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" Abstract. We consider the Yang-Mills and the Klein-Gordon equations in the external
Yang-Mills fields in the spaces IR". Using the generators of the Clifford algebra, we con-
stract the ansatze for the Yang-Mills potentials and for the scalar field. New classes of
solutions of the Klein-Gordon and Yang-Mills equations in the spaces IR" with n > 4 are
described.

1. Introduction

We will show that the Clifford algebras may be used in constructing the
solutions of the Yang-Mills (YM) equations in IR™. Qur goal is to find some
solutions of the equations for a pure classical YM theory in the Euclidean
space IR™ with the metric 6.3, a,b,... = 1,...,n. Let A, be the YM poten-
* tials with values in the semisimple Lie algebra G of the Lie group G and
Fop = 0, Ay — Oy Aq + [Aq, Ap] be the curvature tensor for A,.
The YM equations for the gauge potentials A, have the form

0aFp + [As, Fap) = 0. (1.1)

The Einstein summation convention is used throughout, if not stated oth-
-erwise.

Some solutions of Eqgs.(1.1) in the spaces IR7, IR® and IR** were obtained
in (1, 2, 3,.4, 5, 6] (see also [7]). In what follows we shall show that it is
possible to obtain other classes of solutions of the YM equations in the
spaces of dimension n > 4 using the properties of Clifford algebras.

2. Ansatz for Gauge Potentials

Let us suppose that in the space IR™ with metric §,; there are g constant
tensors J%,,...,J?, that are antisymmetric in indices a and b and obey the
relations

Joudye = 6°%8a + 237, (21)
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where E:f are some constant antisymmetric in a and b tensors, a, §,... =
1,...,q. From (2.1) it follows that

JeJE + JBIG = —289F5,,

i.e.,, J* = (J%) give a real matrix representation for the generators J of
the Clifford algebra for the space IR? with the metric g,g = —0,p-
We shall look for solutions of the YM equations (1.1) in the form

A = =I5 Ta(#)0cp, (22)

where the real antisymmetric tensors J$j satisfy (2.1); ¢ is an arbitrary
function of coordinates z, € IR®; Ti,...,T, depend only on ¢, take values
in the Lie algebra G and satisfy the Rouhani-Ward (RW) equations (see
[4,5, 6,7, 8, 9]):

faﬂ7T7 + [Ta,Tﬁ] =0. (23)

Here f, 3 is some totally antisymmetric three-index tensor in IR? satisfying
fansfons = 26ap and Ty = dT,/dyp. If q coincides with the dimension of
the simple compact Lie algebra H, then as f,3, 6ne may take the structure
constants of H.

It may be shown that after substituting (2.2) into (1.1) and using the
identities (2.1), the YM equations are reduced to the following system of
linear equations:

15, 580:84p — 2J50:0ap + 2£5,JET7.0:0ep + IS0 = 0, (2.4)

where O = §,0,.

PROPOSITION: I tensors J& satisfy the relations (2.1) and ¢ = dimH,
then to each solution of system {(2.3),(2.4)} one may correspond the so-
lution (2.2) of the YM equations (1.}1) for gauge fie'ds A, of an arbitrary
semisimple Lie group G in the Euclidean space IR™.

3. Explicit Form of Tensors Jg;

To find solutions of Eqgs. (2.4), one should give the concrete expr-ssions to
the tensors J&, and E:f . The theory of Clifford algebras gives the examples
of such tensors.

Let us denote by CI(0,q) the Clifford algebra for the space IR? with the
metric g, = —648, @,05,... = 1,...,q. It has been known for a long time
that the algebra CI(0,¢) can be realized in terms of matrices. In particular,
C1(0,6) = M(8,IR) and CI(0,8) = M(16, IR)(see, e.g., [10]), where through
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M(s, IR) the full s X s matrix algebra over IR is denoted. Let us give some
examples of tensors JJ .

Ezample 1: Consider the algebra CI(0,2) with generators 4! and 2. It is
well-known [10] that CI(0,2) is isomorphic to the algebra of fuaternions H,
and elements 71,7%,4% = 4142 can be realized in terms of real antisymmaetric
4 x 4 matrices 7', 7%, 77 with components: 7§, = €3, 15, = -1, = 85 ,
where €43, are structure constants of SU(2), o,8,7,6 = 1,2,3; p,v,... =
1,...,4. Tensors 7},,72, and 73, coincide with the well-known ’t Hooft
tensors that obey the relations (2.1) with 558 = e*fryy,

Now, let us introduce the tensors

Iy i) = biit (3.1)
with the double indices (m'),(uj), ..., where 1,7,... = 1,...,p. If we denote
the double indices by a, b, . .,4p, then it is not difficult to verify that

the tensors J2 will satisfy the relatxons (2.1) with Eaﬂ = P17, . Thus, in
the spaces IR“P one may always introduce three tensors IS satlsfymg (2. 1)
Ezample 2: Let us consider the algebra Ci(0,6) with generators 7%,...,9%

and also introduce 77 = y'4%42y*¢58. It is known [10] that y* (a =
1,...,7) can be realized in terms of real antisymmetric 8 X 8 matriccs. The
components 75, (#,7,... = 1,...,8) of these matrices satisfy the relations

(2.1) with T2f = ;7;[3\’7;,,\ = 2(7;5/\711/\ 75,\’73’,\)-
Now we mtroduce the tensors

J(o;(ti)(uj) = 5"]'7;:1/’ (32)
where p,v,...=1,...,8; i,7,... = 1,...,p. Numbering the components of
these tensors by the indices a,b,... = 1,...,8p, in the space IR®? we obtain

seven tensors Jj satisfying (2.1) wnth E“ﬂ lJ,[,cJ c] . It is clear that for

ansatz (2.2) one can choose not all seven tensors but only ¢ of them with

4<q¢<T.

Ezample 3: Let us consider the algebra C1(0,8) with generators v%, a,f3,

oo =1,...,8. It is known [10] that v* can be realized in terms of real an-

tisymmetric 16 X 16 matrices. The components 75, (g,v,... = 1,...,16)
[

of these matrices satisfy (3.1) with Dof = 27“,\7112\ Let us also introduce
the tensors J(""d)(yj) defined by (3.2) but with g,»,...=1,...,16; i,5,... =
1 .yp. Numbering the components of these tensors by the indices a, b, .
.,16p, we obtain eight tensors J%. In the space IR6P all these tensors

satlsfy the relations (2.1) with Eab = J [“J A and can be used in construct-
ing of the ansatz (2.2).

And finally, we point out that in the spaces IR™ one may introduce ¢
tensors J satisfying (2.1) in the following cases:
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n=p2?*tim™ = 1 4+ 8m < ¢ < 3+ 8m, (3.3a)
n=p2®*" = 44 8m < ¢K T+ 8m, (3.3b)
n = p24tim o q=8+8m, (3.3¢)

where m = 0,1,2,...; p=1,2,.... Proof may be obtained with the help of
formula [10]:

CI(0,s + 8m) = CI(0, ) ® CI(0,8) ®...8 CI(0,8), (3.4)
m times

where 1 < s < 8. Using the recurrence relations given in [10], one can easily
obtain the explicit form of tensors J};,...,JJ, in the spaces of dimension n
indicated in (3.3).

4. Constructing of Solutions for the Scalar Field Equations

Substituting the explicit form of J into Egs.(2.4), one may try to solve
(2.4). Solutions exist. Rather then make an exhaustive study of all the pos-
sibilities we shall restrict ourselves to the case of n = 4p and ¢ = 3.

So, let us substitute (3.1) into Eqs.(2.4) where €,5, are taken instead of

fapy and 2P = €117, We use the following identities for 7%, [11]:

oy = 608, + P11, (4.1a)

egwn‘,iana = 6#”"30’ = 611077/0\lu - 61\117730 + 6)\07721:/’ (41b)

and obtain the equations:
205,(0xi0y 5 — 0x;0ip) — 205 (0r;Ouitp — 02i0ujp)

+6,m3,(02i005¢ — 0j05i0)+
+13, (202055 + 60¢) = 0, (4.2)

where 9); = 0/8z>. It is clear that Eqs (4.2) are satisfied if ¢ obeys the
following equations

040y = OujOvip, Oribrjip = 0, (4.3)

where p,v,... = 1,...,4; 4,j,... = 1,...,p. Equations (4.3) are simpler then
Egs.(2.4) and appear in study of the hyper-Kahler manifolds of dimension
4p (see [12]). In principle, for Egs.(4.3) one may write a general solution (see
[12]), but we shall not do this here. As an emeple, we write out one of the
particular solutions of Egs.(4.3) (and Egs.(4.2)):
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2

_1+Z(X C,)(X —cny (4.4).

where X, = Z.ip;, p;=const, N is any integer number, B; and C[‘ are
arbitrary constants. For a special case of the space IR® and group G = SU(2)
the solution of this type was obtained by Ward [1].

Equations (2.3) with ¢ = 3 and H = su(2) coincide with the well-known
Nahm equations (see [8, 9] and [13, 14]). These equations appeared in con-
structing the solutions of the YM equations in IR* [14, 15, 16] and of the
model of chiral fields in /R? [17]. Nahm’s equations have a Lax-type repre-
sentation with a spectral parameter, and in terms of theta functions one can
write a general solution of Nahm’s equations for any semisimple Lie alge-
bra G (see [13] and [9]). The explicit form of particular solutions of Nahm’s
equations may be found in [15] and [16]. We shall not write it here.

5. Solutions of the Massless Klein-Gordon Equation

In IR™ let us consider the massless scalar field x with values in the adjoint
representation of the Lie algebra G. The Klein-Gordon equation for x in the
external field A, has the form

(80 +[4a, 1) (0 + [4a, ))x =0, (5.1)

where a,...=1,...,n.

Now, substitute the ansatz (2.2) for A, into (5.1). Suppose that To(¢p)
and ¢ obey the equations (2.3) and (2.4). For x let us consider the following
ansatz:

X = XaTal®), Xo = const. (5.2)

In this case, the Klein-Gordon equation (5.1) is reduced to the following
equation:

XaTa0p + XaBepBoip{To = [T, [T Tyl } = 0. (5.3)

Here we have used the identities (2.1); 1% = d?T,, /d¢?.
Thus, if T,(¢) satisfy the equations

T — [T, [T Ty = 0. (5.4)
and ¢ satisfies the Laplace equation

Op =0, (55)
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then the ansatz (5.2) gives the solution of the massless Klein-Gordon equa-
tion (5.1).

It is easy to see that each solution of the RW equations (2.3) satisfies
Egs. (5.4). Indeed, if one multiplles Egs. (5.4) by fugs and differentiates
these equations once more, then obtains

TO‘ = "-faﬁ’Y[Tﬁv T“l]

At the same time, from Eqs.(2.3) it follows that

[Tﬁ’ (Te, Tﬁ]] = — fap+(Ts, T’y]

Therefore, if T, satisfy Egs.(2.3), then T, satisfy Egs.(5.4). Remind that
the function ¢ must satisfy Eqs.(2.4). Comparing Egs.(2.4) with Eq.(5.5),
we obtain the following system of equations:

£3,2810.0yp — 2J5.0:0a¢0 + 2£3,JE.T}.0.000 = 0, (5.6a)
Dy = 0. (5.6b)

Equations (5.6) have solutions. Some of them have been written out in Sec-
tion IV (see also [6, 7]).

6. Conclusion

An example for n = 4p and ¢ = 3 shows that Eqs.(2.4) may have not
only solution linear on coordinates % , but also more complicated solutions.
It is interesting to study Egs. (2.4) in the spaces IR™ with ¢ tensors JJ
and n > 4p from (3.3) in the case when ¢ coincides with the dimension of
some simple Lie algebra H. In this case, as f,gy in Eqs.(2.3) one may take
structure constants of H.

We have considered the case of Example 1 when n = 4p, ¢ = 3 and
H = su(2). If one takes eight tensors J% in IR'®? from Example 3, then as
fapy one may choose the structure constants of the Lie algebra su(3). In
particular, from (3.3c) it follows that in spaces of dimension n = 4096p one
may introduce 24 tensors JS satisfying the relations (2.1), and as f,p, one
may take the structure constants of the Lie algebra su(5). All these cases
need a special investigation.

Thus, we have shown that in constructing the solutions of the Yang-
Mills equations in the spaces of dimension greater than four the technique
of Clifford algebras plays an importent role. It permits one to reduce these
equations to more simple system {(2.3), (2.4)}. Our results show strong evi-
dence for detailed study of the integrability of the Rouhani-Ward equations
(2.3) and Egs.(2.4) for scalar field ¢.
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