
European Journal of Physics

Eur. J. Phys. 43 (2022) 015601 (22pp) https://doi.org/10.1088/1361-6404/ac2b36

Adaptive polygon rendering for interactive
visualization in the Schwarzschild
spacetime

Thomas Müller1,∗ , Christoph Schulz2 and
Daniel Weiskopf2

1 Max Planck Institute for Astronomy/Haus der Astronomie, Königstuhl 17, 69117
Heidelberg, Germany
2 Visualization Research Center (VISUS), University of Stuttgart, Allmandring 19,
70569 Stuttgart, Germany

E-mail: tmueller@mpia.de, Christoph.Schulz@visus.uni-stuttgart.de and
Daniel.Weiskopf@visus.uni-stuttgart.de

Received 19 July 2021, revised 15 September 2021
Accepted for publication 29 September 2021
Published 28 October 2021

Abstract
Interactive visualization is a valuable tool for introductory or advanced courses
in general relativity as well as for public outreach to provide a deeper under-
standing of the visual implications due to curved spacetime. In particular, the
extreme case of a black hole where the curvature becomes so strong that even
light cannot escape, benefits from an interactive visualization where students
can investigate the distortion effects by moving objects around. However, the
most commonly used technique of four-dimensional general-relativistic ray
tracing is still too slow for interactive frame rates. Therefore, we propose an
efficient and adaptive polygon rendering method that takes light deflection and
light travel time into account. An additional advantage of this method is that it
provides a natural demonstration of how multiple images occur and how light
travel time affects them. Finally, we present our method using three example
scenes: a triangle passing behind a black hole, a sphere orbiting a black hole
and an accretion disk with different inclination angles.

Keywords: general relativity, Schwarzschild spacetime, interactive visualization

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

0143-0807/21/015601+22$33.00 © 2021 European Physical Society Printed in the UK 1

https://doi.org/10.1088/1361-6404/ac2b36
https://orcid.org/0000-0002-2003-4465
https://orcid.org/0000-0001-5771-3966
https://orcid.org/0000-0003-1174-1026
mailto:tmueller@mpia.de
mailto:Christoph.Schulz@visus.uni-stuttgart.de
mailto:Daniel.Weiskopf@visus.uni-stuttgart.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/ac2b36&domain=pdf&date_stamp=2021-10-28
https://creativecommons.org/licenses/by/4.0/

Eur. J. Phys. 43 (2022) 015601 T Müller et al

1. Introduction

The Schwarzschild spacetime describes the outer space of a static spherically symmetric mass
distribution like a star and, in particular, a non-rotating black hole. A consequence of the curved
spacetime around such a mass distribution is the deflection of light, which could be proven
experimentally for the first time by the Eddington expedition [1] during the solar eclipse in
May 1919. While the deflection of light due to the curved spacetime around the Sun is in the
order of arcseconds, the bending around a black hole is so strong that light can even travel
around it on a circular orbit. But not only that, light can also travel on different paths before
reaching the observer, resulting in multiple images of the same object. This has been recently
reported by x-ray echoes from behind the supermassive black hole in the nearby Seyfert galaxy
I Zwicky 1, as described in Wilkins et al [2].

There are different approaches to visually scrutinize the complex nature of the curved space-
time around a black hole and its influence on light rays and the resulting visual impression for
professional or educational use. The third-person view looks from outside the spacetime and,
for example, makes use of embedding diagrams to understand the curvature itself, [3–5], sector
models [6] for a three-dimensional representation, or time- and null-geodesics [7] to understand
the motion of particles or light.

Relativistic visualization from an egocentric (first-person) point of view [8, 9] has become
rather popular since the movie ‘Interstellar’ [10] in 2014. However, a first realistic visualization
of an accretion disk around a Schwarzschild black hole was already shown by the hand-drawn
illustration of Luminet [11] in 1979.

There are different techniques to visualize general-relativistic effects from the egocentric
point of view. The most natural and most accurate one is four-dimensional general-relativistic
ray tracing [12–14]. It is the generalization of the standard ray tracing method from computer
graphics to curved light rays that also takes into account light travel time, frequency shift, and
lensing. Dedicated ray tracing codes, like GYOTO [15], GRay [16], ODYSSEY [17], or the
code by Pihajoki et al [18], are able to visualize the near environment around a black hole with
even more effects.

While standard ray tracing can reach interactive frame rates on today’s advanced graphics
hardware, the general-relativistic counterpart is still far from such rendering speed, although
the use of graphics hardware already leads to a large performance gain [19]. To achieve inter-
active frame rates for general-relativistic visualization, and thus make it more accessible for
educational purposes, various techniques have been developed. A point-based approach [20]
makes use of a lookup table (LUT) to find the light ray connecting the observer with the
infinitely distant star and calculates also its apparent temperature and brightness. An image-
based rendering is quite similar and distorts an infinitely distant background image as seen
by an observer close to the black hole [21, 22]. There is an interactive visualization of a thin
accretion disk around a Schwarzschild black hole based on the analytic solution to the geodesic
equation [23]. Interactive frame rates are also achieved by a combination of adaptive ray casting
and interpolation to visualize the distant celestial sky [24].

In this paper, we present a further development of the polygon rendering method toward
general-relativistic visualization. Polygon rendering is the de facto standard method in com-
puter graphics to visualize objects modeled by a triangle mesh. Each triangle is mapped from
world space onto the camera screen using highly parallized processing pipelines containing
affine transformations (translation, scaling, rotation) and a projective transformation (ortho-
graphic or perspective). All of these rendering operations can be executed on graphics hardware
efficiently, even for very large scenes with millions of triangles. For those interested in a more

2

Eur. J. Phys. 43 (2022) 015601 T Müller et al

detailed overview of computer graphics, we refer to textbooks like the ones by Angel and
Shreiner [25] or Marschner and Shirley [26], or to online resources, e.g. https://open.gl.

Polygon rendering has already been adapted for special-relativistic visualization, where the
apparent distortion due to high relative velocities between observer and object is applied to
every single vertex of all triangle meshes. In ‘A Slower Speed of Light’, based on the Open-
Relativity toolkit [27] for the Unity game engine, this technique was used in a first-person
game-like environment. However, since no adaptive tessellation was used and only the ver-
tices were transformed, low-polygon objects appear partially edged if the relative velocity is
quite large.

For general-relativistic polygon rendering, we first create a distorted mesh, taking into
account the bending of light and the light travel time, which can then be processed with stan-
dard polygon rendering. This has the additional advantage that the apparent distortion of an
object can be studied in more detail and also the influence of the light travel time is clearly
visible. If the given mesh resolution is too low, adaptive subdivision is applied to improve the
apparent curvature of straight edges. Additionally, a simple illumination model enhances the
spatial perception of an object.

The structure of the paper is as follows. Section 2 briefly reviews the calculation of light
rays in Schwarzschild spacetime and how a light ray can be found connecting two arbitrary
points by means of bisection and ray shooting. Section 3 describes the standard polygon
rendering technique from computer graphics and shows how it can be modified for general-
relativistic situations. For that, we discuss how the information about connecting light rays
is stored in a LUT and how adaptive subdivision can be realized. We also describe imple-
mentation details and a simple illumination model. In section 4, we present a few examples
and compare the rendering times of general-relativistic ray tracing with our new approach in
section 5.

Our implementation is based on the Open Graphics Library (OpenGL) and the OpenGL
Shading Language (GLSL)3. The source code is written in C++ and makes use of the scripting
language Lua. It is freely available from https://github.com/tauzero7/GRPolyRen.

2. Light rays in Schwarzschild spacetime

2.1. Spacetime of the Schwarzschild black hole

The spacetime outside a static spherically symmetric mass distribution can be described by the
Schwarzschild metric in spherical coordinates (t, r,ϑ,ϕ). In line element notation, the metric
reads

ds2 = −
(

1 − rs

r

)
c2 dt2 +

dr2

1 − rs/r
+ r2

(
dϑ2 + sin2(ϑ)dϕ2

)
, (1)

with Schwarzschild radius rs = 2GM/c2, Newton’s gravitational constant G, mass M, and
speed-of-light c. This radius marks the event horizon, the boundary where the gravitational
pull or the curvature of spacetime is so strong that even light cannot escape. If M → 0, the
Schwarzschild metric transforms into the flat Minkowski metric.

For later use, we introduce pseudo-Cartesian coordinates (x, y, z) that are related to the
spherical coordinates (r,ϑ,ϕ) as usual

x = r sin ϑ cos ϕ, y = r sin ϑ sin ϕ, z = r cos ϑ. (2)

3 OpenGL 4.6 specification, https://khronos.org/opengl.

3

https://open.gl
https://github.com/tauzero7/GRPolyRen
https://khronos.org/opengl

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Here, ‘pseudo’ means that the corresponding coordinate axes are not orthogonal to each other
like in Euclidean space. That would become more obvious if we transformed equation (1) into
Cartesian coordinates.

2.2. Geodesic equations for light rays

A light ray in curved spacetime follows a null geodesic, which is a generalization of a straight
line in curved spacetime. Given a spacetime metric as equation (1), the path of a light ray results
from the geodesic equations

d2xμ

dλ2
+ Γμ

νρ

dxν

dλ
dxρ

dλ
= 0, ∀ μ ∈ {0, 1, 2, 3}, (3)

with Christoffel symbols Γμ
νρ = Γμ

νρ(gαβ , ∂ζgαβ) and affine parameter λ. Note that we use
Einstein’s convention to sum over identical upper and lower indices. To guarantee a null
geodesic, the initial conditions of these second-order differential equations have to fulfill the
constraint equation

gμν
dxμ

dλ
dxν

dλ
= 0, (4)

with metric coefficients gμν . These can be directly read off from equation (1) in the form of
the coefficients in front of the differentials dxμ.

Because of the spherical symmetry of the Schwarzschild spacetime, a geodesic remains in
the same hyperplane spanned by the black hole, its starting point and its initial direction. Hence,
it is sufficient to consider light rays in the ϑ = π/2 hyperplane. Then, the geodesic equations
for the Schwarzschild metric simplify to

d2 t
dλ2

= − rs

r(r − rs)
utur, (5)

d2r
dλ2

= −c2rs(r − rs)
2r3

utut +
rs

2r(r − rs)
urur + (r − rs) uϕuϕ, (6)

d2ϕ

dλ2
= −2

r
uruϕ, (7)

where uμ = dxμ/dλ,μ = {t, r,ϕ}, represents the tangent to the geodesic. The initial conditions
to this system can be defined with respect to a local reference system e(i) = eμ(i)∂μ, where

e(t) =
1

c
√

1 − rs/r
∂t, e(r) =

√
1 − rs

r
∂r, e(ϕ) =

1
r
∂ϕ, (8)

which represents a locally flat coordinate system with mutually orthogonal basis vectors,

η(i)(j) = 〈e(i), e(j)〉 = gμνeμ(i)e
ν
(j) ∀ i, j ∈ {t, r,ϕ}. (9)

The derivative operators ∂μ ≡ ∂/∂xμ represent coordinate directions, and η = diag(−1, 1, 1)
is the flat Minkowski metric for 2 + 1D subspace.

Now, an initial direction y can be given either with respect to this basis or with respect to
their coordinate representation,

y = y(t)e(t) + y(r)e(r) + y(ϕ)e(ϕ) = yt∂t + yr∂r + yϕ∂ϕ. (10)

4

Eur. J. Phys. 43 (2022) 015601 T Müller et al

For a past-directed light ray starting at r = ri, ϕ = ϕi at time t = ti = 0 with direction
y(t) = −1, y(r) = cos ξ, and y(ϕ) = sin ξ, the corresponding coordinate directions read

yt
i = − 1

c
√

1 − rs/ri
, yr

i =

√
1 − rs

ri
cos ξ, yϕi =

sin ξ

ri
. (11)

The initial conditions (ti, ri,ϕi, yt
i, yr

i , yϕi) can be used to integrate the geodesic
equations (5)–(7). An interactive application to study null and timelike geodesics in
many different spacetimes is described by Müller [7].

2.3. Shadow of a black hole

By means of the Euler–Lagrangian formalism, see e.g. Rindler [28], the energy balance
equation for null geodesics within the ϑ = π/2 hyperplane,

1
2

ṙ2 + Veff =
1
2

k2

c2
, (12)

with the effective potential Veff = (1 − rs/r)h2/(2r2) and ṙ = dr/dλ can be derived. The con-
stants of motion k = c2 ṫ(1 − rs/r) and h = r2ϕ̇ for an observer located at r = ri are given by

k = c

√
1 − rs

ri
and h = ri sin ξ. (13)

As can be easily shown, the effective potential has a maximum at rpo = 3rs/2, which equals
the photon orbit, where a light ray can travel around the black hole on an unstable circular orbit.
The photon orbit also marks the boundary between light rays that merely pass the black hole
and those that fall into it. Solving the energy balance equation for a light ray that approaches
the photon orbit asymptotically, i.e. ṙ = 0, yields the corresponding initial angle ξcrit for an
observer at r = ri, where

sin2(ξcrit) =
27
4

r2
s

r2
i

(
1 − rs

ri

)
. (14)

The angle ξcrit also describes the half opening angle of the shadow of the black hole.

2.4. Light ray connecting two arbitrary points

The theory of the previous subsections at hand, we can now integrate a light ray starting at
point p with an initial angle ξ̄ = π − ξ. Depending on how close this light ray passes the black
hole, it will be bent more or less. As long as the initial angle ξ̄ is larger than the critical angle,
ξcrit < ξ̄ � π, the light ray will tend toward infinity, r →∞, for λ→∞. If 0 � ξ̄ < ξcrit, in
contrast, the light ray will inevitably plunge into the black hole. Only in the limiting case where
ξ̄ = ξcrit, the light ray will approach the circular photon orbit at rpo = 3rs/2 asymptotically.

While this backward ray tracing by integrating the geodesic equations is straightforward,
finding a light ray connecting two arbitrary points, also called emitter-observer problem, is
highly non-trivial in curved spacetimes.

Figure 1 shows the situation where two points p and q have to be connected by a light ray.
The most striking feature is that not only one light ray connects the two points, path 1, but
also another one, path 2, which travels around the black hole on the opposite side. In principle,
there is an infinite number of light rays connecting these points that orbit the black hole one or

5

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 1. Due to the deflection of light close to a black hole, an observer at point
p(xp = 20rs, yp = 0), will see the point q(xq = −8rs, yp = 4.83rs) at the apparent
positions q1 and q2.

multiple times before reaching the target. But for the rest of this paper, we will concentrate on
these two.

Now, if an observer is located at point p, they would see the point q along the directions
of the incoming light rays. Thus, q appears at q1 and q2. However, the distance is somewhat
arbitrary as long as there is no additional information like light intensity, which we will ignore
here. As a natural choice, we use the light travel time multiplied by the speed of light to assign a
distance. In figure 1, the light travel time for path 2 is a little bit longer than for path 1, and
thus, q2 is slightly farther away from p as q1. We will use this distance also to enumerate the
images as first- and second-order images.

The situation would become even more complicated if one or both points were to move in
time. But for simplicity, we consider only points that are either static or move quasi-statically.
In the latter case, the points move much more slowly than the speed of light or the light travel
time between them, so they can be considered static while searching the connecting light
rays.

The spherical symmetry of the Schwarzschild spacetime considerably simplifies the search
for a light ray connecting two arbitrary points. Let us assume two points p and q outside the
event horizon that are not collinear and have position vectors�p and�q in pseudo-Cartesian coor-
dinates. The hyperplane H containing the light ray between these two points can be spanned
by the two base vectors�e1 and �e2, see figure 2, where

�e1 =
�p
‖�p‖ , �n = �e1 × �q, �e2 =

�n ×�e1

‖�n ×�e1‖
. (15)

If we identify�e1 with the x′-axis and�e2 with the y′-axis, we end-up with the standard situation
of figure 1. In this system, �q has the coordinates x′ = 〈�e1,�q〉 and y′ = 〈�e2,�q〉, where 〈·, ·〉 is
the usual dot product in Euclidean space, and the polar coordinates read r =

√
x′2 + y′2 and

ϕ = arctan(y′, x′).

6

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 2. Hyperplane H, spanned by the two base vectors �e1 and �e2, contains the light
ray between �p and �q that has initial angle ξ̄ = π − ξ

2.5. How to find a light ray connecting two arbitrary points

In flat space, a light ray connecting two arbitrary points can be easily found by just drawing
a straight line between them. In curved spacetime, however, the light ray must be a solution
to the geodesic equations. If there is an analytic solution to the geodesic equations, like for
the Schwarzschild spacetime, finding a light ray leads to an implicit equation for the initial
direction ξ. The mathematical details rely on elliptic integrals that are difficult to handle and
rarely covered in introductory courses on relativity theory. That is why we choose a different
approach called shooting method to find the connecting light rays.

For that, without loss of generality, we fix the point p to coordinates (r = ri,ϕ = 0), and the
point q is located at (rf ,ϕf), where 0 � ϕf � π for the first-order image and π < ϕf < 2π for
the second-order image, see figure 1. To find the geodesic connecting p and q, we first select
an initial domain [ξlow

0 , ξhigh
0] within which we expect the angle ξ that connects both points.

For both boundary values as well as for the mean value ξmean
0 = (ξhigh

0 + ξlow
0)/2, we integrate

a light ray from ϕ = 0 (point p) up to ϕ = ϕf (point q) and compare the radial values rlow
0 , rhigh

0
and rmean

0 at ϕf with the target value rf , see figure 3. If the geodesic does not reach ϕf after a
predefined number of integration steps, then the integration will be stopped and an arbitrary
large radial value will be assigned.

Depending on where rf is located, we limit the current domain to the new domain
[ξlow

1 , ξhigh
1]. This iteration will be continued until |rhigh

n − rlow
n | < εr or |ξhigh

n − ξlow
n | < εξ with

some thresholds εr � 1 and εξ � 1.
While this bisection method is rather straight-forward in general, we have to take care about

the initial boundary values because of the ambiguity of light rays connecting two points in the
Schwarzschild spacetime.

7

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 3. Bisection iteration step ‘n’ to find the geodesic connecting p and q. The current
domain is given by [ξ̄ low

n , ξ̄ high
n] and the geodesics are integrated up to ϕ = ϕf . As rf is

in [rmean
n , rlow

n], the new boundary values for iteration step ‘n + 1’ read ξ̄ low
n+1 = ξ̄ low

n and
ξ̄

high
n+1 = ξ̄mean

n .

In case of the second-order image, the initial boundary values for ξ can be restricted to
[π/2, π − ξcrit], but for the first-order image, the boundaries read [0, π] to take into account
also the general case where ri could be smaller than rf . In both cases, we use a random value
in [ξlow

n , ξhigh
n] in order to select a mean initial angle ξmean

n as long as the boundary values do
not yield meaningful radial values rlow

n or rhigh
n . But then, bisection works as usual.

3. Adaptive polygon rendering

Polygon rendering is the de facto standard rendering method in computer graphics if an object’s
surface is modeled by a triangle mesh. With dedicated graphics processing units (GPUs), even
complex scenes with millions of triangles can be rendered with more than 30 frames per second
(fps) for a smooth presentation.

The rendering pipeline of the polygon method consists mainly of three stages: vertex manip-
ulation, rasterization, and pixel generation. While the rasterization is fixed, the other two stages
are customizable using shader programs. In brief, the vertex shader is responsible for project-
ing the triangle mesh from world space to screen space. The rasterizer resolves each triangle
in screen space into multiple fragments (pixels with additional attributes), and the fragment
shader (FS) takes care of the illumination and coloring of each fragment, which then become
pixels.

For our general-relativistic visualization of an object’s surface, we have to take the bending
of light into account when mapping the triangle mesh onto the virtual screen of an observer.
This can essentially be done in two steps. First, every single vertex of the triangle mesh is
transformed as discussed in the previous section. Then, the transformed mesh can be mapped
into screen space with the standard polygon method. Finally, the mesh is colorized in the FS
using standard techniques like Phong-shading. However, as rays from light sources also follow
null geodesics, we have to find the geodesic that connects the fragment point and the light
source in order to determine the incoming direction of light. As there are multiple images due
to the strong bending of light, we have to repeat this procedure for the higher-order images of
the object as well.

8

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Since finding a connecting light ray is very time expensive, we generate a LUT in a prepro-
cessing step that stores for every combination of r and ϕ the corresponding viewing angle ξ
and light travel time Δt. Then, we only have to determine the hyperplane that incorporates the
observer and the mesh vertex, and then can immediately lookup the necessary parameters.

Another problem that we have to face is that the triangle meshes have to be subdivided, even
if they come with high polygon counts in order to approximate the strong apparent curvature
due to the bending of light.

3.1. Generate lookup table

As already mentioned in the previous section, we can restrict to light rays in theϑ = π/2 hyper-
plane H. Thus, for a given observer position robs, we have to sample H only in coordinates r
and ϕ. As the curvature of spacetime and, thus, the deflection of light increases the closer
an object is to the black hole, we use the inverse radius x = rs/r to sample the radial direc-
tion. We also restrict the radial direction to the domain r ∈ [rmin, rmax] or x ∈ [xmin, xmax] with
xmin = rs/rmax and xmax = rs/rmin, where rmin = rs + ε and ε > 0. For the ϕ direction, we split
the LUT into two parts: LUT 1 covers 0 � ϕ < π and LUT 2 covers π � ϕ < 2π.

To solve the geodesic equations for any two points (robs,ϕ = 0) and (rf ,ϕf), we first con-
vert them into a system of first-order equations using the coordinates (t, r,ϕ, ut = dt/dλ, ur =
dr/dλ, uϕ = dϕ/dλ). We integrate the resulting 6D ordinary differential equation with the
initial conditions (ti = 0, ri = robs,ϕi = 0) and (yt

i, yr
i , yϕi) from equation (11) by using a

Runge–Kutta Cash–Karp integrator with step-size control.
As all sampling points are independent of each other, generating the LUT is trivially

parallelizable, e.g. using OpenMP4.
To use the LUT also for a basic illumination model, we have to store the direction of light

u = ur∂r + uϕ∂ϕ at the final point, which we transform to Cartesian coordinates by means of
the transformation of the derivative operators,

∂r = cosϕ∂x + sinϕ∂y, ∂ϕ = −r sinϕ∂x + r cosϕ∂y. (16)

Thus

ux = ur cosϕ− uϕ r sinϕ, uy = ur sinϕ+ uϕr cosϕ. (17)

To summarize, we have two LUTs for the first- and second-order images, where for each
sampling point (rf ,ϕf), we store the initial direction ξ, the light travel timeΔt, and the direction
of light (ux , uy). Each of the LUTs is uploaded as separate 2D texture (see following section),
where we use bilinear interpolation to find the respective values in-between the sampling
points.

Figure 4 shows the lookup texture for the initial position ri = 20rs and a radial range of
r ∈ [1.25rs, 15rs] or x ∈ [0.0667, 0.8], respectively, where only the angle ξ is shown using a
gray-scale map.

3.2. Relativistic polygon rendering

Before we setup the pipeline for the relativistic polygon rendering, we first have a look at some
special cases requiring specific consideration. In particular, we study how a single vertical line
is mapped onto the virtual image plane of the camera. Figure 5 shows the projection of the line
p1 p2 defined by the two vertices p1 and p2 in case of a flat spacetime (black line) or when it

4 https://openmp.org.

9

https://openmp.org

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 4. LUT for an initial position ri = 20rs and a radial range of r ∈ [1.25rs, 15rs] or
x ∈ [0.0667, 0.8], respectively. The Schwarzschild radius reads rs = 2. The gray value
indicates the viewing angle ξ.

Figure 5. The line p1 p2 is defined by the two vertices �p1 = (−5, 3.5,−2)T and �p2 =
(−5, 3.5, 3)T in pseudo-Cartesian coordinates and is apparently distorted to the blue solid
curve q1q2. The center point p12 is mapped to q12. The black dashed circle represents the
shadow of the black hole, while the radius of the black disk equals the size of the event
horizon.

10

Eur. J. Phys. 43 (2022) 015601 T Müller et al

will be apparently distorted due to the black hole spacetime (blue curve). However, as only the
two vertices p1 and p2 exist and will be mapped to q1 and q2, polygon rendering will result
in the single straight blueish dashed line connecting q1 and q2 that strongly diverges from the
correct blue curve.

To circumvent this problem, we could subdivide the line right from the beginning into many
segments with multiple vertices, which then could be transformed individually. In fact, the blue
curved line is calculated by subdividing the line p1 p2 into 20 segments, and mapping each of
the vertices pi = p1 + i/20 · (p2 − p1) to qi for i ∈ [0, 20]. In case of a triangle, however, we
have to subdivide not only the edges but the whole triangle into many subtriangles, leading to
an enormous increase in triangles and vertices. However, this subdivision is superfluous if the
triangle is far from the black hole or if it is observed edge-on.

A better strategy is to subdivide a line or a triangle only when necessary. For that, we need
a criterion when to subdivide and how much we have to subdivide. It is obvious from figure 5
that the greater the curvature of the actual distorted line in the camera’s viewing plane (screen
space) is, the more subdivisions we need. A measure of the curvature can be determined using
the following procedure. Besides the two vertices p1 and p2, we also calculate the mapped point
q12 that results from the midpoint p12 = (p1 + p2)/2. Then, the distance between the mapped
vertex q12 and the midpoint qc = (q1 + q2)/2 of the two mapped points q1 and q2 is divided
by the distance between these two points. Thus,

ρ =
‖�q12 − 1

2 (�q1 + �q2)‖
‖�q2 − �q1‖

=

∥∥P (
1
2 (�p1 + �p2)

)
− 1

2 (P(�p1) + P(�p2))
∥∥

‖P(�p2) − P(�p1)‖ , (18)

where P is the mapping from world space to screen space including the bending of light. The
number of subdivisions Nsub can be heuristically estimated by

Nsub = MaxTessLevel · clamp(a · ρb, 0, 1) (19)

with customizable parameters a and b. ‘MaxTessLevel’ is the maximum number of subdivi-
sions a given graphics board can handle. Hence, we have an upper limit on how often we are
able to subdivide a line or triangle edge.

Next, we have to check what happens with a rod that is behind the black hole as shown in
figure 6.

Here, the line consists of 11 segments where only the vertices are shown as black dots. Fol-
lowing the procedure of section 2.4 to determine the light rays connecting the rod vertices with
the observer at p, we find that for vertices 1–10, the first-order images (red dots) appear above
the black hole as expected. For vertex 12, however, the base vector �e2 points downward, and
the first-order image of it appears below the black hole. In contrast, the second-order images
(blue dots) for vertices 1–10 appear below the black hole, whereas the second-order image of
vertex 12 appears above it. For vertex 11, there is no one single hyperplane as the vertex is
collinear with p and the black hole. Rather, vertex 11 degenerates to an Einstein ring. Even
though, from the numerical point of view, it is rare for a vertex to lie exactly on the connect-
ing line between observer and black hole, we still have the problem that there are segments or
triangle faces crossing this line. Polygon rendering—even with the aforementioned adaptive
subdivision procedure—cannot handle this situation where a single point degenerates to a ring.
Thus, we have to remove those segments or triangles. While this leads to some loss of image
quality close to the black hole, the overall visual appearance is only marginally affected, as we
will see in section 4.

Now we can setup our adaptive polygon rendering pipeline. Figure 7 shows the stages of
the rendering pipeline that are programmable using GLSL (OpenGL Shading Language).

11

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 6. A rod is represented by the black enumerated dots (1–12). The apparent first
(second) order positions of these dots are shown as red (blue) dots. The black solid
(dashed) lines are the connecting null geodesics of first (second) order. The observer is
located at p.

Figure 7. The adaptive polygon rendering pipeline consists of 5 customizable shader
stages, the geometry input (VAO= vertex array object), the LUT, and the resulting image
output. The rasterizer between geometry and FS is not shown.

The triangle mesh of an object—the positions of the triangle vertices, normal vectors, and
texture coordinates—is stored within a vertex array object (VAO) and is uploaded to the GPU
once. The two LUTs are stored as 2D floating point textures with the four entries (ξ,Δt, ux , uy)
per texel and bilinear interpolation turned on.

The only task of the vertex shader is to translate, rotate, and scale the object in world coordi-
nates, which equal pseudo-Cartesian coordinates in our case. That means, if we move an object
around the black hole, the new positions of the triangle vertices will be calculated in this first
stage.

The tessellation control shader (TCS) is responsible for the adaptive subdivision. It has
access to all three vertices of a triangle and for each triangle edge, the TCS determines the
number of subdivisions according to equation (19) and the aforementioned algorithm, which
is why it is necessary to have access to the LUT. The mean value of all three (outer) subdivision
levels define the inner subdivision of the triangle face.

The result of the TCS is the subdivision of an original triangle into several subtriangles.
These subtriangles now enter the tessellation evaluation shader (TES), where all vertices are
mapped to screen space taking into account the bending of light. For the next step, the TES
also calculates the screen space coordinates of the undistorted triangle vertices.

12

Eur. J. Phys. 43 (2022) 015601 T Müller et al

The degenerate triangle problem is handled within the geometry shader. Here, the circum-
ferences of a distorted triangle and its undistorted counterpart are compared. If the relation of
both circumferences exceeds a customizable threshold, the triangle will be discarded.

Finally, the FS is responsible for colorizing all fragments of a projected triangle in screen
space. For that, the FS calculates the interaction between light and material surface, which here
is represented by a simple checkerboard texture. The output of the FS is the final image shown
on screen.

3.3. Illuminating the mesh

If we apply only the pure colors from the checkerboard pattern, the resulting image looks quite
flat. While a fully realistic illumination with lensing effects and frequency shift is out of the
scope of this study, we could nevertheless apply simplified diffuse shading. However, we still
want to take the bending of light into account. That means that we have to find the null geodesics
connecting the point of interest (point to be illuminated) with a point light source, which leads
us back to our initial problem. If we put a point light source somewhere on a sphere with the
same radius as the observer, we can apply the same procedure as to find the null geodesics
between a vertex and the observer using the same LUT as before.

First, we determine the hyperplane H spanned by the light source at p and the point of
interest at q. Next, we set the base vectors�e1 and�e2 such that the light source is toward�e1 and
calculate the polar coordinates (r,ϕ) for q. From the LUT, we can now read the light direction
(ux , uy) at q, see equation (17). Then, the outgoing light direction at q in pseudo-Cartesian
coordinates follows from

�d = − (ux�e1 + uy�e2) . (20)

To take a distance attenuation into account, we use the light travel time Δt from the LUT
multiplied by the speed of light c. Together with the surface normal vector �n at q, we obtain
the light intensity

l = l0
max(0,�n · �d)
|Δt · c|2 , (21)

with a customizable light source intensity l0. This calculation has to be done for both null
geodesics connecting q and the light source. Furthermore, the distance attenuation is taken
into account only for light rays from the source to the object, and not from the object to the
observer. Finally, the Euclidean dot product in equation (21) has to be replaced by the dot
product with respect to the Schwarzschild metric.

4. Examples

For the following examples, we set the observer to be at r = 20rs,ϕ = 0, see figure 1, or x =
20rs, y = z = 0. Then, the half opening angle of the shadow of the black hole can be determined
from equation (14), ξcrit ≈ 7.274◦.

4.1. Single triangle

The basic element of a mesh object is a single triangle. As a first example, figure 8 shows a
triangle behind a black hole at different positions �p (lower left corner) and various number of
subdivisions (tessLevel). The shadow of the black hole is indicated by the semi-transparent

13

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 8. Single triangle at position �p1 (left column) and �p2 (right column) with dif-
ferent subdivisions. The gray-shaded disk represents the shadow of the black hole. The
camera’s vertical field of view is fovv = 20◦.

14

Eur. J. Phys. 43 (2022) 015601 T Müller et al

gray-shaded disk with dashed circle, and the center of the black hole is marked by a black
cross. In the left column the triangle is at �p1 = (−5, 3,−0.5)T, and in the right column it is at
�p2 = (−5, 0.5,−0.5)T.

The first row shows the triangle in flat spacetime for comparison. The second to fourth row
are in Schwarzschild spacetime where the subdivision of the triangle is given by tessLevel =
{1, 4, 64}. Here, tessLevel = 1 means that there is no subdivision. As the triangle consists only
of three vertices, only these vertices are transformed and ultimately connected. At tessLevel =
4, a triangle edge is subdivided into at most four segments. While this is already acceptable for
the triangle at�p1, the apparent distortion for the triangle at�p2 is too strong. For tessLevel = 64,
the triangle edge close to the black hole shadow is smoothly curved, and also the checkerboard
texture appears to be continuously distorted.

4.2. Sphere orbiting the black hole

A sphere can be approximated by a geodesic polyhedron—a convex polyhedron made from
triangles. One possibility is to start from an icosahedron, where the triangles are subdivided
step by step and the new vertices are pushed out radially onto the radius of the sphere. A second
possibility is to use a triangle mesh resulting from first creating a spherical grid by latitude and
longitude and then dividing each quad into two triangles. The advantage of the second approach
are better texture coordinates at the poles even for a low number of triangles. Here, we use 10◦

separations for latitude and longitude, which results in 1224 triangles.5

Figure 9 shows a sphere of radius R = 0.5rs orbiting quasi-statically around the black hole
on the last stable circular orbit r = 3rs. If the sphere is directly between black hole and observer,
ϕ = 0, figure 9(a), it appears almost undistorted as first-order image. However, a closer look
shows that there is also an Einstein ring slightly outside the black hole shadow. This ring
(second-order image) is due to light rays that travel around the black hole once before reaching
the observer.

When the azimuth angle ϕ is increasing, figures 9(b)–(e), the first-order image of the
sphere becomes more and more distorted and the second-order image grows in size. The col-
ors also show that the second-order image looks similar to a point-mirrored image of the
first-order one. When the sphere is directly behind the black hole, figure 9(f), another Ein-
stein ring appears. Here, light rays have to travel only half an orbit around the black hole
before reaching the observer. The thickness of the ring originates from light rays that are tan-
gent to both sides of the sphere. Since light rays in case (f) pass the black hole somewhat
further away than in case (a), the ring in (f) appears significantly thicker. By the way, in
case (f), the next higher-order Einstein ring would be due to light rays traveling around the
black hole one and a half times. However, the image resolution is too low for this ring to be
resolved.

What we have left out so far is that we do not have the sphere orbiting exactly along the cir-
cular orbit around the black hole but give it a tiny offset in z. Otherwise, the poles of the sphere
in (a) and (f) would lie exactly on the connecting line between the black hole and the observer,
and that would lead to the problem discussed in section 3.2, where a point degenerates to a
ring. Furthermore, we defined the large sphere with respect to pseudo-Cartesian coordinates,
which leads to additional distortions. A better definition of the sphere would be to use either
proper distance or proper light travel time between the center and the surface of the sphere, but
that is out of the scope of this study.

5 The triangle mesh is generated as ‘uvsphere’ in Blender 2.92 with 36 segments and 18 rings.

15

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 9. Sphere orbiting the black hole on the last stable circular orbit, r = 3rs. Tes-
sellation parameters are set to MaxTessLevel = 64, a = 5, b = 0.75, see equation (19).
The camera’s vertical field of view is fovv = 19◦.

4.3. Accretion disk

The accretion disk in figure 10 has an inner ring radius rin = 3.3rs, an outer radius rout = 8.25rs

and a thickness d = 0.55rs. It originally consists of 2560 triangles. Top and bottom faces are
colored by a polar checkerboard pattern in either reddish or blueish hues.

The left column shows what an observer located at robs = 20rs,ϕ = 0, will see if a point
light source at rl = 20rs, ϕ = 0, ϑ = 80◦ illuminates the disk. In figure 10(a), light hits the disk

16

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Figure 10. Accretion disk with polar checkerboard on the top (red) and bottom (blue)
side. The edge has a greenish color. The left column shows the view of the actual observer
located at �p = (40, 0, 0)T with the light source at�l = (39.39, 0, 6.95)T. The right column
shows the view from an external camera. The black-shaded sphere represents the shadow
of the black hole.

nearly perpendicular and the reflected light reaching the observer is also nearly perpendicular.
That is why the first-order image (red face) of the disk looks almost uniformly bright. The
blueish back side of the disk receives nearly no light, because only light rays that enter the
region below the inner radius and that travel around the black hole once can illuminate the back
side. Furthermore, these light rays have a longer light travel time and, because of the quadratic
distance attenuation, are much weaker. Figures 10(c) and (e) show a similar behavior. A longer

17

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Table 1. Initial angles ξ and light travel times Δt for the inner (a) and (c) and the outer
(b) and (d) radii of an infinitely thin disk.

Spacetime ξ Δt

Minkowski (a) 170.6306◦ 40.5408
(b) 157.5839◦ 43.2695

Schwarzschild (a) 169.0461◦ 45.3345
(b) 155.4929◦ 46.1738
(c) 172.3350◦ 66.1959
(d) 171.9831◦ 76.8531

Figure 11. Light rays in Schwarzschild spacetime emitted at the inner and outer edges
of a disk (red/blue solid lines). The observer is located at p and has an inclination of 90◦

to the disk; see also figure 10(a).

light travel time and a larger angle between the incident light direction and the surface normal
make the far side of the disk look darker. Note that even the far side of the disk appears to point
toward the observer in (e), the inclination angle of the light and the surface normal is almost
the same for the entire disk.

The right column of figure 10 shows an abstract view of the situations and cannot be
observed in reality. This visualization shows the actual geometry as calculated by the adap-
tive polygon rendering technique. In particular, the different light travel times that define the
distance of a vertex are clearly visible.

In figure 10(b), the inner part of the disk (first-order) is slightly farther away than the outer
part. This sounds counterintuitive at first because the outer parts are geometrically further away
from the observer than the inner parts. However, gravitational time dilation close to the black
hole slows down time. Therefore, light rays take longer to reach the observer the closer they

18

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Table 2. Timings for generating LUT of size Nr × Nϕ in seconds.

Observer position 64 × 128 128 × 256 256 × 512

robs = 10rs 23.7 86.0 342.4
robs = 20rs 34.1 134.0 541.1
robs = 30rs 49.0 180.0 714.9

are to the black hole when they were emitted. Table 1 compares the light travel times Δt for
the inner and outer disk edges in Schwarzschild and Minkowski spacetime. In flat spacetime,
the different distances to the disk edges result in a difference between the light travel times of
δtM = Δtb −Δta = 2.7287. In Schwarzschild spacetime, however, the time difference is only
δtS = 0.8393. Hence, the light travel time to the inner edge is longer than expected from flat
spacetime.

The mesh for the second-order image of the disk in figure 10(b), which is responsible for
the dark ring just around the black hole’s shadow in figure 10(a), is strongly elongated. This
shows once more that time dilation has a large influence on the light travel time close to the
black hole. But the elongation is also due to a larger geometric distance between a light ray
emitted at the outer edge of the disk compared to one emitted at the inner edge, see the light
rays connecting p with either (c) or (d) in figure 11.

For lower inclinations, figures 10(d) and (f), light travel times from the bottom side of
the disk depend on the point of emission. Thus, also the mesh for the second-order image is
distorted.

5. Performance

5.1. Lookup table

The drawback of our general-relativistic polygon rendering technique is the time-expensive
precalculation of a LUT for every observer distance. Table 2 summarizes the calculation times
for various resolutions and observer distances, and for a radial range given by [1.25rs, 15rs].
All measurements were performed on an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz (Linux)
making use of OpenMP parallelization.

As expected, all timings increase linearly with resolution. The increase of computation times
with larger distances of the observer to the black hole is just because the integration of light
rays take longer and more bisections steps are necessary.

But, even the precalculation takes a lot of time for a fixed observer position, any object can
then be moved interactively within the radial range.

5.2. Rendering image sequences

To give an impression of how polygon rendering is pushing general-relativistic visualization
toward interactive frame rates, table 3 compares the rendering times for the three example
situations of the previous section with either CPU or GPU ray tracing. CPU ray tracing makes
use of the MPI-parallelized version of GeoViS [14] on the same Intel machine as before. GPU
rendering is based on a CUDA implementation of general-relativistic ray tracing similar to
GeoViS and was run on an NVidia Quadro P4000.

19

Eur. J. Phys. 43 (2022) 015601 T Müller et al

Table 3. Render times for the three example situations of section 4. The number of
images calculated for each sequence reads: 300 (triangle), 360 (sphere), 180 (disk).

Example CPU ray tracing GPU ray tracing Polygon rendering

Triangle 640 × 360 36 min 48 s 4 min 34 s 5.2 s
1280 × 720 138 min 11 s 18 min 20 s 5.2 s
2560 × 1440 594 min 20 s 72 min 18 s 5.2 s

Sphere 512 × 360 34 min 52 s 4 min 26 s 6.2s
1024 × 720 138 min 43 s 16 min 57 s 6.2 s
2048 × 1440 606 min 22 s 66 min 59 s 6.2 s

Disk 400 × 360 12 min 29 s 1 min 31 s 3.2 s
800 × 720 50 min 44 s 5 min 47 s 3.2 s

1600 × 1440 204 min 03 s 22 min 05 s 3.2 s

For a better comparison, we render an image sequence for every example. For that, we have
implemented a minimal scripting language based on Lua6 for our polygon renderer.

Actually, the comparison is not quite fair. Polygon rendering is an object space approach,
whereas ray tracing is an image space approach. Thus, for the latter case, the larger the image
the longer the rendering will take, in general.

Note that most of the time for the polygon rendering is spent on saving the image to file.
Even if the tessellation parameters are chosen very high, we still have more than 100 fps.

6. Summary and outlook

Four-dimensional general-relativistic ray tracing yields the most realistic visualization in gen-
eral relativity. However, because it is very time-consuming, it is not yet suitable for an inter-
active exploration tool that could help better understand relativistic effects in an educational
environment. Polygon rendering, in contrast to ray tracing, is an object space approach, and
thus independent of the image resolution, and still the de facto standard in computer graphics
to visualize mesh objects. We have demonstrated how to extend standard polygon rendering to
be applicable for the interactive visualization of objects within the Schwarzschild spacetime.
For that, we calculated how a mesh object would be distorted caused by the bending of light
and the light travel time. The distorted mesh could then be rendered with standard polygon
rendering.

To accelerate the rendering process, we made use of a LUT that has to be generated in a
preprocessing step and stores viewing angle, light travel time, and light direction for every
sampled position. So far, we compute the LUT only for a single observer distance, but it could
also be extended to cover a range of radial positions. That would also help put a light source at
various distances to an object. Furthermore, gravitational lensing and frequency shift could be
taken into account, but then also spectral material characteristics of an object would have to be
considered. Finally, a virtual environment setting could be realized to study also stereoscopic
effects.

Adaptive polygon rendering is not limited to the Schwarzschild spacetime, but it could also
be applied to other spacetimes as well. The limiting factors are the LUT, which can be at most

6 http://lua.org.

20

http://lua.org

Eur. J. Phys. 43 (2022) 015601 T Müller et al

three-dimensional, and the feasibility to find connecting light rays if no analytic solution to the
geodesic equation is available.

Acknowledgments

We thank Felix Winterhalter for initial prototyping our concept of general-relativistic poly-
gon rendering as part of his BSc thesis [29] and his valuable feedback. Christoph Schulz and
Daniel Weiskopf acknowledge funding by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)-project ID 251654672-TRR 161 (Project A01).

ORCID iDs

Thomas Müller https://orcid.org/0000-0002-2003-4465
Christoph Schulz https://orcid.org/0000-0001-5771-3966
Daniel Weiskopf https://orcid.org/0000-0003-1174-1026

References

[1] Dyson F W, Eddington A S and Davidson C IX 1920 A determination of the deflection of light by
the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919 Phil.
Trans. R. Soc. A 220 291–333

[2] Wilkins D R, Gallo L C, Costantini E, Brandt W N and Blandford R D 2021 Light bending and
x-ray echoes from behind a supermassive black hole Nature 595 657–60

[3] Flamm L 2015 Republication of: contributions to Einstein’s theory of gravitation Gen. Relativ.
Gravit. 47 72

[4] Giblin J T Jr, Marolf D and Garvey R 2004 Spacetime embedding diagrams for spherically
symmetric black holes Gen. Relativ. Gravit. 36 83–99

[5] Jonsson R M 2005 Visualizing curved spacetime Am. J. Phys. 73 248–60
[6] Zahn C and Kraus U 2014 Sector models-a toolkit for teaching general relativity: I. Curved spaces

and spacetimes Eur. J. Phys. 35 055020
[7] Müller T and Grave F 2010 GeodesicViewer-a tool for exploring geodesics in the theory of relativity

Comput. Phys. Commun. 181 413–9
[8] Weiskopf D et al 2006 Explanatory and illustrative visualization of special and general relativity

IEEE Trans. Visual. Comput. Graph. 12 522–34
[9] Kraus U 2007 First-person visualizations of the special and general theory of relativity Eur. J. Phys.

29 1–13
[10] James O, von Tunzelmann E, Franklin P and Thorne K S 2015 Gravitational lensing by spinning

black holes in astrophysics, and in the movie Interstellar Class. Quantum Grav. 32 065001
[11] Luminet J-P 1979 Image of a spherical black hole with thin accretion disk Astron. Astrophys. 75

228–35
[12] Weiskopf D 2001 Visualization of four-dimensional spacetimes PhD Thesis Eberhard-Karls

Universität Tübingen
[13] Müller T and Weiskopf D 2011 General-relativistic visualization Comput. Sci. Eng. 13 64–71
[14] Müller T 2014 GeoViS-relativistic ray tracing in four-dimensional spacetimes Comput. Phys.

Commun. 185 2301–8
[15] Vincent F H, Paumard T, Gourgoulhon E and Perrin G 2011 GYOTO: a new general relativistic

ray-tracing code Class. Quantum Grav. 28 225011
[16] Chan C-k, Psaltis D and Özel F 2013 GRay: a massively parallel GPU-based code for ray tracing

in relativistic spacetimes Astrophys. J. 777 13
[17] Pu H-Y, Yun K, Younsi Z and Yoon S-J 2016 Odyssey: a public GPU-based code for general

relativistic radiative transfer in Kerr spacetime Astrophys. J. 820 105

21

https://orcid.org/0000-0002-2003-4465
https://orcid.org/0000-0002-2003-4465
https://orcid.org/0000-0001-5771-3966
https://orcid.org/0000-0001-5771-3966
https://orcid.org/0000-0003-1174-1026
https://orcid.org/0000-0003-1174-1026
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1038/s41586-021-03667-0
https://doi.org/10.1038/s41586-021-03667-0
https://doi.org/10.1038/s41586-021-03667-0
https://doi.org/10.1038/s41586-021-03667-0
https://doi.org/10.1007/s10714-015-1908-2
https://doi.org/10.1007/s10714-015-1908-2
https://doi.org/10.1023/b:gerg.0000006695.17232.2e
https://doi.org/10.1023/b:gerg.0000006695.17232.2e
https://doi.org/10.1023/b:gerg.0000006695.17232.2e
https://doi.org/10.1023/b:gerg.0000006695.17232.2e
https://doi.org/10.1119/1.1830500
https://doi.org/10.1119/1.1830500
https://doi.org/10.1119/1.1830500
https://doi.org/10.1119/1.1830500
https://doi.org/10.1088/0143-0807/35/5/055020
https://doi.org/10.1088/0143-0807/35/5/055020
https://doi.org/10.1016/j.cpc.2009.10.010
https://doi.org/10.1016/j.cpc.2009.10.010
https://doi.org/10.1016/j.cpc.2009.10.010
https://doi.org/10.1016/j.cpc.2009.10.010
https://doi.org/10.1109/tvcg.2006.69
https://doi.org/10.1109/tvcg.2006.69
https://doi.org/10.1109/tvcg.2006.69
https://doi.org/10.1109/tvcg.2006.69
https://doi.org/10.1088/0143-0807/29/1/001
https://doi.org/10.1088/0143-0807/29/1/001
https://doi.org/10.1088/0143-0807/29/1/001
https://doi.org/10.1088/0143-0807/29/1/001
https://doi.org/10.1088/0264-9381/32/6/065001
https://doi.org/10.1088/0264-9381/32/6/065001
https://doi.org/10.1109/mcse.2011.105
https://doi.org/10.1109/mcse.2011.105
https://doi.org/10.1109/mcse.2011.105
https://doi.org/10.1109/mcse.2011.105
https://doi.org/10.1016/j.cpc.2014.04.013
https://doi.org/10.1016/j.cpc.2014.04.013
https://doi.org/10.1016/j.cpc.2014.04.013
https://doi.org/10.1016/j.cpc.2014.04.013
https://doi.org/10.1088/0264-9381/28/22/225011
https://doi.org/10.1088/0264-9381/28/22/225011
https://doi.org/10.1088/0004-637x/777/1/13
https://doi.org/10.1088/0004-637x/777/1/13
https://doi.org/10.3847/0004-637x/820/2/105
https://doi.org/10.3847/0004-637x/820/2/105

Eur. J. Phys. 43 (2022) 015601 T Müller et al

[18] Pihajoki P, Mannerkoski M, Nättilä J and Johansson P H 2018 General purpose ray tracing and
polarized radiative transfer in general relativity Astrophys. J. 863 8

[19] Kuchelmeister D, Müller T, Ament M, Wunner G and Weiskopf D 2012 GPU-based four-
dimensional general-relativistic ray tracing Comput. Phys. Commun. 183 2282–90

[20] Müller T and Weiskopf D 2010 Distortion of the stellar sky by a Schwarzschild black hole Am. J.
Phys. 78 204–14

[21] Kobras D, Weiskopf D and Ruder H 2002 General relativistic image-based rendering Visual Comput.
18 250–8

[22] Müller T 2015 Image-based general-relativistic visualization Eur. J. Phys. 36 065019
[23] Müller T and Frauendiener J 2012 Interactive visualization of a thin disc around a Schwarzschild

black hole Eur. J. Phys. 33 955
[24] Verbraeck A and Eisemann E 2021 Interactive black-hole visualization IEEE Trans. Visual. Comput.

Graph. 27 796–805
[25] Angel E and Shreiner D 2014 Interactive Computer Graphics (A Top-Down Approach with WebGL)

7th edn (London: Pearson Education Limited)
[26] Marschner S and Shirley P 2016 Fundamentals of Computer Graphics 4th edn (Florida: Apple

Academic Press Inc.)
[27] Sherin Z W, Cheu R, Tan P and Kortemeyer G 2016 Visualizing relativity: the OpenRelativity project

Am. J. Phys. 84 369–74
[28] Rindler W 2001 Relativity (Special, General and Cosmology) (Oxford: Oxford University Press)
[29] Winterhalter F 2020 General-relativistic polygon rendering BSc Thesis Visualization Research

Center, University of Stuttgart

22

https://doi.org/10.3847/1538-4357/aacea0
https://doi.org/10.3847/1538-4357/aacea0
https://doi.org/10.1016/j.cpc.2012.04.030
https://doi.org/10.1016/j.cpc.2012.04.030
https://doi.org/10.1016/j.cpc.2012.04.030
https://doi.org/10.1016/j.cpc.2012.04.030
https://doi.org/10.1119/1.3258282
https://doi.org/10.1119/1.3258282
https://doi.org/10.1119/1.3258282
https://doi.org/10.1119/1.3258282
https://doi.org/10.1007/s003710100145
https://doi.org/10.1007/s003710100145
https://doi.org/10.1007/s003710100145
https://doi.org/10.1007/s003710100145
https://doi.org/10.1088/0143-0807/36/6/065019
https://doi.org/10.1088/0143-0807/36/6/065019
https://doi.org/10.1088/0143-0807/33/4/955
https://doi.org/10.1088/0143-0807/33/4/955
https://doi.org/10.1109/tvcg.2020.3030452
https://doi.org/10.1109/tvcg.2020.3030452
https://doi.org/10.1109/tvcg.2020.3030452
https://doi.org/10.1109/tvcg.2020.3030452
https://doi.org/10.1119/1.4938057
https://doi.org/10.1119/1.4938057
https://doi.org/10.1119/1.4938057
https://doi.org/10.1119/1.4938057

	Adaptive polygon rendering for interactive visualization in the Schwarzschild spacetime
	1. Introduction
	2. Light rays in Schwarzschild spacetime
	2.1. Spacetime of the Schwarzschild black hole
	2.2. Geodesic equations for light rays
	2.3. Shadow of a black hole
	2.4. Light ray connecting two arbitrary points
	2.5. How to find a light ray connecting two arbitrary points

	3. Adaptive polygon rendering
	3.1. Generate lookup table
	3.2. Relativistic polygon rendering
	3.3. Illuminating the mesh

	4. Examples
	4.1. Single triangle
	4.2. Sphere orbiting the black hole
	4.3. Accretion disk

	5. Performance
	5.1. Lookup table
	5.2. Rendering image sequences

	6. Summary and outlook
	Acknowledgments
	ORCID iDs
	References

