

SOLUTIONS OF THE YANG-MILLS EQUATIONS AND A CLIFFORD ALGEBRAS

TATIANA A. IVANOVA and A. D. POPOV

Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research (Dubna),

Head Post Office, P.O. Box 79, Moscow 101 100, Russia

(Received: October 31, 1993)

Abstract. We consider the Yang-Mills and the Klein-Gordon equations in the external Yang-Mills fields in the spaces \mathbb{R}^n . Using the generators of the Clifford algebra, we construct the ansätze for the Yang-Mills potentials and for the scalar field. New classes of solutions of the Klein-Gordon and Yang-Mills equations in the spaces \mathbb{R}^n with $n \geq 4$ are described.

1. Introduction

We will show that the Clifford algebras may be used in constructing the solutions of the Yang-Mills (YM) equations in \mathbb{R}^n . Our goal is to find some solutions of the equations for a pure classical YM theory in the Euclidean space \mathbb{R}^n with the metric δ_{ab} , $a, b, \dots = 1, \dots, n$. Let A_a be the YM potentials with values in the semisimple Lie algebra \mathcal{G} of the Lie group G and $F_{ab} = \partial_a A_b - \partial_b A_a + [A_a, A_b]$ be the curvature tensor for A_a .

The YM equations for the gauge potentials A_a have the form

$$\partial_a F_{ab} + [A_a, F_{ab}] = 0. \quad (1.1)$$

The Einstein summation convention is used throughout, if not stated otherwise.

Some solutions of Eqs.(1.1) in the spaces \mathbb{R}^7 , \mathbb{R}^8 and \mathbb{R}^{4k} were obtained in [1, 2, 3, 4, 5, 6] (see also [7]). In what follows we shall show that it is possible to obtain other classes of solutions of the YM equations in the spaces of dimension $n \geq 4$ using the properties of Clifford algebras.

2. Ansatz for Gauge Potentials

Let us suppose that in the space \mathbb{R}^n with metric δ_{ab} there are q constant tensors $J_{ab}^1, \dots, J_{ab}^q$ that are antisymmetric in indices a and b and obey the relations

$$J_{ac}^\alpha J_{bc}^\beta = \delta^{\alpha\beta} \delta_{ab} + \Sigma_{ab}^{\alpha\beta}, \quad (2.1)$$

where $\Sigma_{ab}^{\alpha\beta}$ are some constant antisymmetric in a and b tensors, $\alpha, \beta, \dots = 1, \dots, q$. From (2.1) it follows that

$$J_{ac}^\alpha J_{cb}^\beta + J_{ac}^\beta J_{cb}^\alpha = -2\delta^{\alpha\beta}\delta_{ab},$$

i.e., $J^\alpha = (J_{ab}^\alpha)$ give a real matrix representation for the generators J^α of the Clifford algebra for the space \mathbb{R}^q with the metric $g_{\alpha\beta} = -\delta_{\alpha\beta}$.

We shall look for solutions of the YM equations (1.1) in the form

$$A_a = -J_{ac}^\alpha T_\alpha(\varphi) \partial_c \varphi, \quad (2.2)$$

where the real antisymmetric tensors J_{ab}^α satisfy (2.1); φ is an arbitrary function of coordinates $x_a \in \mathbb{R}^n$; T_1, \dots, T_q depend only on φ , take values in the Lie algebra \mathcal{G} and satisfy the Rouhani-Ward (RW) equations (see [4, 5, 6, 7, 8, 9]):

$$f_{\alpha\beta\gamma} \dot{T}_\gamma + [T_\alpha, T_\beta] = 0. \quad (2.3)$$

Here $f_{\alpha\beta\gamma}$ is some totally antisymmetric three-index tensor in \mathbb{R}^q satisfying $f_{\alpha\gamma\delta} f_{\beta\gamma\delta} = 2\delta_{\alpha\beta}$ and $\dot{T}_\gamma \equiv dT_\gamma/d\varphi$. If q coincides with the dimension of the simple compact Lie algebra \mathcal{H} , then as $f_{\alpha\beta\gamma}$ one may take the structure constants of \mathcal{H} .

It may be shown that after substituting (2.2) into (1.1) and using the identities (2.1), the YM equations are reduced to the following system of linear equations:

$$f_{\beta\gamma}^\alpha \Sigma_{ac}^{\beta\gamma} \partial_c \partial_b \varphi - 2J_{bc}^\alpha \partial_c \partial_a \varphi + 2f_{\beta\gamma}^\alpha J_{ac}^\beta J_{be}^\gamma \partial_c \partial_e \varphi + J_{ab}^\alpha \square \varphi = 0, \quad (2.4)$$

where $\square \equiv \partial_c \partial_c$.

PROPOSITION: If tensors J_{ab}^α satisfy the relations (2.1) and $q = \dim \mathcal{H}$, then to each solution of system $\{(2.3), (2.4)\}$ one may correspond the solution (2.2) of the YM equations (1.1) for gauge fields A_a of an arbitrary semisimple Lie group G in the Euclidean space \mathbb{R}^n .

3. Explicit Form of Tensors J_{ab}^α

To find solutions of Eqs. (2.4), one should give the concrete expressions to the tensors J_{ab}^α and $\Sigma_{ab}^{\alpha\beta}$. The theory of Clifford algebras gives the examples of such tensors.

Let us denote by $Cl(0, q)$ the Clifford algebra for the space \mathbb{R}^q with the metric $g_{\alpha\beta} = -\delta_{\alpha\beta}$, $\alpha, \beta, \dots = 1, \dots, q$. It has been known for a long time that the algebra $Cl(0, q)$ can be realized in terms of matrices. In particular, $Cl(0, 6) \cong M(8, \mathbb{R})$ and $Cl(0, 8) \cong M(16, \mathbb{R})$ (see, e.g., [10]), where through

$M(s, \mathbb{R})$ the full $s \times s$ matrix algebra over \mathbb{R} is denoted. Let us give some examples of tensors J_{ab}^α .

Example 1: Consider the algebra $Cl(0,2)$ with generators γ^1 and γ^2 . It is well-known [10] that $Cl(0,2)$ is isomorphic to the algebra of quaternions \mathbf{H} , and elements $\gamma^1, \gamma^2, \gamma^3 \equiv \gamma^1\gamma^2$ can be realized in terms of real antisymmetric 4×4 matrices η^1, η^2, η^3 with components: $\eta_{\beta\gamma}^\alpha = \epsilon_{\beta\gamma}^\alpha$, $\eta_{\mu 4}^\alpha = -\eta_{4\mu}^\alpha = \delta_\mu^\alpha$, where $\epsilon_{\alpha\beta\gamma}$ are structure constants of $SU(2)$, $\alpha, \beta, \gamma, \delta = 1, 2, 3; \mu, \nu, \dots = 1, \dots, 4$. Tensors $\eta_{\mu\nu}^1, \eta_{\mu\nu}^2$ and $\eta_{\mu\nu}^3$ coincide with the well-known 't Hooft tensors that obey the relations (2.1) with $\Sigma_{\mu\nu}^{\alpha\beta} = \epsilon^{\alpha\beta\gamma}\eta_{\mu\nu}^\gamma$.

Now, let us introduce the tensors

$$J_{(\mu i)(\nu j)}^\alpha = \delta_{ij}\eta_{\mu\nu}^\alpha \quad (3.1)$$

with the double indices $(\mu i), (\nu j), \dots$, where $i, j, \dots = 1, \dots, p$. If we denote the double indices by $a, b, \dots = 1, \dots, 4p$, then it is not difficult to verify that the tensors J_{ab}^α will satisfy the relations (2.1) with $\Sigma_{ab}^{\alpha\beta} = \epsilon^{\alpha\beta\gamma}J_{ab}^\gamma$. Thus, in the spaces \mathbb{R}^{4p} one may always introduce three tensors J_{ab}^α satisfying (2.1).

Example 2: Let us consider the algebra $Cl(0,6)$ with generators $\gamma^1, \dots, \gamma^6$ and also introduce $\gamma^7 \equiv \gamma^1\gamma^2\gamma^3\gamma^4\gamma^5\gamma^6$. It is known [10] that γ^α ($\alpha = 1, \dots, 7$) can be realized in terms of real antisymmetric 8×8 matrices. The components $\gamma_{\mu\nu}^\alpha$ ($\mu, \nu, \dots = 1, \dots, 8$) of these matrices satisfy the relations (2.1) with $\Sigma_{\mu\nu}^{\alpha\beta} = \frac{1}{2}\gamma_{\mu\lambda}^{[\alpha}\gamma_{\nu\lambda}^{\beta]} \equiv \frac{1}{2}(\gamma_{\mu\lambda}^\alpha\gamma_{\nu\lambda}^\beta - \gamma_{\mu\lambda}^\beta\gamma_{\nu\lambda}^\alpha)$.

Now we introduce the tensors

$$J_{(\mu i)(\nu j)}^\alpha = \delta_{ij}\gamma_{\mu\nu}^\alpha, \quad (3.2)$$

where $\mu, \nu, \dots = 1, \dots, 8; i, j, \dots = 1, \dots, p$. Numbering the components of these tensors by the indices $a, b, \dots = 1, \dots, 8p$, in the space \mathbb{R}^{8p} we obtain seven tensors J_{ab}^α satisfying (2.1) with $\Sigma_{ab}^{\alpha\beta} = \frac{1}{2}J_{ac}^{[\alpha}J_{bc}^{\beta]}$. It is clear that for ansatz (2.2) one can choose not all seven tensors but only q of them with $4 \leq q \leq 7$.

Example 3: Let us consider the algebra $Cl(0,8)$ with generators γ^α , $\alpha, \beta, \dots = 1, \dots, 8$. It is known [10] that γ^α can be realized in terms of real antisymmetric 16×16 matrices. The components $\gamma_{\mu\nu}^\alpha$ ($\mu, \nu, \dots = 1, \dots, 16$) of these matrices satisfy (3.1) with $\Sigma_{\mu\nu}^{\alpha\beta} = \frac{1}{2}\gamma_{\mu\lambda}^{[\alpha}\gamma_{\nu\lambda}^{\beta]}$. Let us also introduce the tensors $J_{(\mu i)(\nu j)}^\alpha$ defined by (3.2) but with $\mu, \nu, \dots = 1, \dots, 16; i, j, \dots = 1, \dots, 16p$, we obtain eight tensors J_{ab}^α . In the space \mathbb{R}^{16p} all these tensors satisfy the relations (2.1) with $\Sigma_{ab}^{\alpha\beta} = \frac{1}{2}J_{ac}^{[\alpha}J_{bc}^{\beta]}$ and can be used in constructing of the ansatz (2.2).

And finally, we point out that in the spaces \mathbb{R}^n one may introduce q tensors J_{ab}^α satisfying (2.1) in the following cases:

$$n = p2^{2+4m} \Rightarrow 1 + 8m \leq q \leq 3 + 8m, \quad (3.3a)$$

$$n = p2^{3+4m} \Rightarrow 4 + 8m \leq q \leq 7 + 8m, \quad (3.3b)$$

$$n = p2^{4+4m} \Rightarrow q = 8 + 8m, \quad (3.3c)$$

where $m = 0, 1, 2, \dots$; $p = 1, 2, \dots$. Proof may be obtained with the help of formula [10]:

$$Cl(0, s + 8m) = Cl(0, s) \otimes Cl(0, 8) \underbrace{\otimes \dots \otimes}_{m \text{ times}} Cl(0, 8), \quad (3.4)$$

where $1 \leq s \leq 8$. Using the recurrence relations given in [10], one can easily obtain the explicit form of tensors $J_{ab}^1, \dots, J_{ab}^q$ in the spaces of dimension n indicated in (3.3).

4. Constructing of Solutions for the Scalar Field Equations

Substituting the explicit form of J_{ab}^α into Eqs.(2.4), one may try to solve (2.4). Solutions exist. Rather then make an exhaustive study of all the possibilities we shall restrict ourselves to the case of $n = 4p$ and $q = 3$.

So, let us substitute (3.1) into Eqs.(2.4) where $\epsilon_{\alpha\beta\gamma}$ are taken instead of $f_{\alpha\beta\gamma}$ and $\Sigma_{ab}^{\alpha\beta} = \epsilon^{\alpha\beta\gamma} J_{ab}^\gamma$. We use the following identities for $\eta_{\mu\nu}^\alpha$ [11]:

$$\eta_{\mu\lambda}^\alpha \eta_{\nu\lambda}^\beta = \delta^{\alpha\beta} \delta_{\mu\nu} + \epsilon^{\alpha\beta\gamma} \eta_{\mu\nu}^\gamma, \quad (4.1a)$$

$$\epsilon_{\beta\gamma}^\alpha \eta_{\mu\lambda}^\beta \eta_{\nu\sigma}^\gamma = \delta_{\mu\nu} \eta_{\lambda\sigma}^\alpha - \delta_{\mu\sigma} \eta_{\lambda\nu}^\alpha - \delta_{\lambda\nu} \eta_{\mu\sigma}^\alpha + \delta_{\lambda\sigma} \eta_{\mu\nu}^\alpha, \quad (4.1b)$$

and obtain the equations:

$$\begin{aligned} 2\eta_{\mu\lambda}^\alpha (\partial_{\lambda i} \partial_{\nu j} \varphi - \partial_{\lambda j} \partial_{\nu i} \varphi) - 2\eta_{\nu\lambda}^\alpha (\partial_{\lambda j} \partial_{\mu i} \varphi - \partial_{\lambda i} \partial_{\mu j} \varphi) \\ + \delta_{\mu\nu} \eta_{\lambda\sigma}^\alpha (\partial_{\lambda i} \partial_{\sigma j} \varphi - \partial_{\lambda j} \partial_{\sigma i} \varphi) + \\ + \eta_{\mu\nu}^\alpha (2\partial_{\lambda i} \partial_{\lambda j} \varphi + \delta_{ij} \square \varphi) = 0, \end{aligned} \quad (4.2)$$

where $\partial_{\lambda i} \equiv \partial/\partial x^{\lambda i}$. It is clear that Eqs.(4.2) are satisfied if φ obeys the following equations

$$\partial_{\mu i} \partial_{\nu j} \varphi = \partial_{\mu j} \partial_{\nu i} \varphi, \quad \partial_{\lambda i} \partial_{\lambda j} \varphi = 0, \quad (4.3)$$

where $\mu, \nu, \dots = 1, \dots, 4$; $i, j, \dots = 1, \dots, p$. Equations (4.3) are simpler then Eqs.(2.4) and appear in study of the hyper-Kähler manifolds of dimension $4p$ (see [12]). In principle, for Eqs.(4.3) one may write a general solution (see [12]), but we shall not do this here. As an example, we write out one of the particular solutions of Eqs.(4.3) (and Eqs.(4.2)):

$$\varphi = 1 + \sum_{I=1}^N \frac{B_I^2}{(X_\mu - C_\mu^I)(X_\mu - C_\mu^I)}, \quad (4.4)$$

where $X_\mu = x_{\mu i} p_i$, $p_i = \text{const}$, N is any integer number, B_I and C_μ^I are arbitrary constants. For a special case of the space \mathbb{R}^8 and group $G = SU(2)$ the solution of this type was obtained by Ward [1].

Equations (2.3) with $q = 3$ and $\mathcal{H} = su(2)$ coincide with the well-known Nahm equations (see [8, 9] and [13, 14]). These equations appeared in constructing the solutions of the YM equations in \mathbb{R}^4 [14, 15, 16] and of the model of chiral fields in \mathbb{R}^2 [17]. Nahm's equations have a Lax-type representation with a spectral parameter, and in terms of theta functions one can write a general solution of Nahm's equations for any semisimple Lie algebra \mathcal{G} (see [13] and [9]). The explicit form of particular solutions of Nahm's equations may be found in [15] and [16]. We shall not write it here.

5. Solutions of the Massless Klein-Gordon Equation

In \mathbb{R}^n let us consider the massless scalar field χ with values in the adjoint representation of the Lie algebra \mathcal{G} . The Klein-Gordon equation for χ in the external field A_a has the form

$$(\partial_a + [A_a,]) (\partial_a + [A_a,]) \chi = 0, \quad (5.1)$$

where $a, \dots = 1, \dots, n$.

Now, substitute the ansatz (2.2) for A_a into (5.1). Suppose that $T_\alpha(\varphi)$ and φ obey the equations (2.3) and (2.4). For χ let us consider the following ansatz:

$$\chi = \chi_\alpha T_\alpha(\varphi), \quad \chi_\alpha = \text{const.} \quad (5.2)$$

In this case, the Klein-Gordon equation (5.1) is reduced to the following equation:

$$\chi_\alpha \ddot{T}_\alpha \square \varphi + \chi_\alpha \partial_c \varphi \partial_c \varphi \{ \ddot{T}_\alpha - [T_\beta, [T_\alpha, T_\beta]] \} = 0. \quad (5.3)$$

Here we have used the identities (2.1); $\ddot{T}_\alpha \equiv d^2 T_\alpha / d\varphi^2$.

Thus, if $T_\alpha(\varphi)$ satisfy the equations

$$\ddot{T}_\alpha - [T_\beta, [T_\alpha, T_\beta]] = 0. \quad (5.4)$$

and φ satisfies the Laplace equation

$$\square \varphi = 0, \quad (5.5)$$

then the ansatz (5.2) gives the solution of the massless Klein-Gordon equation (5.1).

It is easy to see that each solution of the RW equations (2.3) satisfies Eqs. (5.4). Indeed, if one multiplies Eqs. (5.4) by $f_{\alpha\beta\gamma}$ and differentiates these equations once more, then obtains

$$\ddot{T}_\alpha = -f_{\alpha\beta\gamma}[T_\beta, \dot{T}_\gamma].$$

At the same time, from Eqs.(2.3) it follows that

$$[T_\beta, [T_\alpha, T_\beta]] = -f_{\alpha\beta\gamma}[T_\beta, \dot{T}_\gamma].$$

Therefore, if T_α satisfy Eqs.(2.3), then T_α satisfy Eqs.(5.4). Remind that the function φ must satisfy Eqs.(2.4). Comparing Eqs.(2.4) with Eq.(5.5), we obtain the following system of equations:

$$f_{\beta\gamma}^\alpha \Sigma_{ac}^{\beta\gamma} \partial_c \partial_b \varphi - 2J_{bc}^\alpha \partial_c \partial_a \varphi + 2f_{\beta\gamma}^\alpha J_{ac}^\beta J_{be}^\gamma \partial_c \partial_e \varphi = 0, \quad (5.6a)$$

$$\square \varphi = 0. \quad (5.6b)$$

Equations (5.6) have solutions. Some of them have been written out in Section IV (see also [6, 7]).

6. Conclusion

An example for $n = 4p$ and $q = 3$ shows that Eqs.(2.4) may have not only solution linear on coordinates x^a , but also more complicated solutions. It is interesting to study Eqs. (2.4) in the spaces \mathbb{R}^n with q tensors J_{ab}^α and $n > 4p$ from (3.3) in the case when q coincides with the dimension of some simple Lie algebra \mathcal{H} . In this case, as $f_{\alpha\beta\gamma}$ in Eqs.(2.3) one may take structure constants of \mathcal{H} .

We have considered the case of Example 1 when $n = 4p$, $q = 3$ and $\mathcal{H} = su(2)$. If one takes eight tensors J_{ab}^α in \mathbb{R}^{16p} from Example 3, then as $f_{\alpha\beta\gamma}$ one may choose the structure constants of the Lie algebra $su(3)$. In particular, from (3.3c) it follows that in spaces of dimension $n = 4096p$ one may introduce 24 tensors J_{ab}^α satisfying the relations (2.1), and as $f_{\alpha\beta\gamma}$ one may take the structure constants of the Lie algebra $su(5)$. All these cases need a special investigation.

Thus, we have shown that in constructing the solutions of the Yang-Mills equations in the spaces of dimension greater than four the technique of Clifford algebras plays an important role. It permits one to reduce these equations to more simple system $\{(2.3), (2.4)\}$. Our results show strong evidence for detailed study of the integrability of the Rouhani-Ward equations (2.3) and Eqs.(2.4) for scalar field φ .

References

- [1] Ward R. S., *Nucl. Phys.* **B236** (1984) 381.
- [2] Fairlie D. B. and Nuysts J., *J. Phys.* **A17** (1984) 2867; Fubini S. and Nicolai H., *Phys. Lett.* **155B** (1985) 369.
- [3] Corrigan E., Goddard P. and Kent A., *Commun. Math. Phys.* **100** (1985) 1.
- [4] Popov A. D., *Europhys. Lett.* **17** (1992) 23; Ivanova T. A., *Russ. Math. Survey*, **47**, N2 (1992) 185.
- [5] Ivanova T. A. and Popov A. D., *Lett. Math. Phys.* **24** (1992) 85; Popov A. D., *JETP Lett.* **55** (1992) 259.
- [6] Popov A. D., *Mod. Phys. Lett.* **A7** (1992) 2077; *Europhys. Lett.* **19** (1992) 465; *JETP Lett.* **55** (1992) 259.
- [7] Ivanova T. A. and Popov A. D., *J. Math. Phys.* **34** (1993) 674; *Theor. Math. Phys.* **94** (1993) 225.
- [8] Rouhani S., *Phys. Lett.* **A104** (1984) 7.
- [9] Ward R. S., *Phys. Lett.* **A112** (1985) 3.
- [10] Karoubi M., *K-Theory* (Springer, Berlin, 1979); Coguereaux R., *Phys. Lett.* **115B** (1982) 389; Salingaros N., *J. Math. Phys.* **22** (1981) 226; **23** (1982) 1; Kugo T. and Townsend P., *Nucl. Phys.* **B221** (1983) 357.
- [11] Prasad M. K., *Physica* **D1** (1980) 167.
- [12] Hitchin N. J., Karlhede A., Lindström U. and Roček M., *Commun. Math. Phys.* **108** (1987) 535; Karlhede A., Lindström U., and Roček M., *ibid.* **108** (1987) 529; Lindström U. and Roček M., *ibid.* **115** (1988) 21; Pedersen H. and Poon Y. S., *ibid.* **117** (1988) 569.
- [13] Hitchin N. J., *Commun. Math. Phys.* **89** (1983) 145; Donaldson S. K., *ibid.* **96** (1984) 387; Hartubise J., *ibid.* **100** (1985) 191; **120** (1989) 613.
- [14] Corrigan E., Wainwright P. R. and Wilson S. M. J., *Commun. Math. Phys.* **98** (1985) 259.
- [15] Ivanova T. A., *Russian Math. Surveys* **46** (1991) 174; Ivanova T. A. and Popov A. D., *Lett. Math. Phys.* **23** (1991) 29.
- [16] Popov A. D., *JETP Lett.* **54** (1991) 69; *Theor. Math. Phys.* **89** (1991) 1297.
- [17] Popov A. D., *JETP Lett.* **54** (1991) 124.