RAS Techniques and Instruments

RASTAI 2, 735-751 (2023)
Advance Access publication 2023 November 13

https://doi.org/10.1093/rasti/rzad053

Effect of covariate shift on multi-class classification of Fermi-LAT sources

Dmitry V. Malyshev = *

Erlangen Centre for Astroparticle Physics, Nikolaus-Fiebiger-Str 2, Erlangen D-91058, Germany

Accepted 2023 November 7. Received 2023 October 11; in original form 2023 August 8

ABSTRACT

Probabilistic classification of unassociated Fermi-LAT sources using machine learning methods has an implicit assumption that
the distributions of associated and unassociated sources are the same as a function of source parameters, which is not the case
for the Fermi-LAT catalogues. The problem of different distributions of training and testing (or target) data sets as a function of
input features (covariates) is known as the covariate shift. In this paper, we, for the first time, quantitatively estimate the effect
of the covariate shift on the multi-class classification of Fermi-LAT sources. We introduce sample weights proportional to the
ratio of unassociated to associated source probability density functions so that associated sources in areas, which are densely
populated with unassociated sources, have more weight than the sources in areas with few unassociated sources. We find that the
covariate shift has relatively little effect on the predicted probabilities, i.e. the training can be performed either with weighted
or with unweighted samples, which is generally expected for the covariate shift problems. The main effect of the covariate shift
is on the estimated performance of the classification. Depending on the class, the covariate shift can lead up to 10-20 per cent

reduction in precision and recall compared with the estimates, where the covariate shift is not taken into account.
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1. INTRODUCTION

Classification of unassociated Fermi-LAT sources with machine
learning (ML) provides an opportunity to probabilistically determine
the classes of sources based on their gamma-ray properties, when
direct multi-wavelength association is not known (Ackermann et al.
2012; Mirabal et al. 2016; Saz Parkinson et al. 2016; Lefaucheur
& Pita 2017; Luo et al. 2020; Finke, Krimer & Manconi 2021;
Zhu, Kang & Zheng 2021; Bhat & Malyshev 2022; Malyshev &
Bhat 2023). For some of the unassociated sources it may even be
impossible to detect an associated source, e.g. for pulsars with a radio
jet that is not pointing at the observer. In this case, the probabilistic
classification of unassociated sources is the only possibility to
determine the likely nature of the unassociated sources and to perform
population studies including the unassociated sources.

One of the caveats of ML classification of Fermi-LAT sources is
that the distributions of associated and unassociated sources in the
feature space are different. For example, the fraction of associated
sources at high latitudes is about 90 per cent, while the association
fraction along the Galactic plane is about 50 per cent (Abdollahi
et al. 2020). One of the reasons is that the density of gamma-
ray sources is larger along the Galactic plane (GP), while there
is also absorption in optical and soft X-ray bands by dust and
gas, respectively, which complicates the detection of possible multi-
wavelength counterparts. In Fig. 1 (upper left panel), we show the
probability distribution functions (PDFs) for associated (‘Assoc’
label) and unassociated (‘Unas’ label) sources as a function of the
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sine of Galactic latitude (Glat).! Another example is the brightness
of the sources: brighter sources are associated more often than the
dimmer ones. The distributions of the source detection significance
for associated and unassociated sources are shown in Fig. 1 (upper
right panel). On the lower panels of Fig. 1, we show the variability
index — the significance of temporal variability, which is often
used for identification of counterparts based on correlated flares
in blazars or pulsed emission in pulsars, and the log parabola of
the beta coefficient (LP_beta) — the curvature of the log parabola
fit of the spectrum (curved spectra are more typical for Galactic
sources, such as pulsars). We see that, generally, associated and
unassociated sources have different distributions as a function of
features. Differences in the distribution of the training set (associated
sources) and the target set (unassociated sources) may lead to biased
predictions, such as the classes of unassociated sources, as well as
wrong estimates of the classification performance (Luo et al. 2020;
Finke et al. 2021; Zhu et al. 2021; Bhat & Malyshev 2022).

The basic assumption of the ML classification is that the joint
distribution of the input features x and output features y are the same
for the training and target data sets:

ptrain(xv y) = ptarget(xa y), 1

while, in general, a data set shift represents a situation when the
training and target distributions are different piin(X, ¥) # Prarger(X,
y).2 The joint distribution can be written as a product of conditional

'In the paper, we use the 4FGL-DR4 (Ballet et al. 2023) file version
‘gll_psc_v32.fit’.

20ften the target data set is called the test data set. In this paper, we use the
associated sources both for training and for testing. In order to avoid possible
confusion, we use target data set to denote unassociated sources, which has
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Figure 1. PDFs of unassociated (‘Unas’) and associated (‘Assoc’) sources as a function of the sine of Glat (upper left panel), log of the average significance of
the source (upper right panel), log of the variability index (lower left panel), and the curvature of the log parabola spectrum (lower right panel) in the 4FGL-DR4
catalogue (Ballet et al. 2023). The weighted PDFs of associated sources (‘wAssoc’ labels) are obtained by multiplying the associated sources with a weighting
factor proportional to the ratio of PDFs of unassociated to associated sources in Equation (3). The PDFs are modelled by Gaussian mixture models (see text for

more details). The values in parentheses show the maximal sample weights.

probability times a prior distribution in two different ways:

p(x,y) = p(y|x)p(x) = p(x|y)p(y). )

Correspondingly, there are two special cases of the data set shift
(Moreno-Torres et al. 2012):

(1) Covariate shift: Ptrain (Y|X) = plarget(ylx)a but ptrain(x) 7é plarget(x)'
It represents the situation, when the conditional probability of a class
given the input features is unchanged, but the distributions of samples
as a function of input features are different for training and target
data sets.

(2) Prior shift: Prain(xX]y) = ptarget(x|y)7 but piain(y) # plarget(y)-
It represents the situation, when the prior probabilities for classes
change (e.g. the overall fraction of sources is different for training
and testing data sets), while the distribution of input variables for
each class is unchanged.

In this paper, we assume that the observational limitations and
association biases, which lead to the differences in the distributions
of associated and unassociated sources affect all source classes in the
same way, i.e. that the conditional probabilities remain the same as a
function of input features: piin (¥1x) = Prarge:(¥|%). In this case the data
set shift corresponds to the shift of covariates (input features): pyin(x)

a different distribution from both the training and testing data sets sampled
from associated sources.
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# Drarget(X). The main goal of the paper is to determine the effect of
the covariate shift on the multi-class classification of unassociated
Fermi-LAT sources.

An independent test of classification performance has been ob-
tained before by cross-matching predictions for unassociated sources
in an earlier catalogue, e.g. the Third Fermi-LAT catalogue (3FGL),
with the associations in the newer Fourth Fermi-LAT catalogue
(4FGL, Luo et al. 2020; Finke et al. 2021; Zhu et al. 2021; Bhat
& Malyshev 2022). It has been observed that the performance with
the cross-matching method is worse than the performance estimated
from the testing data sets sampled from the associated sources and it
was argued that this decrease in performance is due to the covariate
shift (Luo et al. 2020; Finke et al. 2021; Zhu et al. 2021; Bhat
& Malyshev 2022). Nevertheless, there are several issues with the
cross-matching method, which we address in this paper:

(1) The sample of sources in the cross-matching data set is not
representative of the total population of unassociated sources.

(2) The reduction of performance can be partially due to uncer-
tainties in the reconstruction of the source parameters (e.g. Bhat &
Malyshev 2022). However, such uncertainties do not lead to covariate
shift: If the intrinsic distributions of associated and unassociated
sources are the same, i.€. Pyain(X) = Parger(x) and the uncertainties
depend only on features x, then the observed distributions of training
and target data sets remain the same. The results of the cross-
matching method depend both on the uncertainties on the features x
and on the covariate shift. In this work we separate the two effects and
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determine the influence of only the covariate shift on the classification
performance.

(3) The cross-matching method cannot be used for the latest
catalogue (there is no newer catalogue that can be used for cross-
matching).

The paper is organized as follows. In Section 2, we introduce the
data and define the classes. We describe the model for the covariate
shift in Section 3. In Section 4, we determine the effect of the
covariate shift on two- and six-class classification of the Fermi-LAT
sources. We construct probabilistic catalogues of the Fermi-LAT
sources including the effect of the covariate shift in Section 5. The
conclusions are presented in Section 6. In Appendix A, we discuss the
models for the distributions of associated and unassociated sources
in the feature space. We discuss the selection of input features and
their importance in Appendix B. In Appendix C, we provide details
about the neural network (NN) classification, whereas in the main
body of the paper we use the random forest (RF) algorithm.

2. DATA SELECTION AND DEFINITION OF
CLASSES

As input, we use the parameters, which describe the main
features of the gamma-ray sources, such as the position on
the sky, energy spectrum, and temporal variability. In particu-
lar, we use following 10 features derived from the source pa-
rameters in the Fourth Fermi-LAT catalogue data release four
(4FGL-DR4, Ballet et al. 2023) (see also description in Ab-
dollahi et al. 2022, Malyshev & Bhat 2023, and Appendix B
for details on the feature selection): sin(GLAT), cos(GLON),
sin(GLON), logjo(Energy_Flux100), log;o(Unc_Energy Flux100),
log;o(Signif_Avg), LP_beta, LP_SigCurv, logo(Variability_Index),
and the index of the log parabola spectrum at 1 GeV. Although
there are many more parameters in the 4FGL-DR4 catalogue, most
of the parameters either describe the same quantity (such as the
Galactic and equatorial coordinates of the sources) or are highly
correlated (Bhat & Malyshev 2022). It has also been shown that,
at least in case of the two-class classification, relatively few input
features, e.g. five, can provide an optimal classification performance
(Luo et al. 2020). In this work, we use the features similar to
the features used in (Luo et al. 2020; Bhat & Malyshev 2022) as
well as in the earlier works, e.g. (Saz Parkinson et al. 2016), with
some modifications described in Appendix B. Four sources in the
catalogue have missing features: 4FGL J0358.4—5446 (nova), 4FGL
J0534.54-2201i (pulsar wind nebula, PWN), 4FGL J1820.8—2822
(nova), and 4FGL J2010.2—2523 (flat spectrum radio quasar, FSRQ).
We exclude these four sources from the analysis in this paper.

We use the labels for the classes of the gamma-ray sources from
the 4FGL-DR4 catalogue (Abdollahi et al. 2022; Ballet et al. 2023)
and consider identified sources (upper-case class names in 4FGL-
DR4) and associated sources (lower-case class names) on the same
footing. The physical classes of sources are summarized in Table 1.

We consider sources with unknown nature of the multi-wavelength
counterpart (labelled as ‘unk’ in the catalogue) as unassociated
sources. Overall, we have 4614 associated, and 2577 unassociated
sources. Note that the total number of sources is 7191, which is less
than the number of sources 7195 in the 4FGL-DR4 catalogue (Ballet
et al. 2023) by the four sources with missing input features.

Provided that some of the physical classes have too few members
for a reasonable classification (e.g. less than 10 associated sources),
we use a hierarchical procedure to determine the classes (Malyshev
& Bhat 2023) that combines several physical classes with similar
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Table 1. Classes of associated sources in the 4FGL-DR4 catalogue (Abdol-
lahi et al. 2022; Ballet et al. 2023). Both associated and identified sources in
the catalogue are referred as associated sources in this work.

Physical class Associated sources ~ Description

gc 1 Galactic centre

psr 141 Young pulsar

msp 179 Millisecond pulsar

pwn 21 Pulsar wind nebula

snr 45 Supernova remnant

spp 124 Supernova remnant and/or
pulsar wind nebula

gle 34 Globular cluster

sfr 6 Star-forming region

hmb 11 High-mass binary

Imb 9 Low-mass binary

bin 10 Binary

nov 6 Nova

bll 1490 BL Lac type of blazar

fsrq 819 FSRQ type of blazar

rdg 53 Radio galaxy

agn 8 Non-blazar active galaxy

ssrq 2 Steep spectrum radio quasar

css 6 Compact steep spectrum radio
source

bcu 1624 Blazar candidate of uncertain
type

nlsyl 8 Narrow-line Seyfert 1 galaxy

sey 3 Seyfert galaxy

sbg 8 Starburst galaxy

gal 6 Normal galaxy (or part)

distributions in the feature space. In particular, we use the Gaussian
mixture model (GMM) to determine the hierarchical splitting of
the physical classes (for details, see Malyshev & Bhat 2023). An
example of such splitting of the physical classes with the condition
on the minimal number of sources in a class ng > 50 is shown in
Fig. 2, top panel. We note that node 011, which includes rdg, sey, sbg,
and agn classes, has only 74 associated sources. We have checked
that the classification into seven classes corresponding to the terminal
nodes in the top panel of Fig. 2 does not give reasonable results for
the 011 class. However, if we increase the condition on the minimal
number of sources to be, e.g. ny > 100, then node 01 cannot split.
As a result, this node has 3194 sources, which is almost 70 per cent
of all associated sources. In this case, the multi-class classification is
not meaningful either. A possible solution to this problem is to first
construct the classes with the condition ng > 50 and then prune the
tree by removing the node with the minimal number of classes, e.g.
node 011. The removed node is shown by the dashed box in the top
panel of Fig. 2. Since the parent node 01 has now only one child node
010, we merge nodes 010 and 01, i.e. the subtree under 010 is now a
subtree under 01 (the corresponding nodes in the subtree move one
level up). The resulting tree is shown in Fig. 2, bottom panel.

The physical classes in the pruned node are distributed among
the remaining six classes. In order to determine that, we train RF
classification with the six classes and then classify sources in rdg, sey,
sbg, and agn classes using the six-class classification.> We compute
the sum of class probabilities for all sources in each of the rdg, sey,

3In this paper, we use RF with maximal number of trees 50 and maximal depth
of 15. For the other parameters we use default values in the SCIKIT-LEARN
version 1.2.2 (Pedregosa et al. 2011) implementation of RF. In particular, the
Gini index is used for the determination of the splits.
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Figure 2. Definition of classes. Top panel: Hierarchical definition of classes
(following the method of Malyshev & Bhat 2023) with the condition that
the number of sources in a class is larger than 50. Dashed box shows the
class with the smallest number of sources. We remove this class from the
final definition of classes. The corresponding physical classes (rdg, sey, sbg,
and agn) are distributed among the remaining six classes according to the
maximal class probability sum for each of the physical class. Since node 01
has only one child 010 after pruning, we merge the nodes 01 and 010 into
a new node 01. Bottom panel: The result of pruning, which shows the final
hierarchical structure of the classes used for the classification in this paper.
See text for more details.

Table 2. Definition of classes. The classes are labelled by the largest physical
class, e.g. spp+ or msp+.

Associated

Class label Physical classes sources
spp+ glc, Imb, spp, nov 173
msp+ msp 179
psr+ hmb, psr, bin, snr,

gc, sfr, gal, pwn 241
fsrq+ nlsyl, fsrq 827
bcu+ ssrq, beu, sey, agn 1637
bll+ bll, css, rdg, sbg 1557

sbg, and agn classes and attach these classes to groups with the largest
sum of class probabilities. The result is that the sey and agn classes
are attributed to node 010 dominated by the bcu class, while the rdg
and sbg classes are attributed to node 011 dominated by the bll class.
The result of this procedure is shown in the bottom panel of Fig. 2.
We also show the summary of the remaining six classes in Table 2.
We note that physical classes are grouped in the six groups
according to their gamma-ray properties, i.e. even if the physical
nature of the sources is different but the gamma-ray properties
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are similar, the physical classes would be added to the group. For
example, the ‘bll4’ group has mostly active galactic nuclei (bll, css,
and rdg) and the starburst galaxies class (sbg). A comparison of the
two most important features for the separation of the physical classes
at level one (‘LP_beta’ and ‘log10(Unc_Energy_Flux100)’) for bll,
sbg, and several other physical classes can be found in fig. 1 of
Malyshev & Bhat (2023). The assembly of the groups according to
the similarities in the gamma-ray properties ensures an optimal multi-
class classification performance. This is a fundamental limitation of
any ML classification that the gamma-ray properties used for the
classification do not necessarily reflect the different physical nature
of the sources. In particular, in our analysis the ML classification
cannot separate starburst galaxies from other sources in the bll+
class. Although the multi-class classification is dominated by the
large classes, such as spp, msp, pst, fsrq, bcu, and bll, and, as a result,
it is also mostly useful for the separation of these large classes, it
nevertheless, can be useful also for the small classes, as it can provide
additional evidence for association or classification. For example, if
there is a nearby starburst galaxy in a vicinity of an unassociated
source with high bll4 classification probability, then the source is
more likely to be a starburst galaxy compared with the situation,
when this source is classified as a member of, e.g. msp+ or fsrq+
classes.

3. COVARIATE SHIFT MODEL

The presence of the covariate shift manifests itself in the fact that
the ratio of the training and the target PDFs is not a constant in the
multi-dimensional feature space. Provided that the domains of the
training and the target data sets are the same for the associated and
unassociated sources, the effect of the covariate shift can be modelled
by introducing weights for samples in the training and testing data
set proportional to the ratio of the corresponding PDFs.

w(xl) — punas(xt) . (3)

Passoc(Xi)

In this case, the differences in the densities of training or testing and
target data sets are compensated by the weighting of the samples.
In order to determine the weighting factor w(x) as a function of
the features, one needs to model the PDFs pyns(x;) and passoc(X;)-
There are different ways to approximate a distribution of discrete
points with a continuous PDF, e.g. using kernel density estimators.
In this paper, we use GMMs for modelling the PDFs of associated
and unassociated sources. Details about the construction of the PDF
models are provided in Appendix A. In order not to give too much
weight to any of the sources, we put an upper bound on the weights.
Examples of the PDFs for the associated sources including sample
weights are presented in Fig. 1 (‘wAssoc’ labels) with several values
of the maximal weight, e.g. w < wy,x = 1, 4,..., 16. Larger maximal
weights typically give a better agreement between the distribution of
unassociated sources and the weighted associated sources, especially
for the Glat distribution. However, for most of the features the
dependence on wp,y is not very significant. Also larger maximal
weight reduces the effective number of samples, where for a set
of samples with weights w;, the effective number of samples is
computed as (Kish 1965):

(E,‘ wi)z
=
2o Wi
We show the effective sample number as a function of wp,y in the

top panel of Fig. 3. For example, the effective number of associated
sources for wpa = 10 is 961, which is more than four times

“
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Figure 3. Effective number of samples (top panel) and oversampling (bottom
panel) as a function of the maximal sample weight. Top panel: Effective
number of samples as defined in Equation (4). The numbers in parentheses
show, respectively, the effective number of samples at wp,x = 10 and the
total number of associated sources in each of the six classes (Table 2). The
corresponding numbers of associated sources are also shown as the stand-
alone points near wp,x = 10. Bottom panel: Oversampling (or undersampling)
of sources defined by summing the sample weights. The first number in
parentheses shows the oversampled number of sources for all associated
sources and for each of the six classes at wp,x = 10. The second number is
the number of associated sources (also shown as stand-alone points).

smaller than the total number of associated sources in the 4FGL-
DR4 catalogue (4614), i.e. the variance of model parameters in
the weighted sample case can be expected to be larger than in the
unweighted case.

The weighting affects different classes unequally (see Table 2 for
the class definitions). In particular, the effective number of fsrq+
sources is about nine times smaller than the number of associated
fsrq+ sources, while the effective number of spp+ sources is less
than 1.5 times smaller than the number of associated spp+ sources.
Another characteristic number is oversampling (or undersampling),
which is computed as the sum of the weights. The sum of weights
for all sources and for the six classes is shown in the bottom panel
of Fig. 3. We see that bll+ and fsrq+ classes are undersampled
by a factor of about 2, while all other classes (including bcu+)
are oversampled with an oversampling factor of up to 6.6 (for the
spp+ class). Overall, we find that wy,,x = 10 provides a reasonable
compromise between the approximation of the distribution of the
unassociated sources (Fig. 1) and the effective number of samples
(top panel of Fig. 3). We use the w,, = 10 case below for training
and testing with weighted samples.
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4. EFFECT OF COVARIATE SHIFT ON
CLASSIFICATION

4.1 Two-class classification

In this section, in order to get an intuition about the effect of
the covariate shift, we use a two-class (rather than a multi-class)
classification problem. We define the two classes as active galactic
nuclei (AGNs) and Galactic sources (including other galaxies):

AGNSs: bll, fsrq, rdg, agn, ssrq, css, bcu, nlsyl, and sey (4013
sources);

Galactic: psr, msp, gc, pwn, snr, spp, glc, sfr, hmb, Imb, bin, nov,
sbg, and gal (601 sources).

The classification is performed with the RF algorithm. A com-
parison of receiver operating characteristic (ROC) curves for the
unweighted two-class classification and for the classifications where
weights are applied both for training and testing is presented in Fig. 4.
We see that the area under the curve (AUC) is reduced from about
0.96 to 0.89 both for AGNs and for Galactic sources.

The corresponding comparison of precision and recall is shown in
Fig. 5. In this case AGNs are affected slightly more than the Galactic
sources relative to statistical uncertainty.

Itis interesting to note that if we use weighting for testing only and
perform training with unweighted samples, then the performance is
similar to the case when the weighting is applied both for training
and for testing. We compare the corresponding precision and recall
in Fig. 6. This result is not surprising, provided that the classification
algorithm learns the conditional probabilities p(y|x) that are not
affected by the weights. Nevertheless, it does serve as a cross-check
of the procedure, which shows that training with either weighted or
unweighted samples can be used for the classification of unassociated
sources. But it is important to use weights for the testing samples in
the estimation of the performance to make sure that it is estimated
for the sources with a distribution similar to the distribution of the
target data set, i.e. the unassociated sources.

4.2 Multi-class classification

In this section, we study the effect of the covariate shift for training
and testing in multi-class classification of the Fermi-LAT sources.
For the classification, we use the six classes summarized in Table 2
and Fig. 2. As an example, we perform the classification with the RF
algorithm in this section, while in Appendix C we compare the results
with the classification using NN implemented with TensorFlow
(Abadi et al. 2015). We use 70/30 per cent split into training and
testing data sets. The performance is evaluated on the testing data
sets.

The ROC curves calculated using the one-versus-all definition
of the true positive and the false positive rates (TPR and FPR,
respectively) are shown in the bottom panels in Fig. 7. Both the
training and the testing are performed with weighted samples, where
the weights are determined in equation (3). The shaded areas show
the standard deviation of the ROC curves calculated from 10 random
split into training and testing data sets. The second (from the bottom)
row of panels in Fig. 7 shows the ROC curves in the five-class
classification, where the five classes are obtained by merging some of
the six classes by removing the last digit in the class names for the six
classes (shown in the titles of the panels). In particular, the physical
classes corresponding to the 0000 node are obtained by joining the
classes in 00 000 and 00 001 nodes. The physical classes in the 0000
node are glc, Imb, spp, nov (which come from node 00 000), and msp
(which come from node 00001). The green curves show the ROC
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training with weighted samples. See Fig. 5 for the definition of the lines.

curves in the five-class classification. Analogously to the six-class
classification, the green shaded area shows the uncertainty due to
the random splits into training and testing data sets. The red curves
in these panels show the ROC curves for probabilities obtained by
summing the six-class probabilities of the children nodes. The per-
formance for the direct five-class classification and for the five-class
probabilities determined by summation of the six-class probabilities
are practically the same. This conclusion also holds for the two- and
four-class classification shown in rows one and two of Fig. 7, where
we show both the ROC curves for the direct two- and four-class
classifications and for probabilities determined by summation of
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class probabilities of the children nodes. Similarly to the conclusions
of Malyshev & Bhat (2023), we find that the performance of direct
classification with two, four, and five classes and the performance
of classification obtained by summation of probabilities of children
nodes in the six-class case are very similar also for the weighted
samples. Consequently, it is sufficient to do a classification with the
maximal number of classes (six classes in this case).

In Fig. 8, we compare the ROC curves for the weighted and
unweighted multi-class classifications. Similarly to the two-class
case, the performance in the unweighted data set is better than for the
weighted one. Provided that the unweighted data set represents the
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for the six-class classification of the Fermi-LAT sources. The physical classes in each group and the numbers of associated sources in each physical class are
shown in tables inside the panels.

associated sources, while the weighted one models the distribution
of the unassociated sources, the performance of the classification
for the unassociated sources determined from the associated sources

(without weighting) is overestimated.

We show the difference in precision and recall for weighted and
unweighted training and testing in Fig. 9. For example, the precision
and recall for the bll4 and bcu+ classes in the weighted case are
worse, respectively better, than in the unweighted case, while the
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Figure 9. Precision and recall for unweighted training and testing using the RF classification algorithm (‘RF’ labels) and weighted training and testing (‘wRF’
labels) for the six-class classification of the Fermi-LAT sources. For the definition of the classes, see Fig. 8.

effect of using the weighted samples on the ROC curves for the bll+
and bcu+ classes are comparable, i.e. the AUC is smaller for both
classes for the weighted relative to the unweighted cases. The worse
ROC curves for the bll+ class is explained by the worse TPR, i.e.
the recall, while the reduction of the ROC curve performance for
the bcu+ class is explained by the worse FPR, which is the fraction
of non-bcu+ sources attributed to the bcu+ class. We note that the
bll+ class is undersampled by about a factor of two, while the bcu+
class is oversampled by almost a factor of two (bottom panel of
Fig. 3). Another example of a slightly better precision and recall in
the weighted case but a worse ROC curve is provided by the spp+
class. This can be explained by a similar increase in false positive
and true positive detections but a smaller size of the ‘negative’ data
set due to large oversampling of the spp+ class by a factor of 6.6
(bottom panel of Fig. 3).

In Figs 10 and 11, we compare the ROC curves and precision and
recall for the classification trained on unweighted samples but tested
on the weighted samples (‘wtRF’ labels) with the classification where
both training and testing were performed on the weighted samples
(‘WwRF’ labels). We find a similar performance for weighted and
unweighted training estimated from the tests on weighted samples,
which is generally expected for the covariate shift. We also find that
the probabilities are generally well calibrated both for weighted and
unweighted training when tested with the weighted samples (Fig. 12).

5. CATALOGUE CONSTRUCTION WITH
COVARIATE SHIFT

In this section, we describe the construction of probabilistic cat-
alogues where the class probabilities are calculated using both
weighted and unweighted training samples. As in the previous
section, we use six classes and ten input features. For classification,
we use RF and NN algorithms. In order to estimate the uncertainty
of prediction due to the random choice of the training samples, we
perform several 70/30 per cent splits into training and testing data
sets. The predicted class probabilities for unassociated sources are
computed as the mean over all predictions, while for the associated
sources, the probabilities are determined by the mean over the splits
where a source is included in the testing sample. In order to have
a reasonable statistics for associated sources, we require that each
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associated source appears in the testing data set at least five times,
which resulted in 51 splits into training and testing data sets. In
the catalogue, we report both the average class probabilities and
the standard deviation of the class probabilities due to the random
training/testing splits for each source. Thus, for each source we report
six average class probabilities determined with the RF algorithm,
six class probabilities determined with the NN algorithm, and the
corresponding standard deviations (24 columns in total). We also
include a column with sample weights. For the associated sources, the
sample weight is equal to the ratio of the unassociated to associated
sources PDFs with the maximal weight of 10. The sample weight for
the unassociated sources is set to one.

We perform the classification using weighted and unweighted
samples for training. The predicted numbers of associated and
unassociated sources in the six classes (calculated as the sum of
class probabilities) in the weighted and unweighted training cases
are shown in Tables 3 and 4, respectively. The uncertainties are
calculated as the root mean squared (RMS) of the corresponding
standard deviations. It is interesting to note that the predicted number
of sources in a class among unassociated sources is similar for the RF
algorithm and for most of classes for the NN algorithm. However the
expected number of sources in a class for associated sources is clearly
biased in the weighted training case. Overall, we find that unweighted
training provides a more reasonable result than the weighted training,
because the performance evaluated on the weighted test samples is
similar for weighted and unweighted training (cf. Figs 10, 11, and
12), while the predictions for the unweighted test samples are biased
in the weighted training case (Table 3) and they are not biased in the
unweighted training case (Table 4).

We compare the changes in the individual class probabilities for
the unassociated sources for weighted and unweighted training in
Figs 13 and 14. In Fig. 13, we calculate the difference of predicted
class probabilities in four cases: weighted RF minus unweighted RF
probability (‘“WRF — RF’ label), weighted NN minus unweighted NN
probability (‘WNN — NN’ label), unweighted RF minus unweighted
NN probability (‘RF — NN’ label), and weighted RF minus weighted
NN probability (‘WRF — wNN’ label). We see that in all cases the
differences of the class probabilities for the individual sources is
within about 13 per cent. The smallest differences (within about
4 per cent) are among weighted RF and unweighted RF probabilities
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Figure 10. ROC curves for unweighted training but weighted testing using the RF classification algorithm (‘wtRF’ labels) and weighted training and testing

(‘WwRF’ labels) for the six-class classification of the Fermi-LAT sources.

spp+ msp+

1.0
©
9]
[0]
—
—_
o
c
kel
(%] —— wtRF prec
‘O -~~~ WRF prec
o 0.2 —-- wtRF recall %,
a | e WRF recall "\,._A\

0.0 —

fsrq+

1.0 9
©
o]
(0]
—_
= g
o \
c \
Lo \
K] \
g A

A
- N “
o >, %,
e .

0.0 T T T T T T = T T =
0.00 025 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 025 0.50 0.75 1.00
Threshold

Threshold

Threshold

Figure 11. Precision and recall for unweighted training but weighted testing using the RF classification algorithm (‘wtRF’ labels) and weighted training and

testing (‘WwRF’ labels) for the six-class classification of the Fermi-LAT sources.

for all classes. The largest standard deviations of about 13 per cent are
for the RF minus NN probabilities for the unweighted and weighted
trainings in the bcu+ class.

Fig. 14 is similar to Fig. 13 but we divide the difference of
the probabilities for each source by the RMS of the uncertainties
due to random training/testing splits, i.e. we plot the histograms of
(p1 — p2)// (0} + 03)/2. We see that in most cases the difference
in class probabilities for the individual sources for different classi-
fication methods is comparable with the standard deviations due to
training/testing splits (ranging from about 0.50 to 20). We create
probabilistic catalogues constructed both with unweighted and with
weighted training samples.

In Fig. 15, we compare the confusion matrices for the RF
classification with the weighted and unweighted training and testing
data sets. The predicted classes are calculated by taking the class
with the largest probability for each source. In this calculation, we
take all associated sources and use the class probabilities determined
as a mean over the training/testing splits when the sources are in

the testing data sets. We see that testing with unweighted samples
gives similar performance estimates both for training on unweighted
samples (top-left panel) and for training on weighted samples (top-
right panel). While for testing with weighted samples, training with
unweighted samples (bottom-left panel) has a better performance for
psr+ and fsrq+ classes compared with the training with weighted
samples (bottom-right panel).

6. CONCLUSIONS

In the paper, we study the effect of the covariate shift (due to
difference in the distributions of associated and unassociated sources)
on the multi-class classification of Fermi-LAT sources. In order to
realistically estimate the expected performance for the classification
of unassociated sources using only the associated sources, we
introduce sampling weights proportional to the ratio of the PDFs
for the unassociated sources to the associated sources, so that the
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Table 3. Predictions for the number of associated and unassociated sources in the weighted training catalogue. For the

definition of the classes, see Table 2.

Class label N assoc RF assoc NN assoc RF unas NN unas
1 spp+ 173 183.0 £ 2.1 237.7+2.38 406.7 £ 3.1 525.0£3.5
2 msp+ 179 1834 + 1.8 226.7 £ 4.0 177.1 £2.0 2009 +£2.4
3 psr+ 241 238.8 + 2.0 399.5+53 187.5 £ 2.1 173.7 £ 2.1
4 fsrq+ 827 792.5 £3.5 663.8 £ 5.7 197.5£2.0 156.6 +£ 1.9
5 bcu+ 1637 17334 +£4.7 1887.8 £ 6.3 1270.0 £ 4.1 1257.3 £ 4.1
6 bll+ 1557 1482.8 £4.2 1198.5 £ 6.1 338.1+£25 263.4+23

Table 4. Predictions for the number of associated and unassociated sources in the unweighted training catalogue. For

the definition of the classes, see Table 2.

Class label N assoc RF assoc NN assoc RF unas NN unas
1 spp+ 173 1755 +£2.0 170.7 £ 1.5 4204 £ 3.1 4489 +£2.4
2 msp+ 179 1775+ 1.7 181.3 £ 2.0 182.3 +£2.0 197.0 £ 1.7
3 psr+ 241 236.2 +2.0 238.8 £2.2 187.6 £ 2.1 181.7 £ 1.6
4 fsrq+ 827 829.8 £ 3.5 8283 +2.3 200.5 + 2.1 1857+ 1.2
5 becu+ 1637 1641.8 £4.9 1619.0 £ 3.1 12533 £ 4.1 1269.7 £2.9
6 bll+ 1557 15532 +4.2 1576.0 £ 3.0 3329 +25 2940+ 1.6

PDF of associated sources weighted by these sampling weights is
similar to the PDF of the unassociated ones.

We use RF and NN algorithms and perform training with both
weighted and unweighted samples. We test the performance using
weighted testing samples drawn from the associated sources, which
is expected to give realistic estimates of the performance for the
unassociated sources. We find that

(1) Covariate shift has little effect on estimated class proba-
bilities for individual sources. The difference among class proba-
bilities for individual unassociated sources derived with RF and NN
algorithms using either weighted or unweighted training samples
are comparable with the statistical uncertainties for the probabilities
estimated from the random splits into training and testing data sets.
This result justifies the use of unweighted training samples in the
derivation of the classification algorithms, which are then used to
classify unassociated sources.

RASTAI 2, 735-751 (2023)

(2) Using weighted or unweighted training samples has little
effect on average performance. The average performance, esti-
mated using ROC curves, precision, recall, and reliability diagrams,
is similar for weighted and for unweighted training. However, the
variance is observed to increase for NN algorithms in the weighted
training case for some of the characteristics (e.g. precision and
reliability) for classes with a significant decrease due to weights
in the effective sample size (e.g. FSRQs).

(3) Covariate shift results in a decrease of up to 20 per cent
in precision and recall for some classes, estimated with weighted
testing samples compared with estimates with unweighted testing
samples. The most affected classes are the classes of extragalactic
sources (such as FSRQs and BL Lacs) dominated by sources at high
latitudes where the fraction of unassociated sources is smaller than
at low latitudes.

The overall conclusion is that both unweighted and weighted
training have similar expected performance, but the covariate shift
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Figure 13. Difference of class probabilities for individual sources determined with RF (‘RF’ labels) and NN (‘NN’ labels) algorithms using weighted (‘w’ is
included in labels) and unweighted training. The corresponding overall mean difference and the standard deviations are reported in the labels.
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Figure 14. Difference of class probabilities for individual sources determined with RF (‘RF’ labels) and NN (‘NN labels) algorithms using weighted (‘w’
is included in labels) and unweighted training relative to the standard deviations of the predicted probabilities (see text for more details). The corresponding
overall mean relative difference and the standard deviations of the relative differences are reported in the labels.

should be taken into account in the estimations of the performance, leads to biased predictions for the unweighted tests. As a result, we
e.g. with the weighted testing samples. Weighted training can lead to find that it is better to perform the classification with unweighted
larger variance of the expected performance (especially for classes training data set but, for a realistic estimate of the classification
with a significant reduction in effective sample number) and it also performance, one should use weighted testing samples.
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Figure 15. Confusion matrix normalized to the number of predicted sources in a class. The sources are classified according to the highest class probability for
each source. The numbers on the diagonal show the one-versus-all precision for this classification method. Top (bottom) panels show the performance for the
unweighted (weighted) samples representative for the associated (unassociated) sources.

We create probabilistic catalogues using RF and NN algorithms
trained with weighted and unweighted samples. The catalogues
include predicted class probabilities for six classes with RF and
NN algorithms averaged over 51 realizations of the 70/30 per cent
training/testing data sets (for associated sources the probabilities are
averaged over the splits when the source appears in the testing sam-
ple) as well as the standard deviations of the probabilities due to the
splits. We also add a column with the sample weights. We calculate
the expected number of sources in the six classes among the unassoci-
ated sources. The largest fractional increase is expected for the spp+
class: There are about 2.5 times more expected spp+ sources among
the unassociated ones than there are associated spp+ sources. For
comparison, the expected number of msp+ (psr+) sources among
the unassociated sources is about the number of (75 per cent of)
associated msp+ (psr+) sources. For the extragalactic sources, the
largest fractional increase is for the bcu+ sources: The expected
increase is more than 70 per cent, compared with an increase of about
20 per cent for bll4 and fsrq+ classes. The catalogues are publicly
available at https://zenodo.org/doi/10.5281/zenodo.8140548.
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APPENDIX A: MODEL THE DISTRIBUTIONS
OF ASSOCIATED AND UNASSOCIATED
SOURCES

In this appendix, we construct PDFs of associated and unassociated
sources using GMMs. In order to determine an optimal number of
kernels in the GMMs, we compare the Akaike information criterion
(AIC, Akaike 1974)

AIC =2k —2InL, (AT)

where k is the number of parameters in a model and £ is the likelihood
of the model, and the Bayesian information criterion (BIC, Schwarz
1978)

BIC=klnn —2InL, (A2)

where k and £ are the same as in the AIC and n is the number of data
samples. In Fig. Al, we plot the AIC and BIC as functions of the
number of the GMM kernels. We use the AIC and BIC implemen-
tations in the SCIKIT-LEARN package (Pedregosa et al. 2011). We see
that above about 12 GMM kernels BIC is approximately constant for

led
\ —— Assoc AIC
---- Assoc BIC
34 . —— Unas AIC
i N N I KRN Unas BIC
O,
o 2
—_
(]
o
<14«
0_

5 10 15 20 25 30
Number of GMM kernels

Figure Al. The Akaike (Akaike 1974) and Bayesian (Schwarz 1978)
information criteria as functions of the number of GMM kernels for associated
(unassociated) sources: ‘Assoc AIC” and ‘Assoc BIC’ (‘Unas AIC” and ‘Unas
BIC’) labels, respectively. Both AIC and BIC are decreasing up to about 12
GMM kernels.
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Figure A2. The distribution of log-likelihoods in the 12-kernel GMM models
of the associated and unassociated sources. Solid (dash—dotted) line: The
distribution of log-likelihoods for associated (unassociated) sources. Dashed
(dotted) line: The distribution of log-likelihoods for sources sampled from
the GMM model for associated (unassociated) sources.

both associated and unassociated sources. Although AIC continues
to decrease above 12 kernels, we choose the GMM models with 12
kernels as the models with minimal complexity up to which both AIC
and BIC are decreasing. We also test in Fig. A2 that for the 12-kernel
GMM models the distributions of likelihoods for the associated and
unassociated sources are similar to the distributions of likelihoods for
the samples drawn from models for the associated and unassociated
sources, respectively.

APPENDIX B: SELECTION OF INPUT
FEATURES AND FEATURE IMPORTANCE

In this work, we use 10 input features (described in Section 2).
Although Fermi-LAT catalogues have many more source parameters,
most of these parameters are highly correlated (Bhat & Malyshev
2022). In particular, there are different representations of the same
quantity, such as the position on the sky in Galactic or equatorial
coordinates. There are also high correlations, e.g. among uncer-
tainties in flux, energy flux, and spectrum normalization (Bhat &
Malyshev 2022). It has been noted by Luo et al. (2020) that, in
case of two-class classification, using more than five input features
does not significantly improve the classification performance with
the increasing complexity of the model.

In this work, we use the features previously selected by Luo et al.
(2020) and Bhat & Malyshev (2022) with several modifications: (1)
instead of the hardness ratios, we use the log-parabola curvature
parameter to describe the change of the ‘spectral index’ as a
function of energy; (2) instead of the spectral index parameter (or
power-law spectral index), we use the index of the log-parabola
spectrum at 1 GeV, which is independent of the pivot energy
and is well defined for curved spectra; (3) we add the average
significance parameter (‘Signif_Avg’). Although this parameter is
highly correlated with the energy flux above 100 MeV (Bhat &
Malyshev 2022), ‘log10(Signif_Avg)’ has a higher importance than
‘log10(Energy_Flux100)’ in RF classifications with more than two
classes (cf. Table B1); and (4) we replace Galactic longitude with
two parameters ‘cos(GLON)’ and ‘sin(GLON)’ in order to avoid dis-
continuity between 0° and 360°. The same input features have been
previously used by Malyshev & Bhat (2023) in the determination of
the hierarchical classification of the Fermi-LAT sources.
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Table B1. Feature importance for RF classification with unweighted training
and testing for different numbers of classes corresponding to the different
depth of the class separation in the bottom panel of Fig. 2. Depths 1, 2, 3, and
4 correspond to two-, four-, five-, and six-class classifications, respectively.

Feature Depth1  Depth 2 Depth 3 Depth 4
LP_index1000MeV 0.159 0.167 0.160 0.163
log10(Signif_Avg) 0.077 0.128 0.140 0.142
log10(Variability -Index) 0.100 0.114 0.114 0.113
log10(Unc_Energy_Flux100) 0.128 0.109 0.105 0.108
LP_beta 0.103 0.106 0.105 0.101
log10(Energy_Flux100) 0.112 0.089 0.092 0.092
sin(GLAT) 0.055 0.081 0.087 0.087
LP_SigCurv 0.164 0.097 0.082 0.081
cos(GLON) 0.052 0.056 0.058 0.059
sin(GLON) 0.051 0.054 0.057 0.055

We show the importance of the 10 input features in the RF
classification (in the unweighted training case) in Table B1. The
features are ordered according to the importance for the six-class
classification (the ‘Depth 4’ column). It is interesting to note that
some features have a significantly different importance in the two-
class and in the multi-class classifications. For instance, the spectral
curvature significance parameter (‘LP_SigCurv’) has the highest
significance for the two-class classification (it has also been the
most significant parameter in the analysis of Saz Parkinson et al.
2016, Luo et al. 2020, and Bhat & Malyshev 2022), but it is in
the middle (near the end) of the list for the four-class (five- and
six-class) classification. The parameter ‘LP_index1000MeV’ is the
most important parameter for all classifications in this work, while
‘Spectral_Index’ has been less significant in the previous two-class
classifications, e.g. on place three in Luo et al. (2020) or on place four
in Saz Parkinson et al. (2016), and log-parabola index ‘LP_Index’
was near the end of the significance table in Malyshev & Bhat
(2023). On the other hand, parameters ‘loglO(Variability_Index)’
and ‘log10(Unc_Energy_Flux100)’ have similar importance for all
cases (places three and four, respectively) in this work as well as in
the previous analyses, where the importance of these features has
been between place two and four (Saz Parkinson et al. 2016; Luo
et al. 2020; Bhat & Malyshev 2022).

APPENDIX C: NEURAL NETWORKS

In this appendix, we provide details about the NN method for
the classification of Fermi-LAT sources. We use the TensorFlow
implementation of NNs (Abadi et al. 2015). We use stochastic
gradient descent (adam) with learning rate of 0.001, two hidden
layers with 20 and 10 nodes, respectively, tanh activation functions,
batch size of 200, L2 regularization with /2 = 0.001, and no drop
out. We use the sparse categorical cross entropy loss function. In
Fig. Cl1, we show the one-versus-all ROC AUC values for the six
groups for the unweighted (top panel) and weighted (bottom panel)
training. We find that for the unweighted training there is no sign of
overfitting up to the maximal number of epochs used in this test, e.g.
2000. Provided that there is still a slight increase in performance in
some groups up to about 500 epochs, we use 500 epochs for training
the NN algorithm in the unweighted case. For the weighted case,
there are signs of overfitting for some groups above 500 epochs, e.g.
for psr+ and fsrq+ groups. As a result, we also use 500 epochs for
the training in the weighted samples case.

In Fig. C2, we compare ROC curves, precision, recall, and
calibration diagrams for the training with weighted samples using
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NN and RF algorithms. Generally, the performance of the NN is
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Figure C1. The ROC AUC for one-versus-all classification as a function of
the number of epochs for the NN algorithm with unweighted (top panel) and
weighted (bottom panel) samples.

comparable with the performance of the RF. RF gives slightly better
results for the psr+ class, while NN has a better performance for the
bll+ class.

In Fig. C3, we compare the performance of the NN algorithm
trained with unweighted and tested with weighted samples (‘WtNN’
labels) versus trained and tested with weighted samples (‘wWNN’
labels). Most of the characteristics are similar for training with
weighted and unweighted samples. However, the statistical uncer-
tainty band is narrower in the unweighted training case for the fsrq+
and bll+ classes for precision (middle panels) and reliability (bottom
panels). This can be attributed to the fact that in the weighted samples
case the ratio of the effective number of samples to the number of
associated sources in the fsrq+ and bll+4 classes is the smallest among
the six classes, which leads to an increased variance for this class in
the weighted training case compared with the unweighted training.

In Fig. C4, we compare the confusion matrices for the weighted
and unweighted training and testing data sets for the classification
with the NN algorithm similar to the confusion matrices in Fig. 15 for
the classification with the RF algorithm. The training on unweighted
samples (left panels) has a similar or better performance (with
a few exceptions) than the training on weighted samples (right
panels) when tested both on unweighted samples (top panels) and on
weighted samples (bottom panels).
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Figure C2. Comparison of ROC curves (top panels), precision and recall (middle panels), and calibration diagrams (bottom panels) for training and testing
with weighted samples using RF (‘WRF’ labels) and NN (‘WwNN’ labels) algorithms. The numbers in parenthesis in the top panel show the ROC AUC.
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algorithms in case of training with unweighted samples and testing with weighted samples (‘WtNN’ labels) and with weighted samples used both for training
and testing (‘WNN” labels).
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