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Abstract: Quantum machine learning (QML) is an emerging discipline that combines

quantum computing and machine learning and is able to exhibit exponential superiority

over classical machine learning regarding computing speed on specific problems. This

article provides a comprehensive review of the QML research in China. The QML develop-

ment in China is presented in terms of research ideas and tasks, and the algorithms and

application fields are sorted out. We have also highlighted some typical creative studies

and illuminated their innovation points. Furthermore, the current challenges and future

prospects are discussed. This review may provide inspiration for both China’s and global

QML-domain progress.

Keywords: quantum computing; quantum machine learning; quantum deep learning;

quantum neural network

1. Introduction

As a major area in artificial intelligence, machine learning has become a hotspot

technique in both academic and industrial fields, extensively applied in quite a few areas

including image recognition, data mining, medical care, natural language processing,

and so forth [1]. In machine learning algorithms, data are often stored in matrices [2].

However, with the exponential growth of the amount of data and the increase in algorithm

model volume (e.g., in the popular GPT-4 model, there are 1.76 trillion parameters to

be trained [3,4]), the processing efficiency of classical machine learning rapidly declines

since conventional computers require a great amount of time and computing resources

to perform matrix operations [1,2]. In the future era of data explosion, classical machine

learning algorithms will face more severe challenges in processing massive data, and the

utilization of quantum computing is a highly anticipated solution.

Quantum computing is a methodology of computation that makes use of quantum

phenomena in physics [5]. The initial idea originated in 1982 when physicist Feynman

pointed out that quantum computers might have advantages that classical computers could

not parallel in solving specific problems [6]. These advantages are achieved based on

quantum properties, such as quantum superposition and quantum entanglement [5]. They

make quantum computers superior to classical computers in terms of computation cost,
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and theoretically quantum computing can solve extremely complex problems that classical

computing is impossibly able to deal with [7]. In the 1990s, Shor (from Bell Laboratory)

proposed an integer factorization algorithm based on quantum computing, which has an

exponential advantage compared to classical factorization algorithms [8]; Grover (also

from Bell Laboratory) proposed a quantum search algorithm that can realize square-level

acceleration compared with classical search algorithm [9]. In 2008, Harrow et al. proposed

the well-known HHL algorithm for solving linear systems of equations, which achieved

exponential acceleration against classical solutions [10]. These early achievements have

laid the foundation for the development of quantum computing.

Quantum machine learning (QML) is a technique that combines the advantages of

quantum computing and machine learning, aiming to solve specific difficult problems

in classical machine learning based on quantum computing methods [11–14]. The fun-

damental idea of QML is to utilize quantum advantages, i.e., the superposition and/or

entanglement of quantum bits (qubits), to accelerate the training process of machine

learning [5]. A classical bit can only be in one of two binary states (0 or 1), while a qubit

can stand in a superposition state of |0 ⟩ and |1 ⟩. Therefore, the quantum superposition

property can provide QML algorithms with extraordinary parallel processing capabilities

and, hence, realize exponential acceleration compared to classical algorithms [15]. As to

the quantum entanglement property, it can help us generate qubits in entangled states,

such as Bell states. Bell states are a set of maximally entangled states in quantum me-

chanics that describe two-qubit systems. The maximum entanglement orthogonal basis

of a two-qubit system is composed of four Bell states, with their mathematical expres-

sions being
∣

∣Φ
±〉 = (|00⟩ ± |11⟩ )/

√
2 and

∣

∣Ψ
±〉 = (|01⟩ ± |10⟩ )/

√
2. For two qubits

in Bell states, measuring the state of one qubit can instantly determine the state of the other,

hence realizing the non-local correlation. This property can be beneficial to simplifying the

construction two-qubit operation gate, such as controlled NOT (CNOT) gate [16]. There-

fore, the quantum entanglement property can realize more complicated computational

operations for various QML applications, such as constructing loss functions through entan-

glement effects [17], establishing quantum teleportation protocols for secure QML [18], and

implementing quantum competition based on entanglement measures [19,20]. The basic

principles of computational acceleration brought by quantum superposition and quantum

entanglement are illustrated in Figure 1.
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Figure 1. Schematic diagram of the principle of computational acceleration based on quantum

superposition and quantum entanglement. Quantum superposition enables N qubits to represent 2N

superposition states, hence allowing quantum computing parallelism (i.e., one quantum operation

is equivalent to 2N classical operations). Quantum entanglement enables the change in one of two

entangled qubits (such as qubits in Bell states) to synchronously affect the other qubit, hence allowing

for more complicated interactions and operations.
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Quantum computing may help classical machine learning at various stages, such

as data collection/preprocessing, feature engineering, model training, and model val-

idation/optimization. For data collection/preprocessing, assuming each sample is an

N-dimensional data, in the classical framework, one cannot directly alter the data dimen-

sionality. In quantum computing, however, one may employ quantum state encoding

techniques like amplitude encoding to map such data, requiring only log2 N qubits to rep-

resent the N-dimensional data. This exponential data compression can drastically reduce

computational cost.

As to feature engineering, classical approaches like principal component analysis

(PCA) rely on covariance matrix calculation and eigenvalue decomposition, with the time

complexity scaling as O
(

N3
)

, meaning that the computational time increases drastically

with data dimensionality. In contrast, quantum PCA (QPCA) can theoretically leverage

quantum state preparation and quantum phase estimation to achieve a time complexity of

O(poly(log N)) [21], significantly accelerating the feature dimensionality reduction.

Regarding model training, taking neural network methodology as an example, classi-

cal training methods such as stochastic gradient descent compute gradients for each weight

parameter sequentially. For deep learning networks with billions of weight parameters, the

training can be dramatically time-consuming. Quantum computing can address this issue

by carrying out parallel computing to compute gradients for all parameters simultaneously

(e.g., parameterized quantum circuits [22]) or by improving parameter updating strategy

to compute the best updating directions in the geometric structure of quantum state space

(e.g., quantum natural gradient [23]).

For model validation, classical approaches need to validate multiple dataset partition

schemes one by one, whereas quantum methods can leverage quantum superposition to

validate multiple schemes in parallel. With regard to model optimization, classical methods

need to attempt a great many hyperparameter combinations to search the optimal combina-

tion set. By employing quantum searching algorithms, such as quantum annealing [24] and

Grover’s algorithm [9], the required number of searching iterations can be considerably

reduced, and the computation time can be significantly saved.

In recent years, the quantum science and technology in China has flourished, with

a constant stream of high-level scientific and technological achievements. For example,

Pan’s team has made important progress in quantum computing fields such as quantum

computational chemistry [25] and quantum walk [26], as well as in ultra-distant satellite

communication based on quantum key distribution by collaborating with Wang’s team [27,28].

These achievements have made significant contributions not only to the quantum field in

China but also the whole quantum realm throughout the world. As one of the leading

countries in the quantum field, China has provided fertile soil for the growth of quantum

technology in recent years. Therefore, although QML research did not start very early in

China, Chinese researchers have made quite a lot achievements in QML domain in the past a

few years, and QML is still in a phase of vigorous development in China at present.

In this article, we have reviewed the development of QML research in China. The scope

is limited to the achievements of Chinese institutions, while those studies conducted by

Chinese academicians in foreign institutions are not included. To the best of our knowledge,

this is the first article that provides a comprehensive overview of China’s QML research.

The structure of the following parts is arranged as below. Section 2 presents the

development history and current research status of QML research in China. Section 3

displays the QML algorithms and their application areas. Section 4 highlights some typical

creative studies and analyzes their innovation aspects from different perspectives. Section 5

discusses both the current challenges and the future prospects. Finally, Section 6 provides a

conclusion of this article.
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2. QML Development History and Current Status in China

In this section, we discuss the historical development of QML in China, with a strong

focus on the current research landscape.

2.1. Development History

Due to the lack of a clear division of China’s QML development period, in this article,

we have proposed a rough partition scheme that divides China’s QML research into three

stages, namely, the preliminary stage, transition stage, and explosion stage. The partition

scheme is formulated based on the number of QML-related paper publications.

We have conducted the searching and selection of paper publications based on the

following methodology, referring to that adopted in [7]. Firstly, we choose two academic

searching platforms, i.e., Web of Science (WOS) and China National Knowledge Infrastruc-

ture (CNKI), as our basic literature source. Secondly, we set the searching keywords as

“quantum machine learning” OR “quantum deep learning” OR “quantum neural network”.

Thirdly, we filter the publication results according to these criteria: (1) the contributing

institutions of the publication must include at least one Chinese institution; (2) the publica-

tion must be a research paper (excluding review papers, comment papers, dissertations,

patents, etc.); (3) the publication must be written in English. After the above filtering, we

finally obtain 359 appropriate paper publications, with the specific number achieved via

manual counting.

Although the publication data source platforms in this work are WOS and CNKI, note

that there are also some other good literature data platforms, such as Dimension.ai and

PubMed. Meanwhile, it is worth emphasizing that there may exist discrepancies in the

publication numbers between different platforms. For example, when we use the keyword

“quantum machine learning” for literature searching, different platforms can yield quite

different numbers of results: Dimension.ai yields about 498,000 results, WOS about 14,000,

PubMed about 25,000, and CNKI about 1300, respectively. In fact, since these platforms

may employ a fuzzy search mechanism, many results are actually not highly relevant

contents. Therefore, careful manual examination and filtering are necessary for accurate

counting of publication quantity.

As shown in Figure 2a, the time before 2018 is regarded as the preliminary stage; at

that time, the cumulative number of papers is less than 30. The period from 2018 to 2021 is

defined as the transition stage; just the sum of paper numbers for 2018 and 2019 surpasses

the total number throughout the preliminary stage, with the cumulative number of papers

in the transition stage falling within the 90 to 100 range. The period starting from 2022

is considered as the explosion stage; within just three years since 2022, the number of

papers has exceeded 240, and it still keeps increasing steadily year by year. In addition

to the rough stage division, we have also counted the publication numbers in each year

(from 2005 to 2024). In Figure 2b, we illustrate the growth trend of QML-related publication

quantity over time. It can be found that the growth trend can be well fitted by an exponential

curve (red dashed line), indicating that there is an exponential growth in China’s QML-

related publications.

In the preliminary stage, researchers usually employ classical machine learning al-

gorithms as a foundation and use quantum computing in specific modules that too com-

plicated for classical computing. By such a mode of algorithm replacement, a quantum

version of a classical machine learning algorithm can be created (denoted as “quantum

replacement mode” hereinafter). Most studies in the preliminary stage were based on the

quantum replacement mode and mainly focused on unsupervised machine learning tasks.

For example, in 2017, Sheng et al. proposed a protocol for distributed secure QML, which

can be applied in the field of cybersecurity [29]; He et al. constructed two kinds of quantum
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feature selection (dimension reduction) algorithms in 2018, and square level acceleration

can be achieved compared to the corresponding classical feature selection algorithms [30].
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Figure 2. Information of China’s QML development and research papers. (a) A proposed three-stage

division of China’s QML development period based on the number of research paper publications.

(b) The growth trend of China’s QML publication quantity over time, indicating an approximate

exponential growth.

During the transition stage, researchers began to make more efforts to improve the

performance of the QML algorithms already proposed. By such a mode of algorithm

improvement, an upgraded version of a QML algorithm can be established (denoted as

“quantum improvement mode” hereinafter). Despite the fact that the quantum replacement

mode was still the mainstream (e.g., a quantum data compression algorithm based on PCA

was proposed [31]), the number of studies based on the quantum improvement mode was

gradually increasing. Meanwhile, there were more and more studies focusing on supervised

machine learning tasks. In 2020, He et al. reported two quantum locally linear embedding

(QLLE) algorithms for nonlinear dimensionality reduction on the basis of a linear algebra

procedure and variational hybrid quantum–classical procedure, respectively [32]. The linear

algebra implementation can be considered as an example of the quantum replacement mode

(replacing the classical LLE), while the variation implementation can be regarded as an

example of the quantum improvement mode (improving the linear algebra implementation

in terms of global manifold structure maintenance). Another representative instance of the

quantum improvement mode is what Wang et el. reported in 2021 as they developed a
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quantum deep transfer learning model able to achieve higher classification accuracy on

small datasets like the popular IRIS dataset than former QML models [33].

After entering the explosion stage, the quantum improvement mode gradually be-

comes the predominant direction, and most studies are oriented to supervised machine

learning tasks. In 2022, Huang et al. proposed a variational convolutional neural network

(VCNN) classification algorithm, which could achieve higher accuracy and efficiency com-

pared with other quantum neural network (QNN) algorithms [34]. In 2023, He et al. (the

same group as that in [32]) reported another work based on the linear algebra procedure

and variational hybrid quantum–classical procedure but focusing on domain adaption

(DA) classification in transfer learning, and their classifier could acquire higher accuracy

than classical DA classifier as well as two other state-of-art quantum DA classifiers [35].

Very recently, Gong et al. developed a quantum K-nearest neighbor (QKNN) classification

algorithm, which achieved higher accuracy and efficiency on the IRIS dataset than other

QKNN algorithms, and the accuracy was comparable to classical KNN algorithm [36].

In short, China’s QML research has undergone three stages, gradually shifting the model

designing mode from the quantum replacement mode to the quantum improvement mode

and meanwhile shifting the task type from unsupervised learning to supervised learning.

2.2. Current Status

At present, the QML field in China is undergoing rapid growth, with one of its remark-

able features being an increasing internationalization. This is reflected in two main aspects:

(1) the development trend of QML in China is gradually aligning with international mo-

mentum, demonstrating a high degree of consistency; (2) the overall performance of models

proposed in China’s cutting-edge QML work has reached internationally advanced levels, and

some models can even achieve top-tier performance among all similar models worldwide.

2.2.1. Development Trend

Nowadays, the global QML field primarily focuses on classification tasks, with image

classification being the most prevalent among them. Regarding the research modes, most

studies follow the quantum replacement mode, aiming to design quantum implementations

of classical machine learning algorithms. Meanwhile, there are also quite a few studies based

on the quantum improvement mode, which strive to upgrade the circuit implementations of

quantum algorithms for the improvement of the QML model performance.

As for China’s QML field, as mentioned before, the number of studies focusing on

supervised learning tasks is obviously rising nowadays. Supervised learning tasks mainly

contain classification and regression, with classification tasks being more popular currently.

Therefore, China’s QML research is aligned with the global trend in terms of the target task.

With regard to the research modes, the number of studies based on quantum improvement

is gradually surpassing that of the quantum-replacement-based studies. So, it might be

concluded that China’s QML investigation holds a leading position internationally in terms

of the research mode.

2.2.2. Model Performance

The accuracy performance of the QML models serves as an important benchmark

for assessing the sophistication of the QML research. The following examples may show-

case the advanced level of China’s QML research on the international stage. Gong et al.

developed a QKNN model based on a divide-and-conquer strategy, which achieved a clas-

sification accuracy of 97.04% on the IRIS dataset, largely outperforming the other typical

QKNN models [36]. Song et al. formulated a tensor network (TN) inspired quantum circuit

framework and, based on the framework proposed, a parallel quantum tensor network

(QTN) for multi-class classification tasks. Their method achieved an average accuracy
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of over 99% on the MNIST dataset, achieving the highest accuracy not only among all

the QTN type methods but also among all the investigated QML methods [37]. Zhang

et al. designed a quantum self-attention model (QSAM) based on variational quantum

algorithm, which demonstrated performance comparable to other state-of-the-art QSAMs

on natural language processing datasets such as Yelp, IMDb, and Amazon and obtained

higher classification accuracy than other quantum image classifiers on computer vision

datasets like MNIST and Fashion MNIST [38]. Hence, it might be concluded that China’s

cutting-edge QML models are highly sophisticated regarding performance throughout the

international QML field.

3. Algorithms and Applications

In this section, we discuss the algorithms involved in China’s QML research and

introduce the major application domains of QML algorithms.

3.1. Algorithms

Algorithms are the core component of machine learning (in the classical context),

and self-evidently they are also crucial for QML research. For the QML studies in China,

various types of algorithms have been established and employed. Most of these quantum

algorithms stem from their classical counterparts, e.g., QPCA is inspired by classical

PCA [39]; and quantum partial least squares (QPLS) is a quantum version of the classical

partial least squares (PLS) [40,41].

The quantum algorithms extensively adopted in China’s QML studies include quan-

tum neural network (QNN)-type algorithms [34,42–64], quantum support vector machine

(QSVM) algorithms [65–68], quantum K-nearest neighbor (QKNN) algorithms [36,69–71],

and so on. Among them, the QNN-type algorithms dominate in terms of the number of

papers, mainly consisting of regular QNN [42–50], quantum convolutional neural network

(QCNN) [34,51–57], quantum deep neural network (QDNN) [58–60], quantum generative

adversarial network (QGAN) [61–64], etc.

For a typical QNN algorithm, there are three main investigation aspects, which will

be elucidated below by taking QCNN as a representative example. The first aspect is the

pattern of coordination with classical computation methodology. In order to realize efficient

coordination between quantum computers and classical computers, most researchers adopt

hybrid quantum–classical network architectures [34,51,52,54,55], while there are also a

small number of studies in which the network has a principal structure of pure variational

quantum circuits and only collaborates with classical computers in the parameter optimiza-

tion part [57]. The second aspect is the approach to realize the quantization of network

architecture. In some studies, researchers have developed efficient quantum convolutional

layers that can significantly decrease the computational complexity and, hence, reduce

the computational resources [51,53,54]; Cheng et al. have not only designed quantum

convolutional layers in PQC but also combined classical fully connected layers with PQC

to develop hybrid quantum–classical fully connected layers [52]; Wei et al. have developed

a fully quantum version of the classical CNN structure that including convolutional layers,

pooling layers, and fully connected layers [55]. The third aspect is the quantum state

encoding method. Some studies have employed amplitude encoding [51,53], some studies

have employed angle encoding [52], and Gong et al. have developed a tree-structured

hybrid amplitude encoding scheme by integrating the advantages of amplitude encoding

and angle encoding, hence providing flexibility and stability in adjusting the width and the

depth of the quantum circuit [57].

In addition to the hotspot algorithms like QNN, a few studies utilizing less popular

algorithms have also achieved good results. Zhang et al. improved a quantum support
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matrix machine (QSMM) algorithm by leveraging a quantum matrix inversion (QMI) tech-

nique. Compared to a former version of QSMM, the dependence on the precision of the

upgraded QSMM is exponentially improved, showing strong potential for applications

in image classification [72]. Cao et al. proposed a linear-layer-enhanced quantum long

short-term memory (QLSTM) model, which adopts the linear layers before and after the

variational quantum circuit (VQC) of QLSTM to extract features. This model can effectively

reduce the number of qubits required while amplifying quantum advantages, showing

promising prospects for price forecast applications [73]. Other quantum algorithms include

quantum canonical correlation analysis (QCCA), QSAM, quantum autoencoder (QAE),

quantum multi-classification classifier (QMCC), quantum continual learning (QCL), quan-

tum capsule network (QCN), variational shadow quantum learning (VSQL), quantum state

clustering (QSC), quantum linear discriminant analysis (QLDA), quantum hierarchical

agglomerative clustering (QHAC), quantum support vector regression (QSVR), quantum

neighborhood preserving embedding (QNPE), and so on [74–90].

All these QML algorithms can generally be categorized into supervised learning

and unsupervised learning based on their learning modes. Supervised learning includes

classification and regression tasks, while unsupervised learning mainly involves tasks such

as clustering, dimensionality reduction, data generation, and correlation analysis. The

different types of machine learning tasks, the corresponding QML algorithms, and the

associated references are summarized in Table 1.

Table 1. The different types of machine learning tasks, the corresponding QML algorithms, and the

associated references.

Learning Mode Task Algorithm References

Supervised

Classification

QNN [42–50]
QCNN [34,51–57]
QSVM [65–68]
QKNN [36,69–71]
QDNN [58–60]
QTN [37,77]
QDA [35]

QSAM [38]
QMCC [78]

QEL [79]
QCL [80]
SQC [81]
QCN [82]
RQC [83]

QDTL [33]
QSMM [72]

QAB [84]
VSQL [85]

Regression

QPLS [40,41]
QCNN [57]
QLSTM [73]
QSVR [89]

Unsupervised

Clustering
QKMM [90]

QSC [86]
QHAC [87]

Dimensionality
reduction

QAE [75,76]
QNPE [91]
QFS [30]

QLLE [32]
QPCA [41]
QLDA [88]

Data generation QGAN [61–64]
Correlation analysis QCCA [74]
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3.2. Applications

The application fields of China’s QML research are diverse, with the several popular

areas including computer vision, cybersecurity, physical science, and natural language

processing, as shown in Figure 3.

                     
 

   
   

 

   
   
   
   

 

 
   

   
   

 
 

   
   
   
   
   
   

       
       

   

                         
                   

           

 

                         
               

     

                         
                       

                     
                 

                     
                           
                     

Figure 3. Application fields involved in China’s QML research, such as computer

vision [38,42,51,52,54,55,58–60], cybersecurity [29,45,50], physical science [49,67,92–94], and natu-

ral language processing [38,53].

In the field of computer vision, the relevant studies mainly cover applications like

image processing, object detection, semantic segmentation, etc. For example, Bai and Hu

proposed two image superposition methods, i.e., quantum state superposition and angle

superposition. The superposition-enhanced quantum neural network (SEQNN) based

on angle superposition could outperform two other similar QML models in classification

accuracy on the MNIST dataset [42]; Wang et al. proposed a quantum–classical hybrid deep

neural network (QHDNN) model for image anomaly detection. They explored multiple

quantum layer architectures and designed a VQC-based QHDNN solution, which could

surpass the classical counterpart on both the MNIST and Fashion-MNIST datasets [58].

With regard to cybersecurity, intrusion detection for preventing network attacks has

been a key research direction. For example, a protocol for distributed secure QML was

designed to detect eavesdroppers attempting to intercept or interfere with the learning

process [29]; Gong’s team developed two intrusion detection systems in succession based

on QNN [50] and QCNN [45], respectively.

Some representative QML applications in the physics field include Liang et al.’s work

on the ground-state preparation of a Hamiltonian system [92]; Wang et al.’s investiga-

tion into the role of entanglement in QML [93]; and Liu et al.’s study on quantum state

tomography [94].

In the area of natural language processing, the relevant studies mainly cover appli-

cations like text classification, speech recognition, machine translation, etc. For instance,

Zhang et al. proposed a novel QSAM based on variational quantum algorithms for binary

and multiple classification on natural language processing datasets, and their model could

outperform its classical counterpart and was as good as the state-of-art QSAM [38]; Chen

et al. developed a novel QCNN model based on multi-scale feature fusion for text classifi-

cation, and their model was able to surpass a wide range of state-of-art QNN models [53].
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4. Innovation Aspect Analysis

Based on the compilation and categorization of the various creative QML studies

in China, it can be found that there are mainly three innovation aspects, namely, algo-

rithm/model design, strategy selection, and application scenario.

4.1. Algorithm/Model Design

Innovation in model design refers to either the proposal of originally innovative QML

algorithms or the development of new frameworks or structural components for a certain

QML algorithm model. These new algorithms/models can outperform the conventional

ones in terms of computation accuracy and/or efficiency. Some relevant research cases are

shown below.

In an original innovation work, Hou et al. first proposed a QPLS regression algorithm

as a quantum version of classical PLS algorithm. By investigating time and space complexity,

they have theoretically demonstrated that the QPLS can realize exponential speed-ups over

classical PLS on the independent variable dimension, the dependent variable dimension,

and the number of variables [41].

Song et al. proposed a computationally resource-efficient QCNN model, which em-

ployed amplitude encoding and quantum alternating operator ansatz to construct the

quantum convolutional layer. The complexity of either the forward or the backward prop-

agation process in such a quantum convolutional layer is much lower than that of the

convolutional layer in a classical CNN model, and hence the computational resources

required for the convolutional layer can be significantly reduced [51].

In the QSAM model proposed in the aforementioned study [38], the three important

model components, namely, query, key, and value, were obtained by a method based on

amplitude phase decomposition measurement. This new framework can lead to fewer

parameters in the model while achieving high performance on different datasets. Upon

two natural language processing datasets, Yelp and IMDb, this new QSAM model can

acquire accuracy values of 91.03% and 88.35%, surpassing both classical self-attention

neural network and quantum self-attention neural network models. Upon the MNIST

dataset, the new QSAM model can acquire a classification accuracy of 82.22%, higher than

that of a QCNN model.

Also, in the field of natural language processing, the authors of the work [53] men-

tioned above designed a novel quantum depth-wise convolution structure in their QCNN

model. The new QCNN model can integrate word-level and sentence-level features while

reducing the number of parameters in the model and the computational complexity. On

the RP dataset, this QCNN model achieved an accuracy of 96.77%, significantly higher than

that of a normal QSANN model.

Li et al. proposed a novel hybrid quantum classical framework called variational

shadow quantum learning (VSQL). This framework used variational shadow quantum

circuits to extract classical features in a convolution way and then utilized a fully connected

neural network to complete classification tasks. This method can greatly reduce the number

of parameters to facilitate the training process of quantum circuits. For a classification

testing on the MNIST dataset, a single-layer classical neural network obtained an accuracy

of 86.36% with nearly 8000 parameters, while the VSQL model achieved an accuracy of

87.39% with only about 900 parameters [85].

4.2. Strategy Selection

Innovation in strategy selection refers to the introduction of computational strategies

that have not been previously applied to a certain QML algorithm. By selecting appropriate
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computational strategies and integrating them into QML models, researchers can acquire

new QML models with better performance. A few study examples are presented as follows.

Li et al. creatively applied particle swarm optimization (PSO) algorithm for the training

of QNN models. As a collective intelligence-based optimization strategy, PSO was able

to outperform conventional gradient descent-based optimization strategy (such as Adam)

when dealing with certain problems such as 2D Hamiltonian ground state solution and

many-body system quantum phase classification in terms of fewer optimization iterations

and higher classification accuracy [44].

For the SEQNN model developed in the aforementioned work [42], the innovative

scheme was based on the combination of superposition strategy and one-vs.-all strategy. For

the multi-class image classification task on the MNIST dataset, the SEQNN model achieved

an accuracy of 87.56%, higher than other QML models like HQNN-Quanv and QNet.

Lin et al. first applied game theory strategies to privacy protection in QML and

proposed a privacy game model of user–server–attacker in a hybrid classical quantum back-

propagation neural network. Unlike previous studies, this model can set game strategies

based on users’ privacy requirements in practical applications to maximize the interests of

users with different roles [46].

4.3. Application Scenario

Innovation in application scenarios refers to the effective application of a certain type

of QML algorithm to a new scenario (“effective” means that the application should achieve

good performance). Two typical research instances are introduced as follows.

Jing et al. proposed two types of quantum convolutional circuits for classifying

images with RGB three-color channels. Many previous studies have adopted quantum

convolution circuits for grayscale image classification, while this is the first work that

applies quantum convolutional circuits in the scenario of RGB image classification and

achieves effective results. The designed quantum convolutional circuits were able to achieve

higher classification accuracy on the CIFAR-10-small dataset compared to classical CNN

models [54].

For the aforementioned study [73], it is not the research that originally proposed

QLSTM algorithm, but it is the first research that applies QLSTM in the scenario of carbon

price forecast. Additionally, the designed linear-layer-enhanced scheme enabled their

QLSTM model to achieve as good a performance as the classical LSTM model on the

European Union carbon market price dataset.

In Table 2, we summarize the typical research examples of the three innovation aspects

mentioned above and provide model performance comparison regarding accuracy on

various benchmark datasets.
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Table 2. Typical research examples of the three innovation aspects and accuracy comparison of the

relevant models.

Innovation Datasets Algorithms Accuracy References

Algorithm/
modeldesign

Yelp
CSANN 83.11%

[38]

QSANN 90.09%
QSAM 91.03%

IMDb

CSANN 79.67%
QSANN 87.28%
QSAM 88.35%

MNIST
QCNN 74.30%
QSAM 82.22%

RP
QSANN 67.74%

[53]
QNN-MSFF 96.77%

MNIST
NN 86.36%

[85]
VSQL 87.39%

Strategy
selection

MNIST

HQNN-Quanv 67.00%
[42]QNet 81.00%

SEQNN 87.56%

Quantumphase
QCNN-Adam 53.00%

[44]
QCNN-PSO 84.00%

Application
scenario

CIFAR-10-
small

CNN 95.83%
[54]

HQconv 99.45%

5. Challenges and Prospects

In the QML field, many creative studies have been carried out, and significant achieve-

ments have been made. At the same time, however, there are also quite a few unresolved

problems and thorny challenges. In this section, we will discuss the current challenges

faced by QML researchers and provide some prospects for the future development.

5.1. Challenges

The current challenges in QML mainly involve noise interference, hardware limitation, barren

plateaus, catastrophic forgetting, circuit structure optimization, and input–output bottleneck.

5.1.1. Noise Interference

To genuinely implement QML algorithms, real quantum computing devices are indis-

pensable despite the existence of classical platforms for simulating quantum computing. A

core technology of quantum computing devices is the preparation of qubits. At present,

there are several kinds of physical qubits, mainly including semiconductor quantum dot

qubits [95,96], spin qubit [97], superconducting qubits [98], trapped-ion qubits [99], and

photonic qubits [100], named after the preparation methods.

For quantum computation, we are now in a so-called NISQ era (noisy intermediate-

scale quantum) [101]. In quantum systems, noise refers to the interaction of qubits with

uncontrolled degrees of freedom in the environment. There are different kinds of quantum

noises, mainly including depolarizing noise, amplitude damping noise, phase damping

noise, bit-flip noise, phase-flip noise, and others. Taking depolarizing noise as an example,

its mathematical representation is ϵ(ρ) = (1 − p)ρ + pI/2n, where ϵ denotes the noise

channel, ρ is the density matrix, p is the probabilistic error rate that depends on both the

device and the circuit, and n is the number of qubits [102]. This noise can cause qubits to

decohere, transitioning from superposition/entanglement states to classical mixed states,

thus resulting in quantum information loss.

In this era, quantum devices are inevitably affected by noise, hence bringing negative

impacts to QML models [34,40,42,78]. To address the issue of noise interference, some
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feasible approaches include developing noise suppression techniques, quantum error

correction techniques, and models with noise-resistant quantum circuits [89,103]. Taking

noise-resistant quantum circuits as an example, the VCNN model designed in [34] exhibited

excellent noise resistance since a new hybrid quantum–classical circuit framework was

formulated; the VSQL model designed in [85] based on a variational shadow quantum

circuit could introduce less noise by using fewer quantum gates.

5.1.2. Hardware Limitation

In the current NISQ era, quantum devices only allow the employment of a small

number of qubits to represent data and perform simple quantum calculations. Hence, it is

challenging to encode large-scale data into quantum state data and execute QML algorithms

in quantum computers [34,38,60]. Therefore, it is necessary to implement feature extraction

or other kinds of dimension reduction operations on high-dimensional datasets before

executing the algorithms [65]. For instance, Wu et al. proposed a scalable QNN system

based on the collaborative utilization of multiple small quantum devices. The multiple

quantum devices play the roles of quantum feature extractors and are independent of each

other. Hence, researchers can flexibly combine quantum devices of different sizes to extract

local features in a more efficiently way [43].

5.1.3. Barren Plateaus

The so-called “barren plateaus” problem in QML refers to the phenomenon that in

quantum circuits with randomly initialized parameters, the gradient of the objective loss

function decreases exponentially with the increase in qubit number [50,104]. The vanishing

of gradient means the QML model becomes frozen and the optimization training process

can no longer continue. Although it has been demonstrated that the barren plateau problem

would not appear in QCNN models [105], this problem widely exists in those QNNs

without convolutional structures [49,82]. Some studies have tried to provide solutions by

designing special algorithm models, such as variational shadow quantum circuits [85],

QGAN model based on Rényi divergences [62], and variational QNN model based on PSO

strategy [44].

5.1.4. Catastrophic Forgetting

Catastrophic forgetting is a common problem in machine learning, especially for deep

learning neural network models. During the optimization process of a neural network, the

model may quickly forget the already-learned knowledge in the updating of neural network

weights. In application scenarios that require incremental learning or continual learning

to accumulate long-term knowledge, this problem will bring significant negative impacts

to the models. In QML, the catastrophic forgetting problems also exist, and a few studies

aiming to address this issue have been carried out. As an instance, Situ et al. designed a

quantum continual learning scheme based on gradient episodic memory strategy that is

able to well overcome catastrophic forgetting and realize knowledge backward transfer for

quantum state classification tasks [80].

5.1.5. Circuit Structure Optimization

For QML models based on quantum variational algorithms, the designed architecture

of the parameterized quantum circuit is crucial to the model performance [35,83]. At

present, it is still a challenging problem to optimize the quantum circuit structure. Some

researchers have tried to develop an elaborate variational layer to replace the normal

variational layer for better model performance, such as the strongly entangled controlled-Z

variational layer in the linear-layer-enhanced QLSTM model described in [73].
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5.1.6. Input–Output Bottleneck

The input–output bottleneck is a common problem for those QML algorithms that

deal with classical data. For input, most QML algorithms need to encode classical input

data into quantum states in advance; and for output, most algorithms can only offer the

quantum states corresponding to the classical solution, unable to directly provide the

solution itself. These non-computing processes will consume additional time and cancel

out the acceleration effect of quantum algorithms. Hence, it is worth exploring how to

design algorithms to break through the input–output bottlenecks. As a research example,

Situ et al. proposed a QGAN model with a special quantum classical hybrid architecture,

which was able to directly receive classical inputs and output classical solutions [63].

5.1.7. Unsatisfactory Performance and Fair Comparisons

While QML research continues to evolve at an exciting pace, current QML algorithms

may sometimes underperform on basic machine learning tasks. In [106], Raubitzek and

Mallinger compared the performance of two quantum algorithms, i.e., VQC and quantum

kernel estimator (QKE), with various classical methods, i.e., LASSO/ridge, multilayer

perceptron, support vector machines, and gradient-boosting machines, on six benchmark

classification datasets and two artificially generated classification datasets. It has been

found that the aforementioned QML models currently cannot outperform properly trained

and/or sophisticated classical machine learning models in terms of accuracy and runtime

performance. Furthermore, they have noted that challenges related to “fair comparisons”

may exist in QML model design. Specifically, when constructing and training classical

machine learning models, some researchers may not have used randomized search cross-

validation to fully optimize the hyperparameters. Therefore, the performance of classical

machine learning models may seem relatively poor, and hence the significance of quantum

supremacy is likely to be overstated.

5.2. Prospects

The future development of the QML field can be roughly divided into two stages.

In the near future, we may have the opportunity to witness the transition of QML from

theoretical research to practical applications and from specific-problem-oriented to general-

problem-oriented. As for the distant future, we may enter an era of quantum data, and,

at that time, QML methods would comprehensively replace classical machine learning

methods and become mainstream solutions.

5.2.1. Practical Applications

At present, most QML studies are theoretical analysis of algorithms, and the numer-

ical experiments are only conducted on a few standard datasets (e.g., MNIST, IRIS, etc.).

However, there is hardly research that tests the performance of the QML algorithms on

complicated real-world datasets. In order to enhance the practical value of QML algorithms,

we need to make improvements in both hardware and software aspects. As for hardware, it

is necessary to address the technical issues of how to increase effective qubits in the system

and reduce noise interference. Regarding software, it is important to design better core

algorithms and/or quantum circuit structures to alleviate problems such as barren plateaus,

catastrophic forgetting, and so on.

5.2.2. General Problems

For quantum computing, many current studies are aimed at a few specific quantum-

related problems rather than facing general scientific or engineering problems, both in

China and internationally. For example, Pan’s team has made use of quantum computing
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in molecule ground-state energy solution [25], sequential multiphoton entanglement gen-

eration [107], etc.; the Google AI team has utilized quantum computing in isomerization

reaction Hartree–Fock simulation [108], topologically ordered state realization [109], and

so forth.

Specifically for QML research, as stated above, most studies are limited to a few certain

fields, such as physical science and image processing, and the numerical experiments are

usually conducted on special standard datasets. In the future, QML or other quantum com-

puting algorithms may be able to deal with more general problems in various real-world

scenarios and play a broader role in promoting the progress of science and technology.

Here, we would take another important China’s national strategic area outside of

quantum computing, namely, lunar and planetary exploration, as an example to make

further descriptions. In China’s Tianwen-1 Mars exploration mission, a payload on Zhurong

Mars rover called MarSCoDe has adopted laser-induced breakdown spectroscopy (LIBS) to

detect and analyze the chemical composition of the substances on Martian surface [110].

The LIBS spectrum is a kind of high-dimensional data, e.g., each MarSCoDe LIBS spectrum

contains over 5000 pixel data points [111]. Additionally, to promote the accuracy of LIBS

analysis, it is helpful to integrate other relevant physical parameters into the chemometrics

model, such as the plasma temperature and density, the images of plasma, the images of

laser ablation crater, and so on [112,113]. Such data fusion strategies would be beneficial for

relieving common problems in LIBS detection, including matrix effects, spectral fluctuation

effect, varying-distance effect, dusty surface effect, etc. [114,115]. Furthermore, the joint

use of data from different detection techniques is another trend, e.g., combining LIBS and

Raman spectroscopy [116], combining LIBS and remote sensing data [117], etc. These data

fusion strategies can improve analytical accuracy, while they would also lead to drastic

increase in data dimensionality and volume. For the current data processing scheme (i.e.,

the on-orbit payloads transmit data back to the Earth laboratory, and the analysts perform

subsequent processing in the laboratory), classical computing methodology can meet the

requirement of computing speed. However, in application scenes requiring real-time

mass data processing (e.g., China’s future manned lunar landing mission [118]), classical

computing may be hardly competent, and quantum computing may play a shining role

at that time. In fact, besides constructing QML models able to efficiently analyze high-

dimensional LIBS data and/or different kinds of fused data, quantum computing may also

provide key supports for the numerical simulation of laser–plasma evolution dynamics

(so that underlying mechanisms of LIBS processes can be better understood and spectral

quality can be improved) and for the accurate characterization of LIBS spectral feature

differences between Earth lab data and Mars in situ data (so that transfer learning technique

can be better utilized and data analysis accuracy can be promoted).

5.2.3. Application Popularity

At present, most of the datasets used in QML research are classical ones on

which the supremacy of quantum computing cannot be really achieved, as indicated by

Kübler et al. in [119]. Therefore, for the current era in which quantum datasets are still very

scarce [120,121], most quantum algorithms can only serve as alternatives to mainstream

classical algorithms. If we enter the quantum information era in the future, the various

detection and sensing techniques might directly acquire, store, and transmit mass data

in quantum form. At that time, quantum algorithms will have great potential to replace

classical ones and own much broader application popularity.
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6. Conclusions

As an intersection of quantum computing and machine learning, QML has gradually

flourished in the past decade. Despite a relatively late start, China’s QML research has

developed rapidly in recent years, and many excellent achievements have emerged. This

article provides an overview of the QML development in China. As far as we know, this is the

first comprehensive review that focuses on QML studies within Chinese research institutions.

Based on the number of published papers, we divide the development of QML research

in China into three stages, i.e., the preliminary stage, transition stage, and explosion stage.

In the developing process, the model designing mode has gradually shifted from the

quantum replacement mode to the quantum improvement mode, and the learning task

type has gradually shifted from unsupervised learning to supervised learning.

Among China’s QML studies, popular algorithms include QSVM, QKNN, and various

kinds of QNNs. The applications of QML mainly involve the fields of computer vision,

cybersecurity, physical science, and natural language processing. By systematically in-

specting the creative QML studies, we have found that there are three major innovation

aspects, namely, algorithm/model design, strategy selection, and application scenario.

Through these innovations, excellent model performance can be acquired. It is worth

noting that in China’s cutting-edge work, the overall performance of the proposed QML

models has reached worldwide advanced levels, and some models can even achieve top-tier

performance among all the analogous models reported globally.

Finally, we have discussed the major challenges in current QML research and offered

some prospects for the future development. Although focusing on the QML work within

China, this review is expected to provide inspiration for both China’s and global QML-

domain progress.
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Glossary

Adam adaptive moment estimation

APDM amplitude-phase decomposition measurement

AS angle superposition

CNN convolutional neural network

CSANN classic self-attention neural network

DA domain adaptation

DNN deep-learning neural network

DSQML distributed secure quantum machine learning

FS feature selection

HQNN hybrid quantum neural network

KNN k-nearest neighbor

LIBS laser-induced breakdown spectroscopy
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LLE locally linear embedding

MSFF multi-scale feature fusion

NN neural network

NPE neighborhood preserving embedding

PCA principal component analysis

PQC parameterized quantum circuit

PSO particle swarm optimization

QAB quantum AdaBoost

QAE quantum AutoEncoder

QAOA quantum approximate optimization algorithm

QCCA quantum canonical correlation analysis

QCCNN hybrid quantum–classical convolutional neural network

QCL quantum continual learning

QCN quantum capsule network

QCNN quantum convolutional neural network

QDAC quantum domain adaptation

QDNN quantum deep-learning neural network

QDTL quantum deep transfer learning

QEL quantum ensemble classifier

QFS quantum feature selection

QGAN quantum generative adversarial network

QHAC quantum hierarchical agglomerative clustering

QKE quantum kernel estimator

QKMM quantum k-means based on Manhattan distance

QKNN quantum k-nearest neighbor

QLDA quantum linear discriminant analysis

QLLE quantum locally linear embedding

QLSTM quantum long short-term memory

QMCC quantum multi-classification classifier

QMI quantum matrix inversion

QNN quantum neural network

QNPE quantum neighborhood preserving embedding

QPCA quantum principal component analysis

QPLS quantum partial least squares

QSAM quantum self-attention model

QSANN quantum self-attention neural network

QSC quantum state clustering

QSMM quantum support matrix machines

QSS quantum state superposition

QSVM quantum support vector machine

QSVR quantum support vector regression

QTN quantum tensor network

RQC re-uploading quantum classifier

SEQNN superposition-enhanced quantum neural network

SQC succinct quantum classification

SVR support vector regression

TN tensor network

VCNN variational convolutional neural network

VQA variational quantum algorithms

VQC variational quantum circuit

VSQL variational shadow quantum learning
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