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Abstract

This dissertation deals with the study of Lie and Noether symmetries of

Kantowski-Sachs, static plane symmetric and locally rotationally symmetric

Bianchi type I spacetimes using Rif tree approach. In each case, instead of

directly integrating the symmetry equations, a computer algorithm is used

to transform these equations to a simplified form. The interesting feature of

this algorithm is that it provides all metrics admitting Lie and Noether sym-

metries other than the minimum ones. The set of Lie and Noether symmetry

equations is solved for all these metrics to find the explicit form of symmetry

vector fields. Moreover, we have calculated the conservation laws for all the

obtained symmetries.

Comparing our obtained results with the existing results of direct integration

technique, it is observed that this new approach of Rif algorithm recovers all

the metrics obtained by direct integration technique and also this approach

gives rise to some new physically realistic metrics.

To add some physical implications, the obtained metrics are used in Ein-

stein’s field equations to compute their energy-momentum tensor and it is

shown how the parameters involved in the obtained spacetime metrics are

associated with certain important energy conditions.
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Chapter 1

Introduction

Newton is believed to be the first one to study gravitation and its nature.

According to him, gravity was nothing but an attractive force between mas-

sive objects. He proposed his law of gravitation in 1687 which was accepted

by all. It was believed that mass is the real source of gravity. According

to Newton’s physics, space and time are absolute and do not depend on the

aspects of objective reality. His law was very successful in explaining the

mechanics of solar system and astronomy in general for more than two cen-

turies [1].

In 1905, Einstein gave the idea of unification of space and time as a single

4-dimensional entity known as spacetime. This was the first step towards

construction of his special theory of relativity. This theory puts a universal

speed limit on every possible physical effects and on gravity as well. This

was in conflict with the Newton’s notion that gravity acts instantaneously

over large distances. Thus these two theories couldn’t be combined.

It took Einstein ten more years to present a generalized version of both New-
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ton’s classical theory and special relativity, as a result he proposed the general

theory of relativity in 1915. According to this theory, gravity is the curvature

of spacetime which defines a gravitational field. That gravitational field acts

on neighboring matter, causing it to move. Moreover, spacetime’s geometric

properties are determined by the matter and exclusively by a mass, such

properties make the curvature of spacetime. Therefore in general relativity,

object’s mass does not affect the position of the object in the spacetime (with

the assumption that it is not that much large to change the spacetime cur-

vature) and depends on the spacetime’s geometry. This leads us to the idea

that gravity is a geometrical phenomenon rather than simply a force.

In 1979, Johan Wheeler summarized the relationship between space and mat-

ter in general theory of relativity in a single sentence: ”Space tells matter

how to move and matter tells space how to curve” [2].

The mathematical expression of the above relationship is provided by the

Einstein’s field equations (EFEs) [3]:

Gij = Rij −
R

2
gij = kTij, (1.0.1)

where Gij and Tij denote the Einstein and energy-momentum tensors re-

spectively and k defines the gravitational coupling. Moreover, Rij, gij and

R symbolize the Ricci tensor, metric tensor and the Ricci scalar respectively.

Though their appearance is simple, it is quite challenging to obtain the ex-

act solutions of EFEs because they are highly non-linear partial differential

equations. If we consider the most simple case of vacuum, that is Tij = 0,

even there the EFEs may be very difficult to solve. Due to this reason, only

few exact solutions of EFEs have been found in the literature [3–5].

Spacetime symmetries are not only used to find new exact solutions of EFEs,
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they are also helpful in the classification of the known solutions. Besides this,

these symmetries have a direct relation with conservation laws in a dynamical

system. Symmetries usually demand some form of preserving property such

as preserving geodesics of a spacetime, metric and the curvature tensors.

Depending upon these preserving properties, spacetime symmetries are de-

fined in terms of specific type of vector fields such as Killing, homoth-

etic, conformal Killing vector fields and Ricci, matter, affine and curvature

collineations. All these symmetries are defined by some relations involving

Lie derivatives, therefore these symmetries are usually known as Lie symme-

tries.

Noether symmetries, also known as variational symmetries, play a pivotal role

in finding solutions and conservation laws admitted by differential equations

(DEs) [6]. In case of ordinary differential equations (ODEs), they are help-

ful in reducing order of DEs, while for partial differential equations (PDEs)

these symmetries are used to reduce the number of independent variables [7].

Apart from this, these symmetries are also used in the linearization of non-

linear DEs [8, 9]. In addition, Noether symmetries are useful because they

provide double reduction in case of DEs and are directly related to conser-

vation laws via Noether theorem [10].

To find the Lie and Noether symmetries of spacetimes, one needs to solve a

system of PDEs. In literature, these equations are usually solved by direct

integration technique. In this approach of studying Lie and Noether sym-

metries, there is always a chance of losing interesting metrics. Instead of

this technique, here we use a new method, known as Rif tree approach, to

study Lie and Noether symmetries of some spacetimes. In this method, first

3



a computer algorithm is developed to convert the determining equations to

a simplified form and getting a tree, known as Rif tree, imposing the condi-

tions on the metric functions. These conditions are then used to solve the

determining equations, giving the explicit form of symmetry vector fields.

We came upto the conclusion of general theory of relativity and in the fol-

lowing chapter, the discussion will revolve around some basic concepts of

general relativity supporting our thesis. Furthermore, the spacetimes and

Noether symmetries literature and details of Rif algorithm will be discussed

in details.
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Chapter 2

Preliminaries

In this chapter, we present some basic concepts of general relativity, which

will give a deep insight of the knowledge. Also the spacetimes and Noether

symmetries along with their literature will be discussed as well as a brief

introduction of a computer program, Rif algorithm will be explained.

2.1 Tensors

Tensor is a concept in mathematical physics which is the generalization of

vectors and dual vectors. Tensors play a central role in solving physical

problems by providing a complete mathematical background. In general

relativity, tensors play a pivotal role because EFEs are tensor equations.
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Tensors as Mulltilinear Map

Let V be a finite dimensional vector space. A tensor T of type (m,n) is a

multilinear map:

T : V ∗ × V ∗ × V ∗ × ...V ∗×︸ ︷︷ ︸
m−times

V × V × V × ...V︸ ︷︷ ︸
n−times

−→ R, (2.1.1)

where ”×” represents the Cartesian product, m and n are non-negative in-

tegers and m + n represents rank or order of the tensor T [11]. Moreover,

V ∗ is the dual space of the vector space V . By multilinear, we mean that T

satisfies the relation:

T (v1, ..., α1p+α2q, ..., vm+n) = α1T (v1, ..., p, ..., vm+n)+α2T (v1, ..., q, ..., vm+n),

(2.1.2)

where α1 and α2 are scalars and v1, ..., vm+n, p and q are elements of V or

V ∗ as appropriate.

Types of Tensors

Tensors of type (0, 1), (1, 0), (0,m), (n, 0), (m,n) are called covariant vector,

contravariant vector, covariant tensor, contravariant tensor and mixed tensor

respectively and a tensor of type (0, 0) is defined as a scalar.

Tensor Product

Tensor product of two covariant tensors T of rank m and T ′ of rank n is

denoted by T ⊗ T ′ and is defined as [12]:

T ⊗ T ′(v1, v2, ..., vm, w1, w2, ..., wn) = T (v1, v2, ..., vm)T ′(w1, w2, ..., wn).

(2.1.3)
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Similar expressions are valid for all types of tensors. The tensor product is

not commutative but it is distributive and bilinear.

Symmetric and Antisymmetric Tensors

If the indices of a tensor remain unchanged by exchanging any two of its

contravariant or covariant indices then it is said to be symmetric, while it

is antisymmetric when it changes sign with the exchange of any two of its

contravariant or covariant indices [11].

Some Important Tensors

There is a vast variety of tensors but in general relativity the most important

tensors are metric, Riemannian curvature, Ricci, Weyl, energy-momentum

and Einstein tensors.

Metric Tensor: The metric tensor of type (0, 2) is a symmetric bilinear

scalar function of two vectors. It takes two vectors from tangent space and

returns a scalar.

It is one of the important tensors in general relativity which shows the in-

finitesimal squared distance along a curve. Let ds be the infinitesimal dis-

tance between two points on a curve. Let d~r be the vector joining the two

points, then ds2 may be written as:

ds2 = d~r · d~r. (2.1.4)
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If dxi represent contravariant components of d~r and ~ei are the coordinate

basis vectors, then we can write:

d~r = ~ei dx
i. (2.1.5)

Similarly, for covariant components dxi and the dual basis vectors ~ei, one can

write:

d~r = ~ei dxi. (2.1.6)

Thus for the contravariant components dxi, we get:

ds2 = d~r · d~r

= ~ei dx
i · ~ej dxj

= (~ei · ~ej) dxi dxj

= gij dx
i dxj, (2.1.7)

where gij denote the covariant components of the metric tensor. Similarly,

one may use the covariant components dxi to get:

ds2 = gij dxi dxj. (2.1.8)

The signs of + and − appearing in the metric represent signature of the met-

ric. Particularly, a metric of signature (−,+, ...,+) or (+,−, ...,−) is called

a Lorentzian metric and a metric with signature (+,+, ...,+) is positive def-

inite or Riemannian metric. Spacetime metric is always Lorentzian [13].

Riemannian curvature tensor: Another important tensor in general rel-

ativity is the Riemannian curvature tensor which is of type (1, 3) and is

expressed as [13]:

Rm
ijk = Γmik,j − Γmij,k + ΓnikΓ

m
nj − ΓnijΓ

m
nk, (2.1.9)

8



where Γmij represents Christoffel symbol which is defined as follows:

Γmij =
1

2
gmd (gid,j + gdj,i − gij,d) . (2.1.10)

Riemannian curvature tensor vanishes if a spacetime is flat.

Ricci Tensor: The contraction of the Riemann curvature tensor Rm
ijk in the

first and third indices gives rise to the Ricci tensor of type (0, 2), which is

defined as:

Rij = Rk
ikj = Γkij,k − Γkik,j + ΓnijΓ

k
nk − ΓnikΓ

k
nj. (2.1.11)

Ricci Scalar: The contraction of the Ricci tensor with metric is known as

Ricci scalar:

R = gijRij, (2.1.12)

where R represents the Ricci scalar.

Weyl Tensor: Weyl tensor is a type (0, 4) tensor, also known as conformal

tensor, which is defined as:

Cijkm = Rijkm+
1

2
[gimRjk + gjkRim − gikRjm − gjmRik]+

1

6
R[gikgjm − gimgjk].

(2.1.13)

If all the components of Cijkm vanishes, then a spacetime is said to be con-

formally flat.

Energy-Momentum Tensor: The energy-momentum tensor, which is also

termed as stress-energy tensor is symbolized by Tij and it describes the pres-

sure, energy density and flux of momentum in a spacetime. The spacetime

9



is said to be vacumm if Tij = 0.

Einstein Tensor: Einstein tensor, which is denoted by Gij, is a symmetric

tensor of rank 2 which explains the spacetime curvature and it is defined as:

Gij = Rij −
1

2
Rgij. (2.1.14)

2.2 Tangent vector and Tangent spaces

A tangent vector w at a point p of manifold M is a mapping w : C∞(M) −→

R, which satisfies the following properties [3]:

i. w(k1 + k2) = w(k1) + w(k2), k1, k2 ∈ C∞(M)

ii. w(k1k2) = k2w(k1) + k1w(k2),

iii. w(c1k1) = c1w(k1), where c1 represents a constant.

A tangent space is the collection of all tangent vectors at a point p on M,

which is denoted as TpM and a tangent bundle is the union of all TpM at all

points of M and is given by:

TM =
⋃
pεM

TpM. (2.2.1)

2.3 Vector Field

A vector field ξ on a smooth manifold M is a map ξ : M −→ TM, which

associates a tangent vector ξp ∈ TpM to each point p of M. Moreover, the

vector field ξ is said to be global or local if it is defined on the whole M or

10



on some subset of M respectively [14].

Lie Brackets: Lie bracket is an operator, used to combine two vector fields

and get another vector field. For example, if ξi and ξj are two vector fields

on a manifold M, then their Lie bracket (also known as Lie commutator) is

defined as [15]:

[ξi, ξj](f) = ξi(ξj(f))− ξj(ξi(f)),

for all smooth functions f : M → R. The Lie bracket has the following

properties:

i. Bilinearity: If ξi, ξj, ξk, ξl are vector fields on M and α, β, γ, δ are

constants , then:

[αξi + βξj, γξk + δξl] = αγ[ξi, ξk] + αδ[ξi, ξl] + βγ[ξj, ξk] + βδ[ξj, ξl].

ii. Skew symmetry: If ξi and ξj are vector fields on a manifold M, then:

[ξi, ξj] = −[ξj, ξi].

iii. Jacobi identity: If ξi, ξj, ξk are vector fields on M, then:

[[ξi, ξj], ξk] + [[ξj, ξk], ξi] + [[ξk, ξi], ξj] = 0.

2.4 Lie Derivative

For a real-valued function F (t), its derivative at some point p ∈ R is defined

as:

F ′(p) = lim
t→0

1

t
(F (t+ p)− F (p)). (2.4.1)
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This definition cannot be generalized to define the derivative of a vector

field on a manifold M because if ξ is a vector field on M and p1 and p2 are

two nearby points on M, then the tangent vectors ξp1 and ξp2 belong to the

tangent spaces Tp1M and Tp2M, which are different vector spaces. Thus it

is not possible to subtract ξp1 and ξp2 . To overcome this difficulty, the local

flow φt of another vector field Y is used to transport the vector ξp2 to the

tangent space Tp1M at p1. This leads to the definition of Lie derivative of a

vector field.

For a smooth manifold M, Let T be a global smooth tensor field on M and

ξ be a global smooth vector field on M. For some appropriate t, Let φt be

the local diffeomorphisms of ξ with φ∗t as the corresponding pullback maps.

Then the following limit defines the Lie derivative of T along ξ at a point

p ∈M [14].

LξTp = lim
t→0

φ∗tTp − Tp
t

. (2.4.2)

It is to be mention here that LξT is a global smooth tensor field on M and its

type is same as that of T. If in some coordinate system, T a...bc...d and ξa are the

components of T and ξ respectively, then the components of LξT are given

by:

(LξT )a...bc...d = T a...bc...d,eξ
e − T e...bc...d ξ

a
,e... − T a...ec...d ξ

b
,e + T a...be...d ξ

e
,c... + T a...bc...e ξ

e
,d. (2.4.3)

The left hand side of above equation can also be written as LξT a...bc...d . Moreover,

Lie derivative has the following properties:

i. Lξg = ξ(g).

ii. Lξ1ξ2 = [ξ1, ξ2].
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iii. Lξ(T1

⊗
T2) = LξT1

⊗
T2 + T1

⊗
LξT2.

iv. La ξ1 +b ξ2 T = aLξ1T + bLξ2T.

v. L[ξ1,ξ2]T = Lξ1(Lξ2T )− Lξ2(Lξ1T ).

2.5 Spacetime Symmetries in General Rela-

tivity

The EFEs governe the theory of general relativity which are highly non-linear

differential equations. These equations are the core of general relativity but

due to their non-linear nature, finding the exact solutions for these equations

is a cumbersome work. Though the solution of EFEs is a difficult task but

is very important. To solve these equations, one needs to assume the pos-

session of certain symmetries in these equations. Symmetries are important

in finding not only the exact solutions of EFEs but in their classification as

well.

In 2004, Hall [14] defined spacetime symmetries as vector fields preserving

some features of a spacetime, like metric, geodesics, Ricci or Riemann cur-

vature tensor. Generally, such vector fields satisfy the following relation:

LξΨ = Λ, (2.5.1)

where L denotes the Lie derivative operator, ξ is the symmetry vector field

and Ψ is one of the quantities gmn, Tmn or Rmn and the tensor Λ has the

same index symmetries as Ψ.
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For Ψ = gmn and Λ = 2α(xa)gmn, Eq. (2.5.1) defines conformal vector fields

(CVFs) which reduce to homothetic vector fields (HVFs) if α is constant

and to Killing vector fields (KVFs) if α = 0. Similarly, if Ψ = Tmn and

Λ = 2α(xa)Tmn in Eq. (2.5.1), it gives rise to conformal symmetries of the

matter tensor, which reduce to matter and homothetic matter collineations

for α = 0 and α constant respectively [16]. Moreover, if we put Ψ = Rmn and

Λ = 2α(xa)Rmn in Eq. (2.5.1), the corresponding spacetime symmetries are

called conformal Ricci collineations, which specialize to Ricci collineations

when α = 0 and homothetic Ricci collineations when α is a constant.

Since the focus of this thesis is an Lie symmetries of the metric tensor, so

here we discuss these symmetries in detail.

2.5.1 Killing Vector Fields

A vector field ξ is said to be a KVF if the metric tensor gij is invariant under

the Lie operator, that is [14]:

Lξgij = gij,ξ
a + giaξ

a
,j + gjaξ

a
,i = 0. (2.5.2)

Wilhelm Killing in 1892 obtained the above equations and are known as

Killing equations, where the solutions of Killing equations are termed as

KVFs. For an m-dimensional manifold M , the maximum dimension of K(M)

is m(m+1)
2

, where K(M) denotes the collection of all KVFs on M which forms

a Lie algebra. For a spacetime, dim K(M) ≤ 10. Killing algebra attains the

maximum dimension if the spacetime is flat [3].

In the literature, KVFs are used not only in constructing the new exact so-

lutions of EFEs, but also in the classification of known solutions. Moreover,
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the physical importance of KVFs cannot be ignored as they give rise to the

conservation laws and their study is pivotal in understanding the physics of

the gravitational fields. For a more comprehensive study of KVFs and their

physical importance, we refer [5].

KVFs have been studied by different researchers. Petrov [5] was the first who

solved the Killing equations and found Killing vectors in four-dimensional

spaces. Bokhari and Qadir [17] studied Killing symmetries for static spheri-

cally symmetric spacetimes. Ali and his collaborators [18] explored KVFs of

Bianchi type V I◦ and V II◦ spacetimes. Ali et. al. [19] investigated KVFs

for non-static spherically symmetric spacetimes. Bokhari and his collabo-

rators [20] studied Killing symmetries in three- dimensional circularly sym-

metric static metric. Feroze et. al. [21] got complete classification of plane

symmetric Lorentzian manifolds after solving Killing equations for these sym-

metries. Khan et. al. [22] investigated Killing vector fields for LTB spacetime.

The classification of static cylindrically symmetric and non-static spherically

symmetric spacetimes via KVFs was given by Qadir and Ziad [23,24].

2.5.2 Homothetic Vector Fields

A vector filed ξ on a manifold M which preserves the metric of spacetime

up to a constant factor is known as a HVF. Such vector fields satisfy the

relation [14]:

Lξgij = gij,ξ
a + giaξ

a
,j + gjaξ

a
,i = 2αgij, (2.5.3)

where α is a constant. For an m-dimensional manifold M , the maximum

dimension of H(M) is m(m+1)
2

+ 1, where H(M) denotes the collection of all

HVFs on M which forms a finite-dimensional Lie algebra, called homothetic
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algebra. Particularly, for a spacetime manifold M , we have dim H(M) ≤ 11.

The maximum dimension of homothetic algebra H(M) is when the spacetime

is of constant curvature or it is flat.

As for as the Lie symmetries are concerned, they have useful applications in

both general relativity and mathematical physics. For example, HVFs are

important in the study of singularities in general relativity. Also, HVFs are

helpful in finding the new exact solutions of EFEs and in classifying them

by their conservation laws. Though few solutions of EFEs have been found

by assuming, in advance, that they possess a proper homothety, there are

many solutions of these equations which admit proper homothety whose ex-

istence accounts for the comparatively simple forms of their line elements

and consequently for their discovery [3]. Moreover, HVFs are regarded as

a kind self-similar solutions of EFEs, known as similarity of the first kind.

The study of self similar solutions of EFEs is important because of two main

reasons. First, the self-similarity reduces the mathematical complexity of

these equations, usually leading to the reduction of partial differential equa-

tions to ordinary differential equations, which are then comparatively easy to

study. Second, self-similar solutions play important role in describing asymp-

totic behaviors of more general non-self-similar solutions. Apart from this,

various astrophysical and cosmological applications of self similar solutions

(homotheties) can be found in literature [25].

Like KVFs, different researchers explored HVFs for different spacetimes.

Proper HVFs of Bianchi type I spacetime were explored by Shabbir and

Amur [26]. Ali et al. [27,28] studied proper HVFs of Bianchi type IV and V

spacetimes. Ahmad and Ziad [29] investigated the HVFs of spherically sym-
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metric spacetimes. The contribution of Shabir and Ramzan [30] was their

exploration of HVFs of static cylindrically symmetric spacetimes. Hall et

al. [31] explored that the maximum dimension of homothetic algebra is 11

in four- dimensional spacetime. Shabbir and Fouzia [32] studied Kantowski-

Sachs and Bianchi type III spacetimes and concluded that these spacetimes

admit five independent HVFs. Qadir et al. [33] studied HVFs of cylindri-

cally symmetric static manifolds and their global extension. Ali et al. [34]

investigated proper HVFs for circularly symmetric static spacetimes on a

three-dimensional Lorentzian manifold. Ziad [35] studied the plane symmet-

ric spacetimes’ classification via their HVFs.

2.5.3 Conformal Killing Vector Fields

A vector field ξ is said to be a CVF if it satisfies the following relation [14]:

Lξgij = 2αgij, (2.5.4)

where α : M → R is some smooth function, known as conformal function of

ξ. Some particular forms of CVFs are HVFs and KVFs for which α = const.

and α = 0, respectively. The CVFs other than the homothetic and Killing

vector fields are known as proper CVFs. Moreover, if α;ij = 0 then a CVF

ξ is called a special CVF. One drawback of CVF is that they do not keep

the Einstein’s tensor invariant as homothetic and Killing vector fields do,

but they preserves the casual character of the spacetime manifold [36]. If

CVF(M) denotes the set consisting all CVFs on M , then CVF(M) gives the

structure of a finite-dimensional Lie algebra of smooth vector fields, called

the conformal algebra, such that dim C(M) ≤ 15. The conformal algebra
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attains its maximum dimension if and only if the spacetime is conformally

flat; that is, its Weyl tensor vanishes. For non-conformally flat spacetimes,

dim C(M) ≤ 7.

Earlier the conformal symmetry was considered just a mathematical tool for

integrating EFEs but its physical usage was ignored in the study of cos-

mology and astrophysics. Recently, some work has been done that shows the

usage of conformal symmetry in the study of cosmology and astrophysics [37].

Chrobok et al. [38], made an assumption for temperature vector to be CKV

in the theory of irreversible and he got satisfying results thermodynamical

processes and he got interesting results. Bohmer et al. [39] proved that the

conformal factor for conformally symmetric spacetimes with moveable vector

fields can be explained in terms of tangential velocity of the test particles

that move in circular orbits. Its according to an assumption of spherically

symmetry that admits one parameter group of conformal vector. Mak et

al. [40] discovered a correct solution that describes and explains the inner

part of charged strange quark star. Moreover, Usmani and other scientists

suggested an astrophysical model named as gravastar, that admits CKV [41].

Arising of KVFs, usually ensures the conservation laws in spacetimes. How-

ever, in some circumstances, KVFs almost fail to find the conservation laws

and in these situations, conformal transformations are used to find conserva-

tion laws in place of KVFs. For instance, in Friedman metric case, translation

invariance is not present to provide the energy with conservation law, instead

conformal analogue of energy conservation law is ensured by conformal time-

translation invariance. Conformal motion symmetry is also a source of study

of kinematic variables including but not limited to expansion, rotation and
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shear in spacetimes [42–45].

Shortly, conformal symmetry has many usages which are helpful in under-

standing physical and geometrical properties of spacetimes physics.

Like KVFs and HVFs, different researchers explored conformal symmetry for

some spacetimes. CVFs are explored by Maartens et al. [46] for Friedmann-

Robertson-Walker spacetimes. Hall and Steele [47] pointed out that if a

spacetime has zero curvature (flat), then conformal symmetries will be 15

while for non-conformally flat spacetimes, the dimension of conformal al-

gebra will be less than or equal to 7. Khan et al. [48, 49] investigated

the CVFs on a four-dimensional Lorentzian manifolds of plane symmetric

and locally rotationally symmetric (LRS) Bianchi type V spacetimes. Hall

and Capocci [50] worked on the maximum dimension of conformal alge-

bra for three-dimensional spacetimes and found that dim C(M) ≤ 14 for

non-conformally flat three-dimensional spacetime. Saifullah and Yazdan [51]

studied conformal symmetries of static plane symmetric spacetimes and con-

cluded that these spacetimes do not admit any proper CVFs. Later on,

Hussain et al. [52] investigated that non-conformally flat static plane sym-

metric spacetime metrics have proper CVF. Coley and Tupper [53,54] studied

proper inheriting CKVF of spherically symmetric spacetimes in both perfect

and anisotropic fluids. Moreover, Coley et al. [55] studied perfect fluid, plane

symmetric spacetimes admitting a proper inheriting CKVF. For the analysis

of conformal motions of some other spacetimes, we refer [56–61].
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2.6 Noether Symmetries

Apart from the conventional symmetries, there exist some other symmetries

which are associated with differential equations (DEs). These symmetries are

known as Noether symmetries, whose idea was given by Emmy Noether in

1918 [10]. Such symmetries admit conservation laws and describe the physi-

cal features of DEs in terms of these conservation laws. To study in detail the

basic theory along with the advanced concepts of Noether symmetries and

conservation laws of DEs, one can refer to the references [7, 10,15,62–70].

Noether proved a theorem, on the basis of Euler-Lagrangian (geodesic) sys-

tem, which states that there is always a conservation law for every continuous

symmetry admitted by the Lagrangian of a physical system. Consequently,

this theorem gives conservation of energy and linear and angular momenta of

a physical system if it is invariant under time translation and spacial trans-

lations and rotations. Noether’s theorem helps to find out the conserved

quantity for a continuous transformation of a symmetry that makes the ac-

tion constant.

A vector field ξ of the form ξ = η ∂
∂s

+ ξa ∂
∂xa

, defines a Noether symmetry

which leaves the Lagrangian L of a dynamical system invariant and satisfies

the following condition [15]:

ξ[1]L+ LD(η) = DF. (2.6.1)

In the above expression, ξ[1] is the first prolongation of ξ which is defined

as ξ[1] = ξ + ξis
∂

∂ẋi
, where ξis = Dξi − ẋiDη and D = ∂

∂s
+ ẋi ∂

∂xi
. More-

over, the functions η, ξi and F (gauge function) all depend on five variables

(s, x0, x1, x2, x3) and xi = (x0, x1, x2, x3) is dependent on the affine parameter
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s such that ẋi = ∂xi

∂s
.

Moreover, there exist some well known relations of Noether symmetries with

KVFs and HVFs in such a way that every KVF is a Noether symmetry but

the converse is not true. If ξ is a HVF if and only if ξ + 2cs∂s is a Noether

symmetry, where c represents the homothety constant. A Noether symmetry

which is not a KVF and does not correspond to a HVF is known as a proper

Noether symmetry. The most important feature of the Noether symmetries

is that each Noether symmetry vector field corresponds to a conservation

law and using the Noether’s theorem, such conservation law is given by the

expression [10]:

I = ηL+
(
ξi − ẋiη

) ∂L
∂ẋi
− F. (2.6.2)

As the algebra of Noether symmetries contains the set of Killing and homo-

thetic vector fields, we always expect to get some conservation laws in space-

times with the help of Noether symmetries which are not given by Killing

and homothetic vector fields.

The Noether symmetries attain the maximum dimension of Noether algebra

that is 17, if the spacetime is flat.

The importance of Noether’s work is not limited to its feature that for every

symmetry there is a conservation law, but is applicable in different fields such

as classical and quantum mechanics, electromagnetism, continuous group,

particle physics and general relativity etc.

In literature, Noether symmetries are explored for some well known space-

times. Hickman and Yazdan [71] explored Noether symmetries of Bianchi

type II spacetimes. Ali et al. [72–74] investigated Noether symmetries of

static spherical, cylindrical and plane symmetric spacetimes. A detailed
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study of Bianchi type V spacetimes via Noether symmetries was given in [75].

Bokhari and Kara [76] gave a complete classification of conformally flat Fried-

mann metric via Noether symmetries and their results were compared with

KVFs. They pointed out that this type of metric admits additional conser-

vation laws not given by KVFs. A similar comparison of Noether symmetries

and KVFs was given by Bokhari et al. [77] and shown that the Noether sym-

metries obtained by considering the Larangians give additional symmetries

which are not given by the Killing vectors. Camci [78] gave a classification of

Gödel type spacetimes according to Noether symmetries of their geodesic La-

grangian. Camci et al. [79] explored Noether symmetries of the Lagrangian

for some classes of pp-wave spacetimes. A relationship between Lie symme-

tries of Klein-Gordon equation and conformal Killing vectors of the under-

lying geometry was established by Paliathanasis et al. [80], where they also

stated that the resulting Lie symmetries of the conformal algebra are also

Noether symmetries. Usamah et al. [81] explored the Noether symmetries

of non-static plane symmetric spacetimes. Jamil and his collaborators [82]

gave the geometrical and physical interpretation of the conserved quanti-

ties corresponding to each Noether symmetry of the geodetic Lagrangian

of plane symmetric spacetimes. Hussain et al. [83, 84] investigated Noether

symmetries for the Lagrangians of Kantowski-Sachs and non-static spheri-

cally symmetric spacetimes. A complete classification of the LRS Bianchi

type I and V spacetimes via Noether symmetries was given by Hussain and

Akhtar [85,86].

Moreover, the role of Noether symmetry approach is also noticeable in the

classification of exact solutions of EFEs, for details we refer [87–96].
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2.7 Energy Conditions

All the states of matter possess certain properties which are described by

the energy conditions and are strong enough to rule out many un-physical

solutions of the EFEs. The energy conditions have different forms i.e. null,

weak, dominant and strong energy conditions which are actually restrictions

on the eigenvalues and eigenvectors of the energy-momentum tensor. For a

known spacetime metric, one can determine the source of matter through

energy-momentum tensor, which in turn can be used to find bounds for

different energy conditions. Consequently, the physical importance of the

models can be determined through these energy conditions. The inequalities

for different energy conditions for an anisotropic fluid matter are as follows

[97]:

Null energy condition (NEC) : ρ+ p|| ≥ 0, ρ+ p⊥ ≥ 0,

Weak energy condition (WEC) : ρ ≥ 0, ρ+ p|| ≥ 0, ρ+ p⊥ ≥ 0,

Strong energy condition (SEC) : ρ+ p|| ≥ 0, ρ+ p⊥ ≥ 0,

ρ+ p|| + 2p⊥ ≥ 0,

Dominant energy condition (DEC) : ρ ≥ 0, ρ ≥ |p|||, ρ ≥ |p⊥|,

(2.7.1)

where ρ denotes the energy density and p⊥ and p|| respectively represent the

perpendicular and parallel pressures to spacelike unit vector na.

Moreover, if p|| = p⊥, then the above expressions give the bounds for energy

conditions for a perfect fluid.
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2.8 Rif Algorithm

In different fields of science and technology, DEs play an important role.

Mathematically, DEs are studied from different perspectives, but the main

focus always remains on their solutions. Moreover, DEs may be linear or

non-linear. It requires less effort to get the solution of DEs for linear prob-

lems as compared to non-linear problems. As far as non-linear problems

are concerned, the construction of their solution requires some general ap-

proach. The most general approach is to study their Lie group of symmetries

for constructing such solutions [98]. Sophus Lie was the first who started

the symmetry analysis of DEs in 1870 and Lie symmetry methods become

major tools for finding solutions of ordinary and partial differential equa-

tions [15, 99,100].

The involvement of systematic algebric manipulation and tedious calcula-

tion in symmetry analysis makes method of symmetry analysis relevant to

computer algebra. Moreover, for symmetry analysis, a number of computer

algebra packages have been developed which give a basis to analyze and solve

DEs [101–103].

Computer algebra usage for symmetry analysis started in 1980 which devel-

oped some new packages used for symmetry analysis and finding the sym-

metries of DEs. These symmetry analysis packages were used for three pur-

poses: (i) to find the determining equations of DEs, (ii) to reduce these

determining equations, and (iii) to solve these reduced determining equa-

tions to get symmetries. The purpose (ii) of symmetry analysis packages,was

to to simplify the determining equations and getting much chances for their

solutions. For this purpose, differential reduction and completion (DRC)
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methods [104–106] were included in symmetry analysis. The DRC methods

help to reduce DEs into a simple form, called reduced form, having some

information about the solutions of DEs. Several kinds of DRC methods in-

cluding Rosenfeld-Gröbner algorithm [104], differential Gröbner basis [105]

and Rif algorithm [106] are implemented using computer algebra systems

such as Maple. These packages are widely used by the users. For example,

to solve DEs, the Maple package ”rifsimp” has achieved the status of front

end procedure, which itself uses Rif algorithm [107].

Rif algorithm is one of the DRC algorithms which transforms the analytic

systems of non-linear PDEs into a reduced involutive form, also referred to

as Rif form [106]. The Rif algorithm has some interesting features. To be-

gin with, the algorithm ends in a finite number of steps [108]. Second, the

process consists only of differentiation and elimination with no integration.

Furthermore, the Rif form which is the outcome of the Rif process, incorpo-

rates geometric properties of PDE systems. Despite the fact that Rif form is

coordinate-dependent, it can easily be converted into a system with involu-

tive geometric properties.

The Rif algorithm was first developed by Reid et al. [106] in 1996. To deal

with linear systems, the standard form of Rif algorithm is used, where as

for non-linear cases, further extensions of Rif algorithm are used. Reid et

al. implemented the Rif algorithm as a Maple package, known as ”rifsimp”

and later on it modified by Wittkof [109]. The advantages of this algorithm

include reducing the complexity of the system and extracting the informa-

tion from the system, such as the number of its solutions without solving it.

The output of the Rif algorithm can be viewed graphically by a command
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’caseplot’. Such a plot is known as classification tree or Rif tree. The nodes

of the Rif tree denote pivots which are actually the coefficients of the highest

order derivatives involved in the system of equations.

While developing the Rif algorithm to get a workable Rif tree, some impor-

tant operational issues need to be addressed. The most important issue is the

variable ordering. Different ordering of the variables produces different Rif

trees and no theory is available that assists in variable ordering and getting

a simplified Rif tree. Trial and error is the only option to get a workable Rif

tree.

2.9 Dissertation’s Outline

In this dissertation, the main focus is on finding the Lie and Noether sym-

metries of different spacetimes by using Rif tree approach and to compare

our results with those of direct integrating technique. Finding the bounds

for different energy conditions for the obtained metrics during classification

is also the focus of this dissertation. The dissertation is designed as follows:

1. In chapter 1, a brief discussion of Einstein’s theory of relativity is given.

2. In chapter 2, the basics of general relativity, spacetime and Noether

symmetries and their related literature and an overview of Rif algorithm

are given.

3. The complete classification of Kantowski-Sachs spacetimes, static plane

symmetric and LRS Bianchi type I spacetimes with respect to their Lie

and Noether symmetries are given in chapters 3, 4 and 5 respectively.
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The bounds for different energy conditions for the obtained metrics and

the comparison of our findings with the conventional method are also

given in these chapters.

3. The last chapter concludes the whole dissertation.
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Chapter 3

Lie and Noether Symmetries of

Kantowski-Sachs Spacetimes

In this chapter, we have investigated homothetic, conformal and Noether

symmetries of Kantowski-Sachs spacetimes. Instead of directly integrating

the determining equations of each symmetry, first we have developed an algo-

rithm in Maple, which reduces the system of these equations to the reduced

involutive form (Rif) and produces a tree, known as Rif tree. The branches

of this Rif tree yield the potential metrics that may possess the symmetries

other than the minimum ones. The set of determining equations is integrated

for each branch of the Rif tree to obtain the final form of the homothetic,

conformal and Noether symmetries admitted by the corresponding metrics.
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3.1 Homothetic Symmetries

In this section, we calculate the homothetic symmetries of Kantowski-Sachs

spacetimes. This work has been published in an ISI journal [110]. The

Kantowski-Sachs cosmological model is given by [111]:

ds2 = −dt2 +G2 dr2 +H2[ dθ2 + sin2 θ dφ2], (3.1.1)

where G = G(t) 6= 0 and H = H(t) 6= 0. The minimum KVFs for this metric

are:

K4 =

{
∂

∂r
,
∂

∂φ
, sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
,− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

}
.

Without mentioning any particular source, the non-zero components of en-

ergymomentum tensor for the metric (3.1.1) are:

T00 = 2
G′H ′

GH
+
H ′2

H2
+

1

H2
,

T11 = −G2

(
2
H ′′

H
+
H ′2

H2
+

1

H2

)
,

T22 = −H2

(
G′′

G
+
H ′′

H
+
G′H ′

GH

)
,

T33 = sin2 θT22, (3.1.2)

which take specific form for different sources of matter. For example, if the

source is an anisotropic fluid, then Tab = (ρ+p⊥)uaub+(p||−p⊥)nanb+p⊥gab,

where ρ denotes the energy density, ua and na respectively are the four-

velocity and spacelike unit vector and p⊥ and p|| respectively represent the

perpendicular and parallel pressures to na. For this particular source, the

components of energy-momentum tensor (3.1.2) become:

T00 = ρ, T11 = G2p||, T22 = H2p⊥, T33 = sin2 θT22. (3.1.3)
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Moreover, if p|| = p⊥, then these expressions give a perfect fluid matter.

Comparing (3.1.2) and (3.1.3), we have:

ρ =
2G′H ′

GH
+
H ′2

H2
+

1

H2
,

p|| = −
(

2H ′′

H
+
H ′2

H2
+

1

H2

)
,

p⊥ = −
(
G′′

G
+
H ′′

H
+
G′H ′

GH

)
. (3.1.4)

Thus, for any Kantowski-Sachs metric with an anisotropic fluid source, one

can find the bounds for null, strong, weak and dominant energy conditions by

using the above values in the inequalities given in (2.7.1). Using the metric

(3.1.1) in Eq. (2.5.3), we obtain:

G0
,t = α, (3.1.5)

G0
,r −G2 ξ1

,t = 0, (3.1.6)

G0
,θ −H2 ξ2

,t = 0, (3.1.7)

G0
,φ −H2 sin2 θξ3

,t = 0, (3.1.8)

G′ ξ0 +G ξ1
,r = αG, (3.1.9)

G2 ξ1
,θ +H2 ξ2

,r = 0, (3.1.10)

G2 ξ1
,φ +H2 sin2 θξ3

,r = 0, (3.1.11)

H ′ ξ0 +H ξ2
,θ = αH, (3.1.12)

ξ2
,φ + sin2 θξ3

,θ = 0, (3.1.13)

H ′ ξ0 +H cot θξ2 +H ξ3
,φ = αH. (3.1.14)

where α is a constant. To find the HVFs of Kantowski-Sachs spacetimes,

we need to solve the above system of equations. Certainly, if one tries to
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integrate the system of these equations directly, many cases will arise de-

pending upon the nature of the metric functions G and H. In literature,

such systems for finding the HVFs for different spacetimes are usually solved

by direct integration technique [26–30]. However, here we develop a Maple

algorithm which uses the Exterior package and transforms the set of these

equations to the reduced involutive form. The details about the procedure

of transforming a system of equations to the reduced involutive form is given

in Ref. [106]. As a result of the developed Maple Rif algorithm, we have

obtained the Rif tree given in Fig. 3.1 and the corresponding pivots.

p1 = H ′,

p2 = GH ′ +G′H,

p3 = GG′′′ −G′G′′,

p4 = G′′H −GH ′′,

p5 = GH ′ −G′H,

p6 = GH ′′ −G′H ′,

p7 = GG′′ −G′2,

p8 = G2H ′′ −G′2H,

p9 = G′,

p10 = HH ′′ −H ′2,

p11 = H ′H ′′ −HH ′′′,

p12 = HH ′′ −H ′2 − 1,

p13 = G′H ′ −G′′H,
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p14 = G′H ′H −GH ′2 −G.

Figure 3.1: Rif Tree for HVFs

The branches of the Rif tree impose restrictions on the pivots, represented

by the signs ”=” and ”<>”, which, respectively signify whether the corre-

sponding pivot is zero or non-zero.

As explained in chapter 2, variable ordering is most important in obtaining

the simplified Rif tree and it can only be obtained by trial and error. For

this particular problem we have deduced that the ordering ξ0 > ξ1 > ξ2 > ξ3
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for dependent variables and t > r > θ > φ for independent variables gives

the simplified Rif tree. By these orderings, we mean that the rank derivative

of ξ0 is considered higher than equivalent derivative of ξ1 and so on. Simi-

larly, the derivative with respect to t is ranked higher than a derivative with

respect to r and so on.

Another issue that we faced during the development of the Rif algorithm is

that some branches in the Rif tree give expressions like H2 + 1 = 0. Such

expressions do not give any real value of the metric function H, hence the

corresponding metric is not meaningful for our study. Such situations arise

because the Rif algorithm works in the field of complex numbers. To exclude

such cases, we have added the constraints like H2 + 1 6= 0 in the algorithm.

For a complete classification, we have solved Eqs. (3.1.5)- (3.1.14) for the

constraints of all branches of the Rif tree. The branches other than those

labeled by 1, 6, 11, 14, 15, 16, 19 and 20 yield the minimum four KVFs,

which are already given in the set K4. Thus, we exclude these cases from our

classification, while the results of the remaining branches are summarized in

the coming sections.

3.1.1 Five HVFs

The branches labeled by 1, 6, 14 and 16 give 5-dimensional algebra of HVFs.

In each case, we have obtained one proper HVF and four KVFs, same as K4.

In Table 3.1, we present metrics of these four cases along with their proper

HVFs.

The metric 5a represents an anisotropic fluid with ρ = 3α2−2αc2+1
(αt+c1)2

, p|| =
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Table 3.1: Metrics admitting five HVFs

No. Metric Vector Field Components Proper HVF

5a G = (αt + c1)
1− c2

α , ξ0 = αt + c1, ξ(5) = t ∂
∂t
.

(Branch 1) H = αt + c1, ξ1 = c2r + c3,

where c2 6= α 6= 0. ξ2 = c4 cosφ + c5 sinφ,

ξ3 = cot θ(−c4 sinφ + c5 cosφ) + c6.

5b G = H = α1t + α2, ξ0 = α
α1

(α1t + α2), ξ(5) = G
G′

∂
∂t
.

(Branch 6) where α1 6= 0. ξ1 = c1,

ξ2, ξ3 are same as for the metric 5a.

5c G = c1 6= 0, ξ0 = α
c2

(c2t + c3), ξ(5) = H
H′

∂
∂t

(Branch 14) H = c2t + c3, ξ1 = αr + c4, +r ∂
∂r
.

where c2 6= 0. ξ2, ξ3 are same as for the metric 5a.

5d H = c2(αt + c3), ξ0 = αt + c3, ξ(5) = t ∂
∂t

(Branch 16) G =
c1
H
, ξ1 = 2αr + c4, +2r ∂

∂r
.

where c1 6= 0, c2 6= 0. ξ2, ξ3 are same as for the metric 5a,

where we have chosen c1 = c2 = 1.

− 1+α2

(αt+c1)2
and p⊥ = − (α−c2)2

(αt+c1)2
. For this model to be physically realistic, we

must have ρ ≥ 0, that is 3α2 − 2αc2 + 1 ≥ 0. Moreover, the DEC is satisfied

if 3α2 − 2αc2 + 1 ≥ 0, α > c2, 2α2 − αc2 + 1 ≥ 0, 2α2 − c2
2 + 1 ≥ 0 and

(2α − c2)2 + 1 ≥ 0. Similarly, the SEC and NEC are satisfied if α > c2 and

2α2−c2
2 +1 ≥ 0, while for the WEC we must have 3α2−2αc2 +1 ≥ 0, α > c2

and 2α2 − c2
2 + 1 ≥ 0.

The metric 5b represents an anisotropic fluid such that ρ =
3α2

1+1

(α1t+α2)2
,

p|| = − α2
1+1

(α1t+α2)2
and p⊥ = − α2

1

(α1t+α2)2
. Here, the SEC and NEC are satisfied

if 2α2
1 + 1 ≥ 0, while the WEC holds if 3α2

1 + 1 ≥ 0 and 2α2
1 + 1 ≥ 0. Finally,

the DEC requires 3α2
1 + 1 ≥ 0, 2α2

1 + 1 ≥ 0 and 4α2
1 + 1 ≥ 0.
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The metric 5c represents an anisotropic fluid with ρ =
1+c22

(c2t+c3)2
, p|| =

− 1+c22
(c2t+c3)2

and p⊥ = 0. All the energy conditions are identically satisfied here.

Finally, the metric 5d, being an anisotropic fluid, is given by ρ = 1−α2

(αt+c3)2
,

p|| = − 1+α2

(αt+c3)2
and p⊥ = − α2

(α1t+c3)2
. This model is physically realistic if

the homothety constant belongs to the interval [−1, 1]. For non-zero α, the

strong, weak, null and dominant energy conditions are failed for this model.

The metric 5a obtained here is same as the metric (17) of Ref. [32] ob-

tained by using direct integration technique with α = C. The metric 5b can

be transformed to the metric (21) of Ref [32]. by taking α1 = C and α2 = 0.

One can see that the metric 5c is the generalized form of the metric (19) of

Ref. [32] and it can be transformed to the mentioned metric of the Ref. [32]

by taking α = C and c3 = 0. However, the metric 5d is not listed in Ref. [32].

3.1.2 Six KVFs

There arise two cases, labeled by branches 19 and 20 in the Rif tree, where

we have obtained 6-dimensional algebra of KVFs with no proper homothety.

The set of these six KVFs contains the minimal set, given in the set K4,

while the extra two symmetries for both the metrics are given in Table 3.2.

Each of these metrics is an anisotropic fluid. For the metric 6a, we obtain

ρ = 1
γ2
, p|| = − 1

γ2
and p⊥ = −k. The energy density is clearly positive, so

the model is physically realistic. Here, the SEC is failed, while the remaining

energy conditions are satisfied provided that kγ2 ≤ 1.

Similarly, the model 6b gives ρ = −p|| = 1
c23

and p⊥ = 0. The energy

density is clearly positive and all the energy conditions are trivially satisfied
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for this model.

Finally, for the metric 6c, we have ρ = 1
γ2
, p|| = − 1

γ2
and p⊥ = 0. The

model is physically realistic with positive energy density and it identically

satisfies all the energy conditions.

3.1.3 Seven KVFs

The metric given by branch 11 admits seven KVFs with no proper homothety.

Four KVFs are same as already given in the set K4, while the extra three

KVFs are presented in Table 3.3.

Table 3.3: Metric admitting seven KVFs

Metric Vector Field Components Additional KVFs

G = c1, ξ0 = sin θ(c4 sinφ− c5 cosφ) ξ(5) = csc θH
′

H
cosφ ∂

∂φ
+ H′

H
cos θ sinφ ∂

∂θ

H = c2e
√
kt + c3e−

√
kt, −c6 cos θ, + sin θ sinφ ∂

∂t

where c1 6= 0, k > 0 ξ1 = c7, ξ(6) = − csc θH
′

H
sinφ ∂

∂φ
+ H′

H
cos θ cosφ ∂

∂θ

and 4kc2c3 = 1. ξ2 = H′

H
cos θ(c4 sinφ− c5 cosφ) + sin θ cosφ ∂

∂t

+c6
H′

H
sin θ + c8 cosφ+ c9 sinφ, ξ(7) = −H

′

H
sin θ ∂

∂θ
+ cos θ ∂

∂t
.

ξ3 = H
H′ csc θ(c4 cosφ+ c5 sinφ)

+ cot θ(−c8 sinφ+ c9 cosφ) + c10.

The metric of this case represents an anisotropic fluid such that:

ρ =
k(c2

2e
2
√
kt + c2

3e
−2
√
kt − 2c2c3) + 1

(c2e2
√
kt + c3e−2

√
kt)2

,

p|| = −3kc2
2e

2
√
kt + 3kc2

3e
−2
√
kt + 2kc2c3 + 1

(c2e2
√
kt + c3e−2

√
kt)2

,

p⊥ = −k.
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One may use these quantities in the inequalities given in (2.7.1) to obtain

the bounds for energy conditions.

3.1.4 Ten KVFs

Solving the set of homothetic equations for the constraints of branch 15, we

obtain a Kantowski-Sachs metric admitting ten KVFs, out of which four are

same as given in the set K4, while the extra six KVFs are listed in Table 3.4.

The metric of this case gives an anisotropic fluid model with ρ = −p|| =

1+G2+2H2

H2 and p⊥ = −3. Here, the energy density is clearly positive, the SEC

is violated and all other energy conditions are satisfied.

3.2 Conformal Symmetries

In this section, we explore the conformal symmetries of Kantowski-Sachs

spacetimes using Rif tree approach. A research paper has been published on

the basis of this work [112].

For conformal symmetry, we obtain the same set of partial differential equa-

tions as given in Eqs. (3.1.5)-(3.1.14) by using the metric (3.1.1) in Eq.

(2.5.3) with α = α(t, r, θ, φ). The non-zero components of the Weyl tensor

for the metric given in (3.1.1) are:

C1
010 =

Γ

3GH2
, C0

202 =
Γ

6G
,

C0
303 =

Γ sin2 θ

6G
, C1

212 = C0
202,

C1
313 = C0

303, C2
323 = −2C0

303, (3.2.1)
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where Γ = GHH ′′−GH ′2−G′′H2 +G′HH ′−G. Thus the Kantwoski-Sachs

spacetime is conformally flat if Γ = 0.

To explore all possible cases where the Kantowski-Sachs spacetimes may

posses CVFs, we follow the same approach as we have used in case of finding

HVFs, where the corresponding Rif tree and pivots are obtained as follows:

Figure 3.2: Rif Tree for CVFs
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p1 = G′,

p2 = G′′′G−G′G′′,

p3 = G′′H −GH ′′,

p4 = GH ′ −G′H,

p5 = HH ′′′ −H ′H ′′,

p6 = H ′,

p7 = GG′′ −G′2,

p8 = HH ′′ −H ′2,

p9 = GH ′′ −G′H ′,

p10 = G′H ′H −GH ′2 −G,

p11 = HH ′′ −H ′2 − 1.

The Rif algorithm for CVFs is developed in the same way as that for HVFs

with the difference that here we have used the ordering α > ξ0 > ξ1 > ξ2 > ξ3

for dependent variables and t > r > θ > φ for independent variables. Note

that the Weyl tensor of the Kantowski-Sachs metric vanishes if and only if

Γ = 0. In such a case, the conformal algebra is clearly 15-dimensional. Ex-

amples of such cases are labeled by the branches 14 and 17 of the Rif tree.

Moreover, the constraints of some other branches of the Rif tree give rise to

two sub-cases, depending upon whether the spacetime is conformally flat or

not. Due to the fact that each conformally flat case gives 15 CVFs, we have

only considered the cases where Γ 6= 0. Furthermore, the solution of con-

formal symmetry equations for some branches of the Rif tree give minimum

41



four KVFs. Such cases are labeled in the Rif tree by 2, 5, 6, 7, 9, 11 and

15. The cases where the Kantowski-Sachs metric possesses proper CVFs or

KVFs other than the minimum ones are discussed in the forthcoming sec-

tions. Here, the comparison of our findings with those of Ref. [113] is also

given which to show that this new approach gives more general metrics as

compared to those obtained by direct integration technique. Moreover, this

Rif approach also provides some new metrics which remained undetermined

by direct integration technique.

3.2.1 Six CVFs

Six cases arise where the dimension of conformal algebra is 6. These cases

are labeled by branches 1, 3, 4, 10, 12 and 16 in the Rif tree.

In branch 1, we have p1 6= 0, p2 6= 0 and p3 6= 0. Thus, the metric functions

are restricted to satisfy the conditions G′ 6= 0, GG′′′−G′G′′ 6= 0 and GH ′′−

HG′′ 6= 0. Under these restrictions, the solution of Eqs. (3.1.5)-(3.1.14) gives:

ξ0 = H

(
c1e
√
λr + c2e

−
√
λr

)
,

ξ1 =
√
λ

∫
H

G2
dt

(
c1e
√
λr − c2e

−
√
λr

)
+ c3,

ξ2, ξ3 are same as for the metric 5a in the section of HVF,

α = H ′
(
c1e
√
λr + c2e

−
√
λr

)
, (3.2.2)

where λ is a positive constant satisfying the relation λ
∫

H
G2dt = G

(
H
G

)′
.

Here, the constants c1 and c2 correspond to two proper CVFs, which can

be expressed as ξ(5) = e
√
λr(H ∂

∂t
+
√
λ
∫

H
G2dt

∂
∂r

) and ξ(6) = e−
√
λr(H ∂

∂t
−

√
λ
∫

H
G2dt

∂
∂r

). The remaining four constants give the minimum four KVFs,
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as given in set K4.

The branch 4 is a special case of branch 1 that gives the same six CVFs

except that the metric function G satisfies the equation GG′′′ − G′G′′ = 0.

This mean that G is either a linear function or G = βet + γe−t, where β and

γ are constants which are not zero simultaneously.

In branch 3, we have p1 6= 0, p2 6= 0 and p3 = p4 = 0. The conditions

p3 = p4 = 0 relate the metric functions as H = βG, where β is a non-zero

constant, and the solution of Eqs. (3.1.5)-(3.1.14) yield:

ξ0 = βG(c1r + c2),

ξ1 = βc1

∫
1

G
dt+ c3,

ξ2, ξ3 are same as for the metric 5a in the section of HVF,

α = βG′(c1r + c2). (3.2.3)

We can express the two proper CVFs as ξ(5) = rG ∂
∂t

+
∫

1
G
dt ∂

∂r
and ξ(6) = G ∂

∂t
.

The remaining four CVFs are same as the minimum KVFs given in set K4.

The metric of this case can be transformed to the metric (33) of Ref. [113]

by taking β = 1.

The branch 10 is a special case of branch 3, where the metric functions take

the values G = γ1t+ γ2 or G = γ1e
t + γ2e

−t and H = βG, where β, γ1 and γ2

are non-zero constants. The CVFs in this case are same as those of branch

3.

In one case of branch 10, when G = γ1t + γ2, we have ρ =
1+3γ21β

2

β2(γ1t+γ2)2
, p|| =

− 1+γ21β
2

β2(γ1t+γ2)2
and p⊥ = − γ21

β2(γ1t+γ2)2
. The metric is physically realistic with

positive energy density ρ. Moreover, the quantities ρ, p|| and p⊥ identically

satisfy all the energy conditions.
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In another sub-case, that is when G = γ1e
t + γ2e

−t, the energy density

is ρ = 1+3β2(γ1et−γ2e−t)2
β2(γ1et+γ2e−t)2

, which is clearly positive. Moreover, the parallel and

perpendicular pressures are given by p|| = −3β2γ21e
2t+3β2γ22e

−2t+2β2γ1γ2+1

β2(γ1et+γ2e−t)2
and

p⊥ = −3γ21e
2t+3γ22e

−2t+2γ1γ2
β2(γ1et+γ2e−t)2

. Here, the SEC fails while the DEC, NEC and

WEC are satisfied if γ1γ2 < 0 and 8β2γ1γ2 ≤ 1.

The constraints of branch 12 are p2 = p3 = p5 = p9 = 0, p1 6= 0, p6 6= 0,

and p10 6= 0. Simplifying these constraints, we get G = γ1e
t + γ2e

−t and

H = γ3e
t+γ4e

−t, where the constants γis satisfy the relation γ1γ4 +γ2γ3 = 0.

Moreover, GH ′ − HG′ = 4γ2γ3 = λ (say) and because p9 = 0, the function

H
G′

is constant, say H
G′

= β. Under these restrictions, we obtain the following

solution of Eqs. (3.1.5)-(3.1.14):

ξ0 = H

(
c1 cos

√
λ

β
r + c2 sin

√
λ

β
r

)
,

ξ1 =

√
λβ

G

(
c1 sin

√
λ

β
r − c2 cos

√
λ

β
r

)
+ c3,

ξ2, ξ3 are same as for the metric 5a in the section of HVF,

α = H ′
(
c1 cos

√
λ

β
r + c2 sin

√
λ

β
r

)
. (3.2.4)

Here, we have two CVFs, ξ(5) = H cos
√

λ
β
r ∂
∂t

+
√
λβ
G

sin
√

λ
β
r ∂
∂r

and ξ(6) =

H sin
√

λ
β
r ∂
∂t
−
√
λβ
G

cos
√

λ
β
r ∂
∂r

along with the four KVFs, same as given in

the set K4.

The metric of this case represents an anisotropic fluid with p|| = −ρ, p⊥ = −3

and ρ =
1+3β2γ21e

2t+3β2γ22e
−2t−2β2γ1γ2

β2(γ1et+γ2e−t)2
. Here, the energy is positive if γ1γ2 ≤ 0.

In branch 16, we have p1 = p5 = 0, p6 6= 0 and p11 6= 0. Simplifying these

conditions, we get G = β 6= 0 and the value of H depends upon the condition

whether H ′′ 6= 0 or H ′′ = 0. When H ′′ 6= 0, we get H = γ1e
t + γ2e

−t, where
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4γ1γ2 + 1 6= 0. When H ′′ = 0, then H = γ1t + γ2, where γ1 6= 0. In both

cases we have obtained six CVFs in which four are the minimum KVFs, same

as given in the set K4, while the remaining two are proper CVFs which are

listed in Table 3.5.

Table 3.5: Metrics admitting six CVFs

No. Vector Field Components Proper CVFs

6a ξ0 = H

(
c1eβr + c2e−βr

)
, ξ(5) = Heβr ∂

∂t

(Branch 16) ξ1 = H′

β

(
c1eβr − c2e−βr

)
+ c3, +H′

β
eβr ∂

∂r
,

ξ2, ξ3 are same as for the metric 5a given in section of HVF, ξ(6) = He−βr ∂
∂t

α = H′
(
c1eβr + c2e−βr

)
. −H

′

β
e−βr ∂

∂r
.

6b ξ0 = H

(
c1r + c2

)
, ξ(5) = Hr ∂

∂t

(Branch 16) ξ1 = c1

(
H2

2β2γ1
+ γ1r

2

2

)
+

(
H2

2β2γ1
+ γ1r

2

2

)
∂
∂r
,

+c2γ1r + c3, ξ(6) = H ∂
∂t

+ γ1r
∂
∂r
.

ξ2, ξ3 are same as for the metric 5a in the section of HVF,

α = H′
(
c1r + c2

)
.

The metric 6a is same as the metric (36) of Ref. [113] with β = 1 and

one can see that the metric 6b was missing there. For the metric 6a, we

get ρ = 1+(γ1et−γ2e−t)2
(γ1et+γ2e−t)2

, p|| = −3γ21e
2t+3γ22e

−2t+2γ1γ2+1

(γ1et+γ2e−t)2
and p⊥ = −1 and this

Kantowski-Sachs metric is physically meaningful because the energy density

is positive. One can easily simplify the energy conditions for this metric.

Similarly, the metric 6b represents an anisotropic fluid with ρ =
γ21+1

(γ1t+γ2)2
,
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p|| = − γ21+1

(γ1t+γ2)2
and p⊥ = 0. Here all the energy conditions are identically

satisfied.

3.2.2 Six KVFs

The branches 8, 13 and 18 give 6-dimensional Killing algebras with no proper

CVF.

In branch 8, we have p1 6= 0, p2 = p5 = 0, p3 6= 0 and p6 = 0. The simplifica-

tion of these constraints gives G = c1e
t + c2e

−t and H = β, where β 6= 0 is a

constant. This metric admits six KVFs which are presented in Table 3.6.

Table 3.6: Metrics admitting six KVFs

Vector Field Components Additional KVFs

ξ0 = c3 cosλr + c4 sinλr, ξ(5) = cosλr ∂
∂t
− G′

λG
sinλr ∂

∂r
,

ξ1 = − G′

λG

(
c3 sinλr − c4 cosλr

)
+ c5, ξ(6) = sinλr ∂

∂t
+ G′

λG
cosλr ∂

∂r
.

ξ2, ξ3 are same as for the metric 5a given in section of HVF,

where λ = 2
√
c1c2.

This metric can be transformed to the metric (39) of Ref. [113] by setting c1 =

c2 = 1
2
. For this metric, the energy density, and the parallel and perpendicular

pressures are given by ρ = −p|| = 1
β2 , and p⊥ = −1 respectively. The metric

is physically realistic with positive energy. The SEC is violated, while the

remaining energy conditions hold, provided that β2 ≤ 1. For β = 1, the

metric represents a perfect fluid.

In branch 13, we have p1 6= 0, p2 = p3 = p5 = p6 = p9 = 0 and p10 6= 0, which
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give G = c1t+ c2 and H = c3, where c1 6= 0 and c3 6= 0. For these values of G

and H, the CVFs are reduced to KVFs. The obtained six KVFs are same as

given for metric 6b in Table 3.2. It has been observed that this metric was

missing in Ref. [113].

Finally, the constraints of branch 18 are p1 = 0 and p6 = 0, showing that

both the metric functions are constants, say G = β 6= 0 and H = γ 6= 0.

In this branch, the CVFs are reduced to KVFs which are same as given in

Table 3.2 for the metric 6c of the section of HVFs.

This metric is same as the metric (34) of Ref. [113] with β = 1.

3.3 Noether Symmetries

In this section, we explore Noether symmetries of the following Lagrangian

corresponding to the Kantowski- Sachs metric (3.1.1).

L = −ṫ2 +G2(t)ṙ2 +H2(t)[θ̇2 + sin2 θφ̇2], (3.3.1)

where a dot denotes derivative w.r.t the affine parameter s. Following are

the minimum Noether symmetries admitted by the above Lagrangian:

N5 =

{
∂

∂s
,
∂

∂r
,
∂

∂φ
, cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ
, sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

}
.

This set clearly contains the set of four minimum KVFs of Kantowski- Sachs

metric, given in the set K4, while ∂
∂s

is the Noether symmetry corresponding

to the Lagrangian.

Using the Lagrangian (3.3.1) in the Noether symmetry equation (2.6.1), we
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obtain:

F,s = η,t = η,r = η,θ = η,φ = 0, (3.3.2)

2ξ0
,t = η,s, (3.3.3)

2G′ξ0 + 2Gξ1
,r = Gη,s, (3.3.4)

2H ′ξ0 + 2Hξ2
,θ = Hη,s, (3.3.5)

2H ′ξ0 + 2H cot θξ2 + 2Hξ3
,φ = Hη,s, (3.3.6)

ξ0
,r −G2ξ1

,t = 0, (3.3.7)

ξ0
,θ −H2ξ2

,t = 0, (3.3.8)

ξ0
,φ −H2 sin2 θξ3

,t = 0, (3.3.9)

G2ξ1
,θ +H2ξ2

,r = 0, (3.3.10)

G2ξ1
,φ +H2 sin2 θξ3

,r = 0, (3.3.11)

ξ2
,φ + sin2 θξ3

,θ = 0, (3.3.12)

2ξ0
,s − F,t = 0, (3.3.13)

2G2ξ1
,s − F,r = 0, (3.3.14)

2H2ξ2
,s − F,θ = 0, (3.3.15)

2H2 sin2 θξ3
,s − F,φ = 0. (3.3.16)

Like the cases of HVFs and CVFs, one needs to solve the above system of

equations to find the explicit form of Noether symmetries. In literature,

such systems are solved using direct integrating technique [83]. However, we

follow the same Rif tree approach as we have used for finding homothetic

and conformal symmetries. First we develop an algorithm in Maple which

transforms the set of Eqs. (3.3.2)-(3.3.16) to the reduced involutive form and
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Figure 3.3: Rif Tree for Noether Symmetries

produces the Rif tree given in Fig. 3.3 and the list of pivots.

p1 = G′,

p2 = G′′,

p3 = HH ′′′ −H ′′H ′,

p4 = HG′′H −GH ′′,

p5 = HG′ −GH ′,

p6 = G′′′G−G′′G′,
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p7 = H ′,

p8 = H ′2 −HH ′′,

p9 = GH ′′ −G′H ′,

p10 = G′H ′H −GH ′2 −G,

p11 = H ′′,

p12 = HH ′′ −H ′2 − 1.

For a complete classification, we have solved Eqs. (3.3.2)- (3.3.16) for each

branch of the Rif tree given in Fig. 3.3. The branches other than those

labeled by 4, 7, 12, 15, 16, 17, 18, 19, 20 and 21 give five Noether symmetries

as given in the set N5. We exclude all such cases from our classification, while

the results of the remaining branches are summarized in the coming sections.

A brief comparison of our results with those of direct integrating technique

of Ref. [83] is also presented.

3.3.1 Six Noether Symmetries

The branches labeled by 4, 17 and 18 give 6-dimensional algebra of Noether

symmetries.

In branch 4, we have p1 6= 0, p2 6= 0, p3 = 0 and p6 6= 0. Under these

conditions, the solution of Eqs. (3.3.2)-(3.3.16) gives the same metric as 5a

given in Table 3.1. For this metric, we obtain six Noether symmetries. These

six symmetries include the minimal set of five Noether symmetries along with

one extra Noether symmetry ξ(5) = s ∂
∂s

+ t
2
∂
∂t
, whose corresponding conserved

form is I(5) = −sL−tṫ. Clearly, ξ(5) corresponds to a homothetic vector, given

by t ∂
∂t

which is same as given in Table 3.1 for the metric 5a. The physical
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interpretation of this metric is already presented in the section of HVFs. The

metric of this branch is same as the metric (7vii) of Ref. [83]. However, the

authors of Ref. [83] mentioned one additional symmetry r ∂
∂r

which seems to

be wrong.

In branch 17, we have p1 = 0, p3 6= 0, p7 6= 0 and p11 6= 0, which yield G = β,

where β 6= 0 and H ′ 6= 0, H ′′ 6= 0, HH ′′′ − H ′H ′′ 6= 0. The solution of Eqs.

(3.3.2)- (3.3.16) gives six Noether symmetries in which five are same as given

in the set N5 and one extra Noether symmetry is given below along with its

conserved form:

ξ(5) =
s

2β2

∂

∂r
; F = r.

I(5) = sṙ − r.

Clearly, ξ(5) is a proper Noether symmetry. This metric is exactly same

as the metric (27) of Ref. [83]. The metric of branch 17 represents an

anisotropic fluid model with energy density ρ = H′2+1
H2 , which is clearly

positive. Moreover, the parallel and perpendicular pressures are given by

p|| = −(2H′′

H
+ H′2

H2 + 1
H2 ) and p⊥ = −(H

′′

H
). For this model, SEC and NEC

holds if H′′

H
≤ 0 and H ′2 +1−HH ′′ ≥ 0. Moreover, the DEC requires H′′

H
≤ 0,

H ′2 + 1 − HH ′′ ≥ 0 and H ′2 + 1 + HH ′′ ≥ 0. Similarly, the WEC holds if

H′2+1
H2 ≥ 0, H

′′

H
≤ 0 and H ′2 + 1−HH ′′ ≥ 0.

In branch 18, the constraints are p1 = 0, p3 = 0, p7 6= 0, p11 6= 0 and p12 6= 0.

The simplification of these constraints givesG = β andH = α1e
√
kt+α2e

−
√
kt,

where β 6= 0, k > 0 and k 6= 1
4α1α2

. For this metric, we obtain the same

Noether symmetries as obtained for the metric of branch 17. Comparing

these results with Ref. [83], we can see that this case was not listed there.

The metric of branch 18 is an anisotropic fluid model with ρ = k(α1e
√
kt−α2e−

√
kt)2+1

(α1e
√
kt+α2e−

√
kt)2

,
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p|| = −(
3k(α2

1e
2
√
kt+α2

2e
−2
√
kt)+2kα1α2+1

(α1e
√
kt+α2e−

√
kt)2

) and p⊥ = −k. This model is physically

meaningful as ρ ≥ 0. Moreover, the energy conditions for this model are

conditionally satisfied.

3.3.2 Seven Noether Symmetries

Two branches of the Rif tree, labeled by 7 and 15 give seven Noether sym-

metries. In each case, we have two extra Noether symmetries other than the

minimal Noether symmetries given in N5.

In branch 7, we have p1 6= 0, p2 6= 0, p4 6= 0 and p3 = p6 = p7 = 0. The

simplification of these constraints gives G = c1e
√
kt + c2e

−
√
kt and H = β,

where β 6= 0 and k > 0. Below are the two extra Noether symmetries (KVFs)

and their conserved forms for this metric:

ξ(5) = cos(λr)
∂

∂t
− G′

λG
sin(λr)

∂

∂r
,

ξ(6) = sin(λr)
∂

∂t
+
G′

λG
cos(λr)

∂

∂r
.

I(5) = −2 cos(λr)ṫ− 2

λ
GG′ sin(λr)ṙ,

I(6) = −2 sin(λr)ṫ+
2

λ
GG′ cos(λr)ṙ.

where λ = 2
√
c1c2. The metric of this case is same as the metric 6a presented

in Table 3.2, admitting the same six KVFs. Moreover, this metric recovers

all the metrics given by (7i-7v) of Ref. [83].

In branch 15, the constraints are p1 6= 0, p2 = p5 = 0, p7 6= 0 and p11 = 0.

The simplification of these constraints gives G = H = α1t+ α2, where α1 6=

0. The solution of the set of determining equations (3.3.2)- (3.3.16) yields
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seven Noether symmetries in which five are given in the set N5 and two are

extra Noether symmetries. The obtained two extra Noether symmetries and

their conserved forms are given in Table 3.7, where ξ(5) is a proper Noether

symmetry and ξ(6) is a Noether symmetry corresponding to a homothetic

vector α1t+α2

α1

∂
∂t
. One can see that the metric of this case is same as the metric

5b, given in Table 3.1, admitting five HVFs. The physical interpretation of

this metric is already given earlier.

Table 3.7: Metric admitting seven Noether Symmetries

Noether symmetry generators Invariants

ξ(5) =
s2

2
∂
∂s

+ s(α1t+α2)
2α1

∂
∂t
; I(5) = − s

2

2 L−
s(α1t+α2)

α1
ṫ

F = −( (α1t+α2)α2

α2
1

+ t2

2 ),
(α1t+α2)α2

α2
1

+ t2

2 ,

ξ(6) = s ∂∂s +
α1t+α2

2α1

∂
∂t
;F = r. I(6) = −sL− s(α1t+α2)

α1
ṫ− r.

Moreover, the same metric was also obtained in Ref. [83], see the metric (7vi)

therein, by direct integration technique.

3.3.3 Eight Noether Symmetries

The branch 20 whose constraints are p1 = p11 = 0 and p7 6= 0, gives the

metric functions G = β and H = α1t+ α2, where α1 6= 0, β 6= 0. Solving the

set of determining equations, we obtain eight Noether symmetries in which

five are same as given in the set N5, while the remaining three symmetries
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Table 3.8: Metric admitting eight Noether Symmetries

Noether symmetry generators Invariants

ξ(5) =
s2

2
∂
∂s

+ sr
2
∂
∂r

+ s(α1t+α2)
2α1

∂
∂t
; I(5) = − s

2

2 L+ srβ2ṙ

F = t2

2 −
r2β2

2 + α2t
α1
, − s(α1t+α2)

α1
ṫ− t2

2 −
α2t
α1

+ r2β2

2 ,

ξ(6) =
s

2β2
∂
∂r
; F = r, I(6) = sṙ − r,

ξ(7) = s ∂∂s +
(α1t+α2)

2α1

∂
∂t

+ r
2
∂
∂r
. I(7) = −sL− α1t+α2

α1
ṫ+ rβ2ṙ.

along with their conserved forms are listed in Table 3.8.

Clearly, ξ(5) and ξ(6) are proper Noether symmetries, while ξ(7) corresponds

to a homothetic vector (α1t+α2)
α1

∂
∂t

+ r ∂
∂r

which is same as obtained for the

metric 5c, given in Table 3.1.

This metric can be transformed to the metric (31) of Ref. [83] by replacing

β = γ, α1 = α and α2 = β.

3.3.4 Nine Noether Symmetries

The branches 16, 19 and 21 give 9-dimensional algebra of Noether symme-

tries. In each case, we have four extra Noether symmetries other than the

set N5. In Table 3.9, we present metrics of these three cases along with their

extra Noether symmetries and the corresponding conserved forms.

For metric 9a, ξ(5) and ξ(6) are proper Noether symmetries, while ξ(7) and ξ(8)

are additional KVFs. One can see that the metric in this case is same as the

metric 6b, given in Table 3.2, admitting the same KVFs.
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In case of metric 9b, ξ(5), . . ., ξ(7) are the additional KVFs and ξ(8) is a

proper Noether symmetry. The metric in this case is same as the metric

given in Table 3.3, admitting the same seven KVFs.

Similarly, in case of metric 9c, ξ(5) and ξ(6) are KVFs, while ξ(7) and ξ(8) are

proper Noether symmetries. In this case, the metric is same as the metric

6c, given in Table 3.2.

The metric 9a, can be transformed to the metric (40) of Ref. [83] by taking

c1 = α, c2 = β and c3 = ξ. The metric 9b is the generalized form of the metric

(34) of Ref. [83] and the metric 9c is same as the metric (37) of Ref. [83].

3.3.5 Eleven Noether Symmetries

In branch 12, the pivots are p1 6= 0, p2 6= 0 and p3 = p4 = p6 = p9 =

p10 = 0. The simplification of these conditions gives the metric functions

G = β1e
t + β2e

−t and H = β1e
t − β2e

−t, where β1 and β2 are constants such

that 4kβ1β2 + 1 = 0. This metric is same as the metric presented in Table

3.4, admitting ten KVFs.

The number of Noether symmetries for this metric turned out to be 11, in

which five are same as given in set N5, while the remaining six symmetries

and their conserved forms are given in the Table 3.10. One can see that these

six additional KVFs are same as listed in Table 3.4.
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ṙ
−
G
),

a
n
d
c
3
6=

0
.

F
=
−
G
e
−
r
,

ξ
(
7
)
=
e
r
∂ ∂
t
−

1 G
e
r
∂ ∂
r
,

I
(
7
)
=
−
2
e
r
(ṫ
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∂ ∂
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∂ ∂
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.
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Table 3.10: Metric admitting eleven Noether Symmetries

Additional KVFs Invariants

ξ(5) = sin θ sinφer( ∂
∂t
− H

G
∂
∂r

) I(5) = −2 sin θ sinφer(ṫ+GHṙ

+G
H
er(cos θ sinφ ∂

∂θ
+ csc θ cosφ ∂

∂φ
), +2GHer(cos θ sinφθ̇ + csc θ cosφφ̇,

ξ(6) = sin θ sinφe−r( ∂
∂t

+ H
G

∂
∂r

) I(6) = −2 sin θ sinφe−r(ṫ−GHṙ)

+G
H
e−r(cos θ sinφ ∂

∂θ
+ csc θ cosφ ∂

∂φ
), +2GHe−r(cos θ sinφθ̇ + csc θ cosφφ̇),

ξ(7) = − sin θ cosφer( ∂
∂t
− H

G
∂
∂r

) I(7) = 2 sin θ cosφer(ṫ+GHṙ)

−G
H
er(cos θ cosφ ∂

∂θ
− csc θ sinφ ∂

∂φ
), −2GHer(cos θ cosφθ̇ − csc θ sinφφ̇),

ξ(8) = − sin θ cosφe−r( ∂
∂t

+ H
G

∂
∂r

) I(8) = 2 sin θ cosφe−r(ṫ−GHṙ)

−G
H
e−r(cos θ cosφ ∂

∂θ
− csc θ sinφ ∂

∂φ
), −2GHe−r(cos θ cosφθ̇ − csc θ sinφφ̇,

ξ(9) = − cos θer( ∂
∂t
− H

G
∂
∂r

) I(9) = 2 cos θer(ṫ+GHṙ)

+G
H

sin θer ∂
∂θ
, +GH sin θer θ̇,

ξ(10) = − cos θe−r( ∂
∂t

+ H
G

∂
∂r

) I(10) = 2 cos θe−r(ṫ−GHṙ)

+G
H

sin θe−r ∂
∂θ
. +2GH sin θe−r θ̇.

As none of these six symmetries involve the affine parameter s, it is clear that

all these are KVFs. Thus the total number of KVFs in this case is ten. The

metric of this branch is the generalized form of the metric (43) of Ref. [83].

3.4 Stability of the Obtained Models

In this section, we discuss the stability of the cosmological models which are

obtained in the process of our classification in the section of HVFs. It is well

known that the motion of a test particle in a background gravitational field

is described by the geodesic equations

ẍ+ Γabcẋ
bẋc = 0, (3.4.1)
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varying along the geodesics and Γabc are the Christoffel symbols. For the

metric (3.1.1), the geodesic equations (3.4.1) reduce to the following four

equations:

ẗ+GG′ṙ2 +HH ′(θ̇2 + sin2 θφ̇2) = 0,

Gr̈ + 2G′ṫṙ = 0,

Hθ̈ + 2H ′ṫθ̇ −H sin θ cos θφ̇2 = 0,

Hφ̈+ 2H ′ṫφ̇+ 2H cot θθ̇φ̇ = 0. (3.4.2)

The perturbation of the geodesic equations leads to the geodesic deviation

equations, given by [114,115]:

ζ̈a + 2Γabcẋ
bζ̇c + Γabc,eẋ

bẋcξe = 0, (3.4.3)

where ζa is the deviation four-vector from the geodesic motion. For the

metric (3.1.1), these equations become:

ζ0
,ss + 2GG′ṙζ1

,s + 2HH ′θ̇ζ2
,s + 2HH ′ sin2 θφ̇ζ3

,s + (GG′)′ṙ2ζ0

+(HH ′)′θ̇2ζ2 + (HH ′)′ sin2 θφ̇2ζ0 + 2HH ′ sin θ cos θφ̇2ζ2 = 0,

ζ1
,ss +

2G′

G
(ṫζ1

,s + ṙζ0
,s) + 2

(
G′

G

)′
ṫṙζ0 = 0,

ζ2
,ss +

2H ′

H
(ṫζ2

,s + θ̇ζ0
,s)− 2 sin θ cos θφ̇ζ3

,s + 2

(
H ′

H

)′
ṫθ̇ζ0 − (cos2 θ − sin2 θ)φ̇2ζ2 = 0,

ζ3
,ss +

2H ′

H
(ṫζ3

,s + φ̇ζ0
,s) + 2 cot θ(θ̇ζ3

,s + φ̇ζ2
,s) + 2

(
H ′

H

)′
ṫφ̇ζ0 − 2 csc2 θ θ̇φ̇ζ2 = 0.

(3.4.4)

The above geodesic deviation equations can be used to study the stability

of cosmological models. Solving the geodesic equations (3.4.2), one may find

the velocity 4-vector ẋa, and using it in Eq. (3.4.4), one gets ζa. Now, if [a, b]
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is an interval in which the functions ζa behave monotonically, then the limit,

limt→b ζ
a, is considered as an indicator for the stability of the model under

consideration. If limt→b ζ
a is finite, then the model is stable, otherwise it is

unstable. This approach was recently used to discuss the stability of some

spherically symmetric cosmological models [116,117].

If we use the comoving coordinates, then one can choose ṙ = θ̇ = φ̇ = 0

and ṫ = 1. These quantities can be considered as a solution of the geodesic

equations (3.4.2), while the geodesic deviation equations (3.4.4) become

ζ0
,ss = 0,

ζ1
,ss +

2G′

G
ζ1
,s = 0,

ζ2
,ss +

2H ′

H
ζ2
,s = 0,

ζ3
,ss +

2H ′

H
ζ3
,s = 0. (3.4.5)

It is well known that the first integral of the geodesic deviation equation is

given by:

gabẋ
aζb = C, (3.4.6)

where C is some constant. Using ṙ = θ̇ = φ̇ = 0 and ṫ = 1 in this equation,

we have ζ0 = C. Moreover, solving Eqs. (3.4.5), we get

ζ1 = λ1

∫
1

G2
dt, ζ2 = λ2

∫
1

H2
dt, ζ3 = λ3

∫
1

H2
dt, (3.4.7)

where λ1, λ2 and λ3 are constants. Thus, a KantowskiSachs metric is stable

if the limits limt→∞
∫

1
G2dt and limt→∞

∫
1
H2dt are finite. This criteria can be

used to check the stability of the models obtained in our classification. As a

result, it can be seen that the models 5b and 10a are stable, the model 5a is
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stable if 1− 2c2
α
> 0 and the models 5c, 5d, 6a, 6b, 6c and 7a are unstable.

Similarly, if we use θ̇ = φ̇ = 0 and ṫ = 1, then the geodesic equations (3.4.2)

reduce to

G′ṙ2 = 0,

Gr̈ + 2G′ṙ = 0, (3.4.8)

and the geodesic deviation equations given in (3.4.4) become

ζ0
,ss + 2GG′ṙζ1

,s + (GG′)′ṙ2ζ0 = 0,

ζ1
,ss +

2G′

G
(ζ1
,s + ṙζ0

,s) + 2(
G′

G
)′ṙζ0 = 0,

ζ2
,ss +

2H ′

H
ζ2
,s = 0,

ζ3
,ss +

2H ′

H
ζ3
,s = 0. (3.4.9)

As ṫ = 1, we can take t = s. Moreover, from Eq. (3.4.8), we can see that

either ṙ = 0 or G′ = 0. In the former case, the stability analysis is same as

presented above. In the latter case, the metric function P becomes constant

and the solution of geodesic deviation equations is obtained as:

ζ0 = λ1t+ λ2, ζ
1 = λ3t+ λ4, ζ

2 = λ5

∫
1

H2
dt, ζ3 = λ6

∫
1

H2
dt,

(3.4.10)

where λ1..., λ6 are constants. We can see that as t increases, ζ0 and ζ1

become infinite. Thus, the models where the metric function G is constant

are unstable, for example, the models given by 5c, 6c and 7a. However, there

is no indication of the stability/unstability of the remaining models using

this approach.
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3.5 Summary

In this chapter, we have presented a complete classification of Kantowski-

Sachs spacetimes via HVFs, CVFs and Noether symmetries by adopting a

new approach. Instead of directly integrating the set of determining equa-

tions, an algorithm is developed in Maple which reduces the set of determin-

ing equations to the simplified form and yields a tree known as Rif tree and

a list of pivots. The branches of the Rif tree give all possible cases where the

Kantowski-Sachs spacetimes may possess proper homothetic and conformal

vector fields, KVFs and the Noether symmetries other than the minimum

ones.

Out of the 20 branches of the Rif tree for HVFs, 12 branches give the mini-

mum four KVFs which we have excluded from our discussion, while the re-

maining branches produce some Kantowski-Sachs metrics possessing proper

HVFs or additional KVFs.

In 18 branches of the Rif tree for CVFs, we only considered those cases

where the spacetime is non-conformally flat. Solving the conformal symme-

try equations for each branch, we have concluded that non-conformally flat

Kantowski-Sachs spacetimes possess at most two proper CVFs along with

four minimum KVFs. In some cases, we also have six KVFs with zero con-

formal factor, giving no proper CVF.

For Noether symmetries, out of 21 branches of the Rif tree, 11 branches

give the minimal set of Noether symmetry in which four are the basic KVFs

and one is the symmetry corresponding to the Lagrangian. The remaining

branches produce 6, 7, 8, 9 and 11-dimensionl Lie algebra of Noether sym-

metries.
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We have also given a comparison of our results of Rif tree approach with

those of direct integration technique. It is observed that, the metrics which

we have obtained by Rif tree approach are more generalized than those ob-

tained by direct integration technique. Moreover, we have also noticed that

some metrics were missing there.

For most of the obtained metrics, we have checked that the energy density

is positive, which means that these metrics are physically realistic. More-

over, we have found the bounds for energy conditions and the stability of

the obtained metrics is checked with the help of geodesic equations and the

perturbed geodesic deviation equations.
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Chapter 4

Lie and Noether Symmetries of

Static Plane Symmetric

Spacetimes

In this chapter, we find the homothetic, conformal and Noether symmetries

of static plane symmetric spacetimes. Like the previous chapter, here we

again use the Rif tree approach instead of direct integrating technique for

solving the determining equations of these symmetries. First we develop a

Rif algorithm in Maple which reduces the set of determining equations to

the simplified form and yields a Rif tree. Like the previous chapter, the

integration of determining equations is carried out for the metric of every

branch of the Rif tree for obtaining the final form of homothetic, conformal

and Noether symmetries.
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4.1 Homothetic Symmetries

In this section, we explore homothetic symmetries of static plane symmetric

spacetimes. This work has been published in an ISI journal [118]. The metric

of static plane symmetric spacetimes has the form [3]:

ds2 = −e2G(x)dt2 + dx2 + e2H(x) [dy2 + dz2]. (4.1.1)

The four linearly independent KVFs for the above metric are:

K4 =

{
∂

∂t
,
∂

∂y
,
∂

∂z
, z
∂

∂y
− y ∂

∂z

}
,

and the non-zero components of its energy-momentum tensor are:

T00 = −e2G
(
2H ′′ + 3H ′2

)
,

T11 = H ′2 + 2G′H ′,

T22 = T33 = e2H
(
H ′′ +H ′2 +G′′ +G′2 +H ′G′

)
. (4.1.2)

For an anisotropic fluid, the above components become:

T00 = ρe2G, T11 = p||, T22 = T33 = e2Hp⊥, (4.1.3)

where ρ denotes the energy-density, while p|| and p⊥ represent parallel and

perpendicular pressures of the fluid respectively. The comparison of the Eqs.

(4.1.2) and (4.1.3) yields:

ρ = −2H ′′ − 3H ′2,

p|| = H ′2 + 2G′H ′,

p⊥ = H ′′ +H ′2 +G′′ +G′2 +H ′G′. (4.1.4)
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Using the metric (4.1.1) in the equation satisfied by homothetic vector fields,

given in (2.5.3), we obtain:

G′ξ1 + ξ0
,t = α, (4.1.5)

ξ1
,t − e2Gξ0

,x = 0, (4.1.6)

e2Hξ2
,t − e2Gξ0

,y = 0, (4.1.7)

e2Hξ3
,t − e2Gξ0

,z = 0, (4.1.8)

ξ1
,x = α, (4.1.9)

e2Hξ2
,x + ξ1

,y = 0, (4.1.10)

e2Hξ3
,x + ξ1

,z = 0, (4.1.11)

H ′ξ1 + ξ2
,y = α, (4.1.12)

ξ2
,z + ξ3

,y = 0, (4.1.13)

H ′ξ1 + ξ3
,z = α, (4.1.14)

where α represent a constant. Like the previous chapter, to investigate the

HVFs of static plane symmetric spacetimes, we have followed the same ap-

proach based on a computer algorithm and obtained the Rif tree given in

Fig. 4.1 and the following list of pivots.

p1 = H ′′,

p2 = G′ +H ′,

p3 = H ′2 +H ′′ −G′2 −G′′,

p4 = H ′ −G′,

p5 = H ′,

p6 = G′′,
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Figure 4.1: Rif Tree for HVFs

p7 = H ′2 −G′2 −G′′,

p8 = H ′2 −G′2,

p9 = G′,

p10 = G′2 +G′′,

p11 = G′′′ + 2G′G′′.

For a complete classification, we use the constraints of the branches of the

Rif tree and solve the system of equations (4.1.5)- (4.1.14). Consequently,
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some branches yield homothetic algebras of dimension 5, 7 and 11, while

the remaining branches give Killing algebras of dimension 4, 5, 6, 7 and

10. We skip to write the basic calculations and summarize the obtained

results in the forthcoming sections. The branches labeled by 5 and 6 give

minimum four KVFs and are therefore excluded from the classification. Here,

we also compare our results with the existing results of Ref. [119], which were

obtained by using direct integration technique.

4.1.1 Five HVFs

The branches 1, 2, 4 and 11 give 5-dimensional algebra of HVFs. In each

case, we have four KVFs which are same as given in the set K4, and one

proper HVF. Table 4.1 presents the metrics of these cases along with their

proper HVFs.

The metrics 5a(i), 5b(i), 5c(i) and 5d admitting five HVFs are more gener-

alized than the only one metric, given by Eq. (3.10) in Ref. [119] possessing

the same number of homothetic symmetries. In fact, these metrics can be

reduced to the metric (3.10) of Ref. [119]. For example, in case of the metric

5c(i), we may use α = 1, c1 = 0 and c2 = 1 + A
2

= 1 − C
2

to get the metric

(3.10), where A and C are constants used in Ref. [119]. Moreover, the metrics

5a(ii), 5b(ii) and 5c(ii) are not listed in Ref. [119].

The model 5a(i) is an anisotropic fluid with p|| =
3α2+c24−4αc4−2αc1+2c1c4

(αx+c3)2
,

p⊥ =
α2+c21+c24−2αc1−2αc4+c1c4

(αx+c3)2
and ρ =

4αc4−α2−3c24
(αx+c3)2

. Here, the energy density is

non-negative provided that 4αc4 − α2 − 3c2
4 ≥ 0. Using these values of ρ, p||

and p⊥, one can easily simplify the inequalities given in (2.7.1) to find the
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bounds for all energy conditions. For model 5a(ii), we have ρ =
4αc3−α2−3c23

(αx+c1)2
,

p|| =
(α−c3)2

(αx+c1)2
and p⊥ = c3(c3−α)

(αx+c1)2
. The SEC and NEC require c3(c3−α) > 0 and

3αc3−α2−2c2
3 ≥ 0, while the WEC holds if 4αc3−α2−3c2

3 ≥ 0, c3(c3−α) > 0

and 3αc3−α2− 2c2
3 ≥ 0. Finally, the DEC is satisfied if 4αc3−α2− 3c2

3 ≥ 0,

c3(c3 − α) > 0, 3αc3 − α2 − 2c2
3 ≥ 0 and 5αc3 − α2 − 4c2

3 ≥ 0.

Similarly, for the model 5b(i) being an anisotropic fluid, the energy den-

sity is same as in case 5a(i) and the pressures in parallel and perpendicular

directions are given by p|| =
α2−c24

(αx+c1)2
and p⊥ = c4(c4−α)

(αx+c1)2
. These quantities

satisfy the SEC and NEC if c4(α − c4) > 0 and 3αc4 − α2 − 2c2
4 ≥ 0, while

the WEC holds if along with these inequalities being true, we further have

4αc4 − α2 − 3c2
4 ≥ 0. The DEC is clearly violated.

For the model 5b(ii), we obtain p|| =
γ21

(γ1x+γ2)2
= −ρ and p⊥ = 0, which

give an unphysical model having negative energy density and violating all

the energy conditions.

Moreover, for the metric 5c(i) we have ρ =
4αc2−α2−3c22

(αx+c1)2
and p|| = p⊥ =

− (α−c2)2

(αx+c1)2
, giving a perfect fluid model for which one can easily simplify the

inequalities given in (2.7.1) to find the bounds for energy conditions.

The model 5c(ii) represents an anisotropic fluid with ρ = − α2
1

(α1x+α2)2
,

p|| =
α2
1(3α−2c1)

α(α1x+α2)2
and p⊥ =

α2
1(3α2+c21−4αc1)

α2(α1x+α2)2
. The model is physically unrealistic

with the negative energy density and like the previous case, the bounds for

different energy conditions can be found by using these quantities in (2.7.1).

Finally, for the metric 5d, we obtain ρ = p|| = 0 and p⊥ = c3(c3−α)
(αx+c2)2

. The

DEC is violated here, while all other energy conditions are satisfied subject

to the inequality c3(c3 − α) > 0.
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4.1.2 Seven HVFs

There is only one metric, given by branch 3, which admits 7-dimensional

homothetic algebra. In Table 4.2, we present this metric along with the

vector field components and its three additional symmetries other than those

given in the set K4. Here ξ(5) and ξ(6) are two additional KVFs, while ξ(7) is

a proper HVF.

Table 4.2: Metric admitting seven HVFs

Metric Vector Field Components Additional Symmetries

G = H = ln(αx+ c1)1−
c2
α , ξ0 = c2t+ c3z + c4y + c5, ξ(5) = z ∂

∂t
+ t ∂

∂z
,

where α 6= c2. ξ1 = αx+ c1, ξ(6) = y ∂
∂t

+ t ∂
∂y
,

ξ2 = c2y + c4t+ c6z + c7, ξ(7) = x ∂
∂x
.

ξ3 = c2z + c3t− c6y + c8.

This metric can be reduced to the metric (3.11) of Ref. [119] by taking α = 1,

c1 = 0 and c2 = 1− A
2
, where A is the constant used in Ref. [119].

The energy density and, parallel and perpendicular pressures for this metric

are found to be ρ =
4αc2−α2−3c22

(αx+c1)2
, p|| = 3(α−c2)2

(αx+c1)2
and p⊥ =

α2−4αc2+3c22
(αx+c1)2

. The

simplified form of energy bounds can be easily obtained by substituting these

values in (2.7.1).

4.1.3 Eleven HVFs

In branches labeled by 13 and 14, we obtain eleven HVFs, out of which four

are same as given in the set K4 and the additional seven symmetries for each
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metric are given in Table 4.3. For each metric, ξ(5) represents a proper HVF,

while ξ(6)...ξ(11) give six additional KVFs.

As for the metric 11a is concerned, it is same as the metric (2.29) of Ref. [119]

with c1 = 1 and c2 = A. The metric 11b is the flat Minkowski metric and

therefore attains the maximum dimension of homothetic algebra.

Moreover, both the metrics 11a and 11b represent vacuum solutions of EFEs

with zero energy density and vanishing pressure.

4.1.4 Five KVFs

Two branches, given by branch 7 and 9, yield five KVFs with no proper

homothety. Four KVFs are same as given in the set K4 and the fifth one is

given in Table 4.4.

The metric 5a can be transformed to the metric given by Eq. (2.32) in

Ref. [119] by setting c1 = A
2
, c3 = C

2
and c2 = c4 = 0. Under the same condi-

tions, the metric 5b can be regarded as a special case of the metric (2.32) of

Ref. [119].

As for the physical implications of these metrics, the metric 5a is an anisotropic

fluid with ρ = −3c2
3, p|| = c2

3 + 2c1c3 and p⊥ = c2
1 + c2

3 + c1c3. For these

values, the DEC and WEC are failed, while NEC holds if c3(c1 − c3) > 0

and c2
1 − 2c2

3 + c1c3 ≥ 0. Along with these conditions, if the inequality

c1(c1 + 2c3) ≥ 0 also holds, then the SEC is satisfied.

Similarly, for the model 5b, we have ρ = −3c2
1, p|| = −c2

1 and p⊥ = c2
1.

However, none of the energy conditions is satisfied here. Moreover, both of

these models are un-physical because their energy densities are negative.
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Table 4.4: Metrics admitting five KVFs

No. Metric Vector Field Components Additional KVF

5a G = c1x+ c2, ξ0 = c1c5
c3

t+ c6, ξ(5) = 2t ∂
∂t
− ∂
∂x

(Branch 7) H = c3x+ c4, ξ1 = − c5
c3
, +y ∂

∂y
+ z ∂

∂z
,

where c1 6= 0, ξ2 = c5y + c7z + c8, where we have used

c3 6= 0 ξ3 = c5z − c7y + c9. c1 = 2, c3 = 1.

and c21 6= c23.

5b G = c1x+ c2, Same as in case 5a ξ(5) = −t ∂
∂t
− ∂
∂x

(Branch 9) H = c3x+ c4, with c3 = −c1. +y ∂
∂y

+ z ∂
∂z
,

where c1 6= 0, where we have used

c3 6= 0 c3 = 1.

and c3 = −c1.

4.1.5 Six KVFs

The procedure of solving Eqs. (4.1.5)-(4.1.14) for the constraints of branch 12

splits the problem in to further sub cases depending upon whether G′′(x) 6= 0

or G′′(x) = 0. In both the cases, we have obtained 6-dimensional Killing

algebra with no proper homothety. The results of these cases are summarized

in Table 4.5, where the additional two KVFs are represented by ξ(5) and ξ(6).

Like the previous cases, here we have obtained most generalized metrics than

those presented in Ref. [119]. One can see that the metrics (2.26) and (2.27)

of Ref. [119] are the special cases of the metric 6a. Similarly, the metric 6b

can be reduced to the metric (2.28) of Ref. [119] by choosing c1 = A
2

and
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c2 = 0.

The model 6a represents an anisotropic fluid such that ρ = p|| = 0 and

p⊥ = m. These values clearly satisfy all the energy conditions except the

dominant energy condition.

Similarly, for the metric 6b, we have ρ = p|| = 0 and p⊥ = c2
1, which

violate the DEC, while all other energy conditions are identically satisfied.

4.1.6 Seven KVFs

The metric given by branch 8 admits seven KVFs with no proper homothety.

Four KVFs are same as given in the set K4 and the extra three are presented

in Table 4.6.

The metric given in Eq. (2.34) of Ref. [119] can be recovered from the above

metric by setting c2 = C
2

and c3 = 0.

The physical quantities for this metric are found to be ρ = −3c2
2 and p|| =

p⊥ = c2
2, which give an unphysical model having negative energy density and

violating all the energy conditions.

4.1.7 Ten KVFs

There is only one metric, given by branch 10, admitting ten KVFs with no

proper homothety. Out of these ten, four are already given in the set K4,

while the extra six KVFs are listed in Table 4.7. One can easily reduce this

metric to the metric (2.33) of Ref. [119] by taking c1 = C
2

and c2 = 0.

75



T
ab

le
4.

6:
M

et
ri

c
a
d

m
it

ti
n

g
se

v
en

K
V

F
s

M
et

ri
c

V
ec

to
r

F
ie

ld
C

o
m

p
o
n

en
ts

A
d

d
it

io
n

a
l

K
V

F
s

G
=
c 1
,

ξ
0

=
c 4
,

ξ (
5
)

=
y
∂ ∂
x
−
y
z
∂ ∂
z

+
1 2

( z
2
−
y
2

+
e−

2
(x

+
c
3
)

) ∂ ∂
y
,

H
=
c 2
x

+
c 3
,

ξ
1

=
c 5
y
−
c 6
z
−
c 7
,

ξ (
6
)

=
−
z
∂ ∂
x

+
y
z
∂ ∂
y

+
1 2

( z
2
−
y
2
−
e−

2
(x

+
c
3
)

) ∂ ∂
z
,

w
h

er
e
c 2
6=

0
.

ξ
2

=
c 7
y

+
c 6
y
z

+
c 8
z

+
c 9

ξ (
7
)

=
−

∂ ∂
x

+
y
∂ ∂
y

+
z
∂ ∂
z
.

ξ
3

=
c 7
z
−
c 5
y
z
−
c 8
y

+
c 1

0

w
h

er
e

w
e

h
a
v
e

ch
o
se

n
c 2

=
1
.

76



Table 4.7: Metric admitting ten KVFs

Metric Vector Field Components Additional KVFs

G = H = c1x+ c2, ξ0 = c3
2

(
t2 + y2 + z2 + e−2(x+c2)

)
ξ(5) = 1

2

(
t2 + y2 + z2 + e−2(x+c2)

)
∂
∂t

where c1 6= 0. +c4t+ c5y + c6z − c7ty + c8tz + c9, −t ∂
∂x

+ yt ∂
∂y

+ zt ∂
∂z
,

ξ1 = c7y − c8z − c3t− c4, ξ(6) = t ∂
∂t
− ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
,

ξ2 = c7
2

(
z2 − y2 − t2 + e−2(x+c2)

)
ξ(7) = y ∂

∂t
+ t ∂

∂y
,

+c3yt+ c4y + c5t+ c10z + c8yz + c11, ξ(8) = z ∂
∂t

+ t ∂
∂z
,

ξ3 = c8
2

(
z2 − y2 + t2 − e−2(x+c2)

)
ξ(9) = −ty ∂

∂t
+ y ∂

∂x
− yz ∂

∂z

+c3zt+ c4z + c6t− c10y − c7yz + c12, + 1
2

(
z2 − y2 − t2 + e−2(x+c2)

)
∂
∂y
,

where we have chosen c1 = 1. ξ(10) = tz ∂
∂t
− z ∂

∂x
+ yz ∂

∂y
,

+ 1
2

(
z2 − y2 + t2 − e−2(x+c2)

)
∂
∂z
.

For this metric, we have ρ = −3c2
1 and p|| = p⊥ = 3c2

1, which identically sat-

isfy the SEC and NEC, while the DEC and WEC are violated here. Moreover,

since ρ = −3c2
1, the model is not physically realistic.

4.2 Conformal Symmetries

For conformal symmetry, we use the metric (4.1.1) in Eq. (2.5.3) and obtain

the same set of determining equations as given in Eqs. (4.1.5)-(4.1.14) with

α = α(t, x, y, z). The non-zero components of the Weyl tensor for the metric

(4.1.1) are:

C1
010 =

e2GΓ

3
, C2

202 = −e
2GΓ

6
= C3

303,

C1
212 =

e2HΓ

6
= C1

313, C2
323 = −e

2HΓ

3
, (4.2.1)
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where Γ = G′(H ′−G′)−G′′+H ′′. If Γ = 0, then the static plane symmetric

spacetime is conformally flat, otherwise non-conformally flat.

To explore all possible cases where the spacetimes under consideration may

possess proper CVFs, we follow the same Rif tree approach as we have used

in case of obtaining HVFs in the previous section, where the obtained Rif

tree given in Fig. 4.2 and pivots are given below:

p1 = H ′,

p2 = H ′′,

p3 = G′′ +G′2 −H ′′ −H ′2,

p4 = G′ −H ′,

p5 = G′′,

p6 = G′′ +H ′2 −H ′2,

p7 = G′,

p8 = G′′ +G′2,

p9 = G′′′ + 2G′G′′.

To get a complete classification of static plane symmetric spacetimes, we solve

the set of determining equations (4.1.5)-(4.1.14) for the conditions imposed

by each branch of the Rif tree given in Fig. 4.2. If the spacetime is conformally

flat, i.e. Γ = 0, in such a case the conformal algebra is clearly 15-dimensional.

Such cases are labeled by the branches 3, 7, 8, 11 and 12. Moreover, there are

some other branches of the Rif tree which give two sub-cases, depending upon

the spacetime is conformally flat or not. Like the previous chapter, we focus

only on the cases where the spacetime is non-conformally flat. Moreover,

78



Figure 4.2: Rif Tree for CVFs

some branches of the Rif tree yield sub-cases, some of them give minimum

four KVFs. Also branch 5 gives the minimum KVFs. Such cases are also

skipped from the discussion, while the results of the remaining sub-cases yield

five, six or seven CVFs as summarized in the forthcoming sections.
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4.2.1 Branch 1

The constraints of branch 1 are p1 6= 0, p2 6= 0, and p3 6= 0. Further simpli-

fication of Eqs. (4.1.5)-(4.1.14) using these constraints produces two cases,

depending upon whether Γ = 0 or Γ 6= 0. The non-conformally flat case

(Γ 6= 0) is further divided into three sub-cases. Out of these three sub-cases,

one gives the minimum four KVFs, while the remaining two cases give five

and six CVFs. In case of five CVFs, one is a proper CVF while the remaining

four CVFs are same as given in set K4. Similarly, in case of six CVFs, there

are two proper CVFs while the remaining four CVFs are same as given in the

set K4. In Table 4.8, we have shown the results of these cases. It is to be noted

Table 4.8: Metrics admitting five and six CVFs

No. Vector Field Components Proper CVFs

5a ξ0 = c1t(1− 1
β2 ) + c2, ξ(5) = t(1− 1

β2 ) ∂
∂t

+ eH
∫
e−Qdx ∂

∂x

(Branch 1) ξ1 = c1eQ
∫
e−Hdx, +y ∂

∂y
+ z ∂

∂z
.

ξ2 = c1y + c4z + c3,

ξ3 = c1z − c4y + c5,

α = c1

(
H′eH

∫
e−Hdx+ 1

)
.

6a ξ0 = (c1 cos kt+ c2 sin kt)

(∫
eH−2Gdx+ 1

k2

)
+ c3, ξ(5) = cos kt

(∫
eH−2Gdx+ 1

k2

)
∂
∂t

(Branch 1) ξ1 = eH

k
(c1 sin kt− c2 cos kt), + eH

k
sin kt ∂

∂x
,

ξ2 = c4z + c5, ξ(6) = sin kt

(∫
eH−2Gdx+ 1

k2

)
∂
∂t

ξ3 = −c4y + c5, − e
H

k
cos kt ∂

∂x
.

α = H′eH

k

(
c1 sin kt− c2 cos kt

)
.
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that the obtained five and six CVFs satisfy the Eqs. (4.1.5)-(4.1.14) subject

to the conditions (G′−H ′)eH
∫
e−Hdx = 1

β2 , and (G′−H ′)eH = k2
∫
eH−2Gdx

respectively, where k and β are some constants.

As the metric functions are not explicitly known, we cannot find the simplified

values of ρ, p|| and p⊥ in this case.

4.2.2 Branch 2

This branch gives 6-dimensional conformal algebra. The constraints for this

branch are p1 6= 0, p2 6= 0, p3 = 0 and p4 6= 0. Solving the set of Eqs. (4.1.5)-

(4.1.14) under these conditions , we obtain the following components of CVF,

subject to the condition (G′−H ′)eH = k2
∫
eH−2Gdx, where k is a constant.

ξ0 =

∫
eH−2Gdx

(
c1 cos kt+ c2 sin kt) + c3,

ξ1 =
eH

k

(
c1 sin kt− c2 cos kt),

ξ2 = c4z + c5,

ξ3 = −c4y + c6,

α = H ′
eH

k

(
c1 sin kt− c2 cos kt).

Here, we can express the two proper CVFs as ξ(5) = cos kt
∫
eH−2Gdx ∂

∂t
+

eH

k
sin kt ∂

∂x
and ξ(6) = sin kt

∫
eH−2Gdx ∂

∂t
− eH

k
cos kt ∂

∂x
.

4.2.3 Branch 4

In branch 4, we have p1 6= 0, p2 = 0, p5 6= 0 and p6 6= 0, which give Q =

α1x + α2, where α1 6= 0. This branch produces two cases. The first case

splits into two sub-cases, one giving four KVFs, same as given in the set K4,
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while the second sub-case gives five CVFs. The second case of branch 4 again

splits into two sub-cases, one produces six CVFs, while the other gives seven

CVFs. The details of these results are given in Table 4.9.

The energy density and parallel and perpendicular pressures for the metric

5a are found to be:

ρ = −3α2
1,

p|| =
(3α2

1e
H − α2

1β
2 + 2α1η

2)

eH − β2
,

p⊥ =
α2

1(eH − β2)2 − α1e
H(α1β

2 + η2) + (α1e
H + η2)2 − α1(α1e

H + η2)(eH − β2)

(eH − β2)2
.

Similarly, for the model 6a we have:

ρ = −3α2
1,

p|| = α2
1 + 2α1G

′,

p⊥ = α2
1 +G′′ +G′2 + α1G

′.

For both models, energy density is negative, so the DEC and WEC are clearly

violated for these model, while the bounds for other energy conditions can

be easily obtained by substituting these values in (2.7.1).

The metric 7a is an anisotropic fluid with the following quantities:

ρ = −3α2
1,

p|| =
3α2

1e
H − α2

1k
2β2

eH − k2β2
,

p⊥ =
α2

1(3e2H + k4β4 − 4k2β2eH)

(eH − k2β2)2
.

These quantities satisfy the SEC and NEC if eH > k2β2, while the DEC and

WEC are failed for these values.
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∂ ∂
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c 4
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∂ ∂
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α
1
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0
.

α
=
c 5
H
′ e
H

+
H
′ e
H

k

( c 1
si

n
k
t
−
c 2

co
s
k
t) .

ξ (
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)

=
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H
−
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2
)
∂ ∂
x

+
k
2
β
2

( y
∂ ∂
y
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z
∂ ∂
z

) .
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4.2.4 Branch 6

The constraints of branch 6 are p1 6= 0, p2 = p5 = 0, p4 6= 0 and p7 6= 0.

The simplification of these conditions gives G = α1x + α2, H = α3x + α4,

where α1 6= 0, α3 6= 0 and α1 − α3 6= 0. This metric is same as the metric

5a of the section of HVFs given in Table 4.4. Using these values of G and

H, the solution of conformal symmetry equations yields α = 0 and thus we

have obtained no proper CVF in this case. The obtained five KVFs for this

metric are same as given in Table 4.4 of the previous section.

4.2.5 Branch 9

In branch 9, we have p1 = 0, p7 6= 0, p8 6= 0 and p9 6= 0. These constraints

give H = Const. = c1 and G′′ + G′2 6= 0, which yield a non-conformally

flat metric. Solving the set of conformal symmetry equations under these

conditions, we get G = ln(α1x + c2)
1− c3

α1 , where c3 6= α1 6= 0. The CVFs in

this case are reduced to HVFs which are given below:

ξ0 = c3t+ c4,

ξ1 = α1x+ c2,

ξ2 = α1y + c5z + c6,

ξ3 = α1z − c5y + c7,

α = c3.

The above five HVFs include four KVFs, already given in the set K4 and one

proper homothety ξ(5) = x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
, which is a special case of metric

5d, given in Table 4.1.
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4.2.6 Branch 10

The constraints of branch 10 are p1 = 0, p7 6= 0, p8 6= 0, and p9 = 0.

Simplification of these constraints yields two cases depending upon whether

G′′ = 0 or G′′ 6= 0. In the former case, the metric functions get the values

G = c1x + c2 and H = c3, where c1 6= 0 and c3 6= 0. This metric is same as

the metric 6b given in Table 4.5. In the later case, that is when G′′ 6= 0, the

metric becomes G = ln(c1e
√
mx + c2e

−
√
mx) and H = c3 6= 0, where m > 0,

which is same as the metric 6a given in Table 4.5.

For both of these metrics, the solution of conformal symmetry equations gives

α = 0 and the CVFs become KVFs, already listed in Table 4.5.

4.3 Noether Symmetries

For Noether symmetries, we consider the following Lagrangian corresponding

to the line element of static plane symmetric metric :

L = −eG(x)ṫ2 + ẋ2 + eH(x)(ẏ2 + ż2). (4.3.1)

The minimal set of Noether symmetries for this Lagrangian is:

N5 =

{
∂

∂s
,
∂

∂t
,
∂

∂y
,
∂

∂z
, z
∂

∂y
− y ∂

∂z

}
.

Like the previous chapter, here N5 contains the same minimum four KVFs of

static plane symmetric metric, given in set K4 and ∂
∂s

represents the Noether

symmetry corresponding to the Lagrangian.
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By using the Lagrangian (4.3.1) in Eq. (2.6.1), we obtain:

F,s = η,t = η,x = η,y = η,z = 0, (4.3.2)

2eGξ0
,s = F,t, (4.3.3)

−2ξ1
,s = F,x, (4.3.4)

−2eHξ2
,s = F,y, (4.3.5)

−2eHξ3
,s = F,z, (4.3.6)

2ξ1
,x − η,s = 0, (4.3.7)

ξ2
,z + η3

,y = 0, (4.3.8)

ξ1
,y + eHξ2

,x = 0, (4.3.9)

ξ1
,z + eHξ3

,x = 0, (4.3.10)

eGξ0
,x − ξ1

,t = 0, (4.3.11)

eGξ0
,y − eHξ2

,t = 0, (4.3.12)

eGξ0
,z − eHξ3

,t = 0, (4.3.13)

G′ξ1 + 2ξ0
,t = η,s, (4.3.14)

H ′ξ1 + 2ξ2
,y = η,s, (4.3.15)

H ′ξ1 + 2ξ3
,z = η,s. (4.3.16)

The next step is to develop an algorithm in Maple which reduces the above

set of equations to the simplified form and produces the Rif tree given in Fig.

4.3 along with the list of pivots.
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Figure 4.3: Rif Tree for Noether Symmetries

p1 = G′,

p2 = H ′2 + 2G′′,

p3 = H ′′,

p4 = H ′ −G′,

p5 = G′′,

p6 = H ′,

p7 = G′2 + 2G′′,

p8 = G′G′′ +G′′′.
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To get a complete classification via Noether symmetries, we have solved the

set of determining equations for the conditions imposed by every branch of

the Rif tree and it is concluded that the possible dimension of Noether alge-

bra for these spacetimes is 5, 6, 7, 8, 9, 10, 11 and 17. In our classification, we

omit those cases which give the minimal set of Noether symmetries, given in

the set N5. Such cases are labeled by branches 3 and 7 in the Rif tree. More-

over, there are some other branches of the Rif tree which give two sub-cases.

In one of each sub-case, we get the set N5, so we have skipped such cases

from our discussion. We only focus on those cases which give symmetries

other than the minimal set of Noether symmetries. The Noether symmetries

and the corresponding conservation laws for these cases are discussed in the

forthcoming sections. We also compare our results with those of Ref. [121]

to show that this new approach gives more general metrics as compared to

those obtained by direct integration technique.

4.3.1 Branch 1

In branch 1, the constraints are p1 6= 0, p2 6= 0, p3 6= 0 and p4 6= 0. This case

splits into two sub-cases, one giving the minimal set of Noether symmetries,

while the other case gives 6-dimensional Noether algebra. Out of these six

Nother symmetries, five are same as given in the set N5 and one is an extra

symmetry. The extra symmetry along its conserved form are listed in Table

4.10. Clearly, the extra symmetry corresponds to a homothetic vector x ∂
∂x
.

The above metric is same as the metric 5a(i), given in Table 4.1, admitting

the same HVF. Moreover, the metric of branch 1 can be transformed to the
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Table 4.10: Metric admitting six Noether Symmetries.

Metric Noether Symmetry generator Invariant

G = ln(α1x+ 2c3)
2−4

c1
α1 , ξ(5) = s ∂

∂s
+ x

2
∂
∂x
. I(5) = −sL+ x ẋ.

H = ln(α1x+ 2c3)
2−4

c4
α1 ,

where c4 6= c1 6= α1
2
,

and c1 6= 0.

metric (31) of Ref. [121] by setting b = 2− 4c1
α1

and a = 2− 4c4
α1
. The physical

interpretation of this metric is already presented in the section of HVFs.

4.3.2 Branch 2

The constraints of branch 2 are p1 6= 0, p2 6= 0, p3 6= 0 and p4 = 0. From

p4 = 0, we get G = H. While solving the set of determining equations

under these constraints, we get two sub-cases. In the first sub-case, we have

obtained seven Noether symmetries, while the second sub-case gives eight

Noether symmetries. Among the obtained symmetries in both cases, five

are same as given in the set N5, while the remaining two and three extra

symmetries along with their conserved forms are given in Table 4.11.

Clearly, ξ(5) and ξ(6) are the additional KVFs for both metrics, while ξ(7) is a

Noether symmetry corresponding to a homothetic vector x ∂
∂x

for the second

metric. The metric 8a is same as the metric presented in Table 4.2, admitting

seven HVFs.

The metric 7a can be transformed to the metrics (34-36) of Ref. [121] by
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Table 4.11: Metrics admitting seven and eight Noether Symmetries.

No. Metric Noether Symmetry Invariants

generators

7a G = H 6= ln(α1x+ 2c1)
2− 4c2

α1 . ξ(5) = y ∂
∂t

+ t ∂
∂y
, I(5) = −2eG(yṫ− tẏ),

(Branch 2) ξ(6) = z ∂
∂t

+ t ∂
∂z
. I(6) = −2eG(zṫ− tż).

8a G = H = ln(α1x+ 2c1)
2− 4c2

α1 , ξ(5), ξ(6) are same I(5), I(6) are same

(Branch 2) where α1 6= 0 as in case of 7a, as in case of 7a,

and c2 6= α1
2
. ξ(7) = s ∂

∂s
+ x

2
∂
∂x
. I(7) = −sL+ xṫ.

setting some suitable substitutions, while the metric 8a gives the metric (42)

of Ref. [121] by putting a = 2− 4c2
α1

and c1 = 0.

4.3.3 Branch 4

In branch 4 we have, p1 6= 0, p2 6= 0, p3 = 0, p5 = 0 and p4 6= 0. These

constraints give the metric functions G = c1x + c2, H = c3x + c4, where

c1 6= 0, c3 6= 0, and c1 6= c3. For these values of G and H, we have obtained

six Noether symmetries. These six Noether symmetries include five basic

Noether symmetries, mentioned in set N5 and one is extra Noether symme-

tery (which is actually a KVF), given by ξ(5) = 2t ∂
∂t
− 2 ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
. The

corresponding conserved form is I(5) = −2eGt ṫ− 4 ẋ+ 2eH(y ẏ + z ż). One

can see that this additional KVF is same as given in Table 4.4 for the metric

5a, admitting five KVFs.

The metric of this branch give the exact form of the metric (19) of Ref. [121]
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if c1 = 1
a
, c3 = 1

b
and c2 = c4 = 0. For this metric, the physical interpretation

is already given in the section of HVFs.

4.3.4 Branch 5

The constraints for branch 5 are p1 6= 0, p2 6= 0 and p3 = p4 = p5 = 0. The

simplification of these constraints gives G = H = c1x + c2, where c1 6= 0.

This metric is same as the metric given in Table 4.7, admitting ten KVFs.

Using these values of G and H to solve the set of determining equations, we

get eleven Noether symmetries in which five are given in the minimal set and

six are extra Noether symmetries. These six Noether symmetries (which are

actually KVFs) along with their conserved forms are given in Table 4.12.

Table 4.12: Metric admitting eleven Noether Symmetries

Additional Symmetries Invariants

ξ(5) = −2t ∂
∂x

+ yt ∂
∂y

+ zt ∂
∂z

I(5) = −4tẋ+ 2te−(x+c2)(yẏ + z ż)

+

(
t2+y2+z2+4e−(x+c2)

2

)
∂
∂t
, −

(
t2 + y2 + z2 − 4e−(x+c2)

)
ex+c2 ṫ,

ξ(6) = t ∂
∂t
− 2 ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
, I(6) = −2ex+c2 tṫ− 4 ẋ+ 2ex+c2 (y ẏ + z ż),

ξ(7) = y ∂
∂t

+ t ∂
∂y
, I(7) = 2ex+c2 (t ẏ − y ṫ),

ξ(8) = z ∂
∂t

+ t ∂
∂z
, I(8 = 2ex+c2 (t ż − z ṫ),

ξ(9) = −yt ∂
∂t

+ 2y ∂
∂x
− yz ∂

∂z
I(9) = 2tyex+c2 ṫ+ 4yẋ− 2e−(x+c2)yzż

+

(
z2−y2−t2+4e−(x+c2)

2

)
∂
∂y
, +

(
z2 − y2 − t2 + 4e−(x+c2)

)
ex+c2 ẏ,

ξ(10) = zt ∂
∂t
− 2z ∂

∂x
+ yz ∂

∂y
I(10) = −2ex+c2 tyṫ− 4zẋ+ 2ex+c2yzẏ

+

(
z2−y2+t2−4e−(x+c2)

2

)
∂
∂z
. +

(
z2 − y2 + t2 − 4e−(x+c2)

)
ex+c2 ż.

Moreover, this metric is the generalized form of metric (63) of Ref. [121] and
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can be transformed to the metric (63) by taking c1 = 1
a

and c2 = 0.

4.3.5 Branch 6

The constraints for branch 6 are p1 6= 0, p2 = 0, p6 6= 0 and p7 6= 0. The

constraint p2 = 0 gives H = 2 ln(α1x+ c1), where α1 6= 0. The calculation of

this branch is divided into two cases, one giving the minimal set of Noether

symmetries, while the second case gives six Noether symmetries. The metric

function G gets the value G = lnx
(2− 4c2

c3
)
, where c2 6= c3

4
and c3 6= 0. The

obtained six Noether symmetries include the minimal set of five Noether

symmetries and one extra Noether symmetry is given by ξ(5) = s ∂
∂s

+ t
4
∂
∂t

+x
2
∂
∂x
.

The corresponding conserved form is I(5) = −sL− t
2
ṫ+ xẋ.

Clearly, ξ(5) represent a Noether symmetry corresponding to a homothetic

vector t
2
∂
∂t

+ x ∂
∂x
. The metric of this branch is a special case of the metric

5b(i), given in Table 4.1. Moreover, one can easily see that this metric is the

generalized form of the metric (28) of Ref. [121] and can be transformed to

the metric (28) by choosing a = 2− 4c2
c3
.

4.3.6 Branch 8

In this branch, we have p1 6= 0, p6 6= 0 and p2 = p4 = p7 = 0. These

constraints give the metric functions G = H = ln(α1x+ α2)2, where α1 6= 0.

The solution of the set of determining equations (5.3.2)-(5.3.16) yields nine

Noether symmetries in which five are same as given in the set N5 and four

are the extra Noether symmetries. The obtained extra Noether symmetries

and their conserved forms are listed in Table 4.13.
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Table 4.13: Metric admitting nine Noether Symmetries

Noether Symmetry generators Invariants

ξ(5) = s2

2
∂
∂s

+
s(α1x+α2)

2α1

∂
∂x

; I(5) = − s
2

2
L+ s

α1
(α1x+ α2) ẋ

F = −x2
2

+ α2

α2
1

(α1x+ α2), +x2

2
− α2

α2
1

(α1x+ α2),

ξ(6) = s ∂
∂s

+
(α1x+α2)

2α1

∂
∂x
, I(6) = −sL+

(α1x+α2)
α1

ẋ,

ξ(7) = y ∂
∂t

+ t ∂
∂y
, I(7) = 2eG(tẏ − yṫ),

ξ(8) = z ∂
∂t

+ t ∂
∂z
. I(8) = 2eG(tż − zṫ).

Here, ξ(5) is a proper Noether symmetry, ξ(6) is a Noether symmetry corre-

sponding to a homothetic vector (α1x+α2)
α1

∂
∂x

and ξ(7) and ξ(8) are additional

KVFs. This metric is a special case of the metric 7a, given in Table 4.2. The

metric of this branch can be transformed to the metric (60) of Ref. [121] by

taking α1 = 1
a

and α2 = 0.

4.3.7 Branch 9

In branch 9, the pivots are p1 6= 0, p2 = p6 = 0, p7 6= 0 and p8 6= 0, which

give H = Const. = β. This branch produces two metrics, admitting 7 and

8-dimensional Noether algebras. In both cases, five Noether symmetries are

same as given in the set N5, while the extra two and three symmetries along

with their conserved forms are given in Table 4.14. For the first metric,

ξ(5) and ξ(6) are proper Noether symmetries. The second metric admits one

Noether symmetry corresponding to a homothetic vector x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
,

while ξ(6) and ξ(7) are proper Noether symmetries. The metric 8a is a special
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case of the metric 5d, presented in Table 4.1, admitting the same HVF.

One can see that the metric 7a is same as the metric (40) of Ref. [121], while

the metric (47) in Ref. [121] can be recovered from the metric 8a by setting

a = 2− 4c3
c1

and c2 = 0.

4.3.8 Branch 10

The constraints of this branch are p1 6= 0, p7 6= 0 and p2 = p6 = p8 = 0,

which give H = c1 6= 0. This case is splitted into two sub-cases depending

upon whether G′′ 6= 0 or G′′ = 0. In both cases we have obtain nine Noether

symmetries. The obtained nine Noether symmetries, in first case are subject

to the condition eGG′′ = λ, where λ is some constant. However, in second

case we also get the explicit form of the metric function G as G = c2x + c3.

Moreover, the metric of this second case is same as the metric 6b given in

Table 4.5, admitting six KVFs. The extra symmetries and their conservation

laws for both cases are given in Table 4.15. For both metrics, ξ(5) and ξ(6)

are KVFs, while ξ(7) and ξ(8) are proper Noether symmetries. The metrics

(54- 55) of Ref. [121] are the special case of the metric 9(i), while the metric

9(ii) can be transformed to the metric (52) of Ref. [121] by taking c1 = 1
a

and c2 = 0.

In case of metric 9(i), we have ρ = p|| = 0 and p⊥ = G′′ + G′2. The metric

is physically realistic with the non-negative energy density and the bounds

for different energy conditions can be found by using these values in (2.7.1).

For model 9(ii), the physical interpretation is already given in the previous

section.

95



T
ab

le
4.

15
:

M
et

ri
cs

a
d

m
it

ti
n

g
n

in
e

N
o
et

h
er

S
y
m

m
et

ri
es

N
o
.

M
et

ri
cs

N
o
et

h
er

S
y
m

m
et

ry
g
en

er
a
to

rs
In

v
a
ri

a
n
ts

9
(i

)
eG
G
′′

=
λ
,

ξ (
5
)

=
−

G
′

√
2
λ

si
n
√ λ 2

t
∂ ∂
t

I (
5
)

=
√ 2 λ

si
n
√ λ 2

tP
′ e
G
ṫ
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ż

+
z
),

9
(i

i)
H

=
c 1
,

ξ (
5
)

=
(−
e−
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.
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4.3.9 Branch 11

In branch 11, we have p1 6= 0 and p2 = p6 = p7 = 0. These constraints give

G = ln(c1x+c2)2 and H = c3, where c1 6= 0, which is a flat metric having zero

curvature. Using these values to solve the system of determining equations

(5.3.2)-(5.3.16), we obtain 17-dimensional Noether algebra containing the five

minimum Noether symmetries, already given in the set N5 and the remaining

twelve symmetries with their conserved forms are given in Table 4.16.

Here, ξ(5) corresponds to a homothetic vector 1
α1

(α1x + α2) ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
,

ξ(6)..., ξ(11) are the additional KVFs and ξ(12)..., ξ(16) represent proper Noether

symmetries. One can see that these six additional KVFs and one proper

homothety are same as given in Table 4.3 of metric 11a. The metric of this

branch is missing in Ref. [121].

4.3.10 Branch 12

The constraints of branch 12 are p1 = 0, p3 6= 0 and p6 6= 0. Since p1 = 0,

so G = Const., where β 6= 0. The calculation of this branch is divided into

three sub-cases depending upon the value of H. In this way we have obtained

three different metrics, admitting six, seven and eight Noether symmetries.

The extra one, two and three symmetries for these metrics along with their

conserved forms are given in Table 4.17. The exact form of these three metrics

are also presented in the same table. For the metric 6a, ξ(5) is a proper

Noether symmetry. For the metric 7a, ξ(5) corresponds to a homothetic

vector, given by t ∂
∂t

+ x ∂
∂x

and ξ(6) is a proper Noether symmetry, while for

the metric 8a, ξ(5) and ξ(6) are proper Noether symmetries, while ξ(7) is a
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Table 4.16:

Noether Symmetry generators Invariants

ξ(5) = s ∂
∂s

+ 1
G′ ∂x + 1

2
(y ∂
∂y

+ z ∂
∂z

); F = − y
2+z2

2
, I(5) = −sL+ 2

G′ ẋ+ yẏ + zż + y2+z2

2
,

ξ(6) = ec1t
(
ze−G ∂

∂t
− z ∂

∂x
+ 1
G′

∂
∂z

)
, I(6) = −ec1t

(
2zṫ+ 2zẋ− 2

G′ e
G ż
)
,

ξ(7) = e−c1t
(
−ze−G ∂

∂t
− z ∂

∂x
+ 1
G′

∂
∂z

)
, I(7) = e−c1t

(
2zṫ− 2zẋ+ 2

G′ e
G ż
)
,

ξ(8) = ec1t
(
ye−G ∂

∂t
− y ∂

∂x
+ 1
G′

∂
∂y

)
, I(8) = −2ec1t

(
yṫ+ ẋ− eG

G′ ẏ
)
,

ξ(9) = e−c1t
(
−ye−G ∂

∂t
− y ∂

∂x
+ 1
G′

∂
∂y

)
, I(9) = 2e−c1t

(
y ṫ− yẋ− eG

G′ ẏ
)
,

ξ(10) = 1
c1
ec1t( ∂

∂x
− e−G ∂

∂t
), I(10) = 2 1

c1
ec1t(ẋ+ ṫ),

ξ(11) = − 1
c1
e−c1t( ∂

∂x
+ e−G ∂

∂t
), I(11) = 1

c1
e−c1t(ṫ− ẋ).

ξ(12) = s2

2
∂
∂s

+ s
2G′

∂
∂x

+ s
2
y ∂
∂y

I(12) = − s
2

2
L+ s

G′ ẋ+ syẏ

+ s
2
z ∂
∂z

; F = −(x
2

2
+ α2
α1G′

), +szż + x2

2
+ α2
α1G′

,

ξ(13) = s
α1

(−e−G ∂
∂t

+ ∂
∂x

), I(13) = 2s
α1

(ṫ+ ẋ),

ξ(14) = − s
α1

(e−G ∂
∂t

+ ∂
∂x

), I(14) = 2s
α1

(ṫ− ẋ),

ξ(15) = s ∂
∂y

; F = −2y, I(15) = 2(sẏ + y),

ξ(16) = s ∂
∂z

; F = −2z. I(16) = 2(sż + z).

Noether symmetry corresponding to a homothetic vector t ∂
∂t

+ x ∂
∂x
.

The metric 7a is same as the metric 5a(ii), presented in Table 4.1, admitting

the same five HVF, where as the metric 8a is same as the metric 5b(ii), given

in Table 4.1.

One can easily see that the metric 6a is same as the metrics (22-23) of

Ref. [121]. The metric 7a can be transformed to the metric (38) of Ref. [121]

by choosing α1 = 1
d

and a = 2− 4c3
α1
, while the metric 8a gives the exact form

of the metric (45) of Ref. [121] by choosing γ1 = 1
a
.
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∂ ∂
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=

2
ln

(γ
1
x

),
F

=
t2
−
x
2

2
,

+
(
x
2
−
t2

2
),

w
h

er
e
γ
1
6=

0
.

ξ (
6
)

=
−
s
∂ ∂
t
;
F

=
−

2
t.

I (
6
)

=
2
(s
ṫ

+
t)
.

ξ (
7
)

=
s
∂ ∂
s

+
1 2
t
∂ ∂
t

+
x
∂ ∂
x
.

I (
7
)

=
−
sL
−
t
ṫ

+
x
ẋ
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4.3.11 Branch 13

The constraints of this branch are p1 = 0, p6 6= 0 and p3 = 0. These conditions

give the metric functions G = c1 and H = c2x+c3, where c2 6= 0. This metric

admits nine Noether symmetries in which five are same as given in the set

N5, while the remaining four symmetries along with their conservation laws

are given in Table 4.18. The metric of this case is same as the metric 7a

given in Table 4.6, admitting the same additional KVFs, denoted by ξ(5), ξ(6)

and ξ(7), while ξ(8) represent a proper Noether symmetry. The metric of this

branch can be transformed to the metric (49) of Ref. [121] by taking c2 = 1
a

and c3 = 0. The physical interpretation of this metric is already given in the

section of HVFs.

4.3.12 Branch 14

For this branch, we have p1 = p6 = 0, which give G = H = Const. Thus

the metric (4.1.1) reduces to the well known Minkowski metric, admitting

17-dimensional Noether algebra. Five Noether symmetries of this metric are

same as given in the set N5, while the remaining twelve symmetries and their

conserved forms are given in Table 4.19. Here, ξ(5) corresponds to homothety,

given by t ∂
∂t

+x ∂
∂x

+y ∂
∂y

+z ∂
∂z
, while ξ(6), . . . ,ξ(11) are the additional KVFs.

Moreover, ξ(12), ..., ξ(16) are proper Noether symmetries. The six additional

KVFs and one proper homothety obtained here are same as given in Table

4.3.
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ṫ
+
t)
.

w
h
er
e
w
e
h
av
e
ch
os
en

c 2
=

1.

101



T
ab

le
4.

19
:

M
et

ri
c

a
d

m
it

ti
n

g
se

v
en

te
en

N
o
et

h
er

S
y
m

m
et

ri
es

N
o
et
h
er

S
y
m
m
et
ry

ge
n
er
at
o
rs

In
va
ri
a
n
ts

ξ (
5
)
=

2s
∂ ∂
s
+
t
∂ ∂
t
+
x
∂
x
+
y
∂ ∂
y
+
z
∂ ∂
z
.

I (
5
)
=
−
2s
L
−

2
(t
ṫ
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ṫ)
,

ξ (
9
)
=
x
∂ ∂
y
−
y
∂ ∂
x
,

I (
9
)
=

2
(x
ẏ
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ẋ
−
y
ẏ
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4.4 Summary

In this chapter, we have studied HVFs, CVFs and Noether symmetries of

static plane symmetric spacetimes using Rif tree approach. Instead of di-

rectly integrating the set of determining equations, an algorithm is developed

in Maple which reduces these equations to the simplified form and yields a

Rif tree and a list of pivots. The set of determining equations is then solved

for the conditions of all branches of the Rif tree.

Out of the 14 branches of the Rif tree for HVFs, two branches give the min-

imum four KVFs, while the remaining produce some static plane symmetric

metrics possessing proper homothetic algebras of dimension 5, 7 and 11. Our

classification also shows that the Killing algebra for these spacetimes is 4, 5,

6, 7 and 10-dimensional.

For a complete classification of static plane symmetric spacetimes via CVFs,

we have categorized our results branch-wise, because some branches of the

Rif tree yield sub-cases. Out of 12 branches of the Rif tree for CVFs, we

have only considered those cases where the spacetime is non-conformally

flat. Solving the conformal symmetry equations for each branch, we have

concluded that non-conformally flat static plane symmetric spacetimes pos-

sess at most three proper CVFs along with four minimum KVFs. In some

cases, the CVFs also reduce to HVFs and KVFs, as the conformal factor in

such cases becomes constant or zero.

Like CVFs, we have also categorized our results for Noether symmetries

branch-wise. Out of 14 branches of the Rif tree, 3 give the minimal set of

Noether symmetries. The remaining branches yield 6, 7, 8, 9, 10, 11 and 17

Noether symmetries.
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Comparing our results (HVFs and Noether symmetries) with those obtained

by conventional method, we have observed that the Rif approach gives the

same algebras of KVFs, HVFs and Noether symmetries with more general-

ized metrics than those produced by direct integration technique. Also we

observed that some metrics were missing in the earlier study by direct inte-

gration technique.

For CVFs, we compared our results with those of Ref. [51] and found the

same dimensional algebras of KVFs and HVF. Moreover, through Rif ap-

proach we also obtained proper CVFs which were not listed in Ref. [51].

To add some physical implications, we have found the energy-momentum

tensor for all the obtained metrics and it is seen that all the metrics aris-

ing during our classification are anisotropic or perfect fluid models satisfying

different energy conditions.
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Chapter 5

Lie and Noether Symmetries of

LRS Bianchi type I Spacetimes

In this chapter, we discuss Lie and Noether symmetries of LRS Bianchi type

I spacetimes. Rather than using direct integration technique, first a Rif

algorithm is developed in Maple which reduces the symmetry equations to

the simplified form. Consequently, we get a Rif tree and list of pivots. Like

the previous chapters, the integration of the system of symmetry equations

is carried out for every branch of the Rif tree for obtaining the final form of

homothetic, conformal and Noether symmetries.

5.1 Homothetic Symmetries

In this section, we explore HVFs of LRS Bianchi type I spacetimes. This work

has been published in the journal ”Theoretical and Mathematical Physics”
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[120]. The metric of LRS Bianchi type I spacetimes is given by:

ds2 = −dt2 +G2 dx2 +H2 [dy2 + dz2], (5.1.1)

where G = G(t) 6= 0 and H = H(t) 6= 0. Following are the set of minimum

KVFs for the above metric :

K4 =

{
∂

∂x
,
∂

∂y
,
∂

∂z
, z
∂

∂y
− y ∂

∂z

}
.

The non-zero components of energy-momentum tensor for the metric (5.1.1)

are found to be:

T00 =
2G′H ′

GH
+
H ′2

H2
,

T11 = −G
2

H2

(
2HH ′′ +H ′2

)
,

T22 = T33 = −H
G

(GH ′′ +HG′′ +G′H ′) . (5.1.2)

For different sources, the above components take specific form. For example,

for an anisotropic fluid, these components take the form:

T00 = ρ, T11 = G2p||, T22 = T33 = H2p⊥, (5.1.3)

where ρ, p|| and p⊥ respectively represent the energy density and parallel and

perpendicular pressures of the fluid. Moreover, if p|| = p⊥, then the above

components represent a perfect fluid. Comparing Eqs. (5.1.2) and (5.1.3),

we get:

ρ =
2G′H ′

GH
+
H ′2

H2
,

p|| = −
(

2H ′′

H
+
H ′2

H2

)
,

p⊥ = −
(
H ′′

H
+
G′′

G
+
G′H ′

GH

)
. (5.1.4)
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Using the metric (5.1.1) in Eq. (2.5.3), we obtain the following set of deter-

mining equations:

ξ0
,t = α, (5.1.5)

ξ0
,x −G2 ξ1

,t = 0, (5.1.6)

ξ0
,y −H2 ξ2

,t = 0, (5.1.7)

ξ0
,z −H2 ξ3

,t = 0, (5.1.8)

G′ ξ0 +G ξ1
,x = αG, (5.1.9)

G2 ξ1
,y +H2 ξ2

,x = 0, (5.1.10)

G2 ξ1
,z +H2 ξ3

,x = 0, (5.1.11)

G′ ξ0 +H ξ2
,y = αH, (5.1.12)

ξ2
,z + ξ3

,y = 0, (5.1.13)

H ′ ξ0 +H ξ3
,z = αH. (5.1.14)

The same approach which we have used in the the previous chapters for

finding the HVFs of Kantowski-Sachs and static plane symmetric spacetimes

is used here for investigating the HVFs of LRS Bianchi type I spacetimes.

As a result of the Maple algorithm for the above set of equations, we obtain

the Rif tree given in Fig. 5.1 and the following pivots:

p1 = H ′,

p2 = HH ′′ −H ′2,

p3 = GH ′ +G′H,

p4 = GH ′′ −G′′H,

p5 = GH ′ −G′H,
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Figure 5.1: Rif Tree for HVFs

p6 = GG′′ −G′2,

p7 = GH ′2 −H2G′′,

p8 = G′,

p9 = G′′,

p10 = GG′′′ −G′G′′.
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We present a complete classification of LRS Bianchi type I spacetimes via

HVFs by solving the system of Eqs. (5.1.5)-(5.1.14) for all branches of the

Rif tree given in Fig. 5.1. This procedure also gives the classification of these

spacetimes via KVFs, since in some cases the homothety constant α vanishes

and the solution of Eqs. (5.1.5)-(5.1.14) produces no proper homothety. Such

cases are labeled by the branches 7, 8, 9 and 11 in the Rif tree. Moreover,

the branches of the Rif tree labeled by 5 and 6 yield minimum four KVFs.

These cases are excluded from the current classification. The results of the

remaining branches are summarized in the forthcoming sections. We also

compare our results with the existing results of Ref. [122] where HVFs were

obtained by directly integrating the homothetic symmetry equations for these

spacetimes.

5.1.1 Five HVFs

Four branches of the Rif tree, namely 1, 2, 4 and 10 give 5-dimensional

algebra of HVFs with one proper homothety and four minimum KVFs. In

Table 5.1, we present the exact form of the metrics of all these cases along

with their proper HVFs.

Comparing these results with the results of direction integration technique

presented in Ref. [122], one can easily see that the metrics 5a(ii), 5b(i-ii)

and 5c(i-ii) were not listed in Ref. [122]. However, the metrics 5a(i) and 5d

obtained here are same as presented in Ref. [122].

Both the models 5a(i) and 5a(ii) represent anisotropic fluids. For model 5a(i),
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we have:

ρ =
3α2 + c2

3 − 4c3α− 2c2α + 2c2c3

(αt+ c1)2
,

p|| = −α
2 + 3c2

3 − 4c3α

(αt+ c1)2
,

p⊥ = −α
2 + c2

3 + c2
2 − 2c3α− 2c2α + c2c3

(αt+ c1)2
.

One may use these values in the inequalities given in (2.7.1) to obtain the

bounds for energy conditions.

For model 5a(ii), we obtain ρ = (α−c3)2

(αt+c1)2
, p|| = −α2+3c23−4αc3

(αt+c1)2
and p⊥ =

c3(α−c3)
(αt+c1)2

. The energy density is clearly non-negative, so the model is physically

meaningful. The SEC, WEC and NEC are satisfied if c3(α − c3) > 0 and

α(α − c3) > 0, while the DEC requires c3(α − c3) > 0, α(α − c3) > 0 and

(α− c3)(α− 2c3) ≥ 0.

Similarly, for the metric 5b(i), we have ρ =
α2−c22

(αt+c1)2
, p|| = −α2+3c22−4αc2

(αt+c1)2
and

p⊥ = c2(α−c2)
(αt+c1)2

. These quantities satisfy the SEC and NEC if c2(α−c2) > 0 and

α2 − 2c2
2 + αc2 ≥ 0. Moreover, the WEC is satisfied if α > c2, c2(α− c2) > 0

and α2 − 2c2
2 + αc2 ≥ 0, while the DEC requires α > c2, c2(α − c2) > 0,

(α− c2)2 ≥ 0, α2 − 2c2
2 + αc2 ≥ 0 and α(α− c2) > 0.

The model 5b(ii) represents an anisotropic fluid with ρ = −p|| = γ21
(γ1t+γ2)2

and p⊥ = 0. Here, all the energy conditions are identically satisfied. More-

over, the energy density is non-negative ,so the model is physically realistic.

For the metric 5c(i), we found ρ = − (α−c2)2

(αt+c1)2
, p|| = −α2+3c22−4αc2

(αt+c1)2
and

p⊥ = − (α−c2)2

(αt+c1)2
. Here, the energy density is negative, so it clearly violates the

DEC and WEC. Also the WEC and NEC are violated because ρ+ p⊥ < 0.

For the model 5c(ii), we have ρ = α2
1

(3α−2c1)
α(α1t+α2)2

, p|| = − α2
1

(α1t+α2)2
and

p⊥ = −α2
1

(α2+c21−4αc1)

α2(α1t+α2)2
. This model is to be physically realistic, provided that,
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3α−2c1
α
≥ 0. Moreover, one may use these values in the inequalities given in

(2.7.1) to obtain the bounds for energy conditions like previous cases.

Finally, for the metric 5d, we have ρ = p|| = 0 and p⊥ = c2(α−c2)
(αt+c1)2

. The

dominant energy condition is failed for these values, while all other energy

conditions are satisfied provided that c2(α− c2) > 0.

5.1.2 Seven HVFs

For branch 3, we have p1 6= 0, p2 6= 0, p3 6= 0 and p4 = p5 = 0. The constraint

p5 = 0 gives G = H. The calculation of this branch is divided into two cases,

the first giving six KVFs, which can be seen in the section of KVFs (Section

4.1.5). The second case leads to two sub-cases, both giving 7-dimensional

homothetic algebra. The metrics of both cases along with their components

of vector field and the additional symmetries other than the minimum ones

are presented in Table 5.2, where ξ(5) represents a proper HVF, while ξ(6)

and ξ(7) are two additional KVFs.

The metric 7a is same as listed in Ref. [122], while the metric 7b is missing

there.

The model 7a represents a perfect fluid with ρ = 3(α−c2)2

(αt+c1)2
and p|| = p⊥ =

−α2−3c22+4αc2
(αt+c1)2

. The model is physically realistic as the energy density is clearly

positive. Here the WEc and NEC are satisfied if α(α − c2) > 0. Along

with this condition, if the inequality c2(α − c2) > 0 also holds, then the

SEC is satisfied. Finally, the DEC holds provided that α(α − c2) > 0 and

(α− c2)(2α− 3c2) ≥ 0.

The model 7b represents a perfect fluid with ρ =
3β2

1

(β1t+β2)2
and p|| = p⊥ =
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Table 5.2: Metrics admitting seven HVFs

No. Metric Vector Field Components Additional Symmetries

7a G = (αt+ c1)1−
c2
α , ξ0 = αt+ c1, ξ(5) = t ∂

∂t
,

H = G, ξ1 = c2x− c3y − c4z + c5, ξ(6) = y ∂
∂x
− x ∂

∂y
,

where α 6= c2 ξ2 = c2y + c3x− c6z + c7, ξ(7) = z ∂
∂x
− x ∂

∂z
.

and α 6= 0. ξ3 = c2z + c4x+ c6y + c8.

7b G = β1t+ β2, ξ0 = G
β1
α, ξ(5) = G

β1

∂
∂t
,

H = G, ξ1 = −c1y − c2z + c3, ξ(6), ξ(7) are same for the metric 7a.

where β1 6= 0. ξ2 = c1x− c4z + c5,

ξ3 = c2x+ c4y + c6.

− β2
1

(β1t+β2)2
. The energy density is clearly positive so the model is physically

meaningful and hence all the energy conditions are identically satisfied here.

5.1.3 Eleven HVFs

The branches 12 and 13 of the Rif tree yield 11-dimensional homothetic al-

gebras. In branch 13, both the metric functions G and H become constant

and hence the LRS Bianchi type I metric reduces to the well known flat

Minkowski metric. This metric admits eleven HVFs which are already dis-

cussed in chapter 4. This metric was also presented in Ref. [122].

For branch 12, we have G = β1t+ β2 and H = β3, where β1 6= 0 and β3 6= 0.

The components of HVFs for this metric along with the additional symme-

tries other than the minimum ones are presented in Table 5.3, where ξ(5)
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denotes a proper HVF ,while ξ(6), ..., ξ(11) are six additional KVFs. One can

easily see that this metric is not given in Ref. [122]. Moreover, the energy-

Table 5.3: Metric admitting eleven HVFs

Vector Field Components Additional Symmetries

ξ0 = y(c1e
β1x − c2e−β1x) + z(c3e

β1x − c4e−β1x) ξ(5) =
G
β1

∂
∂t

+ y ∂
∂y

+ z ∂∂z .

+ 1
β1
(c5e

β1x − c6e−β1x) + α
β1
(β1t+ β2), ξ(6) = eβ1x(y ∂∂t −

y
G

∂
∂x

+ G
β1

∂
∂y
),

ξ1 = − 1
β1t+β2

[
y(c1e

β1x + c2e
−β1x) ξ(7) = −e−β1x(y ∂∂t +

y
G

∂
∂x

+ G
β1

∂
∂y
),

+z(c3e
β1x + c4e

−β1x) + 1
β1
(c5e

β1x + c6e
−β1x)

]
+ c7, ξ(8) = eβ1x(z ∂∂t −

z
G

∂
∂x

+ G
β1

∂
∂z
),

ξ2 = αy + β1t+β2

β1
(c1e

β1x − c2e−β1x)− c8z + c9, ξ(9) = −e−β1x(z ∂∂t +
z
G

∂
∂x

+ G
β1

∂
∂z
),

ξ3 = αz + β1t+β2

β1
(c3e

β1x − c4e−β1x) + c8y + c10. ξ(10) =
1
β1
eβ1x( ∂∂t −

1
G

∂
∂x
),

ξ(11) = − 1
β1
e−β1x( ∂∂t +

1
G

∂
∂x
).

momentum tensor for both of these metrics vanishes and hence they represent

vacuum solutions satisfying all the energy conditions.

5.1.4 Five KVFs

For the metric of branch 7, the homothety constant vanishes and hence there

is no proper HVF in this case. The number of KVFs turned out to be five in

which four are the minimum KVFs, while the fifth KVF is given in Table 5.4

along with the exact form of the metric and the components of the vector

field.
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Table 5.4: Metric admitting five KVFs

Metric Vector Field Components Additional KVF

G = ec1t, ξ0 = − c3
c2
, ξ(5) = − 1

c2

∂
∂t

+ c1
c2
x ∂
∂x

H = ec2t, ξ1 = c1
c2
c3x+ c4, +y ∂

∂y
+ z ∂

∂z
.

where c1 > 0, ξ2 = c3y − c4z + c5,

c2 > 0 ξ3 = c3z + c4y + c6.

and c1 6= c2.

For the above model, being an anisotropic fluid, we have found ρ = 2c1c2+c2
2,

p|| = −3c2
2, and p⊥ = −(c2

1 + c2
2 + c1c2). As c1 and c2 are positive, so clearly

ρ > 0. Thus the model is physically realistic. The NEC and WEC are

satisfied if c2(c1−c2) > 0 and c1(c2−c1) > 0. The DEC requires c2(c1−c2) > 0,

c2(c1 + 2c2) ≥ 0, c1(c2 − c1) > 0 and c2
1 + 2c2

2 + 3c1c2 ≥ 0, while the SEC

violates.

5.1.5 Six KVFs

Like branch 7, the metric given by branch 11 also does not possess any

proper HVF, while it admits a 6-dimensional algebra of KVFs. In Table 5.5,

we present the exact form of this metric and its additional two KVFs.

Here, we have also listed the exact form of the metric given by a sub-case of

branch 3 and its additional two KVFs.

The metric 6a represents an anisotropic fluid with ρ = p|| = 0 and p⊥ =

−k2. The energy density is clearly non-negative, so the model is physically
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meaningful. All the energy conditions are failed for this model.

Similarly, the metric 6b represents a perfect fluid with:

ρ =
3H ′2

H2
,

p|| = p⊥ = −(
2H ′′

H
+
H ′2

H2
).

The energy conditions for this metric are satisfied conditionally and can be

easily simplified by using the above expression in (2.7.1).

5.1.6 Seven KVFs

The branch 8 of the Rif tree produces a metric admitting seven KVFs, out

of which four are the minimum and the extra three KVFs are given in Table

5.6.

Table 5.6: Metric admitting seven KVFs

Metric Vector Field Components Additional KVFs

G = Const., ξ0 = 1
k

(−c1y + c2z − c3), ξ(5) = − y
k
∂
∂t

+

(
e−2kt

2k2
+ y2−z2

2

)
∂
∂y

+ yz ∂
∂z
,

H = ekt, ξ1 = c4, ξ(6) = z
k
∂
∂t

+

(
−e−2kt

2k2
+ y2−z2

2

)
∂
∂z
− yz ∂

∂y
,

where k > 0 ξ2 = c3y + c1
2k2

e−2kt + c1
2

(y2 − z2) ξ(7) = − 1
k
∂
∂t

+ y ∂
∂y

+ z ∂
∂z
.

−c2yz − c5z + c6,

ξ3 = c3z − c2
2k2

e−2kt + c2
2

(y2 − z2)

+c1yz + c5y + c7.

For this metric, being an anisotropic fluid, the values of ρ, p|| and p⊥ are

found to be ρ = k2, p|| = −3k2 and p⊥ = −k2. Clearly ρ > 0, so the model is

117



physically realistic. All other energy conditions are violated here.

5.1.7 Ten KVFs

The metric of branch 9 possesses 10-dimensional Killing algebra, containing

the 4-dimensional minimal algebra as a sub algebra and the six additional

KVFs are presented in Table 5.7.

The metric of this case is a flat metric representing a perfect fluid with

ρ = 3k2 and p|| = p⊥ = −3k2. The energy density is positive, showing that

the model is physically realistic. For this model, the SEC is violated, while

the WEC, NEC and DEC are satisfied.

5.2 Conformal Symmetries

For conformal symmetry, we use the metric (5.1.1) in Eq. (2.5.3) and get the

same set of equations as given in Eqs. (5.1.5)-(5.1.14) with α = α(t, x, y, z).

We have found the following non-zero components of Weyl tensor for the

metric (5.1.1):

C1
212 = C1

313 =
Γ

6G
, C1

010 = C0
220 =

Γ

3GH2
,

C2
020 = C3

030 = − Γ

6GH
, C2

323 = − Γ

3G
, (5.2.1)

where Γ = GHH ′′ − GH ′2 − G′′H2 + G′HH ′. Thus the LRS Bianchi type I

spacetime is conformally flat if and only if Γ = 0.

To explore a complete list of LRS Bianchi type I metrics admitting conformal

symmetries, we need to solve the system of equations (5.1.5)-(5.1.14) with
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α = α(t, x, y, z). For the solution of these equations, we use the same Rif

tree approach as we have used in the previous section for finding HVFs. As

a result of the Rif algorithm, we obtain the Rif tree given in Fig. 5.2 and the

following list of pivots:

p1 = G′,

p2 = HH ′′ −H ′2,

p3 = GH ′ −G′H,

p4 = GG′′′ −G′G′′,

p5 = H2G′′ −GH ′2,

p6 = H ′,

p7 = GG′′ −G′2,

p8 = G′(GH ′ −G′H)(GH ′ +G′H),

p9 = G′(GH ′ −G′H).

To get a complete classification, we solve the set of conformal symmetry

equations for each branch of the Rif tree. Like the previous chapters, we

only focus on those cases which give non-conformally flat metrics. If Γ = 0,

then the spacetime admits 15-dimensional conformal algebra. Such cases

are labeled by the branches 2, 9, 10, 12 and 13. Further, there are some

other branches of the Rif tree which give two sub-cases, depending upon

whether Γ = 0 or Γ 6= 0. Again, here we have omitted the cases where Γ = 0.

Moreover, the branches 1, 4 and 7 give the minimum four KVFs. Such cases

are not part of our present discussion, while the results of the remaining cases

yield one and two proper CVFs as summarized in the forthcoming sections.
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Figure 5.2: Rif Tree for CVFs

5.2.1 Branch 3

The constraints of this branch are p1 6= 0, p2 = 0 and p4 6= 0. The condition

p2 = 0 gives HH ′′ − H ′2 = 0. This yields two sub-cases depending upon

whether H ′ 6= 0 or H ′ = 0. When H ′ 6= 0, the solution of equation HH ′′ −

H ′2 = 0 gives H = ekt, where k > 0. Further simplification of the conformal

symmetry equations by using this value of H gives rise to two sub-cases,

one giving the minimum four KVFs, while the second sub-case produces a

conformally flat metric admitting 15 CVFs.
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When H ′ = 0, we get H = β, where β 6= 0. Solving the system of conformal

symmetry equations, we obtain G = (c1t+ c2)
1− c3

c1 , where c1 6= 0, c3 6= 0 and

c1 6= c3 and the CVFs in this case are reduced to HVFs which are same as

given for the metric 5d in Table 5.1, with c1 = α.

5.2.2 Branch 5

In branch 5, we have, p1 6= 0, p2 = p4 = 0, p5 6= 0, p6 6= 0 and p7 = 0.

Simplification of these constraints gives the metric functions G = ec1t and

H = ec2t, where c1 > 0, c2 > 0, c1 6= c2 and c1 6= −c2. Using these values

of the metric functions, the solution of conformal symmetry equations gives

α = 0 and hence the CVFs are reduced to KVFs. The obtained five KVFs

are same as given in Table 5.4 of the previous section.

5.2.3 Branch 6

The constraints for this branch are p1 6= 0, p2 = p4 = 0, p5 6= 0 and p6 = 0,

which give G = β1e
kt + β2e

−kt and H = γ, where k > 0 and γ 6= 0. The

solution of conformal symmetry equations for these values of G and H gives

α = 0, showing that there exists no proper CVF, and we have obtained six

KVFs which are same as give in Table 5.5 in the previous section.

5.2.4 Branch 8

In branch 8, we have p1 6= 0, p2 = p4 = p5 = p8 = 0 and p9 6= 0. Simplification

of these constraints gives G = e−kt and H = ekt, where k 6= 0. In this branch,
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the CVFs are reduced to KVFs, i.e. α = 0. The obtained five KVFs are same

as given in Table 5.4 with c1 = −c2.

5.2.5 Branch 11

The constraints of this branch are p1 = 0, p2 6= 0 and p6 6= 0, which give

G = β, where β 6= 0 and H ′ 6= 0, HH ′′ − H ′2 6= 0. The calculation of this

branch is divided into two cases. One of the cases again splits into two sub-

cases, the first giving the minimum KVFs, while the second sub-case gives a

metric same as the metric 5a(ii), given in Table 5.1. For this metric, there

exist no proper CVF and the CVFs are reduced to HVFs, which are already

presented in Table 5.1. Moreover, the second case gives six CVFs, which

include four minimum KVFs and two proper CVFs, given in Table 5.8.

Table 5.8: Metrics admitting six CVFs

Metric Vector Field Components Proper CVFs

G = β, ξ0 = H
k

(
c1 sinh(kx) + c2 cosh(kx)

)
, ξ(5) = H

k
sinh(kx) ∂

∂t

H = α1ekt + α2e−kt, ξ1 = H′

k2

(
c1 cosh(kx) + c2 sinh(kx)

)
+ c3, +H′

k2
cosh(kx) ∂

∂x
,

where k > 0 ξ2 = −c4z + c5, ξ(6) = H
k

cosh(kx) ∂
∂t

β 6= 0, ξ3 = c4y + c6, +H′

k2
sinh(kx) ∂

∂x
.

α1 6= 0 and α2 6= 0. α = H′

k

(
c1 sinh(kx) + c2 cosh(kx)

)
.

For the metric of this branch, we have ρ = k2(α1ekt−α2e−kt)2

(α1ekt+α2e−kt)2
, p⊥ = −k2 and

p|| =
−k2(3α2

1e
2kt+3α2

2e
−2kt+2α1α2)

(α1ekt+α2e−kt)2
. These quantities clearly show that none of

the energy conditions is satisfied except that energy density is non-negative,
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giving a physically meaningful model.

Since there is no published work on the conformal symmetries of LRS Bianchi

type I via direct integration technique, so we could not compare the results

obtained by Rif tree approach with those of direct integration technique.

5.3 Noether Symmetries

We consider the following Lagrangian corresponding to the metric (5.1.1) of

LRS Bianchi type I spacetimes for the investigation of Noether symmetries:

L = −ṫ2 +G2(t)ẋ2 +H2(t)(ẏ2 + ż2). (5.3.1)

For this Lagrangian, the minimal set of Noether symmetries is:

N5 =

{
∂

∂s
,
∂

∂x
,
∂

∂y
,
∂

∂z
, z
∂

∂y
− y ∂

∂z

}
.

We have obtained the following set of determining equations by using the

Lagrangian (5.3.1) in Eq. (2.6.1):

F,s = η,t = η,x = η,y = η,z = 0, (5.3.2)

2ξ0
,t = η,s, (5.3.3)

2G′ξ0 + 2Gξ1
,x = Gη,s, (5.3.4)

2H ′ξ0 + 2Hξ2
,y = Hη,s, (5.3.5)

2H ′ξ0 + 2Hξ3
,z = Hη,s, (5.3.6)

ξ0
,x −G2ξ1

,t = 0, (5.3.7)

ξ0
,y −H2ξ2

,t = 0, (5.3.8)
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ξ0
,z −H2ξ3

,t = 0, (5.3.9)

G2ξ1
,y +H2ξ2

,x = 0, (5.3.10)

G2ξ1
,z +H2ξ3

,x = 0, (5.3.11)

ξ2
,z + ξ3

,y = 0, (5.3.12)

2ξ0
,s = −F,t, (5.3.13)

2G2ξ1
,s = F,x, (5.3.14)

2H2ξ2
,s = F,y, (5.3.15)

2H2ξ3
,s = F,z. (5.3.16)

To find the Noether symmetries, these equations are analyzed through a

Maple algorithm, which produces the Rif tree, given in Fig. 5.3 and the list

of pivots.

p1 = G′,

p2 = G′′,

p3 = H ′′,

p4 = H ′2 −HH ′′,

p5 = G′H −GH ′,

p6 = G′2 −GG′′,

p7 = H ′,

p8 = G′G′′ −GG′′′.

To achieve a complete classification, the Noether determining equations are

solved for each branch of the Rif tree. As a result, we have obtained 5,
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Figure 5.3: Rif Tree for Noether Symmetries

6, 7, 8, 9, 11 and 17-dimensional Noether algebras. We omit those cases

that give the minimal set of Noether symmetries, given in the set N5. Such

cases are labeled by branches 3, 9 and 10 in the Rif tree. The cases which

give symmetries other than the minimal set are discussed in the forthcoming

sections. Here, we also compare our results with those of Ref. [85], where

the same spacetimes were classified according to their Noether symmetries
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by direct integration technique.

5.3.1 Branch 1

The constraints of this branch are p1 6= 0, p2 6= 0, p3 6= 0, p4 6= 0 and

p5 6= 0. The calculation of solving Eqs. (5.3.2)- (5.3.16) for this branch is

divided into two cases. One of the cases gives the minimal set of Noether

symmetries, given in the set N5, while the second case gives six Noether

symmetries. Out of these six, five are given in the minimal set, while one is

the extra Noether symmetry presented in Table 5.9 along with the values of

the metric functions. Clearly, this extra symmetry is a Noether symmetry

corresponding to a homothetic vector t ∂
∂t
. The metric of this branch can be

transformed to the metric (8c) of Ref. [85] by setting c1 = a, c2 = b, c3 = d

and c4 = c. The authors of Ref. [85] obtained two extra symmetries for this

metric, given by ξ(6) = x ∂
∂x
− A

Á

∂
∂t

and ξ(7) = y ∂
∂y

+ z ∂
∂z
, which seems to be

not correct.

Table 5.9: Metric admitting six Noether Symmetries

Metric Additional Noether Symmetry Invariant

G = (c1t+ 2c2)
1− 2c3

c1 , ξ(5) = s ∂
∂s

+ t
2

∂
∂t
. I(5) = −sL− t ṫ.

H = (c1t+ 2c2)
1− 2c4

c1 ,

c1 6= 0, c3 6= c4 6= 0,

c1 6= 2c3 and c1 6= 2c4.

One can see that the metric of this case is same as the metric 5a, given in
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Table 5.1, admitting the same HVF.

5.3.2 Branch 2

In branch 2, we have p1 6= 0, p2 6= 0, p3 6= 0, p4 6= 0 and p5 = 0. The

condition p5 = 0 gives G = H. Using these constraints to solve the system

of determining equations (5.3.2)-(5.3.16) yields two cases during calculation.

One of the cases gives 7-dimensional algebra of Noether symmetries, out

of which five are given in the minimal set and two are the extra Noether

symmetries. The second case gives eight Noether symmetries in which five are

the same as given in the set N5, while three are the extra Noether symmetries

given in Table 5.10.

Here, ξ(5) and ξ(6) are the additional KVFs for both metrics and ξ(7) is a

Noether symmetry corresponding to a homothetic vector t ∂
∂t

for the second

metric. The metric 7a is same as the metric (7d) presented in Ref. [85], while

for metric 8a, the obtained symmetries are same as obtained for the metric

(9i) of Ref. [85] except that an additional symmetry ξ(8) = x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
−

A

Á

∂
∂t

was also listed in Ref. [85] which seems to be wrong.

The metric 8a is same as the metric 7a given in Table 5.2, admitting seven

HVFs.

For model 7a, the metric functions are not explicitly known, we could not

find the simplified values of ρ, p|| and p⊥.

For model 8a, the physical interpretation is already given in the section of

HVFs.
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5.3.3 Branch 4

In this branch, we have p1 6= 0, p2 6= 0, p3 6= 0, p4 = p6 = 0 and p5 6= 0.

The simplification of these constraints gives G = ec1t and H = ec2t, where

c1 > 0 and c2 > 0. Using these values to solve the system of determining

equations (5.3.2)-(5.3.16), we get one extra symmetry (KVF) along with the

five minimum Noether symmetries, given in the set N5. The obtained extra

symmetry is given by ξ(5) = − 1
c2

∂
∂t

+ c1
c2
x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

with corresponding

invariant I(5) = 2
c2
ṫ+ 2c1

c2
G2xẋ+2H2(yẏ+zż). This metric can be transformed

to the metric (7c) of Ref. [85] by setting c1 = −a
b

and c2 = β. Again, the

authors of Ref. [85] have given an additional symmetry ξ(6) = x ∂
∂x

for this

metric, which is not correct.

Moreover, the metric of this branch is same as the metric presented in Table

5.4, admitting five KVFs.

5.3.4 Branch 5

For this branch, we have p1 6= 0, p2 6= 0, p3 6= 0 and p4 = p5 = p6 = 0.

The simplification of these constraints gives the metric functions G = H =

ekt, where k > 0. This metric is same as the metric presented in Table

5.7 admitting ten KVFs. Also, the same metric is listed as metric (37) in

Ref. [85]. After solving Eqs. (5.3.2)-(5.3.16) for these values of G and H,

we have obtained eleven Noether symmetries. Out of these eleven, five are

same as given in the set N5 set and six are extra symmetries (KVFs), which

along with their conserved forms are given in Table 5.11. One can see these

additional KVFs are same as listed in Table 5.7.
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5.3.5 Branch 6

For branch 6, we have p1 6= 0, p2 6= 0, p3 = 0 and p7 6= 0. The constraint

p3 = 0 givesH ′′ = 0⇒H = α1t+α2, where α1 6= 0. Solving the set of Noether

symmetry equations under these conditions, we get G = (α1t + α2)
1− 2c1

c2 ,

where c2 6= 0 and c2 6= 2c1 and six Noether symmetries are obtained. These

six symmetries include the minimal set of five Noether symmetries and one

extra Noether symmetry, given by ξ(5) = s ∂
∂s

+ α1t+α2

2α1

∂
∂t
. The corresponding

conserved form is I(5) = −sL− (α1t+α2)
α1

G2 ṫ. The metric of this branch can be

transformed to the metric (7a) of Ref. [?] by using c1 = c and c2 = b, while

in Ref. [85],the extra symmetry ξ(5) = x ∂
∂x
, seems not to be correct. Clearly,

ξ(5) is a Noether symmetry corresponding to a homothetic vector α1t+α2

α1

∂
∂t
.

One can see that the metric of this case is same as the metric 5c(ii) given in

Table 5.1, admitting same HVF. The physical interpretation of this metric

was already done in the section of HVFs.

5.3.6 Branch 7

The constraints for branch 7 are p1 6= 0, p2 6= 0, p3 = p7 = 0 and p8 6= 0. The

condition p7 = 0 gives H = β, where β 6= 0. The calculation of this branch

produces eight Noether symmetries. In Table 5.12, we present the metric of

this case along with its extra Noether symmetries, other than the minimum

ones. For both metrics, ξ(5) and ξ(6) are proper Noether symmetries, while ξ(7)

is a Noether symmetry corresponding to a homothetic vector t ∂
∂t

+ y ∂
∂y

+ z ∂
∂z

for the second metric, which is same as given in Table 5.1 for the same metric,

denoted by 5d therein. The first metric of branch 7 is same as the metric
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ż
)
−

ẏ k
2
−
e2
k
t
ẏ
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ẋ k
2

+
e2
k
t
ẋ
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(7b) of Ref. [85]. The second metric can be transformed to the metric (9h)

of Ref. [85] by setting c1 = α, c2 = b and c3 = c. The obtained symmetries

for metric 7a are same as those listed in Ref. [85]. However, an additional

KVF x∂x − A

Á

∂
∂t

is listed for metric 8a in Ref. [85], which is not correct.

Table 5.12: Metrics admitting seven and eight Noether Symmetries

No. Metric Noether Symmetry generators Invariants

7a G 6= (c1t+ c2)
1− 2c3

c1 , ξ(5) = s
β
∂
∂y

; F = 2βy, I(5) = 2β(s ẏ − y),

(Branch 7) H = β, ξ(6) = s
β
∂
∂z

; F = 2βz. I(6) = 2β(s ż − z).

where β 6= 0.

8a G = (c1t+ c2)
1− 2c3

c1 , ξ(5), ξ(6) are same as in case of 7a, I(5), I(6) are same

(Branch 7) H = β, ξ(7) = s ∂
∂s

+ 1
2

(
t ∂
∂t

+ y ∂
∂y

+ z ∂
∂z

)
. as in case of 7a,

where β 6= 0, I(7) = −sL− t ṫ

c1 6= 0, c3 6= 0 β2(y ẏ + z ż).

and c1 6= 2c3.

The first model represents an anisotropic fluid with ρ = p|| = 0 and p⊥ =

−G′′

G
. The energy conditions including strong, null and weak energy condi-

tions are satisfied if G′′

G
< 0, while the DEC violates.

For the second model, the physical interpretation is already presented in

the section of HVFs.
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5.3.7 Branch 8

For this branch, the pivots are restricted to satisfy the conditions p1 6= 0,

p2 6= 0 and p3 = p7 = p8 = 0. From the simplification of these constraints, we

get G = α1e
√
kt +α2e

−
√
kt and H = β, where k > 0 and β 6= 0. This metric is

same as the metric 6a, given in Table 5.5, admitting six KVFs. Solving the set

of determining equations for this metric, we obtain nine Noether symmetries,

out of which five are same as given in the set N5, while the remaining four

are extra Noether symmetries. The details of these four Noether symmetries

along with their conserved forms are given in Table 5.13.

Table 5.13: Metric admitting nine Noether Symmetries

Noether Symmetry generators Invariants

ξ(5) = s
β
∂
∂y

;F = 2βy, I(5) = 2H(sẏ − y),

ξ(6) = s
β
∂
∂z

;F = 2βz, I(6) = 2H(sż − z),

ξ(7) = 1
λ

sin(λx) ∂
∂t

+ G′

λ2G
cos(λx) ∂

∂x
, I(7) = − 2

λ
sin(λx)ṫ+ 2GG′

λ2 cos(λx)ẋ,

ξ(8) = − 1
λ

cos(λx) ∂
∂t

+ G′

λ2G
sin(λx) ∂

∂x
. I(8) = 2

λ
(cosλx)ṫ+ 2GG′

λ2 sin(λx) ẋ.

Here, ξ(5) and ξ(6) are proper Noether symmetries, while ξ(7) and ξ(8) are the

additional KVFs. This metric is the generalized form of the metrics (9b-9f)

of Ref. [?].

5.3.8 Branch 11

Here, the constraints are p1 6= 0, p2 = p3 = p5 = 0 and p7 6= 0, which

give G = H = β1t + β2, where β1 6= 0. This metric is same as the metric 7b

134



presented in Table 5.2, admitting seven HVFs. Solving the set of determining

equations for this metric, we obtain nine Noether symmetries, in which five

are listed in the minimal set and four are the extra Noether symmetries,

which along with their conserved forms are given in Table 5.14.

Table 5.14: Metric admitting nine Noether Symmetries

Noether Symmetry generators Invariants

ξ(5) = −y ∂
∂x

+ x ∂
∂y
, I(5) = 2G2(xẏ − yẋ),

ξ(6) = −z ∂
∂x

+ x ∂
∂z
, I(6) = 2H2(xż − zẋ),

ξ(7) = s2

2
∂
∂s

+ s
2β1

G ∂
∂t

; F = −t( t
2

+ β2
β1

), I(7) = − s
2

2
L− s

β1
Gṫ+ t( t

2
+ β2
β1

),

ξ(8) = s ∂
∂s

+ G
2β1

∂
∂t
. I(8) = −sL− G

β1
ṫ.

ξ(5) and ξ(6) are the additional KVFs, ξ(7) is a proper Noether symmetry, while

ξ(8) represent a Noether symmetry corresponding to a homothetic vector G
β1

∂
∂t
.

One can easily see that these two additional KVFs and one proper homothety

are same as presented in Table 5.2. To get the metric (9a) of Ref. [85] from

our metric of this case, we may use β1 = α1 and β2 = α2.

The physical interpretation of this metric is already given in the section of

HVFs.

5.3.9 Branch 12

For branch 12, we have p1 6= 0 and p2 = p3 = p7 = 0. The simplification of

these constraints gives G = β1t + β2 and H = γ, where β1 6= 0 and γ 6= 0.

This metric is same as the metric presented in Table 5.3, obtained during
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the classification via HVFs. It admits 17-dimensional Noether algebra and

it was also presented in Ref. [85], see metric (40) therein. These seventeen

Noether symmetries contain five minimum Noether symmetries, one proper

homothety, six additional KVFs and five extra proper Noether symmetries.

The proper HVF and six KVFs are same as given in Table 5.3, while the

extra five proper Noether symmetries are listed below:

ξ(12) =
s2

2β2

∂

∂s
+
sG

2α1

∂

∂t
+
sy

2

∂

∂y
+
sz

2

∂

∂z
; F = −t

2

2
+
γ2(y2 + z2)

2
− α2

2G

α2
1

,

ξ(13) =
s

γ

∂

∂y
; F = 2γy,

ξ(14) =
s

γ

∂

∂z
; F = 2γz,

ξ(15) = −s
2

cosh(α1x)
∂

∂t
+

s

2G
sinh(α1x)

∂

∂x
, F =

G

α1

cosh(α1x),

ξ(16) = −s
2

sinh(α1x)
∂

∂t
+

s

2G
cosh(α1x)

∂

∂x
, F =

G

α1

sinh(α1x).

The corresponding invariants are:

I(12) = −s
2

2
L− sG

α1

ṫ+ sγ2(yẏ + zż) +
t2

2
− γ2(y2 + z2)

2
+
α2

2G

α2
1

,

I(13) = 2γ(sẏ − y),

I(14) = 2γ(sż − z),

I(15) = s cosh(α1x)ṫ+ sG sinh(α1x)ẋ− G

α1

cosh(α1x),

I(16) = s sinh(α1x)ṫ+ sG cosh(α1x)ẋ− G

α1

sinh(α1x).

5.3.10 Branch 13

For branch 13, the constraints are p1 = 0, p4 6= 0 and p7 6= 0, that is G′ = 0,

H ′ 6= 0 and H ′2 − HH ′′ 6= 0, which give G = β, where β 6= 0. Solving the
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determining equations in this case leads us to two sub-cases depending upon

whether H ′′ 6= 0 or H ′′ = 0. When H ′′ 6= 0, then the metric in this case admits

seven Noether symmetries and H gets the value H = (c1t+ 2c2)
1− 2c3

c1 , where

c1 6= 0, c3 6= 0 and c1 6= 2c3. Out of these seven Noether symmetries, five are

same as given in the set N5, while two are the extra Noether symmetries.

When H ′′ = 0 ⇒ H = γ1t + γ2, where γ1 6= 0, then we get eight Noether

symmetries, five are given in the minimal set, while three are the additional

Noether symmetries. The extra symmetries of both cases are given in Table

5.15 along with their conserved forms.

Table 5.15: Metrics admitting seven and eight Noether Symmetries

Noether Symmetry generators Invariants

ξ(5) = s
2
∂
∂x
, I(5) = sβ2ẋ,

ξ(6) = s ∂
∂s

+ 1
2

(t ∂
∂t

+ x ∂
∂x

). I(6) = −sL− tṫ+ β2x ẋ.

ξ(5) = s2

2
∂
∂s

+ s( γ1t+γ2
2γ1

) ∂
∂t

I(5) = − s
2

2
L− s( γ1t+γ2

γ1
)ṫ

+ s
2
x ∂
∂x

; F = −( t
2−β2x2

2
+ t γ2

γ1
), +sβ2x ẋ+ t2

2
− β2x2

2
+ γ2
γ1
,

ξ(6) = − s
2β2

∂
∂x

; F = −x, I(6) = sẋ+ x,

ξ(7) = s ∂
∂s

+ ( γ1t+γ2
2γ1

) ∂
∂t

I(7) = −sL− ( γ1t+γ2
γ1

)ṫ

+x
2
∂
∂x
. +β2xẋ.

For the first metric, ξ(5) is a proper Noether symmetry and ξ(6) is a Noether

symmetry corresponding to a homothetic vector t ∂
∂t

+x ∂
∂x
. The metric in this

case gives the same symmetries as the metric (8b) of Ref. [85]. For the second

metric, ξ(5) and ξ(6) are proper Noether symmetries, while ξ(7) represents a
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Noether symmetry corresponding to a homothetic vector (γ1t+γ2
γ1

) ∂
∂t

+ x ∂
∂x
.

This metric can be transformed to the metric (8a) of Ref. [85] by setting

β = α, γ1 = α1 and γ2 = α2.

The metrics of this branch are exactly same as the metrics 5a(ii) and 5b(ii),

presented in Table 5.1 in the section of HVFs.

5.3.11 Branch 14

The conditions for branch 14 are p1 = p4 = 0 and p7 6= 0, which give G = β

and H = ekt, where β 6= 0 and k > 0. This metric admits nine Noether

symmetries in which five are given in the minimal set and four are additional

Noether symmetries. In Table 5.16, we have listed these four symmetries

along with their conserved forms.

Table 5.16: Metric admitting nine Noether Symmetries

Noether Symmetry generators Invariants

ξ(5) = y
k
∂
∂t
− yz ∂

∂z
I(5) = − 2y

k
ṫ− 2yze2kt ż

+

(
z2−y2

2
− 1

2k2e2kt

)
∂
∂y
, +

(
e2kt(z2 − y2)− 1

k2

)
ẏ,

ξ(6) = − z
k
∂
∂t

+ yz ∂
∂y

I(5) = 2z
k
ṫ+ 2yzH2 ẏ

+

(
z2−y2

2
+ 1

2k2e2kt

)
∂
∂z
, +

(
e2kt(z2 − y2) + 1

k2

)
ż,

ξ(7) = − 1
k
∂
∂t

+ y ∂
∂y

+ z ∂
∂z
, I(7) = 2ṫ+ 2ke2kt(yẏ + zż),

ξ(8) = s
2β2

∂
∂x
, F = −x. I(8) = sẋ+ x.

Clearly, ξ(5), ξ(6) and ξ(7) represent additional KVFs, while ξ(8) is a proper

Noether symmetry. This metric is same as the metric (9g) of Ref. [85] with
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β = α and k = β.

Moreover, this metric is exactly same as the metric presented in Table 5.6.

In both cases, we have obtained the same seven KVFs.

5.3.12 Branch 15

For branch 15, the constraints are p1 = 0 and p7 = 0, which means that

both G and H are constant and the metric (5.1.1) reduces to the Minkowski

metric, whose Noether symmetries were already calculated in the previous

chapter.

5.4 Summary

In this chapter, we have given the classification of LRS Bianchi type I space-

times via HVFs, CVFs and Noether symmetries by adopting the Rif tree

approach. Instead of directly integrating the set of symmetry equations, an

algorithm is developed in Maple which reduces these equations to the simpli-

fied form and yields a Rif tree and a list of pivots. Then the set of symmetry

equations is solved under the conditions of each branch of the Rif tree.

Out of the 13 branches of the Rif tree for HVFs, two branches yield minimum

four KVFs, while the remaining branches produce some LRS Bianchi type

I metrics possessing proper HVF. In some cases, the homothety constant

vanishes during calculation and HVFs become KVFs. Moreover, the Killing

algebra for these spacetimes is found to be 4, 5, 6, 7 and 10-dimensional.

To investigate CVFs in these spacetimes, we have categorized our results

branch-wise, due to the existence of sub-cases. Out of the 13 branches of
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the Rif tree for CVFs, we only considered the cases giving non-conformally

spacetimes. Solving the conformal symmetry equations for each branch, we

have concluded that non-conformally flat LRS Bianchi type I metrics possess

at most two proper CVFs along with four minimum KVFs. In some cases,

the CVFs also reduce to HVFs and KVFs, as the conformal factor in these

cases becomes constant or zero.

In the section of Noether symmetries, two branches of the Rif tree give the

minimal set of Noether symmetries. The remaining branches produce 6, 7,

8, 9, 10, 11 and 17 Noether symmetries. Also, we have calculated the conser-

vation laws for all the Noether symmetry generators by using the Noether’s

theorem.

Comparing the obtained results with those of direct integration technique, it

is observed that this new approach provides more metrics than those obtained

by direct integration technique. Interestingly, most of these new metrics are

physically realistic having non-negative energy density.

140



Chapter 6

Conclusion

In this thesis, we have investigated homothetic, conformal and Noether sym-

metries of Kantowski-Sachs, static plane symmetric and LRS Bianchi type

I spacetimes by adopting Rif tree approach, instead of directly integrating

the determining equations. For such investigations, first we have developed

a Rif algorithm for reducing the system of determining equations for all the

mentioned spacetimes to a simplified form. The algorithm gives all possible

metrics possessing these symmetries in terms of a tree, known as Rif tree.

The determining equations are solved for all these metrics and as a result,

we have obtained the required symmetries of the spacetimes under consider-

ation. We have deduced the following results.

For Kantowski-Sachs spacetime, out of 20 branches of the Rif tree for HVFs,

12 branches give the minimum four KVFs , while the remaining eight branches

produce some Kantowski-Sachs metrics admitting proper HVFs. The num-

ber of KVFs turned out to be 4, 6, 7 and 10 for different values of the metric

functions. Moreover, we have compared our results with those of direct inte-
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grating technique [32] and it is observed that Rif tree approach gives a new

metric which was missing in Ref. [32].

In case of CVFs, Rif tree gives 18 branches but we have only considered

those cases where the spacetime is non-conformally flat. Solving the con-

formal symmetry equations for each branch, we have concluded that non-

conformally flat Kantowski-Sachs spacetimes possess at most two proper

CVFs along with four minimum KVFs. In some cases, we also have six

KVFs with zero conformal factor, giving no proper CVF. Comparing our

results with those of Ref. [113], we have noticed that this approach gives

more general metrics as compared to those obtained by direct integration

technique, while some important metrics were missing in Ref. [113].

For Noether symmetries, out of 21 branches of the Rif tree, eleven give the

minimal set of Noether symmetries, while the remaining branches produce 6,

7, 8, 9 and 11-dimensional Lie algebra of Noether symmetries. We have also

compared obtained by Rif tree approach with the existing results of direct

integrating technique [83]. One can easily see that here the obtained metrics

are same as given in Ref. [83] but with more generalized form.

Similarly, for static plane symmetric spcetimes, two branches of the Rif tree

for HVFs give the minimum four KVFs, while the remaining branches pro-

duce some static plan symmetric metrics possessing proper homothetic alge-

bras of dimension 5, 7 and 11. Moreover, it is observed that these spacetimes

admit Killing algebra of dimension 4, 5, 6, 7 and 10. Comparing our results

with those obtained by conventional method in Ref. [119], we have observed

that this new approach of Rif algorithm gives the same algebras of KVFs

and HVFs with more generalized metrics than those produced by direct in-
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tegration technique.

For CVFs, we have considered only those cases where the spacetime is non-

conformally flat. Solving the determining equations for each branch of the

Rif tree, we have concluded that non-conformally flat static plan symmet-

ric spacetimes possess at most three proper CVFs along with four minimum

KVFs. Moreover, we have compared our results with Ref. [51] where the

authors claimed that non-conformal flat static plane symmetric spcetimes do

not admit any proper CVFs. But in our analysis, we have found same non-

conformally flat metrics admitting proper CVFs.

In section of Noether symmetries, we have found 5, 6, 7, 8, 9, 10, 11 and 17

Noether symmetries for static plan symmetric spacetimes. Comparing our

results with Ref. [121], it is noticed that the present approach gives the same

dimensional Noether algebras as obtained in Ref. [121] by diect integration

method. However, the metric obtained in branch 11 was missing in Ref. [121].

For LRS Bianchi type I spacetime, two branches of Rif tree yield minimum

four KVFs, while the remaining branches produce some LRS Bianchi type

I metrics possessing proper HVF. In some cases, the homothety constant

vanishes during calculation and HVFs become KVFs. Moreover, the Killing

algebra for these spacetimes is found to be 4, 5, 6, 7 and 10-dimensional.

Comparing our results with the existing results of Ref. [122], it is observed

that the metrics which we have obtained by Rif tree approach are more gen-

eralized than those produced by conventional method. Also we get some new

metrics during calculations which were not given in Ref. [122].

To investigate CVFs, we have only considered the cases giving non-conformally

flat metrics. Solving the conformal symmetry equations for these metrics, we
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have concluded that non-conformally flat LRS Bianchi type I metrics possess

at most two proper CVFs along with four minimum KVFs. We could not

compare our results with the results of direct integration method because no

published work about it could be found in the literature.

Finally, in the section of Noether symmetries, our analysis yield 5, 6, 7, 8, 9,

10, 11 and 17 Noether symmetries. We have also compared our results with

those of Ref. [85] and it is observed that this new approach provides more

metrics than those obtained by direct integration technique. Interestingly,

most of these new metrics are physically realistic having non-negative energy

density.

Summarizing, we can see that, Rif tree approach is a better option to find

the Lie and Noether symmetries as compared to the direct integrating tech-

nique. The reason behind this is that, Rif tree approach recovers all the

metrics obtained by direct integrating technique and produces those useful

metrics which are not provided by direct integrating technique.
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