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Abstract: Quantum coherence is a crucial resource in numerous quantum processing tasks. The

robustness of coherence provides an operational measure of quantum coherence, which can be

calculated for various states using semidefinite programming. However, this method depends on

convex optimization and can be time-intensive, especially as the dimensionality of the space increases.

In this study, we employ machine learning techniques to quantify quantum coherence, focusing on

the robustness of coherence. By leveraging artificial neural networks, we developed and trained

models for systems with different dimensionalities. Testing on data samples shows that our approach

substantially reduces computation time while maintaining strong generalizability.

Keywords: quantum coherence; robustness of coherence; machining learning; artificial neural network

1. Introduction

Quantum coherence refers to the possibility of creating a superposition of a set of
orthogonally distinguishable states in quantum physics and quantum information sci-
ence [1]. It is an indispensable element in multi-particle interference, entanglement, and
other phenomena, and can also be regarded as a quantum resource in some quantum
processing tasks [2–4]. Especially in the field of thermodynamics, the theory of coherent
quantum resources has brought new enlightenment and has energy value in terms of
thermodynamic work [5,6]. Recent studies have shown that quantum coherence can serve
as a useful resource for improving the performance of some thermal machines [7–9] and
the charging power of quantum batteries [10,11].

There are many types of quantum coherence measures like coherence measure based
on entanglement and discord [12–14], intrinsic randomness of coherence [15], the basis
independent set coherence [16], coherence distillation and cost [3,17], measures based
on Fisher information [18], and relative entropy of coherence [19,20]. The robustness of
coherence [21,22], serving as an operational measure of quantum coherence, is not only
feasible to observe experimentally but also numerically assessable through semidefinite
programming. In practice, fast and accurate calculations of coherence values are crucial.
However, this is a challenge because this computational process relies on convex optimiza-
tion techniques, and the time required can increase significantly as the state dimension of
the processing increases.

Machine learning methods have been recently brought to the field of quantum physics
and quantum information to address problems such as quantum-state tomography and
estimation [23,24], quantum error correction code [25], wave function reconstruction [26].
In particular, it is found that machine learning methods are useful in entanglement detec-
tion [27–30] and quantification [31]. Meanwhile, machine learning methods are adopted in
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the classification of Einstein–Podolsky–Rosen (EPR) steering [32]. Recently, Zhang et al.
presented a semisupervised support vector machine method on EPR steering that showed
a significant improvement in accuracy and labor-saving [33]. Methods of artificial neu-
ral network to quantify two-qubit steerability have also been proposed [34]. Therefore,
machine learning plays a positive role in the detection and quantification of quantum
information resources.

Inspired by these recent research progresses, in this work we combine machine learn-
ing methods with the quantification of quantum coherence measured by the robustness of
coherence. We first obtain the dataset of labeled quantum states by using the semidefinite
programming. Then, we train artificial neural networks (ANNs) for two-qubit, qubit-qutrit
and three-qubit systems. ANNs are computational models inspired by biological neural sys-
tems. In this work, we utilize a backpropagation (BP) neural network, a type of multi-layer
feedforward network trained via the error backpropagation algorithm, which is among
the most widely used neural network models [35]. This method can straightforwardly be
extended to arbitrary dimensional quantum systems. By applying the trained model to test
samples and an example of non-Markovian dynamics of coherence, we show the trained
models have strong generalization ability.

This paper is organized as follows. We briefly review the ROC from the viewpoint
of quantum resource theory, the feedforward neural network and the methods for data
preprocessing in Section 2. We describe our results of training the model for two-qubit,
qubit-qutrit and three-qubit systems in Section 3. A conclusion is given in Section 4.

2. Materials and Methods

In this section, we first briefly introduce the concepts of quantum coherence and the
quantifier concerned in Section 2.1. Then, we briefly review the machine learning method
we adopted, i.e., the feedforward neural network in Section 2.2. Finally, we describe the
methods for data processing in Section 2.3.

2.1. The Robustness of Coherence

Let us analyze the quantifier of quantum coherence within the framework of quantum
resource theory (QRT). A QRT consists of three main components: free states, resource
states, and free or restricted operations. Mathematically, a quantum state is represented by
a normalized Hermitian operator ρ that satisfies ρ† = ρ and tr{ρ} = 1. In a specific basis,
it is simply a Hermitian matrix with a trace of one. A quantum operation is defined as a
linear, completely positive map from the set of density operators to itself [36]. A consistent
QRT ensures that resource states cannot be generated from free states using free operations.

We adhere to the framework of quantum coherence QRT as described by Baum-
gratz et al. [2]. In this framework, the free states are those with diagonal density matrices
in a specific basis, represented as

δ = ∑
i

δi|i⟩⟨i|, (1)

where {|i⟩} is a fixed reference basis in a finite-dimensional Hilbert space and δi forms
a probability distribution. In the context of quantum coherence QRT, these free states
are referred to as incoherent states, and the set of incoherent states is denoted by I . The
resource states, known as coherent states, are those that cannot be expressed in this form.

In order to characterize the set of free operations, we recall that quantum operations
are specified by a set of Kraus operators {Kn} satisfying ∑n K†

nKn = I. For a quantum
operation, the corresponding Kraus representation is not unique. The free operations,
called incoherent operations, are thus defined as those operations for which there exist
a Kraus representation {Kn} such that KnρK†

n/ tr
(

KnρK†
n

)

∈ I for all n and all ρ ∈ I .
The restriction guarantees that in an overall quantum operation ρ 7→ ∑n KnρK†

n, quantum
coherence cannot be generated from incoherent input states, even if someone has access to
individual measurement outcomes n, not even probabilistically.
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Now, let us look at the robustness quantifier for quantum coherence, i.e., the robustness
of coherence (ROC). Note that quantum coherence can be treated as a useful resource in
certain quantum tasks, and the robustness of a resource can be defined within a general
resource theory [37]. Let D(Cd) be the convex set of density operators acting on a d-
dimensional Hilbert space. The ROC of a quantum state ρ ∈ D(Cd) is defined as

CR(ρ) = min
τ∈D(Cd)

{

s ≥ 0

∣

∣

∣

∣

ρ + sτ

1 + s
=: δ ∈ I

}

. (2)

Intuitively, given a quantum state ρ, one can mix it with another state τ according to
the weight s. The resulting normalized state may be either coherent or not. Hence, the
ROC of ρ can be viewed as the minimum weight of another state τ, when their convex
mixture yields an incoherent state δ. For an incoherent state ρ which already belongs to I ,
it is no need to be mixed with another state to achieve incoherence. Hence, the ROC for an
incoherent state is zero. Moreover, in the Equation (2), τ can be a coherent state as well as
an incoherent state, otherwise, the minimum s would diverge for any state ρ that possesses
nonzero coherence, for the non-diagonal elements of the state matrix cannot be eliminated.

In order to show the property of computability for the ROC, one must first realize
that any state ρ can be reduced to an incoherent one through a dephasing operation
∆(ρ) = ∑i|i⟩⟨i|ρ|i⟩⟨i| in the reference basis {|i⟩}. Then, one must introduce the notion of
coherence witnesses. A coherence witness is an observable represented by a Hermitian
operator W satisfying ∆(W) ≥ 0 if and only if tr(δW) = tr(δ∆(W)) ≥ 0 for all incoherent
state δ ∈ I . Observing tr(ρW) < 0 indicates that the state ρ has coherence. Then, the
evaluation of CR can be recast [22] as a semidefinite program (SDP) [38]:

max − tr(Wρ),

s.t. W ≤ I, (3)

∆(W) ≥ 0.

Using the open-source MATLAB-based CVX modeling system for convex optimiza-
tion [39,40], Piani et al. [21] developed MATLAB code to assess the robustness of asymmetry
and coherence in arbitrary quantum states. Notably, linking the robustness of coherence
(ROC) with witness operators makes ROC especially useful for detecting coherence effects
in energy transport phenomena within light-harvesting systems [41,42].

2.2. The Feedforward Neural Network

The feedforward neural network (FNN) is the earliest and simplest form of artificial
neural networks (ANNs) introduced [43]. In this network structure, data flow in a single
direction, from the input layer to the output layer. There are also other types of ANNs,
such as recurrent neural networks, wherein connections between nodes may form loops.
We adopt an FNN in the present paper. If using the backpropagation algorithm [44] to train
the FNN, one also refers to this network model as BP neural network.

In Figure 1, we depict the structure of the BP neural network. It comprises five layers:
one input layer, three hidden layers, and one output layer. The number of hidden layers
and the number of nodes in each hidden layer may be adjusted based on the specific
problem and the performance of the predictions. The BP neural network can address both
classification and regression problems. Since the network needs to output the ROC value of
a quantum state, which is a continuous number, there is only one node in the output layer.
The number of nodes in the input layer is related to the dimensionality of the density matrix
and should equal the number of variables contained in the matrix elements. Specifically, if
ρ ∈ D(Cd), the number of nodes in the input layer will be d2 if we restrict to real entries,
because it must match the number of matrix elements. While designing the number of
nodes for the input and output layers is straightforward, designing the hidden layers is
more complex [45]. There are several heuristics useful for designing the hidden layers, and
the actual structure should ultimately be determined by its performance.
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input
layer

hidden layers

output
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Figure 1. A schematic diagram of neural network for regression purpose with five layers. From left

to right, there is one input layer, three hidden layers, and one output layer. Note that there is only

one output unit for our regression purposes.

Let us explore how backpropagation (BP) is utilized for training feedforward neural
networks (FNNs). Each element in our dataset consists of matrix elements arranged in a
vector x and the corresponding ROC value y. If the dataset {(x1, y1), (x2, y2), · · · , (xN , yN)}
with N samples is collected, we have to randomly split it into two sets: one for training
the model and the other one for testing the performance. The overall network operates
through g(x) = f L(WL f L−1(WL−1 · · · f 1(W1

x) · · · )), where L represents the total number
of layers, while W l = (wl

jk) denotes the weight matrix connecting layer l − 1 to layer l, with

wl
jk indicating the weight between the k-th node in layer l − 1 and the j-th node in layer

l. The function f l denotes the activation function at layer l, which is crucial for capturing
nonlinear properties in the problem. In this study, we employ the ReLU activation function
ReLU(x) = max(0, x).

The initialization of weights is typically randomized. Training the network is essential
for adjusting these weights to minimize the average discrepancy between the network’s
prediction g(x) and the actual target y. This discrepancy is measured using a loss function.
We choose the mean-squared error (MSE) as the loss function:

MSE =
1

N

N

∑
i=1

(g(xi)− yi)
2, (4)

because for small errors, MSE can be advantageous due to its sensitivity to error magni-
tudes [46].

Updating the weight wl
ij involves assessing how changes in wl

ij impact the loss function

E. If ∂E/∂wl
ij > 0, increasing wl

ij increases E, so we subtract a suitable value ∆wl
ij. To

facilitate this, we employ a fixed learning rate η > 0. Similar reasoning applies when
∂E/∂wl

ij < 0. This technique is known as gradient descent, where ∆wl
ij = −η(∂E/∂wl

ij).

A common issue in neural networks is overfitting, where the model performs excep-
tionally well on the training data but poorly on new, unseen data. To detect overfitting, a
portion of the training data is reserved as a validation set. Monitoring the accuracy on this
set ensures the model comprehends the data rather than simply memorizing it. Training
halts once accuracy on the validation data plateaus, a strategy known as early stopping.

Post-training, evaluating the model on a test set is crucial. In addition to MSE, we use
R2 as an evaluation metric:

R2 = 1 −
∑i(yi − g(xi))

2

∑i(yi − ȳ)2
, (5)

where ȳ represents the mean of the target values in the test set. The R2 value ranges from 0
to 1, with higher values signifying a closer fit between the predictions and the actual values.
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2.3. Data Preparation

We begin by preparing datasets for training BP neural networks. Initially, we focus on
two-qubit systems, where each Hilbert space dimension is 2, resulting in 4 × 4 matrices
for states ρ. Drawing inspiration from [47], we generate 6 × 106 density matrices, each
containing 16 matrix elements. These matrices are reshaped into vectors xi with 16 entries,
using real entries for simplicity. For each density matrix ρi, we compute its corresponding
ROC and label it as the target yi. This completes the dataset collection, where each data
point is represented as {xi, yi} with 17 entries.

Next, we extend our discussion to qubit-qutrit and three-qubit systems, where the
Hilbert space dimensions are 6 and 8, respectively. States in these systems are described by
6 × 6 and 8 × 8 matrices. Consequently, each dataset entry consists of 37 and 65 entries,
respectively, consisting of ROC values and matrix elements. We partition the entire dataset
into training and test sets, reserving 20% for testing and utilizing the remaining 80% for
training. The training set is further divided, with 20% allocated to a validation set and the
remaining 80% serving as the training subset.

Our neural networks are implemented using TensorFlow [48], featuring 3 hidden
layers. We adopt ReLU as the activation function and Adam as the gradient descent
optimizer. The learning rate is set to 0.001, and the batch size is 64. To mitigate overfitting,
we employ an early stopping strategy. Notably, achieving an optimal network structure
often requires hyperparameter optimization [49]. In this study, we systematically adjust
parameters such as layer count, node density per layer, and learning rates based on observed
performance to finalize our network configurations. The machine learning code and data
generation scripts used in this paper can be found in [50].

3. Results

Now, let us train the model for ρ for the two-qubit systems. The numbers of nodes
in the three hidden layers are all set to 64 and the number of trainable parameters for this
network is 9473. The loss functions (MSE) are plotted against epoch for both the training
set and validation set in Figure 2. It can be shown in Figure 2 that both errors decrease
dramatically in the first few epochs. As we continue the training, the MSE for the training
set keeps decreasing, while the MSE for the validation set has some ups and downs. This
indicates the possibility of overfitting. Now, we use the early stopping strategy that in
case the loss function does not improve over 10 epochs, the training stops. Eventually, the
training process finishes at an epoch of about 38.

� � �� �� �� �� �� �� ��
�����

������

������

������

������

������

������

������

�
��

	��
�������

��
���
��������

Figure 2. The loss functions (MSE) are plotted against epoch for both training set (dashed line) and

validation set (solid line) with d = 4. Early stopping strategy has been used.

In order to see the generalization ability of the trained model, we apply it to the test
set. The MSE for the test set is 2.3644 × 10−4. These error values are small and imply the
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trained network has a good generalization on the test set. In order to see this more clearly,
we plot the predicted ROC versus the actual ROC for the test set in Figure 3. The horizontal
and vertical coordinates of each hollow circle in the figure represent the actual values and
predicted values of ROC, respectively, by the trained model for one sample in the test
set. The red line indicates the case that the predicted ROC equals the actual ROC. The
closer these dots are to the line, the more accurate the predicted ROC is. Moreover, we also
calculate the R2 = 0.9994, which is high and close to 1. We can see that the trained model
has a strong generalization ability on the test set.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Actual ROC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ic
te

d 
R

O
C

d = 4
R2 = 0.9994

Figure 3. The predicted ROC versus the actual ROC for 4-dimensional space test set are marked with

blue circles. The red line indicates the case that the predicted ROC equals to the actual ROC.

As an application, we now apply the trained model to the coherence dynamics for
a two-qubit system under a non-Markovian environment. This system is composed of
two parts, each one consisting of a two-level system interacting with a reservoir [51]. The
Hamiltonian of the system is

H = h̄ω0σ+σ− + ∑
k

[

h̄ωkb†
k bk +

(

gkσ+bk + g∗k σ−b†
k

)]

, (6)

where ω0 is the transition frequency, σ± is the system raising and lowering operators for
the qubit, b†

k (bk) is the creation (annihilation) operator, and gk is the coupling of the mode
k with frequency ωk. If the initial state is the Werner-like state

ρ = r|Φ⟩⟨Φ|+
1 − r

4
I (7)

with r the purity and the coupling are non-Markovian with spectral density

J(ω) =
1

2π

Γλ2

(ω0 − ω)2 + λ2
, (8)

where Γ is the system–reservoir coupling constant and λ is the spectral width of the
coupling. We obtain the density matrix of the qubits system according to Ref. [51] and
calculate the ROC using both the SDP method and the FNN. In Figure 4, we plot the
predicted and the actual ROC as a function of the dimensionless quantity Γt. It can be seen
that our trained model has a good generalization. Moreover, it is worth noting that the
time required to process a single state using the FNN is approximately 10−6 s, whereas
using the SDP method directly takes around 10−1 s. This means our method is roughly
105 times faster than the SDP approach.
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Figure 4. The predicted and the actual ROC as a function of the dimensionless quantity Γt for initial

state ρΦ(0) with r = 1, α2 = 1/3, and λ/Γ = 0.01.

Next, we discuss larger dimension states of the qubit-qutrit and the three-qubit systems.
The Hilbert space dimensions of these two systems are 6 and 8, respectively. In these cases,
the performance decreases when using the same structure of neural network model as in
previous two-qubit system. Therefore, we increase the number of nodes in each hidden
layer to 256. As a result, the number of trainable parameters will increase. For example, in
three-qubit case, we have a total of 148,481 trainable parameters. Apart from this change,
methods of data preparation and training processes of the neural network are the same
with those of the two-qubit system. As shown in Figure 5, the trainings for the qubit-
qutrit system and the three-qubit system accomplish within training epochs of 38 and
72, respectively. The MSE of the qubit-qutrit system is 8.5269 × 10−4. For the three-qubit
system, the MSE is 0.0035, which is relatively larger than the qubit-qutrit system. This is
because using the same neural network structure for more complex problems may result
in slightly inferior outcomes. The predicted ROC curve overlaps extremely well with
the actual ROC curve, as shown in Figure 6, with R2 values reaching 0.9988 and 0.9688,
respectively. Therefore, we can conclude that in the case of the qubit-qutrit and the three-
qubit systems, the trained neural network method exhibit strong generalization ability.

� � �� �� �� �� �� �� ��
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Figure 5. The loss functions (MSE) are plotted against epoch for both training set (dashed line) and

validation set (solid line) with (a) d = 6 and (b) d = 8, respectively. Early stopping strategy has

been used.
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Figure 6. The predicted ROC vs. the actual ROC for (a) 6- and (b) 8-dimensional spaces are marked

with blue circles, respectively. The red line indicates the case that the predicted ROC equals to the

actual ROC.

4. Conclusions

In this study, we have applied machine learning to address the quantification of
quantum coherence. Utilizing the SDP program, we computed the ROC and created
labeled datasets for two-qubit, qubit-qutrit, and three-qubit systems, subsequently training
FNNs for each. This method can be easily extended to other quantum systems with varying
dimensions. We demonstrated the robust generalization capabilities of the FNNs by testing
them on sample datasets. Additionally, we predicted the quantum coherence dynamics in
a two-qubit system within a non-Markovian environment and compared these predictions
with those obtained using the CVX method. It turns out that this approach is very accurate
and time-saving. Our results highlight the considerable potential of machine learning
techniques in the quantification of quantum coherence.
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47. Życzkowski, K.; Penson, K.A.; Nechita, I.; Collins, B. Generating random density matrices. J. Math. Phys. 2011, 52, 062201.

[CrossRef]

48. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/install?hl=zh-cn

(accessed on 10 June 2024).

49. Yu, T.; Zhu, H. Hyper-Parameter Optimization: A Review of Algorithms and Applications. arXiv 2020, arXiv:2003.05689.

50. GitHub—lruicckhy/CoherenceMachineLearning at Master—github.com. Available online: https://github.com/lruicckhy/Coh

erenceMachineLearning/tree/master (accessed on 10 August 2024).

51. Bellomo, B.; Lo Franco, R.; Compagno, G. Entanglement dynamics of two independent qubits in environments with and without

memory. Phys. Rev. A 2008, 77, 032342. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://cvxr.com/cvx
http://cvxr.com/cvx
https://web.stanford.edu/~boyd/papers/pdf/graph_dcp.pdf
http://dx.doi.org/10.1088/1742-6596/302/1/012037
http://dx.doi.org/10.1080/00405000.2013.829687
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
http://dx.doi.org/10.28945/4184
http://www.ncbi.nlm.nih.gov/pubmed/39064224
http://dx.doi.org/10.1063/1.3595693
https://www.tensorflow.org/install?hl=zh-cn
https://github.com/lruicckhy/CoherenceMachineLearning/tree/master
https://github.com/lruicckhy/CoherenceMachineLearning/tree/master
http://dx.doi.org/10.1103/PhysRevA.77.032342

	Introduction
	Materials and Methods
	The Robustness of Coherence
	The Feedforward Neural Network
	Data Preparation

	Results
	Conclusions
	References

