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Abstract: Quantum machine learning (QML) is an emerging discipline that combines
quantum computing and machine learning and is able to exhibit exponential superiority
over classical machine learning regarding computing speed on specific problems. This
article provides a comprehensive review of the QML research in China. The QML develop-
ment in China is presented in terms of research ideas and tasks, and the algorithms and
application fields are sorted out. We have also highlighted some typical creative studies
and illuminated their innovation points. Furthermore, the current challenges and future
prospects are discussed. This review may provide inspiration for both China’s and global
QML-domain progress.

Keywords: quantum computing; quantum machine learning; quantum deep learning;
quantum neural network

1. Introduction

As a major area in artificial intelligence, machine learning has become a hotspot
technique in both academic and industrial fields, extensively applied in quite a few areas
including image recognition, data mining, medical care, natural language processing,
and so forth [1]. In machine learning algorithms, data are often stored in matrices [2].
However, with the exponential growth of the amount of data and the increase in algorithm
model volume (e.g., in the popular GPT-4 model, there are 1.76 trillion parameters to
be trained [3,4]), the processing efficiency of classical machine learning rapidly declines
since conventional computers require a great amount of time and computing resources
to perform matrix operations [1,2]. In the future era of data explosion, classical machine
learning algorithms will face more severe challenges in processing massive data, and the
utilization of quantum computing is a highly anticipated solution.

Quantum computing is a methodology of computation that makes use of quantum
phenomena in physics [5]. The initial idea originated in 1982 when physicist Feynman
pointed out that quantum computers might have advantages that classical computers could
not parallel in solving specific problems [6]. These advantages are achieved based on
quantum properties, such as quantum superposition and quantum entanglement [5]. They
make quantum computers superior to classical computers in terms of computation cost,
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and theoretically quantum computing can solve extremely complex problems that classical
computing is impossibly able to deal with [7]. In the 1990s, Shor (from Bell Laboratory)
proposed an integer factorization algorithm based on quantum computing, which has an
exponential advantage compared to classical factorization algorithms [8]; Grover (also
from Bell Laboratory) proposed a quantum search algorithm that can realize square-level
acceleration compared with classical search algorithm [9]. In 2008, Harrow et al. proposed
the well-known HHL algorithm for solving linear systems of equations, which achieved
exponential acceleration against classical solutions [10]. These early achievements have
laid the foundation for the development of quantum computing.

Quantum machine learning (QML) is a technique that combines the advantages of
quantum computing and machine learning, aiming to solve specific difficult problems
in classical machine learning based on quantum computing methods [11-14]. The fun-
damental idea of QML is to utilize quantum advantages, i.e., the superposition and/or
entanglement of quantum bits (qubits), to accelerate the training process of machine
learning [5]. A classical bit can only be in one of two binary states (0 or 1), while a qubit
can stand in a superposition state of |0) and |1). Therefore, the quantum superposition
property can provide QML algorithms with extraordinary parallel processing capabilities
and, hence, realize exponential acceleration compared to classical algorithms [15]. As to
the quantum entanglement property, it can help us generate qubits in entangled states,
such as Bell states. Bell states are a set of maximally entangled states in quantum me-
chanics that describe two-qubit systems. The maximum entanglement orthogonal basis
of a two-qubit system is composed of four Bell states, with their mathematical expres-
sions being | ®*) = (|00) £ [11) )/v2and |¥*) = (|01) £ |10) )/v/2. For two qubits
in Bell states, measuring the state of one qubit can instantly determine the state of the other,
hence realizing the non-local correlation. This property can be beneficial to simplifying the
construction two-qubit operation gate, such as controlled NOT (CNOT) gate [16]. There-
fore, the quantum entanglement property can realize more complicated computational
operations for various QML applications, such as constructing loss functions through entan-
glement effects [17], establishing quantum teleportation protocols for secure QML [18], and
implementing quantum competition based on entanglement measures [19,20]. The basic
principles of computational acceleration brought by quantum superposition and quantum
entanglement are illustrated in Figure 1.
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Figure 1. Schematic diagram of the principle of computational acceleration based on quantum
superposition and quantum entanglement. Quantum superposition enables N qubits to represent 2NV
superposition states, hence allowing quantum computing parallelism (i.e., one quantum operation
is equivalent to 2N classical operations). Quantum entanglement enables the change in one of two
entangled qubits (such as qubits in Bell states) to synchronously affect the other qubit, hence allowing
for more complicated interactions and operations.
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Quantum computing may help classical machine learning at various stages, such
as data collection/preprocessing, feature engineering, model training, and model val-
idation/optimization. For data collection/preprocessing, assuming each sample is an
N-dimensional data, in the classical framework, one cannot directly alter the data dimen-
sionality. In quantum computing, however, one may employ quantum state encoding
techniques like amplitude encoding to map such data, requiring only log, N qubits to rep-
resent the N-dimensional data. This exponential data compression can drastically reduce
computational cost.

As to feature engineering, classical approaches like principal component analysis
(PCA) rely on covariance matrix calculation and eigenvalue decomposition, with the time
complexity scaling as O(N?), meaning that the computational time increases drastically
with data dimensionality. In contrast, quantum PCA (QPCA) can theoretically leverage
quantum state preparation and quantum phase estimation to achieve a time complexity of
O(poly(log N)) [21], significantly accelerating the feature dimensionality reduction.

Regarding model training, taking neural network methodology as an example, classi-
cal training methods such as stochastic gradient descent compute gradients for each weight
parameter sequentially. For deep learning networks with billions of weight parameters, the
training can be dramatically time-consuming. Quantum computing can address this issue
by carrying out parallel computing to compute gradients for all parameters simultaneously
(e.g., parameterized quantum circuits [22]) or by improving parameter updating strategy
to compute the best updating directions in the geometric structure of quantum state space
(e.g., quantum natural gradient [23]).

For model validation, classical approaches need to validate multiple dataset partition
schemes one by one, whereas quantum methods can leverage quantum superposition to
validate multiple schemes in parallel. With regard to model optimization, classical methods
need to attempt a great many hyperparameter combinations to search the optimal combina-
tion set. By employing quantum searching algorithms, such as quantum annealing [24] and
Grover’s algorithm [9], the required number of searching iterations can be considerably
reduced, and the computation time can be significantly saved.

In recent years, the quantum science and technology in China has flourished, with
a constant stream of high-level scientific and technological achievements. For example,
Pan’s team has made important progress in quantum computing fields such as quantum
computational chemistry [25] and quantum walk [26], as well as in ultra-distant satellite
communication based on quantum key distribution by collaborating with Wang’s team [27,28].
These achievements have made significant contributions not only to the quantum field in
China but also the whole quantum realm throughout the world. As one of the leading
countries in the quantum field, China has provided fertile soil for the growth of quantum
technology in recent years. Therefore, although QML research did not start very early in
China, Chinese researchers have made quite a lot achievements in QML domain in the past a
few years, and QML is still in a phase of vigorous development in China at present.

In this article, we have reviewed the development of QML research in China. The scope
is limited to the achievements of Chinese institutions, while those studies conducted by
Chinese academicians in foreign institutions are not included. To the best of our knowledge,
this is the first article that provides a comprehensive overview of China’s QML research.

The structure of the following parts is arranged as below. Section 2 presents the
development history and current research status of QML research in China. Section 3
displays the QML algorithms and their application areas. Section 4 highlights some typical
creative studies and analyzes their innovation aspects from different perspectives. Section 5
discusses both the current challenges and the future prospects. Finally, Section 6 provides a
conclusion of this article.
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2. QML Development History and Current Status in China

In this section, we discuss the historical development of QML in China, with a strong
focus on the current research landscape.

2.1. Development History

Due to the lack of a clear division of China’s QML development period, in this article,
we have proposed a rough partition scheme that divides China’s QML research into three
stages, namely, the preliminary stage, transition stage, and explosion stage. The partition
scheme is formulated based on the number of QML-related paper publications.

We have conducted the searching and selection of paper publications based on the
following methodology, referring to that adopted in [7]. Firstly, we choose two academic
searching platforms, i.e., Web of Science (WOS) and China National Knowledge Infrastruc-
ture (CNKI), as our basic literature source. Secondly, we set the searching keywords as
“quantum machine learning” OR “quantum deep learning” OR “quantum neural network”.
Thirdly, we filter the publication results according to these criteria: (1) the contributing
institutions of the publication must include at least one Chinese institution; (2) the publica-
tion must be a research paper (excluding review papers, comment papers, dissertations,
patents, etc.); (3) the publication must be written in English. After the above filtering, we
finally obtain 359 appropriate paper publications, with the specific number achieved via
manual counting.

Although the publication data source platforms in this work are WOS and CNKI, note
that there are also some other good literature data platforms, such as Dimension.ai and
PubMed. Meanwhile, it is worth emphasizing that there may exist discrepancies in the
publication numbers between different platforms. For example, when we use the keyword
“quantum machine learning” for literature searching, different platforms can yield quite
different numbers of results: Dimension.ai yields about 498,000 results, WOS about 14,000,
PubMed about 25,000, and CNKI about 1300, respectively. In fact, since these platforms
may employ a fuzzy search mechanism, many results are actually not highly relevant
contents. Therefore, careful manual examination and filtering are necessary for accurate
counting of publication quantity.

As shown in Figure 2a, the time before 2018 is regarded as the preliminary stage; at
that time, the cumulative number of papers is less than 30. The period from 2018 to 2021 is
defined as the transition stage; just the sum of paper numbers for 2018 and 2019 surpasses
the total number throughout the preliminary stage, with the cumulative number of papers
in the transition stage falling within the 90 to 100 range. The period starting from 2022
is considered as the explosion stage; within just three years since 2022, the number of
papers has exceeded 240, and it still keeps increasing steadily year by year. In addition
to the rough stage division, we have also counted the publication numbers in each year
(from 2005 to 2024). In Figure 2b, we illustrate the growth trend of QML-related publication
quantity over time. It can be found that the growth trend can be well fitted by an exponential
curve (red dashed line), indicating that there is an exponential growth in China’s QML-
related publications.

In the preliminary stage, researchers usually employ classical machine learning al-
gorithms as a foundation and use quantum computing in specific modules that too com-
plicated for classical computing. By such a mode of algorithm replacement, a quantum
version of a classical machine learning algorithm can be created (denoted as “quantum
replacement mode” hereinafter). Most studies in the preliminary stage were based on the
quantum replacement mode and mainly focused on unsupervised machine learning tasks.
For example, in 2017, Sheng et al. proposed a protocol for distributed secure QML, which
can be applied in the field of cybersecurity [29]; He et al. constructed two kinds of quantum
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feature selection (dimension reduction) algorithms in 2018, and square level acceleration
can be achieved compared to the corresponding classical feature selection algorithms [30].
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Figure 2. Information of China’s QML development and research papers. (a) A proposed three-stage
division of China’s QML development period based on the number of research paper publications.
(b) The growth trend of China’s QML publication quantity over time, indicating an approximate
exponential growth.

During the transition stage, researchers began to make more efforts to improve the
performance of the QML algorithms already proposed. By such a mode of algorithm
improvement, an upgraded version of a QML algorithm can be established (denoted as
“quantum improvement mode” hereinafter). Despite the fact that the quantum replacement
mode was still the mainstream (e.g., a quantum data compression algorithm based on PCA
was proposed [31]), the number of studies based on the quantum improvement mode was
gradually increasing. Meanwhile, there were more and more studies focusing on supervised
machine learning tasks. In 2020, He et al. reported two quantum locally linear embedding
(QLLE) algorithms for nonlinear dimensionality reduction on the basis of a linear algebra
procedure and variational hybrid quantum-—classical procedure, respectively [32]. The linear
algebra implementation can be considered as an example of the quantum replacement mode
(replacing the classical LLE), while the variation implementation can be regarded as an
example of the quantum improvement mode (improving the linear algebra implementation
in terms of global manifold structure maintenance). Another representative instance of the
quantum improvement mode is what Wang et el. reported in 2021 as they developed a
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quantum deep transfer learning model able to achieve higher classification accuracy on
small datasets like the popular IRIS dataset than former QML models [33].

After entering the explosion stage, the quantum improvement mode gradually be-
comes the predominant direction, and most studies are oriented to supervised machine
learning tasks. In 2022, Huang et al. proposed a variational convolutional neural network
(VCNN) classification algorithm, which could achieve higher accuracy and efficiency com-
pared with other quantum neural network (QNN) algorithms [34]. In 2023, He et al. (the
same group as that in [32]) reported another work based on the linear algebra procedure
and variational hybrid quantum-—classical procedure but focusing on domain adaption
(DA) classification in transfer learning, and their classifier could acquire higher accuracy
than classical DA classifier as well as two other state-of-art quantum DA classifiers [35].
Very recently, Gong et al. developed a quantum K-nearest neighbor (QKNN) classification
algorithm, which achieved higher accuracy and efficiency on the IRIS dataset than other
QKNN algorithms, and the accuracy was comparable to classical KNN algorithm [36].

In short, China’s QML research has undergone three stages, gradually shifting the model
designing mode from the quantum replacement mode to the quantum improvement mode
and meanwhile shifting the task type from unsupervised learning to supervised learning.

2.2. Current Status

At present, the QML field in China is undergoing rapid growth, with one of its remark-
able features being an increasing internationalization. This is reflected in two main aspects:
(1) the development trend of QML in China is gradually aligning with international mo-
mentum, demonstrating a high degree of consistency; (2) the overall performance of models
proposed in China’s cutting-edge QML work has reached internationally advanced levels, and
some models can even achieve top-tier performance among all similar models worldwide.

2.2.1. Development Trend

Nowadays, the global QML field primarily focuses on classification tasks, with image
classification being the most prevalent among them. Regarding the research modes, most
studies follow the quantum replacement mode, aiming to design quantum implementations
of classical machine learning algorithms. Meanwhile, there are also quite a few studies based
on the quantum improvement mode, which strive to upgrade the circuit implementations of
quantum algorithms for the improvement of the QML model performance.

As for China’s QML field, as mentioned before, the number of studies focusing on
supervised learning tasks is obviously rising nowadays. Supervised learning tasks mainly
contain classification and regression, with classification tasks being more popular currently.
Therefore, China’s QML research is aligned with the global trend in terms of the target task.
With regard to the research modes, the number of studies based on quantum improvement
is gradually surpassing that of the quantum-replacement-based studies. So, it might be
concluded that China’s QML investigation holds a leading position internationally in terms
of the research mode.

2.2.2. Model Performance

The accuracy performance of the QML models serves as an important benchmark
for assessing the sophistication of the QML research. The following examples may show-
case the advanced level of China’s QML research on the international stage. Gong et al.
developed a QKNN model based on a divide-and-conquer strategy, which achieved a clas-
sification accuracy of 97.04% on the IRIS dataset, largely outperforming the other typical
QKNN models [36]. Song et al. formulated a tensor network (TN) inspired quantum circuit
framework and, based on the framework proposed, a parallel quantum tensor network
(QTN) for multi-class classification tasks. Their method achieved an average accuracy
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of over 99% on the MNIST dataset, achieving the highest accuracy not only among all
the QTN type methods but also among all the investigated QML methods [37]. Zhang
et al. designed a quantum self-attention model (QSAM) based on variational quantum
algorithm, which demonstrated performance comparable to other state-of-the-art QSAMs
on natural language processing datasets such as Yelp, IMDb, and Amazon and obtained
higher classification accuracy than other quantum image classifiers on computer vision
datasets like MNIST and Fashion MNIST [38]. Hence, it might be concluded that China’s
cutting-edge QML models are highly sophisticated regarding performance throughout the
international QML field.

3. Algorithms and Applications

In this section, we discuss the algorithms involved in China’s QML research and
introduce the major application domains of QML algorithms.

3.1. Algorithms

Algorithms are the core component of machine learning (in the classical context),
and self-evidently they are also crucial for QML research. For the QML studies in China,
various types of algorithms have been established and employed. Most of these quantum
algorithms stem from their classical counterparts, e.g., QPCA is inspired by classical
PCA [39]; and quantum partial least squares (QPLS) is a quantum version of the classical
partial least squares (PLS) [40,41].

The quantum algorithms extensively adopted in China’s QML studies include quan-
tum neural network (QNN)-type algorithms [34,42-64], quantum support vector machine
(QSVM) algorithms [65-68], quantum K-nearest neighbor (QKNN) algorithms [36,69-71],
and so on. Among them, the QNN-type algorithms dominate in terms of the number of
papers, mainly consisting of regular QNN [42-50], quantum convolutional neural network
(QCNN) [34,51-57], quantum deep neural network (QDNN) [58-60], quantum generative
adversarial network (QGAN) [61-64], etc.

For a typical QNN algorithm, there are three main investigation aspects, which will
be elucidated below by taking QCNN as a representative example. The first aspect is the
pattern of coordination with classical computation methodology. In order to realize efficient
coordination between quantum computers and classical computers, most researchers adopt
hybrid quantum-—classical network architectures [34,51,52,54,55], while there are also a
small number of studies in which the network has a principal structure of pure variational
quantum circuits and only collaborates with classical computers in the parameter optimiza-
tion part [57]. The second aspect is the approach to realize the quantization of network
architecture. In some studies, researchers have developed efficient quantum convolutional
layers that can significantly decrease the computational complexity and, hence, reduce
the computational resources [51,53,54]; Cheng et al. have not only designed quantum
convolutional layers in PQC but also combined classical fully connected layers with PQC
to develop hybrid quantum-—classical fully connected layers [52]; Wei et al. have developed
a fully quantum version of the classical CNN structure that including convolutional layers,
pooling layers, and fully connected layers [55]. The third aspect is the quantum state
encoding method. Some studies have employed amplitude encoding [51,53], some studies
have employed angle encoding [52], and Gong et al. have developed a tree-structured
hybrid amplitude encoding scheme by integrating the advantages of amplitude encoding
and angle encoding, hence providing flexibility and stability in adjusting the width and the
depth of the quantum circuit [57].

In addition to the hotspot algorithms like QNN, a few studies utilizing less popular
algorithms have also achieved good results. Zhang et al. improved a quantum support
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matrix machine (QSMM) algorithm by leveraging a quantum matrix inversion (QMI) tech-
nique. Compared to a former version of QSMM, the dependence on the precision of the
upgraded QSMM is exponentially improved, showing strong potential for applications
in image classification [72]. Cao et al. proposed a linear-layer-enhanced quantum long
short-term memory (QLSTM) model, which adopts the linear layers before and after the
variational quantum circuit (VQC) of QLSTM to extract features. This model can effectively
reduce the number of qubits required while amplifying quantum advantages, showing
promising prospects for price forecast applications [73]. Other quantum algorithms include
quantum canonical correlation analysis (QCCA), QSAM, quantum autoencoder (QAE),
quantum multi-classification classifier (QMCC), quantum continual learning (QCL), quan-
tum capsule network (QCN), variational shadow quantum learning (VSQL), quantum state
clustering (QSC), quantum linear discriminant analysis (QLDA), quantum hierarchical
agglomerative clustering (QHAC), quantum support vector regression (QSVR), quantum
neighborhood preserving embedding (QNPE), and so on [74-90].

All these QML algorithms can generally be categorized into supervised learning
and unsupervised learning based on their learning modes. Supervised learning includes
classification and regression tasks, while unsupervised learning mainly involves tasks such
as clustering, dimensionality reduction, data generation, and correlation analysis. The
different types of machine learning tasks, the corresponding QML algorithms, and the
associated references are summarized in Table 1.

Table 1. The different types of machine learning tasks, the corresponding QML algorithms, and the
associated references.

Learning Mode Task Algorithm References
QNN [42-50]
QCNN [34,51-57]
QSVM [65-68]
QKNN [36,69-71]

QDNN [58-60]

QTN [37,77]
QDA [35]
QSAM [38]
Classification Qg}lic {;g}
Supervised (SQ(S ]6 {S(ﬂ
QCN [82]
RQC [83]
QDTL [33]
QSMM [72]
QAB [84]
VSQL [85]

QPLS [40,41]
Regression SESNFE {;g
QSVR [89]
QKMM [90]
Clustering QsC [86]
QHAC [87]

QAE [75,76]
QNPE [91]
Unsupervised Dimensionality QFS [30]
reduction QLLE [32]
QPCA [41]
QLDA [88]

Data generation QGAN [61-64]

Correlation analysis QCCA [74]
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3.2. Applications

The application fields of China’s QML research are diverse, with the several popular
areas including computer vision, cybersecurity, physical science, and natural language
processing, as shown in Figure 3.
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Figure 3. Application fields involved in China’s QML research, such as computer
vision [38,42,51,52,54,55,58-60], cybersecurity [29,45,50], physical science [49,67,92-94], and natu-
ral language processing [38,53].

In the field of computer vision, the relevant studies mainly cover applications like
image processing, object detection, semantic segmentation, etc. For example, Bai and Hu
proposed two image superposition methods, i.e., quantum state superposition and angle
superposition. The superposition-enhanced quantum neural network (SEQNN) based
on angle superposition could outperform two other similar QML models in classification
accuracy on the MNIST dataset [42]; Wang et al. proposed a quantum-—classical hybrid deep
neural network (QHDNN) model for image anomaly detection. They explored multiple
quantum layer architectures and designed a VQC-based QHDNN solution, which could
surpass the classical counterpart on both the MNIST and Fashion-MNIST datasets [58].

With regard to cybersecurity, intrusion detection for preventing network attacks has
been a key research direction. For example, a protocol for distributed secure QML was
designed to detect eavesdroppers attempting to intercept or interfere with the learning
process [29]; Gong’s team developed two intrusion detection systems in succession based
on QNN [50] and QCNN [45], respectively.

Some representative QML applications in the physics field include Liang et al.’s work
on the ground-state preparation of a Hamiltonian system [92]; Wang et al.’s investiga-
tion into the role of entanglement in QML [93]; and Liu et al.’s study on quantum state
tomography [94].

In the area of natural language processing, the relevant studies mainly cover appli-
cations like text classification, speech recognition, machine translation, etc. For instance,
Zhang et al. proposed a novel QSAM based on variational quantum algorithms for binary
and multiple classification on natural language processing datasets, and their model could
outperform its classical counterpart and was as good as the state-of-art QSAM [38]; Chen
et al. developed a novel QCNN model based on multi-scale feature fusion for text classifi-
cation, and their model was able to surpass a wide range of state-of-art QNN models [53].
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4. Innovation Aspect Analysis

Based on the compilation and categorization of the various creative QML studies
in China, it can be found that there are mainly three innovation aspects, namely, algo-
rithm/model design, strategy selection, and application scenario.

4.1. Algorithm/Model Design

Innovation in model design refers to either the proposal of originally innovative QML
algorithms or the development of new frameworks or structural components for a certain
QML algorithm model. These new algorithms/models can outperform the conventional
ones in terms of computation accuracy and/or efficiency. Some relevant research cases are
shown below.

In an original innovation work, Hou et al. first proposed a QPLS regression algorithm
as a quantum version of classical PLS algorithm. By investigating time and space complexity,
they have theoretically demonstrated that the QPLS can realize exponential speed-ups over
classical PLS on the independent variable dimension, the dependent variable dimension,
and the number of variables [41].

Song et al. proposed a computationally resource-efficient QCNN model, which em-
ployed amplitude encoding and quantum alternating operator ansatz to construct the
quantum convolutional layer. The complexity of either the forward or the backward prop-
agation process in such a quantum convolutional layer is much lower than that of the
convolutional layer in a classical CNN model, and hence the computational resources
required for the convolutional layer can be significantly reduced [51].

In the QSAM model proposed in the aforementioned study [38], the three important
model components, namely, query, key, and value, were obtained by a method based on
amplitude phase decomposition measurement. This new framework can lead to fewer
parameters in the model while achieving high performance on different datasets. Upon
two natural language processing datasets, Yelp and IMDb, this new QSAM model can
acquire accuracy values of 91.03% and 88.35%, surpassing both classical self-attention
neural network and quantum self-attention neural network models. Upon the MNIST
dataset, the new QSAM model can acquire a classification accuracy of 82.22%, higher than
that of a QCNN model.

Also, in the field of natural language processing, the authors of the work [53] men-
tioned above designed a novel quantum depth-wise convolution structure in their QCNN
model. The new QCNN model can integrate word-level and sentence-level features while
reducing the number of parameters in the model and the computational complexity. On
the RP dataset, this QCNN model achieved an accuracy of 96.77%, significantly higher than
that of a normal QSANN model.

Li et al. proposed a novel hybrid quantum classical framework called variational
shadow quantum learning (VSQL). This framework used variational shadow quantum
circuits to extract classical features in a convolution way and then utilized a fully connected
neural network to complete classification tasks. This method can greatly reduce the number
of parameters to facilitate the training process of quantum circuits. For a classification
testing on the MNIST dataset, a single-layer classical neural network obtained an accuracy
of 86.36% with nearly 8000 parameters, while the VSQL model achieved an accuracy of
87.39% with only about 900 parameters [85].

4.2. Strategy Selection

Innovation in strategy selection refers to the introduction of computational strategies
that have not been previously applied to a certain QML algorithm. By selecting appropriate
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computational strategies and integrating them into QML models, researchers can acquire
new QML models with better performance. A few study examples are presented as follows.

Lietal. creatively applied particle swarm optimization (PSO) algorithm for the training
of QNN models. As a collective intelligence-based optimization strategy, PSO was able
to outperform conventional gradient descent-based optimization strategy (such as Adam)
when dealing with certain problems such as 2D Hamiltonian ground state solution and
many-body system quantum phase classification in terms of fewer optimization iterations
and higher classification accuracy [44].

For the SEQNN model developed in the aforementioned work [42], the innovative
scheme was based on the combination of superposition strategy and one-vs.-all strategy. For
the multi-class image classification task on the MNIST dataset, the SEQNN model achieved
an accuracy of 87.56%, higher than other QML models like HONN-Quanv and QNet.

Lin et al. first applied game theory strategies to privacy protection in QML and
proposed a privacy game model of user-server—attacker in a hybrid classical quantum back-
propagation neural network. Unlike previous studies, this model can set game strategies
based on users’ privacy requirements in practical applications to maximize the interests of
users with different roles [46].

4.3. Application Scenario

Innovation in application scenarios refers to the effective application of a certain type
of QML algorithm to a new scenario (“effective” means that the application should achieve
good performance). Two typical research instances are introduced as follows.

Jing et al. proposed two types of quantum convolutional circuits for classifying
images with RGB three-color channels. Many previous studies have adopted quantum
convolution circuits for grayscale image classification, while this is the first work that
applies quantum convolutional circuits in the scenario of RGB image classification and
achieves effective results. The designed quantum convolutional circuits were able to achieve
higher classification accuracy on the CIFAR-10-small dataset compared to classical CNN
models [54].

For the aforementioned study [73], it is not the research that originally proposed
QLSTM algorithm, but it is the first research that applies QLSTM in the scenario of carbon
price forecast. Additionally, the designed linear-layer-enhanced scheme enabled their
QLSTM model to achieve as good a performance as the classical LSTM model on the
European Union carbon market price dataset.

In Table 2, we summarize the typical research examples of the three innovation aspects
mentioned above and provide model performance comparison regarding accuracy on
various benchmark datasets.
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Table 2. Typical research examples of the three innovation aspects and accuracy comparison of the
relevant models.

Innovation Datasets Algorithms Accuracy References

CSANN 83.11%
Yelp QSANN 90.09%
QSAM 91.03%

CSANN 79.67% [38]
IMDb QSANN 87.28%
Algorithm/ QSAM 88.35%
modeldesign QCNN 74.30%
MNIST QSAM 82.22%
QSANN 67.74%

RP QNN-MSFF 96.77% 531
NN 86.36%

MNIST VSQL 87.39% [85]
HQNN-Quanv 67.00%

5 MNIST QNet 81.00% [42]
tlr atﬁgy SEQNN 87.56%

selection

QCNN-Adam 53.00%

Quantumphase "\ pgy 84.00% [44]

Application CIFAR-10- CNN 95.83% [54]
scenario small HQconv 99.45%

5. Challenges and Prospects

In the QML field, many creative studies have been carried out, and significant achieve-
ments have been made. At the same time, however, there are also quite a few unresolved
problems and thorny challenges. In this section, we will discuss the current challenges
faced by QML researchers and provide some prospects for the future development.

5.1. Challenges

The current challenges in QML mainly involve noise interference, hardware limitation, barren
plateaus, catastrophic forgetting, circuit structure optimization, and input-output bottleneck.

5.1.1. Noise Interference

To genuinely implement QML algorithms, real quantum computing devices are indis-
pensable despite the existence of classical platforms for simulating quantum computing. A
core technology of quantum computing devices is the preparation of qubits. At present,
there are several kinds of physical qubits, mainly including semiconductor quantum dot
qubits [95,96], spin qubit [97], superconducting qubits [98], trapped-ion qubits [99], and
photonic qubits [100], named after the preparation methods.

For quantum computation, we are now in a so-called NISQ era (noisy intermediate-
scale quantum) [101]. In quantum systems, noise refers to the interaction of qubits with
uncontrolled degrees of freedom in the environment. There are different kinds of quantum
noises, mainly including depolarizing noise, amplitude damping noise, phase damping
noise, bit-flip noise, phase-flip noise, and others. Taking depolarizing noise as an example,
its mathematical representation is €(p) = (1 — p)p + pI/2", where € denotes the noise
channel, p is the density matrix, p is the probabilistic error rate that depends on both the
device and the circuit, and 7 is the number of qubits [102]. This noise can cause qubits to
decohere, transitioning from superposition/entanglement states to classical mixed states,
thus resulting in quantum information loss.

In this era, quantum devices are inevitably affected by noise, hence bringing negative
impacts to QML models [34,40,42,78]. To address the issue of noise interference, some
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feasible approaches include developing noise suppression techniques, quantum error
correction techniques, and models with noise-resistant quantum circuits [89,103]. Taking
noise-resistant quantum circuits as an example, the VCNN model designed in [34] exhibited
excellent noise resistance since a new hybrid quantum-—classical circuit framework was
formulated; the VSQL model designed in [85] based on a variational shadow quantum
circuit could introduce less noise by using fewer quantum gates.

5.1.2. Hardware Limitation

In the current NISQ era, quantum devices only allow the employment of a small
number of qubits to represent data and perform simple quantum calculations. Hence, it is
challenging to encode large-scale data into quantum state data and execute QML algorithms
in quantum computers [34,38,60]. Therefore, it is necessary to implement feature extraction
or other kinds of dimension reduction operations on high-dimensional datasets before
executing the algorithms [65]. For instance, Wu et al. proposed a scalable QNN system
based on the collaborative utilization of multiple small quantum devices. The multiple
quantum devices play the roles of quantum feature extractors and are independent of each
other. Hence, researchers can flexibly combine quantum devices of different sizes to extract
local features in a more efficiently way [43].

5.1.3. Barren Plateaus

The so-called “barren plateaus” problem in QML refers to the phenomenon that in
quantum circuits with randomly initialized parameters, the gradient of the objective loss
function decreases exponentially with the increase in qubit number [50,104]. The vanishing
of gradient means the QML model becomes frozen and the optimization training process
can no longer continue. Although it has been demonstrated that the barren plateau problem
would not appear in QCNN models [105], this problem widely exists in those QNNs
without convolutional structures [49,82]. Some studies have tried to provide solutions by
designing special algorithm models, such as variational shadow quantum circuits [85],
QGAN model based on Rényi divergences [62], and variational QNN model based on PSO
strategy [44].

5.1.4. Catastrophic Forgetting

Catastrophic forgetting is a common problem in machine learning, especially for deep
learning neural network models. During the optimization process of a neural network, the
model may quickly forget the already-learned knowledge in the updating of neural network
weights. In application scenarios that require incremental learning or continual learning
to accumulate long-term knowledge, this problem will bring significant negative impacts
to the models. In QML, the catastrophic forgetting problems also exist, and a few studies
aiming to address this issue have been carried out. As an instance, Situ et al. designed a
quantum continual learning scheme based on gradient episodic memory strategy that is
able to well overcome catastrophic forgetting and realize knowledge backward transfer for
quantum state classification tasks [80].

5.1.5. Circuit Structure Optimization

For QML models based on quantum variational algorithms, the designed architecture
of the parameterized quantum circuit is crucial to the model performance [35,83]. At
present, it is still a challenging problem to optimize the quantum circuit structure. Some
researchers have tried to develop an elaborate variational layer to replace the normal
variational layer for better model performance, such as the strongly entangled controlled-Z
variational layer in the linear-layer-enhanced QLSTM model described in [73].
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5.1.6. Input—Output Bottleneck

The input-output bottleneck is a common problem for those QML algorithms that
deal with classical data. For input, most QML algorithms need to encode classical input
data into quantum states in advance; and for output, most algorithms can only offer the
quantum states corresponding to the classical solution, unable to directly provide the
solution itself. These non-computing processes will consume additional time and cancel
out the acceleration effect of quantum algorithms. Hence, it is worth exploring how to
design algorithms to break through the input-output bottlenecks. As a research example,
Situ et al. proposed a QGAN model with a special quantum classical hybrid architecture,
which was able to directly receive classical inputs and output classical solutions [63].

5.1.7. Unsatisfactory Performance and Fair Comparisons

While QML research continues to evolve at an exciting pace, current QML algorithms
may sometimes underperform on basic machine learning tasks. In [106], Raubitzek and
Mallinger compared the performance of two quantum algorithms, i.e., VQC and quantum
kernel estimator (QKE), with various classical methods, i.e., LASSO/ridge, multilayer
perceptron, support vector machines, and gradient-boosting machines, on six benchmark
classification datasets and two artificially generated classification datasets. It has been
found that the aforementioned QML models currently cannot outperform properly trained
and/or sophisticated classical machine learning models in terms of accuracy and runtime
performance. Furthermore, they have noted that challenges related to “fair comparisons”
may exist in QML model design. Specifically, when constructing and training classical
machine learning models, some researchers may not have used randomized search cross-
validation to fully optimize the hyperparameters. Therefore, the performance of classical
machine learning models may seem relatively poor, and hence the significance of quantum
supremacy is likely to be overstated.

5.2. Prospects

The future development of the QML field can be roughly divided into two stages.
In the near future, we may have the opportunity to witness the transition of QML from
theoretical research to practical applications and from specific-problem-oriented to general-
problem-oriented. As for the distant future, we may enter an era of quantum data, and,
at that time, QML methods would comprehensively replace classical machine learning
methods and become mainstream solutions.

5.2.1. Practical Applications

At present, most QML studies are theoretical analysis of algorithms, and the numer-
ical experiments are only conducted on a few standard datasets (e.g., MNIST, IRIS, etc.).
However, there is hardly research that tests the performance of the QML algorithms on
complicated real-world datasets. In order to enhance the practical value of QML algorithms,
we need to make improvements in both hardware and software aspects. As for hardware, it
is necessary to address the technical issues of how to increase effective qubits in the system
and reduce noise interference. Regarding software, it is important to design better core
algorithms and /or quantum circuit structures to alleviate problems such as barren plateaus,
catastrophic forgetting, and so on.

5.2.2. General Problems

For quantum computing, many current studies are aimed at a few specific quantum-
related problems rather than facing general scientific or engineering problems, both in
China and internationally. For example, Pan’s team has made use of quantum computing
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in molecule ground-state energy solution [25], sequential multiphoton entanglement gen-
eration [107], etc.; the Google Al team has utilized quantum computing in isomerization
reaction Hartree—Fock simulation [108], topologically ordered state realization [109], and
so forth.

Specifically for QML research, as stated above, most studies are limited to a few certain
fields, such as physical science and image processing, and the numerical experiments are
usually conducted on special standard datasets. In the future, QML or other quantum com-
puting algorithms may be able to deal with more general problems in various real-world
scenarios and play a broader role in promoting the progress of science and technology.

Here, we would take another important China’s national strategic area outside of
quantum computing, namely, lunar and planetary exploration, as an example to make
further descriptions. In China’s Tianwen-1 Mars exploration mission, a payload on Zhurong
Mars rover called MarSCoDe has adopted laser-induced breakdown spectroscopy (LIBS) to
detect and analyze the chemical composition of the substances on Martian surface [110].
The LIBS spectrum is a kind of high-dimensional data, e.g., each MarSCoDe LIBS spectrum
contains over 5000 pixel data points [111]. Additionally, to promote the accuracy of LIBS
analysis, it is helpful to integrate other relevant physical parameters into the chemometrics
model, such as the plasma temperature and density, the images of plasma, the images of
laser ablation crater, and so on [112,113]. Such data fusion strategies would be beneficial for
relieving common problems in LIBS detection, including matrix effects, spectral fluctuation
effect, varying-distance effect, dusty surface effect, etc. [114,115]. Furthermore, the joint
use of data from different detection techniques is another trend, e.g., combining LIBS and
Raman spectroscopy [116], combining LIBS and remote sensing data [117], etc. These data
fusion strategies can improve analytical accuracy, while they would also lead to drastic
increase in data dimensionality and volume. For the current data processing scheme (i.e.,
the on-orbit payloads transmit data back to the Earth laboratory, and the analysts perform
subsequent processing in the laboratory), classical computing methodology can meet the
requirement of computing speed. However, in application scenes requiring real-time
mass data processing (e.g., China’s future manned lunar landing mission [118]), classical
computing may be hardly competent, and quantum computing may play a shining role
at that time. In fact, besides constructing QML models able to efficiently analyze high-
dimensional LIBS data and/or different kinds of fused data, quantum computing may also
provide key supports for the numerical simulation of laser-plasma evolution dynamics
(so that underlying mechanisms of LIBS processes can be better understood and spectral
quality can be improved) and for the accurate characterization of LIBS spectral feature
differences between Earth lab data and Mars in situ data (so that transfer learning technique
can be better utilized and data analysis accuracy can be promoted).

5.2.3. Application Popularity

At present, most of the datasets used in QML research are classical ones on
which the supremacy of quantum computing cannot be really achieved, as indicated by
Kiibler et al. in [119]. Therefore, for the current era in which quantum datasets are still very
scarce [120,121], most quantum algorithms can only serve as alternatives to mainstream
classical algorithms. If we enter the quantum information era in the future, the various
detection and sensing techniques might directly acquire, store, and transmit mass data
in quantum form. At that time, quantum algorithms will have great potential to replace
classical ones and own much broader application popularity.
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6. Conclusions

As an intersection of quantum computing and machine learning, QML has gradually
flourished in the past decade. Despite a relatively late start, China’s QML research has
developed rapidly in recent years, and many excellent achievements have emerged. This
article provides an overview of the QML development in China. As far as we know;, this is the
first comprehensive review that focuses on QML studies within Chinese research institutions.

Based on the number of published papers, we divide the development of QML research
in China into three stages, i.e., the preliminary stage, transition stage, and explosion stage.
In the developing process, the model designing mode has gradually shifted from the
quantum replacement mode to the quantum improvement mode, and the learning task
type has gradually shifted from unsupervised learning to supervised learning.

Among China’s QML studies, popular algorithms include QSVM, QKNN, and various
kinds of QNNs. The applications of QML mainly involve the fields of computer vision,
cybersecurity, physical science, and natural language processing. By systematically in-
specting the creative QML studies, we have found that there are three major innovation
aspects, namely, algorithm /model design, strategy selection, and application scenario.
Through these innovations, excellent model performance can be acquired. It is worth
noting that in China’s cutting-edge work, the overall performance of the proposed QML
models has reached worldwide advanced levels, and some models can even achieve top-tier
performance among all the analogous models reported globally.

Finally, we have discussed the major challenges in current QML research and offered
some prospects for the future development. Although focusing on the QML work within
China, this review is expected to provide inspiration for both China’s and global QML-
domain progress.
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Glossary

Adam adaptive moment estimation

APDM  amplitude-phase decomposition measurement
AS angle superposition

CNN convolutional neural network

CSANN classic self-attention neural network

DA domain adaptation

DNN deep-learning neural network

DSQML  distributed secure quantum machine learning
FS feature selection

HONN  hybrid quantum neural network

KNN k-nearest neighbor

LIBS laser-induced breakdown spectroscopy
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LLE
MSFF
NN
NPE
PCA
PQC
PSO
QAB
QAE
QAOA
QCCA
QCCNN
QCL
QCN
QCNN
QDAC
QDNN
QDTL
QEL
QFS
QGAN
QHAC
QKE
QKMM
QKNN
QLDA
QLLE
QLSTM
QMCC
QMI
QNN
QNPE
QPCA
QPLS
QSAM
QSANN
QsC
QSMM
QSs
QSVM
QSVR
QTN
RQC
SEQNN
sQC
SVR
TN
VCNN
VQA
VQC
VSQL

locally linear embedding

multi-scale feature fusion

neural network

neighborhood preserving embedding
principal component analysis

parameterized quantum circuit

particle swarm optimization

quantum AdaBoost

quantum AutoEncoder

quantum approximate optimization algorithm
quantum canonical correlation analysis
hybrid quantum-—classical convolutional neural network
quantum continual learning

quantum capsule network

quantum convolutional neural network
quantum domain adaptation

quantum deep-learning neural network
quantum deep transfer learning

quantum ensemble classifier

quantum feature selection

quantum generative adversarial network
quantum hierarchical agglomerative clustering
quantum kernel estimator

quantum k-means based on Manhattan distance
quantum k-nearest neighbor

quantum linear discriminant analysis
quantum locally linear embedding

quantum long short-term memory

quantum multi-classification classifier
quantum matrix inversion

quantum neural network

quantum neighborhood preserving embedding
quantum principal component analysis
quantum partial least squares

quantum self-attention model

quantum self-attention neural network
quantum state clustering

quantum support matrix machines

quantum state superposition

quantum support vector machine

quantum support vector regression

quantum tensor network

re-uploading quantum classifier
superposition-enhanced quantum neural network
succinct quantum classification

support vector regression

tensor network

variational convolutional neural network
variational quantum algorithms

variational quantum circuit

variational shadow quantum learning
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