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A B S T R A C T 

Probabilistic classification of unassociated Fermi -LAT sources using machine learning methods has an implicit assumption that 
the distributions of associated and unassociated sources are the same as a function of source parameters, which is not the case 
for the Fermi -LAT catalogues. The problem of different distributions of training and testing (or target) data sets as a function of 
input features (covariates) is known as the covariate shift. In this paper, we, for the first time, quantitatively estimate the effect 
of the covariate shift on the multi-class classification of Fermi -LAT sources. We introduce sample weights proportional to the 
ratio of unassociated to associated source probability density functions so that associated sources in areas, which are densely 

populated with unassociated sources, have more weight than the sources in areas with few unassociated sources. We find that the 
covariate shift has relatively little effect on the predicted probabilities, i.e. the training can be performed either with weighted 

or with unweighted samples, which is generally expected for the covariate shift problems. The main effect of the covariate shift 
is on the estimated performance of the classification. Depending on the class, the covariate shift can lead up to 10–20 per cent 
reduction in precision and recall compared with the estimates, where the covariate shift is not taken into account. 

Key words: Machine Learning – Data Methods – Gamma Rays – Catalogues. 
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.  I N T RO D U C T I O N  

lassification of unassociated Fermi -LAT sources with machine 
earning (ML) provides an opportunity to probabilistically determine 
he classes of sources based on their gamma-ray properties, when 
irect multi-wavelength association is not known (Ackermann et al. 
012 ; Mirabal et al. 2016 ; Saz Parkinson et al. 2016 ; Lefaucheur
 Pita 2017 ; Luo et al. 2020 ; Finke, Kr ̈amer & Manconi 2021 ;
hu, Kang & Zheng 2021 ; Bhat & Malyshev 2022 ; Malyshev &
hat 2023 ). For some of the unassociated sources it may even be

mpossible to detect an associated source, e.g. for pulsars with a radio
et that is not pointing at the observer. In this case, the probabilistic
lassification of unassociated sources is the only possibility to 
etermine the likely nature of the unassociated sources and to perform 

opulation studies including the unassociated sources. 
One of the caveats of ML classification of Fermi -LAT sources is

hat the distributions of associated and unassociated sources in the 
eature space are different. For example, the fraction of associated 
ources at high latitudes is about 90 per cent, while the association
raction along the Galactic plane is about 50 per cent (Abdollahi 
t al. 2020 ). One of the reasons is that the density of gamma-
ay sources is larger along the Galactic plane (GP), while there 
s also absorption in optical and soft X-ray bands by dust and
as, respectively, which complicates the detection of possible multi- 
avelength counterparts. In Fig. 1 (upper left panel), we show the 
robability distribution functions (PDFs) for associated (‘Assoc’ 
abel) and unassociated (‘Unas’ label) sources as a function of the 
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1

‘
2

a
c

2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
ine of Galactic latitude (Glat). 1 Another example is the brightness 
f the sources: brighter sources are associated more often than the
immer ones. The distributions of the source detection significance 
or associated and unassociated sources are shown in Fig. 1 (upper
ight panel). On the lower panels of Fig. 1 , we show the variability
ndex – the significance of temporal variability, which is often 
sed for identification of counterparts based on correlated flares 
n blazars or pulsed emission in pulsars, and the log parabola of
he beta coefficient (LP beta) – the curvature of the log parabola
t of the spectrum (curved spectra are more typical for Galactic
ources, such as pulsars). We see that, generally, associated and 
nassociated sources have different distributions as a function of 
eatures. Differences in the distribution of the training set (associated 
ources) and the target set (unassociated sources) may lead to biased
redictions, such as the classes of unassociated sources, as well as
rong estimates of the classification performance (Luo et al. 2020 ;
inke et al. 2021 ; Zhu et al. 2021 ; Bhat & Malyshev 2022 ). 
The basic assumption of the ML classification is that the joint

istribution of the input features x and output features y are the same
or the training and target data sets: 

 train ( x , y ) = p target ( x , y ) , (1) 

hile, in general, a data set shift represents a situation when the
raining and target distributions are different p train ( x , y ) �= p target ( x ,
 ). 2 The joint distribution can be written as a product of conditional
 In the paper, we use the 4FGL-DR4 (Ballet et al. 2023 ) file version 
gll psc v32.fit’. 
 Often the target data set is called the test data set. In this paper, we use the 
ssociated sources both for training and for testing. In order to a v oid possible 
onfusion, we use target data set to denote unassociated sources, which has 
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Figure 1. PDFs of unassociated (‘Unas’) and associated (‘Assoc’) sources as a function of the sine of Glat (upper left panel), log of the average significance of 
the source (upper right panel), log of the variability index (lower left panel), and the curvature of the log parabola spectrum (lower right panel) in the 4FGL-DR4 
catalogue (Ballet et al. 2023 ). The weighted PDFs of associated sources (‘wAssoc’ labels) are obtained by multiplying the associated sources with a weighting 
factor proportional to the ratio of PDFs of unassociated to associated sources in Equation ( 3 ). The PDFs are modelled by Gaussian mixture models (see text for 
more details). The values in parentheses show the maximal sample weights. 
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robability times a prior distribution in two different ways: 

( x , y ) = p( y | x ) p( x ) = p( x | y ) p( y ) . (2) 

orrespondingly, there are two special cases of the data set shift
Moreno-Torres et al. 2012 ): 

(1) Covariate shift: p train ( y | x ) = p target ( y | x ), but p train ( x ) �= p target ( x ).
t represents the situation, when the conditional probability of a class
iven the input features is unchanged, but the distributions of samples
s a function of input features are different for training and target
ata sets. 
(2) Prior shift: p train ( x | y ) = p target ( x | y ), but p train ( y ) �= p target ( y ).

t represents the situation, when the prior probabilities for classes
hange (e.g. the o v erall fraction of sources is different for training
nd testing data sets), while the distribution of input variables for
ach class is unchanged. 

In this paper, we assume that the observational limitations and
ssociation biases, which lead to the differences in the distributions
f associated and unassociated sources affect all source classes in the
ame way, i.e. that the conditional probabilities remain the same as a
unction of input features: p train ( y | x ) = p target ( y | x ). In this case the data
et shift corresponds to the shift of covariates (input features): p train ( x )
ASTAI 2, 735–751 (2023) 

 different distribution from both the training and testing data sets sampled 
rom associated sources. 
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 p target ( x ). The main goal of the paper is to determine the effect of
he covariate shift on the multi-class classification of unassociated
ermi -LAT sources. 
An independent test of classification performance has been ob-

ained before by cross-matching predictions for unassociated sources
n an earlier catalogue, e.g. the Third Fermi -LAT catalogue (3FGL),
ith the associations in the newer Fourth Fermi -LAT catalogue

4FGL, Luo et al. 2020 ; Finke et al. 2021 ; Zhu et al. 2021 ; Bhat
 Malyshev 2022 ). It has been observed that the performance with

he cross-matching method is worse than the performance estimated
rom the testing data sets sampled from the associated sources and it
as argued that this decrease in performance is due to the covariate

hift (Luo et al. 2020 ; Finke et al. 2021 ; Zhu et al. 2021 ; Bhat
 Malyshe v 2022 ). Ne vertheless, there are se veral issues with the

ross-matching method, which we address in this paper: 

(1) The sample of sources in the cross-matching data set is not
epresentative of the total population of unassociated sources. 

(2) The reduction of performance can be partially due to uncer-
ainties in the reconstruction of the source parameters (e.g. Bhat &

alyshe v 2022 ). Ho we v er, such uncertainties do not lead to co variate
hift: If the intrinsic distributions of associated and unassociated
ources are the same, i.e. p train ( x ) = p target ( x ) and the uncertainties
epend only on features x , then the observed distributions of training
nd target data sets remain the same. The results of the cross-
atching method depend both on the uncertainties on the features x

nd on the covariate shift. In this work we separate the two effects and
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Table 1. Classes of associated sources in the 4FGL-DR4 catalogue (Abdol- 
lahi et al. 2022 ; Ballet et al. 2023 ). Both associated and identified sources in 
the catalogue are referred as associated sources in this work. 

Physical class Associated sources Description 

gc 1 Galactic centre 
psr 141 Young pulsar 
msp 179 Millisecond pulsar 
pwn 21 Pulsar wind nebula 
snr 45 Supernova remnant 
spp 124 Supernova remnant and/or 

pulsar wind nebula 
glc 34 Globular cluster 
sfr 6 Star-forming region 
hmb 11 High-mass binary 
lmb 9 Low-mass binary 
bin 10 Binary 
nov 6 Nova 
bll 1490 BL Lac type of blazar 
fsrq 819 FSRQ type of blazar 
rdg 53 Radio galaxy 
agn 8 Non-blazar active galaxy 
ssrq 2 Steep spectrum radio quasar 
css 6 Compact steep spectrum radio 

source 
bcu 1624 Blazar candidate of uncertain 

type 
nlsy1 8 Narrow-line Seyfert 1 galaxy 
sey 3 Seyfert galaxy 
sbg 8 Starburst galaxy 
gal 6 Normal galaxy (or part) 
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3 In this paper, we use RF with maximal number of trees 50 and maximal depth 
of 15. For the other parameters we use default values in the SCIKIT-LEARN 

v ersion 1.2.2 (Pedre gosa et al. 2011 ) implementation of RF. In particular, the 
Gini index is used for the determination of the splits. 
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etermine the influence of only the covariate shift on the classification 
erformance. 
(3) The cross-matching method cannot be used for the latest 

atalogue (there is no newer catalogue that can be used for cross-
atching). 

The paper is organized as follows. In Section 2 , we introduce the
ata and define the classes. We describe the model for the covariate
hift in Section 3 . In Section 4 , we determine the effect of the
ovariate shift on two- and six-class classification of the Fermi -LAT 

ources. We construct probabilistic catalogues of the Fermi -LAT 

ources including the effect of the covariate shift in Section 5 . The
onclusions are presented in Section 6 . In Appendix A , we discuss the
odels for the distributions of associated and unassociated sources 

n the feature space. We discuss the selection of input features and
heir importance in Appendix B . In Appendix C , we provide details
bout the neural network (NN) classification, whereas in the main 
ody of the paper we use the random forest (RF) algorithm. 

.  DATA  SELECTION  A N D  DEFINITION  O F  

LASSES  

s input, we use the parameters, which describe the main 
eatures of the gamma-ray sources, such as the position on 
he sky, energy spectrum, and temporal variability. In particu- 
ar, we use following 10 features derived from the source pa- 
ameters in the Fourth Fermi -LAT catalogue data release four 
4FGL-DR4, Ballet et al. 2023 ) (see also description in Ab- 
ollahi et al. 2022 , Malyshev & Bhat 2023 , and Appendix B
or details on the feature selection): sin(GLAT), cos(GLON), 
in(GLON), log 10 (Energy Flux100), log 10 (Unc Energy Flux100), 
og 10 (Signif Avg), LP beta, LP SigCurv, log 10 (Variability Index), 
nd the index of the log parabola spectrum at 1 GeV. Although
here are many more parameters in the 4FGL-DR4 catalogue, most 
f the parameters either describe the same quantity (such as the 
alactic and equatorial coordinates of the sources) or are highly 

orrelated (Bhat & Malyshev 2022 ). It has also been shown that,
t least in case of the two-class classification, relatively few input 
eatures, e.g. five, can provide an optimal classification performance 
Luo et al. 2020 ). In this work, we use the features similar to
he features used in (Luo et al. 2020 ; Bhat & Malyshev 2022 ) as
ell as in the earlier works, e.g. (Saz Parkinson et al. 2016 ), with

ome modifications described in Appendix B . Four sources in the 
atalogue have missing features: 4FGL J0358.4 −5446 (nova), 4FGL 

0534.5 + 2201i (pulsar wind nebula, PWN), 4FGL J1820.8 −2822 
nova), and 4FGL J2010.2 −2523 (flat spectrum radio quasar, FSRQ). 

e exclude these four sources from the analysis in this paper. 
We use the labels for the classes of the gamma-ray sources from

he 4FGL-DR4 catalogue (Abdollahi et al. 2022 ; Ballet et al. 2023 )
nd consider identified sources (upper-case class names in 4FGL- 
R4) and associated sources (lower-case class names) on the same 

ooting. The physical classes of sources are summarized in Table 1 . 
We consider sources with unknown nature of the multi-wavelength 

ounterpart (labelled as ‘unk’ in the catalogue) as unassociated 
ources. Ov erall, we hav e 4614 associated, and 2577 unassociated 
ources. Note that the total number of sources is 7191, which is less
han the number of sources 7195 in the 4FGL-DR4 catalogue (Ballet
t al. 2023 ) by the four sources with missing input features. 

Provided that some of the physical classes have too few members 
or a reasonable classification (e.g. less than 10 associated sources), 
e use a hierarchical procedure to determine the classes (Malyshev 
 Bhat 2023 ) that combines several physical classes with similar
istributions in the feature space. In particular, we use the Gaussian
ixture model (GMM) to determine the hierarchical splitting of 

he physical classes (for details, see Malyshev & Bhat 2023 ). An
xample of such splitting of the physical classes with the condition
n the minimal number of sources in a class n s > 50 is shown in
ig. 2 , top panel. We note that node 011, which includes rdg, sey, sbg,
nd agn classes, has only 74 associated sources. We have checked 
hat the classification into seven classes corresponding to the terminal 
odes in the top panel of Fig. 2 does not give reasonable results for
he 011 class. Ho we ver, if we increase the condition on the minimal
umber of sources to be, e.g. n s > 100, then node 01 cannot split.
s a result, this node has 3194 sources, which is almost 70 per cent
f all associated sources. In this case, the multi-class classification is
ot meaningful either. A possible solution to this problem is to first
onstruct the classes with the condition n s > 50 and then prune the
ree by removing the node with the minimal number of classes, e.g.
ode 011. The remo v ed node is shown by the dashed box in the top
anel of Fig. 2 . Since the parent node 01 has now only one child node
10, we merge nodes 010 and 01, i.e. the subtree under 010 is now a
ubtree under 01 (the corresponding nodes in the subtree mo v e one
evel up). The resulting tree is shown in Fig. 2 , bottom panel. 

The physical classes in the pruned node are distributed among 
he remaining six classes. In order to determine that, we train RF
lassification with the six classes and then classify sources in rdg, sey,
bg, and agn classes using the six-class classification. 3 We compute 
he sum of class probabilities for all sources in each of the rdg, sey,
RASTAI 2, 735–751 (2023) 
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Figure 2. Definition of classes. Top panel: Hierarchical definition of classes 
(following the method of Malyshev & Bhat 2023 ) with the condition that 
the number of sources in a class is larger than 50. Dashed box shows the 
class with the smallest number of sources. We remo v e this class from the 
final definition of classes. The corresponding physical classes (rdg, sey, sbg, 
and agn) are distributed among the remaining six classes according to the 
maximal class probability sum for each of the physical class. Since node 01 
has only one child 010 after pruning, we merge the nodes 01 and 010 into 
a new node 01. Bottom panel: The result of pruning, which shows the final 
hierarchical structure of the classes used for the classification in this paper. 
See text for more details. 

Table 2. Definition of classes. The classes are labelled by the largest physical 
class, e.g. spp + or msp + . 

Class label Physical classes 
Associated 

sources 

spp + glc, lmb, spp, nov 173 
msp + msp 179 
psr + hmb, psr, bin, snr, 

gc, sfr, gal, pwn 241 
fsrq + nlsy1, fsrq 827 
bcu + ssrq, bcu, sey, agn 1637 
bll + bll, css, rdg, sbg 1557 
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bg, and agn classes and attach these classes to groups with the largest

um of class probabilities. The result is that the sey and agn classes
re attributed to node 010 dominated by the bcu class, while the rdg
nd sbg classes are attributed to node 011 dominated by the bll class.
he result of this procedure is shown in the bottom panel of Fig. 2 .
e also show the summary of the remaining six classes in Table 2 . 
We note that physical classes are grouped in the six groups

ccording to their gamma-ray properties, i.e. even if the physical
ature of the sources is different but the gamma-ray properties
ASTAI 2, 735–751 (2023) 
re similar, the physical classes would be added to the group. For
xample, the ‘bll + ’ group has mostly active galactic nuclei (bll, css,
nd rdg) and the starburst galaxies class (sbg). A comparison of the
wo most important features for the separation of the physical classes
t level one (‘LP beta’ and ‘log10(Unc Energy Flux100)’) for bll,
bg, and several other physical classes can be found in fig. 1 of

alyshev & Bhat ( 2023 ). The assembly of the groups according to
he similarities in the gamma-ray properties ensures an optimal multi-
lass classification performance. This is a fundamental limitation of
ny ML classification that the gamma-ray properties used for the
lassification do not necessarily reflect the different physical nature
f the sources. In particular, in our analysis the ML classification
annot separate starburst galaxies from other sources in the bll +
lass. Although the multi-class classification is dominated by the
arge classes, such as spp, msp, psr, fsrq, bcu, and bll, and, as a result,
t is also mostly useful for the separation of these large classes, it
evertheless, can be useful also for the small classes, as it can provide
dditional evidence for association or classification. For example, if
here is a nearby starburst galaxy in a vicinity of an unassociated
ource with high bll + classification probability, then the source is
ore likely to be a starburst galaxy compared with the situation,
hen this source is classified as a member of, e.g. msp + or fsrq +

lasses. 

.  C OVA R I ATE  SHIFT  M O D E L  

he presence of the covariate shift manifests itself in the fact that
he ratio of the training and the target PDFs is not a constant in the

ulti-dimensional feature space. Provided that the domains of the
raining and the target data sets are the same for the associated and
nassociated sources, the effect of the covariate shift can be modelled
y introducing weights for samples in the training and testing data
et proportional to the ratio of the corresponding PDFs. 

( x i ) = 

p unas ( x i ) 

p assoc ( x i ) 
. (3) 

n this case, the differences in the densities of training or testing and
arget data sets are compensated by the weighting of the samples.
n order to determine the weighting factor w ( x ) as a function of
he features, one needs to model the PDFs p unas ( x i ) and p assoc ( x i ).
here are different ways to approximate a distribution of discrete
oints with a continuous PDF, e.g. using kernel density estimators.
n this paper, we use GMMs for modelling the PDFs of associated
nd unassociated sources. Details about the construction of the PDF
odels are provided in Appendix A . In order not to give too much
eight to any of the sources, we put an upper bound on the weights.
xamples of the PDFs for the associated sources including sample
eights are presented in Fig. 1 (‘wAssoc’ labels) with several values
f the maximal weight, e.g. w ≤ w max = 1, 4,..., 16. Larger maximal
eights typically give a better agreement between the distribution of
nassociated sources and the weighted associated sources, especially
or the Glat distribution. Ho we ver, for most of the features the
ependence on w max is not very significant. Also larger maximal
eight reduces the ef fecti ve number of samples, where for a set
f samples with weights w i , the ef fecti ve number of samples is
omputed as (Kish 1965 ): 

 eff = 

( 
∑ 

i w i ) 2 ∑ 

i w 

2 
i 

. (4) 

e show the effective sample number as a function of w max in the
op panel of Fig. 3 . For example, the ef fecti ve number of associated
ources for w max = 10 is 961, which is more than four times

art/rzad053_f2.eps


Covariate shift effect on classification 739 

Figure 3. Ef fecti v e number of samples (top panel) and o v ersampling (bottom 

panel) as a function of the maximal sample weight. Top panel: Ef fecti ve 
number of samples as defined in Equation ( 4 ). The numbers in parentheses 
sho w, respecti vely, the ef fecti ve number of samples at w max = 10 and the 
total number of associated sources in each of the six classes (Table 2 ). The 
corresponding numbers of associated sources are also shown as the stand- 
alone points near w max = 10. Bottom panel: Oversampling (or undersampling) 
of sources defined by summing the sample weights. The first number in 
parentheses shows the o v ersampled number of sources for all associated 
sources and for each of the six classes at w max = 10. The second number is 
the number of associated sources (also shown as stand-alone points). 
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maller than the total number of associated sources in the 4FGL-
R4 catalogue (4614), i.e. the variance of model parameters in 

he weighted sample case can be expected to be larger than in the
nweighted case. 
The weighting affects different classes unequally (see Table 2 for 

he class definitions). In particular, the ef fecti ve number of fsrq +
ources is about nine times smaller than the number of associated 
srq + sources, while the ef fecti ve number of spp + sources is less
han 1.5 times smaller than the number of associated spp + sources.
nother characteristic number is o v ersampling (or undersampling), 
hich is computed as the sum of the weights. The sum of weights

or all sources and for the six classes is shown in the bottom panel
f Fig. 3 . We see that bll + and fsrq + classes are undersampled
y a factor of about 2, while all other classes (including bcu + )
re o v ersampled with an o v ersampling factor of up to 6.6 (for the
pp + class). Overall, we find that w max = 10 provides a reasonable
ompromise between the approximation of the distribution of the 
nassociated sources (Fig. 1 ) and the ef fecti ve number of samples
top panel of Fig. 3 ). We use the w max = 10 case below for training
nd testing with weighted samples. 
.  EFFECT  O F  C OVA R I ATE  SHIFT  O N  

LASSI FI CATI ON  

.1 Two-class classification 

n this section, in order to get an intuition about the effect of
he covariate shift, we use a two-class (rather than a multi-class)
lassification problem. We define the two classes as active galactic 
uclei (AGNs) and Galactic sources (including other galaxies): 
AGNs: bll, fsrq, rdg, agn, ssrq, css, bcu, nlsy1, and sey (4013

ources); 
Galactic: psr, msp, gc, pwn, snr, spp, glc, sfr, hmb, lmb, bin, nov,

bg, and gal (601 sources). 
The classification is performed with the RF algorithm. A com- 

arison of receiver operating characteristic (ROC) curves for the 
nweighted two-class classification and for the classifications where 
eights are applied both for training and testing is presented in Fig. 4 .
e see that the area under the curve (AUC) is reduced from about

.96 to 0.89 both for AGNs and for Galactic sources. 
The corresponding comparison of precision and recall is shown in 

ig. 5 . In this case AGNs are affected slightly more than the Galactic
ources relative to statistical uncertainty. 

It is interesting to note that if we use weighting for testing only and
erform training with unweighted samples, then the performance is 
imilar to the case when the weighting is applied both for training
nd for testing. We compare the corresponding precision and recall 
n Fig. 6 . This result is not surprising, provided that the classification
lgorithm learns the conditional probabilities p ( y | x ) that are not
ffected by the weights. Nevertheless, it does serve as a cross-check
f the procedure, which shows that training with either weighted or
nweighted samples can be used for the classification of unassociated 
ources. But it is important to use weights for the testing samples in
he estimation of the performance to make sure that it is estimated
or the sources with a distribution similar to the distribution of the
arget data set, i.e. the unassociated sources. 

.2 Multi-class classification 

n this section, we study the effect of the covariate shift for training
nd testing in multi-class classification of the Fermi -LAT sources. 
or the classification, we use the six classes summarized in Table 2
nd Fig. 2 . As an example, we perform the classification with the RF
lgorithm in this section, while in Appendix C we compare the results
ith the classification using NN implemented with TensorFlow 

Abadi et al. 2015 ). We use 70/30 per cent split into training and
esting data sets. The performance is e v aluated on the testing data
ets. 

The ROC curves calculated using the one-versus-all definition 
f the true positive and the false positive rates (TPR and FPR,
especti vely) are sho wn in the bottom panels in Fig. 7 . Both the
raining and the testing are performed with weighted samples, where 
he weights are determined in equation ( 3 ). The shaded areas show
he standard deviation of the ROC curves calculated from 10 random
plit into training and testing data sets. The second (from the bottom)
ow of panels in Fig. 7 shows the ROC curves in the five-class
lassification, where the five classes are obtained by merging some of
he six classes by removing the last digit in the class names for the six
lasses (shown in the titles of the panels). In particular, the physical
lasses corresponding to the 0000 node are obtained by joining the
lasses in 00 000 and 00 001 nodes. The physical classes in the 0000
ode are glc, lmb, spp, nov (which come from node 00 000), and msp
which come from node 00 001). The green curves show the ROC
RASTAI 2, 735–751 (2023) 
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Figure 4. ROC curves for unweighted training and testing (‘two-class’ labels) and weighted training and testing (‘weighted two-class’ labels). The lines (shaded 
areas) represent the mean (the standard deviation) o v er ten splits into training and testing data sets with the 70/30 per cent ratio. 

Figure 5. Comparison of precision and recall for unweighted training and testing (‘two-class’ labels) and weighted training and testing (‘weighted two-class’ 
labels). The lines (shaded areas) represent the mean (the standard deviation) o v er ten splits into training and testing data sets with the 70/30 per cent ratio. 

Figure 6. Comparison of precision and recall for unweighted training with weighted testing (‘weighted test two-class’ labels) and weighted training and testing 
(‘weighted two-class’ labels). The performance calculated on weighted test samples for training with unweighted samples is similar to the performance of 
training with weighted samples. See Fig. 5 for the definition of the lines. 
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urves in the five-class classification. Analogously to the six-class
lassification, the green shaded area shows the uncertainty due to
he random splits into training and testing data sets. The red curves
n these panels show the ROC curves for probabilities obtained by
umming the six-class probabilities of the children nodes. The per-
ormance for the direct five-class classification and for the five-class
robabilities determined by summation of the six-class probabilities
re practically the same. This conclusion also holds for the two- and
our-class classification shown in rows one and two of Fig. 7 , where
e show both the ROC curves for the direct two- and four-class

lassifications and for probabilities determined by summation of
ASTAI 2, 735–751 (2023) 
lass probabilities of the children nodes. Similarly to the conclusions
f Malyshev & Bhat ( 2023 ), we find that the performance of direct
lassification with two, four, and five classes and the performance
f classification obtained by summation of probabilities of children
odes in the six-class case are very similar also for the weighted
amples. Consequently, it is sufficient to do a classification with the
aximal number of classes (six classes in this case). 
In Fig. 8 , we compare the ROC curves for the weighted and

nweighted multi-class classifications. Similarly to the two-class
ase, the performance in the unweighted data set is better than for the
eighted one. Provided that the unweighted data set represents the
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Figure 7. ROC curves for weighted training and testing following the hierarchical definition of classes in Fig. 2 . The physical classes in a parent node are 
obtained by removing the last digits in the node names of the children nodes, e.g. the 0000 node contains physical classes of 00 000 and 00 001 nodes. At each 
level, the class probabilities are computed either directly for two-, four-, five-, or six-class classification or by summing the probabilities of the children nodes. 
Lines (shaded areas) show the mean (standard deviation) for 10 random splits into training and testing sets with 70/30 per cent ratio. 

Figure 8. ROC curves for unweighted training and testing using the RF classification algorithm (‘RF’ labels) and weighted training and testing (‘wRF’ labels) 
for the six-class classification of the Fermi -LAT sources. The physical classes in each group and the numbers of associated sources in each physical class are 
shown in tables inside the panels. 
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ssociated sources, while the weighted one models the distribution 
f the unassociated sources, the performance of the classification 
or the unassociated sources determined from the associated sources 
without weighting) is o v erestimated. 
We show the difference in precision and recall for weighted and
nweighted training and testing in Fig. 9 . For example, the precision
nd recall for the bll + and bcu + classes in the weighted case are
orse, respectively better, than in the unweighted case, while the 
RASTAI 2, 735–751 (2023) 
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Figure 9. Precision and recall for unweighted training and testing using the RF classification algorithm (‘RF’ labels) and weighted training and testing (‘wRF’ 
labels) for the six-class classification of the Fermi -LAT sources. For the definition of the classes, see Fig. 8 . 
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ffect of using the weighted samples on the ROC curves for the bll +
nd bcu + classes are comparable, i.e. the AUC is smaller for both
lasses for the weighted relative to the unweighted cases. The worse
OC curves for the bll + class is explained by the worse TPR, i.e.

he recall, while the reduction of the ROC curve performance for
he bcu + class is explained by the worse FPR, which is the fraction
f non-bcu + sources attributed to the bcu + class. We note that the
ll + class is undersampled by about a factor of two, while the bcu +
lass is o v ersampled by almost a factor of two (bottom panel of
ig. 3 ). Another example of a slightly better precision and recall in

he weighted case but a worse ROC curve is provided by the spp +
lass. This can be explained by a similar increase in false positive
nd true positive detections but a smaller size of the ‘ne gativ e’ data
et due to large o v ersampling of the spp + class by a factor of 6.6
bottom panel of Fig. 3 ). 

In Figs 10 and 11 , we compare the ROC curves and precision and
ecall for the classification trained on unweighted samples but tested
n the weighted samples (‘wtRF’ labels) with the classification where
oth training and testing were performed on the weighted samples
‘wRF’ labels). We find a similar performance for weighted and
nweighted training estimated from the tests on weighted samples,
hich is generally expected for the covariate shift. We also find that

he probabilities are generally well calibrated both for weighted and
nweighted training when tested with the weighted samples (Fig. 12 ).

.  C ATA L O G U E  C O N S T RU C T I O N  WITH  

OVA R I ATE  SHIFT  

n this section, we describe the construction of probabilistic cat-
logues where the class probabilities are calculated using both
eighted and unweighted training samples. As in the previous

ection, we use six classes and ten input features. For classification,
e use RF and NN algorithms. In order to estimate the uncertainty
f prediction due to the random choice of the training samples, we
erform several 70/30 per cent splits into training and testing data
ets. The predicted class probabilities for unassociated sources are
omputed as the mean o v er all predictions, while for the associated
ources, the probabilities are determined by the mean o v er the splits
here a source is included in the testing sample. In order to have
 reasonable statistics for associated sources, we require that each
ASTAI 2, 735–751 (2023) 
ssociated source appears in the testing data set at least five times,
hich resulted in 51 splits into training and testing data sets. In

he catalogue, we report both the average class probabilities and
he standard deviation of the class probabilities due to the random
raining/testing splits for each source. Thus, for each source we report
ix average class probabilities determined with the RF algorithm,
ix class probabilities determined with the NN algorithm, and the
orresponding standard deviations (24 columns in total). We also
nclude a column with sample weights. For the associated sources, the
ample weight is equal to the ratio of the unassociated to associated
ources PDFs with the maximal weight of 10. The sample weight for
he unassociated sources is set to one. 

We perform the classification using weighted and unweighted
amples for training. The predicted numbers of associated and
nassociated sources in the six classes (calculated as the sum of
lass probabilities) in the weighted and unweighted training cases
re shown in Tables 3 and 4 , respectively. The uncertainties are
alculated as the root mean squared (RMS) of the corresponding
tandard deviations. It is interesting to note that the predicted number
f sources in a class among unassociated sources is similar for the RF
lgorithm and for most of classes for the NN algorithm. Ho we ver the
xpected number of sources in a class for associated sources is clearly
iased in the weighted training case. Overall, we find that unweighted
raining provides a more reasonable result than the weighted training,
ecause the performance e v aluated on the weighted test samples is
imilar for weighted and unweighted training (cf. Figs 10 , 11 , and
2 ), while the predictions for the unweighted test samples are biased
n the weighted training case (Table 3 ) and they are not biased in the
nweighted training case (Table 4 ). 
We compare the changes in the individual class probabilities for

he unassociated sources for weighted and unweighted training in
igs 13 and 14 . In Fig. 13 , we calculate the difference of predicted
lass probabilities in four cases: weighted RF minus unweighted RF
robability (‘wRF – RF’ label), weighted NN minus unweighted NN
robability (‘wNN – NN’ label), unweighted RF minus unweighted
N probability (‘RF – NN’ label), and weighted RF minus weighted
N probability (‘wRF – wNN’ label). We see that in all cases the
ifferences of the class probabilities for the individual sources is
ithin about 13 per cent. The smallest differences (within about
 per cent) are among weighted RF and unweighted RF probabilities
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Figure 10. ROC curves for unweighted training but weighted testing using the RF classification algorithm (‘wtRF’ labels) and weighted training and testing 
(‘wRF’ labels) for the six-class classification of the Fermi -LAT sources. 

Figure 11. Precision and recall for unweighted training but weighted testing using the RF classification algorithm (‘wtRF’ labels) and weighted training and 
testing (‘wRF’ labels) for the six-class classification of the Fermi -LAT sources. 
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or all classes. The largest standard deviations of about 13 per cent are
or the RF minus NN probabilities for the unweighted and weighted 
rainings in the bcu + class. 

Fig. 14 is similar to Fig. 13 but we divide the difference of
he probabilities for each source by the RMS of the uncertainties 
ue to random training/testing splits, i.e. we plot the histograms of
 p 1 − p 2 ) / 

√ 

( σ 2 
1 + σ 2 

2 ) / 2 . We see that in most cases the difference 
n class probabilities for the individual sources for different classi- 
cation methods is comparable with the standard deviations due to 

raining/testing splits (ranging from about 0.5 σ to 2 σ ). We create 
robabilistic catalogues constructed both with unweighted and with 
eighted training samples. 
In Fig. 15 , we compare the confusion matrices for the RF

lassification with the weighted and unweighted training and testing 
ata sets. The predicted classes are calculated by taking the class
ith the largest probability for each source. In this calculation, we 

ake all associated sources and use the class probabilities determined 
s a mean o v er the training/testing splits when the sources are in
he testing data sets. We see that testing with unweighted samples
ives similar performance estimates both for training on unweighted 
amples (top-left panel) and for training on weighted samples (top- 
ight panel). While for testing with weighted samples, training with 
nweighted samples (bottom-left panel) has a better performance for 
sr + and fsrq + classes compared with the training with weighted
amples (bottom-right panel). 

.  C O N C L U S I O N S  

n the paper, we study the effect of the covariate shift (due to
ifference in the distributions of associated and unassociated sources) 
n the multi-class classification of Fermi -LAT sources. In order to
ealistically estimate the expected performance for the classification 
f unassociated sources using only the associated sources, we 
ntroduce sampling weights proportional to the ratio of the PDFs 
or the unassociated sources to the associated sources, so that the
RASTAI 2, 735–751 (2023) 
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Figure 12. Reliability diagrams for unweighted training but weighted testing using the RF classification algorithm (‘wtRF’ labels) and weighted training and 
testing (‘wRF’ labels) for the six-class classification of the Fermi -LAT sources. The dotted line shows the optimal calibration of the predicted probabilities. 

Table 3. Predictions for the number of associated and unassociated sources in the weighted training catalogue. For the 
definition of the classes, see Table 2 . 

Class label N assoc RF assoc NN assoc RF unas NN unas 

1 spp + 173 183 .0 ± 2.1 237 .7 ± 2.8 406 .7 ± 3.1 525 .0 ± 3.5 
2 msp + 179 183 .4 ± 1.8 226 .7 ± 4.0 177 .1 ± 2.0 200 .9 ± 2.4 
3 psr + 241 238 .8 ± 2.0 399 .5 ± 5.3 187 .5 ± 2.1 173 .7 ± 2.1 
4 fsrq + 827 792 .5 ± 3.5 663 .8 ± 5.7 197 .5 ± 2.0 156 .6 ± 1.9 
5 bcu + 1637 1733 .4 ± 4.7 1887 .8 ± 6.3 1270 .0 ± 4.1 1257 .3 ± 4.1 
6 bll + 1557 1482 .8 ± 4.2 1198 .5 ± 6.1 338 .1 ± 2.5 263 .4 ± 2.3 

Table 4. Predictions for the number of associated and unassociated sources in the unweighted training catalogue. For 
the definition of the classes, see Table 2 . 

Class label N assoc RF assoc NN assoc RF unas NN unas 

1 spp + 173 175 .5 ± 2.0 170 .7 ± 1.5 420 .4 ± 3.1 448 .9 ± 2.4 
2 msp + 179 177 .5 ± 1.7 181 .3 ± 2.0 182 .3 ± 2.0 197 .0 ± 1.7 
3 psr + 241 236 .2 ± 2.0 238 .8 ± 2.2 187 .6 ± 2.1 181 .7 ± 1.6 
4 fsrq + 827 829 .8 ± 3.5 828 .3 ± 2.3 200 .5 ± 2.1 185 .7 ± 1.2 
5 bcu + 1637 1641 .8 ± 4.9 1619 .0 ± 3.1 1253 .3 ± 4.1 1269 .7 ± 2.9 
6 bll + 1557 1553 .2 ± 4.2 1576 .0 ± 3.0 332 .9 ± 2.5 294 .0 ± 1.6 
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DF of associated sources weighted by these sampling weights is
imilar to the PDF of the unassociated ones. 

We use RF and NN algorithms and perform training with both
eighted and unweighted samples. We test the performance using
eighted testing samples drawn from the associated sources, which

s expected to give realistic estimates of the performance for the
nassociated sources. We find that 

(1) Co v ariate shift has little effect on estimated class proba-
ilities for individual sources. The difference among class proba-
ilities for individual unassociated sources derived with RF and NN
lgorithms using either weighted or unweighted training samples
re comparable with the statistical uncertainties for the probabilities
stimated from the random splits into training and testing data sets.
his result justifies the use of unweighted training samples in the
eri v ation of the classification algorithms, which are then used to
lassify unassociated sources. 
ASTAI 2, 735–751 (2023) 
(2) Using weighted or unweighted training samples has little
ffect on average performance. The average performance, esti-
ated using ROC curves, precision, recall, and reliability diagrams,

s similar for weighted and for unweighted training. Ho we ver, the
ariance is observed to increase for NN algorithms in the weighted
raining case for some of the characteristics (e.g. precision and
eliability) for classes with a significant decrease due to weights
n the ef fecti ve sample size (e.g. FSRQs). 

(3) Co v ariate shift results in a decrease of up to 20 per cent
n precision and recall for some classes, estimated with weighted
esting samples compared with estimates with unweighted testing
amples. The most affected classes are the classes of extragalactic
ources (such as FSRQs and BL Lacs) dominated by sources at high
atitudes where the fraction of unassociated sources is smaller than
t low latitudes. 

The o v erall conclusion is that both unweighted and weighted
raining have similar expected performance, but the covariate shift
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Figure 13. Difference of class probabilities for individual sources determined with RF (‘RF’ labels) and NN (‘NN’ labels) algorithms using weighted (‘w’ is 
included in labels) and unweighted training. The corresponding o v erall mean difference and the standard deviations are reported in the labels. 

Figure 14. Difference of class probabilities for individual sources determined with RF (‘RF’ labels) and NN (‘NN’ labels) algorithms using weighted (‘w’ 
is included in labels) and unweighted training relative to the standard deviations of the predicted probabilities (see text for more details). The corresponding 
o v erall mean relative difference and the standard deviations of the relative differences are reported in the labels. 
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hould be taken into account in the estimations of the performance, 
.g. with the weighted testing samples. Weighted training can lead to 
arger variance of the expected performance (especially for classes 
ith a significant reduction in ef fecti ve sample number) and it also
eads to biased predictions for the unweighted tests. As a result, we
nd that it is better to perform the classification with unweighted

raining data set but, for a realistic estimate of the classification
erformance, one should use weighted testing samples. 
RASTAI 2, 735–751 (2023) 
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Figure 15. Confusion matrix normalized to the number of predicted sources in a class. The sources are classified according to the highest class probability for 
each source. The numbers on the diagonal show the one-versus-all precision for this classification method. Top (bottom) panels show the performance for the 
unweighted (weighted) samples representative for the associated (unassociated) sources. 
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We create probabilistic catalogues using RF and NN algorithms
rained with weighted and unweighted samples. The catalogues
nclude predicted class probabilities for six classes with RF and
N algorithms averaged over 51 realizations of the 70/30 per cent

raining/testing data sets (for associated sources the probabilities are
v eraged o v er the splits when the source appears in the testing sam-
le) as well as the standard deviations of the probabilities due to the
plits. We also add a column with the sample weights. We calculate
he expected number of sources in the six classes among the unassoci-
ted sources. The largest fractional increase is expected for the spp +
lass: There are about 2.5 times more expected spp + sources among
he unassociated ones than there are associated spp + sources. For
omparison, the expected number of msp + (psr + ) sources among
he unassociated sources is about the number of (75 per cent of)
ssociated msp + (psr + ) sources. For the extragalactic sources, the
argest fractional increase is for the bcu + sources: The expected
ncrease is more than 70 per cent, compared with an increase of about
0 per cent for bll + and fsrq + classes. The catalogues are publicly
vailable at https://zenodo.org/doi/10.5281/zenodo.8140548. 
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Figure A2. The distribution of log-likelihoods in the 12-kernel GMM models 
of the associated and unassociated sources. Solid (dash–dotted) line: The 
distribution of log-likelihoods for associated (unassociated) sources. Dashed 
(dotted) line: The distribution of log-likelihoods for sources sampled from 

the GMM model for associated (unassociated) sources. 
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PPEN D IX  A :  M O D E L  T H E  DISTRIBU TIO NS  

F  ASSOCIATED  A N D  UNASSOCIATED  

O U R C E S  

n this appendix, we construct PDFs of associated and unassociated 
ources using GMMs. In order to determine an optimal number of
ernels in the GMMs, we compare the Akaike information criterion 
AIC, Akaike 1974 ) 

IC = 2 k − 2 ln L , (A1) 

here k is the number of parameters in a model and L is the likelihood
f the model, and the Bayesian information criterion (BIC, Schwarz 
978 ) 

IC = k ln n − 2 ln L , (A2) 

here k and L are the same as in the AIC and n is the number of data
amples. In Fig. A1 , we plot the AIC and BIC as functions of the
umber of the GMM kernels. We use the AIC and BIC implemen-
ations in the SCIKIT-LEARN package (Pedregosa et al. 2011 ). We see
hat abo v e about 12 GMM kernels BIC is approximately constant for
igure A1. The Akaike (Akaike 1974 ) and Bayesian (Schwarz 1978 ) 
nformation criteria as functions of the number of GMM kernels for associated 
unassociated) sources: ‘Assoc AIC’ and ‘Assoc BIC’ (‘Unas AIC’ and ‘Unas 
IC’) labels, respectively. Both AIC and BIC are decreasing up to about 12 
MM kernels. 
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oth associated and unassociated sources. Although AIC continues 
o decrease abo v e 12 kernels, we choose the GMM models with 12
ernels as the models with minimal complexity up to which both AIC
nd BIC are decreasing. We also test in Fig. A2 that for the 12-kernel
MM models the distributions of likelihoods for the associated and 
nassociated sources are similar to the distributions of likelihoods for 
he samples drawn from models for the associated and unassociated 
ources, respectively. 

PPENDI X  B:  SELECTI ON  O F  I NPUT  

EATURES  A N D  FEATURE  I M P O RTA N C E  

n this work, we use 10 input features (described in Section 2 ).
lthough Fermi -LAT catalogues have many more source parameters, 
ost of these parameters are highly correlated (Bhat & Malyshev 

022 ). In particular, there are different representations of the same
uantity, such as the position on the sky in Galactic or equatorial
oordinates. There are also high correlations, e.g. among uncer- 
ainties in flux, energy flux, and spectrum normalization (Bhat & 

alyshev 2022 ). It has been noted by Luo et al. ( 2020 ) that, in
ase of two-class classification, using more than five input features 
oes not significantly impro v e the classification performance with 
he increasing complexity of the model. 

In this work, we use the features previously selected by Luo et al.
 2020 ) and Bhat & Malyshev ( 2022 ) with several modifications: (1)
nstead of the hardness ratios, we use the log-parabola curvature 
arameter to describe the change of the ‘spectral index’ as a
unction of energy; (2) instead of the spectral index parameter (or
ower-law spectral index), we use the index of the log-parabola 
pectrum at 1 GeV, which is independent of the pivot energy
nd is well defined for curved spectra; (3) we add the average
ignificance parameter (‘Signif Avg’). Although this parameter is 
ighly correlated with the energy flux abo v e 100 MeV (Bhat &
alyshev 2022 ), ‘log10(Signif Avg)’ has a higher importance than 

log10(Energy Flux100)’ in RF classifications with more than two 
lasses (cf. Table B1 ); and (4) we replace Galactic longitude with
wo parameters ‘cos(GLON)’ and ‘sin(GLON)’ in order to a v oid dis-
ontinuity between 0 ◦ and 360 ◦. The same input features have been
reviously used by Malyshev & Bhat ( 2023 ) in the determination of
he hierarchical classification of the Fermi -LAT sources. 
RASTAI 2, 735–751 (2023) 
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able B1. Feature importance for RF classification with unweighted training
nd testing for different numbers of classes corresponding to the different
epth of the class separation in the bottom panel of Fig. 2 . Depths 1, 2, 3, and
 correspond to two-, four-, five-, and six-class classifications, respectively. 

eature Depth 1 Depth 2 Depth 3 Depth 4 

P index1000MeV 0.159 0.167 0.160 0.163 
og10(Signif Avg) 0.077 0.128 0.140 0.142 
og10(Variability Index) 0.100 0.114 0.114 0.113 
og10(Unc Energy Flux100) 0.128 0.109 0.105 0.108 
P beta 0.103 0.106 0.105 0.101 

og10(Energy Flux100) 0.112 0.089 0.092 0.092 
in(GLAT) 0.055 0.081 0.087 0.087 
P SigCurv 0.164 0.097 0.082 0.081 
os(GLON) 0.052 0.056 0.058 0.059 
in(GLON) 0.051 0.054 0.057 0.055 

We show the importance of the 10 input features in the RF
lassification (in the unweighted training case) in Table B1 . The
eatures are ordered according to the importance for the six-class
lassification (the ‘Depth 4’ column). It is interesting to note that
ome features have a significantly different importance in the two-
lass and in the multi-class classifications. For instance, the spectral
urvature significance parameter (‘LP SigCurv’) has the highest
ignificance for the two-class classification (it has also been the
ost significant parameter in the analysis of Saz Parkinson et al.

016 , Luo et al. 2020 , and Bhat & Malyshev 2022 ), but it is in
he middle (near the end) of the list for the four-class (five- and
ix-class) classification. The parameter ‘LP index1000MeV’ is the
ost important parameter for all classifications in this work, while

Spectral Index’ has been less significant in the previous two-class
lassifications, e.g. on place three in Luo et al. ( 2020 ) or on place four
n Saz Parkinson et al. ( 2016 ), and log-parabola index ‘LP Index’
as near the end of the significance table in Malyshev & Bhat

 2023 ). On the other hand, parameters ‘log10(Variability Index)’
nd ‘log10(Unc Energy Flux100)’ have similar importance for all
ases (places three and four, respectively) in this work as well as in
he previous analyses, where the importance of these features has
een between place two and four (Saz Parkinson et al. 2016 ; Luo
t al. 2020 ; Bhat & Malyshev 2022 ). 

PPENDIX  C :  N E U R A L  N E T WO R K S  

n this appendix, we provide details about the NN method for
he classification of Fermi -LAT sources. We use the TensorFlow
mplementation of NNs (Abadi et al. 2015 ). We use stochastic
radient descent (adam) with learning rate of 0.001, two hidden
ayers with 20 and 10 nodes, respectively, tanh acti v ation functions,
atch size of 200, L2 regularization with l 2 = 0.001, and no drop
ut. We use the sparse categorical cross entropy loss function. In
ig. C1 , we show the one-versus-all ROC AUC values for the six
roups for the unweighted (top panel) and weighted (bottom panel)
raining. We find that for the unweighted training there is no sign of
 v erfitting up to the maximal number of epochs used in this test, e.g.
000. Provided that there is still a slight increase in performance in
ome groups up to about 500 epochs, we use 500 epochs for training
he NN algorithm in the unweighted case. For the weighted case,
here are signs of o v erfitting for some groups abo v e 500 epochs, e.g.
or psr + and fsrq + groups. As a result, we also use 500 epochs for
he training in the weighted samples case. 

In Fig. C2 , we compare ROC curves, precision, recall, and
alibration diagrams for the training with weighted samples using
ASTAI 2, 735–751 (2023) 
N and RF algorithms. Generally, the performance of the NN is

igure C1. The ROC AUC for one-versus-all classification as a function of
he number of epochs for the NN algorithm with unweighted (top panel) and
eighted (bottom panel) samples. 

omparable with the performance of the RF. RF gives slightly better
esults for the psr + class, while NN has a better performance for the
ll + class. 
In Fig. C3 , we compare the performance of the NN algorithm

rained with unweighted and tested with weighted samples (‘wtNN’
abels) versus trained and tested with weighted samples (‘wNN’
abels). Most of the characteristics are similar for training with
eighted and unweighted samples. Ho we ver, the statistical uncer-

ainty band is narrower in the unweighted training case for the fsrq +
nd bll + classes for precision (middle panels) and reliability (bottom
anels). This can be attributed to the fact that in the weighted samples
ase the ratio of the ef fecti ve number of samples to the number of
ssociated sources in the fsrq + and bll + classes is the smallest among
he six classes, which leads to an increased variance for this class in
he weighted training case compared with the unweighted training. 

In Fig. C4 , we compare the confusion matrices for the weighted
nd unweighted training and testing data sets for the classification
ith the NN algorithm similar to the confusion matrices in Fig. 15 for

he classification with the RF algorithm. The training on unweighted
amples (left panels) has a similar or better performance (with
 few exceptions) than the training on weighted samples (right
anels) when tested both on unweighted samples (top panels) and on
eighted samples (bottom panels). 

art/rzad053_fC1.eps
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Figure C2. Comparison of ROC curves (top panels), precision and recall (middle panels), and calibration diagrams (bottom panels) for training and testing 
with weighted samples using RF (‘wRF’ labels) and NN (‘wNN’ labels) algorithms. The numbers in parenthesis in the top panel show the ROC AUC. 
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RASTAI 2, 735–751 (2023) 

Figure C3. Comparison of ROC curves (top panels), precision and recall (middle panels), and calibration diagrams (bottom panels) for classification with NN 

algorithms in case of training with unweighted samples and testing with weighted samples (‘wtNN’ labels) and with weighted samples used both for training 
and testing (‘wNN’ labels). 
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RASTAI 2, 735–751 (2023) 

Figure C4. Confusion matrix normalized to the number of predicted sources in a class for the NN classification. The sources are classified according to the 
highest class probability for each source. The numbers on the diagonal show the one-versus-all precision for this classification method. Top (bottom) panels 
show the performance for the unweighted (weighted) samples representative for the associated (unassociated) sources. 
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