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Abstract

Rare B-meson decays such as the B0 → Ksπ
0 which proceed without a charm quark

provide a probe for physics beyond the standard model. This decay proceeds mainly
via the b→ s penguin transition, with the b→ u transition being colour suppressed,
allowing CP-violating effects to be observable.

The asymmetric e+e− KEKB collider and the Belle detector provide the large
luminosity and data collection required to observe these rare B decays.

Methods to reduce the large qq̄ backgrounds are investigated. The use of opti-
mised neural networks using TensorFlow shows a significant improvement compared
to the commonly used NeuroBayes software. Techniques for reducing correlations
between variables introduced by TensorFlow are also investigated, proving that the
use of adversarial neural networks can provide an improved background suppression
as compared to NeuroBayes, whilst minimising correlations introduced by the neural
network.

An improved method of measuring the direct CP violation is introduced. Us-
ing Monte Carlo data with sample sizes corresponding to the full Belle datatset of
(771.581 ± 10.566) × 106BB̄ events, the statistical uncertainty in ACP using this
method is reduced from the latest Belle result of 0.13 to 0.1035 ± 0.0032. This
method would also provide an up to date measurement on B(B0 → K0π0).
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1|Introduction

The standard model of particle physics is the most complete theory we have, accu-
rately describing the constituents of matter and (apart from gravity) all the known
forces of nature. The fundamental particles are the three generations of quarks and
leptons (along with their anti-particles) which make the atoms and molecules, the
force mediator bosons, and the famous Higgs boson, see Figure 1.1.

Although the standard model has proven excellent at producing testable results
to a high accuracy and predicting the existence of later discovered particles (the
latest of which being the discovery of the long anticipated Higgs boson in 2012[2]),
it is not a complete theory of everything. Aside from not including gravity (and large
scale phenomena such as dark matter and dark energy) at all, there are measurable
failures at the high energy scale. One example being the phenomena of neutrino
oscillation, requiring that the neutrinos have (small but non-zero) mass[3]. There is
also a large matter-antimatter asymmetry in the universe. A priori we would expect
equal abundances of matter and antimatter. We know that there is an asymmetry
as there are no regions of space where anti-matter dominates (we would observe
interactions at the boundary), and there are no known processes by which pockets of
matter and anti-matter could be separated at the scale of the observable universe[4].
In addition to this, studies of the cosmic microwave background show that the ratio
of the number baryonic particles(inclusive of baryons and anti-baryons) to photons
in the universe is in the range 5.8 × 10−10 to 6.6 × 10−10[5]. As matter and anti-
matter annihilate, this number shows an overabundance of matter to anti-matter
of around 1 in 109. Electroweak baryogenesis in the standard model on the other
hand puts an upper limit on the ratio of baryons to photons of 10−26[6]. Clearly the
baryon asymmetry must come from physics beyond the standard model.

In 1967 Andrei Sakharov proposed the following three conditions necessary for
baryogenesis(the process creating the baryon number asymmetry) to occur[7]:

1. Baryon number violation. Processes in which ∆NB 6= 0 are obviously needed
in order to produce the baryon number asymmetry.

2. Violation of C -parity (an operation exchanging a particle for its anti-particle
and vice versa) and CP (applying C along with flipping the spatial coordi-
nates).

3. A period in which the universe is out of thermal equilibrium. Necessary as
any baryon number violating process would just as likely occur in reverse.

Although CP violation does not occur in electromagnetic processes, it does occur
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Quarks Leptons Bosons(
u c t
d s b

) (
e µ τ
νe νµ ντ

) (
H γ Z W± g

)
Figure 1.1: Showing the particles of the standard model. The three generations of
quarks (top and bottom rows having charges +2

3
and −1

3
respectively). The three

generations of lepton - the (massive) top row (charge −1) and their corresponding
chargeless neutrinos (massless in the standard model). The bosons, comprised of the
spin-0 Higgs boson and the spin-1 force mediators; the photon (massless, chargeless)
- electromagnetic force, Z (massive, chargeless) and W±(massive, charge of ±1) -
weak force, g (massless, chargeless) - strong force.

in weak processes. Quantum chromodynamics allows CP violation, although it has
never been observed in strong interactions.

Decays of b quarks provide a rich avenue for investigation into CP and flavour
physics. B factories such as Belle and BaBar produce B mesons at extremely high
luminosities and allow us to provide tight constrains on CP violating processes and
probe for physics beyond the standard model.

1.1 CP violation
Applying the parity operator P flips the spacial coordinates, thus changing a particle
from a right-handed(spin aligned with momentum) particle into a left-handed(spin
anti-aligned to momentum) particle and vice versa (and similarly for antiparticles).
So in the case of a neutrino:

P |νr〉 = |νl〉
P |ν̄l〉 = |ν̄r〉

(1.1)

P-violation was first observed in 1957 in the famous Wu experiment in which beta
decays (a weak process) of cobalt-60 were found to have a directional preference
which maximally violated P-symmetry[8].

The application of CP takes a left handed particle to a right handed antiparticle
and vice versa:

CP |νl〉 = |ν̄r〉
CP |ν̄r〉 = |νl〉

(1.2)

Violation of CP-symmetry occurs via three processes, CP violation through de-
cay, CP-violation through mixing, and interference between the two.

CP violation can be explored in the case of neutral meson mixing in which a
neutral meson oscillates between its CP eigenstates. This was first observed in in
kaon sector by Cronin and Fitch in 1964[9]. The combination of CP with time
reversal (CPT) is thought to be an unbroken symmetry of nature.

CP violation theory for neutral mesons will now be introduced, following the full
analysis in [10]. The superposition of states of a neutral meson P 0 can be written

2
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as:

|ψ(t)〉 = α(t)
∣∣P 0
〉
+ β(t)

∣∣P̄ 0
〉

(1.3)

Where |P 0〉 and
∣∣P̄ 0
〉

are flavour - strong and electromagnetic - eigenstates, and
α(t) and β(t) are their complex time dependent coefficients. This wave-function is
governed by the Schrödinger equation:

H |ψ(t)〉 = i
∂ |ψ(t)〉
∂t

(1.4)

Where H can be decomposed into:

H =M − i

2
Γ (1.5)

Where M gives a mass term, and Γ describes the exponential decay, both are Her-
mitian (2 × 2) matrices. Expressing the two mass-eigenstates P1 and P2 as super-
positions of the flavour eigenstates gives:

|P1〉 = p
∣∣P 0
〉
− q

∣∣P̄ 0
〉

|P2〉 = p
∣∣P 0
〉
+ q

∣∣P̄ 0
〉 (1.6)

The complex coefficients p and q are retrieved by solving for the eiganvalues of 1.5
and 1.6 giving:

p

q
=

√
M∗

12 − i
2
Γ∗
12

M12 − i
2
Γ12

(1.7)

Where the subscript 12 corresponds to the second element in the first row for ma-
trices M and Γ. Now looking at the decay of the flavour eigenstates |P 0〉 and

∣∣P̄ 0
〉
,

to final states |f〉 and
∣∣f̄〉, we have the following decay amplitudes:

Af = 〈f |O
∣∣P 0
〉

Āf = 〈f |O
∣∣P̄ 0
〉

Af̄ =
〈
f̄
∣∣O ∣∣P 0

〉
Āf̄ =

〈
f̄
∣∣O ∣∣P̄ 0

〉 (1.8)

By defining:

λf =
q

p

Āf

Af

(1.9)

and:

Df =
2Re(λf )

1 + |λf |2

Cf =
1− |λf |2

1 + |λf |2

Sf =
2 Im(λf )

1 + |λf |2

(1.10)

3
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we can express the decay rates of P 0 and P̄ 0 to f at time t as:

ΓP 0→f (t) = |Af |2(1 + |λf |2)
e−tΓCP

2

[
cosh

(
∆Γt

2

)
+Df sinh

(
∆Γt

2

)
+Cf cos (∆mt)− Sf sin (∆mt)

] (1.11)

ΓP̄ 0→f (t) =

∣∣∣∣pq
∣∣∣∣2 |Af |2(1 + |λf |2)

e−tΓCP

2

[
cosh

(
∆Γt

2

)
+Df sinh

(
∆Γt

2

)
−Cf cos (∆mt) + Sf sin (∆mt)

] (1.12)

Where ΓCP = 1
2
(Γ1 +Γ2), ∆Γ = Γ2 − Γ1, and ∆m = m2 −m1 given the decay rates

(Γ1/2)and masses (m1/2) of P1 and P2 respectively.

1.1.1 Direct CP Violation
CP violation through decay, or direct CP violation, occurs when the decay rate of
a particle P 0 to a final state f is not equal to the decay rate of the CP conjugate of
this process (P̄ 0 to f̄):

Γ(P 0 → f) 6= Γ(P̄ 0 → f̄) (1.13)

i.e. when: ∣∣∣∣Āf̄

Af

∣∣∣∣ 6= 1 (1.14)

We define the CP asymmetry as:

ACP =
Γ(P 0 → f)− Γ(P̄ 0 → f̄)

Γ(P 0 → f) + Γ(P̄ 0 → f̄)
(1.15)

Which in the case of |f〉 being a CP eigenstate (i.e. CP |f〉 = ± |f〉 =
∣∣f̄〉)

becomes:

ACP =
Γ(P 0 → f)− Γ(P̄ 0 → f)

Γ(P 0 → f) + Γ(P̄ 0 → f)
(1.16)

And occurs when: ∣∣∣∣Āf

Af

∣∣∣∣ 6= 1 (1.17)

This is possible when there are two leading channels proceeding via the weak and
strong forces. Direct CP violation cannot proceed through a CP violating phase in
the weak sector alone, which can be shown as follows. Assuming the process P 0 → f
proceeds via one channel, we have CP conjugate decay amplitudes given by:

Af = |a|eiδeiφ

Āf̄ = |a|e−iδeiφ
(1.18)
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Where δ is the weak phase and φ is the CP invariant strong phase and a is the decay
amplitude. Then there is no CP violation as:∣∣∣∣Āf̄

Af

∣∣∣∣2 = ∣∣∣∣eiδeiφe−iδeiφ

e−iδeiφeiδeiφ

∣∣∣∣ = 1 (1.19)

Instead, assume we have the decay proceeding via two Feynman diagrams but
with only a weak phase:

Af = |a|eiδ1 + |b|eiδ2

Āf̄ = |a|e−iδ1 + |b|e−iδ2
(1.20)

Where a and b are the decay amplitudes corresponding to each decay channel. Then
there is no CP violation as:

∣∣∣∣Āf̄

Af

∣∣∣∣2 = ∣∣∣∣ |a|2eiδ1e−iδ1 + |b|2eiδ2e−iδ2 + |a||b|eiδ1e−iδ2 + |a||b|eiδ2e−iδ1

|a|2e−iδ1eiδ1 + |b|2e−iδ2eiδ2 + |a||b|e−iδ1eiδ2 + |a||b|e−iδ2eiδ1

∣∣∣∣ = 1 (1.21)

Finally, assuming two Feynman diagrams contributing to the decay, and both
having strong and weak phases:

Af = |a|eiδ1eiφ1 + |b|eiδ2eiφ2

Āf̄ = |a|e−iδ1eiφ1 + |b|e−iδ2eiφ2
(1.22)

We get :

|Af |2 = |a|2 + |b|2 + 2|a||b| cos(∆φ+∆δ)∣∣Āf

∣∣2 = |a|2 + |b|2 + 2|a||b| cos(∆φ−∆δ)
(1.23)

where ∆δ and ∆φ are the differences between δ1 and δ2, and between φ1 and φ2

respectively. As can be seen, we can only get CP violation through decays if there
are both the strong and weak phases from multiple Feynman diagrams.

1.1.2 CP Violation Through Mixing
In the neutral meson case, CP violation can proceed via particle oscillations when:

Rate(P 0 → P̄ 0) 6= Rate(P̄ 0 → P 0) (1.24)
The CP asymmetry in mixing is given by:

ACP =
|p/q|2 − |q/p|2

|p/q|2 + |q/p|2
(1.25)

and is of course non-zero if: ∣∣∣∣pq
∣∣∣∣ 6= 1 (1.26)

as the oscillation probabilities will not be equal (where p/q is given by 1.7).
These decays are measured from semi-leptonic decays as the flavour of the neutral
meson at decay time is known, so any oscillations can be counted.

5



1.2 CHAPTER 1. INTRODUCTION

1.1.3 CP Violation Through Interference
The third type of CP violation can proceed when there is interference between
CP violation in decays and CP violation through mixing, even if there are no CP
asymmetries present in them individually. This occurs when the final state is a CP
eigenstate (both P 0 and P̄ 0 can decay to f). There is CP violation if the following
holds:

Γ(P 0 → f)(t) 6= Γ(P̄ 0 → f)(t) (1.27)

when both processes P 0 → P̄ 0 → f and P 0 → f are viable (and similarly when
swapping P̄ 0 and P 0).

Assuming that |q/p| = 1 and |Āf/Af | = 1 (i.e. that there are no CP asymmetries
from mixing or directly through decays) we get:

ACP (t) =
− Im(λf ) sin(∆mt)

cosh(1
2
∆Γt) + Re(λf ) sinh(

1
2
∆Γt)

(1.28)

Therefore there will still be CP violation as long as Im(λf ) 6= 0.

1.2 The CKM Matrix and Flavour Physics
Quark flavour - although unchanged in QCD and QED processes - is not a conserved
quantity in weak interactions. This is the only known source of CP violation in the
standard model that has been verified (CP violation is permitted in QCD but has
never been observed).

The CP violating interactions are mediated by the W± bosons, allowing flavour
changes when converting up-type to down-type quarks and vice versa. The coupling
strengths between them are laid out in the CKM (Cabibbo–Kobayashi–Maskawa)
matrix:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1.29)

Strictly this gives the quark flavour eigenstates as combinations of the mass eigen-
states. So mass eigenstate u couples to flavour eigenstate d′, and similarly c to s′

and t to b′. The flavour eigenstates are then given by:d′s′
b′

 = VCKM

ds
b

 (1.30)

where the couplings Vij are to be measured experimentally.
The CKM matrix - the couplings - can be expressed in terms of rotation angles

relating the 1st and 2nd, 1st and 3rd, and 2nd and 3rd generations (θ12, θ13 and θ23

6
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respectively), along with the CP violating phase (δ)[11]:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 (1.31)

Where cij = cos (θij) and sij = sin (θij). The coupling is very strongly weighted to
the same generation, with the diagonal elements being close to one. For example
Vub is much smaller than Vcb, which is in turn much smaller than Vtb.

A common representation of VCKM is the Wolfenstein parameterisation, given
by its Taylor expansion in λ(= |Vus|), which up to third order is given by[12]:

VCKM ≈

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (1.32)

Where A, ρ, and η are of order one. It can be clearly seen from the powers of λ that
Vcb >> Vub.

The CKM matrix must of course be unitary (VCKMV
†
CKM = I) to be physical, as

it must conserve probability. This leads to nine equations, three unitarity relations
(for each of the diagonal elements in I) and six orthogonality relations (for the off-
diagonals). These orthogonality relations give six independent relations that can be
represented as triangles in the complex plane. The triangle most commonly chosen
is given by:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.33)

This is known as the unitarity triangle, shown in Figure 1.2. Each side is divided
by VcdV

∗
cb to give a base length of one. The area of the triangle corresponds to the

amount of CP-violation arising in the weak sector. Firm experimental measurements
are required to verify that the angles sum to 180◦.

The angles are given by:

φ1 = arg

[
−VcdV ∗

cb

VtdV ∗
tb

]
(1.34)

φ2 = arg

[
−VtdV ∗

tb

VudV ∗
ub

]
(1.35)

φ3 = arg

[
−VudV ∗

ub

VcdV ∗
cb

]
(1.36)

7
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φ3

φ2

φ1

VudV
∗
ub

VcdV ∗
cb

VtdV
∗
tb

VcdV ∗
cb

(0, 0) (1, 0)

(ρ̄, η̄)

Figure 1.2: Showing the unitarity triangle in the complex plane, where ρ̄ = ρ(1 −
λ2/2) and η̄ = η(1− λ2/2).

1.3 B Physics
The decays of b quarks provides a rich area of study in the search for physics beyond
the standard model, the measuring of the angles of the unitarity triangle, and inves-
tigating CP violation. The B meson (composed of a b̄ and either a d, u, s or c) in
particular exhibits the behaviour laid out above; mixing and CP violating decays.

Previous experiments have been used to investigate B physics but the number
of BB̄ events was small. The CESR collider produced around thirty BB̄ events per
day. To make new discoveries in this sector, much greater luminosities were needed.
The B factories Belle and BaBar were built in the 1990s for this purpose, producing
more than one-million BB̄ events daily (at the end of their runs)[13].

The production of B0B̄0 pairs allows us to measure a range of properties of B
decays using the information from both B-mesons. The B of interest will be referred
to as BCP , as it will show the CP violating effects that we measure, and the ‘other’
B meson as Btag, as we use it to deduce the flavour - ‘flavour tagging’. The flavour
of Btag at creation tells us the flavour of of BCP at decay time (taking account of
mixing effects) and can thus be used for time-independent (i.e. direct) CP studies.
Time dependent investigations also allow for investigations into CP violation from
mixing and interference.

This wouldn’t be possible without the large number of coherent BB̄ pairs pro-
duced at the B-factories. They are made by producing Υ mesons at the 4s res-
onance. Υ(4s) (or Υ(10580)) is composed of bb̄ at a resonance with a mass of
(10.5794 ± 0.0012) GeVc−2[5], just above double the mass of a B meson at a mass
of (5279.63± 0.15) MeVc−2. They decay primarily (more than 96% of the time) to
BB̄ (48.6% to B0B̄0)[5].

As shown above, the strongest coupling of the b (to lighter quarks) is Vcb, so the
vast majority of B decays occur via b → c transitions. Charmless-rare B decays
(named as such due to their very small branching fractions of order 10−5) proceed

8
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mainly via a Cabbibo suppressed tree diagram and a penguin diagram, the ampli-
tudes of which are not of greatly different order. This allows the associated weak
and strong phases to produce CP violation.

1.4 B0 − B̄0 Oscillations
Knowledge of the flavour of the B0

CP is obtained from the flavour of B0
tag, given

that they are produced in a coherent state. Neutral B meson flavour eigenstates are
superpositions of the mass eigenstates. At a time t they are given by[14]:

∣∣B0(t)
〉
=

|BL(t)〉+ |BH(t)〉
2p∣∣B̄0(t)

〉
=

|BL(t)〉 − |BH(t)〉
2q

(1.37)

Where BL and BH correspond to P2 and P1 in Equation 1.6, where BL and BH

are the mass eigenstates with lower and higher masses respectively. p and q are the
complex coefficients from Equation 1.7. As BH and BL propagate at different rates,
a state |B0(t)〉 at time t = 0 can then be measured as a B̄0 at time t = t′ and
vice versa. The dominant Feynman box-diagrams governing this process are given
in Figure 1.3.

b d

d b

q̄u

qu

W± W±B0 B̄0

b d

d b

W+

W−

q̄u quB0 B̄0

Figure 1.3: Showing the dominant Feynman diagrams responsible for B0 − B̄0 mix-
ing. qu corresponds to either a u, c or t quark.

The B0B̄0 pairs are produced in a coherent state given by[13]:∣∣B0, B̄0
〉
=

1√
2

(∣∣B0
〉 ∣∣B̄0

〉
−
∣∣B̄0
〉 ∣∣B0

〉)
(1.38)

There is always exactly one B0 and one B̄0 until one of them decays. At this point
the other B0 is free to oscillate. Figure 1.4 shows the an example of an event where
a B0 oscillates before decay.

This process is obviously time-dependent. The time-integrated probability(χd)
that a B0 decays as a B̄0 (and vice versa) is 0.186±0.004[5]. This is not a negligible
effect.

9
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e− e+
Υ(4s)

B̄0

B0
tag

B0
CP

B0

B̄0

∆z

Figure 1.4: Showing the production of a coherent B0B̄0 pair in laboratory frame.
The B0

tag decays as a B̄0, so at this point, B0
CP is a B0. B0

CP then oscillates, decaying
as a B̄0. ∆z is the distance between decays along the beamline axis, in laboratory
frame.

1.5 B0 → KSπ
0 Decays

The B0 → K0π0 decays proceed primarily through the tree and penguin processes
shown in Figure 1.5. The tree process is largely suppressed by the small Vub due
to the b → u transition. The penguin process is therefore the dominant mode in
this decay (which proceeds via ū, c̄ or t̄ quark). The amplitudes being not of vastly
different order - with the relative weak and strong phases between the two - allow
the CP violating processes to occur.

The amplitude of the decay is therefore the sum of the tree component:

V ∗
ubVusAt (1.39)

and penguin component:

V ∗
ubVusA

u
p + V ∗

cbVcsA
c
p + V ∗

tbVtsA
t
p (1.40)

where At is the tree amplitude and Aq
p are the amplitudes for the three penguins(for

each of the up type quarks in the penguin loop). And since the orthogonality
relations of the unitarity triangle give:

V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0 (1.41)

the full amplitude can be written as:

A
(
B0 → K0π0

)
= V ∗

ubVus(At + Ac
p − At

p) + V ∗
cbVcs(A

c
p − At

p) (1.42)
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b s

d d

d

d

g

W+

B0

K0

π0

q̄u

V ∗
qub

Vqus
b u

d d

u

s

W+

B0

π0

K0

V ∗
ub

Vus

Figure 1.5: The B0 → K0π0 Feynman diagrams. The dominant penguin process on
the left (where q̄u is either a ū, c̄ or t̄). The colour suppressed tree diagram on the
right.

As the B0 → K0π0 decays will lead to KSπ
0 half of the time, and KS are a

easier to reconstruct, studies of B0 → KSπ
0 will be investigated. Since B0 and its

CP conjugate B̄0 both decay to CP eigenstate KSπ
0, this channel sees both direct

and mixing-induced CP violation - we will study direct CP violation.
The direct CP asymmetry in this channel is defined as:

ACP (KSπ
0) =

Γ(B̄0 → KSπ
0)− Γ(B0 → KSπ

0)

Γ(B̄0 → KSπ0) + Γ(B0 → KSπ0)
(1.43)

Or equivalently:

ACP (KSπ
0) =

N(B̄0 → KSπ
0)−N(B0 → KSπ

0)

N(B̄0 → KSπ0) +N(B0 → KSπ0)
(1.44)

Where N is the measured number of events of a given decay.

1.5.1 Motivations
A constraint on the CP asymmetries and branching ratios (B) of B → Kπ de-
cays has been placed by the isospin sum rule. Assuming flavour SU(3) and isospin
symmetries, we get the relation[15]:

ACP (K
+π−) +ACP (K

0π+)
B(K0π+)

B(K+π−)

τ0
τ+

=

ACP (K
+π0)

2B(K+π0)

B(K+π−)

τ0
τ+

+ACP (K
0π0)

2B(K0π0)

B(K+π−)
(1.45)

where τ0 and τ+ are the lifetimes of the B0 and B+ respectively. A violation of this
relation would point to new physics. With the latest experimental data this relation
predicts ACP (K

0π0) = −0.15±0.036, so a precise measurement of ACP (K
0π0) could

point to physics beyond the standard model.
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Additionally, there has been a pronounced (∼ 5σ) difference between the mea-
sured values of ACP (K

+π0) and ACP (K
+π−) - known as the Kπ puzzle. This can be

explained with a modified electroweak penguin amplitude[16]. Improved ACP (K
0π0)

measurements will help us to probe for new physics in this channel.
The latest ACP measurement from Belle was a time-dependent study measuring

direct and mixing induced CP-violation terms, using both KSπ
0 and KLπ

0 decays
and using an incomplete Belle dataset of 656× 106BB̄ events[17]. The results from
Belle and BaBar are laid out in Table 1.1. As can be seen the ACP measurements
have opposite signs, and large statistical uncertainties (∼ 100%) so clearly the un-
certainty on this measurement needs to be reduced to find any physics beyond the
standard model in this channel.

ACP (K
0π0) B(B0 → K0π0)× 10−6

Belle 0.14± 0.13(stat)± 0.06(sys)[17] 9.68± 0.46(stat)± 0.5[18]
BaBar −0.13± 0.13(stat)± 0.03(sys)[19] 10.1± 0.6(stat)± 0.4(sys)[20]

Table 1.1: The experimental results from Belle and BaBar.
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The Belle experiment was first proposed in the early 1990s and began taking data
in 1999. The end of Belle’s run came in 2010, after having produced (771.581 ±
10.566)× 106BB̄ pairs, corresponding to an integrated luminosity of 711fb−1 at the
Υ(4s) resonance[13]. The Belle integrated luminosity per year is shown in Figure
2.1

Figure 2.1: Showing the integrated total and off-resonance luminosities over Belle’s
run.

The electron-positron collisions for Belle are provided by the KEKB collider
at the High Energy Accelerator Research Organisation(KEK) in Tsukuba, Japan.
KEKB consists of two concentric rings of e+ and e− of asymmetric energy, producing
boosted Υ(4s) in large numbers. As well as runs at the Υ(4s) resonance, there were
shorter runs at the 1s,2s,3s and 5s resonances, as well as off-resonance energy runs
(to investigate backgrounds).

We will now consider runs at the Υ(4s) resonance. The electrons and positrons
are injected from a linac into the (∼ 3km) rings; the High Energy Ring (HER) is
of electrons at 8 GeV and the Low Energy Ring (LER) is of positrons at 3.5 GeV.
The beams meet at the Interaction Point(IP) with a small crossing angle of 22 mrad
giving a centre of mass energy of 10.58 GeV. The KEK accelerator is shown in Figure
2.2. This asymmetry is needed because the Υ(4s) must be boosted to increase

13
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the lifetime of the BB̄ in lab frame (to increase the distance between B decay
points), and to ensure that the time between B decays can be resolved (vital for CP
measurements). In COM frame the BB̄ are produced almost at rest (and have a
lifetime of order 10−12 s), so the boost of βγ = 0.425 means the decay vertices have
an average separation of 200 µm, which is resolvable[21].

Figure 2.2: The KEKB accelerator showing the high energy electron beam (green),
and the low energy positron beam (red) which meet at the IP point - Belle in the
Tsukuba area.

The Belle detector consists of various layered detectors for vertexing and particle
identification(PID) of the different decay products, shown in Figure 2.3. It covers
the range 17◦ < θ < 150◦ where θ is the angle from the HER beam axis. The
components of the Belle detector are introduced below, see [21], [13], and [22] for
more details, images sourced from these unless otherwise stated. Throughout the
run, multiple data collection runs (called ‘experiments’, in the range 7-65 for Υ(4s))
were conducted, corresponding to the changing conditions of the beam and detector.
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Figure 2.3: Showing the Belle detector and components with the longitudinal (top)
and transverse (bottom) cross-sections.

2.1 Beam Pipe
The beam pipe consists of two beryllium cylinders of 0.5 mm thickness, see Figure
2.4. The radii were of 20 mm and 23mm for the inner and outer cylinder respec-
tively. Helium is circulated in the 2.5 mm gap to provide cooling to the beam pipe.
The outer layer is coated with a 20 µm gold layer to reduce the low energy X-ray
background. After the upgrade to SVD2 (see below) the inner radius was changed
to 15 mm.
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Figure 2.4: Showing the longitudinal (top) and transverse (bottom) cross-sections
of the original beam pipe before the SVD2 upgrade.

2.2 Silicon Vertex Detector
The Silicon Vertex Detector (SVD) is the innermost detector located just outside
of the beam pipe. It is used to detect the trajectory of charged decay products for
precise vertexing of the decay positions along the beam axis. It was updated from
the old version (SVD1) after 4 years (collecting 15% of total Belle data) to the new
vertex detector (SVD2). See Figure 2.5.

SVD1 consists of three double-sided silicon-strip detectors(DSSD) of radii 30 mm,
40.5 mm and 60.5 mm. SVD1 covered 23◦ < θ < 139◦ providing 83% solid angle
coverage. The upgraded SVD2 has four DSSD layers (at radii 20 mm, 43.5 mm,
70 mm and 88 mm) covering the full range of angular acceptance provided by the
rest of the detector.

The readout chip was also upgraded from the VA1 to the VA1TA providing
improved temporal resolution and radiation hardness.

16
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Figure 2.5: Showing SVD1 (top) and SVD2 (bottom) transverse and longitudinal
cross-sections.

2.3 Extreme Forward Calorimeter
The Extreme Forward Calorimeter (EFC) provides extended angular coverage that
the ECL doesn’t cover, needed for specific B decays, and to absorb radiation to
protect the CDC. It is also used for beam and luminosity monitoring. It covers
the angular ranges 6.4◦ < θ < 11.5◦ and 163.3◦ < θ < 171.2◦ in the forward and
negative directions (relative to the electron beam) respectively. It consists of eighty
bismuth germanate crystals (chosen for radiation hardness, energy resolution, and
cost), in both the forward and backwards directions (at 600 mm and 435 mm in the
forward and background directions respectively) surrounding the beam pipe (with
an inner radius of 65 mm). See Figure 2.6.
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x

y

z

Figure 2.6: Showing the EFC components - forward (bottom-left) and backwards
(top-right).

2.4 Central Drift Chamber
The Central Drift Chamber (CDC) is used for the tracking of charged particles and
for measuring their momenta, as well as providing vital information for triggering. It
allows the measurement of energy loss over the distance travelled (dE/dx), providing
PID information, it is particularly effective for low momentum particles. The plot
of dE/dx against momentum, shown in Figure 2.7, shows the different distributions
providing distinguishing information between charged pions, kaons, protons and
electrons.

To reduce the backgrounds from synchrotron radiation and to reduce multiple
Coulomb scattering, the gas nuclei must have low proton number. To meet this
condition, an equal mixture of ethane(to keep a good resolution on dE/dx) and
helium is used. The chamber is composed of 50 cylindrical layers, and a total of
8400 nearly-square drift cells. Readout from each layer is from between three and six
stereo strip layers, and three cathode strip layers. It is asymmetric in the direction
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Figure 2.7: Showing how energy loss and momentum in the CDC can be used to
distinguish charged particles.

of the electron beam to provide full angular coverage. See Figure 2.8.

Figure 2.8: Showing the CDC longitudinal (left) and transverse (right) cross-
sections.
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2.5 Aerogel Cerenkov Counter
The Aerogel Cerenkov Counter (ACC), shown in Figure 2.9, is used for PID (in
particular to distinguish charged pions from kaons at high momentum). It consists
of the end-cap covering 13.6◦ < θ < 33.4◦ and the barrel covering 33.3◦ < θ < 127.9◦.
The Cerenkov radiation, produced by high velocity charged particles, is detected by
photo-multiplier tubes (PMTs). There are 1188 aerogel modules of varying refractive
index (in the range of 1.01 to 1.03), varying PMT size, and either one or two PMTs.
The set up is used to distinguish π± and K± with high momenta, in the range
1.2 GeVc−1 to 4 GeVc−1. Cerenkov radiation is produced when the particle velocity
is greater than the phase velocity of light (in the aerogel), so in order for a particle
to cause Cerenkov radiation, the following condition must be met:

vp >
c

n
(2.1)

Where vp is the particle velocity, c is the speed of light (in a vacuum), and n is the
refractive index of the aerogel. It acts as a threshold Cerenkov radiation detector
as for a given momentum (given the right choice of n), the lighter pions will have
a higher velocity than the kaons, and so the pions will cause radiation whereas the
kaons will not.

Figure 2.9: Showing a schematic of the ACC.

2.6 Time of Flight Counters
The Time of Flight (TOF) system is used for PID which can be used for efficient
flavour tagging, as well as providing information for the trigger. It efficiently distin-
guishes π± and K± of momenta below 1.2 GeVc−1 by measuring energy deposition
and detection times across the detector. The TOF consists of 64 modules, shown in
Figure 2.10, each with two plastic scintillator counters and one trigger scintillation
counter (TSC). It covers the regions 34◦ < θ < 120◦ and has a minimum radius of
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120 cm. It has a time resolution of 10−10 s which allows for the measuring of the
charged particle velocity and so is used to distinguish between protons, kaons an
pions at lower momenta (less than 1.2 GeVc−1).

Figure 2.10: Showing a schematic of a Time of Flight module.

2.7 Electromagnetic Calorimeter
The Electromagnetic Calorimeter (ECL) is primarily used to efficiently detect pho-
tons produced as part of the B decay chain with a high resolution in position and
energy. The photons produce cascading electromagnetic showers within the ECL,
and the energy deposited is used to measure the photon energy. Electron identifica-
tion also relies on the energy deposited in the ECL. It must meet the requirements
that it performs well at lower energies of less than ∼ 100 MeV for photons at the
end of long decay chains. A good resolution at high energies and a fine grained seg-
mentation are required for decays where the photons are produced at high energy
and with a small angle between them, for example π0 → γγ decays.

The ECL consists of three sections; the 3 m long barrel (with a radius of 1.25 m),
and the forward and backward end-caps (+2 m and -1 m along the electron beam-
line respectively). The 8736 crystals point nearly to the IP point, angled slightly
to prevent gaps that would allow photons through, see Figure 2.11. The material
chosen is CsI(Tl) to meet these requirements.

Although performing very well, the ECL suffers from shower leakage from high
energy photons. Each crystal is 30 cm in length, corresponding to 16.2 (e±) in-
teraction lengths (0.8 KL interaction lengths), which is normally enough for the
electromagnetic showers to end within the crystal. Despite this, in the case of high
energy photons, the electromagnetic shower reaches the end of the crystal and not
all of the energy is deposited in the ECL. In the cases of shower leakage the photon
energy is wrongly measured as lower than it is.
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Figure 2.11: Showing a schematic of the ECL (centre) and transverse cross-section
at each end (left, right).

2.8 KL Muon Detection System
The KL Muon Detection System (KLM) is used to detect the longer lived particles
KL and µ, hence the name. It detects those with momenta above 600 MeVc−1 very
efficiently. It consists of the barrel section and end caps, covering the range 20◦ <
θ < 155◦. The KLM has fourteen iron plates inter-spaced between fifteen(fourteen
for the end caps) glass-electrode-resistive plate counters(RPC) for detection. The
iron adds 3.9 interaction lengths to the 0.8 interactions lengths from the ECL. Each
RPC has a 2 mm gap between two electrodes that is filled with a gas that can be
ionised by muons or KL decay products (due to interaction with the iron plates),
producing a discharge at the electrodes. The ionisation from the muons or KL decay
clusters can then produce a position and time readout. KL identification uses this
information along with information from the CDC. Because muons are not involved
in strong interactions, they are not absorbed in the ECL or KLM (unlike π± and
K±) and only lose energy via ionization, and so can be distinguished from charged
pions and kaons.
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Physics analyses at Belle do not initially have access to real data, as optimising an
analysis to real data would allow the model to be adjusted to get the desired result,
introducing a bias. To account for this we must perform a ‘blind analysis’, where
the analysis is performed on Monte Carlo(MC) simulated data. Models are then
validated on a ‘control sample’ (a different decay channel that produces physically
similar results to the decay channel being investigated) to validate that any differ-
ences between MC and real data do not invalidate the model. All data used in this
thesis are Monte Carlo (produced at the KEK computing cluster using the Belle
Analysis Software Framework - BASF[23]) unless otherwise stated.

3.1 B0 → KSπ
0 Data

Signal data is generated in two steps; first generate the decay, and then simulate the
propagation and interactions of these decay products in the detector. The output of
this is then saved in mini Data Summary Tapes(mDST) of same form as real data
(BASF populates decay tables with particle candidates and detector information).

The first step is achieved using the EvtGen package[24]. The expected yields
(event numbers) are scaled by the integrated luminosity of each Belle experiment.
The decay channels, branching fractions and physical models are specified. ForB0 →
KSπ

0 MC generation, alias B0/B̄0 mesons are defined that decay exclusively to
KSπ

0. The decay chain of the Υ(4s) is then defined as Υ(4s) → (B0
CP/B̄

0
CP )(B

0
tag/B̄

0
tag),

in any of the four combinations at different branching fractions (depending on the
specified ACP ), where the B0

CP/B̄
0
CP are the alias mesons and B0

tag/B̄
0
tag decay gener-

ically. The EvtGen decay models used are VSS_MIX for the vector-Υ(4s) to the
two scalar-B mesons - including the effects of B0− B̄0 mixing, and SSS_CP for the
B decay to scalar-KS and scalar-π0. These models include CP violating effects.

The output of EvtGen is then passed to GSIM(Geant SIMulation), a package
built on GEANT3[25], to simulate the propagation through the Belle detector. For
this reason MC data generated this way is referred to as GSIM data. The EvtGen
output is divided by Belle experiment so (aside from correct yield fractions) GSIM
can take account of the effects of the changing Belle detector.

Using this procedure three ACP = 0 datasets of one-million events each were
generated, each having Υ(4s) → B0

CP B̄
0
tag and Υ(4s) → B̄0

CPB
0
tag in equal quantities.

Two of these datasets are used for training and optimising the neural networks, with
the third being used for the physics analysis.

The ACP is generated at the analysis stage from an ACP = 0 dataset. To validate
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the ACP generation method, a fourth signal dataset (also one-million events) for
ACP = +1 is generated. To generate the ACP = +1 in EvtGen, the Υ(4s) decay
would be entirely to B̄0

CPB
0
tag (if there were no neutral B-meson oscillations), but

to simulate the effects of B0 − B̄0 mixing, the defined branching fraction is reduced
to 0.814 for Υ(4s) → B̄0

CPB
0
tag, and the branching fraction of 0.186 is defined for

Υ(4s) → B̄0
CP B̄

0
tag (when B0

tag has oscillated to B̄0
tag).

3.2 Background Data
To properly take account of the backgrounds at the analysis stage, each background
type must be treated individually. The main backgrounds in this study are back-
grounds where the Υ(4s) isn’t produced (e+e− → qq̄) and backgrounds from other
B decay modes. Background events from from generic B decays (b→ c transitions)
are expected to be of order 1 so are not included in this study.

3.2.1 Rare Backgrounds
Rare backgrounds are non-negligible in this study. They are B decays that don’t
include the b→ c transition, therefore have much smaller branching fractions. Rare-
charmless decays have branching fractions of the order 10−5. These b → u, d, s
decays are split into two categories; charged and mixed, corresponding to decays
from B+/B− and B0/B̄0 respectively, and will be referred to as charged rare and
mixed rare backgrounds from here on.

The pre-existing mixed and charged rare MC datasets are available to the Belle
collaboration - 50 streams of each(where one stream has the expected number of
events over the entire Belle run). B0 → KSπ

0 is a rare decay so these must be
removed from the mixed-rare sample.

3.2.2 Continuum
Continuum is by far the biggest background in this study. It is produced at the
IP point in electron-positron collisions where instead of creating an Υ(4s), a quark
pair(uū, dd̄, cc̄ or ss̄) is produced, which proceeds to hadronise instantly producing a
jet-like decay. As this process doesn’t need to be at the Υ(4s) energy, off-resonance
and energy scans can be used to investigate continuum.

Real off-resonance (at a COM energy of 10.52 GeV) data is available at 10.35%
of the expected continuum yield at the Υ(4s) resonance. Six streams of continuum
data are available; three are used for training and optimising the neural networks,
and three are used for physics analysis.
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The signal(B0 → KSπ
0) and background data are reconstructed from the GSIM

mDST output files, containing the necessary data, which includes the particle can-
didates, detector data, and in the case of MC data, gen_hepevt (a table of the known
simulated decay chain). gen_hepevt provides vital information for checking that the
particles have been correctly reconstructed, and is used to remove B0 → KSπ

0 from
the mixed rare dataset.

4.1 BCP Reconstruction and Selection

4.1.1 π0 Selection
The neutral pion decays around 98.8% of the time to a pair of photons. Pre-
reconstructed pion candidates have the condition that the recorded energy deposited
in the ECL by the daughter photons is greater than 50 MeV each. Reconstructed
pions (mπ = 134.98 MeVc−2) with a mass outside of the range 100 MeVc−2 to
162 GeVc−2 are then discarded. The quality of the pion reconstruction must be
good so only those with a χ2 less than 50 were selected. To increase the signal yield,
π0 were reconstructed from a combination of photons that decayed early to e+e−

(that were detected in the SVD) - with others - and with pre-detected photons.
These pions also have the condition that their mass is in the range 100 MeVc−2 to
162 MeVc−2.

4.1.2 KS Selection
KS decays 69.2% of the time to π−π+, and since vertexing information is impor-
tant, only these decays are used (the only other non-negligible decay mode is to
π0π0, which decaying to γγ, can’t be used for vertexing). The cuts applied to the
reconstructed KS are shown in table 4.1, see [26] for more details.

4.1.3 ∆E, Mbc, and B Selection
The process of reconstructing B candidates from (possibly wrongly) reconstructed
KS and π0 can cause B-mesons in real B events to be reconstructed from particles
that aren’t in their decay chain, meaning that their reconstructed momentum and
energy will be incorrect. Additionally, pure background events (where there was no
B0 → KSπ

0 decay) will produce wrongly reconstructed B candidates with a much
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p/MeVc−1 dr/cm dφ/rad zdist/cm fl/cm
<0.5 >0.05 <0.3 <0.8 N/A

0.5-1.5 >0.03 <0.1 <1.8 >0.08
>1.5 >0.02 <0.03 <2.4 >0.22

Table 4.1: Showing the KS cuts where: p is the KS momentum. dr is the closest
KS distance to the IP point (in the plane perpendicular to the beamline). dφ is the
azimuthal angle between p and the KS decay vertex. zdist is the separation(in the
beamline axis) between the π+π− at the KS decay vertex. fl is the KS flight length
in the plane perpendicular to the beam axis.

wider range of momenta and energies (in COM frame) than real B candidates. To
address this, two uncorrelated parameters are used; ∆E and Mbc.

∆E is the difference between the reconstructed B energy and half the Υ(4s)
energy:

∆E = EB − Ebeam (4.1)

Where EB is the reconstructed B meson energy (in COM frame) and Ebeam is the
beam energy (half the COM energy in the e+e− collision). A perfectly reconstructed
B would have the same energy as Ebeam, so signal candidates have a ∆E distribution
peaked at zero. The ∆E value is dependent on correct particle identification as EB

depends on the mass of the daughter particles. In the case of B0 → KSπ
0 the

distribution is asymmetric due to incorrect EB(from incorrect π0 reconstruction due
to ECL energy leakage, see 4.1.4). The signal and continuum ∆E distributions are
shown in Figure 4.1.
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Figure 4.1: Showing ∆E MC distributions for scaled signal(blue) and contin-
uum(red).
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Mbc is the signal beam constrained mass, the B mass, given ~pB0
recon

(its recon-
structed momentum in COM frame) and its energy, where the energy is the true
energy(Ebeam) instead of its reconstructed energy:

Mbc =
√
E2

beam − |~pB0
recon

|2 (4.2)

It is complementary to ∆E as is doesn’t depend on the daughter particles being
correctly identified(just correct momentum reconstruction). The signal-Mbc distri-
bution peaks around the B0 mass, with a small low mass tail(from underestimating
the π0 momentum, thus over estimating the B momentum in the COM frame). The
continuum Mbc distribution is generally a smoothly falling distribution up to Ebeam.
The Mbc distributions for signal and continuum are shown in Figure 4.2.
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Figure 4.2: Showing Mbc MC distributions for scaled signal(blue) and contin-
uum(red).

Using these two parameters, we require that reconstructed B candidates have
the condition that ∆E is in the range ±0.5 GeV and Mbc is between 5.2 GeVc−2

and 5.29 GeVc−2. We only expect one signal decay per event. If more than one B
candidate is present, the one with the lowest χ2

sum is chosen, where χ2
sum is the sum

of χ2 from the KS and π0 reconstructions.
This reconstruction and selection procedure leaves us with 401, 686 ± 634 con-

tinuum events in one stream (this number is the number of events left in the sixth
continuum stream, its uncertainty is its square-root as we assume a Poisson distribu-
tion), 932±4 charged-rare events, and 383±3 mixed-rare events(the number of rare
events is one-fiftieth of the MC data for each stream, the uncertainty is one-fiftieth
of the square root of the full dataset size). Of one-million signal MC events, 315,434
events remain, so the efficiency of reconstruction (εrecon) is (31.54 ± 0.06)%. From
this we get the expected number of signal events:

Nsignal = NBB̄ ×RB0B̄0 × B
(
B0 → K0π0

)
× εrecon (4.3)
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Where NBB̄ (the total number of BB̄ events) is (771.581±10.566)×106, RB0B̄0 (the
fraction of BB̄ that are B0B̄0) is 0.486±0.006, B (B0 → K0π0) is (9.9±0.5)×10−6[5].
Note there is a factor of two (as there are two B mesons that could decay in the
signal channel) and a factor of 0.5 (the fraction of K0 that go to KS) that are not
shown. This gives an expected signal yield of 1171± 63.

We will have true signal events which are incorrectly reconstructed, for example
combining the decay products of B0

CP and B0
tag. In this case some physical parame-

ters may be different. We can retrieve the number of incorrectly reconstructed B0
CP

in the signal dataset using the information from the gen_hepevt table. These Self
Cross Feed (SCF) events comprise (11.50± 0.06)% of the total signal dataset.

As can be seen there is far more continuum than signal (around 343 times as
much) and it is vital to reduce this background before any physics analysis can
proceed.

4.1.4 π0 Momentum Correction
The daughter photons from the high momentum π0 create high energy showers in-
side the ECL crystals (from which their energy is measured). The electromagnetic
showers can lose energy out of the sides of the crystal, and the back of the crystal
in the case of high energy photons where the electromagnetic showers can reach the
end of the crystal. This means that it is common for the energy deposited in the
ECL to be lower than the true photon energy. This leads to the reconstructed pion
momentum being underestimated. As a consequence the reconstructed B momen-
tum will be overestimated. Instead of the reconstructed B momentum being the
sum of KS and π0 reconstructed COM momenta (~pKS

and ~pπ0 respectively), the
momentum is corrected to:

~pB0
corrected

= ~pKS
+

~pπ0

|~pπ0|

√
(Ebeam − EKS

)2 −m2
π0 (4.4)

Where EKS
is the reconstructed KS energy(COM frame) and mπ0 is the actual

pion mass. This keeps the direction of ~pπ0 unchanged but sets it to the true pion
momentum(as its true energy is the energy difference between the beam - the true
B0 energy - and KS energies).

Having corrected the B momentum, we can define the corrected Mbc as:

M corr
bc =

√
E2

beam − |~pB0
corrected

|2 (4.5)

This has the effect of removing the low Mbc tail and sharpening the peak, see Figure
4.3. It does not impact ∆E as neither the pion nor B-meson energies are adjusted.
Correcting Mbc has the effect of decorrelating it from ∆E as the wrongly recon-
structed pions giving the low energy ∆E tail are the same pions giving the low mass
Mbc tail. Since the Mbc is corrected, these two variables lose their correlation, see
Figure 4.4
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Figure 4.3: Showing the signal Mbc(top) and M corr
BC (bottom) distributions, notice

the removal of the low mass tail and the sharpening of the peak.
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Figure 4.4: Showing the signal ∆E vs Mbc(top) and ∆E vs M corr
BC (bottom). Notice

the decorrelation effect of the π0 momentum correction on Mbc.
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4.2 Flavour Tagging
Studying direct CP violation requires that we know the flavour of the B0 to a good
level of certainty. We cannot discern the flavour of BCP directly, but we can measure
the flavour of Btag, and taking account of B0−B̄0 mixing, get the flavour information
of the signal B-meson.

The HAMLET[27] tagging package used in this analysis gives the flavour of Btag

using a categorical algorithm. This works by looking for common decays where the
flavour information can be deduced from the decay products, for example the charge
of the lepton in semi-leptonic decays or of the kaon in B0 to charged kaon decays.
The parameter returned is q.r. The value of q is the flavour of Btag, +1 for B0 and
−1 for a B̄0. The certainty is given by r which ranges from no discernible flavour
discrimination (zero) to a certain flavour tag (one). Thus the q.r distribution has
the range ±1, with values at q.r = +1(−1) definitely being a B0(B̄0), and events at
q.r = 0 having a 50% of being either B0 or B̄0. The q.r distributions for continuum
and ACP = 0 signal are shown in Figure 4.5.

We can therefore use q.r to discern the ACP as any preference of B0 or B̄0 decays
to KSπ

0 can be observed. As can be seen in Figure 4.6 the ACP is clear from the q.r
distribution. An increased amount of Btag at q.r > 0 means an increased amount of
B0

CP being B̄0, and as per the definition at 1.44 is a positive ACP . Note that even for
the ACP = +1 sample, the number of entries at q.r = −1 is not zero due to B0− B̄0

mixing (see 1.4), where the B0
tag and B0

CP have the same flavour due to one of them
oscillating before decay(the dilution from the mixing factor χd = 0.186±0.004 means
the number of entries at q.r = −1 is 18.6% of the sum of the entries at q.r = ±1).

Figure 4.5: Showing the q.r distributions for ACP = 0 signal (left), and continuum
(right).
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Figure 4.6: Showing the signal q.r distribution for ACP = +1.

4.3 Kinematic Variables
Kinematic variables from the decay also have discriminating information for use in
determining whether an event is signal or continuum. Figure 4.7 shows the differing
event topologies for signal and background.

e− e+
B0
CP

B̄0
tag

KS

π0

e− e+

q
q̄

Figure 4.7: Showing more spherical signal(top) and jet-like continuum(bottom) de-
cay topologies in COM frame.

Using the ExKFitter package, the tracks of the π± from the KS are used to
constrain the vertex of the signal B0

CP decay. The B0
tag vertex is calculated with

the TagV package(which uses kfitter) using the charged particles not used in B0
CP
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vertexing. The momentum vectors, energies, decay vertices and charges of the B
mesons and their decay products can then be used to calculate a range of useful
kinematic variables.

4.3.1 ∆Z

The distance along the beamline axis between the decay vertices of B0
CP and B0

tag

in COM frame is ∆Z. The reconstructed decay vertices of true signal events will
have some separation due to the B-meson lifetime, the B0 will travel some distance
before decaying. Continuum events on the other hand have a much smaller ∆Z as
the qq̄ pair hadronise instantly, meaning both reconstructed B0 decay vertices will
be close to the IP point. See Figure 4.8 showing the larger spread in ∆Z for signal
events compared to continuum.
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Figure 4.8: Showing scaled signal MC (blue) and continuum MC (red) ∆Z distri-
butions.

4.3.2 cos(θB)

The angle between the reconstructed B0
CP momentum and the beamline in COM

frame (θB) can also be used to distinguish signal from continuum. The | cos(θB)|
distributions for signal and continuum are shown in Figure 4.9. The Υ(4s) is a vector
meson (spin 1) and so the final state with two scalar (spin 0) B-mesons must have
an orbital angular momentum of 1. So the angular distribution for signal follows
a 1 − cos2(θ) distribution. This results in the cos(θB) distribution seen in Figure
4.9. On the other hand, the continuum cos(θB) distribution is roughly uniform due
to being composed of randomly selected tracks and acceptance effects, see [13] for
more details.
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Figure 4.9: Showing scaled signal MC (blue) and continuum MC (red) | cos(θB)|
distributions.

4.3.3 cos(θthrust)

The scalar thrust T given a set of N particles is given by choosing the unit vector
n̂ (the thrust vector) that maximises:

T =

∑N
i=1 |n̂ · ~pi|∑N
i=1 |~pi|

(4.6)

Where ~pi is the momentum of particle i. The signal thrust is calculated where the
sum is over the B0

CP daughters, and the rest-of-event thrust is calculated where
the sum is over all remaining particles. The angle between the signal thrust vector
and the rest-of-event thrust vector is θthrust (in COM frame). In COM frame the
B-mesons are produced nearly at rest, so the thrust axis are randomly distributed,
and so cos(θthrust) follows a roughly uniform distribution. Continuum events, with
the back to back jet like decay topology, will see the thrust axes strongly collimated,
and so the cos(θthrust) distribution is sharply peaked at ±1. See Figure 4.10.

4.3.4 The KSFW-moments
The shape of the event can be further described by the Fox-Wolfram moments[28].
By constructing a set of moments from the B-decay daughters a set of mostly un-
correlated variables can be constructed. In Belle the improved Kakuno-Super-Fox-
Wolfram(KSFW) moments were originally developed for B → ππ decays and are
an improvement over the Fox-Wolfram moments in the case of two or three body
charmless decays[29]. They are constructed using the momenta, charges and Leg-
endre polynomials using the angles between the flight directions of the daughter
particles (all in COM frame). They are divided into two categories; ‘so’ and ‘oo’
where ‘s’ means that daughter particles from the B0

CP are used and ‘o’ corresponds
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Figure 4.10: Showing scaled signal MC (blue) and continuum MC (red) cos(θthrust)
distributions.

to the particles from the rest-of-event (‘o’ being decay products from the other B
- the B0

tag). ‘so’ then means that the calculation is performed over each signal de-
cay product and each of the rest-of-event particles, ‘oo’ is just over rest-of-event
particles. ‘ss’ is not used as summing over just the relations between signal de-
cays will introduce high correlations between the variables, and with ∆E. The ‘so’
KSFW-moments are further divided into three categories indexed by x, where x is
the ‘type’ of the rest-of-event; either charged (x = 0), neutral (x = 1) or missing
(x = 2) i.e. summing over rest-of-event charged particles, neutral particles, and
missing particles (reconstructed momentum that doesn’t correspond to measured
particles) respectively.

The ‘so’ KSFW-moments for Legendre polynomials of order(l) 1 and 3 are given
by:

Rso
xl =

∑
a

∑
b qaqb|~pb|Pl (cos (θab))

Ebeam −∆E
(4.7)

Where a runs over the signal B daughter particles, and b runs over the rest-of-event
particles in each x category. Here qa and qb are the charges of particles a and b
respectively. Pl is the Legendre polynomial of order l, and θab is the angle between
particles a and b. As can be seen, qa is always zero as the B0

CP decay products are
neutral, and therefore Rso

xl are zero when l = 1, 3.
For l = 0, 2, 4 on the other hand, the so KSFW-moments are given by:

Rso
xl =

∑
a

∑
b |~pb|Pl (cos (θab))

Ebeam −∆E
(4.8)

Giving us three ‘so’ KSFW-moments (x = 0, 1, 2) for each of the even order Legendre
polynomials (l = 0, 2, 4).
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The ‘oo’ KSFW-moments for l = 1, 3 for are given by:

Roo
l =

∑
a

∑
b qaqb|~pa||~pb|Pl (cos (θab))

(Ebeam −∆E)2
(4.9)

Where both a and b run over the rest-of-event particles. For l = 0, 2, 4 they are
given by:

Roo
l =

∑
a

∑
b |~pa||~pb|Pl (cos (θab))

(Ebeam −∆E)2
(4.10)

Giving 5 ‘oo’ KSFW-moments, amounting to 14 KSFW-moments in total. The
factors of (Ebeam − ∆E) are included to normalise the KSFW-moments in such
a way as to remove the ∆E correlations. The KSFW distributions are shown in
Figures 4.11 - 4.24.

In addition to these there are two extra parameters calculated in this process.
The sum of the transverse momenta (from the beamline) over all particles:

psumt =
N∑

n=1

|~pt,n| (4.11)

Where ~pt,n is the transverse component of the momentum of particle n, and N is
the total number of particles. The psumt distributions for signal and continuum are
shown in Figure 4.25. As the vector of the total missing momentum is equal to∑N

n=1−~pn, where ~pn is the momentum of particle n, the squared-missing-mass is
defined as :

M2
miss =

(
2Ebeam −

N∑
n=1

En

)2

−

∣∣∣∣∣
N∑

n=1

~pn

∣∣∣∣∣
2

(4.12)

Where En is the energy of particle n. The distributions are shown in Figure 4.26
Each of the KSFW-moments (and the other kinematic variables) have some

discriminating information from the event, but not enough individually to confirm
that an event is signal or background. These moments are traditionally combined
into a Fisher discriminant on which a selection can be placed. A common method
is to combine them using multivariate classifiers such as boosted decision trees or
neural networks.
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Figure 4.11: Showing the scaled signal MC (blue) and continuum MC (red) Roo
0

distributions.

Figure 4.12: Showing the scaled signal MC (blue) and continuum MC (red) Roo
1

distributions.
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Figure 4.13: Showing the scaled signal MC (blue) and continuum MC (red) Roo
2

distributions.

Figure 4.14: Showing the scaled signal MC (blue) and continuum MC (red) Roo
3

distributions.
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Figure 4.15: Showing the scaled signal MC (blue) and continuum MC (red) Roo
4

distributions.

Figure 4.16: Showing the scaled signal MC (blue) and continuum MC (red) Rso
00

distributions.
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Figure 4.17: Showing the scaled signal MC (blue) and continuum MC (red) Rso
02

distributions.

Figure 4.18: Showing the scaled signal MC (blue) and continuum MC (red) Rso
04

distributions.
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Figure 4.19: Showing the scaled signal MC (blue) and continuum MC (red) Rso
10

distributions.

Figure 4.20: Showing the scaled signal MC (blue) and continuum MC (red) Rso
12

distributions.
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Figure 4.21: Showing the scaled signal MC (blue) and continuum MC (red) Rso
14

distributions.

Figure 4.22: Showing the scaled signal MC (blue) and continuum MC (red) Rso
20

distributions.
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Figure 4.23: Showing the scaled signal MC (blue) and continuum MC (red) Rso
22

distributions.

Figure 4.24: Showing the scaled signal MC (blue) and continuum MC (red) Rso
24

distributions.
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Figure 4.25: Showing the scaled signal MC (blue) and continuum MC (red) psumt

distributions.
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5|Neural Networks for Continuum
Suppression

Continuum suppression is achieved using neural networks to combine the kinematic
information (see 4.3) into a single variable, the classifier output. This output can
then be used to distinguish signal and continuum, by enforcing a selection, or a more
complex analysis.

A basic neural network is essentially a complex matrix function taking a vector of
input values and returning a vector of outputs. In the case of continuum suppression,
we want a scalar output corresponding to the likelihood that the input vector for
an event corresponds to a signal or continuum.

A feed-forward neural network is described by an architecture of connected nodes.
Each node takes a weighted sum of the inputs and passes it through a non linear
activation function (necessary as the best classification function is unlikely to be a
linear combination of the input data).

A hidden layer is a set of nodes where each node takes a weighted sum of the
outputs of the nodes in the previous layer (or the input data in the case of the first
hidden layer), where multiple layers and a large number of nodes allow very complex
relations between the input variables to be learned. Figure 5.1 shows and example
feed-forward neural network with three hidden layers and a single output.

The output of a node j in layer k is given by:

xkj = fk
j

(
wk

bjb
k +

∑
i

wk−1
ij xk−1

i

)
(5.1)

Where fk
j (x) is the activation function of node j in layer k, traditionally the sigmoid

function - f(x) = (1+ e−x)−1 - has been used. The node bk represents the bias node
for layer k, which is set to 1, wk

bj is the weighting the bias has for node j in layer k.
This bias is needed as it allows the input to the activation function to be shifted,
resulting in different possible output values for a given weighted sum of inputs. The
bk term is redundant but is useful for visualising the model.

Once a particular network architecture has been chosen, the performance of the
network depends on the values of the weights. The weights must be initialised to
reasonable initial values (shouldn’t have |wk

ij| much greater than 1). The weights
are adjusted using a training dataset, where each event is known to be either signal
or continuum. The weights are trained to target values (ŷ), for example rewarding
network outputs of 1 for signal and 0 for continuum (penalising the reverse). This
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Figure 5.1: Showing an example feed-forward neural network with three hidden
layers, nk nodes in layer k and one output node, xout. xki corresponds to the ith
node in layer k, x0i correspond the the input parameters, and bk are the biases added
to layers k. The arrows correspond to the weights wk

ij connecting the ith node in
layer k to the jth node in the subsequent layer.

process is achieved by using back-propagation to minimise a cost (or loss) function
(a function of the network output and the desired network output).

There are many options of loss function depending on the specifics of the situ-
ation. A good choice of loss function in the case of a binary classifier is the cross
entropy loss, given by:

L
(
~x 0, ŷ

)
= −ŷ · log

(
xout

(
~x 0
))

− (1− ŷ) · log
(
1− xout

(
~x 0
))

(5.2)
Where xout is the neural network work output as a function of the vector of inputs
~x 0, and ŷ is the target value, one for signal MC events and zero for continuum MC
events. Thus the loss is lower when signal events produce a network output closer
to one, and continuum events produce an output closer to zero.

The weights are adjusted based on the gradients of the loss function with respect
to the weights. Back-propagation calculates the partial derivatives of L for each
weight, and then the weights are individually shifted in the direction of the (negative)
gradient. In this way, over many training steps over many events, the weights settle
into the values that best minimise the overall loss. Of course the dimensionality is
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large and there are many minima, so training large neural networks is not a trivial
procedure.

Due to training depending on the gradients of the loss function with respect to
each of the weights, the form of the activation has a large impact on training. The
gradient of the sigmoid function at |x| >> 1 (where x is the input to the activation
function) approaches zero. Therefore the training will be extremely slow if the inputs
are far away from zero (the same is true for tanh), this is the vanishing gradient
problem. Additionally the sigmoid function has the drawback that it is always
positive which has been shown to be sub-optimal for training [30]. The activation
functions are shown in Figure 5.2. An improved activation function which has been
shown to be an improvement is the exponential linear unit (elu) [31]:

f(x) =

{
x, if x > 0

ex − 1, otherwise
(5.3)
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Figure 5.2: Showing the activation outputs for the sigmoid (blue), tanh (green) and
elu (red) activation functions for inputs in the range ±1.5.

As the ability to train the network depends on the input values to the activation
functions, the input data should be pre-processed in order to be within the range ±1.
This can be achieved by scaling and shifting, or by more complex transformations,
but is almost always vital.
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There are a range of options (hyper-parameters) relating to the training of the
neural network that must be chosen and tuned, and are heavily dependent on the
input data, the neural network architecture, and each other. Some are laid out
below, with the descriptions of the impact that they have is assuming that the other
hyper-parameters are held constant.

• The learning rate defines the size of the steps taken when adjusting the weights.
Too large a learning rate will result in the weight values oscillating around the
minima, resulting in a sub-optimal network. Too small a learning rate will
often lead to the weights settling to a false minima (in addition to training
being slow).

• The number of epochs is the number of times that the entire dataset is trained
over. Too small an epoch number and the network will not have had enough
training time, and not learned all of the information obtainable from the train-
ing dataset. Too large an epoch number, in addition to taking longer than
needed, often leads to over-training to the training dataset.

• The batch size defines the number of events that the network trains on in
one step. Often an individual event will have particular quirks that are not
necessarily representative of the data at large, leading to the weights being
shifted in the wrong directions, and a rough, noisy path being taken to the
minima. This is alleviated by training over a batch of events. Too small a
batch size and the benefits of batching aren’t seen. Too large a batch size
and the subtler details in the training set can be lost, and the total number
of training steps will be too small.

A larger batch size needs a smaller learning rate to keep the learning speed the
same (as training to multiple events at once, a batch size of 10 would need a learning
rate one-tenth the size of the learning rate needed for a batch size of one). A larger
batch size results in fewer training steps per epoch, so more epochs are needed. As
can be seen, the interplay between these three hyper-parameters must be taken into
account. There can be many variable hyper-parameters, depending on the neural
network and algorithms employed.

In addition to the training dataset, the quality of the network is tested against
a separate testing datastet to verify its performance on new data. Regularisation
refers to a range of procedures by which the classifying ability of the neural network
is purposefully stunted when it is performing well to the training dataset but not
the testing dataset. Often a neural network will be fine tuned to the training data
(over-trained) and its actual performance is not optimal, regularisation is therefore
vital. There are many ways to do this, most simple being early stopping; when the
loss on the testing dataset no longer decreases, further training would only improve
the performance on the training dataset.

Optimising the neural network to the testing dataset could also lead to a config-
uration that is optimal specifically with regards to that dataset. This is unavoidable
but the true performance, and later physics analysis, is performed on a third (the
validation) dataset which is not at all involved in the training and hyper-parameter
selection procedure.
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0 Events

The NeuroBayes software is introduced and the setup for continuum suppression
is described. The method for measuring ACP is then laid out in detail, and the
results of this analysis using the NeuroBayes-processed datasets is covered. Note
that unlike in previous chapters, when referring to the number of events and selection
efficiencies, unless otherwise stated, the selection criteria 5.265 GeVc−2 < M corr

bc <
5.3 GeVc−2 and −0.4 GeV < ∆E < 0.3 GeV is assumed (see 6.2).

6.1 NeuroBayes
Widely used at Belle for continuum suppression is the NeuroBayes neural network
package [32]. A proprietary software, it uses a neural network and Bayes’ theorem
(hence the name) along with employing input data pre-processing and regularisation
of the output. The internal architecture consists of one hidden layer where the
number of nodes are specified by the user.

This neural network was trained with all nineteen kinematic variables (see 4.3)
where the NeuroBayes pre-processing first transformed each of them to a Gaussian
distribution. The number of nodes in the hidden layer was 21. The training batch-
size was 100, and it was trained over 150 epochs using the Broyden–Fletcher–Gold-
farb–Shanno algorithm (see [33] for more information). Regularisation is employed
using the ‘Bayesian regularisation procedure’ (see [34] for details on the NeuroBayes
algorithm). During training NeuroBayes employs pruning; removal of the least im-
portant weights to prevent overtraining. The loss function used is the cross-entropy
(see equation 5.2).

In this study NeuroBayes was trained on 125,000 signal events (from the sig-
nal training dataset) and 125,000 continuum events (from the continuum training
dataset; the first two continuum streams). All 250,000 training events were in the
signal peaking ranges of 5.26 GeVc−2 < M corr

bc < 5.285 GeVc−2 and −0.4 GeV <
∆E < 0.2 GeV. Additionally, only signal events where the B0-mesons were correctly
reconstructed were used in training.

The set up was not tweaked to improve performance, therefore this network
was not applied to the testing datasets, and instead applied directly to the signal
validation dataset and the continuum validation dataset (the final three continuum
streams) which were then used in the following physics analysis.
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6.1.1 Analysis of the Neural Network Performance
The validation datasets are processed by the trained neural network, using informa-
tion from the kinematic variables (which individually don’t provide much discrimi-
nating information) with a neural network can provide a clear separation between
signal and continuum events, see Figure 6.1. Selections can the be placed on this
variable (referred to as NN from here on) to remove most continuum events.
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Neurobayes Output - Signal MC and Continuum MC vs Neurobayes
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Figure 6.1: The NeuroBayes neural network output, NN for the continuum and
signal validation datasets. The distributions shown have the same number of signal
and continuum events and are not representative of the expected number of events.

Note that the signal validation dataset contains the events where the B0-mesons
were wrongly reconstructed, this could in principle further reduce the performance
on the validation dataset compared to the training and testing datasets. These
wrongly reconstructed events comprise 11.2% of the total signal validation dataset.
Figure 6.2 shows NN for both properly and wrongly reconstructed B0-mesons. The
distribution for the wrongly reconstructed events is only slightly worse, and since it
only forms a small part of the signal validation dataset, they are analysed together
from here on.

As there is far more continuum than signal with 61385 ± 143 expected events
compared to 1139±61 expected events respectively, a tight selection must be placed.
Figure 6.3 shows NN with the expected number of events; signal is clearly dwarfed
by continuum. A common method of choosing a value of NN on which to place the
selection criteria is the Figure of Merit (FOM), at a given NN value (NN cut) it is
defined as:

FOM (NN cut) =
Nsig√

Nsig +Ncont

(6.1)
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Figure 6.2: Showing the signal NN distributions for correctly (right) and incorrectly
(left) reconstructed B0 mesons.

1.0 0.5 0.0 0.5 1.0
NN-Output

0

50

100

150

200

250

300

350

C
o
u
n
t

NN-Output - Signal MC and Continuum MC

Signal MC
Continuum MC

0

2

4

6

8

10

12

14

Fi
g
u
re

 O
f 

M
e
ri

t

Figure 6.3: Showing the NN distributions for signal and continuum with the ex-
pected number of events. The figure of merit (green) is also plotted for possible
NN cut over the entire NN range.

Where Nsig and Ncont are the number of signal and continuum events with NN >
NN cut. The best FOM (in the whole NN range) can therefore be used as a measure
of the neural network’s performance.

The ability of a classifier to distinguish between two classes can be measured
using the ROC (Receiver Operating Characteristic) curve. This is the plot of true-
positive rate (the ratio of Nsig with NN > NN cut to the total number of signal
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events) against the false-positive rate (the ratio of Ncont with NN > NN cut to the
total number of continuum events) for all NN cut over the whole range of NN . The
ROC curve for signal MC and continuum MC is shown in Figure 6.4. A classifier
that performs no better than random chance would have a ROC ‘curve’ of y = x.
The measure of the performance can also be summarised with the AUC (Area Under
the Curve), an AUC of 1 being a perfect classifier, and an AUC of 0.5 being no better
than random.
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Figure 6.4: The ROC curve for signal and continuum MC, with an AUC of 0.909.

This neural network has an AUC of 0.909 (when using signal and continuum
MC). The best FOM is 13.2± 0.4, where this value is obtained by finding the best
FOM over 25 random signal and continuum MC samples (with the expected number
of events), and its uncertainty is the standard deviation of these measurements.
Selecting NN cut to leave 13.00% of continuum leaves 79.01% of signal remaining.
Similarly choosing a NN cut to keep 70.20% of signal leaves 7.65% of continuum.

As this network was trained entirely with MC data, the performance of the
network is further validated with (real) off-resonance data. The signal and off-
resonance NN distributions are shown in figure 6.5. The ROC curve for signal with
off-resonance is shown in figure 6.6. The AUC is 0.891, which is not significantly
worse than for signal MC with continuum MC. Similarly as above; a value of NN cut

leaving 13.00% of continuum leaves 74.38% signal, and a value leaving 70.20% sig-
nal leaves 10.08%. As predicted by the AUC values, these percentages show that
although the performance of the neural network is not significantly different for
off-resonance data than continuum MC, it is clearly worse.

To maximise the signal yield, NN cut is chosen to be −0.52 as preliminary investi-
gations showed that the statistical uncertainty on ACP would be lower with a lower
NN cut value than that given by the best FOM. This selection leaves 92.3% of signal,
and 34.0% of continuum. In addition this leaves 89.5% and 88.7% of charged rare
and mixed rare backgrounds respectively, NN for the rare backgrounds are shown
in figure 6.7. This gives expected yields of :

• Signal : 1052± 57,
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Figure 6.5: Showing the NN distributions for signal and off-resonance. Note that
the noisiness of the distributions is due to the off-resonance data sample size being
roughly one-thirtieth of the continuum MC validation dataset. A subsample of the
signal validation dataset is chosen in order to have the same number of signal and
off-resonance events.
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Figure 6.6: The ROC curve for signal and off-resonance, with an AUC of 0.891.

• Continuum : 20898± 49,

• Charged Rare: 331± 3,

• Mixed Rare: 126± 2,
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Figure 6.7: Showing the NN distributions for the charged (left) and mixed (right)
rare backgrounds.

6.2 Analysis of B0 → K0
Sπ

0 Events
Note that all likelihood fitting and distribution modelling is performed using the
ROOT[35] statistics and data-analysis package (ver 6.04), and its extension RooFit[36]
unless otherwise stated.

The signal yield (and therefore the branching ratio) and the ACP are measured
by fitting probability distribution functions (PDFs) to histograms in multiple dimen-
sions. By fitting signal MC along with each of the background MC datasets, the
expected PDF forms are found for each channel and fitting-variable (where ‘channel’
refers to either signal, continuum, charged rare or mixed rare datasets). Then by
fitting these to samples with the expected number of events (and in principle real
data, not done in this analysis) physical measurements can be extracted.

The signal yield is the area under the signal PDF (in one dimension). The ACP is
measured from the q.r distribution. This is achieved first by fitting a kernel density
estimation function to the signal q.r distribution (with ACP = 0), see Figure 6.8. A
kernel density estimation function combines a Gaussian for each data point to model
the rough distribution, and is implemented using a RooKeysPdf (a RooFit Class)
with mirroring at both edges and a smoothing factor (ρ, larger values corresponding
to a smoother distribution) of 0.75. Then by taking the product of this with a 1st
order polynomial with a fixed y-intercept but free gradient, and fitting this to the
actual q.r distribution, the ACP can be extracted from the gradient. The signal q.r
PDF is therefore given by:

f q.r
signal (q.r) = f

q.r|ACP=0
signal (q.r) · (1 +ACP · q.r · (1− 2χd)) (6.2)

Where f
q.r|ACP=0
signal (q.r) is the signal kernel density estimation PDF for ACP = 0.

(1− 2χd) is the factor taking account of mixing (see 1.4). Figure 6.9 shows the
f q.r
signal (q.r) fit to a q.r signal ACP = +1 distribution. The ACP is generated from

54



6.2 CHAPTER 6. NEUROBAYES AND ANALYSIS OF B0 → K0
Sπ

0 EVENTS

the signal ACP = 0 validation dataset by shifting the q.r bin values accordingly
(taking account of mixing).

q.r
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Figure 6.8: Showing the signal q.r kernel density estimation PDF fit to the ACP = 0
signal validation dataset.

Due to the large and various backgrounds, a one dimensional PDF fit to q.r
would not have enough distinguishing information and the statistical uncertainty on
the ACP measurement would be huge. To account for this, the yield information
for each channel is kept under control by fitting a four dimensional fit (for signal
and separately for each of the backgrounds) to q.r, ∆E, M corr

bc and NN trans, where
NN trans is a transform on the neural network output, NN , given by:

NN trans = log

(
NN − NN cut

NNmax − NN

)
(6.3)

Where NN cut = −0.52 and NNmax = 0.999591 (the largest output given by the
network). This transforms the NN distributions into Gaussian like distributions
that are easier to model with analytic PDFs. This is important as even after the
selection is placed on NN , there is still distinguishing information (between signal
and the backgrounds) in the remaining NN region.

As the total number of events is unknown, the joint likelihood function used is
an un-binned extended maximum likelihood function. The likelihood function in
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Figure 6.9: Showing the signal q.r PDF fit to a ACP = +1 sample. The PDF (black)
is the product of the kernel density estimation function (red) shown in Figure 6.8,
and the 1st order polynomial (blue). Note that the polynomial is scaled in order to
be visible, it has a y-intercept of one, ensuring that it only provides a skew to the
distribution.

one dimension (for one channel, i.e. just signal) is given by [13]:

L =

(
Nobs∏
j

f(xj)

)
· e

−Nfit

Nobs!
N Nobs

fit (6.4)

Where f(x) is the one-dimensional probability distribution function in the variable
x, and xj is the x value of the jth event. Nobs is the observed number of events and
Nfit is the number of events expected by the fitter.

We are dealing with multiple channels (where the number of events in each
channel expected by the fitter is given by Ni where i =signal, continuum, charged
rare, mixed rare) so Nfit =

∑
iNi. As this is a four-dimensional fit, the likelihood

function is then given by:

L =
e−

∑
i Ni

Nobs!

Nobs∏
j

(∑
i

Ni · f 4d
i

(
[∆E]j, [M

corr
bc ]j, [NN

trans]j, [q.r]j
))

(6.5)

Where [k]j is the k value for event j, (where k is ∆E, M corr
bc , NN trans or q.r), and
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the four-dimensional PDF for channel i is given by:

f 4d
i

(
∆E,M corr

bc ,NN trans, q.r
)
=
∏
k

fk
i (k) (6.6)

Where fk
i is the one-dimensional PDF in dimension k, for channel i. The 16 fk

i

PDFs are obtained individually, and then fixed, so the only free parameters when
maximising L are Ni for signal and continuum (as Ncharged−rare and Nmixed−rare are
held constant, see 6.2.3), and ACP (contained in f q.r

signal(q.r)). In this way, the signal
yield (i.e. the branching ratio) and ACP can be measured.

The fitting regions (for the individual 1-dimensional PDFs and the 4-dimensional
fit) are:

• −0.4 GeV < ∆E < 0.3 GeV

• 5.265 GeVc−2 < M corr
bc < 5.3 GeVc−2

• −10.0 < NN trans < 10.0

• −1.0 < q.r < 1.0

6.2.1 Signal
As the wrongly reconstructed B0-mesons only comprise 11.2% of the total signal
dataset, and the distributions in each of the four dimensions are very similar(see
Figure 6.10), these events are not treated separately.
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Figure 6.10: Showing the signal data distributions for (left to right) ∆E, M corr
bc ,

NN trans and q.r, for the correctly (top row) and incorrectly (bottom row) recon-
structed B0-mesons.
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Figure 6.11: Showing the signal one-dimensional PDFs for ∆E (top), M corr
bc (middle)

and NN trans (bottom), along with the component functions.

∆E is fitted with a combination of a Crystal Ball function and a second order
Chebyschev polynomial (basis set of the first kind). The Crystal Ball function is
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defined by:

CB(x;α, n, µ, σ) =

{
e−(x−µ)2/2σ2

, if x−µ
σ

< −α
A(B − x−µ

σ
)−n, otherwise

(6.7)

Where A = (n/|α|)n)e−|α|2/2 and B = (n/|α|) − |α|. A function in the Chebyschev
polynomial basis up to order N is defined as:

ChebyN(x; a0, . . . , aN) =
N∑

n=0

anTn(x) (6.8)

Tn(x) is the nth Chebyschev polynomial of the first kind. The M corr
bc distribution is

fit with a combination of a Crystal Ball and a Gaussian. The NN trans distribution
is fit with two Gaussians. The one dimensional signal PDFs for ∆E, M corr

bc and
NN trans are shown in Figure 6.11. The q.r signal distribution is introduced above,
see Figure 6.8 and Equation 6.2.

The scatter plots in each pair of dimensions are shown in Appendix B.1 with their
correlations shown in Table B.1. This is with the full processed signal validation
dataset within the fitting regions. The small correlations suggest that fitting each
dimension individually is justified. Note the largest correlation is NN trans −∆E of
3.8%.

6.2.2 Continuum
The one-dimensional continuum PDFs are shown in Figure 6.12. Continuum ∆E is
fit with a Chebyschev function up to 3rd order. TheM corr

bc distribution for continuum
is fit with an Argus function, defined as:

Argus(x;m0, c, p) = x ·

(
1−

(
x

m0

)2
)p

· e
c

(
1−

(
x

m0

)2
)

(6.9)

The NN trans distribution for continuum is fit with two Gaussians. The contin-
uum q.r distribution is fit with a kernel density estimation function (RooKeysPdf)
without edge mirroring and a smoothing of ρ = 2.

The scatter plots for every pair of dimensions for continuum are shown in Ap-
pendix B.1, with their correlations shown in Table B.2. As with signal, the correla-
tions are small, the largest being NN trans −∆E at 4.4%

6.2.3 Rare Backgrounds
The ∆E distribution for the charged rare background is fit with a kernel density
estimation PDF (due to difficulty finding a good analytic fit) with a smoothing of
ρ = 2 and mirroring on the left-side only. The mixed rare ∆E distribution is fit
with a combination of two Gaussians. The M corr

bc distributions for both charged and
mixed rare background are fit with Argus functions. Both charged and mixed rare
NN trans distributions are fit with a pair of Gaussians. Finally the q.r distributions
for both charged and mixed rare-backgrounds are fit with kernel density estimation
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Figure 6.12: Showing the continuum one-dimensional PDFs for ∆E (top left), M corr
bc

(top right) and NN trans (bottom left) and q.r (bottom right).

functions with mirroring at both edges, and smoothing factors of ρ = 1. The one-
dimensional PDFs for charged and mixed rare backgrounds are shown in Figures
6.13 and 6.14 respectively.

The scatter plots for every pair of dimensions, and their correlations (for both
charged and mixed rare backgrounds) are shown in Appendix B.1.

The signal PDFs (namely in NN trans and q.r) are more similar to the rare back-
ground PDFs than to the continuum PDFs. Because of this, and the relatively small
expected number of rare-background events, the yields for charged and mixed rare
background are fixed in the four-dimensional fit. This reduces the statistical uncer-
tainty in ACP and signal yield measurement, at the cost of introducing systematic
uncertainty to the signal yield measurement.

The most common decay modes present in the rare datasets are found (from the
Monte-Carlo information), and the expected event numbers (and uncertainties) for
these decay modes are calculated (using the branching ratio and uncertainties from
[5]). These will be referred to as the ‘known rare-backgrounds’, see Appendix A for
information on the individual decay modes present. The uncertainties on the rest of
the rare-backgrounds (‘unknown rare backgrounds’) is then assumed to be ±40%.
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Figure 6.13: Showing the charged rare one-dimensional PDFs for ∆E (top left),
M corr

bc (top right) and NN trans (bottom left) and q.r (bottom right).

Given a total charged rare event number of 331 ± 3, the known and unknown
expected event numbers are:

• Known : 228± 46

• Unknown : 103± 41

And similarly for mixed rare, with 126± 2 events expected, we have:

• Known : 71± 21

• Unknown : 55± 21

6.2.4 The 4-Dimensional Fit Results
Having combined all of the one-dimensional PDFs, the measurement results are
tested tested on toy MC data. This is when we create many datasets comparable to
the distributions expected with real data, perform fits to the samples, and measure
the fitter performance over the collection of samples. Note that unless otherwise
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Figure 6.14: Showing the mixed rare one-dimensional PDFs for ∆E (top left), M corr
bc

(top right) and NN trans (bottom left) and q.r (bottom right).

stated, the datasets mentioned are the processed datasets, after the selection on NN.
Given the large signal validation dataset size compared to the expected number of
events (the expected number of events being approximately 0.37% of the full signal
validation dataset), the events are randomly sampled from the dataset. Similarly
for the rare-backgrounds (each with an expected number of events 2.00% the size of
the full rare datasets). This is not the case for continuum as the expected number of
continuum events is a third of the continuum dataset. For an individual sample this
is acceptable, but when performing tests on the fitter, requiring multiple samples to
be taken, each continuum sample will not be statistically independent. Because of
this, the continuum events are generated to the four-dimensional continuum PDF.

The number of signal and continuum events (and the ACP ) are free parameters
in the fit, whereas the number of charged and mixed rare events in the fit are fixed
to be 331 and 126 respectively. The sample sizes for each channel are randomly
selected from a Poisson distribution centred around the expected number of events
in that channel.

The results of the four-dimensional fit on a single MC sample with ACP = 0
are shown in Figure 6.15. Figure 6.16 shows the projection plots for the same fit,
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these are the PDFs and data in each dimension, where selections have been placed
in the other dimensions in order to reduce the backgrounds visible in the plots.
The projection selections are only placed on M corr

bc and NN trans (due to difficulty in
implementing projections when selecting ranges on kernel density estimation PDFs).
The projection selection ranges are:

• ∆E:

– 5.273 GeVc−2 < M corr
bc < 5.283 GeVc−2

– 0.0 < NN trans < 8.0

• M corr
bc :

– 2.0 < NN trans < 8.0

• NN trans:

– 5.278 GeVc−2 < M corr
bc < 5.279 GeVc−2

• q.r:

– 5.273 GeVc−2 < M corr
bc < 5.283 GeVc−2

– 0.0 < NN trans < 6.0

Additionally, the four-dimensional fit and projections for data samples with
ACP = +1 and ACP = −1 are shown in Figure 6.17.

The impact that fixing the rare-background yields has on the signal yield mea-
surement is investigated. The Poisson mean for the known charged rare event num-
ber (that will be sampled from the dataset) is raised to the upper end of its un-
certainty, and the fit performed 500 times on samples with this raised charged rare
event number. This is repeated at the low end of the known charged rare event
number, and the systematic uncertainty being half of the difference between the
measured signal yield means. This process is repeated for the unknown charged rare
event numbers, and for the known and unknown mixed rare event numbers. It is
found that the process of fixing the rare background event number in the fitter in-
troduces a systematic uncertainty in the measured signal yield of only ±10.0 events.
See Appendix A for more details.

Signal Yield Measurement

The fit is run on one-thousand data samples with a signal event number selected from
a Poisson distribution with a mean equalling the expected signal event number; 1052.
The mean statistical uncertainty (in the measured signal yield) returned by the fitter
is 47.35± 0.03 (with the standard deviation in in this measurement at 0.80± 0.02),
see Figure 6.18. Figure 6.19 shows the measured signal event number over the
thousand fits. The mean of the measured number of signal events is 1058.2 ± 1.5,
with a standard deviation of 46.7± 1.0.

As can be seen from the signal yield measurements, the fitter signal yield uncer-
tainty is accurate, being within the error range of the standard deviation of the mea-
sured signal yield results. The mean of the signal yield measurements of 1058.2±1.5
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Figure 6.15: Showing a 4-D fit to a sample with ACP = 0.

is overestimating the signal yield (with Poisson mean of 1052). To study the quality
of the model, the ‘pull’ value for each of the thousand fits is calculated. The signal
yield pull is defined as:

PullNsignal
=
Nsignal −N exp

signal

εNsignal

(6.10)

Where Nsignal is the measured signal yield in that fit. N exp
signal is the expected signal

yield, the mean of the Poisson distribution from which the input signal event num-
bers are selected. εNsignal

is the statistical uncertainty in the signal yield measure-
ment (returned by the fitter) for that fit. Then by finding the mean and standard-
deviation of the distribution of one-thousand pulls, the quality of the model can be
verified. Clearly a perfect model would see a mean-pull of zero (with the mean of the
Nsignal measurements being equal to the mean of the input signal event numbers),
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Figure 6.16: Showing the projection plots corresponding to the fit in 6.15.

and a pull standard-deviation of one (meaning that the fitter error is equal to the
standard deviation of Nsignal). The pull distribution for the signal yield measure-
ment is shown in Figure 6.20. The mean of the pulls is 0.12 ± 0.03, being small,
clearly the fit is not bad, but the positive value (and zero not being within the error
range) shows that the model consistently slightly overestimates the signal yield. The
standard-deviation of the pull distribution is 0.98± 0.02, showing that the mean of
the signal yield uncertainties is slightly larger than the standard-deviations of this
measurement, but 1.0 being within the error range, the fitter quoted uncertainty is
accurate.

A final test of how well the model performs when measuring the signal yields is
to measure how its performance varies for different input signal yields. The input
signal event numbers are varied (the mean of the Poisson distribution from which
the input signal event numbers are sampled) from 75% (789 events) of the expected
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Figure 6.17: Showing example 4-D fits (top row) and projection plots (bottom row)
to data samples with ACP = +1 (left column) and ACP = −1 (right column).

signal yield, to 125% (1315 events) in steps off 5%. Five-hundred samples are taken
for each Poisson mean, and the how the measured values vary with input value is
investigated. A perfect model would have a y-intercept of zero and a gradient of one.
The gradient is 0.999±0.005, within the error range of one, clearly the model scales
equally with the change in input, accurately measuring a change in signal yield.
The y-intercept is 8.0± 4.8, and given that the gradient is (very close to being) one,
shows that the model has a consistent bias. This consistent bias in the signal yield
measurement can also be seen in Figure 6.21, where the 1st order polynomial fit to
the data is (almost) parallel to, and consistently above y = x.

Given the good model results when measuring signal yield, the slight bias can be
corrected by simply subtracting 6.2 (the difference between the mean of the measured
signal yields and the expected number of signal events) from the measured signal
yield.
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Figure 6.18: Showing the statistical uncertainty in the measured signal yield distri-
bution over one-thousand fits.
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Figure 6.19: Showing the measured signal yield distribution over one-thousand fits.

ACP Measurement

Similarly as is done for the signal yield measurements, the quality of the model when
measuring the ACP is investigated. The fit is run one-thousand times on samples
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Figure 6.20: Showing the pull distribution in signal yield measurement, over one-
thousand runs.
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Figure 6.21: Showing the means of the measured signal yields plotted against the
corresponding means of the input signal yields.

with ACP = 0. The mean error on ACP given by the fitter (over a thousand runs)
is 0.1112 ± 0.0001 (and the standard-deviation on this error is 0.00354 ± 0.00008),
see Figure 6.22. The mean of the measured ACP values is 0.011 ± 0.003 and the
standard-deviation in the ACP measurements is 0.109± 0.002, see Figure 6.23. The
mean of the ACP results is slightly above zero but not significantly. Additionally,
the fitter quoted uncertainty is slightly overestimating the uncertainty.
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Figure 6.22: Showing the error in the measured ACP over one-thousand runs.
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Figure 6.23: Showing the measured ACP over one-thousand runs.

To verify the quality of the model when measuring ACP , the pull for each of
the thousand fits is calculated. The pull for the ACP measurement of a single fit is
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0 EVENTS

defined as:

PullACP
=

ACP −Aexp
CP

εACP

(6.11)

Where ACP is the measured ACP for that fit, Aexp
CP is the expected (i.e. the input)

ACP , in this case zero. εACP
is the fitter error on the measured ACP for that run.

The pull distribution for the ACP measurements is shown in Figure 6.24. The pull
distribution has a mean of 0.10±0.03 and a standard deviation of 0.98±0.02. Clearly,
although the measured value is still good, the ACP is being slightly overestimated.
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Figure 6.24: Showing the distribution in the pulls for ACP over one-thousand runs.

Finally the model performance for a range of input ACP values is investigated.
The fit is run over 500 samples with signal ACP = ±1, and at ACP from -0.5 to 0.5
in steps of 0.1. The plot of measured (mean over 500 runs) ACP against input ACP

is shown in Figure 6.25. The y-intercept of 0.0083 ± 0.0013 shows that the ACP

is being overestimated. Additionally the gradient of 0.982 ± 0.003 (being 6 times
the error away from one) is also clearly away from y = x. Although there are clear
issues with the model when measuring the ACP , the discrepancies are small, and
the model could be manually adjusted (a displacement and scaling of the gradient
of the first-order polynomial in the signal q.r PDF).

The latest belle measurement for the ACP had a statistical uncertainty of ±0.13,
so statistical uncertainty from this model of 0.111±0.004 is a definite improvement.
Even so, the ratio of signal to continuum is a limiting factor, and given the latest
state of the art software packages for machine learning, there is room for further
reduction in the continuum background and this statistical uncertainty could be
further reduced.
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Figure 6.25: Showing the mean of the measured ACP values against the ACP of the
data samples.
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7|Continuum Suppression With Ten-
sorFlow

In order to reduce the statistical uncertainty on ACP , we investigate whether we
can improve continuum suppression. There are a handful of state of the art soft-
ware packages for machine learning and neural networks including Torch[37] and
Theano[38]. In this study, the use of TensorFlow[39] was investigated.

The procedure follows closely that in 6.1, variable names and abbreviations will
not be redefined. The same selection criteria of 5.265 GeVc−2 < M corr

bc < 5.3 GeVc−2

and −0.4 GeV < ∆E < 0.3 GeV is assumed unless otherwise stated.

7.1 TensorFlow
TensorFlow is an open source software package for machine learning maintained
by Google, with the interface implemented in Python and optionally running on
GPUs (which when dealing with large matrix operations can see an immense speed
improvement compared to running on CPUs).

It allows the entire architecture of the neural network to be built from the ground
up, with various algorithms vital to training neural networks either pre-implemented,
or implemented by the user.

Before building and training the network, all of the input data must be pre-
processed. All nineteen training variables (see 4.3) are transformed to be within the
range ±1 by implementing equal frequency binning. This is done by first finding
the bin edges in the un-transformed variable such that each bin (of variable width)
has the same number of entries. This is done with the combined signal and contin-
uum training datasets. The transformed variable between -1 and 1 has equal bin
widths, and a one-to-one correspondence to each bin in the un-transformed variable
is implemented such that all events in the first un-transformed bin are placed in
the first bin in the transformed variable, and similarly for all bins. In this way, the
transformed variable is uniform (when looking at the combined signal and contin-
uum training sets). Signal and continuum individually have different distributions,
and all information and correlations are preserved. This is done for each of the
nineteen kinematic variables. Figure 7.1 shows the equal frequency binning proce-
dure as applied to a mock variable where signal and continuum are each a Gaussian,
with different means and standard-deviations. The bin edges in the un-transformed
variables calculated from the training datasets are then used when processing all
remaining data. As when training the NeuroBayes neural network, 125,000 signal
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and 125,000 continuum events are used in the training (and in this case calculating
the bin-edges for pre-processing). Five-hundred bins are used when transforming
the kinematic variables (this process is only performed with two-hundred bins in
7.1).

The events are shuffled between every training epoch to ensure that no two
batches are the same, and that each event appears in random order. This is done
firstly so that different combinations of events make up the batches, preventing
particular event combinations impacting the training (so that repeating the training
process won’t see very different results). Secondly this changes the order in which
events are trained over, as this could bias the training.

The architecture of the network is highly variable. The number of hidden layers,
nodes per layer and activation functions are all adjustable, as well as options relating
to the training and optimisation of each network such as batch size, learning rate,
number of epochs, loss function and choice of training algorithm. All of these options
(and many more) will be referred to as the hyper-parameters of the neural network.
The trainable-variables are the parameters that are adjusted in the training process,
namely the weights between the nodes. The weights in a given layer are initialised
randomly to a uniform distribution in the range:

±
√
6

√
nsum

(7.1)

Where nsum is the sum of the number of nodes in both layers in which the weights
connect. See [40] for more details.

The loss function used for training is the cross-entropy (see 5.2). The loss func-
tion of the output node is set as tanh, and then the output is transformed to ensure
that NN is between 0 and 1.

The neural network was trained using the Adam algorithm[41], shown to per-
form better (faster and settles to a better minimum) than other gradient descent
algorithms. It uses a ‘momentum’ to reduce the rate at which the search oscillates
in trainable-variable space. Often, the learning rate is reduced manually (i.e. based
on the current epoch number) so that as the algorithm converges towards the loss-
function minimum, it takes smaller steps. In the Adam algorithm, the ‘momentum’
is reduced (according to speed of learning) effectively reducing the learning rate in
an optimised manner, optimising the convergence.

More complex options to aid in training and to prevent overtraining were also
implemented. These include using batch-normalisation (transforming the data at
each node according the mean and variance in the batch), L2-normalisation (adding
a term proportional to the square of the weights to the loss function to favour
larger weights only if they bring a clear improvement to the classifying ability of
the network) and dropout (randomly dropping nodes - setting the weights to zero -
during training to force the network to learn as many relationships as possible).

As training can be slow, one of the biggest hurdles in training a good neural
network is the choice of hyper-parameters. Even with a fast training neural net-
work, selecting the best configuration from the huge hyper-parameter space is a
time consuming activity. Grid-searching (selecting multiple options for each hyper-
parameter, and training the network on every possible configuration) wastes a lot of
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Figure 7.1: Showing the equal frequency binning applied to a mock variable where
signal and continuum both have Gaussian distributions (top). The vertical black
lines correspond the bin edges such that the sum of the signal and continuum event
numbers are equal for every bin. The bins in the transformed distribution (bottom)
again have the same number of entries per bin, but are also transformed to have the
same bin-width.
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training time on ‘bad’ configurations. More advanced algorithms based on Bayesian
optimisation are very popular.

In this study the Hyperband algorithm[42] is used, shown to converge to a good
hyper-parameter set up much faster than other optimisation algorithms. Hyperband
first assumes that given a set of neural networks (with different hyper-parameter
configurations), the networks that perform better after a few training epochs are
more likely to perform better when fully trained. This is obviously not always the
case (slower converging networks often settle closer to the loss-function minimum),
but running all options for the full number of epochs is computationally expensive.
Taking account of this, a large sample of neural networks are trained for a small
number of epochs, and a small sample for a large number of epochs. For example
if the maximum epoch number is 200, then 200 different hyper-parameter configu-
rations are randomly selected and the neural networks trained for one-epoch each,
one configuration is trained for the full number of epochs, and a range in between
with a decreasing number of neural network configurations as the epoch number
increases. The best performing networks are selected and the process begins again,
with the minimum number of training epochs increased. This process is repeated
(selecting the best configurations and increasing the minimum number of training
epochs) until a handful of neural networks are trained for the full number of epochs.
Hyperband cannot optimise the learning rate (it will have a preference for the sub-
optimal larger learning rates), so a learning rate of 10−4 is chosen (known to have
the potential for good convergence from previous investigations). Ideally Hyperband
would be run for a range of different learning rates. This process can reduce the
time taken to find the best configuration from weeks to days.

Once every five epochs (or every epoch when total number of epochs is less than
10) the performance of the neural network is evaluated. This is done by averaging the
losses of the signal and continuum testing datasets. Figure 7.2 shows the loss value
for training and testing datasets against the number of epochs. The performance
of the network is not validated on the training set as Hyperband would select a
configuration that would lead to massive over-training. Additionally, to increase the
speed of the hyper-parameter optimisation, the best test-loss (during the training
of a given network) is saved, and training stopped if the test-loss does not decrease
over 50 epochs. This best test-loss is used to define the performance of the network,
even if the test-loss diverged after more training. Because this would still lead to a
configuration that would show preference to the testing dataset compared to what
would actually be expected (due to the large datasets this shouldn’t have much
impact), the validation datasets are needed.

7.1.1 Analysis of the Neural Network Performance
Once the best configuration is found, the neural network is trained with this config-
uration, only saving the trainable-variables at the epoch giving the best test-loss (in
effect implemented early stopping, and not needing to consider future over-training,
and allowing for a large maximum number of epochs without worrying about the
impact on the network). Finally the network performance is tested on the validation
datasets.
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Figure 7.2: Showing how the loss on the training (blue) and testing (green) varies
as the training proceeds. Note that the test loss is a lot less noisy than the training
loss as the entire testing dataset was used when calculating the test loss. It can be
seen that the average training loss is significantly lower than the average test loss.

The hyper-parameter configuration for the best performing network is as follows:

• A maximum number of epochs of 600.

• 50 events per batch.

• A Learning rate of 0.0001.

• Six hidden layers.

• 47 nodes per hidden layer.

• Exponential linear unit activation function.

• No batch normalisation.

• A dropout chance of 0.007 and only applying to every hidden layer (in effect
not applying dropout).

• No L2 regularisation.

This trained neural network is then applied to the data. Note that NN will be
used to refer to the output of this neural network, unless otherwise stated. The
neural network outputs for signal and continuum are shown in Figure 7.3. This
clearly shows an improved classifying ability over the NeuroBayes neural network
(see Figure 6.1).

As in Chapter 6, the signal validation dataset contains both the correctly and
incorrectly (∼ 11.2% of the signal validation dataset) reconstructed B0-mesons, for
which the NN distributions are plotted in Figure 7.4. As can be seen, that while
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Figure 7.3: Showing the signal and continuum NN distributions (equal numbers)
for the trained TensorFlow network.

good, classifying ability is slightly worse for the events with wrongly reconstructed
B0-mesons (to be expected as the training was performed on only the events with
correctly reconstructed B0-mesons). As the performance of the neural network isn’t
greatly different in both cases, and that the events with wrongly reconstructed B0-
mesons are a small proportion of the signal validation dataset, they are not analysed
separately from here on.
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Figure 7.4: Showing the signal NN distributions for the incorrectly (left) and cor-
rectly (right) reconstructed B0-mesons.
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The signal and continuum MC NN distributions are plotted with the expected
number of events, along with the FOM distribution, see Figure 7.5. The best FOM
is found to be 17.3± 0.4, which shows a clear improvement over NeuroBayes, with
a best FOM of 13.2± 0.4.
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Figure 7.5: Showing the signal and continuum NN distributions with the expected
numbers of events, and the FOM (green).

The ROC curve (for signal and continuum MC)is shown in Figure 7.6, giving
an AUC of 0.947, confirming that this neural network has a much better classifying
performance than the NeuroBayes neural network (with an AUC of 0.909).

With this neural network, a NN cut value chosen to keep 13.00% of continuum,
leaves 88.11% of signal (contrast with 79.01% from the NeuroBayes neural network).
A value of NN cut chosen to keep 70.20% of signal, leaves 3.35% of continuum remain-
ing (contrast with 7.65% from the NeuroBayes neural network). These results show
that (depending on the NN cut choices), the continuum background (for a given sig-
nal efficiency) could be halved by using an optimised neural network in TensorFlow
as compared to an un-optimised NeuroBayes neural network.

As this neural network is trained entirely on Monte Carlo data, the real off-
resonance data was processed by this network to validate that it performs similarly
to the continuum MC. The signal and off-resonance NN distributions (with an equal
number of events) is shown in Figure 7.7. A NN cut value chosen to keep 13.00%
of off-resonance leaves 85.85% of signal, this performance is slightly worse than
with the continuum MC data but still good, and much better than the NeuroBayes
result (74.38% signal when keeping 13.00% of off-resonance data). Selecting the
NN cut that keeps 70.20% of signal leaves 4.55% of off-resonance remaining, again
showing a worse result than with continuum MC, but less than half than is given
by NeuroBayes (10.08%).
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Figure 7.6: Showing the ROC curve of signal and continuum MC, with an AUC of
0.947.
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Figure 7.7: Showing the NN distributions for signal and off-resonance data, in equal
numbers. Note that the distributions are noisy due to the much smaller sample size.

The ROC for signal MC and off-resonance is shown in Figure 7.8. The AUC is
0.938, again showing a clear improvement over the NeuroBayes neural network AUC
(of signal and off-resonance data) of 0.891

The NN distributions for the charged and mixed rare backgrounds are shown in
Figure 7.9. The distributions do not just peak at 1(as in the NeuroBayes case, see
Figure 6.7), but also at 0. This means that for any choice of NN cut, the number of
rare background events that make it through all of the selections should be lower in
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Figure 7.8: Showing the ROC curve for signal and off-resonance data, giving an
AUC of 0.938.

the TensorFlow case (the differences were not analysed in detail, but are clear from
the NN distributions).
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Figure 7.9: Showing the NN distributions for the charged (left) and mixed (right)
rare backgrounds.

This investigation into improved neural networks has shown to give a very good
improvement in the ability to separate signal and continuum. Sadly, it comes with
a cost.

∆E − NN Correlations

Investigation into the ∆E distribution at different NN cut values shows that there
is a correlation between the two. When looking the continuum ∆E distributions
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for different NN slices, the distribution is sculpted to be more signal-like as NN
increases. On the flip side, for a low NN the distribution shows the reverse, a
trough where signal peaks. Figure 7.10 shows the continuum ∆E distributions at
different NN ranges. The off-resonance data also shows the same effect. Similarly
for the signal distribution (see Figure 7.11), where the ∆E distribution becomes less
signal-like as NN decreases.

Note that this correlation is minimal in the neural network output for Neu-
roBayes. Figure 7.12 shows the ∆E distributions for different NeuroBayes neural
network output slices, for signal and continuum respectively.

The TensorFlow neural network is learning that there is a relation between the
∆E value, and whether an event is signal or continuum. This can only be the case
if there is some correlation between ∆E and the kinematic variables on which the
neural network is trained. This was most likely not picked up in the NeuroBayes
neural network due to its regularisation and node pruning algorithms.

An investigation into the correlations between ∆E and the input kinematic vari-
ables indeed finds some large correlations. The scatter plots of ∆E with the kine-
matic variables, and their correlations can be seen in Appendix C. The kinematic
variables with the largest correlations were found to be, in decreasing order: Rso

20,
Roo

0 , Roo
2 and Rso

22, with signal MC(continuum MC) correlations of 29.1%(43.0%),
18.2%(27.1%), 12.6%(19.8%), and 13.4%(17.0%) respectively, see Table 7.1.

Signal ∆E Continuum ∆E
cos(θB) 4.8% 2.4%

cos(θthrust) 0.0% 0.0%
∆Z 0.9% 0.1%
P sum
t 6.8% 3.5%

M2
miss 7.8% 4.6%
Roo

0 18.2% 27.1%
Roo

1 2.6% 3.4%
Roo

2 12.6% 19.8%
Roo

3 0.0% 0.2%
Roo

4 2.1% 2.5%
Rso

00 9.3% 10.7%
Rso

02 2.2% 5.1%
Rso

04 0.4% 3.5%
Rso

10 4.8% 6.3%
Rso

12 1.2% 1.8%
Rso

14 1.3% 0.7%
Rso

20 29.1% 43.0%
Rso

22 13.4% 17.0%
Rso

24 0.0% 0.6%

Table 7.1: The (absolute) correlation percentages between all of the neural net-
work inputs and ∆E for signal and continuum. Calculated for events in the range
−0.4 GeV < ∆E < 0.2 GeV (the ∆E selection placed on the training datasets.)
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Figure 7.10: Showing the ∆E distributions at different NN slices. The effect is seen
in both continuum MC (left column) and off-resonance (right column).

The kinematic variables with the highest correlation to ∆E were removed from
the training of the neural network and the performance of the neural networks,
along with the ∆E −NN correlation were investigated. This involved training four
neural networks, removing the highest, two-highest, three-highest and four-highest
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Figure 7.11: Showing the signal ∆E distributions for different NN slices.

correlated (to ∆E) variables.
The neural network configuration was different to above, as this was the best

configuration found at the time of testing. The best performing neural network
configuration used above was found at a later date. The neural network hyper-
parameters were as follows:

• A maximum number of epochs of 600.

• 500 events per batch.

• A Learning rate of 0.0001.

• Ten hidden layers.

• 49 nodes per hidden layer.

• Exponential linear unit activation function.

• Using batch normalisation.

• A dropout chance of 0.004 and only applying to every hidden layer (in effect
not applying dropout).

The performance of the neural networks, and the correlations between ∆E and
the neural network outputs are summarised in Table 7.2. Successively removing
the highest correlated variables does indeed reduce the ∆E − NN correlations in
signal and continuum, at the cost of classifying power. Note that the correlations
are calculated for NN > 0.2 (NN > −0.6 for the NeuroBayes neural network) as the
smallest NN cut is around this value. The neural network with 4 variables removed
still shows a clear improvement in FOM and AUC compared to the NeuroBayes
network, with only a slight increase in ∆E − NN correlation. This improvement
however is not substantial, and the analysis is performed on the TensorFlow neural
network with all kinematic variables, in the hope that the correlation introduced is
outweighed by the greatly improved classifying ability.
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Figure 7.12: Showing the continuum (left column) and signal (right column) ∆E
distributions at different slices of NN from the NeuroBayes neural network. Note
that as NN is in the range ±1 for the NeuroBayes output, the NN slices are adjusted
accordingly.
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Best FOM AUC Correlation-Sig Correlation-Cont
All (TF) 17.3± 0.4 0.947 17.9% 8.0%

1 Removed 16.3± 0.4 0.938 11.5% 7.3%
2 Removed 15.0± 0.4 0.928 7.9% 8.3%
3 Removed 14.6± 0.5 0.923 4.9% 5.6%
4 Removed 14.2± 0.3 0.918 4.3% 6.2%
All (NB) 13.2± 0.4 0.909 3.0% 4.7%

Table 7.2: The best FOMs, AUCs, signal and continuum correlations between ∆E
and NN . ‘All(NB)’ refers to the network from Chapter 6, and ‘All(TF)’ refers to
the network outlined above in 7.1.1 (with all kinematic variables).
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7.2 Analysis of B0 → K0
Sπ

0 Events
Although the ∆E − NN correlation in the neural network trained with all 19 kine-
matic variables is not ideal, the separation between signal and continuum is large, so
there should be some reduction in the statistical uncertainty of ACP . The analysis
follows the procedure laid out in 6.2.

A NN cut value of 0.2971 is chosen to give the same number of signal events as in
6.2. This again leaves 92.3% of signal and now reduces the remaining continuum to
19.9%. The neural network transform will also be performed (NNmax is 0.999978).
This NN cut value gives the following expected event numbers:

• Signal : 1052± 57,

• Continuum : 12219± 28,

• Charged Rare: 280± 2,

• Mixed Rare: 104± 1,

The fitting regions are again:

• −0.4 GeV < ∆E < 0.3 GeV

• 5.265 GeVc−2 < M corr
bc < 5.3 GeVc−2

• −10.0 < NN trans < 10.0

• −1.0 < q.r < 1.0

7.2.1 Signal
The signal distributions for the correctly and incorrectly reconstructed B0-mesons
are shown in Figure 7.13. Their distributions are not treated separately.

The signal ∆E distribution is again given by a combination of a Crystal Ball
function and a Chebyschev function of second order. The M corr

bc distribution for
signal is given by a Crystal Ball function and a Gaussian. Signal NN trans is again
a pair of Gaussians, given by a pair of Gaussians. And again f

q.r|ACP=0
signal (q.r) is

given by a kernel density estimation function, with mirroring at both edges, and a
smoothing factor of ρ = 0.75. The one-dimensional signal PDFs are shown in Figure
7.14.

The scatter plots in every pair of dimensions are shown in Appendix B.2. As
before, all correlations are relatively small (see Table B.3), but as expected, the
∆E − NN trans correlation is now massive, at 17%.
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Figure 7.13: Showing the signal fitting variable distributions for the correctly (top
row) and incorrectly (bottom row) reconstructed B0-mesons. From left to right;
∆E, M corr

bc , NN trans, q.r.

7.2.2 Continuum
The ∆E distribution for continuum is no longer a simple Chebyschev function, it also
contains a Gaussian due to the signal-like sculpting. The distribution is now given
by a combination of a third-order Chebyschev function and a Gaussian. Continuum
M corr

bc is again modelled by an Argus distribution. The NN trans distribution for
continuum is given by a pair of Gaussians. Finally, f q.r

continuum(q.r) is given by a
kernel density estimation function, with no mirroring and a smoothing of ρ = 2.
The one-dimensional PDFs for continuum are shown in Figure 7.15.

The correlations between the dimensions for continuum are shown in Table B.4,
alond with the scatter plots in Appendix B.2. Again the largest correlation, at 7%,
is between ∆E and NN trans

7.2.3 Rare Backgrounds
The ∆E distribution, f∆E

rare−charged(∆E) is modelled by a kernel density estimation
function with a smoothing of ρ = 2 and mirroring on the left edge. f∆E

rare−mixed(∆E) is
modelled with two Gaussians. The rare-backgroundM corr

bc distributions are modelled
with Argus functions. The NN trans distributions for both rare backgrounds are given
by single Gaussians. And finally, the q.r distributions are both modelled by kernel
density estimation functions, with a smoothing of ρ = 1, and mirroring at both
edges. The one-dimensional PDFs for the charged and mixed rare backgrounds are
shown in Figures 7.16 and 7.17 respectively.

The correlations and scatter plots between each parameter (for both charged and
mixed rare backgrounds) are shown in Appendix B.2. The largest correlations for
charged and mixed backgrounds (as to be expected) are between ∆E and NN trans
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Figure 7.14: Showing the one-dimensional signal PDFs.

with correlations of 15% and 18% respectively.
As before, the expected yields for the most common rare decays are investigated

(from the MC data), along with their uncertainties (using the branching ratio and
uncertainties from [5]). See Appendix A for more details. This gives, for charged
rare backgrounds:

• Known : 193± 39

• Unknown : 87± 35

And similarly for mixed-rare:
• Known : 59± 17

• Unknown : 46± 18

7.2.4 The 4-Dimensional Fit Results
The results of individual 4-dimensional fits for data samples with ACP of 0 and 1
are shown in Figure 7.18. The statistical uncertainty introduced by fixing the rare
background event numbers in the fitter is ±9 signal events.
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Figure 7.15: Showing the one-dimensional continuum PDFs.

Signal Yield Measurement

The fit is run with one-thousand data samples (with the signal sample size taken
from a Poisson distribution of mean 1052) with ACP = 0, following the method
explained in 6.2.4. The distribution of the measured signal event number has a mean
of 1070.9±1.4 and a standard-deviation of 44.5±1.0. The distribution of statistical
uncertainties returned by the fitter is 45.56±0.02 and the standard deviation of this
distribution is 0.75± 0.02. They are shown in Figure 7.19

Clearly the fitter is overestimating the signal event number, and slightly over-
estimating its uncertainty. This can be seen in the pull of the measured signal
event number, (the distribution of which is shown in Figure 7.20). With a mean of
0.41± 0.03 and a standard-deviation of 0.97± 0.02, this distribution clearly shows
that the fitter overestimates the signal event number.

Running the 500 fits at a range of input signal event numbers gives a clearer
picture on how the fitter behaves. The input signal event numbers (the mean of
the Poisson distributions from which the number of events to sample is selected)
are varied from 0.75 to 1.25 times the expected signal event number, in steps of
0.05 times the expected event number. The measured results against the input are

89



7.2 CHAPTER 7. CONTINUUM SUPPRESSION WITH TENSORFLOW

E [GeV]∆
0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3

E
ve

nt
s

0

100

200

300

400

500

600

700

800

900

E∆E∆

]2 [GeV/ccorr
bcM

5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s

0

100

200

300

400

500

corr
bcMcorr
bcM

transNN
10− 8− 6− 4− 2− 0 2 4 6 8 10

E
ve

nt
s

0

200

400

600

800

1000

transNNtransNN

q.r
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
ve

nt
s

0

100

200

300

400

500

600

700

q.rq.r

Figure 7.16: Showing the one-dimensional charged rare background PDFs.
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Figure 7.17: Showing the one-dimensional mixed rare background PDFs.
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Figure 7.18: Showing the 4-dimensional fits (top row) and projections plots (bottom
row) to data samples with ACP = 0 (left column) and ACP = 1 (right column).
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Figure 7.19: Showing the distribution of measured signal yields (left) and the errors
in the signal yields (right) over a thousand runs.
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Figure 7.20: Showing the pull in signal yield over one-thousand runs.

shown in Figure 7.21. The 1st order polynomial fit to this data has a gradient of
0.990± 0.004 (which although not within the error range of one, very close), and a
y-intercept of 30.1± 4.6. Clearly the fitter consistently overestimates the number of
signal events, adding a correction of -18.9 events to the fitter could fix this.
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Figure 7.21: Showing the mean of the measured signal yields against the mean of
the signal data sample sizes..
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Figure 7.22: Showing the measured ACP (left) and error in measured ACP (right)
over one-thousand runs.

ACP Measurement

The measured ACP distribution (over one-thousand samples with input ACP = 0) is
shown in Figure 7.22. The mean of this distribution is 0.007± 0.003. The standard-
deviation on these measurements is 0.102 ± 0.002 - a significant improvement over
the results from the NeuroBayes neural network.

The fitter statistical uncertainty distribution is also shown in Figure 7.22. The
mean is 0.1062±0.0001 and its standard-deviation is 0.00323±0.00007. The quoted
statistical uncertainty is worse than the actual standard deviation in the measure-
ments. Both results still show an improvement over the previous results.

The pull distribution, shown in Figure 7.23, has a mean of 0.07 ± 0.03 and a
standard-deviation of 0.97± 0.02.

Finally the fit is performed 500 times for data samples with ACP values of ±1
and from -0.5 to 0.5 in steps of 0.5. The measured ACP versus the input data
ACP is shown in Figure 7.24. The y-intercept of 0.0103 ± 0.0012 and gradient of
0.974± 0.003 show that the model would be a better fit if a small shift and scaling
were applied to the ACP in the first-order polynomial in signal q.r.

This result already shows a clear improvement over the original model in Chapter
6, and the previous Belle result. Sadly the ∆E correlation with the neural network
output seems to be preventing the statistical uncertainty in ACP being reduced
significantly further. Finding a way to keep the good performance of the neural
network whilst not introducing the ∆E − NN correlations could show promising
results.
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Figure 7.23: Showing the ACP pull distribution over a thousand runs.
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8|Adversarial Neural Networks

A possible way to further reduce the statistical uncertainty on the ACP measurement
is to use the gains from the improved continuum suppression (see Chapter 7) but
reduce the correlation between ∆E and the neural network output. Removing the
input kinematic variables that are correlated with ∆E achieves this, but at too
great a cost to the continuum suppression. A way forward is to use all of the
kinematic variables and the TensorFlow neural network, but to train it in a way
that correlations between NN and ∆E are penalised.

8.1 Adversarial Neural Network
Adversarial neural networks were first developed in order to generate images from
a trained image-recognition convolutional neural network, and used to further train
the convolutional neural network in order to perform better in classification tasks
[43]. The idea of an adversarial neural network can be used to reduce the correlations
between the output of a neural network (referred to as the classifying neural network)
and other parameters associated with the event. This method is used to reduce the
correlation between NN and ∆E, although in principle this could also be used for
any one of, or multiple parameters that have correlations with NN . The method
laid out here closely follows that in [44].

The adversarial network tries to model the ∆E distribution by taking NN as
input, and trying to predict the value of ∆E that a given event will have. The
network used in this study has one input (NN ), two hidden layers with 20 nodes
each, and 15 outputs. This models ∆E with five Guassians (indexed by i), with
3 outputs for each, corresponding to the means (µi(NN )), widths (σi(NN )), and
fractional weighting of that Gaussian (fi(NN )) - the fractions are not normalised so
they are first passed through a softmax function (giving f ′

i(NN ), scaled to sum to
one). The adversary loss function (for a single event) is given by:

Ladv (NN ,∆E) = −log

(
5∑

i=1

f ′
i (NN )√

2πσ2
i (NN )

exp

{
− (µi (NN )−∆E)2

2σ2
i (NN )

})
(8.1)

Training the adversarial neural network to minimise this loss function will allow it
to predict the ∆E distribution from the input NN distribution if the two parameters
are correlated and the ∆E distribution can be roughly modelled with five Gaussians.
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We want to penalise the classifying neural network if NN is correlated to ∆E, so
the classifier is further trained to minimise:

Ltot = Lclass − λadvLadv (8.2)

Where Lclass is our loss function for the classifier network (the cross entropy,
see 5.2), and λadv is a constant chosen to specify how much to penalise ∆E − NN
correlations. Training to this new loss function has the desired impact of reducing
the correlations at the cost of the continuum suppression. A λadv of zero would result
in a trained classifier maximally separating continuum and signal, whereas a larger
λadv results in a drastically reduced NN − ∆E correlation but with significantly
worse classifying power. The configuration of the networks is shown in Figure 8.1.

Figure 8.1: Showing the configuration of the classifying and adversarial neural net-
works. θf and θr are the trainable-weights in the classifier and adversarial network
respectively. X is the vector of input kinematic variables. f(X; θf ) is NN . Z is
∆E. γ1−15 are the Gaussian means, standard-deviations and fractions, and P is the
function that combines these (with ∆E) into the likelihood function pθr . Lf (θf ) and
Lr(θf , θr) are Lclass and Ladv respectively. Image from [44].

There are now the additional hyper-parameters associated with the architecture
of the adversary network. These include the number of outputs (related to the num-
ber of Gaussians with which to model the ∆E distribution), the number of hidden
layers and nodes per hidden layer. The additional hyper-parameters associated with
training the adversary network are its batch-size, training steps and learning rate.

The classifier neural network has the same architecture, and is initialised to
the optimal weight values from the previous training in 7.1.1. For every classifier
training step, the adversary network is first trained for 100 steps using the Adam
optimiser with a batch size of 125 and a learning rate of 0.01. The learning rate for
training the classifier is reduced to 10−6 and the training is run for 4 epochs.

The main hyper-parameters for the classifier are:

• A maximum number of epochs of 4.
• 50 events per batch.
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• A Learning rate of 10−6.
• Six hidden layers.
• 47 nodes per hidden layer.
• Exponential linear unit activation function.
• No batch normalisation.
• A dropout chance of 0.007 and only applying to every hidden layer (in effect

not applying dropout).
• No L2 regularisation.

And the hyper-parameters associated with the adversarial neural network are:

• 100 training steps.
• 125 events per batch.
• A Learning rate of 0.01.
• Two hidden layers.
• 20 nodes per hidden layer.
• Exponential linear unit activation function for the nodes in the hidden layer.
• 15 output nodes (three output nodes corresponding to each Gaussian):

– 5 output nodes corresponding to µi - no activation function (identity
operator).

– 5 output nodes corresponding to un-normalised fractions fi - no activa-
tion function (identity operator).

– 5 output nodes corresponding to σi, where the ‘activation’ is the expo-
nential function, to ensure that the widths of the Gaussians are positive.

• No batch normalisation, dropout or L2 regularisation.

The method is then as follows:

1. Train the neural network to optimally separate signal and continuum as in
Chapter 7. Save the weights.

2. Create the adversary neural network, and the classifying (the original) neural
network with the same architecture, and initialise the weights to that of the
saved best model.

3. For every (20,000 steps as there are four epochs and a batch size of 50) classifier
training step and a given choice of λadv:

(a) Train the adversary neural network for the given number of adversary
training steps (100 steps), where for each step:

i. For every event in the batch (where the number of events in the
batch is the adversary batch size, 125 events), get the NN output
from the classifier.
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ii. Using NN and ∆E get the adversarial loss given by 8.1.
iii. Train the adversarial neural network given the adversarial loss, ad-

versarial learning rate (0.01) and gradient-decent algorithm of choice
(Adam optimiser).

(b) Train the classifier neural network as normal for one training step, with
the difference that the loss function is now given by 8.2 and has a depen-
dence on ∆E, as well as NN and ŷ (one or zero depending on if an event
is signal or continuum).

4. Save the weights of the classifying neural network and use this updated neural
network for further analysis.
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Figure 8.2: Showing the signal (blue) and continuum (red) testing dataset correla-
tions between ∆E and NN as the training proceeds. This corresponds to 4 epochs,
of 5000 classifier-training steps each, where the adversarial network is trained for
125 steps per classifier training step. Note that these correlations are in the testing
datasets, and calculated over the entire range 0 < NN < 1

The investigation into the varying λadv is performed. The procedure was repeated
for a range of λadv; 0.25, 0.5, 0.75, 1.0 and 1.5. As the training proceeds, the ∆E −
NN correlations steadily decrease to a minimum. For larger λadv, the correlations
quickly decrease to zero, before bouncing and increasing. This behaviour can be
explained by the competing neural networks, for smaller λadv they settle to coupled
situation where training in one network is counteracted by the other. The larger λadv
see the adversarial network dominate quickly before the classifier has had enough
training steps to counteract it, this should be investigated further. The ∆E − NN
correlations against the number of training steps for λadv = 0.5 is shown in Figure
8.2. The continuum MC (validation dataset) ∆E distributions (at different NN
slices) for each λadv are shown in Figure 8.3.

The details of how the neural networks perform and the ∆E−NN correlations on
the signal and continuum testing datasets are summarised in Table 8.1. Note that as
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Figure 8.3: Showing the continuum ∆E slices at NN < 0.1 (left column) and
NN > 0.9 (right column). Rows one to five correspond to λadv values of 0.25, 0.5,
0.75, 1.0 and 1.5 respectively.
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λadv Best FOM AUC Correlation-Signal Correlation-Continuum
N/A (TF) 17.3± 0.4 0.947 17.9% 8.0%

0.25 17.3± 0.5 0.947 13.9% 7.8%
0.50 17.2± 0.5 0.945 10.8% 6.8%
0.75 16.9± 0.5 0.942 8.3% 4.8%
1.00 16.8± 0.4 0.939 6.4% 3.0%
1.50 15.7± 0.5 0.931 1.8% 1.0%

N/A (NB) 13.2± 0.4 0.909 3.0% 4.7%

Table 8.1: The best FOMs, AUCs, signal and continuum correlations between ∆E
and NN . ‘N/A (NB)’ refers the the network from Chapter 6, and ‘N/A (TF)’ refers
to the best TensorFlow network outlined in 7.1.1.

before, the correlations are calculated for NN > 0.2 (NN > −0.6 for the NeuroBayes
neural network) as the smallest NN cut is around this value. The results for the
network with λadv = 1.5 show both a better classifying power than NeuroBayes
and smaller correlations - the NeuroBayes network is therefore worse even when
considering the worrying ∆E − NN correlations. As can be seen from the results
of the network with λadv = 0.5, at a very small price paid (almost negligible) with
respect to classifying ability, the ∆E−NN correlations can be significantly reduced.
In order to minimise the ∆E−NN correlation whilst maintaining a large classifying
ability, the neural network trained with λadv = 0.5 is investigated further.

8.1.1 Analysis of the Neural Network Performance
The neural network trained with λadv = 0.5 is applied to the validation datasets.
The signal and continuum MC NN distributions are shown in Figure 8.4. A value
of NN cut chosen to keep 13.0% of continuum MC leaves 87.51% of signal remaining,
and a choice of NN cut to keep 70.2% of signal leaves 3.49% of continuum remaining.

The NN distributions with the expected numbers of signal and continuum MC,
and the FOM distribution with NN cut are shown in Figure 8.5. The best FOM is
17.2± 0.5.

The ROC curve for signal and continuum MC is shown in Figure 8.6, and gives
an AUC of 0.945.

The signal and off-resonance NN distributions are shown in Figure 8.7. A NN cut

for 13.0% of off-resonance gives 84.57% of signal, and a NN cut for 70.2% of signal
leaves 5.13% of off-resonance remaining.

The ∆E at different NN slices for signal, continuum MC, and off-resonance
are shown in Figure 8.8. The off-resonance distribution forms match that of con-
tinuum MC. Both signal and continuum MC show less sculpting than with the
non-adversarial TensorFlow neural network in 7.1.1 (see Figures 7.10 and 7.11).

The ROC curve for signal and off-resonance gives an AUC of 0.934, see Figure
8.9.
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Figure 8.4: Showing the NN distributions for signal and continuum MC in equal
numbers.
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Figure 8.5: Showing the NN distributions in their expected numbers. The FOM
distribution (green) is also plotted.
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Figure 8.6: Showing the ROC curve of signal and continuum MC, giving an AUC
of 0.945.
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Figure 8.7: Showing the NN distributions for signal and off-resonance in equal
numbers, where the noisiness is due to the smaller sample size.
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Figure 8.8: Showing the signal (top row), continuum (middle row) and off-resonance
(bottom row) ∆E distributions for NN < 0.1 (left column), 0.45 < NN < 0.55
(middle column) and 0.9 < NN (right column).
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Figure 8.9: Showing the ROC curve for signal and off-resonance data, giving an
AUC of 0.934.
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8.2 Analysis of B0 → KSπ
0 Events

The analysis is now performed on the signal and continuum validation datasets,
along with the rare background datasets, processed by this retrained neural network
(with λadv = 0.5). The fitting procedure follows the method laid out in 6 in order
to compare the performance of the four-dimensional fit for the adversarialy trained
and non-adversarialy trained neural networks. The fitting regions are again:

• −0.4 GeV < ∆E < 0.3 GeV

• 5.265 GeVc−2 < M corr
bc < 5.3 GeVc−2

• −10.0 < NN trans < 10.0

• −1.0 < q.r < 1.0

The NN cut value of 0.2796 (note that NNmax is 0.999995) is chosen (keeping
92.3% and 21.0% of signal and continuum respectively) to give the expected event
numbers of:

• Signal : 1052± 57,

• Continuum : 12904± 30,

• Charged Rare: 308± 2,

• Mixed Rare: 115± 1,

8.2.1 Signal
The signal ∆E distribution is modelled with a Crystal Ball function and a second
order Chebyschev function. The M corr

bc distribution is modelled with a Gaussian
and a Crystal Ball function. The signal NN trans distribution is modelled with two
Gaussians. The signal q.r distribution is again modelled with a kernel density esti-
mation function with a smoothing factor of ρ = 0.75 and mirroring at both edges.
The one-dimensional signal PDFs are shown in Figure 8.10.

The scatter plot of every pair of dimensions is shown in Appendix B.3. The
largest correlation is again ∆E − NN trans at a, smaller than in 7, but still large,
12%. See Table B.5.

8.2.2 Continuum
The continuum ∆E distribution is modelled with (as in 7) a Chebyschev function
and a Gaussian. The continuum M corr

bc distribution is fit with an Argus function.
The NN trans distribution for continuum is modelled with a pair of Gaussians. The
q.r distribution for continuum is modelled with a kernel density estimation function
with a smoothing of ρ = 2 and no mirroring. The continuum one-dimensional PDFs
are shown in Figure 8.11.

The scatter plots between the fitting dimensions for continuum are shown in
Appendix B.3, with their correlations in Table B.6. The correlation between ∆E
and NN trans at 5.9%

105



8.2 CHAPTER 8. ADVERSARIAL NEURAL NETWORKS

E [GeV]∆
0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3

E
ve

nt
s

0

5000

10000

15000

20000

25000

30000

E∆

E PDF∆Total 

Crystal Ball

Chebyschev Function

E∆

]2 [GeV/ccorr
bcM

5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s

0

5000

10000

15000

20000

25000

corr
bcM

 PDFcorr
bcTotal M

Crystal Ball

Gaussian

corr
bcM

transNN
10− 8− 6− 4− 2− 0 2 4 6 8 10

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

transNN

 PDFtransTotal NN

Gaussian 1

Gaussian 2

transNN

q.r
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000

14000

16000

q.rq.r

Figure 8.10: Showing the one-dimensional signal PDFs.

8.2.3 Rare Backgrounds
The ∆E distribution for the charged-rare background is a kernel density estimation
function with mirroring at the left edge and a ρ of 2. The mixed-rare background
∆E distribution is modelled by a pair of Gaussians. The M corr

bc distributions for
the rare backgrounds are fit with Argus functions. The NN trans distributions for
both charged and mixed rare backgrounds are modelled with single Gaussians. The
q.r distributions for both charged and mixed rare-backgrounds are given by kernel
density estimation functions with mirroring at both edges and a smoothing of ρ = 1.
The one-dimensional PDFs for the charged and mixed rare backgrounds are shown
in Figures 8.12 and 8.13 respectively.

The correlations between each of the dimensions for both charged and mixed
rare backgrounds are shown in Appendix B.3. The correlations between ∆E and
NN trans for charged and mixed rare backgrounds being 9% and 11% respectively.

Investigating the expected number of events from the most common rare decays
gives for charged rare backgrounds:

• Known : 212± 43
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Figure 8.11: Showing the one-dimensional continuum PDFs.

• Unknown : 96± 38

And for mixed-rare backgrounds:

• Known : 65± 19

• Unknown : 51± 20

8.2.4 The 4-Dimensional Fit Results
The four-dimensional fit results for data samples with ACP of 0 and 1 and the
corresponding projection plots are shown in Figure 8.14. The projection selection
ranges are the same as in Chapter 6.

The systematic uncertainty on the signal event number introduced by fixing the
charged and mixed rare event numbers in the fitter is now ±9 events.

The fitter tests are now run as in Chapter 6 and Chapter 7.
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Figure 8.12: Showing the one-dimensional charged rare background PDFs.
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Figure 8.13: Showing the one-dimensional mixed rare background PDFs.
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Figure 8.14: Showing the 4-dimensional fits (top row) and projections plots (bottom
row) to data samples with ACP = 0 (left column) and ACP = 1 (right column).
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Figure 8.15: Showing the distributions in measured (left) and error in measured
(right) signal yields, over one-thousand runs.
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Signal Yield Measurement

The number of signal events measured over thousand runs has a mean of 1066.4±1.3
and a standard-deviation of 42.5±1.0. The distribution of the statistical uncertainty
on signal yield returned by the fitter has a mean of 45.07 ± 0.02 and a standard-
deviation of 0.72± 0.02. Both distributions are shown in Figure 8.15.

The pull distribution for the signal event number is shown in Figure 8.16. It has
a mean of 0.31± 0.03 and a standard-deviation of 0.94± 0.02.
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Figure 8.16: Showing the distribution in signal pulls over a thousand runs.

The measured signal event number versus the input signal data sample size
is shown in Figure 8.17. It has a gradient of 0.989 ± 0.004 and a y-intercept of
24.7 ± 4.5. As can be seen from the pull and linearity test, the fitter is again
consistently overestimating the signal event number. Shifting the fit result by -14.4
signal events would correct for this.

ACP Measurement

To verify that the method of generating ACP from the ACP = 0 signal validation
dataset is valid, a signal dataset was generated (in EvtGen, see Chapter 3) with
ACP = +1. For both methods of generating ACP , the distributions of the measured
ACP and the uncertainty on the measured ACP are shown in Figure 8.18. These
results show that there should be no issue in generating the ACP from the ACP = 0
signal validation dataset.

The measured ACP distribution over a thousand data samples has a mean of
0.006 ± 0.003 and a standard deviation of 0.108 ± 0.002. The distribution of the
statistical uncertainties on the ACP has a mean of 0.1058± 0.0001 and a standard-
deviation of 0.0031 ± 0.0001. The measured ACP is slightly overestimated and the
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Figure 8.17: Showing the mean of the measured signal yields plotted against the
mean of the input signal yields.
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Figure 8.18: Showing the distribution in measured ACP (left column) and the error
in measured ACP (right column) for five-hundred data samples with ACP = +1,
where the ACP is generated either in Evtgen (top row) or from the ACP = 0 dataset
(bottom row).

statistical uncertainty is slightly underestimated. Both the quoted fitter uncertainty
and the standard-deviation in the measured ACP values see an improvement on the
results in Chapter 6, but its is not clear that the use of the adversarial neural
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network has seen an improvement on this front. The distributions of measured ACP

and error in measured ACP are shown in Figure 8.19.
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Figure 8.19: Showing the distribution in measured (left) ACP and the error (right)
distribution over a thousand runs. The input data is of ACP = 0.

The pull distribution on the measured ACP is shown in Figure 8.20. The pull
distribution has a mean of 0.06± 0.03 and a standard-deviation of 1.02± 0.02. The
standard deviation shows that the statistical uncertainty is being accurately quoted
by the fitter. The mean on the other hand is slightly high.
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Figure 8.20: Showing the distribution in ACP pull over a thousand runs.

The linearity test, the mean of the measured ACP versus the ACP of the data
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sample is shown in Figure 8.21. It has a y-intercept of 0.007± 0.001 and a gradient
of 0.975± 0.002.
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Figure 8.21: Showing the mean of the measured ACP measurements against ACP of
the data samples..

Overall this model shows a good fit to the data, a good statistical uncertainty on
the ACP ; 0.106± 0.003 as compared to 0.111± 0.003 (from the NeuroBayes neural
network analysis in Chapter 6), where the uncertainties are the standard-deviations
on the statistical uncertainties.

Sadly no clear improvement over the result from the original, non-adversarialy
trained neural network (0.106± 0.003) in Chapter 7 is seen, and is not statistically
significant. A greater improvement was expected as the number of continuum events
in the signal region in ∆E (the range ±0.1) decreased from 6106± 15 to 5256± 12
(while signal remained relatively constant, going from 846± 46 to 834± 45 events).
We investigate if this is due to peculiarities in the fitter and the large remaining
∆E − NN correlations.

8.2.5 Generating Correlated Data and the 4-Dimensional
Fit

The data samples for the four-dimensional fitter were selected from the Monte Carlo
datasets for signal and the rare-backgrounds, and so have the ∆E−NN trans correla-
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tion present. As continuum was generated to the one-dimensional PDF distributions,
the correlations expected with real data would not be present. A complete study of
the model would need to take into account these correlations in continuum. Inves-
tigation into fitting ∆E and NN trans with a two-dimensional PDF for each channel,
and using these in the fitter show a worse model, possibly due to low statistics in
the PDF tail regions. The four-dimensional PDF (as a product of one-dimensional
PDFs) is kept, investigating the biases and systematic uncertainties introduced by
the correlations in the data.

The continuum two-dimensional ∆E − NN trans distribution is modelled with a
two-dimensional kernel density estimation function (RooNDKeysPdf), with mirror-
ing at all edges, a smoothing of ρ = 2, and using adaptive kernels (the width of
each kernel varying with event density). Figure 8.22 shows this continuum PDF,
f∆E,NN trans

continuum

(
∆E,NN trans

)
.

Now the four-dimensional fit (the products of the same one-dimensional PDFs
above) tests are repeated, using the exact same procedure, but now with the con-
tinuum data sample generated to, but not fit with:

f 4d
continuum

(
∆E,M corr

bc ,NN trans, q.r
)
=

f∆E,NN trans

continuum

(
∆E,NN trans

)
· fMcorr

bc
continuum (M corr

bc ) · f q.r
continuum (q.r) (8.3)

The systematic uncertainty in the signal yield from fixing the rare backgrounds
is now ±10 events.

Signal Yield Measurement

The signal yield measurement and error distributions are shown in Figure 8.23. The
mean of the signal yield measurements is 1132.2 ± 1.5 and the standard-deviation
is 47.4 ± 1.1. Clearly the signal yield now has a much bigger bias. The mean of
the signal yield errors is 46.35± 0.02 and the standard-deviation is 0.78± 0.02. As
the pull distribution shows (see Figure 8.24)The uncertainty is accurately predicted,
with a pull standard-deviation of 1.00 ± 0.02 but as expected, the pull mean of
1.72± 0.03 confirms that including the ∆E−NN trans correlations in all of the data
(as real data would have) biases the 4-dimensional fitter.

The linearity check, shown in Figure 8.25, with a gradient of 0.996 ± 0.005
(within the error range of one) and a y-intercept of 82.1±4.9 shows that the fit very
consistently overestimates the measured signal yield.

ACP Measurement

The mean of the measured ACP values is 0.014±0.003, and the standard-deviation is
0.102±0.002. The mean value sees an increase compared to the fits with continuum
data generated without correlations, but it is not large. The mean of the statistical
uncertainties on the ACP measurements is 0.1035±0.0001 and its standard deviation
is 0.000315 ± 0.00007. This is smaller than the statistical uncertainty on the ACP

from the fits with continuum generated without correlations. This could just be a
statistical fluctuation as the values of 0.1035 ± 0.0032 and 0.1058 ± 0.0031 easily
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Figure 8.22: Showing the two-dimensional continuum PDF of ∆E and NN trans

(top), and its projections (along with the continuum MC data) in ∆E (bottom left)
and NN trans (bottom right).

overlap within one-standard deviation. The distribution in the measured ACP and
the statistical uncertainty in the measured ACP are shown in Figure 8.26.

The distribution of ACP pulls is shown in Figure 8.27, with a mean of 0.14±0.03
and a standard-deviation of 0.99 ± 0.02. Clearly a worse fit than for fits with
continuum generated without correlations, but still a good model overall.

Finally the mean of the measured ACP values is plotted against the data sample
ACP values in Figure 8.28. With a gradient of 0.939 ± 0.002 and a y-intercept of
0.012± 0.001, there is a clear bias as to be expected, but not large.
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Figure 8.23: Showing the distributions in measured (left) and error in measured
(right) signal yields, over one-thousand runs.

Signal Yield Pull
3− 2− 1− 0 1 2 3 4 5 6

E
ve

nt
s

0

20

40

60

80

100

120

140

160

180

200

Signal Yield Pull Distribution - 1000 Runs

 0.03± =  1.72 
Pull

µ

 0.02± =  1.00 Pullσ

Signal Yield Pull Distribution - 1000 Runs

Figure 8.24: Showing the distribution in signal pulls over a thousand runs.

Biases in the 4-Dimensional Fit

To investigate the systematic uncertainty in the the ACP measurement, the mean
of the measured values for the fits with the data generated with the continuum
correlations is subtracted from the mean of the measured values for the fits generated
without the continuum correlations. This is repeated for each input ACP . In other
words, the ACP for the data in Figure 8.28 is subtracted from the data in Figure
8.21. The result is shown in Figure 8.29. If we assume the systematic error to be

116



8.2 CHAPTER 8. ADVERSARIAL NEURAL NETWORKS

Input Signal Yield
800 900 1000 1100 1200 1300

M
ea

su
re

d 
S

ig
na

l Y
ie

ld

800

900

1000

1100

1200

1300

Measured Signal Yield Versus Input Signal Yield

Intercept=82.11+-4.88

Gradient=0.996+-0.005

y=x

Measured Signal Yield Versus Input Signal Yield

Figure 8.25: Showing the mean of the measured signal yields plotted against the
mean of the input signal yields.
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Figure 8.26: Showing the distribution in measured (left) ACP and the error (right)
distribution over a thousand runs. The input data is of ACP = 0.

half of the correction due to the bias, we get:

εsystACP
=

0.0353 · ACP − 0.00451

2
(8.4)

Assuming that the fitter will be shifted and skewed by the average of the linearity
tests gradients and y-intercepts. So if the ACP value is measured at (the latest Belle
result) the value of 0.14, the systematic uncertainty in ACP would be ±0.0004 (alter-
natively, taking the average of the latest Belle and BaBar values gives a systematic
uncertainty of ±0.002).

Similarly, repeating the same process for the measured signal yields gives (see
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Figure 8.27: Showing the distribution in ACP pull over a thousand runs.

Figure 8.30):

εsystNsignal
=

0.009 ·Nsig + 55.72

2
(8.5)

So assuming 1052 signal events, this would give a systematic uncertainty of ±32
events.
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Figure 8.28: Showing the mean of the measured ACP measurements against ACP of
the data samples..
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Figure 8.29: Showing the difference between the means of the measured ACP values
for both methods of generating continuum data, plotted against the ACP of the
data.
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Figure 8.30: Showing the difference between the means of the measured signal yield
values for both methods of generating continuum data, plotted against the mean of
the signal sample size.
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9|Conclusion

A new time-independent method of measuring the direct ACP in B0 → KSπ
0 decays

whilst also providing a measurement on the branching ratio is presented. This is
applied to Monte Carlo data and sees an improved result over the latest Belle mea-
surement. Due to the correlations between ∆E and NN trans that would be expected
in real data, the results of the four-dimensional fit to the data samples generated
with these correlations in continuum are used. The latest Belle measurement of
0.14 ± 0.13(stat) was a time-dependent study and included information from the
measurement of ACP in B0 → KLπ

0. The Monte Carlo studies give a statistical
uncertainty in the measured ACP of 0.1035 ± 0.0032, which as compared to 0.13
shows a significant improvement.

Given a measured number of KSπ
0 events (Nsignal), the branching ratio of B0 →

K0π0 is given by:
B
(
B0 → K0π0

)
=

Nsignal

NBB̄ ×RB0B̄0 × ε
(9.1)

Where NBB̄ = (771.581± 10.566)× 106 is the total number of BB̄ events produced
at Belle, RB0B̄0 = 0.486±0.006 being the fraction of BB̄ that are B0B̄0, and ε is the
final signal efficiency (28.33% of signal events remaining in the fitting region after all
other selections have been placed). Given the statistical uncertainty in the measured
signal yield of 46.4± 0.8 events, the statistical uncertainty in the branching ratio is
then (4.4± 0.1)× 10−7. Compared to the statistical uncertainty in the latest Belle
branching ratio measurement of 4.6× 10−7 there is a slight improvement, although
clearly the power of this method is in the ACP measurement. A full analysis of the
systematic uncertainties would be needed.

The benefits of using TensorFlow to build an optimised neural network is clear,
with the best figure of merit (of separation between signal MC and continuum MC)
being 17.3± 0.4 compared to that of the NeuroBayes network of 13.2± 0.4.

Both networks perform slightly worse with off-resonance data but the difference
in performance is small and present in both. The TensorFlow AUC for signal with
continuum MC and with off-resonance being 0.947 and 0.938 respectively. Similarly
for NeuroBayes the AUC from signal with continuum MC is 0.909 and for signal
with off-resonance is 0.891.

This increased classifying power between signal and continuum comes with the
unforeseen consequence of introducing correlations between the neural network out-
put and ∆E. This limits the reduction in the statistical uncertainty in the ACP

measurement. The statistical uncertainty in the measurement (from data generated
without the ∆E −NN correlations for continuum) is reduced from 0.111± 0.004 to
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.0 CHAPTER 9. CONCLUSION

0.106± 0.003 by using the optimised TensorFlow neural network.
The use of adversarial neural networks to reduce the ∆E−NN correlations was

investigated and it was found that the correlations could be reduced at a small cost
to the classification power. The correlations could be reduced to be smaller than
that of NeuroBayes whilst keeping significantly greater separation between signal
and continuum.

The four-dimensional fit was then run on data from the updated neural network,
which while reduced, still had large ∆E−NN correlations (in order to maintain op-
timal continuum suppression). The statistical uncertainty did not decrease further.
This could be due to the conservative choice in correlation reduction. More work
should be done to optimise the weighting that is given to the adversarial neural
network in training. The benefits from using the data processed by the TensorFlow
neural networks are significant, these should be translated to the four-dimensional
fit. Further investigations into fitting ∆E and NN trans with the two-dimensional
pdfs in all channels should be further investigated. Even so, the (20.4 ± 2.5)%
reduction in statistical uncertainty from the latest Belle result is significant.

The next step in the analysis is to validate the procedure on a control mode.
Testing the differences between real data and signal Monte Carlo is vital as (other
than the validation with off-resonance data) all training and testing has been per-
formed using Monte Carlo data, and the potential difference between MC and real
data should be investigated. Performing the measurement on real B0 → KSπ

0 data
is of course the main aim of this study.

Possible next steps to improve on the uncertainty in ACP would be to further the
work towards best utilising the adversarial neural network. Also, the input parame-
ters into the classifying neural networks could be further investigated. There is now
freedom to add more variables into the neural network that provide distinguishing
information between signal and continuum that may otherwise be ignored due to
their correlations with ∆E, M corr

bc , and especially q.r.
As in the latest Belle result, incorporating KLπ

0 would further constrain the
ACP measurement so is an obvious extension to this study.

The increased luminosity from the upgraded SuperKEKB, planned to have forty
times the peak luminosity of KEK, and the improved Belle II detector will provide
ample statistics, allowing for a much improved branching ratio and ACP measure-
ment.
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A|Rare Decay Modes

The most common rare decay modes in the charged (A.1) and mixed (A.2) rare
datasets after reconstruction and B-meson candidate selection are investigated. The
observed number of events refers to the number of events of a given decay mode
before any further selections are placed on ∆E or M corr

bc , or any neural network
processing. Assuming that the percentage of events which pass the neural network
selection is the same for all of the decay modes (not necessarily true but a good
approximation), the branching ratios (along with the total number of BB̄ events)
and, observed number of events and neural network selection efficiency give ε, the
fraction of events of a given decay mode that pass all selections. This is done in
order to propagate the uncertainties for these ‘known’ decay modes.

The remaining events comprise the number of events from ‘unknown’ decay
modes, where the uncertainty is assumed to be 40%. Table A.3 shows the total,
‘known’ and ‘unknown’ expected event numbers in the charged and mixed streams,
for the three datasets (from the different neural networks) used in fitting.

Decay Mode Branching Ratio Observed Events ε(%) Expected Number of Events
NB TF(NoAdv) TF(Adv)

ρ(770)−[π−π0]KS[π
−π+] (2.77± 0.52)× 10−6 287.1 13.8± 2.6 102± 19 86± 16 95± 18

K∗+[KS[π
−π+]π+]π0 (1.42± 0.33)× 10−6 224.8 21.2± 4.9 80± 19 68± 16 74± 17

KS[π
−π+]π−π0 (1.14± 1.14)× 10−5 102.2 1.2± 1.2 36+37

−36 31+32
−31 34+35

−34

K∗−[KS[π
−π+]π−]γ (7.28± 0.31)× 10−6 26.8 0.5± 0.1 9.5± 0.4 8.0± 0.4 8.9± 0.4

Table A.1: Showing the most common charged rare decays. The square brackets
are the further decays showing the full decay chain, to which the branching ratio
corresponds. The observed events and efficiencies ε are calculated without the final
fitting variable and neural network selections. NB refers to the the data for the fit
processed by NeuroBayes (Chapter 6), TF(NoAdv) refers to that of the TensorFlow
neurarl network (Chapter 7) and TF(Adv) to the TensorFlow network retrained
with the adversary (Chapter 8).
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Decay Mode Branching Ratio Observed Events ε(%) Expected Number of Events
NB TF(NoAdv) TF(Adv)

f0(980)[π
0π0]KS[π

−π+] (1.21± 0.16)× 10−6 52.2 5.7± 0.8 17± 3 14± 3 16± 3
f2(1270)[π

0π0]KS[π
+π−] (2.63± 1.22)× 10−7 44.8 22.7± 10.5 15± 10 12± 8 13± 9

K∗(1680)0[KS[π
−π+]π0]π0 (1.67± 1.67)× 10−7 33.6 26.8± 26.8 11+16

−11 9+13
−9 10+14

−10

K∗
2(1430)

0[KS[π
−π+]π0]π0 (8.03± 8.03)× 10−8 18.1 30.1± 0.3 6+8

−6 5+7
−5 5+8

−5

KS[π
0π0]KS[π

−π+] (1.29± 0.17)× 10−7 16.8 17.4± 2.3 6± 1 5± 1 6± 1
K∗(892)0[KS[π

−π+]π0]π0 (3.80± 0.69)× 10−7 15.5 5.4± 1.0 5± 1 4± 1 5± 1
K∗(892)0[KS[π

−π+]π0]γ (4.98± 0.17)× 10−6 12.9 0.34± 0.05 4.3± 0.6 3.5± 0.5 3.9± 0.5
f0(1710)[π

0π0]KS[π
−π+] (9.13± 1.86)× 10−8 11.8 17.2± 3.5 4± 1 3± 1 4± 1

K∗(892)−[KS[π
−π+]π−]ρ(770)+[π+π0] (2.37± 0.60)× 10−6 9.4 0.53± 0.17 3± 1 3± 1 3± 1

Table A.2: Showing the most common mixed rare decays. The square brackets
are the further decays showing the full decay chain, to which the branching ratio
corresponds. The observed events and efficiencies ε are calculated without the final
fitting variable and neural network selections. NB refers to the the data for the fit
processed by NeuroBayes (Chapter 6), TF(NoAdv) refers to that of the TensorFlow
neurarl network (Chapter 7) and TF(Adv) to the TensorFlow network retrained
with the adversary (Chapter 8).

Total Known Unkown

NB Charged 331± 3 228± 46 103± 41
Mixed 126± 2 71± 21 55± 21

TF(NoAdv) Charged 280± 2 193± 39 87± 35
Mixed 104± 1 59± 17 46± 18

TF(Adv) Charged 308± 2 212± 43 96± 38
Mixed 115± 1 65± 19 51± 20

Table A.3: Showing the breakdown of expected rare event numbers into ‘known’
and ‘unknown’ decays for charged and mixed rare backgrounds. NB refers to the
the data for the fit processed by NeuroBayes (Chapter 6), TF(NoAdv) refers to that
of the TensorFlow neural network (Chapter 7) and TF(Adv) to the TensorFlow
network retrained with the adversary (Chapter 8).
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Known Unkown Signal
High Low High Low Systematic

NB Charged 1066 1052 1064 1052 ±10Mixed 1062 1059 1064 1052

TF(NoAdv) Charged 1076 1066 1075 1062 ±9Mixed 1072 1070 1074 1068

TF(Adv)(4dGen) Charged 1073 1061 1069 1059 ±9Mixed 1070 1060 1066 1062

TF(Adv)(3dGen) Charged 1136 1123 1138 1126 ±10Mixed 1131 1131 1134 1126

Table A.4: Showing the systematic uncertainties in measured signal yield introduced
by fixing the rare backgrounds in the 4-dimensional fitter. NB, TF(NoAdv) and
TF(Adv) refer to the 4-D fits to data processed by NeuroBayes, TensorFlow with
no adversary and TensorFlow with adversary respectively. 4dGen and 3dGen refer
to the 4-D fits to the data generated without and with continuum ∆E − NN trans

respectively. The values are the mean of the measured signal yield measurements
over 500 runs when the known or unknown components of the charged or mixed
rare backgrounds are run at their uncertainty limits. The ‘Signal Systematic’ is
the systematic uncertainty calculated by combining the mean measured signal yield
differences (divided by two) between each high and low measurement, propagated
accordingly.
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B|Scatter Plots of the Fitting Vari-
ables

B.1 Data Processed by NeuroBayes

M corr
bc NN trans q.r

2.5% 3.8% 0.2% ∆E
0.0% 0.2% M corr

bc

0.0% NN trans

Table B.1: Showing the (absolute) correlations between the four fitting variables,
for the signal data processed by NeuroBayes.

M corr
bc NN trans q.r

1.2% 4.4% 0.3% ∆E
1.6% 0.0% M corr

bc

0.0% NN trans

Table B.2: Showing the (absolute) correlations between the four fitting variables,
for the continuum data processed by NeuroBayes.
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Figure B.1: The signal scatter plots in every pair of fitting dimensions.
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Figure B.2: The continuum scatter plots in every pair of fitting dimensions.
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B.1 APPENDIX B. SCATTER PLOTS OF THE FITTING VARIABLES

Figure B.3: The charged rare scatter plots in every pair of fitting dimensions.
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B.1 APPENDIX B. SCATTER PLOTS OF THE FITTING VARIABLES

Figure B.4: The mixed rare scatter plots in every pair of fitting dimensions.
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B.2 APPENDIX B. SCATTER PLOTS OF THE FITTING VARIABLES

B.2 Data Processed by the TensorFlow Neural
Network

M corr
bc NN trans q.r

2.8% 17.3% 0.3% ∆E
2.3% 0.2% M corr

bc

0.1% NN trans

Table B.3: Showing the (absolute) correlations between the four fitting variables,
for the signal data processed by the TensorFlow neural-network (no adversary).

M corr
bc NN trans q.r

0.4% 7.0% 0.0% ∆E
0.5% 0.6% M corr

bc

0.2% NN trans

Table B.4: Showing the (absolute) correlations between the four fitting variables,
for the continuum data processed by the TensorFlow neural-network (no adversary).
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Figure B.5: The signal scatter plots in every pair of fitting dimensions.
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Figure B.6: The continuum scatter plots in every pair of fitting dimensions.
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Figure B.7: The charged rare scatter plots in every pair of fitting dimensions.
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Figure B.8: The mixed rare scatter plots in every pair of fitting dimensions.
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B.3 APPENDIX B. SCATTER PLOTS OF THE FITTING VARIABLES

B.3 Data Processed by the TensorFlow Neural
Network With the Adversarial Neural Net-
work

M corr
bc NN trans q.r

2.5% 11.8% 0.2% ∆E
1.8% 0.2% M corr

bc

0.0% NN trans

Table B.5: Showing the (absolute) correlations between the four fitting variables,
for the signal data processed by the TensorFlow neural-network trained with the
adversary.

M corr
bc NN trans q.r

0.4% 5.9% 0.0% ∆E
1.1% 0.4% M corr

bc

0.8% NN trans

Table B.6: Showing the (absolute) correlations between the four fitting variables,
for the continuum data processed by the TensorFlow neural-network trained with
the adversary.
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Figure B.9: The signal scatter plots in every pair of fitting dimensions.
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B.3 APPENDIX B. SCATTER PLOTS OF THE FITTING VARIABLES

Figure B.10: The continuum scatter plots in every pair of fitting dimensions.
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Figure B.11: The charged rare scatter plots in every pair of fitting dimensions.
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Figure B.12: The mixed rare scatter plots in every pair of fitting dimensions.
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C|Scatter Plots and Correlations Be-
tween ∆E and the Kinematic Vari-
ables

Scatter plots of the ∆E with the kinematic variables used in training the neural
networks. The ∆E range is set to be −0.4 < ∆E < 0.2, the ∆E selection placed on
all signal and continuum training dataset events before training the neural networks.

Figure C.1: Showing the signal (left) and continuum (right) scatter plots of ∆E and
cos(θB)
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C.0
APPENDIX C. SCATTER PLOTS AND CORRELATIONS BETWEEN ∆E

AND THE KINEMATIC VARIABLES

Figure C.2: Showing the signal (left) and continuum (right) scatter plots of ∆E and
cos(θthrust)

Figure C.3: Showing the signal (left) and continuum (right) scatter plots of ∆E and
∆Z

Figure C.4: Showing the signal (left) and continuum (right) scatter plots of ∆E and
P sum
t
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APPENDIX C. SCATTER PLOTS AND CORRELATIONS BETWEEN ∆E

AND THE KINEMATIC VARIABLES

Figure C.5: Showing the signal (left) and continuum (right) scatter plots of ∆E and
M2

miss

Figure C.6: Showing the signal (left) and continuum (right) scatter plots of ∆E and
Roo

0

Figure C.7: Showing the signal (left) and continuum (right) scatter plots of ∆E and
Roo

1
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APPENDIX C. SCATTER PLOTS AND CORRELATIONS BETWEEN ∆E

AND THE KINEMATIC VARIABLES

Figure C.8: Showing the signal (left) and continuum (right) scatter plots of ∆E and
Roo

2

Figure C.9: Showing the signal (left) and continuum (right) scatter plots of ∆E and
Roo

3

Figure C.10: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Roo

4
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APPENDIX C. SCATTER PLOTS AND CORRELATIONS BETWEEN ∆E

AND THE KINEMATIC VARIABLES

Figure C.11: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

00

Figure C.12: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

02

Figure C.13: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

04
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APPENDIX C. SCATTER PLOTS AND CORRELATIONS BETWEEN ∆E

AND THE KINEMATIC VARIABLES

Figure C.14: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

10

Figure C.15: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

12

Figure C.16: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

14
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APPENDIX C. SCATTER PLOTS AND CORRELATIONS BETWEEN ∆E

AND THE KINEMATIC VARIABLES

Figure C.17: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

20

Figure C.18: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

22

Figure C.19: Showing the signal (left) and continuum (right) scatter plots of ∆E
and Rso

24
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