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Abstract. We consider the Yang-Mills and the Klein-Gordon equations in the external 
Yang-Mills fields in the spaces IR.n. Using the generators of the Clifford algebra, we con­
stract the ansatze for the Yang-Mills potentials and for the scalar field. New classes of 
solutions of the Klein-Gordon and Yang-Mills equations in the spaces IR.n with n ~ 4 are 
described. 

1. Introduction 

We will show that the Clifford algebras may be used in constructing the 
solutions of the Yang-Mills (YM) equations in !Rn. Our goal is to find some 
solutions of the equations for a pure classical YM theory in the. Euclidean 
space !Rn with the metric Oab• a, b, ... = 1, ... , n. Let Aa be the YM poten­
tials with values in the semisimple Lie algebra g of the Lie group G and 
Fab = 8aAb - ObAa + [Aa,Ab] be the curvature tensor for Aa. 

The YM equations for the gauge potentials Aa have the form 

(1.1) 

The Einstein summation convention is used throughout, if not stated oth­
/erwise. 

Some solutions of Eqs.(1.1) in the spaces JR7,JR8 and JR4k were obtained 
in (1, 2, 3,.4, 5, 6) (see also (7)). In what follows we shall show that it is 
possible to obtain other classes of solutions of the YM equations in the 
spaces of dimension n ~ 4 using the properties of Clifford algebras. 

2. Ansatz for Gauge Potentials 

Let us suppose that in the space !Rn with metric Oab there are q constant 
tensors JJb, ... ,J!b that are antisymmetric in indices a and b and obey the 
relations 

Ja Jf3 _ r:a{3 r: + ~a{3 
ac be - u Uab uab ' (2.1) 



406 TATIANA A. IVANOVA AND A. D. POPOV 

where E~f are some constant antisymmetric in a and b tensors, o:,{3,. .. = 
l, ... ,q. From (2.1) it follows that 

i.e., Ja = (J':b) give a real matrix representation for the generators Ja of 
the Clifford algebra for the space IR,q with the metric 9af3 = -6af3· 

We shall look for solutions of the YM equations (1.1) in the form 

(2.2) 

where the real antisymmetric tensors J',;b satisfy (2.1); <p is an arbitrary 
function of coordinates Xa E mn; Ti, ... , Tq depend only on <p, take values 
in the Lie algebra g and satisfy the Rouhani-Ward (RW) equations (see 
[4, 5, 6, 7, 8, 9)): 

(2.3) 

Here f ap, is some totally antisymmetric three-index tensor in IR,q satisfying 
fa1 sfp1 s = 26ap and T, = dT'Y/d<p. If q coincides with the dimension of 
the simple compact Lie algebra H., then as f ap, one may take th<.J structure 
constants of H.. 

It may be shown that after substituting (2.2) into ( 1.1) and using the 
identities (2.1), the YM equations are reduced to the following system of 
linear equations: 

where 0 = OcOc· 
PROPOSITION: If tensors J',;b satisfy the relations (2.1) and q = dim 1i, 
then to each solution of system {(2.3), (2.4)} one may correspond the so­
lution (2.2) of the YM equations (1)-) for gaugP :fieltls Aa of an arbitrary 
semisimple Lie group Gin the Euclidean space mn. 

3. Explicit Form of Tensors J',;b 

To find solutions of Eqs. (2.4), one should give the concrete expr"ssions to 
the tensors J':b and E;f . The theory of Clifford algebras gives the examples 
of such tensors. 

Let us denote by Cl(O,q) the Clifford algebra for the space IR,q with the 
metric 9af3 = -6af3• o:,{3, ... = 1, ... ,q. It has been known for a long time 
that the algebra Cl(O, q) can be realized in terms of matrices. In particular, 
Cl(O, 6) ~ M(8, Ill) and Cl(O, 8) ~ M(16, Ill)( see, e.g., (10)), where through 
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M( s, JR) the full s x s matrix algebra over JR is denoted. Let ns give some 
examples of tensors J';;b . 
Example 1: Consider the algebra Cl(0,2) with generators 71 and 12• It is 
well-known (10] that Cl(O, 2) is isomorphic to the algebra of quaternions H, 
and elements 71 , 72 , 73 = 7172 can be realized in terms of real antisymmetric 
4 x 4 matrices ,,.,1 , TJ2, ,,.,3 with components: T/p-y = Ep-y• 7fµ4 = -TJ~µ. = 8: , 
where Ea/J-y are structure constants of SU(2), o:,/3,-y,6 = 1,2,3; µ,11,. .. = 
1, ... ,4. Tensors TJ1,,, rif,,, and TJ!,, coincide with the well-known 't Hooft 
tensors that obey the relations (2.1) with E~e = Ea/hT/i,, . 

Now, let us introduce the tensors 

J(,,i)(11j) = bijT/~11 (3.1) 

with the double indices (µi), (11j), .. ., where i,j, ... = 1, ... ,p. If we denote 
the double indices by a, b, ... = 1, ... , 4p, then it is not difficult to verify that 
the tensors J';;b will satisfy the relatio~ns (2.1) with E~f = Eafh .r:b . Thus, in 
the spaces JR4P one may always introduce three tensors J~b satisfying (2.1). 
Example 2: tet us consider the algebra Cl(O, 6) with generators 71 , ••• , 76 

and also introduce 77 = 717273747576 • It is known (10] that 'Ya (o: = 
1, ... , 7) can be realized in terms of real antisymmetric 8 x 8 matricC;s. The 
components 7~11 (µ, v, ... = 1, ... , 8) of these matrices satisfy the relations 

(2 1) 'th ~a/3 _ 1 [a /31 _ 1 ( a /3 /3 a ) 
• Wl ;_,µ.11 - 'i'Yµ.>.1'11>. = 2 'Yµ.>.1'11>. - 'Yµ.>.1'11>. ' 
Now we introduce the tensors 

(3.2) 

where µ, v, ... = 1, ... , 8; i,j, ... = 1, ... ,p. Numbering the components of 
these tensors by the indices a, b, •.• = 1, ... , Sp, in the space JR8

P we obtain 
seven tensors J~b satisfying (2.1) with E~f = !J!~Jfj . It is clear that for 
ansatz (2.2) one c,an choose not all seven tensors but only q of them with 
4 ~ q ~ 7. 
Example 9: Let us consider the algebra Cl(0,8) with generators -ya, o:,/3, 
... = 1, ... , 8. It is known (10] that 'Ya can be realized in terms of real an­
tisymmetric 16 x 16 matrices. The components ')'~,, (µ, 11, .•. = 1, ... , 16) 

of these matrices satisfy (3.1) with E~e = h1~1'~ . Let us also introduce 
the tensors J(,,i)(vi) defined by (3.2) but withµ, 11, ••• = 1, ... , 16; i,j, ... = 
1, ... ,p. Numb~ring the components of these tensors by the indices a, b, ... = 
1, ... , 16p, we obtain eight tensors J'::b· In the space JR16P all these tensors 

satisfy the relations (2.1) with E~f = !J!~J~ and can be used .in construct­
ing of the ansatz (2.2). 

And finally, we point out that in the spaces IRn one may introduce q 
tensors. J';;b satisfying (2.1) in the following cases: 
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n = p22+4m => 1 + 8m ::; q ::; 3 + 8m, 

n = p23+4m => 4 + 8m ::; qp 7 + 8m, 

n = p24+4m => q= 8+8m, 

(3.3a) 

(3.3b) 

(3.3c) 

where m = 0, 1, 2, ... ; p = 1, 2, .... Proof may be obtained with the help of 
formula [10]: 

Cl(O,s + 8m) = Cl(O,s) 0 Cl(0,8) @ ... @ Cl(0,8), (3.4) .._.,,...., 
m times 

where 1 ::; s ::; 8. Using the recurrence relations given in [10], one can easily 
obtain the explicit form of tensors JJb, ... , J:b in the spaces of dimension n 
indicated in (3.3). 

4. Constructing of Solutions for the Scalar Field E9uations 

Substituting the explicit form of J~b into Eqs.(2.4), one may try to solve 
(2.4). Solutions exist. Rather then make an exhaustive study of all the pos­
sibilities we shall restrict ourselves to the case of n = 4p and q = 1. 

So, let us substitute (3.1) into Eqs.(2.4) where Eafh are taken instead of 
f afh and 'E~f = f.a/h J:b. We use the following identities for 77~v [11]: 

Q _f3 - J:Cl./3 J: + Cl.{3"'( "'I 77µ>..1fv>. - (} Qµv € 77µv• 

aJ3:y_J: a J: a J: a+J: a 
€/3"'1 1fµ>.77v<7 - Qµv77M - (}µ<777>.v - Q)..v77µ<7 Q)..<777µv• 

and obtain the equations: 

277~>. (lhi<Jvi'P - 0>.jOvi'P) - 277~>. ( 0>.jOµi'P - O>.iOµj'P) 

+h,,v77~<7( O>.i8<7i'P - O>.j0<7i'P )+ 

+77~v(28>.i0>.i'P + OijDcp) = 0, 

(4.la) 

(4.lb) 

(4.2) 

where O>.i = 8/ox>-i. It is clear that Eqs.(4.2) are satisfied if cp obeys the 
following equations 

(4.3) 

whereµ,v, ... = 1, ... ,4; i,j, ... = 1, ... ,p. Equations (4.3) are simpler then 
Eqs.(2.4) and appear in study of the hyper-Kahler manifolds of dimension 
4p {see [12]). In principle, for Eqs.( 4.3) one mf'y write a general solution (see 
[12]), but we shall not do this here. As an example, we write out one of the 
particular solutions of Eqs.( 4.3) (and Eqs.( 4.2) ): 
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N B2 

cp = 1 + E (X - ci){x - c1)' 1=1 µ µ µ µ 
(4.4) 

where Xµ = Xµ;p;, p;=const, N is any integer number, B1 and C! are 
arbitrary constants. For a special case of the space JR8 and group G = SU(2) 
the solution of this type was obtained by Ward [1]. 

Equations (2.3) with q = 3 and 1{ = su(2) coincide with the well-known 
Nahm equations (see [8, 9] and [13, 14]). These equations appeared in con­
structing the solutions of the YM equations in JR4 [14, 15, 16] and of the 
model of chiral fields in JR2 [17]. Nahm's equations have a Lax-type repre­
sentation with a spectral parameter, and in terms of theta functions one can 
write a general solution of Nahm's equations for any semisimple Lie alge­
brag (see [13] and (9]). The explicit form of particular solutions of Nahm's 
equations may be found in (15] and [16]. We shall not write it here. 

5. Solutions of the Massless Klein-Gordon Equation 

In JRn let us consider the massless scalar field X with values in the adjoint 
representation of the Lie algebra g. The Klein-Gordon equation for x in the 
external field Aa has the form 

(5.1) 

where a, ... = 1, ... , n. 
Now, substitute the ansatz (2.2) for Aa into (5.1). Suppose that Ta(<p) 

and <p obey the equations (2.3) and (2.4). For x let us consider the following 
ansatz: 

Xa = const. (5.2) 

In this case, the Klein-Gordon equation (5.1) is reduced to the following 
equation: 

Xa'f'c,ocp + XaOc<{)Oc<p{ Ta - [T13, [Ta, T13]]} = 0. (5.3) 

Here we have used the identities (2.1); Ta= d2Ta/dcp2• 

Thus, if Ta( <p) satisfy the equations 

(5.4) 

and <p satisfies the Laplace equation 

D<p = 0, (5.5) 
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then the ansatz (5.2) gives the solution of the massless Klein-Gordon equa­
tion (5.1). 

It is easy to see that each solution of the RW equations (2.3) satisfies 
Eqs. (5.4). Indeed, if one multipl\cs Eqs. (5.4) by faf36 and differentiates 
these equations once more, then obtains 

At the same time, from Eqs.(2.3) it follows that 

Therefore, if T0t satisfy Eqs.(2.3), then Ta satisfy Eqs.(5.4). Remind that 
the function <p must satisfy Eqs.(2.4). Comparing Eqs.(2.4) with Eq.(5.5), 
we obtain the following system of equations: 

Dip= 0. 

(5.6a) 

(5.6b) 

Equations (5.6) have solutions. Some of them have been written out in Sec­
tion IV (see also [6, 7]). 

6. Conclusion 

An example for n = 4p and q = 3 shows that Eqs.(2.4) may have not 
only solution linear on coordinates xa , but also more complicated solutions. 
It is interesting to study Eqs. (2.4) in the spaces /Rn with q tensors J~b 
and n > 4p from (3.3) in the case when q coincides with the dimension of 
some simple Lie algebra 1l. In this case, as f 0t/Yr in Eqs.(2.3) one may take 
structure constants of 1l. 

We have considered the case of Example 1 when n = 4p, q = 3 and 
1l = su(2). If one takes eight tensors J~b in IR16P from Example 3, then as 
f0t/Yr one may choose the structure constants of the Lie algebra su(3). In 
particular, from (3.3c) it follows that in spaces of dimension n = 4096p one 
may introduce 24 tensors J~b satisfying the relations (2.1), and as fcxfJ'Y one 
may take the structure constants of the Lie algebra su(5). All these cases 
need a special investigation. 

Thus, we have shown that in constructing the solutions of the Yang­
Mills equations in the spaces of dimension greater than four the technique 
of Clifford algebras plays an importent role. It permits one to reduce these 
equations to more simple system {(2.3), (2.4)}. Our results show strong evi­
dence for detailed study of the integrability of the Rouhani-Ward equations 
(2.3) and Eqs.(2.4) for scalar field ip. 
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