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Abstract
The study of the dynamics of entanglementmeasures after a quench has become
a very active area of research in the last two decades, motivated by the devel-
opment of experimental techniques. However, exact results in this context are
available in only very few cases. In this work, we present the proof of the qua-
siparticle picture for the dynamics of entanglement entropies for two disjoint
blocks in the XY chain after a quantum quench. As a byproduct, we also prove
the quasiparticle conjecture for the mutual information in that model. Our
calculations generalize those presented in Fagotti and Calabrese (2008 Phys.
Rev. A 78 010306) to the case where the correlation matrix is a block-Toeplitz
matrix, and rely on the multidimensional stationary phase approximation in the
scaling limit. We also test the quasiparticle predictions against exact numerical
calculations, and find excellent agreement. In the case of three blocks, we show
that the tripartite information vanishes when at least two blocks are adjacent.
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1. Introduction

Understanding the nonequilibrium dynamics of quantummany-body systems is a question that
has been at the heart of quantum mechanics since its early days [1]. For the last twenty years,
this field of research has experienced a renewed interest, due to groundbreaking cold-atom and
ion-trap experiments that managed to simulate the unitary evolution of closed systems on long
time scales [2–6], as well as an intense theoretical activity [7]. A key aspect is that quantum
entanglement and its dynamics out of equilibrium play a large role in our understanding of
fundamental problems, such as the equilibration and thermalisation of isolated many-body
systems [7–12] and the emergence of thermodynamics [13–16].Moreover, several experiments
managed to measure entanglement-related quantities [17–23].

The simplest protocol to drive a quantum system out of equilibrium is known as a quantum
quench [24, 25]. Consider a system described by a Hamiltonian H(λ), where λ is a set of
external parameters. In the quench protocol, the system is prepared in the groundstate of
some initial Hamiltonian H(λ0), and at time t= 0 the parameters are quenched from λ0 to
λ1 such that [H(λ0),H(λ1)] ̸= 0. For t> 0, the system evolves unitarily under the action of
the post-quenched Hamiltonian H(λ1). Because the two Hamiltonians do not commute, the
subsequent dynamics is non-trivial. In particular, the investigation of entanglement dynamics
after a quantum quench received considerable attention over the last two decades [26–29].

For a quantum many-body system in a pure state |ψ⟩, one is typically interested in the
entanglement between a subsystem A and its complement, traditionally denoted B. The so-
called Rényi entropies are defined from the reduced density matrix ρA = TrB(|ψ⟩⟨ψ|) as

SAn =
1

1− n
logTrρnA. (1)

The limit n→ 1 of the Rényi entropies yields the celebrated entanglement entropy [30]. It
is the von Neumann entropy of the reduced density matrix of subsystem A, namely

SA1 ≡ lim
n→1

SAn =−Tr(ρA logρA). (2)

Rényi entropies quantify the entanglement between A and B, irrespective of the geometry of
A. In many cases considered in the literature, A is a connected spatial region, such as a segment
in a one-dimensional chain. However, the case where A consists of disjoints blocks has also
generated interest [31–36]. Let us consider the situation where A= A1 ∪A2 consists of two
blocks A1 and A2. From the entanglement entropies of the two blocks SA1∪A2

n , one defines the
mutual information as

IA1:A2
1 = SA1

1 + SA2
1 − SA1∪A2

1 , (3)

as well as the Rényi mutual information

IA1:A2
n = SA1

n + SA2
n − SA1∪A2

n . (4)

Here, SXn , X= A1,A2,A1 ∪A2, is the Rényi entropy from equation (1) where the reduced dens-
ity matrix is obtained by tracing out the degrees of freedom of the complement of X from the
total pure-state density matrix ρ= |ψ⟩⟨ψ|. The mutual information is not per se an entangle-
ment measure between A1 and A2 because it also contains classical correlations [37, 38], and
a proper measure of entanglement in that context is instead the entanglement negativity [39].
However, both the mutual information and the negativity share important properties, both in
[40] and out of equilibrium [41–43], and we relegate the study of the negativity to forthcoming
investigations.
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For a tripartite system A= A1 ∪A2 ∪A3, a relevant quantity that characterizes multipartite
entanglement is the tripartite information IA1:A2:A3

n . It is defined as [44]

IA1:A2:A3
n = IA1:A2

n + IA1:A3
n − IA1:(A2∪A3)

n (5)

and measures the extensiveness of the mutual information. In particular, a negative tripart-
ite information indicates multipartite entanglement, and it is related to quantum chaos and
scrambling [45–47]. In the context of two-dimensional systems where A1,A2,A3 are adja-
cent regions, the tripartite information coincides with the celebrated topological entanglement
entropy [48]. Very recently, the tripartite information was investigated in the context mon-
itored spin chains [49] and quantum quenches [50]. While it vanishes at all times for many
quench protocols, the authors of [50] show that in some cases its dynamics yields universal
information about the system.

In integrablemodels, the quasiparticle picture [27–29, 51, 52] describes the growth of entan-
glement in time after a global quench, in terms of ballistic propagation of pairs of quasiparticles
of opposite momentum, that spread entanglement and correlations through the system. In the
case of disjoint subsystems, the quasiparticle picture can be adapted to describe the dynamics
of the mutual information [41] and the entanglement negativity [53]. The quasiparticle picture
also describes the growth of symmetry-resolved entanglement [54–56], and it has recently
been generalized to the case of dissipative free fermionic and bosonic systems [57–61].

While the quasiparticle picture provides impressive quantitative results that have been
checked extensively through numerical investigations, ab initio and analytical results for the
entanglement dynamics after a quench remain scarce in the literature. In a seminal paper, Fag-
otti and Calabrese computed the complete time dependence of the entanglement entropy of a
single interval after a quench in the XY chain [26]. Their derivation used the Toeplitz-matrix
representation of the correlation matrix and multidimensional phase methods. However, a sim-
ilar derivation for the case of disjoint blocks is still lacking. We also mention recent exact
results for the negativity dynamics in dissipative models [60, 61] and quantum circuits [43]

In this paper, we provide the analytical derivation of the quasiparticle picture for the entan-
glement entropies of two disjoint blocks in the XY chain in presence of transverse field, gen-
eralizing the results of [26]. As a byproduct, this allows us to prove the quasiparticle picture
result for the mutual information. Moreover, we show that the tripartite information vanishes at
all times for the quench protocol we consider, and argue more generally that the quasiparticle
picture implies a vanishing tripartite information. Finally, we mention that these calculations
for the entropy dynamics of disjoint blocks have already been advertised and used in the con-
text of symmetry-resolved entanglement measures [55, 56].

This paper is organized as follows. In section 2 we introduce the XY model and express the
related entanglement measures in terms of the two-point correlation matrix after a quench. We
discuss the quasiparticle conjecture for the entanglement dynamics in section 3, and give the
analytical proof for the case of two disjoint blocks in section 4. We conclude in section 5 with
a summary of the results and byproducts of our proof, and discuss further research directions.

2. The XY spin chain and entanglement dynamics

In this section we review the XY spin chain and its diagonalization. We also specify the
quench protocol under consideration and recall the definition of the Rényi entropies andmutual
information in terms of the two-point correlation matrix. Finally, we review the quasiparticle
picture for the entanglement dynamics, both in the case where the subsystem consists of one
or multiple blocks of contiguous sites.
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2.1. The quenched XY spin chain

We consider the spin-1/2 XY spin chain in a transverse magnetic field with periodic boundary
conditions. The Hamiltonian is

H(γ,h) =−
L∑
j=1

(
1+ γ

4
σxj σ

x
j+1 +

1− γ

4
σyj σ

y
j+1 +

h
2
σzj

)
, (6)

where γ is the anisotropy parameter, h is the external magnetic field, L is the size of the sys-
tem and σα

j are the Pauli matrices at site j. The model can be solved via the Jordan–Wigner
transformation, which maps the system into a free Fermi gas in the presence of an external
potential [62].

We consider the following quench protocol. At time t= 0, the system is prepared in the
groundstate |ψ0⟩ of the Hamiltonian H(γ0,h0) with some initial anisotropy and magnetic field
γ0 and h0. The parameters are then quenched to the values γ and h, and for t> 0 the time-
evolved state is

|ψ(t)⟩= e−itH(γ,h)|ψ0⟩. (7)

In order to study the time evolution of the entanglement measures, it is useful to introduce
the Majorana operators

a2j−1 =

(
j−1∏
k=1

σzk

)
σxj , a2j =

(
j−1∏
k=1

σzk

)
σyj , (8)

that satisfy

a2j−1 = cj+ c†j , a2j = i(cj− c†j ), {am,an}= 2δm,n, (9)

where cj,c
†
j are the canonical spinless fermionic operators. For a subsystem A consisting of ℓ

contiguous spins, the time-dependent correlation matrix ΓA(t) is a 2ℓ× 2ℓ matrix built from
2× 2 blocks [52] as

⟨ψ(t)|
(
a2m−1

a2m

)
·
(
a2n−1 a2n

)
|ψ(t)⟩= δm,n+ i[ΓA(t)]m,n, 1⩽ m,n⩽ ℓ. (10)

More explicitly, the correlation matrix is a block-Toeplitz matrix

ΓA(t) =


Π0 Π1 · · · Πℓ−1

Π−1 Π0
...

...
. . .

...
Π1−ℓ · · · · · · Π0

 , Πj =

(
−fj gj
−g−j fj

)
. (11)

In the large-L limit, f j and gj read [26]

fj = i
ˆ π

−π

dk
2π

e−ikj sin∆k sin(2ϵkt),

gj =
ˆ π

−π

dk
2π

e−ikje−iθk (cos∆k+ i sin∆k cos(2ϵkt)) , (12)
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Figure 1. The subsystem A considered consists into two disjoint subsystems A1 and A2

of lengths ℓ1 and ℓ2, separated by a distance d.

with

ϵ2k = (h− cosk)2 + γ2 sin2 k, ϵ20,k = (h0 − cosk)2 + γ20 sin
2 k,

e−iθk =
cosk− h− iγ sink

ϵk
,

cos∆k =
hh0 − cosk(h+ h0)+ cos2 k+ γγ0 sin

2 k
ϵkϵ0,k

,

sin∆k =−sink
γh0 − γ0h− cosk(γ− γ0)

ϵkϵ0,k
. (13)

2.2. Entanglement entropies and mutual information for disjoint intervals

Owing to the quadratic nature of the XY Hamiltonian in terms of fermion operators, the
time-dependent reduced density matrix ρA(t) of any subsystem A is a Gaussian operator. This
implies that the spectrum of ρA(t) is related to the correlation matrix ΓA(t) associated to the
same subsystem [63, 64], namely

TrρnA =

(
det

[(
I+ iΓA

2

)n

+

(
I− iΓA

2

)n])1/2

, (14)

where we removed the explicit time dependence for clarity.
When the subsystem A is a block of contiguous sites, the matrix ΓA is constructed as in

equation (11). However, we are interested in the case of disjoint intervals, where the construc-
tion is slightly more subtle. We consider in particular the case where A= A1 ∪A2 consists of
two non-complementary subsystems A1 and A2 of respective lengths ℓ1 and ℓ2 separated by a
distance d, as shown in figure 1. Moreover, the length of the total subsystem A is ℓ≡ ℓ1 + ℓ2.
We also mention that, since we work with periodic boundary conditions, one could in prin-
ciple define two distances d. However, in the following we systematically consider the case
where the subsystem A is embedded in an infinite chain L→∞, and d is the smallest distance
between A1 and A2.

In this case, the correlation matrix ΓA1∪A2 has the following block structure,

ΓA1∪A2 =

(
Γ11 Γ12

Γ21 Γ22

)
. (15)

Here, Γab, a,b= 1,2, are 2ℓa× 2ℓb matrices that account for the correlations between subsys-
tems Aa and Ab,
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[Γ11]j,k =Πk−j, j,k= 1, . . . , ℓ1,

[Γ12]j,k =Π(k+d+ℓ1)−j, j= 1, . . . , ℓ1, k= 1, . . . , ℓ2,

[Γ21]j,k =Πk−( j+d+ℓ1), j= 1, . . . , ℓ2, k= 1, . . . , ℓ1,

[Γ22]j,k =Πk−j, j,k= 1, . . . , ℓ2, (16)

and the 2× 2 blocks Πj are given in equation (11). We note in particular that by definition,
Γ11 ≡ ΓA1 , and similarly for A2.

Using equations (14), (1) and (4), we express the Rényi entropies and mutual information
for disjoint intervals as

SA1∪A2
n =

1
2(1− n)

Trlog

[(
I+ iΓA1∪A2

2

)n

+

(
I− iΓA1∪A2

2

)n]
(17a)

and

IA1:A2
n =

1
2(1− n)

Trlog

[(
I+ iΓ11

2

)n

+

(
I− iΓ11

2

)n]
+

1
2(1− n)

Trlog

[(
I+ iΓ22

2

)n

+

(
I− iΓ22

2

)n]
− 1

2(1− n)
Trlog

[(
I+ iΓA1∪A2

2

)n

+

(
I− iΓA1∪A2

2

)n]
. (17b)

We mention that the reduced density matrix ρA1∪A2 corresponding to disjoint subsystems
is different in the spin-chain picture and in the free-fermion one [32, 34, 35]. This difference
arises because of the fermionic string of the Majorana operators and boils down to the fact that
the Jordan–Wigner transformation is non-local in terms of the spins. However, in the scaling
limit, the entanglement dynamics is identical in both descriptions [42] and hence we do not
discuss this issue further.

3. Quasiparticle conjecture for free fermions

The quasiparticle picture is a semiclassical argument that allows one to derive quantitative
predictions for the dynamics of entanglement in generic integrable models [27–29, 51, 52]. In
this picture, a quantum system is prepared in an initial state that possesses an extensive amount
of energy above the ground state of the Hamiltonian determining the time evolution, and hence
the initial state acts as source of quasiparticles. The quasiparticles are emitted in pairs with
opposite momenta±k andmove ballistically with a velocity vk. The fundamental assumption is
that quasiparticles emitted from the same point are entangled, and hence spread entanglement
and correlations as they propagate. In contrast, quasiparticles emitted from different points are
uncorrelated. Accordingly, the amount of entanglement between two subsystems at a given
time is proportional to the number of entangled pairs they share.

3.1. Single interval

For a contiguous subsystem A of length ℓ embedded in an infinite system in the scaling limit
ℓ, t→∞, with fixed ratio t/ℓ, the entanglement entropy SA1 (t) is [52]

SA1 (t) = 2t
ˆ
2vkt<ℓ

dkvks(k)+ ℓ

ˆ
2vkt>ℓ

dks(k). (18)

6
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Here, s(k) is a function that depends on the momentum k of each quasiparticle in the pair, and
contains all the information on the initial state [29].

In free fermionic systems, the explicit form of s(k) is

s(k) =
1
2π

(−nk lognk− (1− nk) log(1− nk)), (19)

where nk is the occupation probability of the mode k in the stationary state. For the Rényi
entropy Sn(t), an expression analogous to (18) holds, with

sn(k) =
1
2π

1
1− n

log(nnk +(1− nnk)) (20)

instead of s(k). Introducing the function

hn(x)≡
1

1− n
log

[(1+ x
2

)n
+
(1− x

2

)n]
, (21)

the Rényi entropies can be written as

SAn (t) =
ˆ

dk
2π

hn(2nk− 1)min(ℓ,2vkt). (22)

In the case of interacting integrables models, equation (18) needs to include a sum over the
different species of quasiparticles [27]. Moreover, in that case it is a hard problem to derive the
function s(k), and the quasiparticle picture breaks down for Rényi entropies with n ̸= 1, i.e. the
simple prescription of equation (20) does not hold.

In the XY chain, equation (22) becomes [26]

SAn (t) =
ˆ π

−π

dk
2π

hn(cos∆k)min(ℓ,2vkt), (23)

where vk = |ϵ ′k|, and cos∆k, ϵk are defined in equation (13). The quasiparticle conjecture of
equation (23) is proved in [26].

3.2. Two disjoint intervals

The quasiparticle picture also allows one to predict the time evolution of the entanglement
between two disjoint blocks A1 and A2 [41, 42] of lengths ℓ1, ℓ2 and separated by a distance
d, as illustrated in figure 1. As for the case of one block, the entanglement between the two
disjoint blocks is proportional to the number of shared pairs of quasiparticles over time. The
counting exercise that leads to equation (18) is modified by the presence of the two intervals,
but its generalization is standard. The subsystem A= A1 ∪A2 is embedded in an infinite chain,
and we work in the scaling limit ℓ1, ℓ2,d, t→∞with fixed ratios ℓ1/ℓ,ℓ2/ℓ,d/ℓ and t/ℓ, where
ℓ= ℓ1 + ℓ2. Moreover, we introduce the function

Ξℓ1,ℓ2,d,t(k) =max(d,2vkt)+max(d+ ℓ,2vkt)−max(d+ ℓ1,2vkt)−max(d+ ℓ2,2vkt). (24)

For free fermionic systems, the Rényi mutual information reads [42]

IA1:A2
n (t) =

ˆ
dk
2π

hn(2nk− 1)Ξℓ1,ℓ2,d,t(k), (25)

where hn(x) is defined in (21). We mention that the quench dynamics of logarithmic negativity
can also be described by the quasiparticle picture [42], and the result is similar to equation (25).

In the XY chain, the quasiparticle conjecture of equation (25) reads

IA1:A2
n (t) =

ˆ π

−π

dk
2π

hn(cos∆k)Ξℓ1,ℓ2,d,t(k). (26)

7
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Figure 2. The tripartite subsystem A consists into three subsystems, A1 and A2 which
are separated by a distance d, and A3 that is adjacent to A2.

3.3. Three intervals

We consider the case where A= A1 ∪A2 ∪A3 consists of three intervals of lengths ℓ1, ℓ2, ℓ3
with ℓ1 + ℓ2 + ℓ3 = ℓ. For simplicity, we assume that A1 and A2 are separated by a distance d,
but A2 and A3 are adjacent. This geometry is illustrated in figure 2. Combining equations (5)
and (25), we find

IA1:A2:A3
n (t) =

ˆ
dk
2π

hn(2nk− 1)(Ξℓ1,ℓ2,d,t(k)+Ξℓ1,ℓ3,d+ℓ2,t(k)−Ξℓ1,ℓ2+ℓ3,d,t(k)) = 0 (27)

in the scaling limit where the lengths and time are infinite, but all the ratios are fixed. This
simple calculation shows that, for free systems, the tripartite information for the geometry of
figure 2 vanishes for all values of t/ℓ in the scaling limit. In particular, equation (27) holds
for the XY chain. A direct generalization of equation (27) with s(k) instead of hn(2nk− 1),
and a sum over the different species of quasiparticles, implies that the tripartite information
IA1:A2:A3
1 (t) vanishes identically for all interacting integrable systems.

3.4. Conjecture for the Rényi entropies of disjoint blocks in the XY chain

In the case of two disjoint intervals, combining equations (23), (26) and (4), and using the fact
that A1 and A2 are both contiguous blocks, the quasiparticle conjecture for the Rényi entropies
reads [32]

SA1∪A2
n (t) =

ˆ π

−π

dk
2π

hn(cos∆k)[min(ℓ1,2vkt)+min(ℓ2,2vkt)−Ξℓ1,ℓ2,d,t(k)]. (28)

It is direct to check that equation (28) reduces to equation (23) for d= 0, as expected. In the
following, we prove equation (28), and hence equations (26) and (27) too, as byproducts.

3.5. Numerical checks

In this section, we compare the quasiparticle results of equations (28) and (26) with numerical
results that rely on the exact diagonalization of the correlation matrices from equations (11)
and (15) inserted in equation (17).We show this comparison in figure 3 for SA1∪A2

1 (t), SA1∪A2
2 (t),

IA1:A2
1 (t) and IA1:A2

2 (t) as a function of t/ℓ for fixed d/ℓ,ℓ1/ℓ and quench parameters γ0,h0,γ,h.
The solid lines are the quasiparticle results, whereas the symbols are the numerical ones for
different values of ℓ. The agreement is better for the mutual information, but the results for the
entropies is convincing too, and it is in particular clear that the quasiparticle result is exact in
the scaling limit, as expected.

8



J. Phys. A: Math. Theor. 55 (2022) 505005 G Parez and R Bonsignori

Figure 3. Entanglement entropies SA1∪A2
1 (t) and SA1∪A2

2 (t) (top) and mutual information
IA1:A2
1 (t) and IA1:A2

2 (t) (bottom) as a function of t/ℓ for various values of ℓwith ℓ1/ℓ= 0.4
and d/ℓ= 0.5. The quench parameters are h0 = 0.1, γ0 = 0.2, h= 0.8 and γ= 0.9. The
solid lines are the quasiparticle predictions of equation (28) (top) and equation (26) (bot-
tom), and the symbols are obtained by exact diagonalization of the correlation matrices
and equation (17).

4. Proof of the quasiparticle conjecture for two disjoint blocks

In this section, we adapt the methods developed in [26] to prove equation (28). The initial step
is to recast equation (17a) as a series. We introduce the Taylor expansion of the function hn(x),

hn(x) =
∞∑
j=0

cn(2j)x
2j, (29)

and find

SA1∪A2
n (t) =

1
2

∞∑
j=0

cn(2j)Tr(iΓA1∪A2(t))
2j. (30)

We mention that the series in equation (29) contains only even powers, because hn(x) =
hn(−x), and hn(x) is defined in equation (21).

In the following, we thus focus on the computation of Tr(iΓA1∪A2(t))
2j. For further conveni-

ence, we recast this trace as

Tr(iΓA1∪A2(t))
2j ≡ Tr(iΓ11(t))

2j+Tr(iΓ22(t))
2j+T2j(t), (31)

9



J. Phys. A: Math. Theor. 55 (2022) 505005 G Parez and R Bonsignori

where we used the block structure described in equation (15), and T2j(t) is a non-trivial com-
bination of traces of products of 2 j matrices from the set {Γ11(t),Γ12(t),Γ21(t),Γ22(t)}.

In the geometry we consider, both A1 and A2 are contiguous blocks of respective lengths
ℓ1 and ℓ2 = ℓ− ℓ1, and their respective associated correlation matrices are Γ11 and Γ22. Hence
the results of [26] directly apply to the first two terms of the right-hand side of equation (31).
In the scaling limit ℓ1, ℓ2, t→∞ with fixed ratios ℓ1/ℓ,ℓ2/ℓ and t/ℓ, we thus have

Tr(iΓ11(t))
2j+Tr(iΓ22(t))

2j = 2ℓ− 2
ˆ

dk
2π

(
1− (cos∆k)

2j
)
[min(ℓ1,2vkt)+min(ℓ2,2vkt)] (32)

where we recall vk = |ϵ ′k|.
It remains to investigate the term T2j(t) from equation (31) in the scaling limit ℓ1, ℓ2,d, t→

∞with fixed ratios ℓ1/ℓ,ℓ2/ℓ,d/ℓ and t/ℓ. As expected, this term contains non-trivial depend-
ence on the three lengths ℓ1, ℓ2 and d.

4.1. Calculation of T2(t)

For simplicity, we begin with the calculation of T2(t). We have

T2 =−2Tr(Γ12Γ21)

= 2
ℓ1∑

m1=1

ℓ2∑
m2=1

(
2f2(m2+ℓ1+d)−m1

+ g2(m2+ℓ1+d)−m1
+ g2m1−(m2+ℓ1+d)

)
(33)

where we used equations (11) and (16), as well as f−j =−fj. In the notations, we dropped the
explicit time dependence for clarity.

4.1.1. Summation formulas. First, we focus on terms of the form f2j in equation (33). With
equation (12), we find

f 2(m2+ℓ1+d)−m1
=

ˆ π

−π

ˆ π

−π

dk1dk2
4π2 e−i(k1−k2)(m2−m1+ℓ1+d) sin∆k1 sin∆k2 sin(2ϵk1 t)sin(2ϵk2 t). (34)

With the identity

ℓ∑
m=1

eikm = eik(
ℓ+1
2 ) sin

(
ℓ
2k
)

sin
(
k
2

) , (35)

we obtain
ℓ1∑

m1=1

ℓ2∑
m2=1

f 2(m2+ℓ1+d)−m1
=

ˆ π

−π

ˆ π

−π

dk1dk2
4π2 sin∆k1 sin∆k2 sin(2ϵk1 t)sin(2ϵk2 t)

×

e−i(k1−k2)

(
ℓ1
2 +

ℓ2
2 +d

)
sin
(
ℓ1
2 (k1 − k2)

)
sin
(
ℓ2
2 (k1 − k2)

)
sin2

(
(k1−k2)

2

)
 . (36)

Second, we consider terms of the form g2j in equation (33). We introduce

η(k) = cos∆k+ i sin∆k cos(2ϵkt) (37)

and find

g2(m2+ℓ1+d)−m1
=

ˆ π

−π

ˆ π

−π

dk1dk2
4π2

e−i(k1−k2)(m2−m1+ℓ1+d)e−i(θk1−θk2 )η(k1)η
∗(k2), (38)

10
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where we used η(k) = η∗(−k). Using equation (35), we obtain

ℓ1∑
m1=1

ℓ2∑
m2=1

g2(m2+ℓ1+d)−m1
=

ˆ π

−π

ˆ π

−π

dk1dk2
4π2 e−i(θk1−θk2 )η(k1)η

∗(k2)

×

e−i(k1−k2)

(
ℓ1
2 +

ℓ2
2 +d

)
sin
(
ℓ1
2 (k1 − k2)

)
sin
(
ℓ2
2 (k1 − k2)

)
sin2

(
k1−k2

2

)
 . (39a)

Similarly, we find

ℓ1∑
m1=1

ℓ2∑
m2=1

g2m1−(m2+ℓ1+d) =

ˆ π

−π

ˆ π

−π

dk1dk2
4π2 ei(θk1−θk2 )η∗(k1)η(k2)

×

e−i(k1−k2)

(
ℓ1
2 +

ℓ2
2 +d

)
sin
(
ℓ1
2 (k1 − k2)

)
sin
(
ℓ2
2 (k1 − k2)

)
sin2

(
k1−k2

2

)
 . (39b)

To proceed, we use the following identity in equations (36) and (39),

sin
(
ℓ
2 (k1 − k2)

)
sin
(
k1−k2

2

) =
ℓ

2

(
k1−k2

2

)
sin
(
k1−k2

2

) ˆ 1

−1
dζ cos

(
ℓζ

2
(k1 − k2)

)
. (40)

Moreover, we replace e±i(θk1−θk2 ) and 2sin
(
k1−k2

2

)
/(k1 − k2) by one in the integrals, because

they do not depend on ℓ, t, and we anticipate that they are evaluated at k1 = k2 in the sta-
tionary phase approximation. Finally, the purely imaginary terms arising from the products
η∗(k1)η(k2) and η(k1)η∗(k2) in the integrals vanish by symmetry. We thus find

T2 = ℓ1ℓ2

ˆ π

−π

ˆ π

−π

dk1dk2
4π2

ˆ 1

−1

ˆ 1

−1
dζ1dζ2e

−i(k1−k2)( ℓ
2+d)

× cos

(
ℓ1ζ1
2

(k1 − k2)

)
cos

(
ℓ2ζ2
2

(k1 − k2)

)
B2(k1,k2), (41)

where

B2(k1,k2) = cos∆k1 cos∆k2 + sin∆k1 sin∆k2 cos(2ϵk1 t− 2ϵk2 t). (42)

4.1.1.1. Integrals over ζ. Let us focus on the integrals over ζ1, ζ2,

Z2 ≡
ˆ 1

−1

ˆ 1

−1
dζ1dζ2 cos

(
ℓ1ζ1
2

(k1 − k2)

)
cos

(
ℓ2ζ2
2

(k1 − k2)

)
. (43)

Because the integrals are symmetric about ζ1,2 = 0 and the kernel is invariant under ζ1,2 →
−ζ1,2, we have

Z2 =
ˆ 1

−1

ˆ 1

−1
dζ1dζ2 cos

(
ℓ

2
(x2ζ2 − x1ζ1)(k1 − k2)

)
(44)

with xj = ℓj/ℓ, j= 1,2. We introduce the change of variables

ρ0 = x1ζ1
ρ1 = x2ζ2 − x1ζ1, (45)

and obtain

Z2 =
ℓ2

ℓ1ℓ2

ˆ x1

−x1

dρ0

ˆ x2−ρ0

−x2−ρ0

dρ1 cos

(
ℓ

2
ρ1(k1 − k2)

)
. (46)

11
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The bounds of integration depend on ρ0, whereas the kernel do not, and it is possible to
reduce this double integral as a single integral over ρ1. For a generic function J(ρ1), we have

ˆ x1

−x1

dρ0

ˆ x2−ρ0

−x2−ρ0

dρ1J(ρ1) =
ˆ
R
dρ1J(ρ1)Ω12(ρ1), (47a)

where

Ω12(ρ1) =max[0,min(x1,x2 + ρ1)+min(x1,x2 − ρ1)]. (47b)

We stress that equation (47) is a non-trivial generalization of a similar result used in [26]
for the case of a single block.

Combining equations (41), (46) and (47), we find

T2 =
ℓ2

2π

ˆ π

−π

dk
2π

[ˆ
[−π,π]×R

dk1dρ1e
−i(k1−k)( ℓ

2+d)B2(k1,k)e
iℓρ1
2 (k1−k)Ω12(ρ1)

]
(48)

where we used the symmetry about 0 of the integral over ρ1 to replace cos
(
ℓ
2ρ1(k1 − k2)

)
by

an exponential.

4.1.1.2. Multidimensional stationary phase approximation. We study the asymptotic beha-
viour of the two-fold integral over k1 and ρ1 in equation (48) usingmultidimensional stationary
phase approximation. This method can be used to evaluate integrals of the form

I(ℓ) =
ˆ
Rn

dx G(x)eiℓF(x), (49)

in the limit ℓ→∞. In the case where there is only one point x0 ∈ Rn such that ∇F(x0) = 0,
we have

lim
ℓ→∞

I(ℓ) = G(x0)eiℓF(x0)
(
2π
ℓ

) n
2

|detHess(F(x0))|−
1
2 + o(ℓ−

n
2 ). (50)

Using the definition (42) of B2, the integral in equation (48) has two distinct terms, one is
time-independent, and the second contains all the time dependence. We study these two terms
separately.

For the time-independent term, the two-fold integral can be written in the form of
equation (49) with

F(k1,ρ1) =−(k1 − k)

(
1
2
+
d
ℓ

)
+
ρ1
2
(k1 − k),

G(k1,ρ1) = cos∆k1 cos∆kΩ12(ρ1). (51)

The stationary point is x0 = (k,1+ 2d
ℓ ). It is direct to verify that Ω12(1+ 2d

ℓ ) = 0, and hence
the time-independent term does not contribute in the scaling limit.

12
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For the time dependent term, we write cos(2ϵk1 t− 2ϵk2 t) from B2 in exponential form, and
hence we have two terms with opposite phases. Both integrals have the form of equation (49)
with

Ft(k1,ρ1) =−(k1 − k)

(
1
2
+
d
ℓ

)
+
ρ1
2
(k1 − k)± 2t

ℓ
(ϵk1 − ϵk),

Gt(k1,ρ1) = sin∆k1 sin∆kΩ12(ρ1). (52)

The stationary points are x0 = (k,1+ 2d
ℓ ∓ 4t

ℓ ϵ
′
k). We have |detHess(Ft(x0))|= 2−2, and hence

equations (50) and (48) yield

T2(t) = ℓ

ˆ π

−π

dk
2π

(1− (cos∆k)
2)

[
Ω12

(
1+

2d
ℓ
+

4t
ℓ
ϵ ′k

)
+Ω12

(
1+

2d
ℓ
− 4t
ℓ
ϵ ′k

)]
. (53)

Similarly as for the time-independent term, Ω12

(
1+ 2d

ℓ + a
)
= 0 for a⩾ 0, and hence we

recast T2(t) as

T2(t) = ℓ

ˆ π

−π

dk
2π

(1− (cos∆k)
2)Ω12

(
1+

2d
ℓ
− 4t
ℓ
vk
)

(54)

with vk = |ϵ ′k|. A direct calculation gives Ω12

(
1+ 2d

ℓ − 4t
ℓ vk
)
= 2/ℓ Ξℓ1,ℓ2,d,t(k), where

Ξℓ1,ℓ2,d,t(k) is defined in (24), and hence we conclude

T2(t) = 2
ˆ π

−π

dk
2π

(1− (cos∆k)
2) Ξℓ1,ℓ2,d,t(k). (55)

4.2. Calculation of T2j(t)

In this section, we generalize the calculations of the previous one to the case of T2j(t), where
j is a positive integer, and we recall that T2j(t) is defined in equation (32). It is a sum of traces
of various combinations of products of Γab matrices. For convenience, we first focus on one
certain type of sets of matrices Γab, namely

Γr,l,j = {Γ12,Γ21︸ ︷︷ ︸
r−1 times

,Γ12,Γ22, . . . ,Γ22︸ ︷︷ ︸
2j−2r−l times

,Γ21,Γ11, . . . ,Γ11︸ ︷︷ ︸
l times

} (56)

where r, l are positive integers that satisfy r> 0 and 2j− 2r− l⩾ 0. The matrix at position
i= 1, . . . ,2j in the set Γr,l,j is Γaibi . We also define Xr,l,j as the set where the entry at position
i= 1, . . . ,2j is the ratio Xr,l,j(i) = ℓai/ℓ. Finally, introduce the quantity Cr,l,j as the trace of the
product of all the matrices in iΓr,l,j,

Cr,l,j ≡ (−1)jTr[(Γ12Γ21)
r−1Γ12Γ

2j−2r−l
22 Γ21Γ

l
11], (57)

where we introduced the sign (−1)j = i2j, because in the definition of T2j, all the Γab matrices
are multiplied by i. As an example, for r= 2, l= 1, j= 3, we have

Γ2,1,3 = {Γ12,Γ21,Γ12,Γ22,Γ21,Γ11},

X2,1,3 =
{ℓ1
ℓ
,
ℓ2
ℓ
,
ℓ1
ℓ
,
ℓ2
ℓ
,
ℓ2
ℓ
,
ℓ1
ℓ

}
,

C2,1,3 =−Tr[Γ12Γ21Γ12Γ22Γ21Γ11]. (58)

13
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4.2.1. Computation of Cr,l,j. Using similar calculation as in the previous section, we find

Cr,l,j =
ℓr+l1 ℓ2j−r−l

2

22j−1

ˆ ( 2j∏
i=1

dki
2π

)(
2j∏
i=1

dζi

)
ei(

ℓ
2+d)(

∑2r−1
i=1 (−1)iki+k2j−l)

×B2j

2j∏
i=1

cos

(
ℓ

2
xiζi(ki− ki−1)

)
, (59)

where xi = Xr,l,j(i), see previous paragraph, and we assume a periodicity of 2 j in the indices,
namely k0 = k2j. The function B2j is a non-trivial generalization of the B function from [26].

We consider the set of integers λ(2j) = {1,2, . . . ,2j}, and we denote by λ(2j)2p ∈ λ(2j) a subset
which contains 2p⩽ 2j of these integers, and λ̄(2j)2p is its complement, λ(2j)2p ∪ λ̄(2j)2p = λ(2j). We
impose that both sets are ordered, namely their elements are strictly increasing. Moreover, for
i ∈ λ(2j)2p , the function s(i) gives the position of i in the set. For example, for j= 2, one choice

of subset is λ(4)2 = {2,3}, and we have s(2) = 1 and s(3) = 2. With these definitions, we find

B2j =

j∑
p=0

∑
λ
(2j)
2p

(−1)|λ
(2j)
2p |+p

cos(2t ∑
u∈λ

(2j)
2p

(−1)s(u)ϵku

) ∏
u∈λ

(2j)
2p

sin∆ku

∏
v∈λ̄

(2j)
2p

cos∆kv

 (60)
with |λ(2j)2p |=

∑
i∈λ

(2j)
2p
i. As examples, B2 is given in equation (42), and B4 is

B4 = cos∆k1 cos∆k2 cos∆k3 cos∆k4

+ cos(2t(ϵk1 − ϵk2))sin∆k1 sin∆k2 cos∆k3 cos∆k4

− cos(2t(ϵk1 − ϵk3))sin∆k1 sin∆k3 cos∆k2 cos∆k4

+ cos(2t(ϵk1 − ϵk4))sin∆k1 sin∆k4 cos∆k2 cos∆k3

+ cos(2t(ϵk2 − ϵk3))sin∆k2 sin∆k3 cos∆k1 cos∆k4

− cos(2t(ϵk2 − ϵk4))sin∆k2 sin∆k4 cos∆k1 cos∆k3

+ cos(2t(ϵk3 − ϵk4))sin∆k3 sin∆k4 cos∆k1 cos∆k2

+ cos(2t(ϵk1 − ϵk2 + ϵk3 − ϵk4))sin∆k1 sin∆k2 sin∆k3 sin∆k4 . (61)

Going back to equation (59), using the symmetry about 0 of the ζ i integrals, we transform
the product of cosines into the cosine of a sum as follows

2j∏
i=1

cos

(
ℓ

2
xiζi(ki− ki−1)

)
= cos

(
ℓ

2

2j−1∑
i=1

(xi+1ζi+1 − xiζi)(ki− k2j)

)
. (62)

We stress that this equation is not an identity and only holds in the integrals. To proceed, we
introduce the change of variables

ρ0 = x1ζ1
ρi = xi+1ζi+1 − xiζi, i= 1, . . . ,2j− 1, (63)

14
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and obtain

Cr,l,j = ℓ

(
ℓ

2

)2j−1ˆ ( 2j∏
i=1

dki
2π

)(
2j−1∏
i=0

dρi

)
ei(

ℓ
2+d)(

∑2r−1
i=1 (−1)iki+k2j−l)

×B2j cos

(
ℓ

2

2j−1∑
i=1

ρi(ki− k2j)

)
. (64)

Here, the integral over ρi is between
(
−xi+1 −

∑i−1
m=0 ρm

)
and

(
xi+1 −

∑i−1
m=0 ρm

)
. Similarly

as for the case j= 1, the kernel does not depend on ρ0, and we have

Cr,l,j = ℓ

(
ℓ

4π

)2j−1ˆ π

−π

dk
2π

[ˆ
[−π,π]2j−1×R2j−1

(
2j−1∏
i=1

dkidρi

)

×ei(
ℓ
2+d)(

∑2r−1
i=1 (−1)iki+k2j−l)B2j cos

(
ℓ

2

2j−1∑
i=1

ρi(ki− k)

)
Ω12({ρi})

]
, (65)

where we set k2j ≡ k, and

Ω12({ρi}) =max

[
0, min

w=1,...,2j−1

(
x1,xw+1 +

w∑
m=1

ρm

)
+ min

w=1,...,2j−1

(
x1,xw+1 −

w∑
m=1

ρm

)]
. (66)

We treat the (4j− 2)-fold integral in equation (65) using the multidimensional sta-
tionary phase approximation discussed in the previous section. Crucially, the only
term in B2j that contributes in the scaling limit is the one where the time-dependent
factor contains energies whose signs and indices match those of the ki in the over-

all the phase ei(
ℓ
2+d)(

∑2r−1
i=1 (−1)iki+k2j−l) in equation (65). This time-dependent term is

(−1)l cos
(
2t
∑2r−1

i=1 (−1)iϵki + 2tϵk2j−l

)
(cos∆k)

2j−2r(sin∆k)
2r, where we anticipated that all

the momenta are evaluated at ki = k in the stationary phase approximation. The sign (−1)l is a
direct consequence of the definition of B2j, see equation (60). The stationary phase calculation
is similar to the case j= 1, and we find

Cr,l,j = (−1)l
ˆ π

−π

dk
2π

(cos∆k)
2j−2r(sin∆k)

2rΞℓ1,ℓ2,d,t(k). (67)

4.2.2. Reconstruction of T2j(t). Thus far, we have investigated the scaling behaviour of a
very specific type of trace of product of Γab matrices, namely the quantity Cr,l,j defined in
equation (57). Of course, in T2j, there are many more contributions, arising from different
ways of arranging the Γab matrices. However, in the scaling limit, the traces of products of
matrices taken from a same set but arranged in different orders are equal. We stress that this is
not true in finite size, because the blocks of the matrices do not commute. Hence, in the scaling
limit, we can write the general formula

T2j =
j∑

r=1

2j−2r∑
l=0

αr,l,jCr,l,j, (68)

15



J. Phys. A: Math. Theor. 55 (2022) 505005 G Parez and R Bonsignori

where αr,l,j is the number of ways of arranging the matrices from the set Γr,l,j defined in
equation (56) such that the resulting product is a square matrix of size ℓ1 × ℓ1 or ℓ2 × ℓ2. A
simple combinatorial argument yields

αr,l,j =
2rj

(2j− r− l)(r+ l)

(
2j− r− l

r

)(
r+ l
r

)
. (69)

Crucially, the coefficients αr,l,j satisfy [55, 65]

2j−2r∑
l=0

(−1)lαr,l,j = 2

(
j
r

)
. (70)

Finally, using the binomial relation
j∑

r=1

(
j
r

)
(cos∆k)

2j−2r(sin∆k)
2r = 1− (cos∆k)

2j (71)

together with equations (67), (68) and (70), we get

T2j(t) = 2
ˆ

dk
2π

(1− (cos∆k)
2j)Ξℓ1,ℓ2,d,t(k) (72)

in the scaling limit. This result appears to be a straightforward generalization of equation (55),
but the proof is not.

4.3. Final resummation and conclusion of the proof

To conclude the proof, we need to perform the resummation of equation (30). First, we note
that since hn(1) = 0, the sum of all the Taylor coefficients vanishes,

∑∞
j=0 cn(2j) = 0. Hence,

the terms that do not depend on the summation index j in the quantities we sum over do not
contribute. Combining equations (29)–(32) and (72), we find

SA1∪A2
n (t) =

ˆ π

−π

dk
2π

hn(cos∆k)[min(ℓ1,2vkt)+min(ℓ2,2vkt)−Ξℓ1,ℓ2,d,t(k)], (73)

as claimed in section 3.4, equation (28).
As advertised, a direct corollary is that equation (26) holds for the mutual information.

Indeed, following the same strategy as for the entropies of disjoint blocks, we have

IA1:A2
n (t) =−1

2

∞∑
j=0

cn(2j)T2j(t)

=

ˆ π

−π

dk
2π

hn(cos∆k)Ξℓ1,ℓ2,d,t(k). (74)

Finally, this result also implies that the tripartite information identically vanishes for all
times, see equation (27), in agreement with the results of [50].

5. Conclusion

In this manuscript, we provide the exact ab initio derivation of the formula for the dynamics
of the entanglement entropies for two disjoint blocks in the spin-1/2 XY chain in a trans-
verse magnetic field, after a global quantum quench. This result, given by equation (28), also
provides a proof that the quasiparticle picture for the mutual information holds in that model,
see equation (26). Our approach generalizes the one used in equation [26] for the case of
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a single interval. In particular, it consists in expressing the Rényi entropies of two disjoint
blocks SA1∪A2

n (t) as a sum of terms containing the traces of even powers of the correlation
matrix ΓA1∪A2(t). The evaluation of such terms amounts to that of sum of traces of differ-
ent combinations of products of blocks of the correlation matrix, whose final expression is
obtained via multidimensional stationary phase approximation in the scaling limit. Another
direct implication of our calculation is that the tripartite information identically vanishes at all
times for the XY chain, and more generally for systems where the quasiparticle picture holds.

There are some natural generalizations of our results. First, it would be interesting to see
if the exact methods developed in [60, 61] can be adapted to address the quench dynamics of
the negativity in the XY chain. This would prove the relation between the logarithmic negat-
ivity and the Rényi mutual information with index n= 1/2 after a quench [42]. Second, our
calculations can probably be adapted to the case of three intervals. This would for example
allow us to generalize equation (27) to study the tripartite information for disjoint intervals,
and see if it also vanishes identically in that case. Finally, our results can certainly be adap-
ted to derive exact expressions for the recently introduced entanglement asymmetry [66] and
Rényi fidelities [67] in the context of disjoint intervals.
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