeled by 1, 6, 11, 14, 15, 16, 19 and 20 yield the minimum four KVFs,
which are already given in the set K4. Thus, we exclude these cases from our
classification, while the results of the remaining branches are summarized in

the coming sections.

3.1.1 Five HVFs

The branches labeled by 1, 6, 14 and 16 give 5-dimensional algebra of HVFs.
In each case, we have obtained one proper HVF and four KVF's, same as K.

In Table 3.1, we present metrics of these four cases along with their proper

HVFs.

3?2 —2aco+1

The metric Ha represents an anisotropic fluid with p = Giren? 0 Pl =
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Table 3.1: Metrics admitting five HVFs

No. Metric Vector Field Components Proper HVF
-2 0 o
5a G = (at+cy) a & =at+cq, £(5):t37t‘
(Branch 1) H=at+cy, el = cor + c3,
where co # a # 0. §2 = cq4 cos ¢ + c5 sin ¢,
53 = cot O(—cy sin @ + c5 cos ¢) + cg.
5b G=H=at+as, € = 2 (a1t + az), Eo) = & &
(Branch 6) where a1 # 0. el =cq,
52, 53 are same as for the metric 5a.
5¢ G=c1 #0, 50:%(02t+63)7 §<5):%3%
(Branch 14) H = cot + c3, &l = ar+ ey, +r%.
where co # 0. 52, 53 are same as for the metric 5a.
5d H = co(at + c3), €0 = at + cs, £(5) Zt;%
(Branch 16) | G = 3%, &l =2ar + cy4, +2,.%'
where ¢1 # 0, ca # 0. 52, 53 are same as for the metric 5a,
where we have chosen ¢; = cg = 1.
Lto® = —lewl For thi 1 hysically realisti
~Gatten? and p; = ~laiter? For this model to be physically realistic, we

must have p > 0, that is 3a® — 2acy + 1 > 0. Moreover, the DEC is satisfied
if 30 —2acy +1 >0, a > ¢9, 20> —acy+1 > 0,22 —c2+1 > 0 and
(2 — ¢2)* +1 > 0. Similarly, the SEC and NEC are satisfied if o > ¢y and
20% —c2+1 > 0, while for the WEC we must have 3a® —2acs+1 > 0, a > ¢y

and 20® — 3+ 1 > 0.

The metric 5b represents an anisotropic fluid such that p = ﬁ—z)g,
P = —mﬁr—t;)z and p; = —ﬁ. Here, the SEC and NEC are satisfied

if 204% + 1 > 0, while the WEC holds if 304% +1>0and 204% +1 > 0. Finally,
the DEC requires 302 +1 >0, 202 +1 > 0 and 403 + 1 > 0.

34



2
The metric Hc represents an anisotropic fluid with p = (621;—?3)2, P =

— (C;fé)z and p; = 0. All the energy conditions are identically satisfied here.
Finally, the metric 5d, being an anisotropic fluid, is given by p = ﬁ,

. _14a?
b = (at+c3)?

and p; = o® iR This model is physically realistic if

(art+cs
the homothety constant belongs to the interval [—1,1]. For non-zero «, the
strong, weak, null and dominant energy conditions are failed for this model.

The metric 5a obtained here is same as the metric (17) of Ref. [32] ob-
tained by using direct integration technique with o« = C. The metric 5b can
be transformed to the metric (21) of Ref [32]. by taking oy = C and ay = 0.
One can see that the metric 5c is the generalized form of the metric (19) of

Ref. [32] and it can be transformed to the mentioned metric of the Ref. [32]
by taking o = C' and ¢35 = 0. However, the metric 5d is not listed in Ref. [32].

3.1.2 Six KVFs

There arise two cases, labeled by branches 19 and 20 in the Rif tree, where
we have obtained 6-dimensional algebra of KVFs with no proper homothety.
The set of these six KVFs contains the minimal set, given in the set Ky,
while the extra two symmetries for both the metrics are given in Table 3.2.
Each of these metrics is an anisotropic fluid. For the metric 6a, we obtain
p = 7%, p| = —%2 and p, = —k. The energy density is clearly positive, so
the model is physically realistic. Here, the SEC is failed, while the remaining
energy conditions are satisfied provided that kv? < 1.

Similarly, the model 6b gives p = —p = % and p;, = 0. The energy

density is clearly positive and all the energy conditions are trivially satisfied
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for this model.

Finally, for the metric 6¢, we have p = 7%, P = —7% and p; = 0. The

model is physically realistic with positive energy density and it identically

satisfies all the energy conditions.

3.1.3 Seven KVFs

The metric given by branch 11 admits seven KVF's with no proper homothety.

Four KVFs are same as already given in the set K, while the extra three

KVFs are presented in Table 3.3.

Table 3.3: Metric admitting seven KVF's

Metric

Vector Field Components

Additional KVFs

G = C1,
H = cge\/Et + cge*‘/gt

where ¢; #0, k>0

and 4kcocs = 1.

€0 = sin O(cq sin ¢ — c5 cos ¢)

—cg cos B,
gl =cr,
’
£ = % cos B(cq sin ¢ — c5 cos @)

+cg %/ sin 8 4 cg cos ¢ + cg sin ¢,
&= % cscO(ca cos ¢ + c5 sin @)

+ cot O(—cg sin ¢ + cg cos @) + c10.-

4 4
£(5) = csc 9% cos qb% + % cos 0'sin ¢(,%

~+ sin @ sin ¢%

§(6) = —csc 0%/ sin (j)% + %/ cos 6 cos qﬁ%
. 9
—i—sm@cosqﬁa—t
/ .
= 7% sm@% +cos€a%.

The metric of this

p|

b1

case represents an anisotropic fluid such that:

k(2R 4 2em2VR _ 9ccq) + 1

(coe2Vht 4 cqe—2Vht)2 ’
3kc3e2VF 4 3kcZe VM 4 2kcyes + 1

<02€2\/Et + 636—2\/Et>2 ’

= —k.
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One may use these quantities in the inequalities given in (2.7.1) to obtain

the bounds for energy conditions.

3.1.4 Ten KVFs

Solving the set of homothetic equations for the constraints of branch 15, we
obtain a Kantowski-Sachs metric admitting ten KVFs, out of which four are
same as given in the set Ky, while the extra six KVFs are listed in Table 3.4.

The metric of this case gives an anisotropic fluid model with p = —p, =

1+G?+2H?

e and p, = —3. Here, the energy density is clearly positive, the SEC

is violated and all other energy conditions are satisfied.

3.2 Conformal Symmetries

In this section, we explore the conformal symmetries of Kantowski-Sachs
spacetimes using Rif tree approach. A research paper has been published on
the basis of this work [112].

For conformal symmetry, we obtain the same set of partial differential equa-
tions as given in Eqs. (3.1.5)-(3.1.14) by using the metric (3.1.1) in Eq.
(2.5.3) with @ = «(t,,0,¢). The non-zero components of the Weyl tensor

for the metric given in (3.1.1) are:

T T
C&lo = SGH27 0802 = @7
I'sin’ 0
05(3)03 = 6 C'2112 - 03027
C§13 = C§037 C§23 = _203037 (3-2‘1>
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where ' = GHH" — GH"? — G"H? + G'HH' — G. Thus the Kantwoski-Sachs
spacetime is conformally flat if I' = 0.

To explore all possible cases where the Kantowski-Sachs spacetimes may
posses CVF's, we follow the same approach as we have used in case of finding

HVFs, where the corresponding Rif tree and pivots are obtained as follows:

pl
== =
p2
<= = =
p3 3 p3
oy \= <> = <3
o B3
1 < _ -|- < = 15 -
po pe
23 < = <> =" 16
B7 Jai] I
<3 \= ; <z N= <3 \=
& pd po
3 . L1 . 14
v ..1_-: = ..1_-: = 1 { = 1

Figure 3.2: Rif Tree for CVFs
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n = G,

p = G"G -GG,
ps = G'"H—-GH",
pe = GH —G'H,

ps = HH" - H'H",
pe = H,

pr = GG"-G",

ps = HH"—H"

po = GH'"—-GH',
po = GHH-GH” -G,
pn = HH'—H?—1.

The Rif algorithm for CVFs is developed in the same way as that for HVF's
with the difference that here we have used the ordering oo > €% > &' > £2 > &3
for dependent variables and t > r > 6 > ¢ for independent variables. Note
that the Weyl tensor of the Kantowski-Sachs metric vanishes if and only if
' = 0. In such a case, the conformal algebra is clearly 15-dimensional. Ex-
amples of such cases are labeled by the branches 14 and 17 of the Rif tree.
Moreover, the constraints of some other branches of the Rif tree give rise to
two sub-cases, depending upon whether the spacetime is conformally flat or
not. Due to the fact that each conformally flat case gives 15 CVF's, we have
only considered the cases where I' # 0. Furthermore, the solution of con-

formal symmetry equations for some branches of the Rif tree give minimum
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four KVFs. Such cases are labeled in the Rif tree by 2, 5, 6, 7, 9, 11 and
15. The cases where the Kantowski-Sachs metric possesses proper CVFs or
KVFs other than the minimum ones are discussed in the forthcoming sec-
tions. Here, the comparison of our findings with those of Ref. [113] is also
given which to show that this new approach gives more general metrics as
compared to those obtained by direct integration technique. Moreover, this
Rif approach also provides some new metrics which remained undetermined

by direct integration technique.

3.2.1 Six CVFs

Six cases arise where the dimension of conformal algebra is 6. These cases
are labeled by branches 1, 3, 4, 10, 12 and 16 in the Rif tree.

In branch 1, we have p; # 0, ps # 0 and ps # 0. Thus, the metric functions
are restricted to satisfy the conditions G’ # 0, GG — G'G" # 0 and GH" —
HG" # 0. Under these restrictions, the solution of Eqgs. (3.1.5)-(3.1.14) gives:

T H<cleﬁr + czeﬁr),

H
& = \/X/—dt(cleﬁT—CQe_ﬁT) + 3,

a2
2 ¢ are same as for the metric 5a in the section of HVF,
a = H'(cle ’\T+026_ﬁ’"), (3.2.2)

where A\ is a positive constant satisfying the relation A [ %dt =G (g)/
Here, the constants ¢; and ¢y correspond to two proper CVFs, which can
be expressed as ) = (3\@"(}1821t + VA [ Lt 6%) and ) = e‘ﬁT(Ha% -

VA Ik %dt a%). The remaining four constants give the minimum four KVFs,
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as given in set Kjy.
The branch 4 is a special case of branch 1 that gives the same six CVFs
except that the metric function G satisfies the equation GG"” — G'G" = 0.

t where 8 and

This mean that G is either a linear function or G = e’ + ye™
v are constants which are not zero simultaneously.

In branch 3, we have p; # 0,py # 0 and p3 = p; = 0. The conditions
p3 = ps = 0 relate the metric functions as H = G, where 3 is a non-zero

constant, and the solution of Eqs. (3.1.5)-(3.1.14) yield:

& = BG(eir + ),

51 - / _dt + 3,

€, € are same as for the metric 5a in the section of HVF,

a = BG'(ar+ ). (3.2.3)

We can express the two proper CVFEs as {5 = TG(% —l—f édt a% and ) = Ga%.
The remaining four CVF's are same as the minimum KVFs given in set K.
The metric of this case can be transformed to the metric (33) of Ref. [113]
by taking g = 1.

The branch 10 is a special case of branch 3, where the metric functions take
the values G = 1t + v, or G = v + et and H = BG, where 3,7, and 7,
are non-zero constants. The CVFs in this case are same as those of branch

3.

1+3v18°
Bty PIl =

The metric is physically realistic with

In one case of branch 10, when G = 7t + 7,, we have p =

1+47 6

T B2 (1t+2)?

2
_ 2
and p, = _52(W1t1+’72)2'

positive energy density p. Moreover, the quantities p, p; and p, identically

satisfy all the energy conditions.
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In another sub-case, that is when G = y,e! + y2e7, the energy density

is p= 1?;?22?:;;3%;)2, which is clearly positive. Moreover, the parallel and

_ 38797 438793 e 2 +28%y192+1
B2 (1€t +72e71)2

pL = el ;zt(tf; ;22;”)7”2 Here, the SEC fails while the DEC, NEC and

WEC are satisfied if ;72 < 0 and 832,72 < 1.

and

perpendicular pressures are given by p; =

The constraints of branch 12 are p, = p3 = ps = pg = 0, p1 # 0, pg # 0,
and pyp # 0. Simplifying these constraints, we get G = e’ + e and

~t where the constants ;s satisfy the relation 71794 +7273 = 0.

H = y3et +y,e
Moreover, GH' — HG' = 4~,y3 = A (say) and because py = 0, the function
g is constant, say g = (. Under these restrictions, we obtain the following

solution of Egs. (3.1.5)-(3.1.14):

¢ = 01 cos \/77“ + ¢ sin \/7
g = A c sin ér — Cy COS Ar +c
G 1 6 2 6 3

€, & are same as for the metric 5a in the section of HVF,

a = H (01 cos \/gr + ¢y sin \/§r> . (3.2.4)

Here, we have two CVFs, {x) = H cos \/g g + @ sin \/gr a% and ) =
H sin \/%r a% — F coS BT a% along with the four KVFs, same as given in
the set Kj.

The metric of this case represents an anisotropic fluid with p| = —p, p, = —3

1+352’y%€2t+352’y§672t—2ﬁ2
B2(71et+y2e7t)2

In branch 16, we have p; = p5s = 0, pg # 0 and p;; # 0. Simplifying these

and p = 112 Here, the energy is positive if vy, < 0.

conditions, we get G =  # 0 and the value of H depends upon the condition
whether H” # 0 or H” = 0. When H” # 0, we get H = vy,e' + ~y,e™ !, where
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dv179 + 1 # 0. When H” = 0, then H = ~t + 2, where v; # 0. In both
cases we have obtained six CVFs in which four are the minimum KVFs, same
as given in the set K, while the remaining two are proper CVFs which are

listed in Table 3.5.

Table 3.5: Metrics admitting six CVF's

No.

Vector Field Components

Proper CVFs

6a

(Branch 16)

50 = H(qe&' + cge*&'),
¢ = %/ (616[3’" - 026_[”) + ca,

€263 are same as for the metric 5a given in section of HVF,

-_— s a
€<5)—H6B 67,5

—Br 9
f(G):HE B dit

a=H' (cle[% + cze_[%). _%/e—,@?"a@.
6b 50 =H 011"-‘1-02)7 €<5) = I—Ir'a—t
2 2
(Branch 16) | ¢! =c1 261{271 * %) +<2,§£'¥1 + 71; )%’
+eavir + cs, £y = H@@ +71r5’9

£2,¢3 are same as for the metric 5a in the section of HVF,

o= H’<clr+02>.

The metric 6a is same as the metric (36) of Ref. [113] with § = 1 and

one can see that the metric 6b was missing there. For the metric 6a, we

1+(y1et—y2e~%)?

o _37%6%4-37%6*%—1—27172—1—1
(y1eltyze1)2 y P =

(1€ +y2et)?

get p = and p; = —1 and this

Kantowski-Sachs metric is physically meaningful because the energy density

is positive. One can easily simplify the energy conditions for this metric.
Similarly, the metric 6b represents an anisotropic fluid with p = (Wﬁr—i)%
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N
Pl = TGt

satisfied.

and p; = 0. Here all the energy conditions are identically

3.2.2 Six KVFs

The branches 8, 13 and 18 give 6-dimensional Killing algebras with no proper
CVF.

In branch 8, we have p; # 0, po = p5 = 0, p3 # 0 and pg = 0. The simplifica-
tion of these constraints gives G' = cie' + coe™" and H = 3, where 8 # 0 is a

constant. This metric admits six KVFs which are presented in Table 3.6.

Table 3.6: Metrics admitting six KVFs

Vector Field Components Additional KVF's
&0 = c3 cos A\r + ¢4 sin Ar, &(5) :cos)n“a% — %sin)\ra@,
&= —% (C3 sin Ar — ¢4 cos )\7‘) + c5, &(6) = sin )\ra% + % cos )\rg.

£2,¢3 are same as for the metric 5a given in section of HVF,

where A = 2,/ci1¢a.

This metric can be transformed to the metric (39) of Ref. [113] by setting ¢; =
Cy = % For this metric, the energy density, and the parallel and perpendicular
pressures are given by p = —p| = %, and p; = —1 respectively. The metric
is physically realistic with positive energy. The SEC is violated, while the
remaining energy conditions hold, provided that 3% < 1. For 8 = 1, the
metric represents a perfect fluid.

In branch 13, we have p; # 0, ps = p3 = ps = ps = Py = 0 and pyg # 0, which
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give G = ¢t + ¢y and H = ¢3, where ¢; # 0 and ¢3 # 0. For these values of G
and H, the CVFs are reduced to KVFs. The obtained six KVF's are same as
given for metric 6b in Table 3.2. It has been observed that this metric was
missing in Ref. [113].

Finally, the constraints of branch 18 are p; = 0 and ps = 0, showing that
both the metric functions are constants, say G = § # 0 and H = v # 0.
In this branch, the CVF's are reduced to KVFs which are same as given in
Table 3.2 for the metric 6¢ of the section of HVF's.

This metric is same as the metric (34) of Ref. [113] with § = 1.

3.3 Noether Symmetries

In this section, we explore Noether symmetries of the following Lagrangian

corresponding to the Kantowski- Sachs metric (3.1.1).
L= —2+ G*(t)r2 + H*(t)[62 + sin® 04?], (3.3.1)

where a dot denotes derivative w.r.t the affine parameter s. Following are
the minimum Noether symmetries admitted by the above Lagrangian:

Ny = {(9%’ (9%’ %’COS¢§0 — cotﬁsin¢%,sin¢(% + cot@cosqﬁa%}.
This set clearly contains the set of four minimum KVFs of Kantowski- Sachs
metric, given in the set Ky, while 8% is the Noether symmetry corresponding
to the Lagrangian.

Using the Lagrangian (3.3.1) in the Noether symmetry equation (2.6.1), we
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obtain:

Fo=nt=n,=n0=n4=0,

265 =,

2G'¢° + 2G¢), = G,

2H'¢® + 2HE = Hn,,,

2H'® + 2H cot 067 + 2HES = Hn,,,
& —G*, =0,

p — H?¢; =0,

§?¢ — H?sin? 953’5 =0,

G*p+ HE;

r

= 07
G*¢l, + H?sin® 0¢3, = 0,

€% +sin® 663 = 0,

25705 - Et = 07
2G2§713 - ET = 07
2H2£,23 —Fy =0,

2H?sin® 95:1 —F,=0.

Like the cases of HVFs and CVFs, one needs to solve the above system of

equations to find the explicit form of Noether symmetries.

In literature,

such systems are solved using direct integrating technique [83]. However, we

follow the same Rif tree approach as we have used for finding homothetic

and conformal symmetries. First we develop an algorithm in Maple which

transforms the set of Egs. (3.3.2)-(3.3.16) to the reduced involutive form and
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Figure 3.3: Rif Tree for Noether Symmetries

produces the Rif tree given in Fig. 3.3 and the list of pivots.

b = Gla

D2

b3

2

Ds

Pe

G/l

HH/// . HNH,7
HG"H — GH”,
HG — GH,

GIIIG o G”G/,
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pr = H,

ps = H?—-HH",

po = GH'—-G'H',

o = GHH-GH? -G,
pu = H,

pe = HH'—H?—1.

For a complete classification, we have solved Eqs. (3.3.2)- (3.3.16) for each
branch of the Rif tree given in Fig. 3.3. The branches other than those
labeled by 4, 7, 12, 15, 16, 17, 18, 19, 20 and 21 give five Noether symmetries
as given in the set N5. We exclude all such cases from our classification, while
the results of the remaining branches are summarized in the coming sections.
A brief comparison of our results with those of direct integrating technique

of Ref. [83] is also presented.

3.3.1 Six Noether Symmetries

The branches labeled by 4, 17 and 18 give 6-dimensional algebra of Noether
symmetries.

In branch 4, we have p; # 0,ps # 0,p3 = 0 and pg # 0. Under these
conditions, the solution of Egs. (3.3.2)-(3.3.16) gives the same metric as 5a
given in Table 3.1. For this metric, we obtain six Noether symmetries. These

six symmetries include the minimal set of five Noether symmetries along with

one extra Noether symmetry {5 = sa@ + %a%’ whose corresponding conserved
form is 5 = —sL—tt. Clearly, §(5) corresponds to a homothetic vector, given

by tgt which is same as given in Table 3.1 for the metric 5a. The physical
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interpretation of this metric is already presented in the section of HVFs. The
metric of this branch is same as the metric (7vii) of Ref. [83]. However, the
authors of Ref. [83] mentioned one additional symmetry Ta% which seems to
be wrong.

In branch 17, we have p; = 0,p3 # 0,p; # 0 and py; # 0, which yield G = 3,
where 5 £ 0 and H' # 0, H" #£ 0, HH" — H'H"” # 0. The solution of Egs.
(3.3.2)- (3.3.16) gives six Noether symmetries in which five are same as given
in the set N5 and one extra Noether symmetry is given below along with its

conserved form:

s 0

) = 259,
1 (6) = ST — 7.

Clearly, {) is a proper Noether symmetry. This metric is exactly same

as the metric (27) of Ref. [83]. The metric of branch 17 represents an

H/2+1

anisotropic fluid model with energy density p = “=—,

which is clearly
positive. Moreover, the parallel and perpendicular pressures are given by
D = —(%ﬂ + If{f + o) and p, = —(%") For this model, SEC and NEC
holds if HFH < 0and H?+1—HH" > 0. Moreover, the DEC requires %N <0,
H?+1—-HH" >0and H?+ 1+ HH” > 0. Similarly, the WEC holds if
H241 >0, B0 <0 and H? +1— HH" > 0.

In branch 18, the constraints are p; = 0,p3 = 0, p; # 0,p11 # 0 and p1o # 0.
The simplification of these constraints gives G = fand H = oqe\/Et—i-one*‘/Et,

where 3 # 0, k > 0 and k # ———. For this metric, we obtain the same

4ot

Noether symmetries as obtained for the metric of branch 17. Comparing

these results with Ref. [83], we can see that this case was not listed there.

k(ale\/gt—age_\/gt)Q—i-l

The metric of branch 18 is an anisotropic fluid model with p = (01 F e VRN
1 2
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ate VE ase” vk ajo . . .
P = —(Sk( i 2( ktJr\/éJr : kj);tz)kz ! 2H) and p; = —k. This model is physically
ale ase

meaningful as p > 0. Moreover, the energy conditions for this model are

conditionally satisfied.

3.3.2 Seven Noether Symmetries

Two branches of the Rif tree, labeled by 7 and 15 give seven Noether sym-
metries. In each case, we have two extra Noether symmetries other than the
minimal Noether symmetries given in /Vs.

In branch 7, we have p; # 0, po # 0, py # 0 and p3 = pg = pr = 0. The
simplification of these constraints gives G = creVF 4 cpeVEt and H = B,
where § # 0 and k > 0. Below are the two extra Noether symmetries (KVFs)

and their conserved forms for this metric:

o G | 0

§5) = cos()w“)gt SYE Sln()\r)a—r,
, o G 0

£6) = sm()\r)gt + e COS(AT)ﬁ_T'

.2

Iisy = —2cos(Ar)t — XGG’ sin(Ar)r,
.2

Iigy = —2sin(Ar)t + XGG/ cos(Ar)7r.

where A = 2,/cic,. The metric of this case is same as the metric 6a presented
in Table 3.2, admitting the same six KVFs. Moreover, this metric recovers
all the metrics given by (7i-7v) of Ref. [83].

In branch 15, the constraints are p; # 0, po = ps = 0, p; # 0 and p;; = 0.
The simplification of these constraints gives G = H = aqt + ay, where a; #

0. The solution of the set of determining equations (3.3.2)- (3.3.16) yields
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seven Noether symmetries in which five are given in the set N5 and two are
extra Noether symmetries. The obtained two extra Noether symmetries and
their conserved forms are given in Table 3.7, where {) is a proper Noether
symmetry and &) is a Noether symmetry corresponding to a homothetic
vector %*10‘28%. One can see that the metric of this case is same as the metric
5b, given in Table 3.1, admitting five HVFs. The physical interpretation of

this metric is already given earlier.

Table 3.7: Metric admitting seven Noether Symmetries

Noether symmetry generators | Invariants

2 2 .
§6) = %a% + S(a;:az) 3%% Iy =—%L— S(a%ja"’)t
F:—(%ng), Wﬂf
6(6) 258@8_"_7&121‘:-1(12%;}7:7: I(G) :—SL_S(O‘%TO‘Q)YE_T_

Moreover, the same metric was also obtained in Ref. [83], see the metric (7vi)

therein, by direct integration technique.

3.3.3 Eight Noether Symmetries

The branch 20 whose constraints are py = p;; = 0 and p; # 0, gives the
metric functions G = § and H = ayt + g, where o # 0, 5 # 0. Solving the
set of determining equations, we obtain eight Noether symmetries in which

five are same as given in the set Nj, while the remaining three symmetries
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Table 3.8: Metric admitting eight Noether Symmetries

Noether symmetry generators Invariants
¢ 209 | sr 0 + slaattaz) 9. | g o _ 7£L+ 57’527'“
(5) = 2 9, 2 0, 201 B’ (5) —

2 s(artt+as) t2 t r?p?

F=f - e —RE -
o .
5(6) = ﬁa— F f 1(6) = Sr — T,
t+ ; .

5(7) = d@g + (O¢12a1a2) dgf + gagT 1(7) = 78L — %ﬂmﬂt + TBQT.

along with their conserved forms are listed in Table 3.8.
Clearly, £y and ) are proper Noether symmetries, while ) corresponds

to a homothetic vector W% +7r

a% which is same as obtained for the
metric e, given in Table 3.1.

This metric can be transformed to the metric (31) of Ref. [83] by replacing
B=7,a =aand ay = .

3.3.4 Nine Noether Symmetries

The branches 16, 19 and 21 give 9-dimensional algebra of Noether symme-
tries. In each case, we have four extra Noether symmetries other than the
set Nj. In Table 3.9, we present metrics of these three cases along with their
extra Noether symmetries and the corresponding conserved forms.

For metric 9a, §(5) and &) are proper Noether symmetries, while {(7) and &)
are additional KVFs. One can see that the metric in this case is same as the

metric 6b, given in Table 3.2, admitting the same KVFs.

o4



In case of metric 9b, §), . . ., {r) are the additional KVFs and g is a
proper Noether symmetry. The metric in this case is same as the metric
given in Table 3.3, admitting the same seven KVFs.

Similarly, in case of metric 9c, &) and ) are KVFs, while §7) and ) are
proper Noether symmetries. In this case, the metric is same as the metric
6¢, given in Table 3.2.

The metric 9a, can be transformed to the metric (40) of Ref. [83] by taking
c1 = a, co = f and c3 = £. The metric 9b is the generalized form of the metric

(34) of Ref. [83] and the metric 9c is same as the metric (37) of Ref. [83].

3.3.5 Eleven Noether Symmetries

In branch 12, the pivots are p; # 0, po # 0 and p3 = py = pg = Py =
p1o = 0. The simplification of these conditions gives the metric functions
G = piet + Bee b and H = Bie! — Bre™t, where 8; and (3, are constants such
that 4k(162 + 1 = 0. This metric is same as the metric presented in Table
3.4, admitting ten KVFs.

The number of Noether symmetries for this metric turned out to be 11, in
which five are same as given in set N5, while the remaining six symmetries
and their conserved forms are given in the Table 3.10. One can see that these

six additional KVFs are same as listed in Table 3.4.
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Table 3.10: Metric admitting eleven Noether Symmetries

Additional KVF's Invariants
§(5) = sinOsinge” (5 — & &) I(5) = —2sinOsin ¢e” (i + GHT
+%e’“ (cos B sin d)% + csc O cos d)%), +2GHe" (cos 0 sin 0 + csc 6 cos po,
&(6) = sinOsin ¢e’r(a% + g%) Igy = —2 sin 0sin pe 7 (t — GH)
+%e"“(cos 0 sin d)% + csc 6 cos (1)%), +2GHe ™" (cos 0 sin ¢f + csc 0 cos ¢),
&y = 7Sin9608¢er((% — gai) I(7y = 2sinf cos ge™ (i + GHY)
—%e“cos@cos d)% — csc fsin d)%), —2GHe" (cos 0 cos ¢pf — csc 0 sin ¢p),
&(s) = —sinfcos ¢e_T(8% + %82) I(gy = 2sin 6 cos e~ (t — GHY)
—%e*’"(cosecos (b% — cscfsin (b%), —2GHe " (cos 0 cos pb — csc 0 sin ¢,
&(9) :—COSQET((%—%(%) I(gy = 2cosbe" (i + GH7)

G . ) . ;
+5 sm@era7 +GH sinfe”0,
&10) = fcosee_’“(a% + gair) I10y = 2cosfe~ " (t — GH7')

G o —rd . i
+ 4 sinfe 9" +2GH sinfe™"0.

As none of these six symmetries involve the affine parameter s, it is clear that
all these are KVFs. Thus the total number of KVFs in this case is ten. The
metric of this branch is the generalized form of the metric (43) of Ref. [83].

3.4 Stability of the Obtained Models

In this section, we discuss the stability of the cosmological models which are
obtained in the process of our classification in the section of HVFs. It is well
known that the motion of a test particle in a background gravitational field

is described by the geodesic equations
i+ T xbae = 0, (3.4.1)
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varying along the geodesics and I'f, are the Christoffel symbols. For the
metric (3.1.1), the geodesic equations (3.4.1) reduce to the following four

equations:
4+ GG'r2 + HH'(62 + sin® §¢2) = 0,
Gi + 2G'tr = 0,
HO + 2H'{0 — H sin cos ¢ = 0,
Hé + 2H't¢ + 2H cot 00 = 0. (3.4.2)
The perturbation of the geodesic equations leads to the geodesic deviation

equations, given by [114,115]:

(o 208 gble + T8 xbaecs = 0, (3.4.3)

be,e

where (® is the deviation four-vector from the geodesic motion. For the

metric (3.1.1), these equations become:
¢, +2GGFC + 2HH'OCE + 2H H' sin® 062 + (GG')'7*¢°
+(HH'Y6*C? + (HH'") sin? 0*C° + 2H H' sin 0 cos 0¢*(*
Lo+ 2—G/(tgl +7C0) +2 ¢ lﬁgo
,S8 G ,S ,S G

2+ %(tfﬁ + 9{‘2) — 2sin 6 cos 9¢Ci +2 (%) i0¢° — (cos? 0 — sin® 0)p2¢?

et %H/(igf’; +¢C0) +2cot 0(0CE + $¢2) + 2 (%/) idC0 — 2csc? 0 O

The above geodesic deviation equations can be used to study the stability
of cosmological models. Solving the geodesic equations (3.4.2), one may find

the velocity 4-vector &,, and using it in Eq. (3.4.4), one gets (*. Now, if [a, b]
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is an interval in which the functions (* behave monotonically, then the limit,
lim;_,;, (%, is considered as an indicator for the stability of the model under
consideration. If lim; ., (* is finite, then the model is stable, otherwise it is
unstable. This approach was recently used to discuss the stability of some
spherically symmetric cosmological models [116,117].

If we use the comoving coordinates, then one can choose 1 = 0 = ¢ =0
and £ = 1. These quantities can be considered as a solution of the geodesic

equations (3.4.2), while the geodesic deviation equations (3.4.4) become

5 =0,

<L)

e+ e
S+ 25@ = 0. (3.4.5)

It is well known that the first integral of the geodesic deviation equation is
given by:
gapi*¢" = C, (3.4.6)

where C is some constant. Using 7 = 6 = gb = 0 and £ = 1 in this equation,

we have ¢ = C. Moreover, solving Egs. (3.4.5), we get

1 1 1
=N / @dt, =X mdt, SEDY / ﬁdt, (3.4.7)
where A1, Ay and A3 are constants. Thus, a KantowskiSachs metric is stable
if the limits limy_ | #>dt and limy_ [ g=dt are finite. This criteria can be

used to check the stability of the models obtained in our classification. As a

result, it can be seen that the models 5b and 10a are stable, the model 5a is
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stable if 1 — % > 0 and the models 5¢, 5d, 6a, 6b, 6¢ and 7a are unstable.
Similarly, if we use = ¢ = 0 and ¢ = 1, then the geodesic equations (3.4.2)

reduce to

G'r2 = 0,

Gr +2G'r =0, (3.4.8)
and the geodesic deviation equations given in (3.4.4) become

0, +2GGCE + (GG)r2 =0,

2 ! !
Gt T (@i + 2GR =0,
2H’
2 2
2222
C,ss + H C,s )
2H'
o+ = =0. 3.4.9
C,ss + H C,s ( )

As t = 1, we can take t = 5. Moreover, from Eq. (3.4.8), we can see that
either 7 = 0 or G’ = 0. In the former case, the stability analysis is same as
presented above. In the latter case, the metric function P becomes constant

and the solution of geodesic deviation equations is obtained as:

1 1
0 __ 1 _ 2 3
=Mty =Nt Ay, =0 [ ot € _AG/_th,

(3.4.10)

where \;...,\¢ are constants. We can see that as t increases, (° and ¢!
become infinite. Thus, the models where the metric function G is constant
are unstable, for example, the models given by 5¢, 6¢ and 7a. However, there
is no indication of the stability /unstability of the remaining models using

this approach.
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3.5 Summary

In this chapter, we have presented a complete classification of Kantowski-
Sachs spacetimes via HVFs, CVFs and Noether symmetries by adopting a
new approach. Instead of directly integrating the set of determining equa-
tions, an algorithm is developed in Maple which reduces the set of determin-
ing equations to the simplified form and yields a tree known as Rif tree and
a list of pivots. The branches of the Rif tree give all possible cases where the
Kantowski-Sachs spacetimes may possess proper homothetic and conformal
vector fields, KVFs and the Noether symmetries other than the minimum
ones.

Out of the 20 branches of the Rif tree for HVFs, 12 branches give the mini-
mum four KVFs which we have excluded from our discussion, while the re-
maining branches produce some Kantowski-Sachs metrics possessing proper
HVFs or additional KVFs.

In 18 branches of the Rif tree for CVFs, we only considered those cases
where the spacetime is non-conformally flat. Solving the conformal symme-
try equations for each branch, we have concluded that non-conformally flat
Kantowski-Sachs spacetimes possess at most two proper CVFs along with
four minimum KVFs. In some cases, we also have six KVFs with zero con-
formal factor, giving no proper CVF.

For Noether symmetries, out of 21 branches of the Rif tree, 11 branches
give the minimal set of Noether symmetry in which four are the basic KVFs
and one is the symmetry corresponding to the Lagrangian. The remaining
branches produce 6, 7, 8, 9 and 11-dimensionl Lie algebra of Noether sym-

metries.
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We have also given a comparison of our results of Rif tree approach with
those of direct integration technique. It is observed that, the metrics which
we have obtained by Rif tree approach are more generalized than those ob-
tained by direct integration technique. Moreover, we have also noticed that
some metrics were missing there.

For most of the obtained metrics, we have checked that the energy density
is positive, which means that these metrics are physically realistic. More-
over, we have found the bounds for energy conditions and the stability of
the obtained metrics is checked with the help of geodesic equations and the

perturbed geodesic deviation equations.
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Chapter 4

Lie and Noether Symmetries of
Static Plane Symmetric

Spacetimes

In this chapter, we find the homothetic, conformal and Noether symmetries
of static plane symmetric spacetimes. Like the previous chapter, here we
again use the Rif tree approach instead of direct integrating technique for
solving the determining equations of these symmetries. First we develop a
Rif algorithm in Maple which reduces the set of determining equations to
the simplified form and yields a Rif tree. Like the previous chapter, the
integration of determining equations is carried out for the metric of every
branch of the Rif tree for obtaining the final form of homothetic, conformal

and Noether symmetries.
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4.1 Homothetic Symmetries

In this section, we explore homothetic symmetries of static plane symmetric
spacetimes. This work has been published in an ISI journal [118]. The metric

of static plane symmetric spacetimes has the form [3]:
ds? = =@ at? 4 dz® + 2@ [dy? + d2?). (4.1.1)

The four linearly independent KVFs for the above metric are:

Kk,=10209 9 0
4 — at7ay7az7 ay yaz Y

and the non-zero components of its energy-momentum tensor are:
Too = —e’(2H" +3H"?),
T11 - le + QG/HI,

Ty = Tyz=e (H'+H*+G"+G*+ H'G). (4.1.2)
For an anisotropic fluid, the above components become:
Too = P€2G7 T = V4IE Toy = 33 = €2HPL> (4-1-3)

where p denotes the energy-density, while p; and p, represent parallel and
perpendicular pressures of the fluid respectively. The comparison of the Eqs.

(4.1.2) and (4.1.3) yields:

p = _2H// o 3Hl2,
p” — Hl2 + 2G/H/,
p. = H'+H*+G"+G*+HG. (4.1.4)
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Using the metric (4.1.1) in the equation satisfied by homothetic vector fields,

given in (2.5.3), we obtain:

G +¢) = q (4.1.5)
¢ -9 =0, (4.1.6)
et — 29 = 0, (4.1.7)
el — 90, = 0, (4.1.8)
¢ = «q (4.1.9)
e +¢, = 0, (4.1.10)
el +¢' =0, (4.1.11)

1 2
HE¢+& = o (4.1.12)
E+& =0, (4.1.13)
He +& = a (4.1.14)

where « represent a constant. Like the previous chapter, to investigate the
HVFs of static plane symmetric spacetimes, we have followed the same ap-
proach based on a computer algorithm and obtained the Rif tree given in

Fig. 4.1 and the following list of pivots.
n = H”7
b2 = G’ + Hl?

py = H"? + H — G”? — G//7

Ps = H/ - Gl?
ps = HI7
bPe = Gl/a
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Figure 4.1: Rif Tree for HVF's

pr = H/Q o G/2 o G//
p8 — Hl2 o G/27

by = Gla

po = G*+G",

pll — Gl// + ZG/GH.

For a complete classification, we use the constraints of the branches of the

Rif tree and solve the system of equations (4.1.5)- (4.1.14). Consequently,
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some branches yield homothetic algebras of dimension 5, 7 and 11, while
the remaining branches give Killing algebras of dimension 4, 5, 6, 7 and
10. We skip to write the basic calculations and summarize the obtained
results in the forthcoming sections. The branches labeled by 5 and 6 give
minimum four KVFs and are therefore excluded from the classification. Here,
we also compare our results with the existing results of Ref. [119], which were

obtained by using direct integration technique.

4.1.1 Five HVFs

The branches 1, 2, 4 and 11 give 5-dimensional algebra of HVFs. In each
case, we have four KVFs which are same as given in the set K4, and one
proper HVF. Table 4.1 presents the metrics of these cases along with their
proper HVFs.

The metrics 5a(i), 5b(i), be(i) and bd admitting five HVFs are more gener-
alized than the only one metric, given by Eq. (3.10) in Ref. [119] possessing
the same number of homothetic symmetries. In fact, these metrics can be
reduced to the metric (3.10) of Ref. [119]. For example, in case of the metric
5c(i), we may use a = 1, ¢; =0 and ¢; = 1+ 2 = 1 — < to get the metric
(3.10), where A and C' are constants used in Ref. [119]. Moreover, the metrics

ba(ii), bb(ii) and 5c(ii) are not listed in Ref. [119].

3a2+cz—4a04 —2ac1+2c1c4
(az+c3)? )

The model 5a(i) is an anisotropic fluid with p; =

2 2 2 2 2
22— 201 —2acs+ dacs—a?—3 _
p, = &4 64(ax‘j‘r6613)2 LAY and p = W Here, the energy density is

non-negative provided that 4dacy, — a® — 3¢j > 0. Using these values of p, p

and p,, one can easily simplify the inequalities given in (2.7.1) to find the
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bounds for all energy conditions. For model 5a(ii), we have p = %,

P = (S;cjl); andp, = cs(es—) The SEC and NEC require c3(c3—a) > 0 and

T (azter)?”

3acs—a?—2c2 > 0, while the WEC holds if 4ocs —a? —3c¢2 > 0, c3(cs—a) > 0
3 3

and 3acs —a? —2c3 > 0. Finally, the DEC is satisfied if 4acz — a? — 3¢2 > 0,

cz(c3 — @) > 0, 3acz — a* — 2¢2 > 0 and Hacs — o — 4¢3 > 0.
Similarly, for the model 5b(i) being an anisotropic fluid, the energy den-

sity is same as in case 5a(i) and the pressures in parallel and perpendicular

2 2

directions are given by p; = ﬁ and p, = &l

(az+cy)?

satisfy the SEC and NEC if ¢4(a — ¢4) > 0 and 3acy — a® — 2¢2 > 0, while

. These quantities

the WEC holds if along with these inequalities being true, we further have
dacy — a? — 3¢2 > 0. The DEC is clearly violated.

For the model 5b(ii), we obtain p; = (wawP = —p and p; = 0, which

give an unphysical model having negative energy density and violating all

the energy conditions.

2 a2
Moreover, for the metric 5¢(i) we have p = % and p| = pL =

(a—c2)?
(ax+cy)??

giving a perfect fluid model for which one can easily simplify the

inequalities given in (2.7.1) to find the bounds for energy conditions.

2
The model 5c(ii) represents an anisotropic fluid with p = —(al;‘m,
a?(3a?+c2—dacy

a%(g’a_%ll and p, = o2 (arzta)? ) The model is physically unrealistic

b= a(arzt+az)

with the negative energy density and like the previous case, the bounds for

different energy conditions can be found by using these quantities in (2.7.1).

Finally, for the metric 5d, we obtain p = p; = 0 and p; = (ngfjg;;% The
DEC is violated here, while all other energy conditions are satisfied subject

to the inequality c3(cs — a)) > 0.
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4.1.2 Seven HVFs

There is only one metric, given by branch 3, which admits 7-dimensional
homothetic algebra. In Table 4.2, we present this metric along with the
vector field components and its three additional symmetries other than those
given in the set Ky. Here §5) and &) are two additional KVFs, while {7 is
a proper HVF.

Table 4.2: Metric admitting seven HVFs

Metric Vector Field Components | Additional Symmetries
_ g 1-°2 0 _ _ 0 o)

G=H=I(az+c1) o, = cot + c3z + cay + c5, 5(5)*’287, -1-7557

where a # ca. & =ax+c, &) :ya%th%’

&2 = coy + cat + cez + 7, &ny :x%.

3 = c2z 4 c3t — cey + cs.

This metric can be reduced to the metric (3.11) of Ref. [119] by taking a = 1,
¢ =0and ¢; =1 — 4, where A is the constant used in Ref. [119].

The energy density and, parallel and perpendicular pressures for this metric

dacy—a®—3c2 3(a—cg)?

042—40402—&-305
(az+c1)? 7 b= (az+-c1)? - The

(az+-c1)?

are found to be p = and p; =

simplified form of energy bounds can be easily obtained by substituting these

values in (2.7.1).

4.1.3 Eleven HVFs

In branches labeled by 13 and 14, we obtain eleven HVFs, out of which four

are same as given in the set K, and the additional seven symmetries for each
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metric are given in Table 4.3. For each metric, {(5) represents a proper HVF,
while §()...§(11) give six additional KVFs.

As for the metric 11a is concerned, it is same as the metric (2.29) of Ref. [119]
with ¢; = 1 and ¢ = A. The metric 11b is the flat Minkowski metric and
therefore attains the maximum dimension of homothetic algebra.

Moreover, both the metrics 11a and 11b represent vacuum solutions of EFEs

with zero energy density and vanishing pressure.

4.1.4 Five KVFs

Two branches, given by branch 7 and 9, yield five KVFs with no proper
homothety. Four KVFs are same as given in the set K4 and the fifth one is
given in Table 4.4.

The metric 5a can be transformed to the metric given by Eq. (2.32) in
Ref. [119] by setting ¢; = %, c3 = % and ¢y = ¢4 = 0. Under the same condi-

tions, the metric 5b can be regarded as a special case of the metric (2.32) of
Ref. [119].
As for the physical implications of these metrics, the metric 5a is an anisotropic
fluid with p = —3¢3, p| =  + 2ci¢3 and p. = ¢ + & + cics. For these
values, the DEC and WEC are failed, while NEC holds if ¢3(¢; — ¢3) > 0
and ¢} — 2¢2 + c¢jc3 > 0. Along with these conditions, if the inequality
c1(c1 4 2¢3) > 0 also holds, then the SEC is satisfied.

Similarly, for the model 5b, we have p = =3¢}, p| = —¢{ and p; = cf.
However, none of the energy conditions is satisfied here. Moreover, both of

these models are un-physical because their energy densities are negative.
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Table 4.4: Metrics admitting five KVFs

No. Metric Vector Field Components | Additional KVF

5a G=ciztcz, | =L+, ) =265 — &

(Branch 7) | H =csn+ca, | €' = -5, +y2 +24,
where ¢; # 0, €2 =csy+crz+cs, where we have used
c3#0 &3 =c52 — cry + cg. c1 =2,c3 =1.

2 2
and cf # c3.

5b G =ci1x + co, Same as in case 5a 5(5) = —ta% — 8%
(Branch 9) | H = c3x + ¢4, | with cg3 = —c1. —i—y% + z%,
where ¢; # 0, where we have used
c3#0 cg =1
and c3 = —c3.

4.1.5 Six KVFs

The procedure of solving Eqs. (4.1.5)-(4.1.14) for the constraints of branch 12
splits the problem in to further sub cases depending upon whether G”(z) # 0
or G"(x) = 0. In both the cases, we have obtained 6-dimensional Killing
algebra with no proper homothety. The results of these cases are summarized
in Table 4.5, where the additional two KVF's are represented by £(5) and ).
Like the previous cases, here we have obtained most generalized metrics than
those presented in Ref. [119]. One can see that the metrics (2.26) and (2.27)
of Ref. [119] are the special cases of the metric 6a. Similarly, the metric 6b

can be reduced to the metric (2.28) of Ref. [119] by choosing ¢; = 4 and
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co = 0.

The model 6a represents an anisotropic fluid such that p = p;| = 0 and
p1 = m. These values clearly satisfy all the energy conditions except the
dominant energy condition.

Similarly, for the metric 6b, we have p = p; = 0 and p, = ¢}, which

violate the DEC, while all other energy conditions are identically satisfied.

4.1.6 Seven KVFs

The metric given by branch 8 admits seven KVFs with no proper homothety.
Four KVFs are same as given in the set K, and the extra three are presented
in Table 4.6.

The metric given in Eq. (2.34) of Ref. [119] can be recovered from the above
metric by setting ¢y = % and c3 = 0.

The physical quantities for this metric are found to be p = —3¢3 and p =
p1 = c2, which give an unphysical model having negative energy density and

violating all the energy conditions.

4.1.7 Ten KVFs

There is only one metric, given by branch 10, admitting ten KVF's with no
proper homothety. Out of these ten, four are already given in the set K|,
while the extra six KVFs are listed in Table 4.7. One can easily reduce this
metric to the metric (2.33) of Ref. [119] by taking ¢; = £ and ¢, = 0.
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Table 4.7: Metric admitting ten KVFs

Metric Vector Field Components Additional KVF's
G=H=cz+tec, | =% (2 +y° + 22 + e 2(te2)) §5) = 3 (2 +y2+22 4 e2mte)) 2
where ¢; # 0. +cat + csy + cez — crty + cgtz + co, ft% +yt% +zta%,
&l = cry — cgz — cat — ¢y, 5(6):1&%7%+y%+2%’
€2 = L (22 —y? — 2 4 e 2ater)) & :ya% +t3%7
+es3yt + cay + cst 4 c10z + csyz + e, | Es) = Za% +ta%,
€ =% (22 —y? + 12 — e 2ote2)) o) = —tyg +y& -y
teszt+ caz + cot — croy — cryz +cia, | +3 (22 —y? — 12 4 e 2(@te2)) D
Y
where we have chosen c¢; = 1. §(10) = tza% - z(,% + yz{%,
+% (22 — y? 412 — e—2(s+e2)) a%‘
For this metric, we have p = —3¢} and p;; = p; = 3¢}, which identically sat-

isfy the SEC and NEC, while the DEC and WEC are violated here. Moreover,

since p = —3c?, the model is not physically realistic.

4.2 Conformal Symmetries

For conformal symmetry, we use the metric (4.1.1) in Eq. (2.5.3) and obtain

the same set of determining equations as given in Eqgs. (4.1.5)-(4.1.14) with

a = a(t,z,y, z). The non-zero components of the Weyl tensor for the metric

(4.1.1) are:
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where I' = G'(H' = G') — G" + H". If I = 0, then the static plane symmetric
spacetime is conformally flat, otherwise non-conformally flat.

To explore all possible cases where the spacetimes under consideration may
possess proper CVFs, we follow the same Rif tree approach as we have used
in case of obtaining HVFs in the previous section, where the obtained Rif

tree given in Fig. 4.2 and pivots are given below:

pl = H,

p2 = H',

p3 = G"+G*-H"-H?
pd = G — H',

p5 = G,

p6 = G"+H?—- H”?,

p7 = G,

p8 = G"+ G,

p9 — G/// + 2G/G”.

To get a complete classification of static plane symmetric spacetimes, we solve
the set of determining equations (4.1.5)-(4.1.14) for the conditions imposed
by each branch of the Rif tree given in Fig. 4.2. If the spacetime is conformally
flat, i.e. I' = 0, in such a case the conformal algebra is clearly 15-dimensional.
Such cases are labeled by the branches 3, 7, 8, 11 and 12. Moreover, there are
some other branches of the Rif tree which give two sub-cases, depending upon
the spacetime is conformally flat or not. Like the previous chapter, we focus

only on the cases where the spacetime is non-conformally flat. Moreover,
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Figure 4.2: Rif Tree for CVFs
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some branches of the Rif tree yield sub-cases, some of them give minimum

four KVFs. Also branch 5 gives the minimum KVFs. Such cases are also

skipped from the discussion, while the results of the remaining sub-cases yield

five, six or seven CVFs as summarized in the forthcoming sections.
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4.2.1

Branch 1

The constraints of branch 1 are p; # 0,py # 0, and p3 # 0. Further simpli-

fication of Eqs. (4.1.5)-(4.1.14) using these constraints produces two cases,

depending upon whether I' = 0 or I' # 0. The non-conformally flat case

(' # 0) is further divided into three sub-cases. Out of these three sub-cases,

one gives the minimum four KVFs, while the remaining two cases give five

and six CVFs. In case of five CVFs, one is a proper CVF while the remaining

four CVFs are same as given in set K. Similarly, in case of six CVF's, there

are two proper CVFs while the remaining four CVF's are same as given in the

set K. In Table 4.8, we have shown the results of these cases. It is to be noted

Table 4.8: Metrics admitting five and six CVF's

No. Vector Field Components Proper CVFs
5a fozclt(lfﬁ)‘i’cm 5(5) =t(17712)a%+6Hf67Qd50 %
1 _ —H 9 9
(Branch 1) | &' = c1e@ fe Hda, Y+
£ =cy+caz+cs,
& =c1z—cay + cs,
a=cy (H’ere’Hda:—&— 1).
6a €0 = (c1 cos kt + co sin kt) (f el =2G g + ,712) +c3, | §5) =coskt (f eH=2Cqy + k%) 8%
Branch 1) | €' = < (cy sinkt ket e sinkt 2
(Branch 1) | &' = T(Cl sin kt — co cos kt), + 5 sinktg-,

£2 =cqz + c5,

£ = —cyy + s,
H
o= % (cl sin kt — cg cos kt).

t

£(6) = sinkt (f eH=2Gdz + 1%2) 8@

H
e )
— & coskt .
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that the obtained five and six CVF's satisfy the Eqgs. (4.1.5)-(4.1.14) subject
to the conditions (G'—H')e" [ e dr = 2, and (G'—H")e = k? [ e *“dx
respectively, where k and § are some constants.

As the metric functions are not explicitly known, we cannot find the simplified

values of p, p; and p, in this case.

4.2.2 Branch 2

This branch gives 6-dimensional conformal algebra. The constraints for this
branch are p; # 0,p2 # 0,p3 = 0 and py # 0. Solving the set of Egs. (4.1.5)-
(4.1.14) under these conditions , we obtain the following components of CVF,

subject to the condition (G' — H')e” = k? [ e#~2Cdz, where k is a constant.

& = /eH_QGd:E(cl cos kt + ¢y sin kt) + cs,

H

& = % (01 sin kt — ¢y cos kt),
& = az+os,
53 = —QYy + Ce,

H

a = H’%(Cl sin kt — ¢y cos kt).

Here, we can express the two proper CVFE's as §) = cos ktfeH*Qde a% +

%sin kt a% and &) = sin ktfeH—Qde a% _ef

B
.- COS kt 5

4.2.3 Branch 4

In branch 4, we have p; # 0,p; = 0,p5 # 0 and pg # 0, which give Q) =
a1 + ag, where oy # 0. This branch produces two cases. The first case

splits into two sub-cases, one giving four KVFs, same as given in the set Ky,
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while the second sub-case gives five CVFs. The second case of branch 4 again
splits into two sub-cases, one produces six CVF's, while the other gives seven
CVFs. The details of these results are given in Table 4.9.

The energy density and parallel and perpendicular pressures for the metric

Ha are found to be:

p = —3&%,
(3a2e — 2% + 2011?)
b = eH — 32 )
_ai(e” = B%)? —anef(0n B+ n?) + (ane + 0?)? — an(ane” +177) (e — %)

b1 (efl — p2)2

Similarly, for the model 6a we have:

P = _305%7
pp = of +2a,G,

p. = EA+G" +G*+ G

For both models, energy density is negative, so the DEC and WEC are clearly
violated for these model, while the bounds for other energy conditions can
be easily obtained by substituting these values in (2.7.1).

The metric 7a is an anisotropic fluid with the following quantities:

p = _304%7
3a2et — a2k? B2
P = eH _ k252
_ a%(3€2H + k’454 _ 4]{325261{)
pL = (efl — k232)2

These quantities satisfy the SEC and NEC if eff > k232, while the DEC and
WEC are failed for these values.
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4.2.4 Branch 6

The constraints of branch 6 are p; # 0, po = p; = 0, py # 0 and p; # 0.
The simplification of these conditions gives G = a1 + o, H = azx + ay,
where oy # 0, a3 # 0 and a1 — a3z # 0. This metric is same as the metric
ba of the section of HVFs given in Table 4.4. Using these values of G and
H, the solution of conformal symmetry equations yields & = 0 and thus we
have obtained no proper CVF in this case. The obtained five KVF's for this

metric are same as given in Table 4.4 of the previous section.

4.2.5 Branch 9

In branch 9, we have p; = 0, p; # 0,ps # 0 and pg # 0. These constraints
give H = Const. = ¢; and G” + G? # 0, which yield a non-conformally

flat metric. Solving the set of conformal symmetry equations under these

conditions, we get G = In(ayx + Cg)l a%, where ¢3 # a; # 0. The CVFs in

this case are reduced to HVFs which are given below:

& = cst+ey,
& = o+ e,
&€ = ayy+csz+c,
& = arz—cy+or,

a = C3.

The above five HVFs include four KVF's, already given in the set K, and one
proper homothety &s) = x% + y% + Za%’ which is a special case of metric

5d, given in Table 4.1.
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4.2.6 Branch 10

The constraints of branch 10 are p; = 0, p; # 0,ps # 0, and py = 0.
Simplification of these constraints yields two cases depending upon whether
G" =0 or G” # 0. In the former case, the metric functions get the values
G = c1x + ¢ and H = c¢3, where ¢; # 0 and ¢3 # 0. This metric is same as
the metric 6b given in Table 4.5. In the later case, that is when G” # 0, the
metric becomes G = In(c;eV™ + cpe™ V™) and H = c3 # 0, where m > 0,
which is same as the metric 6a given in Table 4.5.

For both of these metrics, the solution of conformal symmetry equations gives

a = 0 and the CVFs become KVFs,; already listed in Table 4.5.

4.3 Noether Symmetries

For Noether symmetries, we consider the following Lagrangian corresponding

to the line element of static plane symmetric metric :
L= —e%@t2 4 g2 4 MA@ (2 1 22y, (4.3.1)

The minimal set of Noether symmetries for this Lagrangian is:

N-J0 000 0 0
5 — asaatvayaaz7 ay yaz :

Like the previous chapter, here N5 contains the same minimum four KVF's of

static plane symmetric metric, given in set K4 and aﬁ represents the Noether

symmetry corresponding to the Lagrangian.
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By using the Lagrangian (4.3.1) in Eq. (2.6.1), we obtain:

Fe=ni=n.=n,y=mn.=0, (4.3.2)
2¢9¢0 = F, (4.3.3)
26, = F, (4.3.4)

—2e"¢&% = F,, (4.3.5)
—2e"¢3 = F ., (4.3.6)
28 —n, =0, (4.3.7)

& +n, =0, (4.3.8)
¢+ =0, (4.3.9)
¢L+ele =0, (4.3.10)
e — ¢ =0, (4.3.11)
e —ee% =0, (4.3.12)
e’ — el =0, (4.3.13)
G'e' 4285 =, (4.3.14)
H'¢' +28 =, (4.3.15)
H'¢" +28, =1, (4.3.16)

The next step is to develop an algorithm in Maple which reduces the above
set of equations to the simplified form and produces the Rif tree given in Fig.

4.3 along with the list of pivots.
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To get a complete classification via Noether symmetries, we have solved the
set of determining equations for the conditions imposed by every branch of
the Rif tree and it is concluded that the possible dimension of Noether alge-
bra for these spacetimes is 5, 6, 7, 8, 9, 10, 11 and 17. In our classification, we
omit those cases which give the minimal set of Noether symmetries, given in
the set N5. Such cases are labeled by branches 3 and 7 in the Rif tree. More-
over, there are some other branches of the Rif tree which give two sub-cases.
In one of each sub-case, we get the set N5, so we have skipped such cases
from our discussion. We only focus on those cases which give symmetries
other than the minimal set of Noether symmetries. The Noether symmetries
and the corresponding conservation laws for these cases are discussed in the
forthcoming sections. We also compare our results with those of Ref. [121]
to show that this new approach gives more general metrics as compared to

those obtained by direct integration technique.

4.3.1 Branch 1

In branch 1, the constraints are p; # 0,py # 0,p3 # 0 and py # 0. This case
splits into two sub-cases, one giving the minimal set of Noether symmetries,
while the other case gives 6-dimensional Noether algebra. Out of these six
Nother symmetries, five are same as given in the set N5 and one is an extra
symmetry. The extra symmetry along its conserved form are listed in Table
4.10. Clearly, the extra symmetry corresponds to a homothetic vector x%.

The above metric is same as the metric 5a(i), given in Table 4.1, admitting

the same HVF. Moreover, the metric of branch 1 can be transformed to the
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Table 4.10: Metric admitting six Noether Symmetries.

Metric Noether Symmetry generator | Invariant

c1

G=Mh(az+2e3)" "1, | €y =5

Do

_l’_
ISIE
Flo

1(5) = —sL +LE .
H=In(anz+ 203)2_4%1,
where c4 # c1 # %,

and ¢1 # 0.

metric (31) of Ref. [121] by setting b = 2 — % and a = 2 — %. The physical

interpretation of this metric is already presented in the section of HVFs.

4.3.2 Branch 2

The constraints of branch 2 are p; # 0,ps # 0,p3 # 0 and py, = 0. From
py = 0, we get G = H. While solving the set of determining equations
under these constraints, we get two sub-cases. In the first sub-case, we have
obtained seven Noether symmetries, while the second sub-case gives eight
Noether symmetries. Among the obtained symmetries in both cases, five
are same as given in the set Nj, while the remaining two and three extra
symmetries along with their conserved forms are given in Table 4.11.
Clearly, &5 and &) are the additional KVFs for both metrics, while &) is a
Noether symmetry corresponding to a homothetic vector xa% for the second
metric. The metric 8a is same as the metric presented in Table 4.2, admitting
seven HVFs.

The metric 7a can be transformed to the metrics (34-36) of Ref. [121] by
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Table 4.11: Metrics admitting seven and eight Noether Symmetries.

No. Metric Noether Symmetry | Invariants
generators
2-%2 8 a G _ tr
Ta G=H # In(oiz + 2¢1) 1| &) :ya—t—l-ta, I(5) = —2e% (yt — ty),
(Branch 2) &) = za% + t%. Iy = —2eC (2t — t2).
_dcg

8a G=H=In(a1z+2c1)” 21, | {s),&) are same I(5y,I(6) are same
(Branch 2) | where a1 #0 as in case of 7a, as in case of 7a,

and cg#%. §<7):56%+%%. I(7>:—sL+zi.

setting some suitable substitutions, while the metric 8a gives the metric (42)

of Ref. [121] by putting a = 2 — % and ¢; = 0.

4.3.3 Branch 4

In branch 4 we have, p; # 0,py # 0,p3 = 0,p5 = 0 and py # 0. These
constraints give the metric functions G = ¢y + ¢o, H = c3x + ¢4, where
c1 # 0,c3 # 0, and ¢; # c3. For these values of G and H, we have obtained
six Noether symmetries. These six Noether symmetries include five basic
Noether symmetries, mentioned in set N5 and one is extra Noether symme-
tery (which is actually a KVF), given by &) = 2t a% -2 8% + y% + Za%' The
corresponding conserved form is I(5) = —2e%tt —4 i+ 2ef(y g+ 2 2). One
can see that this additional KVF is same as given in Table 4.4 for the metric
5a, admitting five KVFs.

The metric of this branch give the exact form of the metric (19) of Ref. [121]
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1

ifcy=_,c3= % and ¢y = ¢4 = 0. For this metric, the physical interpretation

is already given in the section of HVFs.

4.3.4 Branch 5

The constraints for branch 5 are p; # 0,ps # 0 and p3 = py = p; = 0. The
simplification of these constraints gives G = H = c¢yx + ¢3, where ¢; # 0.
This metric is same as the metric given in Table 4.7, admitting ten KVFs.
Using these values of G and H to solve the set of determining equations, we
get eleven Noether symmetries in which five are given in the minimal set and
six are extra Noether symmetries. These six Noether symmetries (which are

actually KVFs) along with their conserved forms are given in Table 4.12.

Table 4.12: Metric admitting eleven Noether Symmetries

Additional Symmetries Invariants
§5) = 2t +yt 2 + 2t Iy = —4ti + 2te™("F2) (yy + 2 2)

© y B
+(t2+y2+z2;4e—(m+cz)) (%’ _ (t2 + y2 + 22 46—(x+02))6m+c2 t"
o) =t & —2& +y +z &, | Ligy = —2e"o2ti — 4 &+ 22y § + 2 2),
€m =y 5 Ttz Ii7y = 2e"F2(t y —y 1),
Ee) =2 B%—i-t%, Iy =22 (t 2 — 2 1),
€o)=—ut 5 +2F —vyz Loy = 2tye™e2{ 4 dyi — 2e~(*Fea)yzz
+(22—y2—t2-l2—4ef(":+c2) ) 6@7 + (Z2 _ y2 v + 4ef(z+cz))ez+c2 7,

Y

€0y =2t 5, =22 5 + 2 8% Iy = —2e" 12 tyt — dzi + 26" T 2yzy
+(z27y2+t2;4e*(z+02) ) % +(22 _ y2 L2 467(z+02))ez+62 3.

Moreover, this metric is the generalized form of metric (63) of Ref. [121] and
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can be transformed to the metric (63) by taking ¢; = 1 and ¢, = 0.

4.3.5 Branch 6

The constraints for branch 6 are p; # 0, po = 0, ps # 0 and p; # 0. The
constraint py = 0 gives H = 21In(ayx + ¢1), where ay # 0. The calculation of
this branch is divided into two cases, one giving the minimal set of Noether
symmetries, while the second case gives six Noether symmetries. The metric
function G gets the value G = In 33(2_%), where ¢; # ¢ and c3 # 0. The
obtained six Noether symmetries include the minimal set of five Noether
symmetries and one extra Noether symmetry is given by {5 = SC%—’—%(%—F%%.
The corresponding conserved form is I(5) = —sL — %i + .

Clearly, &5 represent a Noether symmetry corresponding to a homothetic

vector 2

55 T xa%. The metric of this branch is a special case of the metric

5b(i), given in Table 4.1. Moreover, one can easily see that this metric is the
generalized form of the metric (28) of Ref. [121] and can be transformed to
ey

the metric (28) by choosing a = 2 — 222,

c3

4.3.6 Branch 8

In this branch, we have p; # 0,ps # 0 and ps = py = py = 0. These
constraints give the metric functions G = H = In(ayz + a»)?, where oy # 0.
The solution of the set of determining equations (5.3.2)-(5.3.16) yields nine
Noether symmetries in which five are same as given in the set N5 and four
are the extra Noether symmetries. The obtained extra Noether symmetries

and their conserved forms are listed in Table 4.13.
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Table 4.13: Metric admitting nine Noether Symmetries

Noether Symmetry generators | Invariants
§<5):§%+s<a+jaz)%; 1(5):—§L+ail(a1:c+a2)5c
F= ’212 +Z—§(a1x+a2), +§f%§(a1x+a2),

£ = s + (o) 0 Iigy = —sL + (aztea)

&n Zy%-f't%, Ii7y = 2% (ty — yi),

(8) :za%th%. I(g) = 2eCG (tz — 2t).

Here, ) is a proper Noether symmetry, {s) is a Noether symmetry corre-
sponding to a homothetic vector W a% and {(7) and &) are additional
KVFs. This metric is a special case of the metric 7a, given in Table 4.2. The
metric of this branch can be transformed to the metric (60) of Ref. [121] by

taking oy = % and ay = 0.

4.3.7 Branch 9

In branch 9, the pivots are p; # 0, po = pg = 0, p;r # 0 and pg # 0, which
give H = Const. = . This branch produces two metrics, admitting 7 and
8-dimensional Noether algebras. In both cases, five Noether symmetries are
same as given in the set Ny, while the extra two and three symmetries along
with their conserved forms are given in Table 4.14. For the first metric,
§(5) and §(g) are proper Noether symmetries. The second metric admits one
Noether symmetry corresponding to a homothetic vector :Ba% + ya% + za%,

while ) and 7y are proper Noether symmetries. The metric 8a is a special
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case of the metric 5d, presented in Table 4.1, admitting the same HVF.
One can see that the metric 7a is same as the metric (40) of Ref. [121], while
the metric (47) in Ref. [121] can be recovered from the metric 8a by setting
a=2—123 and ¢y = 0.

Cc1

4.3.8 Branch 10

The constraints of this branch are p; # 0,p; # 0 and ps = pg = ps = 0,
which give H = ¢; # 0. This case is splitted into two sub-cases depending
upon whether G” # 0 or G” = 0. In both cases we have obtain nine Noether
symmetries. The obtained nine Noether symmetries, in first case are subject
to the condition e“G” = A, where X is some constant. However, in second
case we also get the explicit form of the metric function G as G = cox + 3.
Moreover, the metric of this second case is same as the metric 6b given in
Table 4.5, admitting six KVFs. The extra symmetries and their conservation
laws for both cases are given in Table 4.15. For both metrics, {) and &)
are KVFs, while {7) and &) are proper Noether symmetries. The metrics
(54- 55) of Ref. [121] are the special case of the metric 9(i), while the metric
9(ii) can be transformed to the metric (52) of Ref. [121] by taking ¢; = £
and ¢y = 0.

In case of metric 9(i), we have p = p; = 0 and p; = G” + G"*. The metric
is physically realistic with the non-negative energy density and the bounds
for different energy conditions can be found by using these values in (2.7.1).
For model 9(ii), the physical interpretation is already given in the previous

section.
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4.3.9 Branch 11

In branch 11, we have p; # 0 and ps = pg = p; = 0. These constraints give
G = In(cir+c2)? and H = c3, where ¢; # 0, which is a flat metric having zero
curvature. Using these values to solve the system of determining equations
(5.3.2)-(5.3.16), we obtain 17-dimensional Noether algebra containing the five
minimum Noether symmetries, already given in the set N5 and the remaining
twelve symmetries with their conserved forms are given in Table 4.16.

Here, {() corresponds to a homothetic vector a%(ozlx + ag)a% + ya% + Za%’
§@)---»§1) are the additional KVFs and &(19)..., {(16) represent proper Noether
symmetries. One can see that these six additional KVFs and one proper
homothety are same as given in Table 4.3 of metric 11a. The metric of this

branch is missing in Ref. [121].

4.3.10 Branch 12

The constraints of branch 12 are p; = 0, p3 # 0 and pg # 0. Since p; = 0,
so G = Const., where 8 # 0. The calculation of this branch is divided into
three sub-cases depending upon the value of H. In this way we have obtained
three different metrics, admitting six, seven and eight Noether symmetries.
The extra one, two and three symmetries for these metrics along with their
conserved forms are given in Table 4.17. The exact form of these three metrics
are also presented in the same table. For the metric 6a, {s) is a proper
Noether symmetry. For the metric 7a, sy corresponds to a homothetic
vector, given by ta% + x% and §(g) is a proper Noether symmetry, while for

the metric 8a, §) and ;) are proper Noether symmetries, while ) is a
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Table 4.16:

Noether Symmetry generators Invariants

2, 2 . . . 2, 2
€)= 55+ ar0s + 3lygy + 250 F==Y30 | Iy =—sL+ &o+yj+2i+ 5,

s

b0y = (270G — 2+ & &), Iigy = €1t (22 + 228 — &re ),
b=t (~2Ch — 2+ &), Iy = et (258 = 220 + 7€ 7).,
b = (v O —v + &5 Iy = —2e1* (vi 0 - Gﬁy) ’

g = (e OF —vE + & E ) Tioy = 21" (3 £~ i = i)
§a10) = ieclt(% - e_Ga%)v Iaoy = 2ieclt(i+i)’

&) :—%@7C1t(%+57G%)7 Iay = %eiclt(t’_i)'

£a12) :§%+2é,%+%y% a2 :7§L+%3’c+syy
+522; F=—(% + %), teai+ B+ 222,

§a3) = i(—67G§t + a% ) Tasy = aQ*Sl(t."Hb)’

=~ (@ G4 + &), Tay = 1 (E=2),

§as) = S%% F = -2y, Iis) = 2(sy +y),

Ea16) :Sa%? F=—-22 I16) = 2(s2 + 2).

Noether symmetry corresponding to a homothetic vector ta% + x%.

The metric 7a is same as the metric 5a(ii), presented in Table 4.1, admitting
the same five HVF, where as the metric 8a is same as the metric 5b(ii), given
in Table 4.1.

One can easily see that the metric 6a is same as the metrics (22-23) of
Ref. [121]. The metric 7a can be transformed to the metric (38) of Ref. [121]
by choosing a; = Cll and a = 2 — %3, while the metric 8a gives the exact form

of the metric (45) of Ref. [121] by choosing y, = =.
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4.3.11 Branch 13

The constraints of this branch are p; = 0, pg # 0 and p3 = 0. These conditions
give the metric functions G = ¢; and H = cox +c3, where ¢y # 0. This metric
admits nine Noether symmetries in which five are same as given in the set
N5, while the remaining four symmetries along with their conservation laws
are given in Table 4.18. The metric of this case is same as the metric 7a
given in Table 4.6, admitting the same additional KVFs, denoted by &), &)
and §7), while ) represent a proper Noether symmetry. The metric of this
branch can be transformed to the metric (49) of Ref. [121] by taking ¢; = £
and c¢3 = 0. The physical interpretation of this metric is already given in the

section of HVFs.

4.3.12 Branch 14

For this branch, we have p; = pg = 0, which give G = H = Const. Thus
the metric (4.1.1) reduces to the well known Minkowski metric, admitting
17-dimensional Noether algebra. Five Noether symmetries of this metric are
same as given in the set N5, while the remaining twelve symmetries and their
conserved forms are given in Table 4.19. Here, &) corresponds to homothety,
given by ta% +x8% +y8% +z6%, while ), . . . ,§11) are the additional KVFs.
Moreover, {(12), ..., {16y are proper Noether symmetries. The six additional
KVFs and one proper homothety obtained here are same as given in Table

4.3.
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4.4 Summary

In this chapter, we have studied HVFs, CVFs and Noether symmetries of
static plane symmetric spacetimes using Rif tree approach. Instead of di-
rectly integrating the set of determining equations, an algorithm is developed
in Maple which reduces these equations to the simplified form and yields a
Rif tree and a list of pivots. The set of determining equations is then solved
for the conditions of all branches of the Rif tree.

Out of the 14 branches of the Rif tree for HVFs, two branches give the min-
imum four KVFs, while the remaining produce some static plane symmetric
metrics possessing proper homothetic algebras of dimension 5, 7 and 11. Our
classification also shows that the Killing algebra for these spacetimes is 4, 5,
6, 7 and 10-dimensional.

For a complete classification of static plane symmetric spacetimes via CVF's,
we have categorized our results branch-wise, because some branches of the
Rif tree yield sub-cases. Out of 12 branches of the Rif tree for CVFs, we
have only considered those cases where the spacetime is non-conformally
flat. Solving the conformal symmetry equations for each branch, we have
concluded that non-conformally flat static plane symmetric spacetimes pos-
sess at most three proper CVFs along with four minimum KVFs. In some
cases, the CVFs also reduce to HVFs and KVFs, as the conformal factor in
such cases becomes constant or zero.

Like CVFs, we have also categorized our results for Noether symmetries
branch-wise. Out of 14 branches of the Rif tree, 3 give the minimal set of
Noether symmetries. The remaining branches yield 6, 7, 8, 9, 10, 11 and 17

Noether symmetries.
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Comparing our results (HVFs and Noether symmetries) with those obtained
by conventional method, we have observed that the Rif approach gives the
same algebras of KVFs, HVFs and Noether symmetries with more general-
ized metrics than those produced by direct integration technique. Also we
observed that some metrics were missing in the earlier study by direct inte-
gration technique.

For CVFs, we compared our results with those of Ref. [51] and found the
same dimensional algebras of KVFs and HVF. Moreover, through Rif ap-
proach we also obtained proper CVFs which were not listed in Ref. [51].

To add some physical implications, we have found the energy-momentum
tensor for all the obtained metrics and it is seen that all the metrics aris-
ing during our classification are anisotropic or perfect fluid models satisfying

different energy conditions.
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Chapter 5

Lie and Noether Symmetries of

LRS Bianchi type I Spacetimes

In this chapter, we discuss Lie and Noether symmetries of LRS Bianchi type
I spacetimes. Rather than using direct integration technique, first a Rif
algorithm is developed in Maple which reduces the symmetry equations to
the simplified form. Consequently, we get a Rif tree and list of pivots. Like
the previous chapters, the integration of the system of symmetry equations
is carried out for every branch of the Rif tree for obtaining the final form of

homothetic, conformal and Noether symmetries.

5.1 Homothetic Symmetries

In this section, we explore HVF's of LRS Bianchi type I spacetimes. This work
has been published in the journal ”"Theoretical and Mathematical Physics”
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[120]. The metric of LRS Bianchi type I spacetimes is given by:
ds* = —dt* + G* do* + H? [dy* + d2?], (5.1.1)

where G = G(t) # 0 and H = H(t) # 0. Following are the set of minimum
KVFs for the above metric :
o 0 0 0 0
Ki={8 —, — —,2— —y—¢.
4 {ax7ay7azﬂzay yaz}
The non-zero components of energy-momentum tensor for the metric (5.1.1)

are found to be:

2G'H' H"?
Too = —
00 GH + I7ER
G2 " 2
Tll = _ﬁ(2HH +H ),
H
Bgzzg:—a@ﬁwﬂdeﬂy (5.1.2)

For different sources, the above components take specific form. For example,

for an anisotropic fluid, these components take the form:
Too = p, Ti1 = G?py|, Tas = T3 = Hpy, (5.1.3)

where p, p| and p, respectively represent the energy density and parallel and
perpendicular pressures of the fluid. Moreover, if p| = p., then the above

components represent a perfect fluid. Comparing Eqs. (5.1.2) and (5.1.3),

we get:
2G'H’" H"?
= G T
2H"  H”
P|=—(H+HJv
N LN N-70) 614
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Using the metric (5.1.1) in Eq. (2.5.3), we obtain the following set of deter-

mining equations:

&

& -G ¢,

&= &

& — H* &

GEE+Ge,

2 ~1 2 2
G2eL+H2 €2
G2 e+ H? &

0 2

G &+ HE,

2 3
&t Ey,

Hlfo‘f'Hfi

The same approach which we have used in the the previous chapters for

finding the HVF's of Kantowski-Sachs and static plane symmetric spacetimes

is used here for investigating the HVFs of LRS Bianchi type I spacetimes.

As a result of the Maple algorithm for the above set of equations, we obtain

the Rif tree given in Fig. 5.1 and the following pivots:

P = Hl?

p2 — HH// _ Hl27

P3 = GH/+G,H,

p4 — GH// _ G//H,

Ps = GH/ — G/H,
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Figure 5.1:
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We present a complete classification of LRS Bianchi type I spacetimes via
HVFs by solving the system of Eqs. (5.1.5)-(5.1.14) for all branches of the
Rif tree given in Fig. 5.1. This procedure also gives the classification of these
spacetimes via KVFs,; since in some cases the homothety constant « vanishes
and the solution of Egs. (5.1.5)-(5.1.14) produces no proper homothety. Such
cases are labeled by the branches 7, 8, 9 and 11 in the Rif tree. Moreover,
the branches of the Rif tree labeled by 5 and 6 yield minimum four KVFs.
These cases are excluded from the current classification. The results of the
remaining branches are summarized in the forthcoming sections. We also
compare our results with the existing results of Ref. [122] where HVFs were
obtained by directly integrating the homothetic symmetry equations for these

spacetimes.

5.1.1 Five HVFs

Four branches of the Rif tree, namely 1, 2, 4 and 10 give 5-dimensional
algebra of HVFs with one proper homothety and four minimum KVFs. In
Table 5.1, we present the exact form of the metrics of all these cases along
with their proper HVFs.

Comparing these results with the results of direction integration technique
presented in Ref. [122], one can easily see that the metrics baf(ii), 5b(i-ii)
and 5c(i-ii) were not listed in Ref. [122]. However, the metrics 5a(i) and 5d
obtained here are same as presented in Ref. [122].

Both the models 5a(i) and 5a(ii) represent anisotropic fluids. For model 5a(i),
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we have:

3a? + 2 — desa — 2co00 + 2c903

(at +¢1)? ’
o + 3¢5 — desa
PI (ot )?
PG+ G — 200 — 200 + 603
L= - (at +¢p)? '

One may use these values in the inequalities given in (2.7.1) to obtain the

bounds for energy conditions.

(a—c3)? a?+3ci—4acs

For model 5a(ii), we obtain p = e Pl = ~Gmea®

and p, =

c3(a—c3)
(at+c1)?

meaningful. The SEC, WEC and NEC are satisfied if ¢3(a — ¢3) > 0 and

. The energy density is clearly non-negative, so the model is physically

a(a — ¢3) > 0, while the DEC requires c3(a — ¢3) > 0, a(a — ¢3) > 0 and

(v —¢e3)(a —2¢3) > 0.

.. . . o a2—c§ o a2+3c%—4acg
Similarly, for the metric 5b(i), we have p = atre® Pl = —(ariayz and

P = % These quantities satisfy the SEC and NEC if c3(a—cp) > 0 and

a? — 2¢3 + acy > 0. Moreover, the WEC is satisfied if o > ¢o, ol —¢3) > 0
and o? — 2¢3 + acy > 0, while the DEC requires a > ca, co(a — ¢3) > 0,
(@ —2)* >0, 0% —2c2 + acy > 0 and a(a — ¢z) > 0.

The model 5b(ii) represents an anisotropic fluid with p = —p| = ﬁ

and p; = 0. Here, all the energy conditions are identically satisfied. More-

over, the energy density is non-negative ,so the model is physically realistic.

_ 2 2 32_4
(a—cs) _oit3gdacy o9

For the metric 5c¢(i), we found p = “latren® Pl = (atton)?
pL=— ((;ffl);. Here, the energy density is negative, so it clearly violates the

DEC and WEC. Also the WEC and NEC are violated because p +p; < 0.

For the model 5c(ii), we have p = a2-3e—2a) i jz and

_ g
a(ait+asz)?? py = (1t+as

pL = —a%%—lﬁj?. This model is to be physically realistic, provided that,
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30‘%301 > 0. Moreover, one may use these values in the inequalities given in

(2.7.1) to obtain the bounds for energy conditions like previous cases.

Finally, for the metric 5d, we have p = p; = 0 and p, = Ezﬁ;ffg) . The
dominant energy condition is failed for these values, while all other energy

conditions are satisfied provided that ca(av — ¢2) > 0.

5.1.2 Seven HVFs

For branch 3, we have p; # 0, ps # 0, p3 # 0 and py = p; = 0. The constraint
ps = 0 gives G = H. The calculation of this branch is divided into two cases,
the first giving six KVFs, which can be seen in the section of KVFs (Section
4.1.5). The second case leads to two sub-cases, both giving 7-dimensional
homothetic algebra. The metrics of both cases along with their components
of vector field and the additional symmetries other than the minimum ones
are presented in Table 5.2, where {s) represents a proper HVF, while &)
and 7y are two additional KVFs.

The metric 7a is same as listed in Ref. [122], while the metric 7b is missing
there.

3(a—c2)?

The model 7a represents a perfect fluid with p = ot )? and p| = py =

—a? —303 +4aceo
(at+c1)?

positive. Here the WEc and NEC are satisfied if a(a — ¢2) > 0. Along

. The model is physically realistic as the energy density is clearly

with this condition, if the inequality cy(a — ¢2) > 0 also holds, then the
SEC is satisfied. Finally, the DEC holds provided that a(a — ¢z) > 0 and
(v —¢2)(2a — 3¢2) > 0.

The model 7b represents a perfect fluid with p = % and p| =pL =
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Table 5.2: Metrics admitting seven HVFs

No. | Metric Vector Field Components Additional Symmetries
Ta | G=(at+e) ", | @ =atte, &s) =ty
— 1 _ _ L=yl 2
H=G, § =cow—csy—caztos, | §6) =Yy, ~ T,
where a # c2 &2 = coy + c3x — coz + 7, & :zai 7:1:8@.
and o # 0. &3 = coz 4 cax + coy + cs.
—_ 0_ G _ G o
b G = p1t + P, &= Fo, €)= &4,
H=aG, ¢l = —c1y — coz +c3, &(6)s §(7) are same for the metric 7a.
where 1 # 0. &2 =cix —caz + s,
53 = cox + ¢4y + ¢c6.
2
_(Lalti—lﬁg)?‘ The energy density is clearly positive so the model is physically

meaningful and hence all the energy conditions are identically satisfied here.

5.1.3 Eleven HVFs

The branches 12 and 13 of the Rif tree yield 11-dimensional homothetic al-
gebras. In branch 13, both the metric functions G and H become constant
and hence the LRS Bianchi type I metric reduces to the well known flat

Minkowski metric. This metric admits eleven HVFs which are already dis-

cussed in chapter 4. This metric was also presented in Ref. [122].

For branch 12, we have G = it + 5, and H = 33, where ; # 0 and (3 # 0.
The components of HVFs for this metric along with the additional symme-

tries other than the minimum ones are presented in Table 5.3, where &)
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denotes a proper HVE ,while §), ..., {11) are six additional KVFs. One can

easily see that this metric is not given in Ref. [122]. Moreover, the energy-

Table 5.3: Metric admitting eleven HVF's

Vector Field Components

Additional Symmetries

€0 = y(c16%1% — cpe™P1%) 4 2(c3eP1% — cheP1%)

+g (e — coemP1) + L (Bit + Ba),

€' = — g (Y€ + cpem )

+2(c3eM® + cuemP1T) + i(%eﬁ”} + cge A1) | + ey,
£ =ay+ 761241-62 (c1€P1% — coe™P1%) — gz + cq,

& =az+ LEBZ (c3e1® — cqe %) + gy + c1p.

S =g — G T 5
So) == "G5+ Ea + hran)
§ao) = Eeﬁw(a% - é%)v

fany = —g-¢ ML+ &E)

momentum tensor for both of these metrics vanishes and hence they represent

vacuum solutions satisfying all the energy conditions.

5.1.4 Five KVFs

For the metric of branch 7, the homothety constant vanishes and hence there

is no proper HVF in this case. The number of KVFs turned out to be five in

which four are the minimum KVFs, while the fifth KVF is given in Table 5.4

along with the exact form of the metric and the components of the vector

field.
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Table 5.4: Metric admitting five KVFs

Metric Vector Field Components | Additional KVF

— t 0_ _c¢3 _ 1 9 1,9
G =e2, £=- o) =% t et
H = ec2t, el = %03x+04, +y%+za%.

where ¢; > 0, &2 = c3y — c42 + c5,
c2 >0 3 = c32 + cay + c6.

and c1 # ca.

For the above model, being an anisotropic fluid, we have found p = 2c;cy+c3,
p = —3c3, and p; = — (¢} + 3 + c1¢2). As ¢1 and ¢y are positive, so clearly
p > 0. Thus the model is physically realistic. The NEC and WEC are
satisfied if co(c;—co) > 0 and ¢q(ca—c1) > 0. The DEC requires cy(c1—c) > 0,
ca(cy + 2¢2) > 0, ¢1(cy — ¢1) > 0 and ¢ + 2¢3 + 3cie2 > 0, while the SEC

violates.

5.1.5 Six KVFs

Like branch 7, the metric given by branch 11 also does not possess any
proper HVF, while it admits a 6-dimensional algebra of KVFs. In Table 5.5,
we present the exact form of this metric and its additional two KVFs.

Here, we have also listed the exact form of the metric given by a sub-case of
branch 3 and its additional two KVFs.

The metric 6a represents an anisotropic fluid with p = p; = 0 and p, =

—k?%. The energy density is clearly non-negative, so the model is physically
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meaningful. All the energy conditions are failed for this model.

Similarly, the metric 6b represents a perfect fluid with:

3H/2

P = g2
2H// H/2
pp =pL= —( Vi +H2)'

The energy conditions for this metric are satisfied conditionally and can be

easily simplified by using the above expression in (2.7.1).

5.1.6 Seven KVFs

The branch 8 of the Rif tree produces a metric admitting seven KVFs; out
of which four are the minimum and the extra three KVF's are given in Table

3.6.

Table 5.6: Metric admitting seven KVF's

Metric Vector Field Components Additional KVF's
—2kt 2_,2
G = Const., | € = f(—e1y + c2z = c3), 5(5>:_%8%+(62k2 g )g+y i
=2kt 2_ 2
H=e, ¢ =ca, 5<6>:%%+(§T+y 7 >%‘yz%’
where k>0 | &2 =cay+ gie M + F(° =22 | &)=~ 5 +ug +25

—C2Yz — C52 + Cg,

53 =c32 — 2c132 e—2kt + %(yQ _ 22)

+c1yz + csy + c7.

For this metric, being an anisotropic fluid, the values of p,p; and p; are

found to be p = k% p = —3k? and p, = —k?. Clearly p > 0, so the model is
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physically realistic. All other energy conditions are violated here.

5.1.7 Ten KVFs

The metric of branch 9 possesses 10-dimensional Killing algebra, containing
the 4-dimensional minimal algebra as a sub algebra and the six additional
KVF's are presented in Table 5.7.

The metric of this case is a flat metric representing a perfect fluid with
p = 3k? and p = pi = —3k*. The energy density is positive, showing that
the model is physically realistic. For this model, the SEC is violated, while
the WEC, NEC and DEC are satisfied.

5.2 Conformal Symmetries

For conformal symmetry, we use the metric (5.1.1) in Eq. (2.5.3) and get the
same set of equations as given in Eqgs. (5.1.5)-(5.1.14) with o = a(t, x,y, 2).
We have found the following non-zero components of Weyl tensor for the

metric (5.1.1):

T
C'2112 = C§13 = @7 0510 = 0320 =

2 _ 3 _
0020 - C’030 -

r

3GH?’

r 9 r
— =—— 2.1
6CH' Csas ek (5.2.1)
where I' = GHH"” — GH”? — G"H? + G'HH'. Thus the LRS Bianchi type I
spacetime is conformally flat if and only if I' = 0.

To explore a complete list of LRS Bianchi type I metrics admitting conformal

symmetries, we need to solve the system of equations (5.1.5)-(5.1.14) with
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a = aft,z,y,z). For the solution of these equations, we use the same Rif
tree approach as we have used in the previous section for finding HVFs. As
a result of the Rif algorithm, we obtain the Rif tree given in Fig. 5.2 and the

following list of pivots:

n = G,

p» = HH'—H?

ps = GH —G'H,

pe = GG" -GG,

ps = H*G" —GH",

pe = H',

po= GG -G?,

ps = G'(GH'—G'H)(GH' + G'H),
po = G'(GH —G'H).

To get a complete classification, we solve the set of conformal symmetry
equations for each branch of the Rif tree. Like the previous chapters, we
only focus on those cases which give non-conformally flat metrics. If ' = 0,
then the spacetime admits 15-dimensional conformal algebra. Such cases
are labeled by the branches 2, 9, 10, 12 and 13. Further, there are some
other branches of the Rif tree which give two sub-cases, depending upon
whether I' = 0 or I # 0. Again, here we have omitted the cases where I' = 0.
Moreover, the branches 1, 4 and 7 give the minimum four KVFs. Such cases
are not part of our present discussion, while the results of the remaining cases

yield one and two proper CVFs as summarized in the forthcoming sections.
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Figure 5.2: Rif Tree for CVFs

5.2.1 Branch 3

The constraints of this branch are p; # 0,p, = 0 and ps # 0. The condition
po = 0 gives HH"” — H = (. This yields two sub-cases depending upon
whether H' # 0 or H' = 0. When H' # 0, the solution of equation HH" —
H"™ =0 gives H = e, where k > 0. Further simplification of the conformal
symmetry equations by using this value of H gives rise to two sub-cases,
one giving the minimum four KVFs, while the second sub-case produces a

conformally flat metric admitting 15 CVFs.
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When H' =0, we get H = 3, where [ # 0. Solving the system of conformal
symmetry equations, we obtain G = (¢t + 02)1_%, where ¢; # 0, ¢3 # 0 and
¢ # c3 and the CVFs in this case are reduced to HVFs which are same as

given for the metric 5d in Table 5.1, with ¢; = a.

5.2.2 Branch 5

In branch 5, we have, p; # 0,p2 = ps = 0,p5 # 0,p¢ # 0 and p; = 0.
Simplification of these constraints gives the metric functions G' = e“* and
H = e where ¢; > 0, co > 0, ¢; # ¢ and ¢; # —cy. Using these values
of the metric functions, the solution of conformal symmetry equations gives
a = 0 and hence the CVFs are reduced to KVFs. The obtained five KVFs

are same as given in Table 5.4 of the previous section.

5.2.3 Branch 6

The constraints for this branch are p; # 0,ps = ps = 0,p5 # 0 and pg = 0,
which give G = B1e* + Bye ™ and H = ~, where &k > 0 and v # 0. The
solution of conformal symmetry equations for these values of G and H gives
a = 0, showing that there exists no proper CVF, and we have obtained six

KVFs which are same as give in Table 5.5 in the previous section.

5.2.4 Branch 8

In branch 8, we have p; # 0, p; = pys = p5s = ps = 0 and py # 0. Simplification

of these constraints gives G = e * and H = e*, where k # 0. In this branch,
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the CVF's are reduced to KVFs, i.e. a = 0. The obtained five KVFs are same

as given in Table 5.4 with ¢; = —c¢s.

5.2.5 Branch 11

The constraints of this branch are p; = 0,py # 0 and pg # 0, which give
G = 3, where 3 # 0 and H' # 0, HH” — H”? # 0. The calculation of this
branch is divided into two cases. One of the cases again splits into two sub-
cases, the first giving the minimum KVFs, while the second sub-case gives a
metric same as the metric 5a(ii), given in Table 5.1. For this metric, there
exist no proper CVF and the CVFs are reduced to HVF's, which are already
presented in Table 5.1. Moreover, the second case gives six CVF's, which

include four minimum KVFs and two proper CVFs, given in Table 5.8.

Table 5.8: Metrics admitting six CVFs

Metric Vector Field Components Proper CVFs

G =8, &0 = % (c1 sinh(kz) + c2 Cosh(km)), &) = % sinh(kz) 6%
H=aiel + age™®t, | ¢l = Ikigl (Cl cosh(kz) + c2 sinh(kx)) + c3, +Ik{—2, cosh(kz) B%,
where k£ > 0 &2 = —c4z + o5, £y = % cosh(kx) 8%
B #0, 3 = cay + cs, +II;I—2, sinh(kx) %

’

a1 # 0 and ag # 0. a= fllc (cl sinh(kz) + c2 cosh(kzz)).

kz(alektfagefkt)Q 9

For the metric of this branch, we have p = (orcF g2 > PL = —k* and
_1.2(2.2 .2k 2,2k
P = k (3‘1%21;Jizzi,kt;fal”). These quantities clearly show that none of

the energy conditions is satisfied except that energy density is non-negative,
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giving a physically meaningful model.
Since there is no published work on the conformal symmetries of LRS Bianchi
type I via direct integration technique, so we could not compare the results

obtained by Rif tree approach with those of direct integration technique.

5.3 Noether Symmetries

We consider the following Lagrangian corresponding to the metric (5.1.1) of

LRS Bianchi type I spacetimes for the investigation of Noether symmetries:
L =—124+G*t)x? + H*(t)(y? + 22). (5.3.1)

For this Lagrangian, the minimal set of Noether symmetries is:

N-J0 000 0 0
5 — 85781»’81/’627 ay yaz .

We have obtained the following set of determining equations by using the

Lagrangian (5.3.1) in Eq. (2.6.1):

Fs=ni=nz=ny=n.=0, (5.3.2)
265 = 1., (5.3.3)
2G'¢" +2G¢!, = G, (5.3.4)
0 2
2H'¢" + 2HE = Hi),, (5.3.5)
2H'$" +2HE, = Hn,,, (5.3.6)
&, — G, =0, (5.3.7)
&, — H*¢, =0, (5.3.8)
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& — H?¢, =0, (5.3.9)
G, + H?¢, =0, (5.3.10)
G + H?¢ =0, (5.3.11)

2 3
.+E&,=0, (5.3.12)
260 = —F,, (5.3.13)
2G*¢,, = F,, (5.3.14)
2H?¢: = F,, (5.3.15)
2H?¢, = F.. (5.3.16)

To find the Noether symmetries, these equations are analyzed through a
Maple algorithm, which produces the Rif tree, given in Fig. 5.3 and the list

of pivots.

P11 = G/7
P2 = G/lu
b3 = Hl/a

Py = H/2 o HH”7
Ps = G/H — GH ,,
P = G/2 o GG/I7
b7 = Hl?
pS — GIGII . GG///
To achieve a complete classification, the Noether determining equations are

solved for each branch of the Rif tree. As a result, we have obtained 5,
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Figure 5.3: Rif Tree for Noether Symmetries

6, 7, 8, 9, 11 and 17-dimensional Noether algebras. We omit those cases
that give the minimal set of Noether symmetries, given in the set N5. Such
cases are labeled by branches 3, 9 and 10 in the Rif tree. The cases which
give symmetries other than the minimal set are discussed in the forthcoming
sections. Here, we also compare our results with those of Ref. [85], where

the same spacetimes were classified according to their Noether symmetries
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by direct integration technique.

5.3.1 Branch 1

The constraints of this branch are p; # 0, po # 0, p3 # 0, ps # 0 and
ps # 0. The calculation of solving Eqs. (5.3.2)- (5.3.16) for this branch is
divided into two cases. One of the cases gives the minimal set of Noether
symmetries, given in the set N5, while the second case gives six Noether
symmetries. Out of these six, five are given in the minimal set, while one is
the extra Noether symmetry presented in Table 5.9 along with the values of
the metric functions. Clearly, this extra symmetry is a Noether symmetry
corresponding to a homothetic vector ta% The metric of this branch can be
transformed to the metric (8c) of Ref. [85] by setting ¢; = a, co = b, c3 =d
and ¢4 = c. The authors of Ref. [85] obtained two extra symmetries for this

(2]

metric, given by ) = x4

— % a% and {7y = ya% + 28%, which seems to be

not correct.

Table 5.9: Metric admitting six Noether Symmetries

Metric Additional Noether Symmetry | Invariant

2c

G=(C1t+262)1_?, 5(5) =s ER +% 8@ 1(5)=7SL7tt..

t

|

2c,

1— 24
H = (Cﬂf-‘r 202) c1,

C1 #07 63#647&0’
c1 # 2¢3 and ¢1 # 2ca.

One can see that the metric of this case is same as the metric 5a, given in
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Table 5.1, admitting the same HVF.

5.3.2 Branch 2

In branch 2, we have p; # 0, po # 0, p3 # 0, py # 0 and p; = 0. The
condition p; = 0 gives G = H. Using these constraints to solve the system
of determining equations (5.3.2)-(5.3.16) yields two cases during calculation.
One of the cases gives 7-dimensional algebra of Noether symmetries, out
of which five are given in the minimal set and two are the extra Noether
symmetries. The second case gives eight Noether symmetries in which five are
the same as given in the set N5, while three are the extra Noether symmetries
given in Table 5.10.

Here, ;) and £ are the additional KVE's for both metrics and §7) is a
Noether symmetry corresponding to a homothetic vector ta% for the second
metric. The metric 7a is same as the metric (7d) presented in Ref. [85], while
for metric 8a, the obtained symmetries are same as obtained for the metric
(91) of Ref. [85] except that an additional symmetry &) = x% + ya% + Za% -

Ad

75 Wwas also listed in Ref. [85] which seems to be wrong.

The metric 8a is same as the metric 7a given in Table 5.2, admitting seven
HVFs.

For model 7a, the metric functions are not explicitly known, we could not
find the simplified values of p, p and p, .

For model 8a, the physical interpretation is already given in the section of

HVFs.
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5.3.3 Branch 4

In this branch, we have p; # 0, ps # 0, p3 # 0, py = pe = 0 and p; # 0.
The simplification of these constraints gives G = e" and H = e®!, where
c1 > 0 and ¢ > 0. Using these values to solve the system of determining
equations (5.3.2)-(5.3.16), we get one extra symmetry (KVF) along with the
five minimum Noether symmetries, given in the set N5. The obtained extra
symmetry is given by ;) = _éa% + 2—;:138% + y% + Za% with corresponding
invariant I(5) = %i—i— %G2$$+2H2(yy+zé). This metric can be transformed
to the metric (7c) of Ref. [85] by setting ¢; = —% and ¢, = 3. Again, the
authors of Ref. [85] have given an additional symmetry &) = x% for this
metric, which is not correct.

Moreover, the metric of this branch is same as the metric presented in Table

5.4, admitting five KVFs.

5.3.4 Branch 5

For this branch, we have p; # 0, po # 0, p3 # 0 and py = p5s = pg = 0.
The simplification of these constraints gives the metric functions G = H =
ek where k > 0. This metric is same as the metric presented in Table
5.7 admitting ten KVFs. Also, the same metric is listed as metric (37) in
Ref. [85]. After solving Eqs. (5.3.2)-(5.3.16) for these values of G and H,
we have obtained eleven Noether symmetries. Out of these eleven, five are
same as given in the set N5 set and six are extra symmetries (KVFs), which

along with their conserved forms are given in Table 5.11. One can see these

additional KVFs are same as listed in Table 5.7.
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5.3.5 Branch 6

For branch 6, we have p; # 0, ps # 0, p3 = 0 and p; # 0. The constraint
p3 = 0 gives H” = 0= H = ajt4as, where aq # 0. Solving the set of Noether

2cq

symmetry equations under these conditions, we get G = (a1t + ag) <2,
where ¢, # 0 and ¢y # 2¢; and six Noether symmetries are obtained. These

six symmetries include the minimal set of five Noether symmetries and one

extra Noether symmetry, given by &) = Sa% + %ﬁ" 8%' The corresponding
conserved form is I(5) = —sL — (0‘17;%2)6’2 t. The metric of this branch can be

transformed to the metric (7a) of Ref. [?] by using ¢; = ¢ and ¢; = b, while

in Ref. [85],the extra symmetry {;) = xa%, seems not to be correct. Clearly,

a1t+as Q

§(5) is a Noether symmetry corresponding to a homothetic vector 5

One can see that the metric of this case is same as the metric 5c(ii) given in
Table 5.1, admitting same HVF. The physical interpretation of this metric

was already done in the section of HVFs.

5.3.6 Branch 7

The constraints for branch 7 are p; # 0, po # 0, p3 = p;r = 0 and pg # 0. The
condition p; = 0 gives H = (8, where 8 # 0. The calculation of this branch
produces eight Noether symmetries. In Table 5.12, we present the metric of
this case along with its extra Noether symmetries, other than the minimum
ones. For both metrics, {(5) and ) are proper Noether symmetries, while &)
is a Noether symmetry corresponding to a homothetic vector ta% + y% + Za%
for the second metric, which is same as given in Table 5.1 for the same metric,

denoted by 5d therein. The first metric of branch 7 is same as the metric
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(7b) of Ref. [85]. The second metric can be transformed to the metric (9h)
of Ref. [85] by setting ¢; = a, ¢ = b and ¢35 = ¢. The obtained symmetries
for metric 7a are same as those listed in Ref. [85]. However, an additional

KVF 20, — %C% is listed for metric 8a in Ref. [85], which is not correct.

Table 5.12: Metrics admitting seven and eight Noether Symmetries

No. Metric Noether Symmetry generators Invariants
1- 23 s O .

7a G#(at+e) 1, | &5 = Fg, =28y, Ii5y = 2B(s 9 —y),

(Branch 7) | H = j, £e) = gg; F =28z Iy =2B(s 2 — 2).
where 8 # 0.

1 2c3
8a G=(cat+c2) <1, | §s5),§e) are same as in case of 7a, I(5), () are same
— — 9 1 e} e} 9 :

(Branch 7) | H =, &en) —sa—s+§(t 5 TV, T2 @) as in case of 7a,
where 8 # 0, Ii7y=—sL—1 t
c1#0,c3#0 B2y 4+ = 2).
and ¢ # 2c3.

The first model represents an anisotropic fluid with p = p; = 0 and p; =

G//

& The energy conditions including strong, null and weak energy condi-
tions are satisfied if %/ < 0, while the DEC violates.
For the second model, the physical interpretation is already presented in

the section of HVFs.
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5.3.7 Branch 8

For this branch, the pivots are restricted to satisfy the conditions p; # 0,
p2 # 0 and p3 = p; = pg = 0. From the simplification of these constraints, we
get G = areVF 4+ qpe= VR and H = B, where k > 0 and 8 # 0. This metric is
same as the metric 6a, given in Table 5.5, admitting six KVFs. Solving the set
of determining equations for this metric, we obtain nine Noether symmetries,
out of which five are same as given in the set N5, while the remaining four
are extra Noether symmetries. The details of these four Noether symmetries

along with their conserved forms are given in Table 5.13.

Table 5.13: Metric admitting nine Noether Symmetries

Noether Symmetry generators

Invariants

§5) = %%;F=25y7 I5y = 2H(sy — y),
) = %%;F:%’Z, Ig) = 2H(s% — 2),
ey = %sm()\x)a% —+ )\CQ:G cos(Az) 5, Ity = —% sin(Az)f + 2C>\,‘2G cos(Ax)z,
&) = —% cos()\m)a% + fg"c sm()\z){%. Igy = %(cos )t 4 2?9/ sin(Azx) .

Here, {5y and &) are proper Noether symmetries, while §7) and ) are the
additional KVFs. This metric is the generalized form of the metrics (9b-9f)
of Ref. [7].

5.3.8 Branch 11

Here, the constraints are p; # 0, po = p3 = ps = 0 and p; # 0, which
give G = H = 1t + (B2, where 1 # 0. This metric is same as the metric 7b
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presented in Table 5.2, admitting seven HVF's. Solving the set of determining
equations for this metric, we obtain nine Noether symmetries, in which five
are listed in the minimal set and four are the extra Noether symmetries,

which along with their conserved forms are given in Table 5.14.

Table 5.14: Metric admitting nine Noether Symmetries

Noether Symmetry generators Invariants
€)= ~ygr + T I(s) = 2G (29 — ya),
) = —2& +2L, Igy = 2H? (22 — 23),
2 2 .
En =58 ta5 O F=—t(+8), | Im=—5L—- g Gi+i(t+3),
— .0 G 9 _ G J
6(8)_5675+ﬁ87t' I(g)——sL—mt.

§(5) and () are the additional KVF's, §(7) is a proper Noether symmetry, while

G o
B1 6"
One can easily see that these two additional KVF's and one proper homothety

§(s) represent a Noether symmetry corresponding to a homothetic vector

are same as presented in Table 5.2. To get the metric (9a) of Ref. [85] from
our metric of this case, we may use 1 = a; and [y = .
The physical interpretation of this metric is already given in the section of

HVFs.

5.3.9 Branch 12

For branch 12, we have p; # 0 and py = p3 = p; = 0. The simplification of
these constraints gives G = it + B2 and H = v, where 5; # 0 and v # 0.

This metric is same as the metric presented in Table 5.3, obtained during
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the classification via HVFs. It admits 17-dimensional Noether algebra and
it was also presented in Ref. [85], see metric (40) therein. These seventeen
Noether symmetries contain five minimum Noether symmetries, one proper
homothety, six additional KVFs and five extra proper Noether symmetries.
The proper HVF and six KVFs are same as given in Table 5.3, while the

extra five proper Noether symmetries are listed below:

20 sGO syd sz0 2 Py +2%) G
= _— ity . _
S =555 o0 T 20, T 20 SR o?
s 0
(13) v ay
s 0
§aa) = _8_ F =2z,
0 0 G
§us)y = —g Cosh(ozlyc)a + % smh(alx)a—x F = o cosh(ay ),
0 0 G
Eae) = —g Sinh(alx)at + % cosh(ozlx)a—m F= o sinh(ay ).
The corresponding invariants are:
s sG . 2 YW+ aG
Tng = — L — 224 4 602y + 22) + = — 2
(12) 5 o e (g +22) + 5 5 + o2

—7(13) = 27(39 - y),

Tngy = 2v(s2 — 2),

G
I15) = scosh(aiz)i + sGsinh(ayz)i — — cosh(aqz),
a1

G
I16) = ssinh(a1z)i + sG cosh(ax)i — — sinh(aqz).
a1

5.3.10 Branch 13

For branch 13, the constraints are p; = 0, py # 0 and p; # 0, that is G' =
H' # 0 and H? — HH" # 0, which give G = 3, where 8 # 0. Solving the
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determining equations in this case leads us to two sub-cases depending upon
whether H” # 0 or H” = 0. When H” # 0, then the metric in this case admits

2c3
<1, where

seven Noether symmetries and H gets the value H = (¢t + 202)1_
c1 # 0, c3 # 0 and ¢; # 2c3. Out of these seven Noether symmetries, five are
same as given in the set N5, while two are the extra Noether symmetries.

When H” = 0 = H = =t + 75, where v; # 0, then we get eight Noether
symmetries, five are given in the minimal set, while three are the additional

Noether symmetries. The extra symmetries of both cases are given in Table

5.15 along with their conserved forms.

Table 5.15: Metrics admitting seven and eight Noether Symmetries

Noether Symmetry generators Invariants
&)= 52, I(5) = sp°%,
§(6) ZSBQ-F%(t% -‘y—xai) 1(6) :—SL—tt.-i-ﬁQCt .

2 2 .
5(5) — 378@5 +5(W1275’-Y-172)6% 1(5) — —%L— s(’vlfy-i-vz )i

s 8 L 42_p2y2 o .2 g2g2

torg F=—(—5"—+td2), | +sfz i+ 5 - 5+ 22,
§(6)__2;2%; = -, 1(6):55[—"_3:7
5(7)_sag+ ngjlvz)é% 1(7):78117("/1?;“12){
+%% +,32xa'c.

For the first metric, {s) is a proper Noether symmetry and §() is a Noether
symmetry corresponding to a homothetic vector ta% +x8%. The metric in this
case gives the same symmetries as the metric (8b) of Ref. [85]. For the second

metric, ) and {) are proper Noether symmetries, while ) represents a
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Noether symmetry corresponding to a homothetic vector (W;#)a% + x%.
This metric can be transformed to the metric (8a) of Ref. [85] by setting
B =a,m=a and 1 = ay.

The metrics of this branch are exactly same as the metrics 5a(ii) and 5b(ii),

presented in Table 5.1 in the section of HVFs.

5.3.11 Branch 14

The conditions for branch 14 are p; = p, = 0 and p; # 0, which give G =
and H = e, where 8 # 0 and k > 0. This metric admits nine Noether
symmetries in which five are given in the minimal set and four are additional
Noether symmetries. In Table 5.16, we have listed these four symmetries

along with their conserved forms.

Table 5.16: Metric admitting nine Noether Symmetries

Noether Symmetry generators | Invariants

&s) = %8% — yza% I5) = —% i — 2yze2kt z
+(z2gy2 _ 2k222k‘)8%’ +<62kt(z2 _y?) - 1%2) ¥,
fo) = —F5 +via, Iis) = 5 i+2yzH% §
+(z2;y2 +m)%7 +(62kt(z27y2)+k%) 2
En=—%t +y%+z%, Iiry = 2t + 2keM (yg + 22),
£’y = ﬁa%’ F=—x Ig) = st + =

Clearly, £, ) and &) represent additional KVFs, while &) is a proper
Noether symmetry. This metric is same as the metric (9g) of Ref. [85] with
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b =caand k= 0.
Moreover, this metric is exactly same as the metric presented in Table 5.6.

In both cases, we have obtained the same seven KVFs.

5.3.12 Branch 15

For branch 15, the constraints are p; = 0 and p; = 0, which means that
both G and H are constant and the metric (5.1.1) reduces to the Minkowski
metric, whose Noether symmetries were already calculated in the previous

chapter.

5.4 Summary

In this chapter, we have given the classification of LRS Bianchi type I space-
times via HVFs, CVFs and Noether symmetries by adopting the Rif tree
approach. Instead of directly integrating the set of symmetry equations, an
algorithm is developed in Maple which reduces these equations to the simpli-
fied form and yields a Rif tree and a list of pivots. Then the set of symmetry
equations is solved under the conditions of each branch of the Rif tree.

Out of the 13 branches of the Rif tree for HVF's, two branches yield minimum
four KVF's, while the remaining branches produce some LRS Bianchi type
I metrics possessing proper HVF. In some cases, the homothety constant
vanishes during calculation and HVFs become KVFs. Moreover, the Killing
algebra for these spacetimes is found to be 4, 5, 6, 7 and 10-dimensional.
To investigate CVFs in these spacetimes, we have categorized our results

branch-wise, due to the existence of sub-cases. Out of the 13 branches of
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the Rif tree for CVFs, we only considered the cases giving non-conformally
spacetimes. Solving the conformal symmetry equations for each branch, we
have concluded that non-conformally flat LRS Bianchi type I metrics possess
at most two proper CVFs along with four minimum KVFs. In some cases,
the CVFs also reduce to HVFs and KVFs, as the conformal factor in these
cases becomes constant or zero.

In the section of Noether symmetries, two branches of the Rif tree give the
minimal set of Noether symmetries. The remaining branches produce 6, 7,
8,9, 10, 11 and 17 Noether symmetries. Also, we have calculated the conser-
vation laws for all the Noether symmetry generators by using the Noether’s
theorem.

Comparing the obtained results with those of direct integration technique, it
is observed that this new approach provides more metrics than those obtained
by direct integration technique. Interestingly, most of these new metrics are

physically realistic having non-negative energy density.
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Chapter 6

Conclusion

In this thesis, we have investigated homothetic, conformal and Noether sym-
metries of Kantowski-Sachs, static plane symmetric and LRS Bianchi type
I spacetimes by adopting Rif tree approach, instead of directly integrating
the determining equations. For such investigations, first we have developed
a Rif algorithm for reducing the system of determining equations for all the
mentioned spacetimes to a simplified form. The algorithm gives all possible
metrics possessing these symmetries in terms of a tree, known as Rif tree.
The determining equations are solved for all these metrics and as a result,
we have obtained the required symmetries of the spacetimes under consider-
ation. We have deduced the following results.

For Kantowski-Sachs spacetime, out of 20 branches of the Rif tree for HVF's,
12 branches give the minimum four KVFs , while the remaining eight branches
produce some Kantowski-Sachs metrics admitting proper HVFs. The num-
ber of KVFs turned out to be 4, 6, 7 and 10 for different values of the metric

functions. Moreover, we have compared our results with those of direct inte-
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grating technique [32] and it is observed that Rif tree approach gives a new
metric which was missing in Ref. [32].

In case of CVFs, Rif tree gives 18 branches but we have only considered
those cases where the spacetime is non-conformally flat. Solving the con-
formal symmetry equations for each branch, we have concluded that non-
conformally flat Kantowski-Sachs spacetimes possess at most two proper
CVFs along with four minimum KVFs. In some cases, we also have six
KVFs with zero conformal factor, giving no proper CVF. Comparing our
results with those of Ref. [113], we have noticed that this approach gives
more general metrics as compared to those obtained by direct integration
technique, while some important metrics were missing in Ref. [113].

For Noether symmetries, out of 21 branches of the Rif tree, eleven give the
minimal set of Noether symmetries, while the remaining branches produce 6,
7, 8,9 and 11-dimensional Lie algebra of Noether symmetries. We have also
compared obtained by Rif tree approach with the existing results of direct
integrating technique [83]. One can easily see that here the obtained metrics
are same as given in Ref. [83] but with more generalized form.

Similarly, for static plane symmetric spcetimes, two branches of the Rif tree
for HVF's give the minimum four KVF's, while the remaining branches pro-
duce some static plan symmetric metrics possessing proper homothetic alge-
bras of dimension 5, 7 and 11. Moreover, it is observed that these spacetimes
admit Killing algebra of dimension 4, 5, 6, 7 and 10. Comparing our results
with those obtained by conventional method in Ref. [119], we have observed
that this new approach of Rif algorithm gives the same algebras of KVFs

and HVFs with more generalized metrics than those produced by direct in-
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tegration technique.

For CVFs, we have considered only those cases where the spacetime is non-
conformally flat. Solving the determining equations for each branch of the
Rif tree, we have concluded that non-conformally flat static plan symmet-
ric spacetimes possess at most three proper CVF's along with four minimum
KVFs. Moreover, we have compared our results with Ref. [51] where the
authors claimed that non-conformal flat static plane symmetric spcetimes do
not admit any proper CVFs. But in our analysis, we have found same non-
conformally flat metrics admitting proper CVFs.

In section of Noether symmetries, we have found 5, 6, 7, 8, 9, 10, 11 and 17
Noether symmetries for static plan symmetric spacetimes. Comparing our
results with Ref. [121], it is noticed that the present approach gives the same
dimensional Noether algebras as obtained in Ref. [121] by diect integration
method. However, the metric obtained in branch 11 was missing in Ref. [121].
For LRS Bianchi type I spacetime, two branches of Rif tree yield minimum
four KVF's, while the remaining branches produce some LRS Bianchi type
I metrics possessing proper HVF. In some cases, the homothety constant
vanishes during calculation and HVFs become KVFs. Moreover, the Killing
algebra for these spacetimes is found to be 4, 5, 6, 7 and 10-dimensional.
Comparing our results with the existing results of Ref. [122], it is observed
that the metrics which we have obtained by Rif tree approach are more gen-
eralized than those produced by conventional method. Also we get some new
metrics during calculations which were not given in Ref. [122].

To investigate CVF's, we have only considered the cases giving non-conformally

flat metrics. Solving the conformal symmetry equations for these metrics, we
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have concluded that non-conformally flat LRS Bianchi type I metrics possess
at most two proper CVFs along with four minimum KVFs. We could not
compare our results with the results of direct integration method because no
published work about it could be found in the literature.

Finally, in the section of Noether symmetries, our analysis yield 5, 6, 7, 8, 9,
10, 11 and 17 Noether symmetries. We have also compared our results with
those of Ref. [85] and it is observed that this new approach provides more
metrics than those obtained by direct integration technique. Interestingly,
most of these new metrics are physically realistic having non-negative energy
density.

Summarizing, we can see that, Rif tree approach is a better option to find
the Lie and Noether symmetries as compared to the direct integrating tech-
nique. The reason behind this is that, Rif tree approach recovers all the
metrics obtained by direct integrating technique and produces those useful

metrics which are not provided by direct integrating technique.
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