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Zusammenfassung

Die vorliegende Dissertation Generalised Quantum Double Models from Hopf Monoids konstruiert
Verallgemeinerungen der Kitaevschen Quanten-Doppel-Modelle auf der Grundlage von involutiven
Hopf Monoiden in symmetrisch monoidalen Kategorien. Die ursprünglichen Modelle basierend
auf Gruppenalgebren wurden 2002 von Kitaev in [Ki] eingeführt, um ein realistisches festkör-
perphysikalisches Modell für topologische Quantencomputer zu entwickeln. In [BMCA] wurden
die Modelle basierend auf Gruppenalgebren zu Modellen für endlich-dimensionale halbeinfache
Hopf-Algebren erweitert.

Der Grundzustand in den ursprünglichen Modellen ist von besonderer Bedeutung, da er eine
topologische Invariante orientierter Flächen definiert und insbesondere topologische Quantencom-
puter vor Fehlern schützt [CDH+]. Darüberhinaus steht er in direktem Bezug zu topologischen
Quantenfeldtheorien vom Turaev-Viro-Barrett-Westbury Typ [TV, BaW, BaK].

Die Konstruktion von [MV], die Abbildungsklassengruppenwirkungen aus Hopf Monoiden hervorruft,
legt nahe, dass sich Kitaev Modelle weiter von Hopf Algebren zu Hopf Monoiden in symmetrisch
monoidalen Kategorien verallgemeinern lassen. Diese Verallgemeinerung steht im Vordergrund der
Arbeit, im Speziellen eine Verallgemeinerung des Grundzustandes der Modelle aus [Ki, BMCA].
Um Quanten-Doppel-Modelle für Hopf Monoide zu definieren, kann teilweise auf die Ergebnisse
in [Ki, BMCA, MV] zurückgegriffen werden. Ausgehend von einem Schleifengraphen und einem
Hopf Monoid wird zunächst jede Kante des Graphen mit einer Kopie des Hopf Monoids versehen.
Dem Tensorprodukt dieser Kopien wird dann für jeden Vertex und jede Fläche des Graphen eine
Modul- und Komodulstruktur zugeordnet. Durch Anwendung von (Ko)egalisatoren können die
(Ko)invarianten dieser (Ko)modulstrukuren bestimmt werden. Mittels eines kategoriellen Bildes
werden die Invarianten und Koinvarianten verknüpft, wodurch ein verallgemeinerter Grundzustand
definiert wird.

In dieser Arbeit wird gezeigt, dass auch der verallgemeinerte Grundzustand eine topologische
Invariante definiert: Er hängt nur vom Geschlecht der Fläche ab, die der Schleifengraph kodiert, nicht
von der konkreten Wahl des Graphen. Dieses Resultat bietet einen geeigneten Ausgangspunkt, um
den verallgemeinerten Grundzustand für konkret gegebene Hopf Monoide zu bestimmen. Ausgehend
von Standardgraphen werden insbesondere die verallgemeinerten Grundzustände für Hopf Monoide
in den Kategorien Set,Top, SSet sowie für Gruppenalgebren in der Kategorie k−Mod für einen
kommutativen Ring k beschrieben. Ein besonderer Fokus liegt zudem auf der Bestimmung des
Grundzustandes in der Kategorie Cat der kleinen Kategorien, in der es deutlich schwieriger ist
Koegalisatoren zu bestimmen. Alle erhaltenen Grundzustände in den erwähnten Kategorien stellen
Verallgemeinerungen des Modulraums flacher Zusammenhänge dar.

Unter Benutzung der Ergebnisse in [MV] wird in der Arbeit gezeigt, dass die Grundzustände
mit Abbildungsklassengruppenwirkungen versehen sind. Zudem liefert die Arbeit eine konkrete
Beschreibung dieser Wirkung für Hopf Monoide in Set, SSet, Cat.

Im letzten Teil der Arbeit wird ein Zusammenhang zwischen den Abbildungsklassengruppenwirkun-
gen in den Modellen und Kuperberg Invarianten von 3-Mannigfaltigkeiten [Ku] hergestellt. Im
Speziellen wird gezeigt, dass die verallgemeinerten Kuperberg Invarianten aus [KV] durch eine Folge
von Kantenverschiebungen und Dehn Twists beschrieben werden können.

Die Abschnitte 2.1, 2.2, Kapitel 3-5 und 7 sowie die Abschnitte 8.1-8.3, 8.6 und Ab-
schnitt 9.3 sind bis auf kleinere Änderungen und Ergänzungen Teile des Preprints:

[HM] Hirmer, A.-K. & Meusburger, C. (2023). Categorical generalisations of quantum double
models. arXiv preprint arXiv:2306.05950.
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1 Introduction

Topological invariants of low-dimensional manifolds assign algebraic objects or quantities to them
that are invariant under homeomorphisms. Such invariants have attracted strong interest, as they
connect monoidal categories, quantum groups, low-dimensional topology, knot theory, conformal
field theory, gauge theory and quantum computing. Sometimes the invariants are associated to
manifolds with additional structure such as flat bundles. An example is the representation variety
Hom(π1(Σ), G)/G or moduli space of flat G-bundles on a surface Σ for a Lie group G and its
quantisation [BBJ, BR, AGS].

A Hopf-algebraic generalisation of this space appears in topological quantum computing as the
ground state or protected space of quantum double models on this surface. In this case the (Lie)
group G is replaced by a finite-dimensional semisimple Hopf algebra. Quantum double models or
Kitaev lattice models were introduced by Kitaev [Ki] in 2002 to obtain a realistic physics model for
topological quantum computing. The protected space or ground state of these models coincides
with the vector space a Turaev-Viro-Barrett-Westbury topological quantum field theory (TQFT)
[TV, BaW] assigns to the surface [BaK]. This vector space particularly plays an important role for
the error correcting process in topological quantum computing.

Kitaev models in [Ki] are based on two ingredients, namely a ribbon graph encoding an oriented
surface and the group algebra of a finite group. Buerschaper et al. [BMCA] generalised the latter
ingredient to finite-dimensional semisimple complex ∗-Hopf algebras.

This thesis focuses on a further generalisation of this setting. As the work of Meusburger and Voß
[MV] suggests, Kitaev models can more generally be based on involutive Hopf monoids in symmetric
monoidal categories. Whereas the focus in [MV] is on mapping class group actions constructed
from specific graphs, this thesis focuses on a generalisation of the protected space. This is again a
topological invariant of oriented surfaces. Moreover, we explicitly determine the generalised protected
spaces for examples of Hopf monoids, which yield generalisations of representation varieties. We
show that the protected space is independent of the choice of the graph and carries an action of the
mapping class group. We also show how it is related to Kuperberg invariants.

More concretely, the main motivations and results of the thesis can be described as follows:

Quantum double models. One main motivation for this thesis is to generalise the algebraic
input data of the Kitaev models in [Ki, BMCA].

The models in [BMCA] are built starting from a finite-dimensional semisimple complex ∗-Hopf
algebra and a ribbon graph. One assigns a copy of the Hopf algebra to each edge in the graph.
The tensor product of these Hopf algebras then forms the extended Hilbert space. Additionally, the
models are endowed with linear endomorphisms of this Hilbert space assigned to the vertices and
faces of the graph, the vertex and face operators. Using normalised Haar integrals of the Hopf
algebra and its dual, one can construct commuting projectors from the vertex and face operators.
The ground state or protected space of the model is the intersection of their images.

The important property of the ground state is that it is a topological invariant: it does not depend
on the choice of graph used for constructing the models, but only on the homeomorphism class
of the oriented surface obtained by gluing disks to the faces of the graph. Moreover, Meusburger
showed in [Me] that Kitaev models can be interpreted as Hopf algebra valued lattice gauge theories
and are linked to the quantisation of moduli spaces of flat connections.

Quantum double models are a very active topic of research in condensed matter physics and quantum
computing. The protected space plays an important role in these contexts, as its topological
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invariance protects quantum computers from errors. It is rigorously shown by Cui et al. [CDH+]
that the ground state of a Kitaev model for a group algebra of a finite group is an error-correcting
quantum code. Recent works provide mathematical descriptions and analyses of topological quantum
computing [CM] and the error-correcting process [CGR] in these models.

There are various known generalisations of the Kitaev models in [Ki, BMCA], like the formulation
of Chang [Ch] in terms of unitary quantum groupoids and the recent generalisation of Jial et al.
[JTKC] to a weak Hopf algebra setting. Based on the models for group algebras of finite groups
Bombin and Martin-Delgado [BM] described a model with defects and boundaries. Along these
lines Koppen [Kop] constructed a model with generalised defects and Voß [Vo] focused on models
with topological defects inspired by Turaev-Viro TQFTs.

Hopf monoids are a natural generalisation of Hopf algebras in symmetric monoidal categories.
They are obtained by replacing vector spaces by objects and linear maps by morphisms in the
category. In the framework of pivotal Hopf monoids in symmetric monoidal categories that are
finitely complete and cocomplete, mapping class group actions were constructed in [MV]. For this a
copy of the Hopf monoid is associated to each edge of a graph. Then (co)module structures are
assigned to the vertices and faces and a notion of (co)invariants and biinvariants of the latter is
defined. This formalism resembles the construction of the Kitaev models in [Ki, BMCA] and their
known generalisations, but the mathematical data is far less restrictive.

In particular, the categories need not to be abelian, linear, finite or semisimple and need not have
duals. While there is a notion of integrals over Hopf monoids and their existence is ensured for left
rigid categories in which all idempotents split [BKLT], they are not necessary. Due to the similarity
of the formalisms in [Ki, BMCA, MV] and the less restrictive input data in [MV], it is reasonable
and desirable to generalise Kitaev models from Hopf algebras to Hopf monoids.

Crossed modules and the category Cat of small categories. Considering involutive Hopf
monoids in symmetric monoidal categories instead of Hopf algebras allows one to apply the formalism
to Hopf monoids in cartesian monoidal categories, in particular in the category Cat of small categories
and functors. This defines a generalised protected space consisting of a category. Brown and Spencer
[BS] established that Hopf monoids in Cat are given by crossed modules.

Additionally, Cat is of strong interest, as it can be made into a symmetric monoidal bicategory CAT
by considering natural transformations as 2-morphisms. It often serves as an essential example
when symmetric monoidal bicategories are needed, for instance in the context of operads [MW].

Crossed modules have also been studied intensively to obtain higher gauge theoretical generalisations
of quantum double models. In the work of Bullivant et al. [BC+a, BC+b] and Martins and Picken
[MPb, MPa] in higher gauge theory settings and the work of Sozer and Virelizier [SV] on 3d homotopy
quantum field theories, crossed modules encode additional topological structures and symmetries,
especially in higher dimensions. Koppen, Martins and Martin [KMM] define an analogous model for
arbitrary dimension based on crossed modules of Hopf algebras. Under certain conditions the latter
reduce to crossed modules of groups. Other examples involving crossed modules in such models are
due to Chen [Che] and Huxford and Simon [HS]. This differs from their role in the thesis where
crossed modules are considered as examples of Hopf monoids, but do not encode geometrical or
topological data.

Mapping class group actions. Representations of mapping class groups arise in particular from
TQFTs of Turaev-Viro-Barrett-Westbury or Reshetikhin-Turaev type [TV, BaW, RT]. They also
show up in the context of conformal field theories, in the quantisation of Chern-Simons theory and
are often related to modular functors [BK].

Lyubashenko [Lya, Lyb, Lyc] established a construction of projective mapping class group represen-
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tations from Hopf algebras in abelian ribbon categories. Related and generalised mapping class
group representations are described in the work of Faitg [Fa20, Fa19], in the framework of conformal
field theories by Fuchs, Schweigert and Stigner [FS, FSSb] and recently by De Renzi et al. [DGG+].
Mapping class group actions also appear in Kitaev’s quantum double model where they can be used
as quantum gates [BlW].

Using Gervais’ presentation of mapping class groups in terms of generating Dehn twists [Ge],
Meusburger and Voß [MV] constructed mapping class group actions from Hopf monoids in symmetric
monoidal categories. Remarkably, these actions can be associated to certain graph transformations
in a graph with copies of the Hopf monoid assigned to each edge. This suggests that there should
be a generalisation of the protected space which carries this mapping class group action.

Kuperberg invariants of 3-manifolds. Kuperberg invariants were introduced in [Ku] using
finite-dimensional semisimple Hopf algebras over C. More precisely, by encoding 3-manifolds by
Heegaard diagrams Kuperberg associates a scalar to any oriented 3-manifold. The invariants
exhibit various relations to other 3-manifold invariants. In particular, they are related to Turaev-
Viro-Barrett-Westbury invariants, as shown in [BaW2]. Moreover, Kuperberg invariants based on
a finite-dimensional semisimple Hopf algebra H coincide with the Hennings-Kauffmann-Radford
invariants [He, KR, Ke, CC] for the Drinfeld double D(H). The invariants of 3-manifolds constructed
by Costantino et al. [CGPT] from monoidal categories using modified traces also reduce to Kuperberg
invariants in certain cases.

Kashaev and Virelizier [KV] generalise Kuperberg’s invariants from Hopf algebras to involutive
Hopf monoids H in symmetric monoidal categories. More specifically, to construct the invariant
they define an endomorphism of a certain tensor product of H. They then pre- and post-compose
generalisations of integrals and cointegrals, called good pairs, to obtain an endomorphism of the
tensor unit. This yields the generalised Kuperberg invariants. Both their setting and the construction
of the first endomorphism resembles the setting and certain twists in [MV] which give rise to mapping
class group actions. This suggests a connection between Kuperberg invariants and mapping class
group actions in a generalised Quantum double model based on Hopf monoids.

It also seems plausible that generalisations of the protected space should yield generalisations of the
representation variety Hom(π1(Σ), G)/G for groups G and surfaces Σ. The latter is the set of group
homomorphisms from the fundamental group of Σ into G up to conjugation. Its cardinality gives
the dimension of the ground state in Kitaev models based on the group algebra of finite groups G
[CDH+]. Hopf monoids in cartesian monoidal categories are called group objects and often resemble
groups. As a consequence it seems reasonable to expect generalised representation varieties as
ground states of generalised quantum double models.

Summary of results

The main results of this thesis are:

- A generalisation of the protected space in Kitaev’s quantum double models from finite-dimensional
semisimple Hopf algebras to Hopf monoids in complete and finitely cocomplete symmetric monoidal
categories.

- The proof of their graph independence and hence topological invariance.

- An explicit construction and description of the generalised protected space for Hopf monoids in
categories such as k−Mod, SSet and Cat.
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- The proof that they are equipped with mapping class group actions, namely the ones from [MV]
and that these actions are induced by mapping class group actions on representation varieties.

- The proof that these mapping class group actions define (generalised) Kuperberg invariants
whenever the Hopf algebras are equipped with integrals.

This is achieved as follows. We consider and investigate a generalisation of Kitaev lattice models
based on involutive Hopf monoids in a complete and finitely cocomplete symmetric monoidal
category C along the lines of [BMCA], with focus on a generalisation of the ground state of these
models.

We consider a ribbon graph and an involutive Hopf monoid H in C. The ribbon graph encodes an
oriented surface obtained by attaching disks to the faces of the graph. Here, the graph is additionally
endowed with a choice of marking for each vertex and face. To construct the model we assign a
copy of H to each edge in the graph and take the tensor product H⊗E of the Hopf monoids over the
set E of edges of the graph. The tensor product H⊗E is then equipped with H-module structures
assigned to vertices and H-comodule structures assigned to faces in the graph. Their definition
involves the markings of vertices and faces and the structure morphisms of the Hopf monoid.

We then coequalise the H-module structures and equalise the H-comodule structures to obtain
invariants and coinvariants. Combining invariants and coinvariants via a categorical image yields a
categorical counterpart of the ground state or protected space in Kitaev’s quantum double models,
called protected object in the following. By investigating its behaviour under graph transformations
we show

Theorem. (Theorem 5.23) The protected object associated to H and a ribbon graph is a topological
invariant of oriented surfaces: its isomorphism class depends only on the homeomorphism class of
the surface encoded by the graph.

As the construction of mapping class group actions in [MV] uses an almost identical setting, it
is natural to expect a link to these mapping class group actions. More precisely, the mapping
class group actions in [MV] are associated to a specific graph with a single vertex. We show that
graph transformations such as edge contractions, edge slides and removing isolated loops induce
isomorphisms of the protected object. This allows us to transform any graph that characterises the
protected object into one considered in [MV]. In this way we obtain

Theorem. (Theorem 9.14) The protected object for an involutive Hopf monoid H and a surface Σ
of genus g ≥ 1 carries an action of the mapping class group Map(Σ) by automorphisms.

Another main focus of the thesis is a concrete construction of examples. In particular, for finite-
dimensional semisimple Hopf algebras H as Hopf monoids in VectC we regain the protected space
from Kitaev’s quantum double models [Ki, BMCA]. The protected object can therefore be viewed
as a generalisation of the protected space. In contrast to [Ki, BMCA] the model is also defined in
the non-semisimple case and for Hopf monoids in k−Mod such as group algebras k[G], where k is a
commutative ring. The protected object associated to a surface Σ of genus g ≥ 1 is then the free
k-module generated by the representation variety Hom(π1(Σ), G)/G.

For a group H as a Hopf monoid in the cartesian monoidal category Set we obtain the representation
variety Hom(π1(Σ), H)/H. Indeed, the protected object can be interpreted as a generalisation of
representation varieties or moduli spaces of flat bundles on surfaces. More specifically, symmetric
monoidal functors F : C → Set send Hopf monoids in C to groups. Whenever F additionally
preserves monomorphisms, epimorphisms, equalisers and coequalisers, the protected object in C is
sent to the representation variety of the group.
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We also obtain generalisations of representation varieties in the category SSet of simplicial sets.
Here, Hopf monoids are simplicial groups H = (Hn)n∈N0 . The associated protected object is a
simplicial set given by the representation varieties for the groups Hn and by post-composition with
their face maps and degeneracies.

Special emphasis in this thesis is placed on determining protected objects in the cartesian monoidal
category Cat of small categories and functors between them. Hopf monoids in this category
coincide with crossed modules. The latter consist of two groups A,B with a group homomorphism
∂ : A→ B and a group action I: B ×A→ A by automorphisms which satisfy two compatibility
conditions involving conjugation. There is a wide range of examples for crossed modules such as
normal subgroups, group extensions and group actions of abelian groups. However, to determine
the protected object assigned in Cat to a crossed module and a surface Σ, one has to determine
equalisers and coequalisers in Cat.

While equalisers can easily be specified as subcategories with inclusion functors, it is difficult to
determine coequalisers in Cat concretely. In this thesis we consider and compare two approaches.
The first transports the relevant morphisms in Cat to SSet via the nerve functor. The associated
coequalisers in SSet are then transported back to Cat by the left adjoint of the nerve. The second
approach describes the coequalisers via generalised congruences on small categories. Both approaches
yield an explicit description of protected objects in Cat and their mapping class group actions by
automorphisms.

Theorem. (Theorem 8.30, Corollary 9.16) The protected object for a crossed module (B,A,I, ∂)
seen as a Hopf monoid in Cat and a surface Σ of genus g ≥ 1 is a groupoid G with ObG =
Hom(π1(Σ), B)/B and with equivalence classes of group homomorphisms τ : π1(Σ) → A o B
as morphisms. The action of the mapping class group Map(Σ) is induced by its action on
Hom(π1(Σ), AoB)/AoB.

Here, two group homomorphisms τ, τ ′ : π1(Σ) → A o B are equivalent, whenever the associated
group homomorphisms F2g → A o B can be written as composites τ = τ1 ◦ τ2, τ ′ = τ ′1 ◦ τ ′2 such
that τ1, τ

′
1 and τ2, τ

′
2 are conjugate. The construction of the protected object and its mapping class

group action is illustrated by explicitly computing it for some simple examples of crossed modules.

The last part of the thesis focuses on relations of these mapping class group actions to Kuperberg
invariants of 3-manifolds. For this we apply the generalisation of the Kuperberg invariants [Ku]
from Hopf algebras to involutive Hopf monoids H in symmetric monoidal categories constructed by
Kashaev and Virelizier [KV]. To define the invariants the authors of [KV] encode 3-manifolds by
Heegaard diagrams. These consist of an oriented surface of some genus g ≥ 1 endowed with two
systems of g non intersecting oriented curves. Ordering them and equipping them with basepoints
yields two orderings on the set of intersection points of the two curve systems. These orderings
define an endomorphism of H⊗g constructed from the structure morphisms of H and the braiding
in C. We call this morphism tensor endomorphism.

The generalised Kuperberg invariant from [KV] is then obtained by pre- and post-composing the
tensor endomorphism with a good pair. The latter generalises pairs of integrals and cointegrals of
Hopf algebras.

The tensor endomorphism can be described by a sequence of graph transformations obtained by
sliding edges in a suitable ribbon graph. More precisely, each Heegaard diagram D defines a ribbon
graph Γ(D), in which each curve system in D defines a system of edges in Γ(D). Sliding the
edges of one edge system along the other system precisely describes Dehn twists. The associated
automorphisms of the protected object give rise to the tensor endomorphism.
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Theorem. (Theorem 10.11, Corollary 10.22) Up to pre- and post-composition with (co)units and
good pairs, Kuperberg invariants of 3-manifolds for involutive Hopf monoids are given by the action
of Dehn twists along one edge system in Γ(D) on the other edge system in Γ(D) and subsequent
multiplication of their contributions.

Structure of the thesis

The thesis is structured as follows. In Chapter 2 we introduce the relevant algebraic background for
the thesis. Section 2.1 contains the background on Hopf monoids in symmetric monoidal categories.
In Section 2.2 we then describe (co)modules and Yetter-Drinfeld modules and their (co)invariants
over Hopf monoids in symmetric monoidal categories that are complete and finitely cocomplete.
The (co)invariants are defined via (co)equalisers in the category. Via a categorical image they can
be combined to obtain biinvariants. We conclude the chapter with the necessary background on
integrals over Hopf monoids in Section 2.3. A large part of this section focuses on integrals over
Hopf algebras in VectF, which is mainly relevant for Chapter 6 and Section 10.3.

Chapter 3 summarises the background on ribbon graphs, surfaces and graph transformations required
in this thesis.

In Chapter 4 we construct a generalised Kitaev model for a ribbon graph and an involutive Hopf
monoid H in a complete and finitely cocomplete symmetric monoidal category. We define a module
structure associated to marked vertices and a comodule structure associated to marked faces of the
graph on the tensor product H⊗E , where E is the set of edges. The module and comodule structures
generalise the vertex and face operators from [Ki, BMCA]. Essentially the same generalisation was
used in [MV]. (Co)equalising the (co)module structures and taking the categorical image yields the
protected object which is the counterpart of the ground state in Kitaev lattice models.

In Chapter 5 we show that the protected object is a topological invariant of oriented surfaces: It
depends only on the homeomorphism class of the surface obtained from the ribbon graph, but not
on the choice of the graph. To prove the topological invariance, we first investigate its dependence
on edge reversals and shifts of markings at vertices or faces in Section 5.1. We then consider a
number of graph transformations and show that they induce isomorphisms on the protected object.
This includes edge slides, investigated in Section 5.2, and the deletion of isolated loops in Section
5.3. In Section 5.4 we combine these results to prove the topological invariance.

Sections 5.1 to 5.3 necessarily contain some technical results and computations. The reader primarily
interested in results may skip to Section 5.4 for the main theorem. Here, we also treat some examples.
This includes the protected objects in Set, Top and for group algebras k[G] and their duals considered
as Hopf monoids in k−Mod. The resulting protected objects are all related to representation varieties.
We also show that under certain assumptions symmetric monoidal functors into the category Set
send protected objects to representation varieties.

In Chapter 6 we compare the construction from Chapter 4 to the formalism in [BMCA]. In particular,
we describe how protected spaces for finite-dimensional semisimple involutive Hopf algebras can be
described using Haar integrals.

In Chapter 7 we determine the protected object in the category SSet, where Hopf monoids coincide
with simplicial groups.

Chapter 8 treats protected objects for Hopf monoids in the cartesian monoidal category Cat. In
Section 8.1 we present the relevant background on crossed modules which describe Hopf monoids in
Cat. We then describe in Section 8.2 how equalisers are obtained in Cat and explain how coequalisers
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in Cat can be constructed using the nerve functor N : Cat→ SSet and its left adjoint. Section 8.3
applies these results to determine the (co)invariants of the (co)module structures over Hopf monoids
in Cat. Section 8.4 provides an alternative way to determine coequalisers in Cat via generalised
congruences. In Section 8.5 the invariants of the module structures over Hopf monoids in Cat are
described in the formalism of Section 8.4. The results of the previous sections are combined in
Section 8.6 to determine protected objects in Cat. We explicitly describe them and investigate two
simple examples.

Chapter 9 investigates mapping class group actions on protected objects obtained from the actions
in [MV]. We start by presenting the relevant background on mapping class groups, Dehn twists and
a presentation of the mapping class group in terms of Dehn twists in Section 9.1. In Section 9.2
we describe in more detail the sequences of edge slides for Dehn twists in the presentation of the
mapping class group from Section 9.1. Finally, in Section 9.3 we combine the topological invariance
of the protected objects with the results about mapping class group actions from [MV]. This yields
mapping class group actions on the protected objects which we concretely describe for Hopf monoids
in Set, SSet and Cat.

Chapter 10 connects edge slides and Dehn twists in the Kitaev models to Kuperberg invariants of
3-manifolds. First, we introduce in Section 10.1 the necessary background on Heegaard diagrams
which encode 3-manifolds. In Section 10.2 we define the tensor endomorphism following [KV]. This
endomorphism forms the main part of the construction of Kuperberg invariants. We then describe
in Section 10.3 how Kuperberg invariants are obtained from this tensor endomorphism and give
some simple examples. In Section 10.4 we assign colored ribbon graphs to Heegaard diagrams. We
conclude this chapter by describing how the tensor endomorphism can be expressed in terms of
edge slides and Dehn twists in Section 10.5.

Sections 2.1, 2.2, Chapter 3-5 and 7 as well as Sections 8.1-8.3, 8.6 and Section 9.3 are
up to minor changes and additions parts of the preprint:

[HM] Hirmer, A.-K. & Meusburger, C. (2023). Categorical generalisations of quantum double
models. arXiv preprint arXiv:2306.05950.
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2 Algebraic background

The aim of this chapter is to give the necessary background on Hopf monoids, their (co)modules
and associated (co)invariants as well as biinvariants and integrals over Hopf monoids.

Up to some changes and additions Sections 2.1 and 2.2 are parts of the preprint [HM].

Throughout the thesis C is a symmetric monoidal category with unit object e and braidings
τX,Y : X ⊗ Y → Y ⊗X. We also suppose that C is complete and finitely cocomplete. In formulas,
we suppress associators and unit constraints and coherence data of monoidal functors.

2.1 Involutive Hopf monoids

Hopf monoids are generalisations of Hopf algebras in symmetric monoidal categories. To derive the
generalised definition from Hopf algebras, vector spaces are replaced by objects in the category and
linear maps by morphisms.

Definition 2.1.

1. A Hopf monoid in C is an object H in C together with morphisms m : H⊗H → H, η : e→ H,
∆ : H → H ⊗H, ε : H → e and S : H → H, the multiplication, unit, comultiplication, counit
and antipode, such that

• the (co)multiplication satisfies the (co)associativity and (co)unitality conditions

m ◦ (m⊗ 1H) = m ◦ (1H ⊗m), m ◦ (η ⊗ 1H) = m ◦ (1H ⊗ η) = 1H , (1)
(∆⊗ 1H) ◦∆ = (1H ⊗∆) ◦∆, (ε⊗ 1H) ◦∆ = (1H ⊗ ε) ◦∆ = 1H ,

• comultiplication and counit are monoid morphisms

∆ ◦ η = η ⊗ η, ∆ ◦m = (m⊗m) ◦ (1H ⊗ τH,H ⊗ 1H) ◦ (∆⊗∆), (2)
ε ◦ η = 1e, ε ◦m = ε⊗ ε,

• S satisfies the antipode condition

m ◦ (S ⊗ 1H) ◦∆ = m ◦ (1H ⊗ S) ◦∆ = η ◦ ε. (3)

It is called involutive if S ◦ S = 1H .

2. A morphism of Hopf monoids in C is a morphism f : H → H ′ in C with

f ◦m = m′ ◦ (f ⊗ f), f ◦ η = η′, (f ⊗ f) ◦∆ = ∆′ ◦ f, ε′ ◦ f = ε. (4)

We denote by Hopf(C) the category of Hopf monoids and morphisms of Hopf monoids in C.

The antipode of a Hopf monoid is unique, and it is an anti-monoid and anti-comonoid morphism

S ◦m = mop ◦ (S ⊗ S), S ◦ η = η, (S ⊗ S) ◦∆ = ∆op ◦ S, ε ◦ S = ε, (5)

see for instance Porst [Por, Prop. 36]. If H is involutive, the antipode satisfies the additional
identities

mop ◦ (S ⊗ 1H) ◦∆ = mop ◦ (1H ⊗ S) ◦∆ = η ◦ ε. (6)
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Every morphism of Hopf monoids f : H → H ′ satisfies f ◦ S = S′ ◦ f . This follows as for Hopf
algebras by considering the convolution monoid HomC(H,H) with the product f ?g = m◦(f⊗g)◦∆.

In the following, we use generalised Sweedler notation for the coproduct in a Hopf monoid and
write ∆(h) = h(1) ⊗ h(2), (∆ ⊗ 1H) ◦ ∆(h) = (1H ⊗ ∆) ◦ ∆(h) = h(1) ⊗ h(2) ⊗ h(3) etc. This is
analogous to Sweedler notation for a Hopf algebra. It can be viewed as a shorthand notation for
a diagram that describes a morphism in a symmetric monoidal category. For an introduction to
the usual diagrammatic notation see for instance Heunen and Vicary [HV]. Throughout the thesis,
diagrams are read from left to right for tensor products and from top to bottom for composition.
The multiplication, unit, comultiplication, counit and antipode are drawn as

a b

ab 1

a

a(1) a(2)

a

ε(a)

a

S(a)
multiplication unit comultiplication counit antipode

and the conditions (1) - (3) read

= , = = , = , = = ,

= , = = = =,, = , .

Note that we write m(n) : H⊗(n+1) → H and ∆(n) : H → H⊗(n+1) for n-fold products and
coproducts.

Example 2.2.

1. For any commutative ring k a Hopf monoid in k-Mod is a Hopf algebra over k. In particular,
for any field F a Hopf monoid in VectF is a Hopf algebra over F.

2. For any finite group G and commutative ring k, the group algebra k[G] and its dual k[G]∗ are
Hopf monoids in k−Mod.

3. The tensor product of two Hopf monoids in C has a Hopf monoid structure given by the tensor
product of (co)units, (co)multiplications and antipodes and the braiding morphisms. Any
tensor product of Hopf monoid morphisms is a morphism of Hopf monoids.

4. Every Hopf monoid H = (H,m, η,∆, ε, S) in a symmetric monoidal category C defines a Hopf
monoid H∗ = (H,∆, ε,m, η, S) in the symmetric monoidal category Cop. This generalises the
dual Hopf algebra in VectF.

5. For G,H finite groups with a group homomorphism Φ : G→ Aut(H) the group algebra C[H]
gives rise to an involutive Hopf monoid in the category (RepC(G),⊗,C) of finite-dimensional
representations of G over C. We denote by δh : H → C, δh(k) = 0 for k 6= h and δh(h) = 1
the basis elements of C[H]. Then C[H] is a C[G]-module with g B δh = δΦ(g)(h) for g ∈ G,
h ∈ H. (Co)multiplication, (co)unit and antipode are as usual given by m(δh ⊗ δk) = δhk,
∆(δh) = δh ⊗ δh, η(1) = δe, ε(δh) = 1 and S(δh) = δh−1. It is easy to see that they are
C[G]-linear.
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6. In the situation of 5. the dual vector space C[H]∗ = Fun(H,C) with basis elements ρh :
C[H]→ C satisfying ρh(δk) = 0 for k 6= h and ρh(δh) = 1 and dual representation

(g B ρh)(δl) = ρh(g−1 B δl) = ρΦ(g)(h)(δl) for g ∈ G, h, l ∈ H

is also an involutive Hopf monoid in RepC(G). Its structure morphisms are given by

m(ρh ⊗ ρk) = ρh(δk)ρk, ∆(ρh) =
∑
uv=h

ρu ⊗ ρv, η(1) =
∑
h∈H

ρh, ε(ρh) = ρh(δe), S(ρh) = ρh−1 .

The following example yields many subexamples, which are a focus in this thesis.

Example 2.3. Let (C,×) be a cartesian monoidal category with terminal object •. Let εX : X → •
be the terminal morphism and ∆X : X → X ×X the diagonal morphism for an object X.

A Hopf monoid in C is a group object in C: an object H together with morphisms m : H×H → H,
η : • → H and I : H → H such that the following diagrams commute

H ×H ×H 1H×m//

m×1H
��

H ×H
m
��

H ×H m
// H

H ∼= • ×H
η×1H //

1H ''

H ×H
m
��

H × • ∼= H
1H×ηoo

1Hww
H

(7)

H ×H I×1H // H ×H
m
��

H

∆H

OO

εH // • η // H

H

∆H

��

εH // • η // H

H ×H 1H×I // H ×H.

m

OO

A morphism of Hopf monoids is a morphism of group objects: a morphism F : H → H ′ with

F ◦m = m′ ◦ (F × F ). (8)

Note that this implies F ◦ η = η′ and I ′ ◦ F = F ◦ I.

Example 2.4.

1. A group object in the cartesian monoidal category (Set,×) is a group.
2. A group object in the cartesian monoidal category (Top,×) is a topological group.
3. A group object in the cartesian monoidal category (Cat,×) of small categories and functors

between them is a crossed module (cf. Definition 8.2).
4. Let G be a group and G−Set = SetBG the cartesian monoidal category of G-sets and G-

equivariant maps. A group object in G−Set is a group with a G-action by automorphisms.
5. A group object in the cartesian monoidal category SSet = Set∆op of simplicial sets and

simplicial maps is a simplicial group (cf. Definition 7.1).

The last two examples in Example 2.4 have counterparts for any functor category CD, where D
is small and C symmetric monoidal. In this case the functor category CD inherits a symmetric
monoidal structure from C, and we have

Lemma 2.5. For any symmetric monoidal category C and a small category D the monoidal
categories Hopf(CD) and Hopf(C)D are symmetric monoidally equivalent.
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Proof. The equivalence is given by the functor R : Hopf(CD) → Hopf(C)D that sends a Hopf
monoid (H,m, η,∆, ε, S) to the functor K : D → Hopf(C) with K(D) = H(D) and the component
morphisms mD, ηD, ∆D, εD, SD for D ∈ Ob(D) and with K(f) = H(f) for a morphism f in D.
Hopf monoid morphisms in CD are sent to themselves. The functor R has an obvious inverse, and
both functors are symmetric monoidal.

Further examples are obtained by taking the images of Hopf monoids under symmetric monoidal
functors. If both of the categories are cartesian monoidal, it is sufficient that the functor preserves
finite products, which holds in particular for any right adjoint functor.

Example 2.6.

1. Let F : C → C′ be a symmetric monoidal functor. Then for every Hopf monoid H in C the
image F (H) has a canonical Hopf monoid structure.

2. If C, C′ are cartesian monoidal categories and F : C → C′ a functor that preserves finite
products, then F is symmetric monoidal, and for every group object H in C the image F (H)
is a group object in C′.

2.2 (Co)modules and their (co)invariants

As their definitions involve only structure maps, (co)modules over Hopf monoids in symmetric
monoidal categories are defined analogously to (co)modules over Hopf algebras. The only difference
is that linear maps are replaced by morphisms. In this section, we provide the generalised versions
of (co)modules and also generalised versions of invariants, coinvariants and biinvariants.

Definition 2.7. Let H be a Hopf monoid in C.

1. A (left) H-module in C is an object M in C with a morphism B : H ⊗M →M satisfying

B ◦ (m⊗ 1M ) = B ◦ (1H ⊗B), B ◦ (η ⊗ 1M ) = 1M . (9)

Amorphism of (left) H-modules is a morphism f : M →M ′ in C with B′◦(1H⊗f) = f◦B.

2. A (left) H-comodule in C is an object M in C with a morphism δ : M → H ⊗M satisfying

(∆⊗ 1M ) ◦ δ = (1H ⊗ δ) ◦ δ, (ε⊗ 1M ) ◦ δ = 1M . (10)

A morphism of left H-comodules is a morphism f : M →M ′ in C with (1H⊗f)◦δ = δ′◦f .

In diagrammatic notation we mark (co)modules by vertical lines, which are often coloured, and the
action and coaction morphisms are incoming and outgoing lines from the (co)modules, such that
the conditions for left modules and left comodules are expressed as

, , , .
= = = =

The defining conditions for left module and left comodule morphisms are denoted as
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M

M ′

f

M

M ′

f

M

M ′

f

M

M ′

f

, .
= =

There are analogous notions of right (co)modules and bi(co)modules and morphisms between them.
Just as in the case of a Hopf algebra, there are also various compatibility conditions that can be
imposed between module and comodule structures. The most important one in the following is the
one for Yetter-Drinfeld modules.
Definition 2.8. Let H be a Hopf monoid in C.

1. A Yetter-Drinfeld module over H is a triple (M,B, δ) such that (M,B) is an H-module,
(M, δ) is an H-comodule and

δ ◦B = (m(2) ⊗B) ◦ (1H⊗2 ◦ τH,H ⊗ 1M ) ◦ (1H⊗3 ⊗ S ⊗ 1M ) ◦ (1H ⊗ τH⊗2,H ⊗ 1M ) ◦ (∆(2) ⊗ δ).
(11)

2. A morphism of Yetter-Drinfeld modules is a morphism f : M → M ′ that is a module
and a comodule morphism.

Condition (11) in Definition 2.8 is equivalent to

(m⊗ .) ◦ (1H ⊗ τH,H ⊗ 1M ) ◦ (∆⊗ δ) =
(m⊗ 1M ) ◦ (τH,H ⊗ 1M ) ◦ (1H ⊗ δ) ◦ (1H ⊗ .) ◦ (τH,H ⊗ 1M ) ◦ (∆⊗ 1M ). (12)

In diagrammatic notation the conditions (11) and (12) are expressed as

==
.,

The equivalence of (11) and (12) can be verified by a short graphical computation. Assuming (12)
we obtain

(1)= (3)= (1)= (12)= (1)=

.

With (11) this implies

(11)= (1)= (3)= (1)=

.
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In Sweedler notation with the conventions δ(m) = m(0) ⊗m(1) and ∆(h) = h(1) ⊗ h(2) the Yetter-
Drinfeld module condition in Definition 2.8 reads

(hBm)(0) ⊗ (hBm)(1) = h(1)m(0)S(h(3))⊗ (h(2) Bm(1)). (13)

Yetter-Drinfeld modules over group objects in cartesian monoidal categories are especially simple
to describe. In this case, composing the coaction morphism δ : M → H ×M with the projection
morphism π1 : H ×M → H yields a morphism F = π1 ◦ δ : M → H reminiscent of a moment
map. The Yetter-Drinfeld module condition states that this morphism intertwines the H-module
structure on M and the conjugation action of H on itself.

Example 2.9. Let H be a group object in a cartesian monoidal category, (M,B) a module and
(M, δ) a comodule over H. Then (M,B, δ) is a Yetter-Drinfeld module over H iff the morphism
F := π1 ◦ δ : M → H satisfies

F ◦B = m(2) ◦ (1H × τH,F (M)) ◦ (1H × I × 1F (M)) ◦ (∆H × F ). (14)

If the objects of C are sets, condition (14) reads F (hBm) = hF (m)h−1 for all h ∈ H, m ∈M . By
an abuse of notation, we sometimes write such formulas for the general case to keep notation simple.

By Example 2.6 the images of Hopf monoids under symmetric monoidal functors are Hopf monoids.
Analogous statements hold for their (co)modules.

Example 2.10.

1. If F : C → C′ is a symmetric monoidal functor and M a (co)module over a Hopf monoid H
in C, then F (M) is a (co)module over the Hopf monoid F (H).

2. Let C, C′ be cartesian monoidal categories and F : C → C′ a functor that preserves finite
products. Then for every (co)module M over a group object H in C the image F (M) is a
(co)module over the group object F (H).

(Co)invariants of (co)modules cannot be generalised directly from Hopf algebras over fields to Hopf
monoids in symmetric monoidal categories. To obtain generalised notions of (co)invariants, we
require that the symmetric monoidal category C has all equalisers and coequalisers.

Definition 2.11. [MV, Def. 2.6] Suppose that C has all equalisers and coequalisers and H is a
Hopf monoid in C.

1. The invariants of an H-module (M,B) are defined as the coequaliser (MH , π) of the mor-
phisms ε⊗ 1M and B:

H ⊗M
ε⊗1M

//
B //M

π //MH .

2. The coinvariants of an H-comodule (M, δ) are defined as the equaliser (M coH , ι) of the
morphisms η ⊗ 1M and δ:

M coH ι //M
η⊗1M

//
δ // H ⊗M.

As expected, H-(co)module morphisms induce morphisms between the (co)invariants. This follows
directly from the universal properties of the (co)equalisers.
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Lemma 2.12. [MV, Lemma 2.7] Suppose that C has all equalisers and coequalisers and H is a
Hopf monoid in C. Then for every H-module morphism f : (M,.)→ (M ′, .′) there exists a unique
morphism fH : MH → M ′H with fH ◦ π = π′ ◦ f . Likewise, for every H-comodule morphism
f : (M, δ)→ (M ′, δ′) there exists a unique morphism f coH : M coH →M ′coH with ι′ ◦ f coH = f ◦ ι.

Note that all definitions in this section are symmetric with respect to a Hopf monoid H in C and the
dual Hopf monoid H∗ in Cop from Example 2.2. Modules and comodules over H in C correspond to
comodules and modules over H∗ in Cop, respectively, and the same holds for their (co)invariants. It
is also directly apparent from the formula in Definition 2.8 that Yetter-Drinfeld modules over H
correspond to Yetter-Drinfeld modules over H∗.

For objects in a symmetric monoidal category C that are both, modules and comodules over certain
Hopf monoids in C, we combine the notion of invariants and coinvariants and impose both conditions.
This requires that the category C is equipped with images. We work with a general non-abelian
notion of image, see Mitchell [Mi, Sec. I.10] and Pareigis [Pa, Sec. 1.13]. There is an analogous
notion of a coimage, which is the image of the corresponding morphism in Cop, see [Mi, Sec. I.10].

An image of a morphism f : C → C ′ in C is an object im(f) together with a pair (P, I) of a
monomorphism I : im(f)→ C ′ and a morphism P : C → im(f) with I ◦ P = f and the following
universal property: for any pair (Q, J) of a monomorphism J : X → C ′ and a morphism Q : C → X
with J ◦Q = f there is a unique morphism v : im(f)→ X with I = J ◦ v.

C

P

&&

Q

��

f // C ′

im(f)

∃ v
��

* 


I

88

X
0�

J

@@

Images are unique up to unique isomorphism. If C has all equalisers, then P : C → im(f) is an
epimorphism [Mi, Prop. 10.1, Sec. I.10]. In an abelian category C this notion of image coincides
with the usual definition of an image as the kernel of the cokernel [Pa, Lemma 3, Sec. 4.2]. If C is
complete, then all images exist, as any complete category has intersections [Mi, Prop. 2.3, Sec. II.2].
This implies the existence of all images [Mi, Sec. I.10].

Definition 2.13. [MV, Def. 2.8]1 Let H,K be Hopf monoids in a complete and finitely cocomplete
symmetric monoidal category C. The biinvariants of an H-module and K-comodule M are defined
as the image of the morphism π ◦ ι : M coK →MH

M coK

P ((

ι //M
π //MH

Minv := im(π ◦ ι).
I

77 (15)

Requiring C to be complete and finitely cocomplete ensures the existence of invariants, coinvariants
and biinvariants. Examples of such categories are Set, Top, Grp, VectF, Cat, k−Mod and the
category Chk−Mod of chain complexes of k-modules. For a small category D and a complete and
finitely cocomplete category C the category CD is also complete and finitely cocomplete, see for
instance Pareigis [Pa, Th. 1, Sec. 2.7]. Hence, G−Set and SSet also satisfy the requirement.

1Def. 2.8 in [MV] considers only the case H = K, as that is the only one required there.
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Remark 2.14. 1. As discussed in [MV, Rem. 2.9] one could also consider the coimage of the
morphism π ◦ ι instead of its image. This amounts to passing from modules and comodules over
the Hopf monoids H,K in C to comodules and modules over the Hopf monoids H∗, K∗ in Cop
from Example 2.2. In categories that are balanced, complete and cocomplete images and coimages
are isomorphic. This follows from [Pa, Lemma 2 and 3 in Sec. 1.13] and holds in particular for
C = Set and any abelian category C.

2. There is another definition of images given by Kashiwara and Schapira in [KaS, Def. 5.1.1].
Here the image of f : C → C ′ is defined as the equaliser of the cokernel pair i1, i2 of f , which
are the pushout of the morphism f with itself such that i1 ◦ f = i2 ◦ f . This version of image
exists in all finitely complete and cocomplete categories. If for each factorisation of a morphism
f = q ◦ j into a morphism q and a monomorphism j, the latter is a regular monomorphism, i.e.
the equaliser of two parallel morphisms, [KaS, Def. 5.1.1] coincides with the definition of an
image from Definition 2.13.

We illustrate (co)invariants and biinvariants with a few simple examples. (Co)invariants of
(co)modules over Hopf monoids in SSet and Cat and the associated biinvariants for Yetter-Drinfeld
modules are treated in Chapter 7 and Section 8.3, respectively.

Example 2.15.

1. A Hopf monoid H in C = Set (in C = Top) is a (topological) group H and
• an H-module is a (continuous) H-Set B : H ×M →M ,
• MH = {H Bm | m ∈M} with π : M →MH , m 7→ H Bm (and the quotient topology),
• an H-comodule is given by a (continuous) map F : M → H,
• M coH = F−1(1) with the inclusion ι : F−1(1)→M (and the subspace topology),
• Minv = π(F−1(1)) = {H Bm | F (m) = 1} (with the final topology induced by π).

An H-module and H-comodule (M,B, F ) is a Yetter-Drinfeld module iff F (hBm) = hF (m)h−1

for all m ∈M , h ∈ H. In Top, the coimage of π ◦ ι is the same set π(F−1(1)), but equipped
with the subspace topology of MH . Determining the image as described by Kashiwara and
Schapira (Remark 2.14, 2.) also yields the set π(F−1(1)) with the subspace topology.

2. Let G be a group and H a group with a G-action by automorphisms, viewed as a Hopf
monoid in G−Set = SetBG. Then H-modules are H o G-sets, H-comodules are G-sets M
with G-equivariant maps F : M → H and

• MH = {H B m | m ∈ M} is the orbit space for H with the induced G-action and
G-equivariant canonical surjection π : M →MH ,

• M coH = F−1(1) with the induced G-action and G-equivariant inclusion ι : F−1(1)→M ,
• Minv = π(F−1(1)) with the induced G-action.

3. For a Hopf algebra H over a commutative ring k as a Hopf monoid in k-Mod, H-(co)modules
and Yetter-Drinfeld modules are (co)modules and Yetter-Drinfeld modules over H in the usual
sense. Their (co)invariants and biinvariants are

• MH = M/〈{hBm− ε(h)m | h ∈ H,m ∈M}〉,
• M coH = {m ∈M | δ(m) = 1⊗m},
• Minv = π(M coH).

While the coinvariants in Example 2.15, 3. coincide with the usual coinvariants for comodules over
a Hopf algebra, the invariants form a quotient rather than a subset. This distinction is irrelevant
in the case of semisimple Hopf algebras, but not in general. As our definition is symmetric with
respect to Hopf monoids in a symmetric monoidal category C and the dual Hopf monoids in Cop, it
is more natural in our setting. The following example illustrates this.
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Example 2.16. For a finite group G and a commutative ring k the group algebra k[G] and its dual
k[G]∗ are Hopf monoids in k-Mod.

For the group algebra H = k[G]

• the invariants of a H-module (M,B) are MH = M/〈{g Bm−m | m ∈M, g ∈ G}〉,
• comodules are G-graded k-modules M = ⊕g∈GMg with δ(m) = g ⊗m for all m ∈Mg,
• their coinvariants are M coH = M1.

A k[G]-module and comodule (M,B, δ) is a Yetter-Drinfeld module iff g BMh = Mghg−1 for all
g, h ∈ G, and in this case Minv

∼= M1/(M1 ∩ 〈{g Bm−m | m ∈M, g ∈ G}〉) ∼= H0(G,M1).

For the dual Hopf monoid H = k[G]∗

• modules are G-graded k-modules M = ⊕g∈GMg with δg Bm = δg(h)m for m ∈Mh,
• their invariants are MH = M/(⊕g∈G,g 6=1Mg) ∼= M1,
• comodules are k[G]-right modules (M,C) with δ(m) = ∑

g∈G δg ⊗ (mC g),
• their coinvariants are M coH = {m ∈M | mC g = m∀g ∈ G}.

A k[G]∗-module and comodule (M,B, δ) is a Yetter-Drinfeld module iff Mh C g = Mghg−1 for all
g, h ∈ G, and in this case Minv

∼= H0(G,M1).

By Lemma 2.12 morphisms of (co)modules over a Hopf monoid H induce morphisms between their
(co)invariants. The question if morphisms of both, modules and comodules, induce morphisms
between the associated biinvariants is more subtle in general. It is shown in [MV, Lemma 2.10] that
this always holds for isomorphisms. As a direct generalisation we have in the notation of (15)

Lemma 2.17. Let C be complete and finitely cocomplete, H, K Hopf monoids in C and Φ : M →M ′

an isomorphism of H-modules and K-comodules. There is a unique morphism Φinv : Minv →M ′inv
with π′ ◦ Φ ◦ ι = I ′ ◦ Φinv ◦ P , and Φinv is an isomorphism.

2.3 (Co)integrals and Hopf algebras

In this section, we summarise the background on (co)integrals in a symmetric monoidal category C,
in particular for C = VectF. This is mainly relevant for Chapter 6 and Section 10.3.

Definition 2.18. [TVi, Sec. 6.3.1] Let H be a Hopf monoid in C.

1. A left integral of H is a morphism Λ : e→ H satisfying

m ◦ (1H ⊗ Λ) = Λ⊗ ε. (16)

2. A left cointegral of H is a morphism λ : H → e satisfying

(1H ⊗ λ) ◦∆ = η ⊗ λ. (17)

In diagrammatic notation, the conditions (16) and (17) read

Λ
,

Λ

λ
.

= =

λ
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There is an analogous notion of right integral Λ : e → H over H, where (16) is replaced by
m ◦ (Λ⊗ 1H) = Λ⊗ ε, and right cointegral λ : H → e with (17) replaced by (λ⊗ 1H) ◦∆ = η⊗ λ.

Λ
,

Λ

λ
.

= =

λ

If a morphism is both a left and right (co)integral, it is called two-sided (co)integral.

Example 2.19. 1. For the Hopf monoid C[H] in RepC(G) from Example 2.2, 5. with G,H
finite groups and a group homomorphism Φ : G→ Aut(H) the G-equivariant map

Λ : C→ C[H], r 7→ r
∑
h∈H

δh

is a two-sided integral for C[H], as

m ◦ (1C[H] ⊗ Λ)

∑
h∈H

chδh ⊗ r

 = r
∑
h∈H

ch
∑
k∈H

δhk = r
∑
h∈H

ch
∑
l∈H

δl

= (ε⊗ Λ)

∑
h∈H

chδh ⊗ r


for ch, r ∈ C. The right integral condition is verified analogously. The G-equivariant map
ρe : C[H]→ C with ρe(δh) = 0 for h 6= e and ρe(δe) = 1 is a two-sided cointegral for C[H] in
RepC(G). It satisfies ρe ◦ Λ = 1C.

2. Dually to 1., the G-equivariant map Λ : C → C[H]∗, r 7→ rρe is a two-sided integral of the
Hopf monoid C[H]∗ in RepC(G) from Example 2.2, 6.

3. If F : C → C′ is a symmetric monoidal functor and Λ a (co)integral over a Hopf monoid H in
C, then F (Λ) defines a (co)integral over the Hopf monoid F (H).

Note that the existence of (co)integrals is not guaranteed: For instance, a non-trivial group H 6= {e}
as a Hopf monoid in Set neither has an integral nor a cointegral. An integral would amount to an
element Λ ∈ H satisfying h · Λ = Λ for all h ∈ H, which contradicts H 6= {e}. The only morphism
in Set whose target is given by the tensor unit is the counit. Clearly, the counit does not satisfy the
cointegral condition, as (17) yields h = eH for all h ∈ H.

If a Hopf monoid H in a symmetric monoidal category C is involutive, then Λ : e→ H is a right
integral of H iff S ◦ Λ is a left integral of H. This follows by applying (5), the naturality of the
braiding and the involutivity of the antipode:

Λ Λ

= =

Λ Λ

= = Λ = Λ

.

The other implication is obtained analogously. Analogous statements hold if the roles of left and
right integrals are swapped or likewise if the integrals Λ, S ◦ Λ are replaced by cointegrals λ, λ ◦ S.
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Remark 2.20. There is a more general definition of integrals and cointegrals as for instance used
by Bespalov et al. [BKLT, Def. 3.1] and Kashaev and Virelizier [KV, Sec. 5.1]. There, the source
of Λ and target of λ is not restricted to the tensor unit, instead any object in C is allowed. Bespalov
et al. [BKLT, Prop. 3.1] also provide an existence statement for integrals and cointegrals over
involutive Hopf monoids: If C is left rigid and all idempotents split, then there exists an object I in
C and left and right integrals with source I as well as left and right cointegrals with target I over H.

The remainder of this section is concerned with Hopf monoids and their (co)integrals in the category
C = VectF of vector spaces over a field F. Throughout the thesis we write Hopf algebras for Hopf
monoids in VectF.

Note that in VectF (co)integrals form a vector space. We denote the linear subspaces of left and
right integrals of a Hopf algebra H by IL(H) and IR(H). Integrals over a Hopf algebra H are often
defined as elements of H, but this is equivalent to Definition 2.18.

If (H,m, η,∆, ε, S) is a finite-dimensional Hopf algebra, then its dual H∗ has a canonical Hopf
algebra structure (H∗,∆∗, ε∗,m∗, η∗, S∗), where we write f∗ for the dual linear map of f . In this
case λ is a left (right) integral for H∗ if and only if λ is a left (right) cointegral for H. This follows
by Hopf algebra duality.

Definition 2.21. An integral l of a Hopf algebra H is called normalised if ε(l) = 1. A normalised
two-sided integral is called Haar integral.

We give some examples of integrals over Hopf algebras.

Example 2.22. 1. For the group algebra F[G] of a finite group G the subspaces of integrals and
cointegrals are given by

IL(F[G]) = IR(F[G]) = F ·
∑
g∈G

δg, IL(F[G]∗) = IR(F[G]∗) = F · ρe,

with ρe(δg) = 1 if g = e and ρe(δg) = 0 else. If the characteristic of F does not divide the group
order of G, then 1

|G|
∑
g∈G δg is a Haar integral of F[G].

2. Sweedler’s four-dimensional Hopf algebra H4 is as an algebra generated by x, y with relations

x2 = 1, y2 = 0, xy + yx = 0.

The Hopf algebra structure is defined by

∆(x) = x⊗ x, ε(x) = 1, S(x) = x,

∆(y) = 1⊗ y + y ⊗ x, ε(y) = 0, S(y) = xy.

A basis for H4 is given by {1, x, y, xy}. Note that its antipode has order 4 and satisfies S2(a) = xax−1

for all a ∈ H4, see Kassel [Ka, Ex. 2 in Sec. VIII.2]. A simple computation yields

IL(H4) = F · (1 + x)y, IR(H4) = F · y(1 + x).

3. The tensor product of Haar integrals of Hopf algebras H, K is a Haar integral of the Hopf algebra
H ⊗K.

Example 2.23. For an algebraically closed field F with char(F) = 0 consider the involutive Hopf
algebra H8, see Radford [Ra, Sec. 16.3]. As an algebra it is generated by x, y, z with relations

x2 = y2 = 1, yx = xy, zx = yz, zy = xz, z2 = 1
2(1 + x+ y − xy). (18)
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Comultiplication, counit and antipode are defined by

∆(x) = x⊗ x, ∆(y) = y ⊗ y, ∆(z) = 1
2(z ⊗ z + yz ⊗ z + z ⊗ xz − yz ⊗ xz),

ε(x) = ε(y) = ε(z) = 1, S(x) = x, S(y) = y, S(z) = z.

A basis for H8 is given by {1, x, y, xy, z, xz, yz, xyz}, see [Ra, Sec. 16.3]. Note that H8 is semisimple,
self-dual and neither commutative nor cocommutative [Ma, Th. 2.13, Rem. 2.14]. Applying the
identities

z · xz = xz · xyz = yz · z = xyz · yz = 1
2(y + xy + 1− x),

z · yz = xz · z = yz · xyz = xyz · xz = 1
2(1 + x+ xy − y),

z · xyz = xz · xz = yz · yz = xyz · z = 1
2(x+ y + xy − 1), (19)

it follows that

Λ = 1 + x+ y + xy + z + xz + yz + xyz ∈ H8

is a two-sided integral for H8. In particular, 1
8Λ is a Haar integral and

λ = ρ1 : H8 → F, (c1 · 1 + c2 · x+ c3 · y + c4 · xy + c5 · z + c6 · xz + c7 · yz + c8 · xyz) 7→ c1

with ci ∈ F is a two-sided cointegral for H8. As λ is normalised, it is a Haar integral of H∗8 .

Note that the integrals and cointegrals of C[H] in C = RepC(G) from Example 2.19, 1. and 2. are a
simple extension of Example 2.22, 1. They are related by the forgetful functor RepC(G)→ VectC,
which sends (co)integrals to (co)integrals. The following Lemma is a consequence of [Ra, Th. 10.2.2,
Cor. 10.3.3].

Lemma 2.24. [Ra, Th. 10.2.2, Cor. 10.3.3] If H is a finite-dimensional Hopf algebra over F, then:

1. dim(IL(H)) = dim(IR(H)) = 1.
2. There exists a left integral Λ and a right cointegral λ of H with λ(Λ) = 1.
3. H is semisimple if and only if ε(Λ) 6= 0 for some left or right integral Λ of H. In this case

one has ε(Λ) 6= 0 for all non-zero left or right integrals of H.

Definition 2.25. A Hopf algebra H over F is called unimodular if IL(H) = IR(H).

Lemma 2.26. [Ra, Cor. 10.3.3] Every finite-dimensional semisimple Hopf algebra over F is
unimodular.

Lemma 2.24 and 2.26 imply that every finite-dimensional semisimple Hopf algebra H has a Haar
integral l ∈ H. In particular, if S2 = 1H then it satisfies S(l) = l, as S(l) is also an integral of
H. Hence, it is S(l) = k · l for some k ∈ F, as the subspace of integrals is one-dimensional. The
identities 1 = ε(l) = ε(S(l)) = kε(l) then yield k = 1.

Proposition 2.27. [LRa, Th. 4.4] Let H be a finite-dimensional Hopf algebra over F with
char(F) - dimF(H). If S2 = 1H , then H and H∗ are semisimple.

In particular, for char(F) = 0 one has from [LRb, Th. 1] and [LRa, Th. 4.4]:
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Theorem 2.28. [LRa, LRb] Let H be a finite-dimensional Hopf algebra over a field F with
char(F) = 0. Then the following are equivalent:

i) H is semisimple
ii) H∗ is semisimple
iii) S2 = 1H .

The following lemma is well-known, but often used implicitly or stated in different versions. For
instance, the projection is mentioned in [Skr, Sec. 1] and called trace in [CFM]. We formulate it for
left modules. There is an analogous statement for right modules.

Lemma 2.29. Let H be a Hopf algebra with a Haar integral l ∈ H. Then for any H-module (M,B)
the linear map Pl : M →M, m 7→ l Bm is a projection with

im(Pl) = MH := {m ∈M : hBm = ε(h)m ∀h ∈ H}.

The kernel of Pl is the image of the linear map B− ε⊗ 1M : H ⊗M →M .

Proof. Applying hl = ε(h)l and l2 = l yields

hB Pl(m) = ε(h)Pl(m), (Pl ◦ Pl)(m) = Pl(m)

for m ∈ M , h ∈ H. As Pl(m) = l Bm = m for m ∈ MH it follows that Pl is a projection with
im(Pl) = MH . For h ∈ H, m ∈M , x ∈ ker(Pl) one obtains

Pl(hBm− ε(h)m) = (lh)Bm− ε(h)l Bm = ε(h)l Bm− ε(h)l Bm = 0,
(B− ε⊗ 1M ) (l ⊗ (−x)) = ε(l)x = x.

Hence, the kernel of Pl coincides with the image of the linear map B− ε⊗ 1M .

For a finite-dimensional Hopf algebra H we will consider the quantum double D(H) of H, which
combines H and its dual Hopf algebra. The quantum double plays a significant role within the
quantum double models from [Ki, BMCA]. More specifically, it provides the mathematical framework
for understanding the behaviour of quasiparticles in these models, including the study of their fusion
and braiding properties.

Definition 2.30. [Maj, Sec. 7.1] Let H be a finite-dimensional Hopf algebra. The Drinfeld double
or quantum double D(H) of H is the vector space H∗ ⊗H with Hopf algebra structure

(α⊗ h) · (β ⊗ k) = β(3)(h(1))S−1(β(1))(h(3))αβ(2) ⊗ h(2)k, 1 = 1H∗ ⊗ 1H ,
∆(α⊗ h) = α(2) ⊗ h(1) ⊗ α(1) ⊗ h(2), ε(α⊗ h) = ε(α)ε(h),
S(α⊗ h) = α(1)(h(3))S−1(α(3))(h(1))S(α(2))⊗ S(h(2)).

As explained in [Ra, Cor. 13.2.3], for H finite-dimensional its Drinfeld double D(H) is semisimple if
and only if both H and H∗ are semisimple. From [Ra, Prop. 13.2.2] follows that λ⊗ l is a Haar
integral for D(H) if l ∈ H and λ ∈ H∗ are Haar integrals.
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3 Ribbon graphs and surfaces

In this chapter, we summarise the background on ribbon graphs, also called fat graphs or embedded
graphs, for more details we refer to the textbooks of Lando et. al. [L+] and Ellis-Monaghan and
Moffatt [EM].

This chapter is based on Section 3 of the preprint [HM].

Throughout this thesis, all graphs are directed graphs with a finite number of vertices and edges. We
do not require that the graphs are connected and allow isolated vertices with no incident edges.

Definition 3.1. A ribbon graph is a graph with a cyclic ordering of the edge ends at each vertex.

The cyclic ordering of edge ends at the vertices of a ribbon graph allows one to thicken its edges to
strips or ribbons and defines the faces of the ribbon graph. One says that a path in a ribbon graph
turns maximally left at a vertex if it enters the vertex along an edge end and leaves it along
an edge end that comes directly before it with respect to the cyclic ordering. Face paths are paths
that turn maximally left at each vertex and traverse each edge at most once in each direction. A
face of a ribbon graph is defined as a cyclic equivalence class of closed face paths. Each isolated
vertex is also viewed as a face, and such a face is called an isolated face.

In the following we denote by V,E, F the sets of vertices, edges and faces of a ribbon graph and by
s(α), t(α) the starting and target vertex of an edge α. The same notation s(α), t(α) is occasionally
used for the starting and target end of α. We say that two edge ends incident at a vertex v ∈ V are
neighbours or neighbouring if one of them comes directly before or after the other with respect
to the cyclic ordering at v. An edge α with s(α) = t(α) is called a loop. A loop at v whose starting
and target end are neighbours is called an isolated loop. The starting end of a face path γ is the
first edge end traversed by γ. The number of incident edge ends at a vertex is called valence of the
vertex. When drawing a ribbon graph we take the cyclic ordering of edge ends at vertices as the
one in the drawing.

Example 3.2. In the following graph Γ

f

b
c

d

a

x

w

e

v

the permutation (t(a), s(a), s(b), t(e)) describes the cyclic ordering at v. The closed path f =
e+ ◦ d− ◦ b+ given by the orange arrow describes a face. Here, we write x+ if f traverses the edge x
parallel to its orientation and x− if x is traversed antiparallel to its orientation.

Ribbon graphs are directly related to embedded graphs on oriented surfaces. Every graph Γ
embedded into an oriented surface Σ inherits a cyclic ordering of the edge ends at each vertex and
hence a ribbon graph structure. Attaching discs to the faces of the ribbon graph Γ yields an oriented
surface ΣΓ such that the connected components of ΣΓ \ Γ are discs and in bijection with faces of Γ,
see Figure 1. If Γ is embedded into an oriented surface Σ, the surface ΣΓ is homeomorphic to Σ
iff each connected component of Σ \ Γ is a disc. In this case, we call Γ properly embedded in
Σ. Note that this implies a bijection between connected components of Γ and of Σ, and connected
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f

Figure 1: Attaching a disc to the face f yields a torus.

components of Σ containing an isolated vertex are spheres. The genus g of a connected component
of Σ is then determined by the Euler characteristic 2− 2g = |V | − |E|+ |F |, where |V |, |E|, |F | are
the number of vertices, edges and faces of the associated connected component of Γ.

Note that each ribbon graph or embedded graph has a Poincaré dual obtained by replacing each
vertex (face) with a face (vertex) and each edge with a dual edge. This transforms the paths that
characterise faces into paths that go counterclockwise around a vertex and vice versa. Edge ends
correspond to edge sides of the dual graph and their cyclic ordering at a vertex to the cyclic ordering
of the edge sides in the dual face.

In the following we sometimes require a linear ordering of the edge ends at a vertex or of the edge
sides in a face. This is achieved by inserting a marking, the cilium, that separates the edge ends or
edge sides of minimal and maximal order. For faces this corresponds to the choice of a starting
vertex for the associated cyclic equivalence class of paths. We indicate the cilium by a wavy line.

Definition 3.3.

1. A ciliated vertex in a ribbon graph is a vertex with a choice of linear ordering of the incident
edge ends that is compatible with their cyclic ordering.

2. A ciliated face in a ribbon graph is a closed path that turns maximally left at each vertex,
including the starting vertex, and traverses each edge at most once in each direction.

A ciliated ribbon graph is a ribbon graph in which each face and vertex is assigned a cilium.
Isolated vertices and faces are trivially ciliated.

For a closed surface Σ of genus g ≥ 0 we often work with a ciliated ribbon graph with a single
vertex and a single face that is given by a set of generators of the fundamental group

π1(Σ) = 〈α1, β1, . . . , αg, βg | [β−1
g , αg] · · · [β−1

1 , α1] = 1〉. (20)

The 2g generators of the fundamental group of a closed surface of genus g are shown in Figure 2.
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α1

α2
αg−1

αg

β1

β2

βg−1

βg

Figure 2: Surface of genus g and the generators of its fundamental group.

Definition 3.4. The standard graph of an oriented surface Σ of genus g ≥ 1 is the graph

(21)

α1

α2

αg

β1

β2

βg
v

with the face f = [β−1
g , αg] · · · [β−1

1 , α1] and the ordering of edge ends at v given by
s(α1) < s(β1) < t(α1) < t(β1) < . . . < s(αg) < s(βg) < t(αg) < t(βg). In particular, the standard
graph for S2 consists of a single isolated vertex and the associated isolated face.

In the following we use certain graph transformations to relate properly embedded ribbon graphs in
a connected surface Σ to its standard graph.
Definition 3.5. Let Γ be a ribbon graph with edge set E and vertex set V .

1. The edge reversal reverses the orientation of an edge β ∈ E.
2. The contraction of an edge α ∈ E that is not a loop removes α ∈ E and fuses the vertices

s(α) and t(α).
3. The edge slide slides an end of β ∈ E that is a neighbour of an end of α ∈ E along α.
4. The loop deletion removes an isolated loop β ∈ E from Γ.
5. The splitting of an edge adds a two-valent vertex in the middle of an edge β ∈ E such that

β is split into two edges with induced orientations.

In all cases except 2. and 5. the resulting ribbon graph inherits all cilia from Γ. In 2. one erases
either the cilium of t(α) or of s(α) and speaks of contracting α towards t(α) and s(α), respectively.
In 5. there are two options to endow the inserted vertex with a cilium.

These graph transformations are illustrated in Figure 3. Note that they are not independent.
Contracting an edge α towards t(α) is the same as first sliding some edge ends along α and then
contracting α towards t(α). Contracting an edge α towards t(α) is also the same as first reversing
α, then contracting α towards s(α) and then reversing α. By reversing α and β before and after a
slide, one can reduce all edge slides to the ones that slide the target end of β along the left of α.

There are of course other possible graph transformations such as deleting edges, which is dual to
edge contractions. However, the graph transformations in Definition 3.5 are sufficient to transform
any connected ribbon graph into a standard graph. This is well-known and appears implicitly in
many publications. We summarise the argument for the convenience of the reader.

23



reverse ββ β

slide βα

β

v

w
along α

α

β

v

w

α
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wb
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d
k

contract α

towards v

w
b

c d

k

β

remove β

β split β

Figure 3: Examples of graph transformations
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Proposition 3.6. Every connected ribbon graph can be transformed into the standard graph (21)
by edge reversals, edge slides, edge contractions and loop deletions.

Proof. Selecting a maximal tree in Γ and contracting all edges in the tree transforms Γ into a graph
Γ′ with a single vertex. By applying edge slides one can transform Γ′ into a graph Γ′′ that coincides
with (21) up to edge orientation and up to the presence a number of isolated loops between the
cilium and the starting end of α1. This follows from an analogous statement for chord diagrams,
which correspond to ribbon graphs with a single vertex, see for instance Chmutov, Duzhin and
Mostovoy [CDM, Sec. 4.8.5]. Deleting the isolated loops and reversing edges in Γ′′ then yields the
standard graph (21).

25



4 (Co)modules from Hopf monoids and ribbon graphs

In this chapter we use involutive Hopf monoids in symmetric monoidal categories to assign
(co)modules over Hopf monoids to ciliated ribbon graphs. In Chapter 5 we then show that
their biinvariants are topological invariants: their isomorphism classes depend only on the genus of
the surface obtained by attaching discs to the faces of the graph. In Chapters 7 and 8 we determine
these biinvariants for simplicial groups as Hopf monoids in SSet and for crossed modules as group
objects in Cat.

This chapter is a revised version of Section 4 from the preprint [HM].

The construction generalises Kitaev’s quantum double model and the toric code from [Ki], which was
first formulated for the group algebra of a finite group over C and then generalised by Buerschaper et
al. in [BMCA] to finite-dimensional semisimple C∗-Hopf algebras. A very similar construction to the
one in this thesis is used in [MV] to obtain mapping class group actions from pivotal Hopf monoids
in symmetric monoidal categories. The work [MV] considers the biinvariants of a Yetter-Drinfeld
module structure assigned to the standard graph (21), but it does not establish that the biinvariants
are graph-independent.

The construction of the (co)module structures from an involutive Hopf monoid and a ciliated ribbon
graph in this chapter is directly analogous to the one in [MV], which in turn is a straightforward
generalisation of [Ki, BMCA]. The main difference is that H∗-modules in [BMCA] are replaced by
H-comodules and D(H)-modules by Yetter-Drinfeld modules over H.

What differs substantially from [Ki, BMCA] are the notions of (co)invariants, biinvariants and
the construction of the topological invariant. The works in [Ki, BMCA] rely on the normalised
Haar integral of a finite-dimensional semisimple complex Hopf algebra, which is not available in
our setting. Our construction is more general, as the only assumptions are that the underlying
symmetric monoidal category is complete and finitely cocomplete and the Hopf monoid involutive.
The article [MV] also allows pivotal Hopf monoids. The involutive Hopf monoids in this thesis are
examples of pivotal Hopf monoids, with their unit as pivotal structure.

Let H be an involutive Hopf monoid in a complete and finitely cocomplete symmetric monoidal
category C and Γ a ciliated ribbon graph with vertex set V , edge set E and face set F .

We consider the |E|-fold tensor product of H with itself, together with an assignment of the copies
of H in this tensor product to the edges of Γ. By writing H⊗E we emphasise this assignment. If
E = ∅, we set H⊗E = e. The object H⊗E can be viewed as the counterpart of the Hilbert space of
Kitaev’s quantum double model in [Ki, BMCA].

We assign to each edge α ∈ E two H-module structures Bα± : H ⊗H⊗E → H⊗E and H-comodule
structures δα± : H⊗E → H ⊗H⊗E . The H-module structures Bα+ and Bα− are assigned to the
target and starting end of α and the H-comodule structures to its left and right side, respectively.
They are induced by the standard H-(co)module structures on H via left (co)multiplication.

This requires some notation. Given a morphism f : H → K in C and an edge α ∈ E we write fα for
the morphism that applies f to the copy of H in H⊗E that belongs to α and the identity morphism
to the other copies. We write τα : H⊗E → H⊗E or τα : H ⊗H⊗E → H ⊗H⊗E for the composite of
braidings that moves the copy of H for α to the left. We denote by mα : H ⊗H⊗E → H⊗E the
morphism that moves the first copy of H to the left of the one for α and then applies m to them.
Definition 4.1. The H-module structures Bα± : H ⊗H⊗E → H⊗E and H-comodule structures
δα± : H⊗E → H ⊗H⊗E for an edge α ∈ E are

Bα+ := mα, Bα− := Sα ◦Bα+ ◦ (1H ⊗ Sα), δα+ := τα ◦∆α, δα− := (1H ⊗ Sα) ◦ δα+ ◦ Sα.
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In diagrammatic notation the module and comodule structures read:

.α+

α

,

α α

(5)=

.α−

,

δα+

α

,

α α

(5)=

δα−

.

By definition, the (co)module structures assigned to different edges of a graph commute, since they
(co)act on different copies of H in the tensor product H⊗E . A direct computation using (1) and (5)
shows that the two H-(co)module structures assigned to a given edge commute as well. The proof
is directly analogous to the ones for Hopf algebras in [BMCA].

Lemma 4.2. [MV, Lemma 5.2, 2.] For any edge α ∈ E the H-module structures Bα± and the
H-comodule structures δα± commute:

Bα− ◦ (1H ⊗Bα+) = Bα+ ◦ (1H ⊗Bα−) ◦ (τH,H ⊗ 1H⊗E ),
(1H ⊗ δα−) ◦ δα+ = (τH,H ⊗ 1H⊗E ) ◦ (1H ⊗ δα+) ◦ δα−.

The (co)module structures from Definition 4.1 define an H-module structure on H⊗E for each
ciliated vertex v and an H-comodule structure on H⊗E for each ciliated face f of Γ. The former
applies the comultiplication to H, distributes the resulting copies of H to the edge ends at v
according to their ordering and acts on them with Bα± according to their orientation. Dually, the
coaction applies the H-coaction δα± to each edge α in f , depending on its orientation relative to f ,
and multiplies the resulting copies of H according to the order of the edge sides in f .

Definition 4.3. [MV, Def. 5.3]

1. The H-module structure Bv : H ⊗H⊗E → H⊗E assigned to a ciliated vertex v with incident
edge ends α1 < α2 < . . . < αn is

Bv = Bα1 ◦ (1H ⊗Bα2) ◦ . . . ◦ (1H⊗(n−1) ⊗Bαn) ◦ (∆(n−1) ⊗ 1H⊗E ), (22)

where Bα = Be(α)+ if α is incoming, Bα = Be(α)− if α is outgoing and e(α) is the edge of α.

2. The H-comodule structure δf : H⊗E → H ⊗H⊗E assigned to a ciliated face f that traverses
the edges αn, αn−1, . . . , α1 in this order is

δf = (m(n−1) ⊗ 1H⊗E ) ◦ (1H⊗(n−1) ⊗ δαr) ◦ . . . ◦ (1H ⊗ δα2) ◦ δα1 , (23)

where δα = δα+ if α is traversed with, δα = δα− if α is traversed against its orientation.

To an isolated vertex and face we assign the (co)module structures Bv = ε⊗1H⊗E and δf = η⊗1H⊗E .

To avoid heavy notation we use Sweedler notation and describe these (co)module structures by
labelling edges of a graph with letters representing the associated copies of H.
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Example 4.4.

v
b

c

d

a

a

b

c
d

e f

The H-module structure Bv for the ciliated vertex v with incident edge ends t(a) < s(b) < t(b) <
t(c) < s(d) and the H-comodule structure δf for the ciliated face f = e ◦ e−1 ◦ d ◦ c−1 ◦ b ◦ a are

hBv (a⊗ b⊗ c⊗ d) = h(1)a⊗ h(3)bS(h(2))⊗ h(4)c⊗ dS(h(5)),
δf (a⊗ b⊗ c⊗ d⊗ e) = e(1)S(e(3))d(1)S(c(2))b(1)a(1) ⊗ a(2) ⊗ b(2) ⊗ c(1) ⊗ d(2) ⊗ e(2).

The interaction of the H-module and H-comodule structures assigned to ciliated vertices and faces
of the graph is investigated in [Ki, BMCA, MV]. They are local in the sense that the H-(co)module
structure for a vertex (face) affects only those copies of H that belong to their incident edges. As
the action Bα+ for an edge α ∈ E acts by left- and Bα− by right-multiplication, the H-module
structures for different vertices commute. The same holds for the H-comodule structures at different
faces. Moreover, H-module structures commute with H-comodule structures unless their cilia share
a vertex or a face. The H-module and H-comodule structure for each cilium define a Yetter-Drinfeld
module structure.

Lemma 4.5. [MV, Lemma 5.5]

1. The H-left module structures for distinct vertices v 6= v′ ∈ V and the H-left comodule structures
for distinct faces f 6= f ′ ∈ F commute for all choices of cilia:

Bv′ ◦ (1H ⊗Bv) = Bv ◦ (1H ⊗Bv′) ◦ (τH,H ⊗ 1H⊗E ), (24)
(1H ⊗ δf ′) ◦ δf = (τH,H ⊗ 1H⊗E ) ◦ (1H ⊗ δf ) ◦ δf ′. (25)

2. If two cilia are placed at distinct vertices and distinct faces, the H-module structure assigned
to one of them commutes with the H-comodule structure assigned to the other:

δf ◦Bv = (1H ⊗Bv) ◦ (τH,H ⊗ 1H⊗E ) ◦ (1H ⊗ δf ). (26)

3. If v ∈ V and f ∈ F share a cilium, then (H⊗E ,Bv, δf ) is a Yetter-Drinfeld module over H.

If each vertex and face of Γ is equipped with a cilium, then Definition 4.3 assigns an H-(co)module
structure on H⊗E to each vertex (face) of Γ. By Lemma 4.5 these (co)module structures commute
and hence combine into H⊗E-module and H⊗F -comodule structures on H⊗E .

Definition 4.6. The H⊗n-module structure for a subset ∅ 6= V := {v1, . . . , vn} ⊂ V and the
H⊗m-comodule structure for a subset ∅ 6= F := {f1, . . . , fm} ⊂ F are

BV := Bv1 ◦ (1H ⊗Bv2) ◦ · · · ◦ (1H⊗(n−2) ⊗Bvn−1) ◦ (1H⊗(n−1) ⊗Bvn) : H⊗n ⊗H⊗E → H⊗E , (27)
δF := (1H⊗(m−1) ⊗ δfm) ◦ (1H⊗(m−2) ⊗ δfm−1) ◦ · · · ◦ (1H ⊗ δf2) ◦ δf1 : H⊗E → H⊗m ⊗H⊗E .

Equations (24) and (25) ensure that the (co)actions do not depend on the numbering of vertices or
faces in Definition 4.6. That (27) defines an H⊗n-module structure follows from the identity

BV ′ ◦ (1H⊗|V′| ⊗Bv) ◦ (τH,H⊗|V′| ⊗ 1H⊗E ) = Bv ◦ (1H ⊗BV ′),
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valid for any subset ∅ 6= V ′ ⊂ V , v ∈ V \ V ′. The dual statement for δF follows analogously.

The module and comodule structure from Definition 4.6 define the categorical counterpart of the
protected space or ground state in Kitaev’s quantum double model. In the models based on a finite-
dimensional semisimple complex Hopf algebra in [Ki, BMCA] the ground state is an eigenspace of a
Hamiltonian that combines these H-(co)module structures. The normalised Haar integral defines a
projector on the ground state. In our setting these structures are not available. Instead, we consider
the biinvariants from Definition 2.13 for the action and coaction from (27).

Definition 4.7. The protected object for an involutive Hopf monoid H and a ciliated ribbon
graph Γ are the biinvariants Minv = Im(π ◦ ι) of H⊗E with the module structure BV and comodule
structure δF from (27).

Overall, we say the Kitaev model constructed from a ciliated ribbon graph Γ and H consists of
the extended object H⊗E ∈ Ob(C), the triangle actions Bα± and coactions δα± from Definition
4.1 assigned to any edge α ∈ E and the vertex actions Bv and face coactions δf from Definition
4.3 assigned to any ciliated vertex v and ciliated face f as well as the protected object Minv from
Definition 4.7.

Example 4.8. Let H be an involutive Hopf monoid in C and Γ the standard graph (21) on a surface
Σ of genus g ≥ 1. Then the associated Yetter-Drinfeld module structure on H⊗E is

hB (a1 ⊗ b1 ⊗ . . .⊗ ag ⊗ bg) (28)
= h(3)a

1S(h(1))⊗ h(4)b
1S(h(2))⊗ . . .⊗ h(4g−1)a

gS(h(4g−3))⊗ h(4g)b
gS(h(4g−2))

δ(a1 ⊗ b1 ⊗ . . .⊗ ag ⊗ bg)
= S(bg(3))a

g
(1)b

g
(1)S(ag(3)) · · ·S(b1(3))a1

(1)b
1
(1)S(a1

(3))⊗ a1
(2) ⊗ b

1
(2) ⊗ . . .⊗ a

g
(2) ⊗ b

g
(2).

...
. . .a1 b1 ag bg

B

...

. . .
a1 agb1 bg

δ

If H is a group object in a cartesian monoidal category, this reduces to

hB (a1, b1, . . . , ag, bg) = (ha1h
−1, hb1h

−1, . . . , hagh
−1, hbgh

−1) (29)
δ(a1, b1, . . . , ag, bg) = ([b−1

g , ag] · · · [b−1
1 , a1], a1, b1, . . . , ag, bg).

The following remark shows how one can reformulate the coinvariance condition for the standard
graph of the torus. It can be verified by a direct Hopf monoid computation.

Remark 4.9. For the torus, the coinvariance under the comodule structure from Example 4.8 can
be expressed as follows. Let H be an involutive Hopf monoid in C and δ : H⊗2 → H ⊗H⊗2 with

δ(a⊗ b) = S(b(3))a(1)b(1)S(a(3))⊗ a(2) ⊗ b(2)
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the comodule structure associated to H⊗2 and the standard graph of the torus as in Example 4.8.
Then

δ(a⊗ b) = 1⊗ a⊗ b if and only if b(2)a(2) ⊗ a(1) ⊗ b(1) = a(1)b(1) ⊗ a(2) ⊗ b(2).

In the quantum double models for a finite-dimensional semisimple complex Hopf algebra it is directly
apparent that imposing (co)invariance under all individual (co)actions at the vertices (faces) of
a graph is the same as imposing (co)invariance under the combined action in Definition 4.6. In
this setting the (co)invariants for the individual (co)actions are linear subspaces of H⊗E and the
(co)invariants of the combined (co)actions their intersections. In our setting an analogous statement
follows from the universal properties of the coequaliser πV : H⊗E →MH

V for the action BV and the
equaliser ιF : M coH

F → H⊗E for the coaction δF , as given in Definition 2.11.

Lemma 4.10. Let ∅ 6= V ⊂ V , ∅ 6= F ⊂ F be subsets.

1. For any subset ∅ 6= V ′ ⊂ V the morphism πV : H⊗E →MH
V satisfies

πV ◦BV ′ = πV ◦ (ε|V ′| ⊗ 1H⊗E ). (30)

There is a unique morphism χV ′,V : MH
V ′ →MH

V with χV ′,V ◦ πV ′ = πV . It is an epimorphism.

2. For any subset ∅ 6= F ′ ⊂ F the morphism ιF : M coH
F → H⊗E satisfies

δF ′ ◦ ιF = (η|F ′| ⊗ 1H⊗E ) ◦ ιF . (31)

There is a unique morphism ξF ′,F : M coH
F →M coH

F ′ with ιF ′◦ξF ′,F = ιF . It is a monomorphism.

Proof. We prove 1., as 2. is the dual statement. It suffices to verify (30) for V = {v1, . . . , vn},
V ′ = {vj}, and the claim follows by induction over |V ′|. For this note first that Definition 4.6 implies

BV ◦ (η⊗(j−1) ⊗ 1H ⊗ η⊗(n−j) ⊗ 1H⊗E ) = Bvj ∀j ∈ {1, . . . , n}. (32)

As πV is the coequaliser of BV and ε⊗n ⊗ 1H⊗E one obtains

πV ◦Bvj
(32)= πV ◦BV ◦ (η⊗(j−1) ⊗ 1H ⊗ η⊗(n−j) ⊗ 1H⊗E )
= πV ◦ (ε⊗n ⊗ 1H⊗E ) ◦ (η⊗(j−1) ⊗ 1H ⊗ η⊗(n−j) ⊗ 1H⊗E ) = πV ◦ (ε⊗ 1H⊗E ).

Equation (30) and the universal property of the coequaliser πV ′ imply the existence of a unique
morphism χV ′,V : MH

V ′ → MH
V with χV ′,V ◦ πV ′ = πV . For any two morphisms q1, q2 : MH

V → X
with q1 ◦ χV ′,V = q2 ◦ χV ′,V one has q1 ◦ χV ′,V ◦ πV ′ = q1 ◦ πV = q2 ◦ πV = q2 ◦ χV ′,V ◦ πV ′ . As πV is a
coequaliser and hence an epimorphism, this implies q1 = q2, and χV ′,V is an epimorphism.

It is also directly apparent from Definition 4.6 that (co)module morphisms with respect to all
individual (co)module structures at vertices and faces in V and F are also (co)module morphisms
with respect to the (co)actions BV and δF . More precisely, for ciliated ribbon graphs Γ,Γ′, subsets
∅ 6= V ⊂ V , ∅ 6= V ′ ⊂ V ′ and a bijection ϕ : V → V ′, v 7→ v′, any morphism g : H⊗E → H⊗E

′ that
is a module morphism with respect to Bv and Bv′ for all v ∈ V is also a module morphism with
respect to BV and BV ′ . An analogous statement holds for δF and comodule morphisms.
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5 Graph independence

In this chapter, we show that the protected object from Definition 4.7 is a topological invariant:
Although its definition requires a ciliated ribbon graph Γ, its isomorphism class depends only on
the homeomorphism class of the surface obtained by attaching discs to the faces of Γ.

To prove this, we show first in Section 5.1 that the (co)invariants associated to the (co)module
structures at the vertices (faces) of Γ depend neither on the edge orientation nor on the choices
of the cilia. Reversing the orientation of edges and different choices of cilia yield isomorphisms
between these (co)invariants and hence also between the biinvariants. We then show in Section
5.2 and 5.3 that edge slides, edge contractions and removals of isolated loops induce isomorphisms
between the protected objects, although not necessarily between the (co)invariants. In Section 5.4
we combine these results to obtain topological invariance and treat some simple examples.

Up to some additions and minor changes this chapter is part of the preprint [HM].

Note that in the following we use the fact that one can assume an arbitrary order of the different
copies of H in H⊗E , as C is symmetric monoidal. We occasionally suppress factors in H⊗E that are
not affected by certain morphisms. Additionally, we sometimes denote by a, b, c, . . . both edge ends
and their corresponding edges.

As in Chapter 4 we consider a complete and finitely cocomplete symmetric monoidal category C, an
involutive Hopf monoid H in C and a ciliated ribbon graph Γ.

5.1 Edge orientation reversal and moving the cilium

As edge orientation reversal switches the start and target and the left and right side of an edge
α ∈ E, it exchanges the associated actions Bα± and coactions δα± from Definition 4.1. It is directly
apparent from their definitions that this is achieved by applying the antipode.

Definition 5.1. The automorphism of H⊗E associated to the reversal of an edge α ∈ E is
Sα : H⊗E → H⊗E.

Lemma 5.2. For any ciliated vertex v ∈ V , ciliated face f ∈ F and edge β ∈ E the edge reversal
Sβ is an isomorphism of H-modules and H-comodules with respect to Bv and δf .

Proof. We denote by B′v and δ′f the module and comodule structure in the graph where the
orientation of β is reversed and verify that B′v ◦ (1H ⊗ Sβ) = Sβ ◦Bv and δ′f ◦ Sβ = (1H ⊗ Sβ) ◦ δf .
If β is not incident at v and f , the copy of H in H⊗E assigned to β is not affected by Bv,B′v and
δf , δ

′
f , and the identity follows directly. If β is incident at v or f , it follows from the expressions for

the (co)actions in Definitions 4.1 and 4.3.

As a direct consequence of Lemma 5.2, Lemma 2.12 and Lemma 2.17 one has

Corollary 5.3. Reversing the orientation of an edge in Γ to obtain Γ′ induces isomorphisms between
the invariants, coinvariants and protected objects of Γ and Γ′.

Lemma 5.4. The (co)invariants for the H-(co)module structure at a given vertex (face) do not
depend on the choice of cilia: moving the position of the cilium yields isomorphic (co)invariants.
This induces isomorphisms of the protected objects.
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Proof. We focus on the H-module structure and its invariants. We consider a fixed position of
the cilium at a vertex v with associated vertex action Bv and coequaliser πv : H⊗E → MH

v and
compare it to the action B′v and coequaliser π′v : H⊗E → M ′Hv obtained by rotating the cilium
counterclockwise by one position. We first show that the coequaliser πv : H⊗E →MH

v satisfies

πv ◦B′v = πv ◦ (ε⊗ 1H⊗E ). (33)

By definition of the H-module structure Bv and by Lemma 5.2 it is sufficient to prove this for a
vertex with n incoming edges. The computations for vertices with incident loops are analogous.

v
a2

. . .

an

a1

shift

cilium

a2
. . .

an

a1

Bv B′v

For a vertex with n incoming edges we have

πv ◦B′v (h⊗ a1 ⊗ a2 ⊗ . . .⊗ an) = πv (h(n)a
1 ⊗ h(1)a

2 ⊗ . . .⊗ h(n−1)a
n)

= πv (h(2)(1)S(h(1))h(3)a
1 ⊗ h(2)(2)a

2 ⊗ . . .⊗ h(2)(n)a
n)

= πv ◦Bv (h(2) ⊗ S(h(1))h(3)a
1 ⊗ a2 ⊗ . . .⊗ an) = πv (ε(h(2))⊗ S(h(1))h(3)a

1 ⊗ a2 ⊗ . . .⊗ an)
= πv ◦ (ε⊗ 1H⊗n) (h⊗ a1 ⊗ a2 ⊗ . . .⊗ an),

where we used first the definition of B′v, then the defining property of the antipode and that
S ◦ S = 1H , then the definition of Bv, the fact that πv coequalises Bv and ε⊗ 1H⊗E and then again
the defining properties of the antipode and the counitality of H.

Inductively, we obtain (33) for all positions of the cilium at v and the same identity with πv,Bv and
π′v,B

′
v swapped. With the universal property of the coequalisers πv, π′v this yields unique morphisms

φ : MH
v →M ′Hv , φ′ : M ′Hv →MH

v with φ ◦ πv = π′v and φ′ ◦ π′v = πv. As πv, π′v are epimorphisms,
this implies φ′ = φ−1.

The dual claim for the comodule structure and its coinvariants follows analogously. For all positions
of the cilium at f with associated coaction δ′f , there is a unique morphism ψ : M coH →M ′coH with
ι′f ◦ ψ = ιf , and ψ is an isomorphism. Combining these statements for the (co)invariants of all
vertices (faces) and using Lemmas 2.17 and 4.10 yields isomorphisms of the protected objects.

5.2 Edge slides and edge contractions

We now consider the edge slides and edge contractions from Definition 3.5. Edge slides were already
investigated in [MV], where it was shown that they define mapping class group actions. They yield
automorphisms of the object H⊗E that are morphisms of H-modules and H-comodules as long as
no edge ends slide over cilia.

Definition 5.5. [MV, Def. 6.1]
Let α 6= β be edges of Γ with the starting end of α directly before the target end of β in the ordering
at s(α) = t(β). The edge slide of the target end of β along α corresponds to the isomorphism

Sα,β := Bβ+ ◦ δα+ : H⊗E → H⊗E with S−1
α,β = Bβ+ ◦ (S ⊗ 1H⊗E ) ◦ δα+ : H⊗E → H⊗E .

Edge slides for other edge orientations are defined by reversing edge orientations with the antipode.
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Remark 5.6. There are eight possible cases of edge slides. The end of β can either slide along the
left or right of α, from s(α) to t(α) or from t(α) to s(α). The end of β can either be s(β) or t(β).
This yields the following cases:

a) left: t(β) to t(α) b) left: t(β) to s(α)

α

β

α

β

Sα,β(α⊗ β) = α(2) ⊗ α(1)β Sα,β(α⊗ β) = α(2) ⊗ S(α(1))β
c) left: s(β) to t(α) d) left: s(β) to s(α)

α

β

α

β

Sα,β(α⊗ β) = α(2) ⊗ βS(α(1)) Sα,β(α⊗ β) = α(2) ⊗ βα(1)

e) right: t(β) to t(α) f) right: t(β) to s(α)

α
β

α

β

Sα,β(α⊗ β) = α(1) ⊗ α(2)β Sα,β(α⊗ β) = α(1) ⊗ S(α(2))β
g) right: s(β) to t(α) h) right: s(β) to s(α)

α
β

α
β

Sα,β(α⊗ β) = α(1) ⊗ βS(α(2)) Sα,β(α⊗ β) = α(1) ⊗ βα(2)

Situation a) and its inverse b) are given in Definition 5.5. Case c) is obtained by first reversing the
edge orientation of β, applying the edge slide from a) and then reversing the orientation of β. In
the same way its inverse d) arises from b). Reversing the orientation of α before and after applying
b) yields e). Its inverse f) is derived from a) in an analogous way. By additionally reversing the
orientation of β, one obtains g) and its inverse h).

By construction, edge slides affect only the two copies of H in H⊗E of the edges involved in the slide
and commute with edge orientation reversals. Moreover, they respect the module and comodule
structures at vertices and faces and hence induce isomorphisms between the protected objects.
Proposition 5.7. [MV, Prop. 6.2]
Let v and f be a ciliated vertex and face in a ribbon graph Γ with associated H-module structure Bv
and H-comodule structure δf . Any edge slide that does not slide edge ends over their cilia is an
isomorphism of H-left modules and H-left comodules with respect to Bv and δf .

Corollary 5.8.
Edge slides from a ribbon graph Γ to a ribbon graph Γ′ induce isomorphisms between the invariants,
coinvariants and protected objects of Γ and Γ′.

Proof. For edge slides that do not slide edge ends over cilia, this follows directly from Lemmas 2.12,
2.17 and Proposition 5.7. If an edge end slides over a cilium, we can apply Lemma 5.4 to move the
cilium and obtain the same result.
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We now consider edge contractions. Recall from Definition 3.5 that an edge α ∈ E may only be
contracted if its starting and target vertex differ and that contracting α towards v ∈ {s(α), t(α)}
erases the cilium at v, while the cilium at the other vertex is preserved.
Definition 5.9. The morphism cα,v : H⊗E → H⊗(E−1) induced by an edge contraction of an
edge α towards v ∈ {s(α), t(α)} is

cα,v =
{
Bv,α ◦ τα ◦ Sα if v = t(α)
Bv,α ◦ τα if v = s(α)

where Bv,α : H⊗E → H⊗(E−1) denotes the H-module structure from Definition 4.3 at v, where α is
replaced by a cilium and τα is given before Definition 4.1. If v is univalent, then cα,v = εα.
Example 5.10. Contracting the edge α towards v in

α

v
b c

d k
w

l

b

c

d k

l

w

gives the morphism cα,v with

cα,v (α⊗ b⊗ c⊗ d⊗ k ⊗ l) = α(3)b⊗ cS(α(4))⊗ α(1)dS(α(2))⊗ k ⊗ l.

It follows directly from Definition 5.9 that first reversing the orientation of an edge β and then
contracting it is the same as just contracting β. It also follows from Definitions 4.1 and 4.3
that reversing the orientation of an edge β commutes with contractions of all edges α 6= β. The
contraction of an edge α also commutes with edge slides along α, which allows one to express any
edge contraction as a composite of edge slides and an edge contraction towards a univalent vertex.
Lemma 5.11. Let Γ′ be obtained by reversing an edge β in Γ. Then

c′β,v ◦ Sβ = cβ,v c′α,v ◦ Sβ = Sβ ◦ cα,v for α 6= β. (34)

Lemma 5.12. Contracting an edge α gives the same morphism as first sliding edge ends along α
and then contracting α.

Proof. It suffices to slide a single edge end along α, as the statement follows inductively. We denote
by cα,v the contraction of α in Γ and by c′α,v the contraction of α in the graph Γ′ obtained by sliding
an edge b along α. Suppose that there are no loops incident at s(α) and t(α) in Γ and Γ′. As
edge slides and edge contractions commute with edge reversals by Definition 5.5 and Lemma 5.11,
respectively, we can assume v = s(α) and all other edge ends at v and w = t(α) are incoming. It is
then sufficient to consider an edge slide of b along the left and right of α:

α
v

bc

w

d

k

l

α

v

b

c

w
d

k

l
.

(35)

Omitting the copies of H for edges not incident at v, w we compute for the edge slides in (35)

c′α,v ◦ Sα,b(α⊗ b⊗ c⊗ d⊗ k ⊗ l) = c′α,v(α(2) ⊗ α(1)b⊗ c⊗ d⊗ k ⊗ l)
= α(1)b⊗ α(2)c⊗ α(3)d⊗ k ⊗ l = cα,v(α⊗ b⊗ c⊗ d⊗ k ⊗ l),

c′α,v ◦ Sα,b(α⊗ b⊗ c⊗ d⊗ k ⊗ l) = c′α,v(α(1) ⊗ α(2)b⊗ c⊗ d⊗ k ⊗ l)
= α(3)b⊗ α(1)c⊗ α(2)d⊗ k ⊗ l = cα,v(α⊗ b⊗ c⊗ d⊗ k ⊗ l).
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As edge slides from w to v are the inverses of edge slides from v to w, the corresponding identities
for those follow by pre-composing with the inverses. The proof for vertices with different numbers
of incident edge ends or incident loops is analogous.

Next, we consider the interaction of edge contractions with the (co)module structures for the vertices
(faces) of the graph. For this, note that the contraction of an edge α towards v ∈ {s(α), t(α)} defines
a bijection between the sets F, F ′ of faces before and after the contraction and likewise a bijection
between the sets V \ {v} and V ′. If faces and vertices are identified via these bijections, the edge
contraction becomes a (co)module morphism. In contrast, the module structure Bv is coequalised.

Lemma 5.13. The contraction of an edge α towards a ciliated vertex v coequalises Bv and ε⊗1H⊗E
and is a (co)module morphism with respect to the (co)actions Bz and δf for all ciliated vertices
z 6= v and ciliated faces f ∈ F that do not start at v:

cα,v ◦Bv = cα,v ◦ (ε ⊗ 1H⊗E ), (36)
cα,v ◦Bz = B′z ◦ (1H ⊗ cα,v), (37)
δ′f ◦ cα,v = (1H ⊗ cα,v) ◦ δf . (38)

Proof. As edge slides along α are module and comodule isomorphisms by Proposition 5.7 and
commute with the contraction of α by Lemma 5.12, we can assume that v is univalent. With Lemma
5.11 we can assume that v = t(α) and that all edge ends at w = s(α) are incoming:

α

v
c

w

d

b
.

(39)

For the vertices v and w in (39) we compute

cα,v ◦Bv(h⊗ α⊗ b⊗ c⊗ d) = cα,v(hα⊗ b⊗ c⊗ d) = ε(hα)b⊗ c⊗ d = cα,v(ε(h)α⊗ b⊗ c⊗ d)
= cα,v ◦ (ε⊗ 1H⊗E )(h⊗ α⊗ b⊗ c⊗ d)

cα,v ◦Bw(h⊗ α⊗ b⊗ c⊗ d) = cα,v(αS(h(3))⊗ h(4)b⊗ h(1)c⊗ h(2)d)
= ε(α)h(3)b⊗ h(1)c⊗ h(2)d = B′w ◦ (1H ⊗ cα,v)(h⊗ α⊗ b⊗ c⊗ d).

The computations for graphs with a different number of edge ends or loops incident at w are
analogous. For vertices z ∈ V \ {v, w} the action Bz does not affect the copy of H for α and
commutes with Bv,α and hence with cv,α. This proves (36) and (37).

If f is a face that contains α, but does not start at v, then the associated coaction is of the form

δf (α⊗ b⊗ c⊗ d⊗ . . .) = (· · ·S(d(2))S(α(3))α(1)b(1) · · · )⊗ α(2) ⊗ b(2) ⊗ c⊗ d(1) ⊗ . . . ,

where the dots stand for contributions of parts of Γ that are not drawn in (39). This yields

(1H ⊗ cα,v) ◦ δf (α⊗ b⊗ c⊗ d⊗ . . .) = ε(α(2))(· · ·S(d(2))S(α(3))α(1)b(1) · · · )⊗ b(2) ⊗ c⊗ d(1) ⊗ . . .
(6)= ε(α)(· · ·S(d(2))b(1) · · · )⊗ b(2) ⊗ c⊗ d(1) ⊗ . . . = δ′f ◦ cα,v(α⊗ b⊗ c⊗ d⊗ . . .).

If f does not contain α, the edge α does not contribute to the coaction δf , which proves (38).
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With these results, we investigate how edge contractions interact with the (co)invariants of the
H-(co)module structures at ciliated vertices and faces of Γ. For subsets ∅ 6= V ⊂ V and ∅ 6= F ⊂ F
we denote by BV and δF the associated H⊗V -module structure and H⊗F -comodule structure from
(27) and by πV and ιF their invariants and coinvariants from Definition 2.11.

We then find that edge contractions send coinvariants for δF to coinvariants for the corresponding
face set in the contracted graph. The same holds for the invariants of the action BV , as long as V
contains the starting and target vertex of the contracted edge. The morphism ηα that creates a
copy of H assigned to α by applying the unit of H is right inverse to the edge contraction cv,α and
a left inverse on the coinvariants. This corresponds to the following technical lemma.

Lemma 5.14. Let Γ′ be obtained from Γ by contracting an edge α incident at v, w ∈ V . Then
ηα : H⊗(E−1) → H⊗E is right inverse to the edge contraction cα,v : H⊗E → H⊗(E−1), and for all
subsets {v, w} ⊂ V ⊂ V , ∅ 6= F ⊂ F one has

δ′F ◦ cα,v ◦ ιF = (η⊗|F| ⊗ cα,v) ◦ ιF (40)
δF ◦ ηα ◦ ι′F = (η⊗|F| ⊗ ηα) ◦ ι′F (41)
πV ◦ ηα ◦ cα,v = πV (42)
π′V ◦ cα,v ◦BV = π′V ◦ (ε⊗|V| ⊗ cα,v) (43)
πV ◦ ηα ◦B′V = πV ◦ (ε⊗|V|−1 ⊗ ηα). (44)

Proof. 1. It follows directly from Definition 5.9 that the morphism ηα is a right inverse to cα,v.
From the formula for the (co)action in Definition 4.3 it is apparent that ηα is a comodule morphism
for the coactions δf at all ciliated faces and a module morphism with respect to the actions Bz at
all vertices z ∈ V \ {v, w}. Moreover, it is clear from Definition 5.5 that sliding edge ends over α
after applying ηα yields a morphism η′′α which splits the vertex w in a different way. Thus, we have

cα,v ◦ ηα = 1H⊗E , δf ◦ ηα = ηα ◦ δ′f , ηα ◦B′z = Bz ◦ ηα, Sα,β ◦ ηα = η′′α (45)

for all vertices z ∈ V \ {v, w} and faces f ∈ F and edge slides Sα,β along α. We can therefore
assume that the vertex v = t(α) is univalent, all edge ends at w = s(α) are incoming, the graph Γ is
locally given by (39) and the edge contraction by cα,v = εα, as in the proof of Lemma 5.13.

2. We prove the auxiliary identities

πv ◦ ηα ◦ cα,v = πv, (46)
π{v,w} ◦ ηα ◦ (ε ⊗ 1H⊗(E−1)) = π{v,w} ◦ ηα ◦B′w, (47)

δ′f ◦ cα,v ◦ ιf = (η ⊗ 1H⊗(E−1)) ◦ cα,v ◦ ιf ∀f ∈ F. (48)

Omitting all copies of H in H⊗E except the one for α, we verify (46)

πv(α⊗ . . .) = πv ◦ (αBv)(1⊗ . . .) = πv(ε(α) 1⊗ . . .) = πv ◦ ηα ◦ εα(1⊗ . . .) = πv ◦ ηα ◦ cα,v(1⊗ . . .).

To show (47), we consider the graph (39) and compute with Lemma 4.10

π{v,w} ◦ ηα ◦B′w(h⊗ b⊗ c⊗ d) = π{v,w} ◦ ηα(h(3)b⊗ h(1)c⊗ h(2)d) = π{v,w}(1⊗ h(3)b⊗ h(1)c⊗ h(2)d)
= π{v,w}(h(3)S(h(4))⊗ h(5)b⊗ h(1)c⊗ h(2)d) = π{v,w} ◦ h(3) Bv (S(h(4))⊗ h(5)b⊗ h(1)c⊗ h(2)d)
= π{v,w}(ε(h(3))S(h(4))⊗ h(5)b⊗ h(1)c⊗ h(2)d) = π{v,w}(S(h(3))⊗ h(4)b⊗ h(1)c⊗ h(2)d)
= π{v,w} ◦ hBw (1⊗ b⊗ c⊗ d) = π{v,w}(ε(h) 1⊗ b⊗ c⊗ d) = π{v,w} ◦ ηα ◦ (ε⊗ 1H⊗(E−1))(h⊗ b⊗ c⊗ d).
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Identity (48) follows from identity (38) in Lemma 5.13 for all faces f ∈ F that do not start at v. If
f starts at v one has for the graph in (39)

δ′f ◦ cα,v(α⊗ b⊗ c⊗ d) = ε(α)δ′f (b⊗ c⊗ d) = ε(α)b(1) · · ·S(d(2))⊗ b(2) ⊗ c⊗ d(1)

= S(α(2))α(1)b(1) · · ·S(d(2))S(α(4))α(3) ⊗ b(2) ⊗ c⊗ d(1)

= (Cad ⊗ 1H⊗(E−1)) ◦ (1H ⊗ τα) ◦ δf (α⊗ b⊗ c⊗ d),

where Cad : H⊗H → H, h⊗α 7→ S(α(1))hα(2). In this case, contracting α deletes the cilium of f , but
Lemma 5.4 allows one to place a new cilium for f in any position. As Cad ◦ (η⊗1H) = η ◦ ε : H → H
this yields

δ′f ◦ cα,v ◦ ιf = (Cad ⊗ 1H⊗(E−1)) ◦ (1H ⊗ τα) ◦ δf ◦ ιf = (Cad ⊗ 1H⊗(E−1)) ◦ (1H ⊗ τα) ◦ (η ⊗ 1H⊗E ) ◦ ιf
= ((η ◦ ε)⊗ 1H⊗(E−1)) ◦ τα ◦ ιf = (η ⊗ 1H⊗(E−1)) ◦ εα ◦ ιf = (η ⊗ 1H⊗(E−1)) ◦ cα,v ◦ ιf .

3. We prove the identities in the Lemma. Identity (40) follows by pre-composing (48) with the
morphism ξf,F := ξ{f},F from Lemma 4.10 and inductively applying this equation for all f ∈ F .
Likewise, identity (41) follows by applying the identity δf ◦ ηα ◦ ι′f = (η ⊗ 1H⊗E ) ◦ ηα ◦ ι′f obtained
from the second identity in (45) and pre-composing it with ξ′f,F . Post-composing (46) with the
morphism χv,V := χ{v},V from Lemma 4.10 yields (42). From (37), we obtain for all z ∈ V \ {v, w}

π′V ◦ cα,v ◦Bz = χ′z,V ◦ π′z ◦ cα,v ◦Bz = χ′z,V ◦ π′z ◦B′z ◦ (1H ⊗ cα,v) = π′V ◦ (ε⊗ cα,v). (49)

Together with the identity π′V ◦ cα,v ◦Bw ◦ (1H ⊗Bv) = π′V ◦ (ε⊗2 ⊗ cα,v), which follows from (36)
and (37) with z = w and the identity π′V = χ′w,V ◦ π′w, this yields (43). Identity (44) follows by
post-composing (47) with χ{v,w},V and the third identity in (45) with πV = χz,V ◦ πz.

We now apply Lemma 5.14 to show that edge contractions induce morphisms between the coinvariants
for ∅ 6= F ⊂ F . If V contains the starting and target vertex of the contracted edge, they also induce
isomorphisms between the invariants and isomorphisms between the protected objects.

For this, we consider a ciliated ribbon graph Γ and the graph Γ′ obtained by contracting an edge α
in Γ. We denote byMcoH ,MH ,Minv the coinvariants, invariants and biinvariants of δF , BV for
Γ and byM′coH ,M′H ,M′inv the corresponding quantities for Γ′. As in Lemma 4.10 we write ιF
and πV for the associated equaliser and coequaliser and I :Minv →MH and P :McoH →Minv

for the monomorphism and epimorphism that characterise Minv as the image of πV ◦ ιF . The
corresponding morphisms for Γ′ are denoted ι′F , π′V , I ′ and P ′.

Proposition 5.15. Let Γ′ be obtained from a ciliated ribbon graph Γ by contracting an edge α
incident at v, w towards v. Then for all {v, w} ⊂ V ⊂ V , ∅ 6= F ⊂ F the contraction of α induces

• a morphism u : M coH
F →M ′coHF with a right inverse that satisfies ι′F ◦ u = cα,v ◦ ιF ,

• an isomorphism r : MH
V →M ′HV that satisfies r ◦ πV = π′V ◦ cα,v,

• an isomorphism φinv : Minv →M ′inv with I = r−1 ◦ I ′ ◦ φinv.

Proof. Using equation (40) together with the universal property of the equaliser ι′F yields a unique
morphism u : M coH

F → M ′coHF with ι′F ◦ u = cα,v ◦ ιF . Equation (41) and the equaliser ιF yield a
unique morphism u−1 : M ′coHF →M coH

F with ιF ◦ u−1 = ηα ◦ ι′F . To show that u−1 is a right inverse
of u note that ι′F ◦ u ◦ u−1 = cα,v ◦ ιF ◦ u−1 = cα,v ◦ ηα ◦ ι′F = ι′F , since ηα is right inverse to cα,v.
As ι′F is a monomorphism, this implies u ◦ u−1 = 1M ′coHF .

Analogously, (43) and the universal property of the coequaliser πV define a unique morphism
r : MH

V → M ′HV with r ◦ πV = π′V ◦ cα,v. The coequaliser π′V together with (44) yields a unique
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morphism r−1 : M ′HV → MH
V with r−1 ◦ π′V = πV ◦ ηα. The morphisms r and r−1 are mutually

inverse isomorphisms, since π′V , πV are epimorphisms with

r ◦ r−1 ◦ π′V = r ◦ πV ◦ ηα = π′V ◦ cα,v ◦ ηα = π′V ,

r−1 ◦ r ◦ πV = r−1 ◦ π′V ◦ cα,v = πV ◦ ηα ◦ cα,v
(42)= πV .

Hence, we constructed commuting diagrams

M coH
F

ιF //

u
��

M
πV //

cα,v

��

MH
V

r
��

M ′coHF ι′F

//M ′
π′V

//M ′HV

M ′coHF
ι′F //

u−1

��

M ′
π′V //

ηα

��

M ′HV

r−1

��
M coH
F ιF

//M πV
//MH
V .

To construct the isomorphism φinv, we set j := r−1◦I ′ : M ′inv →MH
V and q := P ′◦u : M coH

F →M ′inv.
As r−1 is an isomorphism and I ′ a monomorphism, the morphism j is a monomorphism. The
composite j ◦ q satisfies

j ◦ q = r−1 ◦ I ′ ◦ P ′ ◦ u = r−1 ◦ π′V ◦ ι′F ◦ u = πV ◦ ηα ◦ ι′F ◦ u = πV ◦ ηα ◦ cα,v ◦ ιF
(42)= πV ◦ ιF .

The universal property of the image Minv then yields a unique morphism φinv : Minv → M ′inv
with I = j ◦ φinv = r−1 ◦ I ′ ◦ φinv. To construct its inverse we set j′ := r ◦ I : Minv → M ′HV
and q′ := P ◦ u−1 : M ′coHF → Minv. As r is an isomorphism and I a monomorphism, j′ is a
monomorphism, and we have

j′ ◦ q′ = r ◦ I ◦ P ◦ u−1 = r ◦ πV ◦ ιF ◦ u−1 = π′V ◦ cα,v ◦ ιF ◦ u−1 = π′V ◦ cα,v ◦ ηα ◦ ι′F = π′V ◦ ι′F ,

where we applied that ηα is right inverse to cα,v in the last step. By the universal property of the
image M ′inv there is a unique morphism φ−1

inv : M ′inv →Minv with I ′ = j′ ◦ φ−1
inv = r ◦ I ◦ φ−1

inv and

I ◦ φ−1
inv ◦ φinv = r−1 ◦ r ◦ I ◦ φ−1

inv ◦ φinv = r−1 ◦ I ′ ◦ φinv = I,

I ′ ◦ φinv ◦ φ−1
inv = r ◦ r−1 ◦ I ′ ◦ φinv ◦ φ−1

inv = r ◦ I ◦ φ−1
inv = I ′.

As I, I ′ are monomorphisms, it follows that φinv and φ−1
inv are mutually inverse isomorphisms.

Corollary 5.16. Edge contractions induce isomorphisms between protected objects.

Remark 5.17. In general, edge contractions do not induce isomorphisms on the coinvariants.
Consider for example a group H 6= {e} as a Hopf monoid in C = Set and the following graph, where
the edge α is contracted towards v.

α

w

v

βS(α)

f1

f2

contract α

w

β f1

f2
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The comodule structure of the left graph is given by

δF := (1H × δf2) ◦ δf1 : H×2 → H×4,

(a, b) 7→ (a−1b, ab−1, a, b),

hence the coinvariants are the set M coH = {(a, b) ∈ H×2 : a = b} ∼= H. After the contraction it is
δ′F ′(b) = (b, b−1, b) and the coinvariants are trivial:

M ′coH = {b ∈ H : b = b−1 = e} = {e}.

5.3 Deleting isolated loops

We now consider the next graph transformation from Definition 3.5, the deletion of isolated loops.
The morphism associated to the deletion of an isolated loop α applies the counit to the corresponding
copy of the Hopf monoid H. Just as edge contractions, this is in general not an isomorphism in
C. The morphism ηα that creates a copy of H for α by applying the unit is a right inverse and
corresponds to inserting a loop.

Definition 5.18. The morphism induced by deleting an isolated loop α is εα : H⊗E → H⊗E\{α}.

As for edge contractions we investigate how these morphisms interact with the coinvariants for the
H⊗F -comodule structure δF and the H⊗V -module structure BV from Definition 4.6 for subsets
∅ 6= F ⊂ F and ∅ 6= V ⊂ V . We find that loop deletions send the invariants for BV to invariants for
the corresponding vertex set of the graph with the loop removed. The same holds for coinvariants
of δF , as long as the two faces incident to the loop are contained in F . Analogous statements hold
for the right inverse ηα, and on the coinvariants ηα is also a left inverse. This is a consequence of
the following technical lemma.

Lemma 5.19. Let Γ+ be obtained from a ciliated ribbon graph Γ by removing an isolated loop α
with adjacent faces f1, f2 at a vertex v. Then for all subsets ∅ 6= V ⊂ V and {f1, f2} ⊂ F ⊂ F

π+
V ◦ εα ◦BV = π+

V ◦ (ε⊗|V| ⊗ εα) (50)
δ+
F ◦ εα ◦ ιF = (η⊗|F|−1 ⊗ εα) ◦ ιF (51)
ηα ◦ εα ◦ ιF = ιF (52)
πV ◦ ηα ◦B+

V = πV ◦ (ε⊗|V| ⊗ ηα) (53)
δF ◦ ηα ◦ ι+F = (η⊗|F| ⊗ ηα) ◦ ι+F . (54)

Proof. 1. We first prove some auxiliary identities for the interaction of the morphisms εα and ηα
with the module and comodules structures at the vertices and faces.

1.(a) As ηα and εα affect only the copy of H for α, we have for any vertex z 6= v and any ciliated
face f that does not contain α

εα ◦Bz = B+
z ◦ (1H ⊗ εα) ηα ◦B+

z = Bz ◦ (1H ⊗ ηα) (55)
(1H ⊗ εα) ◦ δf = δ+

f ◦ εα (1H ⊗ ηα) ◦ δ+
f = δf ◦ ηα. (56)

1.(b) For the H-module structure at the vertex v, we show that

π+
v ◦ εα ◦Bv = π+

v ◦ (ε⊗ εα) (57)
πv ◦ ηα ◦B+

v = πv ◦ (ε⊗ ηα). (58)
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As reversing edge orientations commutes with εα, ηα and Bv, we can assume that all edges β 6= α at
v are incoming and that s(α) is directly before t(α) with respect to the cyclic ordering at v:

αv

b

c

d

For this graph we compute

π+
v ◦ εα ◦Bv (h⊗ α⊗ b⊗ c⊗ d) = π+

v ◦ εα (h(4)αS(h(3))⊗ h(5)b⊗ h(1)c⊗ h(2)d)
= π+

v (ε(α)⊗ h(3)b⊗ h(1)c⊗ h(2)d) = π+
v ◦ (ε⊗B+

v ) (α⊗ h⊗ b⊗ c⊗ d)
= π+

v ◦ (ε⊗ ε⊗ 1H⊗3) (h⊗ α⊗ b⊗ c⊗ d) = π+
v ◦ (ε⊗ εα) (h⊗ α⊗ b⊗ c⊗ d),

πv ◦ ηα ◦B+
v (h⊗ b⊗ c⊗ d) = πv ◦ ηα (h(3)b⊗ h(1)c⊗ h(2)d)

= πv (h(4)S(h(3))⊗ h(5)b⊗ h(1)c⊗ h(2)d) = πv ◦Bv (h⊗ 1⊗ b⊗ c⊗ d)
= πv ◦ (ε⊗ 1H⊗4) (h⊗ 1⊗ b⊗ c⊗ d) = πv ◦ (ε⊗ ηα) (h⊗ b⊗ c⊗ d),

which proves (57) and (58). The computation for graphs with a different number of edge ends at
v are analogous. The claim for the case where the cilium is between the edge ends of α follows,
because the invariants of the H-module structure at v do not depend on the choice of the cilium by
Lemma 5.4. It can also be verified directly by analogous computations.

1.(c) We consider the H-comodule structures at the faces f1, f2. Under the assumption that the
starting end of α comes directly before its target end with respect to the cyclic ordering at v, one of
these faces coincides with α, and we assume it is f1 = α. We then have

δf1 ◦ ηα = η ⊗ ηα (59)
δf2 ◦ ηα = (1H ⊗ ηα) ◦ δ+

f2
δf2 ◦ ηα ◦ ι

+
f2

= (η ⊗ ηα) ◦ ι+f2
. (60)

Equation (59) is obvious, and to prove (60), we can assume that Γ is locally given by

α

v

b
c

f2

f1

(61)

as edge reversals commute with the module and comodule structures at the vertices and faces and
with the morphisms ηα and εα. We then compute

δf2 ◦ ηα(b⊗ c) = δf2(1⊗ b⊗ c) = b(1)c(1) ⊗ 1⊗ b(2) ⊗ c(2) = (1H ⊗ ηα) ◦ δ+
f2

(b⊗ c).

The computations for graphs with different numbers of edges in f2 are analogous, and with the
identity δ+

f2
◦ ι+f2

= (η ⊗ 1H⊗(E−1)) ◦ ι+f2
we obtain the second identity in (60).

2. We prove the identities (50) to (54). To show (52) it is sufficient to consider the graph (61) with

δf1(α⊗ b⊗ c) = α(1) ⊗ α(2) ⊗ b⊗ c
δf2(α⊗ b⊗ c) = b(1)S(α(2))c(1) ⊗ α(1) ⊗ b(2) ⊗ c(2).
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As f1, f2 ∈ F , this yields

ιF = ((ε ◦ η)⊗ 1H⊗E ) ◦ ιF = (ε⊗ 1H⊗E ) ◦ δf2 ◦ ιF
(∗)= ηα ◦ εα ◦ ιF ,

where we apply in (∗) the coinvariance under δf1 .

Identity (50) follows inductively from the identity π+
V ◦ εα ◦Bz = π+

V ◦ (ε⊗ εα) for all vertices z ∈ V ,
which is obtained for z 6= v by post-composing the first identity in (55) with π+

V = χ+
z,V ◦ π+

z and for
z = v by post-composing (57) with χv,V .

Identity (51) follows from (52) and the first identities in (56), (60), which yield for all f ∈ F \ {f1}

δ+
f ◦ εα ◦ ιF = (1H ⊗ (εα ◦ ηα)) ◦ δ+

f ◦ εα ◦ ιF
(56),(60)= (1H ⊗ εα) ◦ δf ◦ ηα ◦ εα ◦ ιF

(52)= (1H ⊗ εα) ◦ δf ◦ ιF = (1H ⊗ εα) ◦ δf ◦ ιf ◦ ξf,F = (η ⊗ εα) ◦ ιF .

Identity (53) follows inductively by applying the identity πV ◦ ηα ◦B+
z = πV ◦ (ε⊗ ηα) for z ∈ V ,

obtained by post-composing (55) with πV = χz,V ◦ πz for z 6= v and (58) with χv,V for z = v.

Analogously, (54) follows from the identity δf ◦ ηα ◦ ι+F = (η ⊗ ηα) ◦ ι+F for f ∈ F , which is obtained
for f = f1 by pre-composing (59) with ι+F , for f = f2 by pre-composing (60) with ξ+

f2,F and for
f /∈ {f1, f2} by pre-composing (56) with ι+F = ι+f ◦ ξ

+
f,F .

We now apply Lemma 5.19 to show that loop deletions induce morphisms between the invariants
of BV for subsets ∅ 6= V ⊂ V . If F contains the two faces adjacent to the loop, they also induce
isomorphisms between the coinvariants of δF and isomorphisms between the protected objects.

For this we denote by Γ+ the graph obtained by deleting a loop α in Γ. For Γ we use the
notation from Proposition 5.15. For Γ+ we denote by M+coH , M+H , M+

inv the coinvariants,
invariants and biinvariants of δ+

F , B
+
V , by ι

+
F and π+

V the associated equaliser and coequaliser and
by I+ : M+

inv → M+H and P+ : M+coH → M+
inv the monomorphism and epimorphism that

characteriseM+
inv as the image of π+

V ◦ ι
+
F .

Proposition 5.20. Let Γ+ be obtained from Γ by removing an isolated loop α with incident faces
f1, f2. Then for all subsets ∅ 6= V ⊂ V , {f1, f2} ⊂ F ⊂ F the loop removal induces

• an isomorphism y : M coH
F →M+coH

F with ι+F ◦ y = εα ◦ ιF ,
• a morphism t : MH

V →M+H
V with a right inverse and t ◦ πV = π+

V ◦ εα
• an isomorphism ψinv : Minv →M+

inv with I = t−1 ◦ I+ ◦ ψinv.

Proof. Equation (51) and the universal property of the equaliser ι+F yield a unique morphism
y : M coH

F → M+coH
F with ι+F ◦ y = εα ◦ ιF . The universal property of the equaliser ιF and (54)

provide a unique morphism y−1 : M+coH
F →M coH

F with ιF ◦ y−1 = ηα ◦ ι+F . The two morphisms are
inverse to each other, as ιF , ι+F are monomorphisms and

ι+F ◦ y ◦ y
−1 = εα ◦ ιF ◦ y−1 = εα ◦ ηα ◦ ι+F = ι+F

ιF ◦ y−1 ◦ y = ηα ◦ ι+F ◦ y = ηα ◦ εα ◦ ιF
(52)= ιF .

Similarly, equation (50) and the universal property of the coequaliser πV yield a unique morphism
t : MH

V → M+H
V with t ◦ πV = π+

V ◦ εα and equation (53) with the universal property of the
coequaliser π+

V a unique morphism t−1 : M+H
V →MH

V with t−1 ◦ π+
V = πV ◦ ηα. The morphism t−1

is a right inverse of t, since π+
V is an epimorphism and

t ◦ t−1 ◦ π+
V = t ◦ πV ◦ ηα = π+

V ◦ εα ◦ ηα = π+
V .
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We have constructed commuting diagrams

M coH
F

ιF //

y

��

M
πV //

εα

��

MH
V

t
��

M+coH
F

ι+F

//M+
π+
V

//M+H
V

M+coH
F

ι+F //

y−1

��

M+ π+
V //

ηα

��

M+H
V

t−1

��
M coH
F ιF

//M πV
//MH
V .

Up to minor changes the construction of ψinv : Minv → M+
inv and its inverse is analogous to the

construction of φinv in the proof of Proposition 5.15. More concretely, from the monomorphisms
j = t−1◦I+, j+ = t◦I and epimorphisms q = P+◦y, q+ = P ◦y−1 the morphisms ψinv : Minv →M+

inv

and ψ−1
inv : M+

inv →Minv are constructed. They satisfy I = t−1 ◦ I+ ◦ ψinv and I+ = t ◦ I ◦ ψ−1
inv. In

contrast to the morphism r from Proposition 5.15 the morphism t is no isomorphism. Thus, we use
a slightly different argument to show that j+ is a monomorphism: For x1, x2 ∈ Hom(X,Minv) with
j+ ◦ x1 = j+ ◦ x2 we can post-compose this equation with t−1 and replace t−1 ◦ j+ by

t−1 ◦ j+ = t−1 ◦ t ◦ I = t−1 ◦ t ◦ t−1 ◦ I+ ◦ ψ−1 = t−1 ◦ I+ ◦ ψinv = I.

The equation x1 = x2 follows, as I is a monomorphism. After verifying ψinv ◦ ψ−1
inv = 1M+

inv
as in

the proof of Proposition 5.15, one can use this equation to show ψ−1
inv ◦ ψinv = 1Minv :

I ◦ ψ−1
inv ◦ ψinv = t−1 ◦ I+ ◦ ψinv ◦ ψ−1

inv ◦ ψinv = t−1 ◦ I+ ◦ ψinv = I.

Corollary 5.21. Deletions of isolated loops induce isomorphisms between the protected objects.

Remark 5.22. Deletions of isolated loops do in general not induce isomorphism on the invariants.
One can for example consider a group H as a Hopf monoid in C = Set and the following graph,
where the isolated loop α is deleted.

α

v

remove αβ

v

β

The module structures are given by B : H×3 → H×2, hB(a, b) = (hah−1, hbh−1) and by hB′b = hbh−1

after the deletion. Hence the invariants are the orbit sets MH = {[(a, b)] : (a, b) ∈ H ×H} with
[(a, b)] = {(hah−1, hbh−1) : h ∈ H} and M ′H = {[b] : b ∈ H} with [b] = {hbh−1 : h ∈ H}. For
H = S3 the first set has 11 elements, whereas the second has only 3 elements.

5.4 Protected objects

Combining the results from Section 5.1 to 5.3 one has that ciliated ribbon graphs related by moving
cilia, edge reversals, edge contractions and deletions of isolated loops have isomorphic protected
objects. As these are sufficient to relate any connected ribbon graph to the standard graph from
(21), the protected object of a ciliated ribbon graph is determined up to isomorphisms by the genera
of the connected components of the associated surface.

Theorem 5.23. The isomorphism class of the protected object for an involutive Hopf monoid H
and a ciliated ribbon graph Γ depends only on H and the homeomorphism class of the surface for Γ.
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Proof. By Lemma 5.4 the invariants, coinvariants and hence the protected object of a ciliated ribbon
graph are independent of the choice of the cilia. By Proposition 3.6 every ribbon graph can be
transformed into a disjoint union of standard graphs by edge reversals, edge contractions, edge
slides and removing isolated loops. In each step the cilia can be arranged in such a way that no
edge ends slide over cilia. By Corollaries 5.3, 5.8, 5.16 and 5.21 these graph transformations induce
isomorphisms between the protected objects.

As the protected object is a topological invariant, one can use any embedded graph whose complement
is a disjoint union of discs to compute the protected object. For a sphere, the simplest such graph
consists of a single isolated vertex. This is associated with the trivial H-(co)module structure on e
given by the (co)unit of H and yields the tensor unit as protected object.

Example 5.24. The protected object for a sphere S2 is the tensor unit of H: Minv = e.

We now focus on oriented surfaces Σ of genus g ≥ 1 and use the standard graphs (21) to determine
their protected objects. The associated module and comodule structures are given in Example 4.8
and form a Yetter-Drinfeld module.

Example 5.25. For a group H as a Hopf monoid in C = Set the coinvariants are the set of group
homomorphisms from π1(Σ) to H

M coH = {(a1, b1, . . . , ag, bg) ∈ H×2g : [b−1
g , ag] · . . . · [b−1

1 , a1] = 1} ∼= Hom(π1(Σ), H). (62)

The invariants are the set of orbits for the conjugation action B from (29) on H×2g, and the protected
object is the representation variety or moduli space of flat H-bundles Minv

∼= Hom(π1(Σ), H)/H.

Example 5.26. For a topological group H as a Hopf monoid in C = Top the protected object is
Minv

∼= Hom(π1(Σ), H)/H as a set by Example 2.15. It is equipped with the quotient topology
induced by the canonical surjection π : Hom(π1(Σ), H)→ Hom(π1(Σ), H)/H and the compact-open
topology on HomTop(π1(Σ), H) for the discrete topology on π1(Σ).

Example 5.27. For a Hopf monoid H in C = G−Set = SetBG the coinvariants for the comodule
structure δ from Example 4.8 are the set (62) with the diagonal G-action. The invariants for the
module structure B are the associated orbit space. By Example 2.15, 2. the protected object is the
representation variety Minv

∼= Hom(π1(Σ), H)/H with the induced G-set structure.

Example 5.28. Let k be a commutative ring, C = k-Mod and G a finite group.

For the group algebra H = k[G] as a Hopf monoid in C and the standard graph in (21) one has
M = k[G]2g ∼= k[G×2g]. The Yetter-Drinfeld module structure of M is given by (29) on a basis. The
coinvariants and invariants are

M coH = 〈{(a1, b1, . . . , ag, bg) | [b−1
g , ag] · · · [b−1

1 , a1] = 1}〉k ∼= 〈Hom(π1(Σ), G)〉k
MH = k[G×2g]/〈{(a1, . . . , bg)− (ha1h

−1, . . . , hbgh
−1) | a1, b1, . . . , ag, bg, h ∈ G}〉,

and the protected object is the free k-module generated by the representation variety Hom(π1(Σ), G)/G

Minv = 〈Hom(π1(Σ), G)/G〉k. (63)

For the dual Hopf monoid H = k[G]∗ = Map(G, k) of maps from G to k with Hopf monoid structure

δg · δh = δg(h)δg, 1 =
∑
g∈G

δg, ∆(δg) =
∑

x,y∈G,xy=g
δx ⊗ δy, ε(δg) = δg(e), S(δg) = δg−1 (64)
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one has M = Map(G, k)⊗2g ∼= Map(G×2g, k) with the Yetter-Drinfeld module structure

δh B (δa1 ⊗ δb1 ⊗ . . .⊗ δag ⊗ δbg) = δh([b−1
g , ag] · · · [b−1

1 , a1]) δa1 ⊗ δb1 ⊗ . . .⊗ δag ⊗ δbg (65)
δ(δa1 ⊗ δb1 ⊗ . . .⊗ δag ⊗ δbg) = Σh∈Gδh−1 ⊗ δha1h−1 ⊗ δhb1h−1 ⊗ . . .⊗ δhagh−1 ⊗ δhbgh−1

computed from (28) and (64). It follows that the coinvariants and invariants are given by

M coH = Map(G×2g, k)G (66)
MH = {f : G×2g → k | supp(f) ⊆ {(a1, . . . , bg) | [b−1

g , ag] · · · [b−1
1 , a1] = 1}},

and the protected object is the set of functions

Minv = Map(Hom(π1(Σ), G)/G, k). (67)

Example 5.28 shows that the protected object in this thesis indeed generalises the protected space
of Kitaev’s quantum double models. If one sets k = C in Example 5.28 one obtains precisely the
protected space for Kitaev’s quantum double model for the group algebra C[G] and its dual, see
[Ki, Sec. 4, 5]. However, Example 5.28 also yields an analogous result for any commutative ring k,
for which the usual quantum double models are not defined.

The question arises whether symmetric monoidal functors can transport protected objects to
protected objects. The following Lemma provides cases in which protected objects are sent to the
representation variety in Set from Example 5.25.

Lemma 5.29. Let F : C → Set be a symmetric monoidal functor that preserves equalisers,
coequalisers, monomorphisms and epimorphisms. Suppose Σ is an oriented surface of genus g ≥ 1.
Then the protected object satisfies

F (Minv) ∼= Hom(π1(Σ), F (H))/F (H).

Proof. By Example 2.6, 1. the set F (H) has a canonical Hopf monoid structure. The vertex action
B and face coaction δ from Example 4.8 associated to the standard graph (21) are built from
(co)multiplications, braidings and the antipode. Thus, F (B) and F (δ) are the vertex action and
face coaction for the Hopf monoid F (H) and the standard graph. As the functor F preserves
(co)equalisers, (F (M coH), F (ι)) is the equaliser of F (δ) and F (η ⊗ 1H⊗E ) and (F (MH), F (π)) the
coequaliser of F (B) and F (ε ⊗ 1H⊗E ). Thus, the protected object associated to F (H) and Σ is
given as the image (MSet

inv , P
Set, ISet) of F (π) ◦ F (ι).

Denote by P : M coH → Minv and I : Minv → MH the morphisms with I ◦ P = π ◦ ι that
characterise the protected object Minv in C. As C has equalisers and F preserves monomorphisms
and epimorphisms, P and F (P ) are epimorphisms and F (I) is a monomorphism. The universal
property of MSet

inv implies that there exists a unique injective map ν : MSet
inv → F (Minv) with

F (I) ◦ ν = ISet.

F (M coH)
PSet

((

F (P )

!!

F (π)◦F (ι) // F (MH)

MSet
inv

∃ ν
��

) 	

ISet
66

F (Minv)
. �

F (I)

==
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In Set images and coimages coincide, compare Remark 2.14, 1. Thus, the universal property of
the coimage MSet

inv implies that there exists a unique surjective map ν−1 : F (Minv) → MSet
inv with

ν−1 ◦ F (P ) = P Set. As F (P ) is an epimorphism and F (I) a monomorphism and

F (I) ◦ ν ◦ ν−1 ◦ F (P ) = ISet ◦ P Set = F (I) ◦ F (P ),

we obtain ν ◦ ν−1 = 1F (Minv). This implies ν ◦ ν−1 ◦ ν ◦ ν−1 = ν ◦ ν−1. Applying that ν is injective
and ν−1 surjective yields ν−1 ◦ ν = 1MSet

inv
. By Example 5.25 the protected object MSet

inv is given by

MSet
inv = Hom(π1(Σ), F (H))/F (H).

Note that in particular right adjoints preserve limits and monomorphisms, compare Riehl [R,
Th. 4.5.2, Exercise 4.5.v]. Left adjoints preserve colimits and epimorphisms, see [R, Th. 4.5.3,
Exercise 4.5.v]. This allows one to relate the protected objects in Top and Set.

Example 5.30. 1. The symmetric monoidal forgetful functor U : Top → Set is a left and right
adjoint [R, Ex. 4.1.6]. By Example 5.26 the functor U applied on the protected object in Top gives
the representation variety from Example 5.25.

2. The object functor ob : Cat→ Set that sends a small category to its set of objects and a functor
to its object map is a left and right adjoint, compare [R, Exercise 4.1.ii]. This implies that the
protected object associated to an oriented surface of genus g ≥ 1 and a group object in Cat is given
by a representation variety on the objects. We will determine the protected objects in Cat in Section
8.6.
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6 Kitaev model and protected objects in Vect

The goal of this chapter is to compare the construction of the Kitaev models from Chapter 4 applied
to C = VectF for a field F to the Kitaev model in [BMCA]. We particularly focus on the protected
object and also outline how it can be described in VectF using Haar integrals.

We consider a surface Σ of genus g ≥ 1 and use the standard graph (21) to characterise the protected
object.

Lemma 6.1. Let H be a finite-dimensional semisimple involutive Hopf algebra with normalised
Haar integrals l ∈ H, λ ∈ H∗ and B : H ⊗H⊗E → H⊗E, δ : H⊗E → H ⊗H⊗E the module and
comodule structure from Example 4.8 for the standard graph (21). Then the protected object is given
by

Minv
∼= {m ∈ H⊗E : hBm = ε(h)m ∀h ∈ H} ∩ {m ∈ H⊗E : δ(m) = 1⊗m}
= Pl(H⊗E) ∩ Pλ(H⊗E),

where

Pl : H⊗E → H⊗E , m 7→ l Bm and
Pλ : H⊗E → H⊗E , m 7→ (λ⊗ 1H⊗E ) ◦ δ(m).

Proof. The invariants MH and coinvariants M coH = {m ∈ H⊗E : δ(m) = 1 ⊗ m} in VectF are
characterised in Example 2.15, 3. Combining this with Lemma 2.29 we obtain for the invariants

MH = H⊗E/〈{hBm− ε(h)m : h ∈ H,m ∈ H⊗E}〉 ∼= {m ∈ H⊗E : hBm = ε(h)m ∀h ∈ H}
= Pl(H⊗E),

as H is semisimple. The biinvariants can be described as the intersection

Minv
∼= {m ∈ H⊗E : hBm = ε(h)m ∀h ∈ H} ∩ {m ∈ H⊗E : δ(m) = 1⊗m}

with linear maps P : M coH →Minv, m 7→ Pl(m) and I : Minv →MH , m 7→ m. For any linear map
Q : M coH → X and an injective linear map J : X →MH with J ◦Q(m) = Pl(m) for all m ∈M coH

there is an induced linear map ν : Minv → X, m 7→ Q(m). For m ∈ Pl(H⊗E) ∩M coH one obtains

J ◦ ν(m) = J ◦Q(m) = Pl(m) = m.

If there is another linear map ν ′ : Minv → X with J ◦ ν ′(m) = m = J ◦ ν(m) for all m ∈
Pl(H⊗E) ∩M coH , it directly follows ν ′ = ν, as J is injective. Hence, the universal property of the
image is satisfied.

The left H-comodule structure δ : H⊗E → H ⊗ H⊗E , m 7→ m(0) ⊗ m(1) corresponds to a right
H∗-module structure via

C : H⊗E ⊗H∗ → H⊗E , mC α = α(m(0))m(1).

This follows for instance from [Maj, Sec. 1.6.2] or [DNR, Sec. 2.2]. The corresponding invariants
and coinvariants coincide:

MH∗ = {m H⊗E : mC α = α(1)m ∀α ∈ H∗} = {m ∈ H⊗E : α(m(0))m(1) = α(1)m ∀α ∈ H∗}
= M coH .

With Lemma 2.29 we thus obtain a projector on the coinvariants by M coH = Pλ(H⊗E), where
Pλ : H⊗E → H⊗E , Pλ(m) = λ(m(0))m(1).
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Next, we explicitly compare the construction from Chapter 4 for C = VectF to the Kitaev models
given in [Ki, BMCA]. We follow [BMCA], but use the notation provided by Meusburger [Me, Sec. 3].
For this we consider a finite-dimensional semisimple Hopf algebra H with S2 = 1H in VectF. Note
that in contrast to [BMCA], where they set F = C and require that H is a ∗-Hopf algebra, we allow
any field F, but restrict to involutive Hopf algebras. The ∗-structure on H in [BMCA] is required
for the unitarity of certain operators on H⊗E , which is irrelevant to this thesis.

Analogously to our construction, the starting point in [Ki, BMCA, Me] is the vector space H⊗E ,
called extended space, obtained by assigning a copy of H to each edge in a ciliated ribbon graph Γ.
For h ∈ H, β ∈ H∗ they define linear maps Lh±, T

β
± : H → H given by

Lh+(x) = hx, Lh−(x) = xh, Lβ+(x) = β(x(2))x(1), Lβ−(x) = β(x(1))x(2).

To each edge α ∈ E they then associate the linear maps Lh±, T
β
± : H⊗E → H⊗E . These are obtained

by extending Lh±, T
β
± : H → H to linear maps H⊗E → H⊗E that are equal to Lh±, T

β
± on the copy

of H assigned to α and act as the identity on all other copies of H. The linear maps are called
triangle operators. They correspond to the H-(co)module structures from Definition 4.1 via

Lhα+ = hBα+ −, Lhα− = S(h)Bα− −, T βα+ = ((β ◦ S)⊗ 1H⊗E ) ◦ δα−, T βα− = (β ⊗ 1H⊗E ) ◦ δα+.

Similarly, the vertex operator Ahv : H⊗E → H⊗E for a ciliated vertex v with incoming edge ends
α1 < α2 < . . . < αn and h ∈ H is defined by

Ahv = L
h(1)
α1+ ◦ L

h(2)
α2+ ◦ . . . ◦ L

h(n)
αn+.

Here, Lh(i)
αi+ is replaced by LS(h(i))

αi− if αi is outgoing at v. The operator corresponds to the vertex
action from Definition 4.3 via Ahv = hBv −. Likewise, face operators Bβ

f : H⊗E → H⊗E for β ∈ H∗
and ciliated faces f that traverse the edges αn, . . . , α1 in this order and parallel to their orientations
are defined as

Bβ
f = T

S(β(1))
αn− ◦ TS(β(2))

αn−1− ◦ . . . ◦ T
S(β(n))
α1 .

In this expression T
S(β(n−i))
αi− is replaced by T

β(n−i)
αi+ if the edge αi is traversed antiparallel to its

orientation. Note that as in [Me] faces turn maximally right instead of left, the above formula
correlates to the formula for the face that traverses α−1

1 , . . . , α−1
n in [Me]. The face operator

corresponds to the face coaction from Definition 4.3 via Bβ
f = (S(β)⊗ 1H⊗E ) ◦ δf . In analogy to

Lemma 4.5, which recalls [MV, Lemma 5.5], the vertex and face operators satisfy several relations. In
particular, they define a representation of the Drinfeld double D(H) for each site of the graph. A site
consists of a ciliated vertex v and a face f(v) based at the cilium at v. The assigned representation
of D(H) on H⊗E is given by

B : D(H)⊗H⊗E → H⊗E , (α⊗ h)⊗m 7→ Bβ
f(v) ◦A

h
v(m),

compare [BMCA, Me]. Denote by l ∈ H, λ ∈ H∗ the Haar integrals. Then the associated vertex and
face operators Alv, Bλ

f no longer depend on the choice of cilia due to cyclic invariance of coproducts
of Haar integrals, compare [BaK, Sec. 2.4] or [Me, Sec. 3]. The protected space or ground state is
defined as

L = {m ∈ H⊗E : Alv(m) = Bλ
f (m) = m ∀v ∈ V, ∀f ∈ F}, (68)

see [BMCA, Me]. In [BaK] it is interpreted as vacuum state. It is shown in [Ki, BMCA] that the
protected space depends only on the homeomorphism class of the surface Σ encoded by Γ.

47



Clearly, for the standard graph (21) which has a single vertex and face, L coincides with the
protected object Minv as described in Lemma 6.1. They also coincide for general graphs, as for the
(co)module structures B := BV and δ := δF from Definition 4.6 in VectF the (co)invariants can be
split into an intersection of the (co)invariants for the single vertex and face (co)actions:

{m ∈ H⊗E : hBm = ε(|V |)(h)m ∀h ∈ H⊗|V |} =
⋂
v∈V
{m ∈ H⊗E : hBv m = ε(h)m ∀h ∈ H},

{m ∈ H⊗E : δ(m) = 1(|F |) ⊗m} =
⋂
f∈F
{m ∈ H⊗E : δf (m) = 1⊗m}.

Balsam and Kirillov [BaK, Th. 4.1] show that the protected space for H and Σ coincides with the
vector space ZTV (Σ) the Turaev-Viro TQFT based on the representation category H−Mod assigns
to the surface Σ.

An essential motivation for the consideration of the Kitaev models in [Ki] is their role in topological
quantum computing. One considers a finite-dimensional Hilbert space H, where information is
encoded as a state in H. Quantum codes can then be realised as linear subspaces of the Hilbert
space, see Gottesman [Go].

It is a crucial task to protect the quantum computer from various errors. Cui, Galindo and Romero
[CGR] describe the creation of errors by linear operators on H. The correction of such errors involves
both their detection and recovery. That is, returning the quantum system to the original state of the
code, see [NC, Sec. 10.3]. It follows that any quantum code that corrects a set of errors also corrects
any linear combination of them, compare [Go, Th. 2]. For a formal definition of error-correcting
quantum codes we refer to [NC, Sec. 10.3]. Based on this Cui et al. [CDH+, Sec. 3] show that the
protected space L of the quantum double model associated to the group algebra C[G] of a finite
group G is an error-correcting quantum code. Specifically, the protected space of the Kitaev model
associated to C[Z2] and the torus is known as toric code, compare [CDH+]. A detailed analysis of
the error-correcting process in quantum double models for a group algebra of a finite abelian group
is provided in [CGR].

As explained in [BaK, Sec. 5], topological excitations can be modelled in quantum double models.
They are interpreted as "quasiparticles", also called anyons in [Ki], sitting on disjoint sites of the
ciliated ribbon graph Γ. Sites in Γ are said to be disjoint if none of their faces traverses the
vertices of other sites. When defining a space of n particles localised at disjoint sites s1, . . . , sn, the
invariance under vertex and face operators associated to these sites is not imposed. Consequently,
the associated subspace is defined as

L(s1, . . . , sn) := {m ∈ H⊗E : Alv(m) = m ∀v /∈ S, Bλ
f (m) = m ∀f /∈ S},

where l ∈ H, λ ∈ H∗ are Haar integrals, compare [BaK, Sec. 5]. This subspace can be decomposed
into irreducible representations of the quantum double D(H). Quasiparticles are then labelled by
these irreducible representations, compare Cowtan and Majid [CM]. Moreover, the quasiparticles
can be transported from one site of the graph to another site. This is modelled by defining so-
called ribbon operators, see [CM]. It specifically plays an important role for topological quantum
computing, as less formally quantum computation is performed by creating excitation pairs, moving
them around and annihilating them, compare [Ki]. For a detailed description of the ribbon operators
we refer to [CM].
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7 Protected objects in SSet

In this chapter, we investigate protected objects for group objects in the category SSet. This is
essentially identical to Section 6 from the preprint [HM].

We denote by ∆ the simplex category with finite ordinals [n] = {0, 1, . . . , n} for n ∈ N0 as objects
and weakly monotonic maps α : [m]→ [n] as morphisms from [m] to [n].

Objects in SSet = Set∆op are simplicial sets, functors X : ∆op → Set that are specified by sets Xn,
face maps di : Xn+1 → Xn and degeneracies si : Xn → Xn+1 for n ∈ N0 and i ∈ {0, . . . , n} that
satisfy the simplicial relations

dj ◦ di = di ◦ dj+1 if i ≤ j, si ◦ sj = sj+1 ◦ si if i ≤ j, (69)
di ◦ sj = sj−1 ◦ di if i < j, di ◦ sj = id if i ∈ {j, j + 1}, di ◦ sj = sj ◦ di−1 if i > j + 1.

Morphisms in SSet are simplicial maps, natural transformations f : X → Y specified by component
maps fn : Xn → Yn satisfying fn−1 ◦ di = di ◦ fn and fn+1 ◦ si = si ◦ fn for n ∈ N0 and admissible i.
The category SSet is cartesian monoidal with the objectwise product induced by the product in Set.

Unpacking the definition of a group object in a cartesian monoidal category from Example 2.3 yields

Definition 7.1.

1. A group object in SSet is a simplicial group: a simplicial set H : ∆op → Set with group
structures on the sets Hn such that all face maps and degeneracies are group homomorphisms.

2. A morphism of group objects in SSet is a morphism of simplicial groups: a simplicial
map f : H → H ′ such that all maps fn : Hn → H ′n are group homomorphisms.

For examples of simplicial groups, see Section 8.2, in particular Corollary 8.10 and Example 8.11.
Modules, comodules and Yetter-Drinfeld modules over simplicial groups are given by Example 2.9.

Lemma 7.2. Let H : ∆op → Set be a simplicial group.

1. A module over H is a simplicial set M : ∆op → Set together with a collection of Hn-actions
Bn : Hn ×Mn →Mn that define a simplicial map B : H ×M →M .

2. A comodule over H is a simplicial set M : ∆op → Set with a simplicial map F : M → H.
3. If (M,B) is a module and (M,F ) a comodule over H, then (M,B, F ) is a Yetter-Drinfeld

module over H iff Fn(g Bn m) = g · Fn(m) · g−1 for all m ∈Mn, g ∈ Hn and n ∈ N0.

(Co)limits in SSet are objectwise, see for instance Riehl [R, Prop. 3.3.9] or Leinster [L, Th. 6.2.5].
Thus, (co)invariants of a (co)module over a group object in SSet are obtained from (co)equalisers in
Set. It is also straightforward to compute the biinvariants of a Yetter-Drinfeld module.

Proposition 7.3. Let H be a simplicial group.

1. The coinvariants McoH of a H-comodule M defined by a simplicial map F : M → H are
given by the sets M coH

n = {m ∈Mn | Fn(m) = e} and the induced face maps and degeneracies.
2. The invariants MH of a H-module (M,B) are given by the sets MH

n = {Hn Bnm | m ∈Mn}
and the induced face maps and degeneracies.

3. The biinvariants Minv of a Yetter-Drinfeld module (M,B, F ) over H are given by the sets
(Minv)n = {Hn Bn m | m ∈Mn, Fn(m) = e} and the induced face maps and degeneracies.

Proof. 1. The coinvariant object of a H-comodule (M,F ) is the equaliser of the simplicial maps
δ = F × id : M → H ×M and η × id : M → H ×M . As limits in SSet are objectwise, this is the
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simplicial set M coH : ∆op → Set that assigns to an ordinal [n] the equaliser in Set of the maps
Fn × id : Mn → Hn ×Mn and ηn × id : Mn → Hn ×Mn, which is M coH

n = {m ∈Mn | Fn(m) = e}.
The face maps and degeneracies are induced by the ones ofM , and the simplicial map ι : M coH →M
is given by the maps ιn : M coH

n →Mn, m 7→ m.

2. Analogously to 1., the invariant object of (M,B) is the simplicial setMH : ∆op → Set that assigns
to the ordinal [n] the coequaliser in Set of the maps Bn : Hn×Mn →Mn and εn×id : Hn×Mn →Mn.
This is the set MH

n = Mn/ ∼n with m ∼n m′ iff there is a g ∈ Hn with m′ = gBnm. The simplicial
map π : M →MH is given by the maps πn : Mn →MH

n , m 7→ Hn Bn m.

3. The simplicial maps I : Minv →MH and P : M coH →Minv with π ◦ ι = I ◦ P that characterise
Minv with (Minv)n = {Hn Bn m | m ∈M coH

n } as the image of π ◦ ι are given by

In : (Minv)n →MH
n , Hn Bn m 7→ Hn Bn m, Pn : M coH

n → (Minv)n,m 7→ Hn Bn m.

As monomorphisms and epimorphisms in SSet are those simplicial maps whose component mor-
phisms are injective and surjective, see for instance [L, Ex. 6.2.20], it follows directly that I is a
monomorphism and P an epimorphism in SSet. Every pair (J,Q) of a monomorphism J : X →MH

and morphism Q : M coH → X in SSet with J ◦Q = π ◦ ι defines injective maps Jn : Xn →MH
n and

thus identifies Q(M coH
n ) with a subset of MH

n . As Jn is a monomorphism and due to the identity
Jn ◦Qn(g Bn m) = πn ◦ ιn(g Bn m) = πn ◦ ιn(m) = Jn ◦Qn(m), we have Qn(g Bn m) = Qn(m) for
all m ∈M coH

n and g ∈ Hn. The maps Vn : (Minv)n → Xn, Hn Bn m 7→ Qn(m) define a simplicial
map V : Minv → X with I = J ◦ V .

We now determine the coinvariants, invariants and the protected objects for Kitaev models on
oriented surfaces Σ of genus g ≥ 1 and for a simplicial group H as a Hopf monoid in SSet.

Proposition 7.4. Let H be a simplicial group and Σ an oriented surface of genus g ≥ 1. The
associated protected object is the simplicial set X : ∆op → Set with Xn = Hom(π1(Σ), Hn)/Hn,
where the quotient is with respect to conjugation by Hn, and face maps and degeneracies given by

di : Xn → Xn−1, [ρ] 7→ [di ◦ ρ], si : Xn → Xn+1, [ρ] 7→ [si ◦ ρ].

Proof. By Theorem 5.23 the protected object of Σ can be computed from the standard graph in
(21). This yields a Yetter-Drinfeld module (M,B, F ) over H given by formula (29) in Example 4.8.
Hence, we have Mn = H×2g

n for all n ∈ N0 with the face maps and degeneracies of H applied to
each component simultaneously. The Yetter-Drinfeld module structure is given by

Fn : H×2g
n → Hn, (a1, b1, . . . , ag, bg) 7→ [b−1

g , ag] · · · [b−1
1 , a1]

Bn : Hn ×H×2g
n → H×2g

n , (h, a1, b1, . . . , ag, bg) 7→ (ha1h
−1, hb1h

−1, . . . , hagh
−1, hbgh

−1).

By Proposition 7.3 the associated protected object is the simplicial setMinv with

(Minv)n = {Hn Bn (a1, b1, . . . , ag, bg) ∈ H×2g
n | [b−1

g , ag] · · · [b−1
1 , a1] = e} ∼= Hom(π1(Σ), Hn)/Hn.

Face maps and degeneracies are given by post-composing group homomorphisms ρ : π1(Σ)→ Hn

with the face maps di : Hn → Hn−1 and degeneracies si : Hn → Hn+1.
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8 Protected objects in Cat

This chapter is dedicated to the investigation of protected objects in Cat. To determine the protected
objects we require a description of both equalisers and coequalisers in Cat. Whereas determining
equalisers in Cat is standard, it requires more effort to determine coequalisers in Cat. We describe
two ways to obtain coequalisers in Cat. One approach uses the nerve and homotopy functor,
while the other approach deals with generalised congruences. We then apply both concepts to
determine the invariants of a module over a Hopf monoid in Cat and hence protected objects. Their
characterisation relies on crossed modules, as they amount to group objects in Cat.

For this, the category Cat of small categories and functors between them is considered as a cartesian
monoidal category with terminal object {·}. For a finite product C1 × . . .× Cn of small categories,
we denote by πi : C1 × . . .× Cn → Ci the associated projection functors. For a small category C we
denote by Ob(C) the set of objects and by C(1) = ⋃

X,Y ∈Ob(C) HomC(X,Y ) the set of all morphisms
in C.

In Section 8.1 we describe group objects in Cat in terms of crossed modules. Both in Section 8.2 and
8.4 we explain how coequalisers in Cat can be determined. While the approach in Section 8.2 relies
on the nerve and homotopy functor, Section 8.4 describes them in terms of generalised congruences.
The concepts are applied in Section 8.3 and Section 8.5 to describe invariants of modules over group
objects, before we determine the protected objects in Section 8.6.

Up to some additions and minor changes Sections 8.1, 8.2, 8.3 and 8.6 are parts of the preprint
[HM].

8.1 Crossed modules as group objects in Cat

In this section we describe how group objects in Cat can be specified by crossed modules.

Definition 8.1.

1. A group object in Cat is a small category H together with functors m : H × H → H,
η : {·} → H and I : H → H such that the diagrams (7) commute.

2. A morphism F : (H,m, η, I) → (H ′,m′, η′, I ′) of group objects is a functor F : H → H ′

that satisfies (8).

We denote by G(Cat) the category of group objects and morphisms of group objects in Cat and write
e := η(·), f−1 = I(f), g · f = m(g, f) and likewise for multiple products.

Brown and Spencer [BS] showed that group objects in Cat correspond to crossed modules. We
summarise this correspondence for the convenience of the reader.

Definition 8.2.
A crossed module is a quadruple (B,A,I, ∂) of groups A and B, a group homomorphism ∂ : A→ B
and a group action I: B ×A→ A by automorphisms that satisfy the Peiffer identities

∂(b I a) = b∂(a)b−1, ∂(a) I a′ = aa′a−1 ∀a, a′ ∈ A, b ∈ B. (70)

A morphism of crossed modules f = (f1, f2) : (B,A,I, ∂)→ (B′, A′,I′, ∂′) is a pair of group
homomorphisms f1 : B → B′, f2 : A→ A′ such that

∂′ ◦ f2 = f1 ◦ ∂, I′ ◦(f1 × f2) = f2◦ I .

We denote by CM the category of crossed modules and morphisms between them.
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Example 8.3.

1. A normal subgroup A ⊂ B defines a crossed module with the inclusion ∂ : A→ B, a 7→ a and
the conjugation action I: B ×A→ A, b I a = bab−1.

2. Any crossed module (A,B,I, ∂) yields a crossed module (A/ ker ∂,B,I′, ∂′) with injective ∂′.
This identifies A/ ker ∂ with a normal subgroup of B and hence yields 1.

3. Any group action I: B × A → A by automorphisms of an abelian group A yields a crossed
module with ∂ ≡ eB.

4. Any group A defines a crossed module with B = Aut(A), I: Aut(A)×A→ A, φ I a = φ(a)
and ∂ : A→ Aut(A), g 7→ Cg, where Cg(x) = gxg−1.

5. Every extension of a group G by a group X

1 // X �
� ι / E

π // // G // 1

defines a crossed module with A := X, B := E, ∂ := ι and b I a := ι−1(bι(a)b−1) for all
b ∈ B, a ∈ A. The group extension is central iff ι(X) ⊂ Z(E), which is equivalent to I trivial.

6. Conversely, any crossed module (B,A,I, ∂) gives an extension of B/∂(A) by A/ ker(∂):

1 // A/ ker(∂) � � ∂′ / B
π // // B/∂(A) // 1

with ∂′(a ker(∂)) := ∂(a). For crossed modules with surjective ∂, the group A is also an
extension of B by ker(∂):

1 // ker(∂) � � ι / A
∂ // // B // 1.

Theorem 8.4. [BS, Th. 1]
The following functors 4 : G(Cat)→ CM and 5 : CM→ G(Cat) form an equivalence of categories.

The functor 4 sends a group object (H,m, η, I) to the crossed module (B,A,I, ∂) with

• A = Coste := ⋃
X∈Ob(H) HomH(X, e) with multiplication mA : A×A→ A, (a, a′) 7→ m(a, a′),

• B = Ob(H) with multiplication mB : B ×B → B, (b, b′) 7→ m(b, b′),
• ∂ : A→ B, (f : X → e) 7→ X,
• I: B ×A→ A, b I a = 1b · a · 1−1

b ,

and a morphism of group objects F : (H,m, η, I)→ (H ′,m′, η′, I ′) to the pair of group homomor-
phisms f1 := F : Ob(H)→ Ob(H ′) and f2 := F : Coste → Cost′e′.

The functor 5 sends a crossed module (B,A,I, ∂) to the group object (H,m, η, I) with

• Ob(H) = B,
• HomH(b, b′) = {(a, b) ∈ A×B : ∂(a)b = b′} with composition (a′, ∂(a)b) ◦ (a, b) = (a′a, b),
• m : H ×H → H with m(b, b′) = bb′ and m((a′, b′), (a, b)) = (a′(b′ I a), b′b),
• η : {·} → H, η(·) = eB, η(1·) = (eA, eB),
• I : H → H, I(b) = b−1, I((a, b)) = (b−1 I a−1, b−1),

and a morphism (f1, f2) : (B,A,I, ∂)→ (B′, A′,I′, ∂′) of crossed modules to the functor F : H → H ′

with F (b) = f1(b) for all b ∈ B = Ob(H) and F ((a, b)) = (f2(a), f1(b)).

By Theorem 8.4 the group structure on the set H(1) of morphisms of a group object H is the
semidirect product A o B for the group action I: B × A → A. As a category H is the action
groupoid for the group action I′: A×B → B, a I′ b = ∂(a)b.
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There are also other ways of constructing group objects in Cat, see for instance the following
example.

Example 8.5. For any small categoryM the category Aut(M) of invertible endofunctors F :M→
M as objects and natural isomorphisms as morphisms is a group object in Cat with multiplication,
unit and inverse given by:

• m on objects: (F, F ′) 7→ FF ′ :M→M,
• m on morphisms: (σ : F → F ′, σ′ : K → K ′) is sent to τ : FK → F ′K ′ with component
morphisms τX := σK′(X) ◦ F (σ′X),
• η : • 7→ idM, 1• is sent to the natural transformation ididM : idM → idM,
• I on objects: F 7→ F−1 :M→M,
• I on morphisms: σ : F → F ′ is sent to τ with component morphisms τX := F−1(σ−1

(F ′)−1(X)).

The category Aut(M) is small, as functor categories DC are small for D, C small categories, see
Riehl [R, Remark 1.7.3].

Modules (M,B) over group objects H in Cat are small categories M with a morphism ρ : H →
Aut(M) of group objects. For a module (M,B) the functor ρ is given by

• on objects: h ∈ Ob(H) is sent to ρ(h) with ρ(h)(X) = h BX for X ∈ Ob(M) and ρ(h)(X) =
idh BX for X ∈M(1).
• on morphisms: f ∈ H(1) is sent to ρ(f) with component morphisms ρ(f)X := f B idX .

Conversely, a morphism ρ : H → Aut(M) defines a module structure B : H × M → M by
g BX := ρ(g)(X) on objects and f B t := ρ(g′)(t) ◦ ρ(f)X for morphisms f : g → g′, t : X → X ′.

8.2 Equalisers and coequalisers in Cat

To determine the coinvariants, invariants and the protected object for a group object in Cat, we
require equalisers, coequalisers and images in Cat. It is well-known that Cat is complete and
cocomplete, see for instance [R, Prop. 3.5.6, Cor. 4.5.16]. The following result on equalisers is
standard, see for example Schubert [Sch, Sec. 7.2].

Lemma 8.6. The equaliser of two functors F,K : C → D between small categories is the subcategory
E ⊂ C with

• Ob(E) = {C ∈ Ob(C) | F (C) = K(C)},
• HomE(C,C ′) = {f ∈ HomC(C,C ′) | F (f) = K(f)}.

To describe coequalisers in Cat we use that Cat is a reflective subcategory of SSet with the inclusion
given by the nerve functor N : Cat→ SSet, which is full and faithful. Its left adjoint is the homotopy
functor h : SSet→ Cat, and the composite hN : Cat→ Cat is naturally isomorphic to the identity
functor via the counit of the adjunction, see Riehl [R, Ex. 4.5.14 (vi)] or Lurie [Lu, Sec. 1.2]. As
a left adjoint, h preserves colimits. This allows one to compute colimits in Cat by applying the
homotopy functor h to the associated colimits in SSet, see for instance [R, Prop. 4.5.15].

Lemma 8.7. The coequaliser of two functors F,K : C → D between small categories is the functor
h(π) : hN(D)→ h(X), where π : N(D)→ X is the coequaliser of N(F ), N(K) in SSet.

To compute such coequalisers, we require an explicit description of the nerve and the homotopy
functor. We summarise the details from [R, Ex. 4.5.14 (vi)] and [Lu, Sec. 1.2]. For n ∈ N0 we denote
by [n] the ordinals in ∆ as well as the associated categories with objects 0, 1, . . . , n and a single
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morphism from i to j if i ≤ j. As every weakly monotonic map α : [m] → [n] defines a functor
α : [m]→ [n], this defines an embedding ι : ∆→ Cat.

Definition 8.8. The nerve N : Cat → SSet is the functor that sends a small category C to the
simplicial set N(C) : ∆op → Set with

• N(C)n = HomCat([n], C),
• N(C)(α) : N(C)n → N(C)m, F 7→ F ◦ α for every weakly monotonic α : [m]→ [n],

and a functor F : C → D to the simplicial map N(F ) : N(C)→ N(D) that post-composes with F .

By definition, N(C)0 = Ob C and N(C)n is the set of sequences (f1, . . . , fn) : C0
f1−→ . . .

fn−→ Cn
of composable morphisms in C for n ∈ N. The simplicial set structure is given by the face maps
di : N(C)n → N(C)n−1 and degeneracies si : N(C)n → N(C)n+1 for i ∈ {0, ..., n}. The face maps
act on a sequence (f1, . . . , fn) by removing f1 and fn for i = 0 and i = n, respectively, and by
replacing (. . . , fi, fi+1, . . .) with (. . . , fi+1 ◦ fi, . . .) for 1 ≤ i ≤ n− 1. For n = 1 and f1 : C0 → C1
one has d0(f1) = C1 and d1(f1) = C0. The degeneracies act on (f1, . . . , fn) by inserting the identity
morphism 1Ci . In particular, for n = 0 one has s0(C) = 1C for every C ∈ Ob C. The simplicial map
N(F ) for a functor F : C → D applies F to all morphisms in (f1, . . . , fn).

The left adjoint of the nerve N : Cat→ SSet is the homotopy functor h : SSet→ Cat. It is the left
Kan extension along the Yoneda embedding y : ∆→ SSet of the embedding functor ι : ∆→ Cat.
Concretely, it is given as follows.

Definition 8.9. The homotopy functor h : SSet→ Cat sends a simplicial set X to the category
hX with ObhX = X0, generating morphisms σ : d1(σ)→ d0(σ) for σ ∈ X1 and relations

s0(x) = 1x for x ∈ X0, d1(σ) = d0(σ) ◦ d2(σ) for σ ∈ X2. (71)

It sends a simplicial map f : X → Y to the functor hf : hX → hY given by f on the generators.

The simplicial relations imply that for elements of X2 that are in the image of a degeneracy map,
the second relation in (71) is satisfied trivially. In this case one of the two morphisms on the right
is an identity and the other coincides with the morphism on the left. Only non-degenerate elements
of X2 give rise to non-trivial relations in hX.

In general, morphisms in the homotopy category of a simplicial set X are finite sequences of
composable elements of X1. However, if the simplicial set X is an ∞-category, which is always the
case if X = N(C) for some category C, every morphism in hX is represented by a single element in
X1, see for instance [Lu, Sec. 1.2.5]. Most of the simplicial sets considered in the following are even
Kan complexes, as they are nerves of groupoids.

As a right adjoint, the nerve preserves limits, and as a left adjoint, the homotopy functor preserves
colimits. It follows directly from its definition that the nerve also preserves coproducts, and the
homotopy functor preserves finite products, see for instance Joyal [Jo, Prop. 1.3]. This implies with
Examples 2.6 and 2.10

Corollary 8.10. The nerve N : Cat → SSet and the homotopy functor h : SSet → Cat are
symmetric monoidal with respect to the cartesian monoidal category structures of Cat and SSet. In
particular:

1. The nerve of a crossed module is a simplicial group.
2. The homotopy category of a simplicial group is a crossed module.
3. The nerve of a (co)module over a crossed module is a (co)module over its nerve.
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4. The homotopy category of a (co)module over a simplicial group is a (co)module over its
homotopy category.

Concretely, the nerve of a crossed module (B,A,I, ∂) is the simplicial group H with Hn = A×n×B
for n ∈ N0 with group multiplication

(a1, ..., an, b) · (a′1, ..., a′n, b′) = (a1(b I a′1), a2(∂(a1)b I a′2), ..., an(∂(an−1 · · · a1)b I a′n), bb′) (72)

and face maps and degeneracies

di : Hn → Hn−1, (a1, ..., an, b) 7→


(a2, ..., an, ∂(a1)b) i = 0
(a1, ..., ai+1ai, ..., an, b) 1 ≤ i ≤ n− 1
(a1, ..., an−1, b) i = n

(73)

si : Hn → Hn+1, (a1, ..., an, b) 7→ (a1, . . . , ai, 1, ai+1, ..., an, b) 0 ≤ i ≤ n.

Example 8.11.

1. A group action I: B ×A→ A by automorphisms on an abelian group A yields a simplicial
group with Hn = A×n o′ B, where B acts diagonally via I, and with the face maps and
degeneracies (73) for ∂ ≡ 1.

2. Every injective group homomorphism ∂ : A→ B from an abelian group A into the centre of a
group B yields a simplicial group, where Hn = A×n × B is the direct product, and the face
maps and degeneracies are given by (73).

3. Every abelian group A is a simplicial group with Hn = A×n, the group multiplication of A×n,
the face maps and degeneracies (73) for B = {e} and ∂ ≡ 1.

4. Any normal subgroup A ⊂ B determines a simplicial group with Hn = A×n × B and group
multiplication (72), face maps and degeneracies (73), where ∂ : A→ B is the inclusion and
I: B ×A→ A the conjugation action.

8.3 (Co)invariants of (co)modules over group objects in Cat

The coinvariants of a comodule (M, δ) over a group object (H,m, η, I) in Cat are given as the
equaliser of δ = (F × 1M) ◦∆ :M→ H ×M and η × 1M :M→ H ×M. This is the subcategory
on which δ and η × 1M coincide, together with its inclusion functor, see Lemma 8.6. In terms of
the associated functor F :M→ H from Example 2.9 we have

Lemma 8.12.
Let (M, δ) be a comodule over a group object (H,m, η, I) in Cat. Then the coinvariants are given
by the subcategoryMcoH ⊂M with

• Ob(McoH) = {A ∈ Ob(M) | F (A) = e},
• HomMcoH (A,A′) = {f ∈ HomM(A,A′) | F (f) = 1e},

and the inclusion functor ι :McoH →M.

The invariants of a module (M,B) over a group object H in Cat are the coequaliser of the functors
B, π2 : H ×M→M. They are computed with Lemma 8.7.
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Proposition 8.13. Let (M,B) be a module over a group object H = 5(B,A,I, δ) in Cat. Then
its invariants are the categoryMH , whose

• objects are orbits of the B-action on Ob(M),
• morphisms are generated by orbits of the A o B-action on M(1) subject to the relations

[f2] ◦ [f1] = [f2 ◦ f1] for all AoB-orbits [f1], [f2] of composable morphisms f1, f2 inM.

We denote by π :M→MH the projection functor that sends each object ofM to its B-orbit and
each morphism inM to the equivalence class of its AoB-orbit.

Proof. By Corollary 8.10, applying the nerve to the group object H in Cat and to a module (M,B)
over H yields a simplicial group N(H) and a module N(M) over N(H) in SSet. By Lemma 8.7 the
coequaliser of the morphisms B, π2 : H ×M→M in Cat is obtained by applying the homotopy
functor to the coequaliser of B′ = N(B), π′2 = N(π2) : N(H)×N(M)→ N(M) in SSet.

As colimits in SSet are computed objectwise, see for instance [R, Prop. 3.3.9], the coequaliser of
B′, π′2 is the simplicial set N(M)H with N(M)Hn = N(M)n/ ∼n, where ∼n is the equivalence
relation on N(M)n defined by the N(H)-action: m ∼n m′ iff there is a g ∈ N(H)n with m′ = gB′m.
The face maps and degeneracies of N(M)H are induced by the ones of N(M).

As N(H)0 = ObH = B and N(M)0 = ObM, the elements of N(M)H0 are the orbits of the B-action
on ObM. As N(H)1 = H(1) = AoB, the set N(M)H1 contains the orbits of the AoB-action on
M(1). Elements of N(M)2 and N(H)2 are pairs of composable morphisms inM and H. Thus, the
set N(M)H2 consists of equivalence classes of pairs (f1, f2) of composable morphisms inM with
(f1, f2) ∼ (f ′1, f ′2) iff there are (a1, b1), (a2, b2) ∈ AoB with ∂(a1)b1 = b2 such that f ′1 = (a1, b1)B′ f1
and f ′2 = (a2, b2)B′ f2.

For any composable pair (f1, f2) ∈ N(M)2, one has d0(f1, f2) = f2, d1(f1, f2) = f2 ◦ f1 and
d2(f1, f2) = f1. This implies d0[(f1, f2)] = [f2], d1[(f1, f2)] = [f2 ◦ f1] and d2[(f1, f2)] = [f1] for their
equivalence classes in N(M)H2 and N(M)H1 .

Applying the homotopy functor from Definition 8.9 thus yields a category MH with objects
ObMH = N(M)H0 = ObM/B. Its generating morphisms are AoB-orbits of morphisms inM,
and the second relation in (71) translates into the relation [f2] ◦ [f1] = [f2 ◦ f1] for the AoB-orbits
of composable pairs (f1, f2) of morphisms inM.

We now restrict attention to Yetter-Drinfeld modules (M,B, δ) over group objects H in Cat and
determine their biinvariants. We denote again by F : M → H the functor defined by δ from
Example 2.9, by ι :McoH →M the inclusion functor from Lemma 8.12 and by π :M→MH the
projection functor from Proposition 8.13.

Proposition 8.14.
Let (M,B, F ) be a Yetter-Drinfeld module over a group object H in Cat. ThenMinv is given by

ObMinv = {π(M) |M ∈ ObM with F (M) = e},
HomMinv(π(M1), π(M2)) = {π(f) | f ∈M(1) with π(s(f)) = π(M1), π(t(f)) = π(M2), F (f) = 1e}.

Proof. 1. We verify thatMinv is a category. If F (M) = e for an object M inM, then F (gBM) =
g · F (M) · g−1 = e for all objects g in H by the Yetter-Drinfeld module condition in Example 2.9.
Likewise, if f is a morphism in M with F (f) = 1e, then F (g B f) = g · F (f) · g−1 = 1e for all
g ∈ H(1). This shows that for every object M and morphism f ofMcoH the entire ObH-orbit of
M and H(1)-orbit of f is contained inMcoH . Any identity morphism on an object M ∈ ObMcoH
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satisfies F (1M ) = 1e and hence is contained inMcoH . If (f1, f2) is a pair of composable morphisms
inMcoH , then F (f2 ◦ f1) = F (f2) ◦ F (f1) = 1e and hence f2 ◦ f1 ∈McoH as well.

Suppose now that f1 : M0 → M1 and f2 : M ′1 → M2 are morphisms in McoH such that π(f1)
and π(f2) are composable in MH . Then there is a g ∈ ObH with M ′1 = g B M1, and the
morphisms f1 and g−1 B f2 are composable in McoH . With the relations of Minv one obtains
π(f2) ◦ π(f1) = π(g−1 B f2) ◦ π(f1) = π((g−1 B f2) ◦ f1) with (g−1 B f2) ◦ f1 ∈McoH .

2. We show that Minv has the universal property of the image in Cat. The inclusion functor
I : Minv → MH is a monomorphism in Cat and satisfies IP = πι, where P : McoH → Minv is
the functor that sends an object M in McoH to π(M) and a morphism f in McoH to π(f). If
(J,Q) is a pair of a monomorphism J : C → MH and a functor Q : McoH → C with JQ = πι,
then J is a monomorphism in Cat. This allows one to identify C with a subcategory ofMH and J
with its inclusion functor. As JQ = πι, the subcategory C ⊂ MH containsMinv as a subcategory
Minv ⊂ C. Hence, there is a unique functor, the inclusion V :Minv → C, with I = JV .

8.4 Alternative description of coequalisers in Cat in terms of generalised con-
gruences

In this section we describe an alternative way to characterise coequalisers in Cat using the construc-
tion of Bednarczyk, Borzyszkowski and Pawlowski [BBP] via generalised congruences and associated
quotient categories. For a summary of this construction, see also Bruckner [Br], Haucourt [Ha] and
for a more detailed version Yau [Ya]. With this approach one can determine the invariants of a
module over a group object in Cat via quotient categories associated to a generated generalised
congruence. We will provide the details of this application in the next section.

For a morphism f ∈ HomD(D,D′) we denote by s(f) = D and t(f) = D′ its source and target.
For an equivalence relation ∼0 on Ob(D) we say a sequence (f0, f1, . . . , fn) of morphisms in D is
∼0-composable if t(fi) ∼0 s(fi+1) for all i = 0, . . . , n− 1.

Definition 8.15. [Br, Def. 2.6] A generalised congruence on a small category D is a pair
(∼0,∼m) of equivalence relations ∼0 on Ob(D) and ∼m on the set of non-empty, ∼0-composable
sequences of morphisms in D such that

(G1) X ∼0 Y implies (idX) ∼m (idY ),
(G2) (f0, f1, . . . , fn) ∼m (h0, h1, . . . , hm) implies t(fn) ∼0 t(hm) and s(f0) ∼0 s(h0),
(G3) s(h) = t(f) implies (f, h) ∼m (h ◦ f),
(G4) if (f0, f1, . . . , fn) ∼m (f ′0, f ′1, . . . , f ′n′), (h0, . . . , hm) ∼m (h′0, . . . , h′m′) and t(fn) ∼0 s(h0), then

(f0, f1, . . . , fn, h0, . . . , hm) ∼m (f ′0, f ′1, . . . , f ′n′ , h′0, . . . , h′m′).

Lemma 8.16. [BBP, 3.9 and Proposition 3.10] A generalised congruence ∼= (∼0,∼m) on D
defines a quotient category D/ ∼ with

• Ob(D/ ∼) = Ob(D)/ ∼0,
• ∼m-classes of ∼0-composable sequences (f0, . . . , fn) as morphisms from [s(f0)] to [t(fn)],
• composition of morphisms [(h0, . . . , hm)] ◦ [(f0, f1, . . . , fn)] = [(f0, f1, . . . , fn, h0, . . . , hm)],

and an essentially surjective quotient functor Q : D → D/ ∼ that sends an object X ∈ Ob(D) to
[X] and a morphism f in D to [(f)].

To describe coequalisers in Cat one considers generalised congruences that are generated by relations
on small categories. More specifically, the relations relevant for determining coequalisers are defined
by functors.
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Definition 8.17. Let C,D be small categories.

1. A relation on D is a pair (R0, Rm) of a relation R0 on Ob(D) and a relation Rm on the set
of finite, non-empty sequences of morphisms in D.

2. For functors F,K : C → D the relation RF=K := (R0, Rm) on D is given by
• R0 = {(F (X),K(X)) : X ∈ Ob(C)} ⊂ Ob(D)×Ob(D),
• F (f) ∼Rm K(f) for all morphisms f in C.

Note that the total relation that identifies all objects and all sequences of morphisms in a small
category D is a generalised congruence [BBP, Br]. Hence, for every relation (R0, Rm) on D there
is at least one generalised congruence (∼0,∼m) on D with R0 ⊂∼0 and Rm ⊂∼m. It is also
straightforward to check that for any family (∼0,i,∼m,i)i∈I of generalised congruences on D, the
intersection (∩i∈I ∼0,i,∩i∈I ∼m,i) is a generalised congruence on D. One can thus define the minimal
generalised congruence on D generated by a relation (R0, Rm) as the intersection of all generalised
congruences (∼0,∼m) with R0 ⊂∼0 and Rm ⊂∼m.

Definition 8.18. [Br, Sec. 2] Let (R0, Rm) be a relation on a small category D. The principal
congruence generated by (R0, Rm) is the minimal generalised congruence (∼0,∼m) on D with
R0 ⊂∼0, Rm ⊂∼m.

Proposition 8.19. [BBP, Proposition 4.1] The coequaliser of morphisms F,K : C → D in Cat
is the quotient D/ ∼ for the principal congruence ∼ generated by RF=K , together with the quotient
functor Q : D → D/ ∼.

The quotient with respect to the principal congruence generated by a relation is in general difficult
to describe. The situation simplifies to some degree, if the underlying relation (R0, Rm) on D
consists of an equivalence relation R0 and a relation Rm that identifies only singleton sequences of
morphisms with equivalent sources and targets.

Lemma 8.20. [BBP2, Lemma 3.6] Let (R0, Rm) be a relation on D such that R0 is an equivalence
relation, Rm identifies only singleton sequences of morphisms and (f) ∼Rm (f ′) implies s(f) ∼R0

s(f ′) and t(f) ∼R0 t(f ′). Then the objects of D/ ∼ are R0-equivalence classes of objects in D.

Proof. 1. We show that the following defines a generalised congruence (R0,∼sm) on D

(f0, . . . , fn) ∼sm (h0, . . . , hm)⇔ s(f0) ∼R0 s(h0) and t(fn) ∼R0 t(hm). (74)

As R0 is an equivalence relation on Ob(D), ∼sm is an equivalence relation on the set of non-empty,
R0-composable sequences of morphisms in D. Clearly, (∼R0 ,∼sm) satisfies (G1)-(G4).

2. We show that the principal congruence ∼= (∼0,∼m) generated by (R0, Rm) satisfies ∼0= R0
and ∼m⊂∼sm: By definition, it is the intersection of all generalised congruences (∼+

0 ,∼+
m) on D

satisfying R0 ⊂∼+
0 , Rm ⊂∼+

m. As (f) ∼Rm (f ′) implies s(f) ∼R0 s(f ′), t(f) ∼R0 t(f ′) and hence
(f) ∼sm (f ′), one has ∼Rm⊂∼sm. Thus, (∼R0 ,∼sm) participates in the intersection, which yields
∼0=∼R0 . Both ∼m and ∼sm are defined on the set of non-empty, ∼R0-composable sequences of
morphisms, thus ∼m⊂∼sm.

8.5 Alternative description of invariants in Cat via generalised congruences

Now we apply the description of coequalisers in Cat in terms of quotient categories from the last
section to determine the invariants of a module (M,B) over a group object H in Cat. This leads to
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an alternative proof of Proposition 8.13 and to an alternative characterisation of the biinvariants of
a Yetter-Drinfeld module over a group object in Cat.

As the invariants of (M,B) are the coequaliser of the functors B, π2 : H ×M→M, the associated
relation RB=π2 = (R0, Rm) onM is given by

• X ∼R0 g BX for all (g,X) ∈ Ob(H ×M),
• t ∼Rm f B t for all (f, t) ∈ (H ×M)(1).

It is easy to see that R0 defines an equivalence relation on Ob(M) and Rm an equivalence relation
onM(1) and that the conditions of Lemma 8.20 are satisfied.

This guarantees that the objects of the quotientMH =M/ ∼ are R0-equivalence classes of objects
inM. Its morphisms are represented by morphisms inM.

Definition 8.21. Let (M,B) be a module over a group object H in Cat, and RB=π2 = (R0, Rm)
the relation characterising its invariants. We say that Υ ∈ M(1) is a representing singleton
of an R0-composable sequence (f0, . . . , fn) if Υ = fn ◦ (idcn B fn−1) ◦ . . . ◦ (idcn···c1 B f0) for some
c1, . . . , cn ∈ Ob(H) with s(fi) = ci B t(fi−1) for i = 1, . . . , n.

Lemma 8.22. Let (M,B) be a module over a group object H in Cat and (∼0,∼m) the principal
congruence generated by RB=π2 = (R0, Rm). Then every non-empty R0-composable sequence
f := (f0, . . . , fn) of morphisms inM has a representing singleton. Every representing singleton Υ
of f satisfies Υ ∼m f .

Proof. As (f0, . . . , fn) is R0-composable, there are c1, ..., cn ∈ Ob(H) with s(fi) = ci B t(fi−1) for
i = 1, ..., n. The morphisms gi := idcn···ci+1 B fi satisfy

s(gi) = cn · · · ci+1 B s(fi) = cn · · · ci+1 B (ci B t(fi−1)) = cn · · · ci B t(fi−1) = t(gi−1)

as well as gi ∼m fi because Rm ⊂∼m. With (G4) in Definition 8.15 this implies (g0, . . . , gn) ∼m
(f0, . . . , fn), and with (G3) and the transitivity of ∼m one obtains gn ◦ . . . ◦ g0 ∼m (f0, . . . , fn).

Representing singletons are in general not unique. Recall that for a module (M,B) over a group
object H = 5(B,A I, ∂) the action on the objects and hence R0 are characterised by the B-action
on Ob(M). The action on morphisms and Rm are given by an AoB-action onM(1). By Lemma
8.22 any R0-composable sequence has an equivalent representing singleton. As a consequence,
one can reduce the description of ∼m to only singleton sequences of morphisms. This leads to an
alternative proof of Proposition 8.13.

Proof of Proposition 8.13 (alternative version).
We show that the principal congruence (∼0,∼m) generated by RB=π2 = (R0, Rm) is given by ∼0= R0
and f := (f0, . . . , fn) ∼m h := (h0, . . . , hm) iff their representative singletons Υ,Θ are equivalent:
Υ ∼ Θ. Here, ∼ is the equivalence relation generated by orbits of the AoB-action onM(1) subject
to the relations [τ2] ◦ [τ1] = [τ2 ◦ τ1] for all AoB-orbits [τ1], [τ2] of composable morphisms τ1, τ2 in
M.

1. We first show that this is well-defined: If Υ,Υ′ are representing singletons of (f0, . . . , fn), then
Υ ∼ Υ′.
Let (f0, . . . , fn) be R0-composable with s(fi) = ciBt(fi−1) = c′iBt(fi−1) for some c1, . . . , cn ∈ Ob(H),
c′1, . . . , c

′
n ∈ Ob(H) for i = 1, . . . , n and associated representing singletons

Υ = fn ◦ (idcn B fn−1) ◦ . . . ◦ (idcn...c1 B f0), Υ′ = fn ◦ (idc′n B fn−1) ◦ . . . ◦ (idc′n...c′1 B f0).
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From the identity

idc′n...c′k+1I(cn...ck+1) B idcn...ck+1 B fk = idc′n...c′k+1
B fk,

we have idc′n...c′k+1
B fk ∼Rm idcn...ck+1 B fk for all k = 0, . . . , n− 1. The relation [τ2] ◦ [τ1] = [τ2 ◦ τ1]

for composable morphisms inM then implies Υ ∼ Υ′.

2. By Lemma 8.20 the principal congruence generated by RB=π2 is given by R0 on the objects.

2.1. As Rm is an equivalence relation onM(1), it follows that ∼m is an equivalence relation on the
set of non-empty R0-composable sequences of morphisms.

2.2. We show that (R0,∼m) is a generalised congruence by verifying (G1)-(G4) in Definition 8.15:

(G1) If X ∼R0 Y for X,Y ∈ Ob(M), then there exists a g ∈ Ob(H) with X = gB Y , which implies
idX = idg B idY and hence idX ∼m idY .

(G2) If (f0, . . . , fn) ∼m (h0, . . . , hm) for sequences of R0-composable morphisms with representing
singletons Υ,Θ, then we obtain Υ ∼ Θ and

t(fn) ∼R0 t(Υ), s(f0) ∼R0 s(Υ), t(hm) ∼R0 t(Θ), s(h0) ∼R0 s(Θ).

This is derived from the definition of representing singletons. As morphisms f ∼Rm f ′ and
composable τ1, τ2 ∈M(1) satisfy

s(f) ∼R0 s(f ′), t(f) ∼R0 t(f ′), s([τ2] ◦ [τ1]) = [s(τ1)] = s([τ2 ◦ τ1]),
t([τ2] ◦ [τ1]) = [t(τ2)] = t([τ2 ◦ τ1]),

the representing singletons Υ and Θ satisfy s(Υ) ∼R0 s(Θ) and t(Υ) ∼R0 t(Θ). The claim then
follows from the transitivity of R0.

(G3) For (f, h) with s(h) = t(f) a representing singleton of (f, h) is h ◦ f , hence (f, h) ∼m h ◦ f .

(G4) For (f0, . . . , fn) ∼m (f ′0, . . . , f ′n′), (h0, . . . , hm) ∼m (h′0, . . . , h′m′) R0-composable sequences with
t(fn) ∼R0 s(h0) and representing singletons

Υ = fn ◦ (idcn B fn−1) ◦ . . . ◦ (idcn...c1 B f0), Υ′,
Θ = hm ◦ (iddm B hm−1) ◦ . . . ◦ (iddm...d1 B h0), Θ′ = h′m′ ◦ (idqm′ B h

′
m′−1) ◦ . . . ◦ (idqm′ ...q1 B h

′
0),

it is Υ ∼ Υ′, Θ ∼ Θ′. Additionally, there exist x, x′ ∈ Ob(H) with xB t(fn) = s(h0), x′ B t(fn′) =
s(h′0). Then

℘ := Θ ◦ (iddm...d1x BΥ)
= Θ ◦ (iddm...d1x B fn) ◦ (iddm...d1xcn B fn−1) ◦ . . . ◦ (iddm...d1xcn...c1 B f0),

℘′ := Θ′ ◦ (idqm′ ...q1x′ BΥ′)

are representing singletons of (f0, . . . , fn, h0, . . . , hm), (f ′0, . . . , f ′n′ , h′0, . . . , h′m′). From

[Θ] = [Θ′], [iddm...d1x BΥ] = [Υ] = [Υ′] = [idqm′ ...q1x′ BΥ′]

we obtain [℘] = [Θ] ◦ [Υ] = [Θ′] ◦ [Υ′] = [℘′] and the claim follows.

2.3. It remains to show that (R0,∼m) is minimal. Suppose (∼∗0,∼∗m) is the principal congruence
generated by (R0, Rm), hence Rm ⊆∼∗m. By Lemma 8.20 it is ∼∗0 = R0. Let f, h ∈ M(1) be
composable. Then we have h′ ◦ f ′ ∼∗m h ◦ f for all composable h′, f ′ ∈M(1) with h′ ∼∗m h, f ′ ∼∗m f
by (G4). This implies [h] ◦ [f ] ⊆ [h ◦ f ]. As ∼∗m is an equivalence relation on the set of non-empty,
R0-composable sequences of morphisms inM(1), we obtain [h] ◦ [f ] = [h ◦ f ]. Hence, ∼m⊆∼∗m.
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Corollary 8.23. Let (M,B) be a module over a group object H = 5(B,A,I, ∂) in Cat and
RB=π2 = (R0, Rm) such that h◦f ∼Rm h′◦f ′ for all f, f ′, h, h′ ∈M(1) with s(h) = t(f), s(h′) = t(f ′)
and f ∼Rm f ′, h ∼Rm h′. Then the principal congruence generated by RB=π2 is given by

(f0, . . . , fn) ∼m (h0, . . . , hm)

iff there are representing singletons Υ of (f0, . . . , fn) and Θ of (h0, . . . , hm) with Υ ∼Rm Θ.

Proof. It directly follows [h]Rm ◦ [f ]Rm = [h ◦ f ]Rm for all composable h, f ∈ M(1) and Rm is an
equivalence relation onM(1). Hence, the claim follows from Proposition 8.13.

We also obtain an alternative description of the biinvariants of a Yetter-Drinfeld module over a
group object in Cat. This is already described in Proposition 8.14, but can also be formulated in
terms of generalised congruences.

Proposition 8.24. Let (M,B, F ) be a Yetter-Drinfeld module over a group object H in Cat. Then
the principal congruence ∼= (∼0,∼m) generated by RB=π2 restricts to a generalised congruence
∼′= (∼′0,∼′m) onMcoH , and the biinvariants of (M,B, F ) are the quotientMinv =McoH/ ∼′.

Proof. Due to the conditions on a Yetter-Drinfeld module in Example 2.9, the equivalence relation
∼0 = R0 restricts to an equivalence relation ∼′0 on the set of objects A with F (A) = e. Likewise,
the equivalence relation ∼m restricts to an equivalence relation ∼′m on the set of non-empty R0-
composable sequences of morphisms f with F (f) = 1e. That ∼′0 and ∼′m define a generalised
congruence onMcoH follows by a simple verification of (G1)-(G4). Denote by im(M) =McoH/ ∼′
the associated quotient and by β :McoH → im(M) the associated quotient functor.

We define a functor α : im(M)→MH by setting

• on objects: α : [N ]∼′0 7→ [N ]∼0 ,
• on morphisms: α : [(f0, f1, . . . , fn)]∼′m 7→ [(f0, f1, . . . , fn)]∼m
and show that α is a monomorphism in Cat with α ◦ β = π ◦ ι, where ι : McoH → M and
π :M→MH denote the inclusion and projection functor.

That α is a functor with α ◦ β = π ◦ ι follows directly. To see that α is a monomorphism, let
q1, q2 : Y → im(M) be functors with α ◦ q1 = α ◦ q2 for some small category Y . For all objects Y in
Y and Mi ∈ Ob(M) with qi(Y ) = [Mi]∼′0 the Yetter-Drinfeld module condition then implies

q1(Y ) = [M1]∼′0 = [M1]∼0 = α ◦ q1(X) = α ◦ q2(X) = [M2]∼0 = [M2]∼′0 = q2(Y ).

Likewise, if g is a morphism in Y with (f0, . . . , fn) ∈ q1(g) and (h0, . . . , hm) ∈ q2(g), the identity
α ◦ q1(g) = α ◦ q2(g) yields (f0, . . . , fn) ∼m (h0, . . . , hm). As (f0, . . . , fn), (h0, . . . , hm) are sequences
of morphisms inMcoH , this implies (f0, . . . , fn) ∈ [(h0, . . . , hm)]∼′m and hence q1(g) = q2(g).

To show the universal property of (im(M), α, β), let j : X → MH be a monomorphism and
q :McoH → X a morphism in Cat with j ◦ q = π ◦ ι.

We define a functor ν : im(M)→ X by setting

• on objects: ν : [N ]∼′0 7→ q(N),
• on morphisms: ν : [(f0, . . . , fn)]∼′m 7→ q(f), where f is a morphism in McoH with (f) ∼′m

(f0, . . . , fn). It exists by Lemma 8.22.
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It is well-defined, sinceN ∼′0 N ′ impliesN ∼0 N
′ and hence j◦q(N) = π◦ι(N) = π◦ι(N ′) = j◦q(N ′).

As j is a monomorphism, it follows that q(N) = q(N ′). Analogously, (f) ∼′m (f ′) implies (f)∼m(f ′)
and j ◦ q(f) = π ◦ ι(f) = π ◦ ι(f ′) = j ◦ q(f ′) and hence q(f) = q(f ′).

For the functoriality of ν note that ν([idN ]∼′m) = q(idN ) = idq(N). If (f0, . . . , fn), (h0, . . . , hm) are
∼′0-composable sequences of morphisms inMcoH with s(f0) ∼′0 t(hm), then by Lemma 8.22 they
have representing singletons f ∼′m (f0, . . . , fn) and h ∼′m (h0, . . . , hm) with s(h) = xB t(f) for an
x ∈ Ob(H). This implies (f0, . . . , fn, h0, . . . , hm) ∼′m h ◦ (idx B f) and

ν([(f0, . . . , fn)]∼′m ◦ [(h0, . . . , hm)]∼′m) = ν([(f0, . . . , fn, h0, . . . , hm)]) = ν(h ◦ (idx B f))
= ν(h) ◦ ν(idx B f) = ν(h) ◦ ν(f) = ν([(f0, . . . , fn)]∼′m) ◦ ν([(h0, . . . , hm)]∼′m).

Hence, ν is a functor. A simple computation using j ◦ q = π ◦ ι shows that ν satisfies α = j ◦ ν.
The fact that j is a monomorphism then yields that ν : im(M) → X is the unique functor with
α = j ◦ ν. Thus, im(M) has the universal property of the image.

Proposition 8.24 means that one only considers R0-composable sequences of morphisms inMcoH .
Nevertheless, composites τ2 ◦ τ1, τ ′2 ◦ τ ′1 ∈ (McoH)(1) with τ1 ∼Rm τ ′1, τ2 ∼Rm τ ′2 can be identified
τ2 ◦ τ1 ∼′m τ ′2 ◦ τ ′1 in (McoH)(1), even if τ1, τ2, τ

′
1, τ
′
2 are morphisms inM but not inMcoH .

Proposition 8.24 leads to the question whetherMinv is the coequaliser of the restricted action

B|McoH := B ◦ (1H × ι) : H ×McoH →McoH

and π2 : H×McoH →McoH . This is true iff ∼′= (∼′0,∼′m) is minimal, i.e. the principal congruence
generated by RB|McoH=π2 . In general this is not clear, but the following Lemma provides a sufficient
condition applicable to the Kitaev model.

Lemma 8.25. Let Σ be a surface of genus g ≥ 1 and H = 5(B,A,I, ∂) with ∂ ≡ eB a group object
in Cat, such that the coinvariantsMcoH are a full subcategory ofM = H×E. Then the protected
objectMinv is the coequaliser of the restricted action B|McoH and π2 : H ×McoH →McoH .

Proof. 1. We first show that for R0-composable sequences (f0, . . . , fn) of morphisms in M the
following two equivalences hold:

s(f0) ∈ Ob(McoH)⇔ f0, . . . , fn are all inMcoH ,

s(f0) /∈ Ob(McoH)⇔ none of the morphisms f0, . . . fn is inMcoH .

To verify this recall that H×E is a Yetter-Drinfeld module, which implies g1 BX ∈ Ob(McoH) and
g2Bx ∈ (McoH)(1) for all g1 ∈ Ob(H), g2 ∈ H(1), X ∈ Ob(McoH), x ∈ (McoH)(1). For a morphism
f = (a, b) ∈ H(1) = AoB, the source and target of f are given by s(f) = b and t(f) = ∂(a)b = b.

Hence, for an R0-composable sequence (f0, . . . , fn) of morphisms in M with s(f0) ∈ Ob(McoH)
inductively follows that s(fi) = t(fi) ∈ Ob(McoH) for all i = 0, . . . , n. Thus, we obtain fi ∈
(McoH)(1) for i = 0, . . . , n, as McoH is a full subcategory. Clearly, f0 ∈ (McoH)(1) implies
s(f0) ∈ Ob(McoH). Analogously, f0 /∈ (McoH)(1) yields s(f0) = t(f0) /∈ Ob(McoH), as the latter is
a full subcategory. If s(f0) /∈ Ob(McoH), then s(f0) = t(f0) ∼R0 s(f1). It follows inductively that
s(fi) and fi are not inMcoH for i = 0, . . . , n.

2. We now show that the restriction ∼′= (∼′0,∼′m) of the principal congruence generated by RB=π2

onMcoH is the principal congruence generated by RB|McoH=π2 . Suppose there exists a generalised
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congruence (∼′0,∼#
m) onMcoH with Rm|McoH ⊆∼#

m(∼′m. We define (∼0,∼km) onM via

(f0, . . . , fn) ∼km (h0, . . . , hm) :⇔


(f0, . . . , fn) ∼#

m (h0, . . . , hm) if s(f0), s(h0) ∈ Ob(McoH),
(f0, . . . , fn) ∼sm (h0, . . . , hm) if s(f0) /∈ Ob(McoH)

or s(h0) /∈ Ob(McoH)

on the set of R0-composable sequences of morphisms in M, with ∼sm from (74). We show
that (∼0,∼km) is a generalised congruence on M. By 1. it is well-defined and as (∼0,∼sm)
is a generalised congruence, ∼km is an equivalence relation. Likewise (G1)-(G3) follow. For
(f0, . . . , fn) ∼km (f ′0, . . . , f ′n′), (h0, . . . , hm) ∼km (h′0, . . . , h′m′) with t(fn) ∼0 s(h0) either both pairs of
sequences are related via ∼#

m and hence also (f0, . . . , fn, h0, . . . , hm) and (f ′0, . . . , f ′n′ , h′0, . . . , h′m′)
by (G4) or they are both related via ∼sm.

The intersection of (∼0,∼m) and (∼0,∼km) is a generalised congruence onM, which is a proper
subset of the principal congruence (∼0,∼m), as ∼#

m(∼′m. This contradicts the minimality of
(∼0,∼m).

Both approaches, the one in Section 8.2 and the one in Section 8.4 can be applied to determine
coequalisers and invariants of modules over group objects in Cat. Here, the approach via nerve and
homotopy functor from Section 8.2 appears to be more elegant. In particular, instead of dealing
with sequences of morphisms of any finite length, by applying nerve and homotopy functor one can
restrict to composable pairs of morphisms. Consequently, the essential relation determining the
equivalence classes of morphisms in the invariantsMH is more transparent.

Although the approach involving generalised congruences is more technical, it also provides some
insights about the invariants and protected objects. Specifically, it is helpful in determining when the
protected object is the coequaliser of a restricted action. Moreover, the generalised congruences from
(74) and Corollary 8.23 offer some intuition and examples for the equivalence classes of morphisms
inMinv.

8.6 Protected objects for group objects in Cat

We now give a concrete description of the coinvariants and the protected objects for oriented
surfaces Σ of genus g ≥ 1 and group objects H = 5(B,A,I, ∂) in Cat. We start by considering
the Yetter-Drinfeld module and the coinvariants for the standard graph from (21) and show that
they are given by group homomorphisms ρ : F2g → AoB and ρ : π1(Σ)→ AoB, respectively. To
describe their category structure, we consider group-valued 1-cocycles.

Definition 8.26.
Let K,A be groups and I: K ×A→ A a group action of K on A by automorphisms.

1. A 1-cocycle is a map φ : K → A with φ(λµ) = φ(λ) · (λ I φ(µ)) for all λ, µ ∈ K.
2. A 1-coboundary is a map ηa : K → A, λ 7→ a(λ I a−1) for some a ∈ A.
3. φ, ψ : K → A are related by a coboundary if ψ(λ) = a · φ(λ) · (λ I a−1) for some a ∈ A.

If A is abelian, 1-cocycles form a group Z1(K,A,I) with pointwise multiplication and cobound-
aries form a subgroup B1(K,A,I). The factor group is the first cohomology group H1(K,A,I).
More generally, 1-cocycles with values in a (not necessarily abelian) group A arise from group
homomorphisms into a semidirect product AoB.
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Lemma 8.27.
Let I: B ×A→ A a group action by automorphisms and AoB the associated semidirect product.

1. Group homomorphisms σ : K → AoB correspond to pairs (φ, ρ) of a group homomorphism
ρ : K → B and a 1-cocycle φ : K → A for the action ρ∗ I: K ×A→ A, (λ, a) 7→ ρ(λ) I a.

2. Two 1-cocycles φ, φ′ : K → A for ρ∗ I are related by a coboundary iff the group homomorphisms
(φ, ρ), (φ′, ρ) : K → AoB are related by conjugation with A ⊂ AoB.

If the semidirect product in Lemma 8.27 arises from a crossed module (B,A,I, ∂), the group
homomorphism ∂ : A → B allows one to organise the group homomorphisms ρ : K → B and
1-cocycles φ : K → A from Lemma 8.27 into a groupoid. Denoting by φ · ψ and φ−1 the pointwise
product and inverse of maps φ, ψ : K → A we have

Lemma 8.28.
Any group K and crossed module (B,A,I, ∂) defines a groupoid Hom(K,B I A) with

• group homomorphisms ρ : K → B as objects,
• Hom(ρ, ρ′) = {(φ, ρ) | φ : K → A 1-cocycle for ρ∗ I with (∂ ◦ φ) · ρ = ρ′},
• composition of morphisms: (ψ, (∂ ◦ φ) · ρ) ◦ (φ, ρ) = (ψ · φ, ρ),
• inverse morphisms: (φ, ρ)−1 = (φ−1, (∂ ◦ φ) · ρ).

Proof. A direct computation using (70) shows that for any pair (φ, ρ) of a group homomorphism
ρ : K → B and a 1-cocycle φ : K → A for ρ∗ I, the map (∂ ◦ φ) · ρ : K → B is another group
homomorphism. Similarly, if φ is a 1-cocycle for ρ∗ I and ψ a 1-cocycle for ((∂ ◦ φ) · ρ)∗ I, then
ψ · φ is another 1-cocycle for ρ∗ I. The formula for the inverse morphism follows directly.

By applying this lemma to Example 4.8, we obtain a groupoid that describes the Yetter-Drinfeld
module for a group object H = 5(B,A,I, ∂) in Cat and the standard graph (21), if we set K = F2g
and identify the generators of F2g with the edges of the graph. An analogous result holds for the
associated coinvariants for K = π1(Σ) and any properly embedded graph with a single vertex.

Proposition 8.29.
Let Γ be a properly embedded graph with a single vertex on a surface Σ of genus g ≥ 1 and
H = 5(B,A,I, ∂) a group object in Cat. Then the associated coinvariants are the groupoid from
Lemma 8.28 for K = π1(Σ).

Proof. By Theorem 5.23 it suffices to consider the graph in (21).

By Example 4.8 the coinvariants are the equaliser of the morphisms η ε, F : H×2g → H in
Cat, where ε : H×2g → {·} is the terminal morphism, η : {·} → H is as in Definition 8.1
and F : H×2g → H is given by F (a1, b1, . . . , ag, bg) = [b−1

g , ag] · · · [b−1
1 , a1]. By Lemma 8.6, this

equaliser is the subcategory E ⊂ H×2g consisting of objects C and morphisms f with F (C) = e and
F (f) = 1e. For H = 5(B,A,I, ∂), this yields with Theorem 8.4

Ob(E) = {(a1, b1, . . . , ag, bg) ∈ B×2g | [b−1
g , ag] · · · [b−1

1 , a1] = 1},
E(1) = {(a1, b1, . . . , ag, bg) ∈ (AoB)2g | [b−1

g , ag] · · · [b−1
1 , a1] = 1}.

Thus, every object ρ ∈ Ob(E) corresponds to a group homomorphism ρ : π1(Σ) → B and every
morphism σ ∈ E(1) to a group homomorphism σ : π1(Σ)→ AoB. By Lemma 8.27 the latter defines
a pair σ = (φ, ρ) of a group homomorphism ρ : π1(Σ)→ B and a 1-cocycle φ for ρ∗ I.
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We now use the description of the coinvariants in Proposition 8.29 and the description of the image
object in Cat from Proposition 8.14 to compute the protected object for a surface Σ of genus g ≥ 1
and a crossed module (B,A,I, ∂).

Theorem 8.30. The protected object for a group object H = 5(B,A,I, ∂) in Cat and a surface Σ
of genus g ≥ 1 is a groupoidMH,Σ with

• conjugacy classes of group homomorphisms ρ : π1(Σ)→ B as objects,
• equivalence classes of group homomorphisms τ = (φ, ρ) : π1(Σ)→ AoB as morphisms from

[ρ] to [(∂ ◦ φ) · ρ].

The equivalence relation is given by τ2 ◦ τ1 ∼ τ ′2 ◦ τ ′1 for all composable pairs (τ1, τ2) and (τ ′1, τ ′2) of
group homomorphisms τi, τ ′i : F2g → AoB such that τi, τ ′i are conjugate and τ2 ◦ τ1, τ

′
2 ◦ τ ′1 define

group homomorphisms π1(Σ)→ AoB.

Proof. By Theorem 5.23 the protected object of Σ is a topological invariant and can be computed
from the standard graph in (21). This yields a Yetter-Drinfeld module (M,B, δ) over 5(B,A,I, ∂)
given by formula (29). Hence, we have M(1) = (A o B)2g ∼= Hom(F2g, A o B) with the module
structure given by conjugation and the comodule structure by the defining relation of π1(Σ).

By Proposition 8.29 the associated coinvariants form a groupoidMcoH with group homomorphisms
ρ : π1(Σ)→ B as objects and group homomorphisms τ = (φ, ρ) : π1(Σ)→ AoB as morphisms from
ρ to (∂ ◦ φ) · ρ. By Propositions 8.13 and 8.14 the associated image object is the groupoid, whose
objects are orbits of group homomorphisms ρ : π1(Σ)→ B under the conjugation action of B and
whose morphisms are the images of group homomorphisms τ : π1(Σ)→ AoB under the projection
functor π :M→MH . The latter is given by the equivalence relation in the theorem.

There are a number of cases in which the protected object has a particularly simple form. They
correspond to crossed modules in which part of the data is trivial. The first corresponds to the
case, where the Moore complex of the crossed module has trivial non-abelian homologies, namely
ker(∂) = {1} and B/∂(A) = 1. The second is the case where the action of B on A is trivial.

Example 8.31. Let Σ be a surface of genus g ≥ 1 and (B,A,I, ∂) a crossed module, where ∂ is
an isomorphism. Then the protected object has

• conjugacy classes of group homomorphisms ρ : π1(Σ)→ B as objects,
• exactly one morphism between any two objects.

Proof. All morphism sets in the groupoid from Lemma 8.28 contain exactly one morphism, since
Hom(ρ, σ) = {(∂−1(σ · ρ−1), ρ)} for all group homomorphisms ρ, σ : π1(Σ) → B. Conjugating a
morphism in Hom(ρ, σ) with an element of (a, b) ∈ AoB yields the unique morphism from bρb−1

to (∂(a)b)σ (∂(a)b)−1. This shows that all morphisms from conjugates of a group homomorphism
ρ : π1(Σ)→ B to a conjugate of a group homomorphism σ : π1(Σ)→ B are conjugated and hence
identified inMH and inMinv.

Example 8.32. Let Σ be a surface of genus g ≥ 1 and (B,A,I, ∂) a crossed module with a trivial
group action I. Then the protected object is Hom(π1(Σ), A×B)/A×B with

• conjugacy classes of group homomorphisms ρ : π1(Σ)→ B as objects,
• group homomorphisms φ : π1(Σ)→ A as morphisms from [ρ] to [(∂ ◦ φ) · ρ].

Proof. If I: B ×A→ A is trivial, then conditions (70) imply that A is abelian with ∂(A) ⊂ Z(B).
As A is abelian and I trivial, the 1-cocycles from Definition 8.26 are simply group homomorphisms
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φ : π1(Σ)→ A and any 1-coboundary is trivial. The groupoidMcoH from Lemma 8.28 thus has as
objects group homomorphisms ρ : π1(Σ)→ B and as morphisms τ = (φ, ρ) : ρ→ (∂ ◦ φ) · ρ group
homomorphisms τ = (φ, ρ) : π1(Σ)→ A×B.

As A is abelian and I trivial, two group homomorphisms τ = (φ, ρ), τ ′ = (φ′, ρ′) : π1(Σ)→ AoB
are conjugate iff φ′ = φ and ρ′ = bρb−1 for some b ∈ B. Thus, the relation on morphisms in Theorem
8.30 identifies τ and τ ′ iff φ = φ′ and [ρ] = [ρ′].

In the case of a trivial group homomorphism ∂ : A → B all morphisms in M, McoH , MH and
Minv are automorphisms. This yields

Example 8.33. Let Σ be a surface of genus g ≥ 1 and H = 5(B,A,I, ∂) with A abelian and a
trivial group homomorphism ∂ ≡ 1. Then the associated protected object is

MH,Σ = q[ρ]∈Hom(π1(Σ),B)/B G[ρ],

where G[ρ] is a factor group of H1(π1(Σ), A, ρ∗ I).

Proof. If ∂ is trivial and A abelian, then every 1-cocycle φ : π1(Σ) → A for ρ∗ I defines an
automorphism of ρ inMcoH , which impliesMcoH = qρ∈Hom(π1(Σ),B)Z

1(π1(Σ), A, ρ∗ I).

As all morphisms inMcoH are automorphisms, two morphisms given by group homomorphisms
τ = (φ, ρ) : π1(Σ) → A o B and τ ′ = (φ′, ρ′) : π1(Σ) → A o B are composable iff ρ = ρ′. By
Lemma 8.27, 2. two group homomorphisms (φ, ρ) : π1(Σ) → A o B and (φ′, ρ) : π1(Σ) → A o B
are related by conjugation with A ⊂ A o B iff φ, φ′ are related by a 1-coboundary. Thus for a
group homomorphism ρ : π1(Σ)→ B, the automorphism group of [ρ] inMinv is a factor group of
H1(π1(Σ), A, ρ∗ I).

By Theorem 8.30 group homomorphisms τ, τ ′ : π1(Σ)→ AoB that are conjugated define the same
morphism in Minv. This implies in particular that the morphism in MH,Σ defined by a group
homomorphism σ = (φ, ρ) : π1(Σ)→ AoB depends on φ only up to coboundaries. Modifying φ
with a coboundary yields a group homomorphism σ′ = (φ′, ρ) conjugated to σ by Lemma 8.27, 2.

However, except for the situation in Examples 8.31 and 8.32, it is difficult to describe the category
MH,Σ explicitly, even for genus g = 1 and crossed modules given by normal subgroups. This is
due to the fact that the equivalence relation in Theorem 8.30 also identifies morphisms inMcoH in
different AoB-orbits. This is illustrated by the following two examples.

Example 8.34. Let Σ be the torus with π1(Σ) = Z×Z and consider the crossed module (S3, A3,I, ι),
where ι : A3 → S3 is the inclusion and I: S3 ×A3 → A3, b I a = bab−1 the conjugation action.

We specify group homomorphisms ρ : Z× Z→ S3 and 1-cocycles φ : Z× Z→ A3 by the images of
(1, 0) and (0, 1) and write ρ = (ρ(1, 0), ρ(0, 1)) for the former and φ = 〈φ(1, 0), φ(0, 1)〉 for the latter.
We determine the conjugacy classes of group homomorphisms ρ : Z× Z→ S3. For instance, as

((12) id (12), (12)(123)(12)) = (id, (132)),

the group homomorphisms (id, (123)) and (id, (132)) are in the same conjugacy class. Overall, the
conjugacy classes of group homomorphisms ρ : Z× Z→ S3 are given by
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C1 = {(id, id)}
C2 = {(id, c) | c ∈ A3 \ {id}} C ′2 = {(c, id) | c ∈ A3 \ {id}}
C3 = {(c, c) | c ∈ A3 \ {id}}
C4 = {(c, c′) | c 6= c′ ∈ A3 \ {id}}
C5 = {(id, σ) | σ ∈ S3 \A3} C ′5 = {(σ, id) | σ ∈ S3 \A3}
C6 = {(σ, σ) | σ ∈ S3 \A3}

If ρ(Z× Z) ⊂ A3, then 1-cocycles for ρ∗ I are simply group homomorphisms φ : Z× Z→ A3. The
1-cocycles for ρ∗ I for ρ ∈ C5 ρ ∈ C ′5 and ρ ∈ C6 on the contrary have a more restrictive form. If
ρ ∈ C5 the group homomorphism has the form ρ(k, l) = id if l is even and ρ(k, l) = σ ∈ S3 \A3 if l
is odd, where k, l ∈ Z. A 1-cocycle φ : π1(Σ)→ A3 for ρ∗ I has to satisfy

φ(k + r, l + q) = φ(k, l) ρ(k, l)φ(r, q) ρ(k, l)−1 (75)

for all k, l, r, q ∈ Z, which is equivalent to

φ(k, l) =
{
φ(k + r, l + q)φ(r, q)−1 l even
φ(k + r, l + q)σ φ(r, q)−1 σ = φ(k + r, l + q)φ(r, q) l odd.

(76)

Swapping roles of k, r and l, q yields

φ(r, q) =
{
φ(k + r, l + q)φ(k, l)−1 q even
φ(k + r, l + q)φ(k, l) q odd.

Combining the last two equations for l odd implies

φ(k, l) =
{
φ(k + r, l + q)2 φ(k, l)−1 l odd, q even
φ(k + r, l + q)2 φ(k, l) l odd, q odd.

Hence, for l, q odd we obtain φ(k + r, l + q)2 = id. Together with φ(k + r, l + q) ∈ A3 this yields
φ(k+ r, l+ q) = id, which implies φ(k, l) = id for all even l ∈ Z and all k ∈ Z. Moreover, combined
with (76) for all odd l, l′ ∈ Z and all k ∈ Z it follows that

id = φ(k + k, l + l′) = φ(k, l)φ(k, l′)−1,

hence φ(k, l) = φ(k, l′). Overall, the 1-cocycles for ρ∗ I with ρ ∈ C5 are thus given by

〈id, c〉(k, l) =
{
c l odd
id l even,

where c ∈ A3 and k, l ∈ Z. Analogous computations yield that the 1-cocycles for ρ ∈ C ′5 are given by
〈c, id〉 and for ρ ∈ C6 given by 〈c, c〉 with

〈c, id〉(k, l) =
{
c k odd
id k even

, 〈c, c〉(k, l) =
{
c k + l odd
id k + l even

,

where c ∈ A3, k, l ∈ Z.

The protected object Minv has the objects C1, C2, C ′2, C3, C4, C5, C ′5, C6. Its morphisms are
equivalence classes of morphisms inMcoH , that is, of 1-cocycles. The morphisms inMcoH starting
in ρ ∈ C1 are the trivial 1-cocycle φ ≡ id as identity morphism and the cocycles φ; 〈c, c′〉 : (id, id)→
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(c, c′) for c, c′ ∈ A3. A pair (φ, ρ ≡ id) is conjugate to a pair (φ′, ρ ≡ id) iff there exist a ∈ A3,
b ∈ S3 such that

(a, b) · (φ(λ), id) · (a, b)−1 = (φ′(λ), id)

for all λ ∈ Z× Z. This is equivalent to

(abφ(λ)b−1a−1, id) = (φ′(λ), id).

For φ = 〈id, (123)〉, φ′ = 〈id, (132)〉 we find that with a = id, b = (12) we have (φ, id) ∼ (φ′, id).
Overall, we obtain the conjugate pairs

〈id, (123)〉 : (id, id)→ (id, (123)) ∼ 〈id, (132)〉 : (id, id)→ (id, (132))
〈(123), id〉 : (id, id)→ ((123), id) ∼ 〈(132), id〉 : (id, id)→ ((132), id)
〈(123), (123)〉 : (id, id)→ ((123), (123)) ∼ 〈(132), (132)〉 : (id, id)→ ((132), (132))
〈(123), (132)〉 : (id, id)→ ((123), (132)) ∼ 〈(132), (123)〉 : (id, id)→ ((132), (123)),

where we again use cycle notation for elements of S3. As each of these pairs defines a single
morphism inMinv, there is exactly one morphism from C1 to each of the conjugacy classes C2, C ′2,
C3, C4. AsMinv is a groupoid, there is exactly one morphism between any two of these conjugacy
classes.

Each of the 1-cocycles 〈id, c〉, 〈c, id〉, 〈c, c〉 with c ∈ A3 defines a morphism in McoH within the
conjugacy classes C5, C ′5, C6. The morphisms between objects in C5 inMcoH are

〈id, id〉 : (id, (12))→ (id, (12)) 〈id, id〉 : (id, (13))→ (id, (13)) 〈id, id〉 : (id, (23))→ (id, (23))
〈id, (123)〉 : (id, (12))→ (id, (13)) 〈id, (123)〉 : (id, (13))→ (id, (23)) 〈id, (123)〉 : (id, (23))→ (id, (12))
〈id, (132)〉 : (id, (12))→ (id, (23)) 〈id, (132)〉 : (id, (13))→ (id, (12)) 〈id, (132)〉 : (id, (23))→ (id, (13)).

All morphisms in the first line are conjugate. The first morphism in the second line is conjugate to
the morphisms in the second and third line via cyclic permutations and transpositions. As

〈id, id〉 = 〈id, (123)〉 ◦ 〈id, (132)〉 : (id, (12))→ (id, (12))
〈id, (123)〉 = 〈id, (132)〉 ◦ 〈id, (132)〉 : (id, (12))→ (id, (13))

with 〈id, (132)〉 ∼ 〈id, (123)〉, all morphisms are identified by the relation in Theorem 8.30 and define
a single morphism inMinv. Hence, the identity morphism is the only automorphism of C5 inMinv

and likewise for C ′5 and C6. ThusMinv is the groupoid in Figure 4.

Example 8.35. Let Σ be the torus and consider the crossed module (S3, A3,I, ∂) with the trivial
group homomorphism ∂ : A3 → S3, a 7→ id and I: S3 ×A3 → A3, b I a = bab−1.

Then the protected object Minv has the same objects as in Example 8.34. As ∂ is trivial, all
morphisms in McoH and Minv are automorphisms. The object (id, id) in McoH has the identity
morphism 〈id, id〉 and the following four conjugate pairs of automorphisms

〈id, (123)〉 ∼ 〈id, (132)〉, 〈(123), id〉 ∼ 〈(132), id〉,
〈(123), (123)〉 ∼ 〈(132), (132)〉, 〈(123), (132)〉 ∼ 〈(132), (123)〉.

The relation for morphisms in Theorem 8.30 then implies

〈id, id〉 = 〈id, (123)〉 ◦ 〈id, (132)〉 ∼ 〈id, (132)〉 ◦ 〈id, (132)〉 = 〈id, (123)〉
〈id, id〉 = 〈(123), id〉 ◦ 〈(132), id〉 ∼ 〈(132), id〉 ◦ 〈(132), id〉 = 〈(123), id〉
〈id, id〉 = 〈(123), (123)〉 ◦ 〈(132), (132)〉 ∼ 〈(132), (132)〉 ◦ 〈(132), (132)〉 = 〈(123), (123)〉
〈id, id〉 = 〈(123), (132)〉 ◦ 〈(132), (123)〉 ∼ 〈(132), (123)〉 ◦ 〈(132), (123)〉 = 〈(123), (132)〉.
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Figure 4: The groupoidMinv from Example 8.34

C1 C2 C′2 C3 C4 C5 C′5 C6

Figure 5: The groupoidMinv from Example 8.35

As all automorphisms of (id, id) in McoH are identified, C1 has a single automorphism in Minv.
As in Example 8.34, all morphisms between objects in C5 are identified and likewise for C ′5, C6.

In contrast, the automorphism group of each element of C2, C ′2, C3, C4 in M and McoH is
A3 ×A3. Automorphisms of these objects inM coincide with their automorphisms inMcoH . Each
automorphism of an object in one of these conjugacy classes is conjugate only to itself and to
automorphisms of different objects in the same conjugacy class. As any composable sequence of
morphisms inM involves only automorphisms of the same object, the automorphism groups of these
conjugacy classes inMinv are given by A3 ×A3. Thus, the groupoidMinv is as in Figure 5.

Remark 8.36. Examples 8.34 and 8.35 show that for a group object in Cat the equivalence classes
of morphisms in the protected object from Theorem 8.30 do in general not correspond to conjugacy
classes. Moreover, they reveal two further aspects:

1. Example 8.34 shows that there are cases where the generalised congruence (R0,∼sm) from (74) is
the principal congruence. Recall that this corresponds to the case where two morphisms are equivalent
if and only if their sources as well as targets are in the same conjugacy class. Clearly, by Example
8.35 this is not the general case.

2. In the proof of Proposition 8.14 for the standard graph, the whole conjugacy class of a morphism
f is contained inMcoH iff f is contained inMcoH . This does not hold for the equivalence classes
of f from Proposition 8.13. A counterexample can be found for the torus and the group object
H = 5(S3, A3,I, ∂) from Example 8.35. Morphisms in H×2 can be written as (c1, d1, c2, d2) with
c1, c2 ∈ A3, d1, d2 ∈ S3. We consider the morphisms

f := (id, (23), (123), id) : ((23), id)→ ((23), id),
h := (id, (23), (132), id) : ((23), id)→ ((23), id).
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Conjugating (id, (23)) and ((123), id) by (id, (23)) in AoB yields (id, (23)) and ((132), id). Hence,
we obtain

(id, (23))B f = (id, (23), (132, id) : ((23), id)→ ((23), id).

Both f and (id, (23))B f can be post-composed by h, which yields

h ◦ f = (id, (23), id, id) ∼ h ◦ ((id, (23))B f) = (id, (23), (123), id) = f.

Thus, f and h ◦ f are in the same equivalence class, but h ◦ f ∈ (McoH)(1), whereas f /∈ (McoH)(1).
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9 Mapping class group actions

In [MV] Meusburger and Voß constructed mapping class group actions associated to pivotal Hopf
monoids in symmetric monoidal categories. In the notation and conventions of this thesis, these act
on the Yetter-Drinfeld module from Example 4.8 and on protected objects for graphs with a single
vertex and face. The mapping class group actions are obtained by assigning sequences of edge slides
to a set of generating Dehn twists in a presentation of the mapping class group. In this chapter,
we recall the mapping class group actions from [MV] and then combine them with our results to
mapping class group actions on protected objects for any connected ribbon graph. We show that
these mapping class group actions for C = Set,SSet,Cat correspond to mapping class group actions
induced by representation varieties.

We start with some background on mapping class groups and Dehn twists and recall Gervais’
presentation of the mapping class group in Section 9.1. Section 9.2 summarises the construction
from [MV]. We then show in Section 9.3 how these actions induce mapping class group actions on
protected objects and explicitly describe them for C = Set,SSet,Cat.

Unless stated otherwise, throughout this chapter Σ is an oriented surface of genus g ≥ 1 and Σ \D
the associated surface with a disc removed and fundamental group π1(Σ \D) = F2g.

9.1 Background on mapping class groups and Dehn twists

In this section, we summarise the background on mapping class groups and Dehn twists. In
particular, we consider a finite presentation of the mapping class group in terms of Dehn twists by
Gervais [Ge]. For the general definitions we follow Farb and Margalit [FM].
Definition 9.1. [FM, Sec. 2.1] The mapping class group Map(Σ) of Σ is the quotient of the group
Homeo+(Σ) of orientation preserving homeomorphisms of Σ by the normal subgroup Homeo0(Σ) of
homeomorphisms homotopic to the identity.

The mapping class group is isomorphic to the group of outer automorphisms of the fundamental
group π1(Σ)

Map(Σ) = Homeo+(Σ)/Homeo0(Σ) ∼= Out(π1(Σ)) = Aut(π1(Σ))/Inn(π1(Σ)).

As the homeomorphisms in Homeo+(Σ) are orientation preserving, one can replace homotopic by
isotopic in the definition of Map(Σ), compare Farb and Margalit [FM, Sec. 2.1]. The mapping class
group of Σ \D is defined analogously with the additional condition that all homeomorphisms fix
the boundary of D pointwise, see Farb and Margalit [FM, Sec. 2.1]. The mapping class groups
Map(Σ) and Map(Σ \D) can be presented with the same generators but with additional relations
for Map(Σ), see for instance [Ge].

Informally, a Dehn twist along a simple closed curve c on an oriented surface is the orientation
preserving homeomorphism of the surface obtained by cutting it along c, twisting one of the ends
by 2π and gluing it back, see Saveliev [Sav, Sec. 1.4]. For a more formal definition we mainly follow
Farb and Margalit [FM, Sec. 3.1.1], but also Birman [Bi, Sec. 4.3], Morita [Mo, Sec. 5] and Korkmaz
[Kor, Sec. 2.1].

First, we consider the surface of a cylinder C := S1 × [0, 1] with central curve γ := S1 × {1
2}. To

endow C with an orientation, one can embed C into R2 via polar coordinates (θ, t) 7→ (θ, t+ 1) and
equip it with the inherited standard orientation. On the surface of the cylinder we define the map

D′γ : C → C, D′γ(θ, t) = (θ + 2πt, t). (77)
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α

γ Dγ(α)

Figure 6: Right Dehn twist along γ.

Clearly, D′γ is an orientation preserving homeomorphism that fixes ∂C. It can be illustrated as
follows:

α

γ

D′γ(α)

The image D′γ(α) of a segment α as depicted above turns left into γ, follows γ and then goes back
to the endpoint of α.

To define the Dehn twist along a simple closed curve c on an oriented surface Σ, we choose an
orientation preserving embedding Ic : C → N (c) ⊆ Σ onto a neighborhood N (c) of c such that
Ic(γ) = c.

Definition 9.2. [FM, Sec. 3.1.1] The Dehn twist along the simple closed curve c is the mapping
class Dc : Σ → Σ defined by Ic ◦D′γ ◦ I−1

c on N (c) with D′γ from (77) and extended to Σ by the
identity map outside N (c).

Different choices of the neighborhood N (c) or replacing c by an isotopic curve yield isotopic Dehn
twists, compare [Sav, Sec. 1.4]. The described Dehn twists Dc are left Dehn twists along c. Replacing
(77) by

D′γ(θ, t) = (θ − 2πt, t)

in Definition 9.2 yields Dehn twists in the opposite direction, called right Dehn twists. Right Dehn
twists are inverse to left Dehn twists, see [FM, Sec. 3.1.1]. Figure 6 illustrates a right Dehn twist on
the torus.

There are many different presentations of mapping class groups. For instance, in [Be, Th. 7.1] Bene
gave a presentation of Map(Σ \ D) in terms of chord slides. Chord slides can be seen as edges
in a connected graph with a single vertex. It is shown in [MV, Prop.] that the edge slides from
Definition 5.5 satisfy the relations in Bene’s presentation. As a consequence, the slides give rise to
actions of Map(Σ \D) by automorphisms of Yetter-Drinfeld modules.

Another finite presentation of mapping class groups is provided by Gervais [Ge] in terms of generating
Dehn twists building on the work of Wajnryb [Wa]. Based on Gervais’ result actions of the mapping
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αg

α1

αg−2

αg−1

δ0 δ1

δ2

δ3

δ2g−4
δ2g−3

δ2g−2

Figure 7: The curves δj and αi from Theorem 9.3.

class group Map(Σ \D) on the Yetter-Drinfeld module in Example 4.8 are obtained in [MV]. In
analogy to Gervais’ presentation the actions can be concretely described in terms of generating Dehn
twists. Moreover, this result induces an action of Map(Σ) by automorphisms of the biinvariants.

We recall Gervais’ presentation in the notation of [MV, Th. 4.1, Sec. 9]. This presentation is for
oriented surfaces of any genus g ≥ 1 and any number n of boundary components as long as g+n ≥ 2.
We restrict attention to the cases n = 0, 1. We say that simple closed curves α, β are disjoint if
their homotopy classes have representatives that are disjoint. Likewise, we write |α ∩ β| = 1 if they
intersect in a single point.

Theorem 9.3. [Ge, Th. 1] Let

Ω := {αi | i = 1, . . . , g} ∪ {δj | j = 0, . . . , 2g − 2} ∪ {γk,l | k, l = 0, . . . , 2g − 2, k 6= l}

be the set of the simple closed curves depicted in Figures 7 and 8. Then the mapping class group
Map(Σ \D) is generated by Dehn twists along the curves in Ω, subject to the following relations

a) Dα ◦Dβ = Dβ ◦Dα for all disjoint α, β ∈ Ω.
b) Dα ◦Dβ ◦Dα = Dβ ◦Dα ◦Dβ for all α, β ∈ Ω with |α ∩ β| = 1.
c) Dγ2j+1,2j = Dγ2j,2j−1 for j = 0, . . . , g − 2 and Dγ1,2g−2 = Dγ2g−2,2g−3.
d) (Dδk ◦Dδi ◦Dδj ◦Dαg)3 = Dγi,j ◦Dγj,k ◦Dγk,i for i, j, k not all equal and such that the triple

(i, k, j) or a cyclic permutation satisfies i ≤ k ≤ j with Dγi,i := id for all i.

9.2 Twists assigned to paths in ribbon graphs

Throughout this section, let H be an involutive Hopf monoid in C . Every curve in the presentation
of the mapping class group Map(Σ \D) from Theorem 9.3 defines an element of π1(Σ \D). In [MV]
endomorphisms of H⊗E , called twists, are associated to these curves. They are given as sequences
of edge slides and satisfy the relations of Theorem 9.3. Hence, the endomorphisms correspond to
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γi,j

γk,i

δi

δk

δj

γj,k

Figure 8: The curves γi,j , γj,k, γk,i and δi, δj , δk for j < i < k from Theorem 9.3.

Dehn twists and give rise to actions of the mapping class group Map(Σ \D) on H⊗E . They also
induce actions of Map(Σ) on the protected objects considered in the next section. Recall that the
fundamental group of Σ \D is given by

π1(Σ \D) = 〈α1, β1, . . . , αg, βg〉 = F2g.

The edges of the standard graph from (21) correspond to the generators of π1(Σ \D), compare
Chapter 3. By comparing Figure 2 with Figures 7 and 8 one can express the curves from Theorem
9.3 in terms of the generators α1, . . . , βg, see Table 1 and [MV, Sec. 9]. Note that in contrast to
[MV, Sec. 9] where the surface can have several boundary components, we restrict to the situation
of Σ \D.

index curve representing element in π1(Σ \D)

i = 1, . . . , g αi αi

δ0 β−1
g

1 ≤ j ≤ g − 1 δ2j−1 α−1
j ◦ βj ◦ αj ◦ β

−1
j ◦ . . . ◦ α

−1
g−1 ◦ βg−1 ◦ αg−1 ◦ β−1

g−1 ◦ α−1
g ◦ βg ◦ αg

1 ≤ j ≤ g − 1 δ2j β−1
j ◦ α

−1
j+1 ◦ βj+1 ◦ αj+1 ◦ β−1

j+1 ◦ . . . ◦ α
−1
g−1 ◦ βg−1 ◦ αg−1 ◦ β−1

g−1

◦α−1
g ◦ βg ◦ αg

1 ≤ i ≤ 2g − 2 γi,0 δi ◦ β−1
g

1 ≤ j < i ≤ 2g − 1 γi,j δj ◦ δ−1
i

1 ≤ j ≤ 2g − 2 γ0,j δj ◦ α−1
g ◦ β−1

g ◦ αg
1 ≤ i < j ≤ 2g − 2 γi,j δi ◦ αg ◦ δ−1

j ◦ α−1
g

Table 1: The curves from Theorem 9.3 as composites of the generators of π1(Σ \ D) from [MV,
Sec. 9].
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All paths in Table 1 except for the paths γk,l for 1 ≤ k < l ≤ 2g − 2 are face paths. Recall from
Chapter 3 that face paths are paths that traverse each edge at most once in each direction and turn
maximally left at each vertex. In order to define twists along all paths from Table 1 we first define
slides along face paths following [MV].

Definition 9.4. [MV, Def. 8.1] Let γ : v → w be a face path that traverses the edges γn, γn−1, . . . , γ1
in this order and β the edge end that comes directly after the starting end of γ in the cyclic ordering
at v. If β is not traversed by γ, the slide Sfpβ of β along the face path γ is given as follows:
Successively slide β along γn, γn−1, . . . , γ1 such that β is slid on the left of γi towards t(γi) if γi is
traversed by γ parallel to its orientation and on the right of γi towards s(γi) else.

Example 9.5. Sliding β along the face path γ = p−1 ◦ l−1 ◦ k yields

β

p
k

l

β

p
k

l

Sfpβ (β ⊗ k ⊗ l ⊗ p) = Sp,β ◦ Sl,β ◦ Sk,β (β ⊗ k ⊗ l ⊗ p) = Sp,β ◦ Sl,β (k(1)β ⊗ k(2) ⊗ l ⊗ p)
= Sp,β (S(l(2))k(1)β ⊗ k(2) ⊗ l(1) ⊗ p) = S(p(2))S(l(2))k(1)β ⊗ k(2) ⊗ l(1) ⊗ p(1).

Next, we extend the list of graph transformations from Definition 3.5 by the adding of an edge to a
face path and extend the loop deletion to a deletion of any edge in a ribbon graph Γ with edge set
E.

Definition 9.6. [MV, Sec. 8.2]

a) The edge deletion removes an edge β ∈ E from Γ.
b) Let γ : v → w be a face path in Γ. The adding of an edge to the face path γ is obtained by:

1. Adding a loop γ′ at v such that the target end of γ′ comes directly after the starting end of γ
and directly before s(γ′) in the cyclic or linear ordering at v.

2. Sliding t(γ′) along the face path γ.

Definition 9.7. [MV, Def. 8.7]

a) The removal of an edge β ∈ E is associated with the morphism

εβ : H⊗E → H⊗(E−1).

b) Adding an edge γ′ to a face path γ in Γ is associated with the morphism

Cγ := Sfpγ ◦ ηγ′ : H⊗E → H⊗(E+1).

Example 9.8. a) Removing the edge β in the following graph yields

a

b

c

dβ

a

b

c

d

εβ (a⊗ b⊗ c⊗ d⊗ β) = ε(β)a⊗ b⊗ c⊗ d.

b) Adding an edge to the face path γ = l−1 ◦ k yields the graph
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a

b

k

l

γ′

add γ′

to v

a

b

k

l slide

t(γ′) γ′

a

b

k

l

v

and the corresponding morphism

Cγ (a⊗ b⊗ k ⊗ l) = Sfpγ ◦ ηγ′ (a⊗ b⊗ k ⊗ l) = Sl,γ′ ◦ Sk,γ′ (1⊗ a⊗ b⊗ k ⊗ l)
= S(l(2))k(1) ⊗ a⊗ b⊗ k(2) ⊗ l(1).

Applying the last definitions we now define twists along loops, face paths and along the paths γi,j
for 1 ≤ i < j ≤ 2g − 2 from Theorem 9.3 following [MV].
Definition 9.9. [MV, Def. 8.10, 8.11]

a) Let β be a loop at a ciliated vertex in the ribbon graph Γ. The twist Dβ along the loop β
is the morphism obtained by successively sliding all edge ends to the left of β towards t(β) if
s(β) < t(β). If t(β) < s(β), the twist Dβ is obtained by successively sliding all edge ends to the
right of β towards s(β).

b) Let v be a ciliated vertex and γ : v → v a closed face path in a ribbon graph Γ. The twist Dγ

along the face path γ is the morphism

Dγ = εγ′ ◦Dγ′ ◦ Cγ : H⊗E → H⊗E

given as follows:
1. Start with adding an edge γ′ to the face path γ.
2. Carry out a twist along the loop γ′ as in a) and erase the loop γ′ afterwards.

Note that a) and b) of Definition 9.9 are consistent with each other. If a face path γ only consists
of a loop, the twist along the face path γ from b) reduces to the twist from a), compare [MV,
Rem. 8.12].
Example 9.10. a) The loop β in the following graph satisfies s(β) < t(β). Hence, the twist along
β is given by successively sliding a, b, c to the left of β towards t(β)

a

b

c

d

β

a

b

c

d

β

The corresponding morphism is given by

Dβ (β ⊗ a⊗ b⊗ c⊗ d) = Sβ,c ◦ Sβ,b ◦ Sβ,a (β ⊗ a⊗ b⊗ c⊗ d)
= Sβ,c ◦ Sβ,b (β(2) ⊗ aS(β(1))⊗ b⊗ c⊗ d)
= Sβ,c (β(3) ⊗ aS(β(1))⊗ β(2)b⊗ c⊗ d)
= β(4) ⊗ aS(β(1))⊗ β(2)b⊗ cS(β(3))⊗ d.

If t(β) < s(β) as in the following graph
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a

b

c

d

β

a

b

c

d

β

the twist along β is obtained by successively sliding a, b, c to the right of β towards s(β). The
corresponding morphism is given by

Dβ (β ⊗ a⊗ b⊗ c⊗ d) = Sβ,c ◦ Sβ,b ◦ Sβ,a (β ⊗ a⊗ b⊗ c⊗ d)
= β(1) ⊗ aβ(4) ⊗ S(β(3))b⊗ cβ(2) ⊗ d.

b) The twist along the face path γ = p−1 ◦ l−1 ◦ k is given by

a
p

k l

γ′

add

γ′

a
p

k l

γ′

a

p

k lslide

t(γ′)

twist along γ′

remove γ′

a

p

k l

with corresponding morphism

Dγ (a⊗ k ⊗ l ⊗ p) = εγ′ ◦Dγ′ ◦ Sp,γ′ ◦ Sl,γ′ ◦ Sk,γ′ (1⊗ a⊗ k ⊗ l ⊗ p)
= εγ′ ◦ Sγ′,a (S(p(2))S(l(2))k(1) ⊗ a⊗ k(2) ⊗ l(1) ⊗ p(1))
= S(p(2))S(l(2))k(1)a⊗ k(2) ⊗ l(1) ⊗ p(1).

Remark 9.11. The inverse of the twist Dβ from Definition 9.9, a) along a loop β is given by
successively sliding all edge ends to the left of β towards s(β) if s(β) < t(β). This follows from the
formulas for edge slides from Remark 5.6. If t(β) < s(β), the inverse D−1

β is obtained by successively
sliding all edge ends to the right of β towards t(β).

Definition 9.12. [MV, Def. 9.1] For 1 ≤ i < j ≤ 2g − 2 the twist along the path γi,j is the
morphism Dγi,j : H⊗E → H⊗E obtained as follows:

1. Start with adding edges δ′i and δ′j to the face paths δi and δj as in Definition 9.6.
2. Slide all edge ends between s(αg) and t(δ′j) along αg towards the target end of αg. Then slide the

edge end s(βg) along the edge δ′i.
3. Carry out a twist along the face path γ∗i,j := δ′i ◦ αg ◦ δ

′−1
j ◦ α−1

g .
4. Reverse all edge slides from 2. by returning all edge ends to their initial positions. Then erase

the edges δ′i and δ′j.

This twist is illustrated in Figure 9. Here, the vertex of the standard graph from (21) is cut open
at the cilium and corresponds to the baseline of the pictures. Steps i) to v) in this Figure can be
specified as follows.

• Step i): A loop δ′j is inserted.
• Step ii): Its target end is slid along δj . Analogously, a loop δ′i is inserted and its target end slid

along δi.
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s(δj), s(δi) t(δj) t(δi)

αgβg
δ′j

t(δj) t(δi)

αgβg

δ′j δ′i

αgβg

∗
δj
′

δ′i

αg
βg

∗

γ∗i,j

δ′j

δ′i

αg
βg

∗

γ′

t(δj) t(δi)

αgβg

∗

i)

iii)
ii)

iv) v)

Figure 9: The twist along γi,j from Definition 9.12.

• Step iii): All edge ends between s(αg) and t(δ′j), which are indicated with ∗, are slid along αg
and s(βg) is slid along δ′i.

• Step iv): A loop γ′ is inserted and its target end slid along γ∗i,j .
• Step v): The edge γ′ is removed. The edge ends s(βg) and ∗ are slid back and the edges δ′i, δ′j are

removed.

In [MV] it is shown that the twists from Definition 9.9 and 9.12 along the paths from Table 1 satisfy
the relations in Gervais’ presentation of the mapping class group Map(Σ \D). This induces an
action of Map(Σ \D) on the Yetter-Drinfeld module from Example 4.8. We recall this result, which
we again restrict to the situation of Σ \D and to involutive Hopf monoids H instead of pivotal Hopf
monoids.

Theorem 9.13. [MV, Th. 9.2] Let Γ be the standard graph from (21) and αi, δj, γk,l for i ∈
{1, . . . , g}, j, k 6= l ∈ {0, . . . , 2g− 2} the associated paths from Table 1. Then the twists along αi, δj,
γk,l satisfy the relations in Theorem 9.3. They define a group homomorphism

φ : Map(Σ \D)→ AutY D(H⊗2g).

9.3 Mapping class group actions on protected objects

In this section, we combine the mapping class group actions from [MV] for graphs with a single
vertex and face with the topological invariance of protected objects from Chapter 5. In particular,
we explicitly describe the actions in C = Set,SSet,Cat as induced actions of representation varieties.

This section essentially coincides with Section 8 of the preprint [HM]. Only minor changes and
additions have been made.

The action of Map(Σ) from [MV] on protected objects associated to certain graphs is induced by
the action of Map(Σ \D) on the Yetter-Drinfeld module from Example 4.8. This was recalled in
Section 9.2. More specifically, a presentation of Map(Σ) can be derived from the presentation of
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Map(Σ \D) in Theorem 9.3 by imposing the additional conditions

Dγ1,0 = 1, Dδ0 = Dδ1 , Dγ0,1 = (D3
δ0Dαg)3, Dγ0,k = Dγ1,k , Dγk,0 = Dγk,1

for 1 < k ≤ 2g − 1, see Gervais [Ge] and [MV, Sec. 9]. The automorphisms in Theorem 9.13 induce
automorphisms of the protected objects, which satisfy the additional relations of Map(Σ) given
above. Thus, they induce actions of Map(Σ) on the protected objects, see [MV, Th. 9.5].

As we established in Theorem 5.23 that the protected object is independent of the choice of the
underlying graph, we can reformulate [MV, Th. 9.5] as follows.

Theorem 9.14. Let H be an involutive Hopf monoid in C and Σ an oriented surface of genus
g ≥ 1. Then the edge slides from Definition 5.5 induce an action of the mapping class group Map(Σ)
by automorphisms of the protected object.

For group objects in cartesian monoidal categories such as simplicial groups and crossed modules
this mapping class group action admits a concrete description in terms of mapping class group
actions on representation varieties. For this, recall that for any group G the group Aut(π1(Σ)) acts
on the set of group homomorphisms ρ : π1(Σ) → G via (φ B ρ)(λ) = ρ(φ−1(λ)) for all λ ∈ π1(Σ)
and φ ∈ Aut(π1(Σ)). This induces an action of Map(Σ) = Out(π1(Σ)) = Aut(π1(Σ))/Inn(π1(Σ))
on the representation variety Hom(π1(Σ), G)/G.

To relate this to the mapping class group actions from [MV, Th. 9.5] note that for a group object
H in a cartesian monoidal category the formulas for the edge slides in Definition 5.5 and Remark
5.6 reduce to left and right multiplication with H, sometimes composed with inversions.

It follows that any finite sequence of edge slides from the standard graph to itself induces an
automorphism of H⊗2g that arises from an automorphism of F2g = π1(Σ \D). As it preserves the
Yetter-Drinfeld module structure in Example 4.8, it induces automorphisms of McoH , MH and
Minv. Inner automorphism of π1(Σ) induce trivial automorphisms ofMinv. For a group H as a
group object in Set it is then directly apparent that the induced action of Map(Σ) onMinv is the
one on the representation variety Hom(π1(Σ), H)/H, see also Examples 9.6 and 9.7 in [MV]. This
result can be applied to determine the mapping class group action for a simplicial group.

Corollary 9.15. Let H = (Hn)n∈N0 be a simplicial group as a Hopf monoid in SSet. Then the
action of Map(Σ) on the representation varieties Hom(π1(Σ), Hn)/Hn induces an action of Map(Σ)
onMinv by simplicial maps, and this coincides with the action in [MV, Th. 9.5].

Proof. The induced Map(Σ)-action on Minv is by simplicial maps, because the face maps and
degeneracies of Minv act elements of the representation varieties Hom(π1(Σ), Hn)/Hn by post-
composition with the face maps and degeneracies di : Hn → Hn−1 and si : Hn → Hn+1, whereas
Map(Σ) acts by pre-composition. This coincides with the action from [MV, Th. 9.5], because the
latter reduces to the Map(Σ)-action on Hom(π1(Σ), Hn)/Hn for the group Hn as an involutive Hopf
monoid in Set, and all (co)limits, images and (co)actions in SSet are degreewise.

In the case of a crossed module as a Hopf monoid in Cat, the mapping class group action on the
protected object is induced by the mapping class group action on the representation variety for the
associated semidirect product group.
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Corollary 9.16. Let H = (B,A,I, ∂) be a crossed module. Then the Map(Σ)-action on Minv

from Theorem 9.14 is induced by the Map(Σ)-action on Hom(π1(Σ), AoB)/AoB.

Proof. As the group structure of H as a group object in Cat is the one of the semidirect product
Ao B, the Map(Σ \D)-action onM = H×2g for the standard graph (21) can be identified with
the Map(Σ \D)-action onM = (AoB)×2g one for the group AoB as a group object in Set. The
crossed module structure ensures that this Map(Σ \D)-action respects the category structure of
(AoB)×2g and defines a Map(Σ \D)-action by invertible endofunctors.

The Map(Σ \D)-action onM induces the Map(Σ)-action on the protected objectMinv for both,
the group AoB as a group object in Set and for H as a group object in Cat. The former is the
action on the representation variety Hom(π1(Σ), AoB)/AoB. As the protected objectMinv is
a quotient of this representation variety by Theorem 8.30, its Map(Σ)-action is induced by the
Map(Σ)-action on the representation variety.

Example 9.17. We consider the mapping class group action on the groupoidsMinv from Example
8.34, 8.35 for the crossed module (S3, A3,I, ∂) and the torus.

The mapping class group of the torus T is the group

Map(T ) = SL(2,Z) = 〈Da, Db | DaDbDa = DbDaDb, (DaDbDa)4 = 1〉. (78)

It is generated by the Dehn twists Da, Db along the a- and b-cycle, which can be depicted as follows

a
b

Da Db
.

The Dehn twists act on π1(T ) = Z× Z by

Da : a 7→ a, b 7→ b− a Db : a 7→ a+ b, b 7→ b. (79)

In both, Example 8.34 and 8.35, the SL(2,Z)-action on the objects ofMinv is the SL(2,Z)-action on
the representation variety Hom(Z× Z, S3)/S3 with orbits {C1}, {C2, C

′
2, C3, C4} and {C5, C

′
5, C6}.

In Example 8.34 the SL(2,Z)-action onMinv is determined uniquely by the action on the objects.
This follows, because for all choices of objects s, t ∈ ObMinv the groupoidMinv has at most one
morphism f : s → t. In Example 8.35 an analogous statement holds for morphisms between the
objects C1, C5, C

′
5, C6, since all of them are identity morphisms.

In contrast, the SL(2,Z)-action on the automorphisms of C2, C
′
2, C3, C4 in Example 8.35 is non-trivial

and can be identified with an orbit of the SL(2,Z)-action on Mat(2× 2,Z3) by left multiplication.
In this action, Da and Db correspond to left-multiplication with the generators

A =
(

1 0
1 1

)
, B =

(
1 −1
0 1

)
.

Automorphisms of C2, C
′
2, C3, C4 inMinv are given by group homomorphisms τ : Z×Z→ A×2

3
∼= Z×2

3 ,
which are determined by the images τ(1, 0), τ(0, 1) ∈ Z3×Z3. Interpreting an element (c, d) ∈ Z3×Z3
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as an automorphism c : d → d and taking τ(0, 1) as the first and τ(1, 0) as the second row of a
matrix, we find that the SL(2,Z)-action induced by (79) coincides with the SL(2,Z)-orbit containing
those matrices whose second column is non-trivial.

As our construction yields objects equipped with mapping class group actions and assigns the tensor
unit to the sphere S2, it is natural to ask if the protected objects satisfy the axioms of a modular
functor from [BK, Def 5.1.1]. Although the latter are formulated for categories of vector spaces,
they have obvious generalisations to other symmetric monoidal categories.

However, the assignment of protected objects to surfaces can in general not be expected to satisfy
these axioms. The problem is axiom (iii) in [BK, Def 5.1.1], which requires that the object assigned
to a disjoint union Σ1 q Σ2 of surfaces is the tensor product of the objects assigned to Σ1,Σ2. This
does in general not hold for the protected objects from Definition 4.7, as they are constructed by
taking equalisers and coequalisers. The tensor product of two (co)equalisers in a symmetric monoidal
category C is in general not a (co)equaliser of their tensor product. This is already apparent in the
symmetric monoidal category Ab = Z−Mod with the usual tensor product that does not preserve
equalisers. Nevertheless, the construction satisfies this axiom, if the underlying symmetric monoidal
category is Set, SSet or Cat.

Proposition 9.18. Let H be a group object in C = Set, SSet or Cat and Σ an oriented surface with
connected components Σ1, . . . ,Σk. Then the protected object for Σ is the product of the protected
objects for Σ1, . . . ,Σk.

Proof. The claim follows by induction over k, and it is sufficient to consider k = 2. By Theorem
5.23 we can compute the protected object for Σ by choosing a standard graph Γi from (21) on each
connected component Σi. We denote by Ei the edge set of Γi and by E = E1 ∪E2 the edge set of Γ.

The (co)actions B and δ for Γ are then given by formula (27), and it follows directly that they
are the products of the (co)actions Bi, δi for Γi, up to braidings. Lemma 4.5 and some simple
computations imply that (H×E ,B, δ) is a Yetter-Drinfeld module over H ×H.

We denote by FΓ : H×E → H ×H the morphism from Example 2.9 for Γ and by FΓi : H×Ei → H
the corresponding morphisms for Γi.

• C = Set: As in Example 2.15 we obtain

M coH = F−1
Γ (1) = {(x, y) ∈ H×E1 ×H×E2 : (FΓ1(x), FΓ2(y)) = (1, 1)} = M coH

1 ×M coH
2 ,

MH = {H×2 B (m1,m2) : m1 ∈ H×E1 ,m2 ∈ H×E2} = MH
1 ×MH

2

with inclusions ι = (ι1, ι2) : M coH → H×E and canonical surjections π = (π1, π2) : H×E → MH .
As the image of a morphism f : A→ B in Set is the usual image of a map, we have im((f1, f2)) =
(im(f1), im(f2)) and Minv = Minv,1 ×Minv,2.

• C = SSet: By Proposition 7.3 the coinvariants are given by the sets

M coH
n = {(m1,m2) ∈ (H×E1 ×H×E2)n : (FΓ1,n(m1), FΓ2,n(m2)) = (1, 1)} = M coH

1,n ×M coH
2,n .

Face maps and degeneracies are induced by the ones of H×E1 × H×E2 and the simplicial map
ι : M coH → H×E is given by the maps ιn = (ι1,n, ι2,n). As the product in SSet is objectwise, this
yields M coH = M coH

1 ×M coH
2 . An analogous argument shows that the sets MH

n , (Minv)n from
Proposition 7.3 are given by MH

n = MH
1,n ×MH

2,n and (Minv)n = (Minv,1)n × (Minv,2)n.
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• C = Cat: By Lemma 8.12 the coinvariants M coH for the comodule M = H×E ∼= HE1 ×H×E2

are the subcategory with objects

Ob(M coH) = {(A1, A2) | Ai ∈ Ob(H×Ei), FΓi(Ai) = e}
HomMcoH ((A1, A2), (A′1, A′2)) = {(f1, f2) | fi ∈ HomM (Ai, A′i), FΓi(fi) = 1e}

and hence M coH is the product category M coH
1 ×M coH

2 . For the invariants we can apply Lemma
8.7 and the results from SSet. As a right adjoint, the nerve N preserves products, and hence
N(B) = N(B1) × N(B2), up to braidings, and the same holds for the trivial actions ε ⊗ 1H⊗E
and ε⊗ 1H⊗Ei . It follows that the coequaliser of N(B) and N(ε×2 × 1H×E ) is the product of the
coequalisers of N(Bi) and N(ε× 1H×Ei ). As the homotopy functor preserves finite products, see for
instance [Jo, Prop. 1.3], this yields MH = MH

1 ×MH
2 and Minv = Minv,1 ×Minv,2.

Note that besides [BK, Def. 5.1.1] there are various other definitions of modular functors. Schweigert
and Woike [SW] for instance construct a category whose objects are surfaces where boundary
components are equipped with marked points and labelled by elements of a given set. Its morphisms
are generated by mapping classes and sewings of surfaces. A modular functor is then defined as a
symmetric monoidal functor into the category of chain complexes [SW, Def. 3.2], or of vector spaces
[SW, Rem. 3.5], such that an excision property formulated via homotopy coends is satisfied.

The starting point of Brochier’s and Woike’s definition in [BrW] is a symmetric monoidal functor
Surf : Graphs→ Cat, called modular surface operad. Modular functors are then defined in terms
of extensions over Surf and modular algebras over them, see [BrW, Def. 3.5]. The objects of the
category Graphs are finite unions of corollas. That is, a single vertex with a finite number of
attached edges. The edges are only incident to this vertex, their other end is not attached to a
vertex.

Morphisms in Graphs are defined as equivalence classes of graphs that are consistent with decom-
posing graphs into corollas by cutting or contracting edges. Brochier and Woike define Surf(T ) for
any corolla T and extend it to unions of corollas T, T ′ via Surf(T ∪ T ′) = Surf(T )× Surf(T ′). With
a suitable extension of our model to corollas, this could provide a way to treat unions of graphs and
to link protected objects to other versions of modular functors. However, this question is beyond
the scope of the thesis.
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10 Kuperberg invariants and mapping class group actions

The aim of this chapter is to relate Kuperberg invariants of 3-manifolds to edge slides and Dehn
twists that induce mapping class group actions. Kuperberg invariants were introduced by Kuperberg
in [Ku]. Given a finite-dimensional semisimple Hopf algebra over C they associate a scalar to any
oriented 3-manifold represented by a Heegaard diagram. Kashaev and Virelizier [KV] generalised
this setting from Hopf algebras to involutive Hopf monoids H in symmetric monoidal categories
with certain additional structures, the good pairs. The resulting 3-manifold invariant is given as an
endomorphism of the tensor unit. We will follow Kashaev’s and Virelizier’s presentation.

An essential part of their construction is the assignment of an endomorphism of H⊗g for a fixed
g ∈ N to a Heegaard diagram. The 3-manifold invariant is obtained from this endomorphism via
the good pairs. In the thesis the considered endomorphism is called tensor endomorphism. We
show that it can be constructed from edges slides in a ribbon graph associated to the Heegaard
diagram. For the case of a finite-dimensional semisimple Hopf algebra in VectC our formalism yields
the Kuperberg invariants from [Ku].

In Section 10.1 we summarise the background on Heegaard diagrams and their relation to oriented
3-manifolds. Following [KV] we define the tensor endomorphism in Section 10.2 and explain in
Section 10.3 how Kuperberg invariants are defined using the tensor endomorphism. In Section 10.4
we assign colored ribbon graphs to Heegaard diagrams, before we show in Section 10.5 how edge
slides in this graph are related to the tensor endomorphism.

10.1 Heegaard diagrams

In this section, we summarise the background on Heegaard diagrams and explain how Heegaard
diagrams are related to Heegaard splitting and oriented 3-manifolds. In particular, we provide some
basic notation, following Kashaev and Virelizier [KV]. By a circle on a surface Σ we mean the image
of an embedding S1 ↪→ Σ.

Definition 10.1. [Sav, Sec. 1.7] A Heegaard diagram is a triple D = (Σ,U ,L) where

• Σ is a closed, connected and oriented surface of genus g ≥ 1,
• U is a set of g pairwise disjoint circles on Σ such that Σ \⋃u∈U u is connected,
• L is a set of g pairwise disjoint circles on Σ such that Σ \⋃l∈L l is connected,
• each u ∈ U is transverse to each l ∈ L.

We call the circles in U upper circles, the ones in L lower circles. In pictures we indicate the
upper circles in red and the lower circles in blue, see for instance Example 10.4. As each upper circle
is transverse to each lower circle, the set I := (⋃u∈U u) ∩ (⋃l∈L l) is finite. We call its elements
intersection points of the diagram and set N := |I|. For x ∈ U ∪ L the number of intersection
points contained in x is denoted |x|.

Definition 10.2. [KV, Sec. 3.3] A Heegaard diagram D = (Σ,U ,L) is called

• oriented if each upper and lower circle is oriented,
• based if each upper and lower circle is endowed with a basepoint that does not coincide with
an intersection point,
• ordered if U and L are both totally ordered.

If D is based we denote by BD the set of its basepoints. In an oriented Heegaard diagram we call
an intersection point c between an upper circle u and a lower circle l positive if l traverses u from
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Figure 10: Positive and negative intersection point.

the right to the left viewed in the direction of u. Otherwise, c is negative. This is illustrated in
Figure 10.

If D is ordered, oriented and based, we can endow the set I of intersection points with two total
orders, one obtained from U and the other one from L. For this, let Iu be the set of intersection
points in u for u ∈ U . One obtains a total order on Iu by enumerating the intersection points in u
following the orientation of u starting at its basepoint. Then I = ⋃

u∈U Iu is equipped with the
lexicographic order induced by the orders of Iu and U : For c ∈ Iu, c′ ∈ Iu′ with u, u′ ∈ U it is

c ≤ c′ :⇔ (u < u′ in U) or (u = u′ and c ≤ c′ in Iu).

The total order on I obtained from L is defined analogously by replacing U by L.

Definition 10.3. For u ∈ U a pair (a, b) with a, b ∈ Iu is called inversion pair in u if a is
negative, b positive and either b is the successor of a or a is the element of highest order and b of
lowest order in Iu.

We denote the number of inversion pairs in u by N∗u and set N∗ := ∑
u∈U N

∗
u .

Example 10.4. The following oriented based Heegaard diagram

u1l1 l2

l3

a
b

r
s

z

k

d

u2

u3

is based on the Heegaard diagram shown by Lipshitz, Ozsváth and Thurston in [LOT, Figure 1.1], but
equipped with orientations and basepoints. We endow U and L with orders given by u1 < u2 < u3,
l1 < l2 < l3. Then the order of the intersection points obtained from U is given by

s < r < d < b < a < z < k,
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while the order induced by L is given by

r < a < b < z < s < k < d.

The intersection points a, r, z are positive, whereas b, s, d, k are negative. The pair (s, r) is an
inversion pair in u1 and (b, a) is an inversion pair in u3.

Connection of Heegaard diagrams to 3-manifolds

Heegaard diagrams describe Heegaard splittings of closed oriented 3-manifolds into two handlebodies.
A handlebody of genus g is an oriented 3-manifold that is obtained by attaching g copies of handles
D2 × [−1, 1] to the 3-ball D3. The boundary of a handlebody is an oriented surface of genus g.

Given two handlebodies N,N ′ of genus g and a homeomorphism f : ∂N → ∂N ′ of their boundaries,
the handlebodies can be attached to each other by this homeomorphism. More precisely, in the
disjoint union of N and N ′ identify each point x ∈ ∂N with f(x) ∈ ∂N ′: x ∼ f(x). The obtained
space N qN ′/ ∼ is a 3-manifold, compare [PS, Sec. 8]. The described presentation of an oriented
3-manifold M as the union of two handlebodies N,N ′ with same genus and common boundary
N ∩ N ′ = ∂N = ∂N ′ is called Heegaard splitting of M . Figure 11 schematically illustrates a
Heegaard splitting of S3 into two handlebodies of genus 1.

As it is possible to orient the handlebodies ∂N , ∂N ′ in such a way that the gluing homeomorphism
f : ∂N → ∂N ′ is orientation preserving, Heegaard splittings are naturally linked to mapping class
groups. For more details we refer to [Sav, Sec. 1.4]. More specifically, if ∂N , ∂N ′ are glued together
by isotopic homeomorphisms, the resulting 3-manifolds are homeomorphic, compare [Sav, Sec. 1.4].

Indeed, any oriented 3-manifold M admits a Heegaard splitting. In particular, a Heegaard splitting
is obtained from a triangulation of M . The first handlebody is obtained from the triangulation
by replacing the vertices by balls and edges by cylinders. The second handlebody arises from its
complement, see [Sav, Th. 1.1] or [OSa, Th. 2.1]. Note that Heegaard splittings are not unique:
Every 3-manifold has many different Heegaard splittings, compare [PS, Sec. 8].

Heegaard diagrams encode Heegaard splittings of 3-manifolds. A Heegaard splitting of M into two
handlebodies N,N ′ of genus g defines a Heegaard diagram as follows: Consider the handlebodies
N,N ′ and draw a system of meridians v1, . . . , vg on their boundaries:

v1 v2 vg

The attaching homeomorphism can be split as a composite f−1
2 ◦ f1 of two homeomorphisms

f1 : ∂N → Σ, f2 : ∂N ′ → Σ into an oriented surface Σ of genus g. The surface Σ together with the
curves f1(v1), . . . , f1(vg) and f2(v1), . . . , f2(vg) forms a Heegaard diagram, compare [PS, Sec. 10].

Conversely, from a Heegaard diagram (Σ,U ,L) one can construct a Heegaard splitting: Start with
two copies of the surface Σ and cut the first copy along the circles in U , the second copy along the
circles of L. This yields two spheres, each with 2g holes. The boundary components at the first
sphere are labelled by the circles in U , the boundary components of the second space by the ones in
L. Then one glues 2g disks to each space to obtain spheres and attaches a 3-ball to each of the two
spheres. This is illustrated in Figure 12.
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= ∪

Figure 11: A Heegaard splitting of S3, here viewed as the one-point compactification S3 ∼= R3∪{∞}
of R3, into two handlebodies of genus 1. One handlebody is schematically shown in blue, the
complementary handlebody, which in particular includes the compactification point ∞, is indicated
in red. For a better visibility some space between the handlebodies is left. A similar schematic
illustration can be found in [CEZ, Fig. 5] and [PS, Fig. 8.7].

Σ Σ
u1 u2

l1 l2

u1

u1

u2

u2

l1

l1

l2

l2

u1

u1

u2

u2

l1

l1

l2

l2
glue

glue

glue

glue
N N ′

cut along circles

glue disks on, attach 3-ball,

deform

Figure 12: Illustration of the construction of a Heegaard splitting obtained from a Heegaard
diagram, compare [PS, Fig. 10.4].
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One can homeomorphically deform the spaces such that each pair of glued on disks with the same
labelling corresponds to a meridian of the handlebodies. Finally identify each two disks with the
same labelling to actually obtain the handlebodies N,N ′ of genus g. This procedure is illustrated in
Figure 12. For more details see [PS, Sec. 10] and [Sad, Sec. 2.1]. The attaching homeomorphism of
the Heegaard splitting is obtained by mapping the meridians of N to the circles in U , the meridians
of N ′ to the circles of L in Σ.

There is a well-known theorem, the Reidemeister-Singer theorem, that clarifies the question which
Heegaard diagrams encode homeomorphic 3-manifolds: Two Heegaard diagrams describe homeo-
morphic oriented 3-manifolds iff they are related by a finite sequence of the following moves and
their inverses: a homeomorphism of the surface, an isotopy of the diagram, stabilization and sliding
one circle past another. We describe the moves in Section 10.3, when we summarise the proof
of topological invariance of Kuperberg invariants from Kashaev and Virelizier [KV]. For more
details on the Reidemeister-Singer theorem see for instance Kuperberg [Ku, Th. 4.1] or Singer [Si,
Sec. III-IV].

10.2 Tensor endomorphism associated to Heegaard diagrams using Hopf monoids

Let again H be an involutive Hopf monoid in a symmetric monoidal category C and D = (Σ,U ,L)
an ordered oriented based Heegaard diagram with Σ an oriented surface of genus g ≥ 1. In this
section, we explain how to assign to this data an endomorphism KH(D) : H⊗g → H⊗g that defines
the Kuperberg invariants. We follow the presentation in [KV].

To define KH(D) we denote by IU the set I of intersection points equipped with the order obtained
from U as described in Section 10.1. Analogously, IL is the set I equipped with the order induced
by L. Let σ ∈ SN be the permutation that relates the two orders on I: For an intersection point
that is the i-th element in IL and the j-th element in IU we set σ(i) := j. The permutation σ ∈ SN
defines an automorphism Pσ : H⊗N → H⊗N obtained as follows: Decompose σ as a composite of
elementary transpositions (i, i+ 1). To (i, i+ 1) we associate the morphism

P(i, i+1) := 1H⊗(i−1) ⊗ τH,H ⊗ 1H⊗(N−i−1)

and to σ the composite of those morphisms. For N = 1 we set Pσ = 1H . We set

SL :=
⊗
c∈IL

S(κc) : H⊗N → H⊗N , SU :=
⊗
c∈IU

S(κc) : H⊗N → H⊗N

with

κc =
{

0 if c is positive,
1 if c is negative.

(80)

Here, the tensor products indexed by L and U denote the tensor product of the morphisms S(κc) in
the order induced by the ordering of IL and IU . Recall from Section 2.1 that we write m(n) and
∆(n) for n-fold products and coproducts. As mentioned in Section 10.1 we denote |x| the number of
intersection points in x ∈ U ∪ L. Applying this notation we set

∆L :=
⊗
l∈L

∆(|l|) : H⊗g → H⊗N , mU :=
⊗
u∈U

m(|u|) : H⊗N → H⊗g.

Note that the naturality of the braiding morphisms in C implies Pσ ◦ SL = SU ◦ Pσ. With the above
morphisms we can define KH(D).

87



Definition 10.5. [KV, Sec. 3.4] The tensor endomorphism associated to the ordered oriented
based Heegaard diagram D = (Σ,U ,L) is given by

KH(D) := mU ◦ Pσ ◦ SL ◦∆L = mU ◦ SU ◦ Pσ ◦∆L : H⊗g → H⊗g. (81)

We give some examples of Heegaard diagrams and their associated tensor endomorphisms. Note
that we use the opposite convention of [KV] and read morphisms in diagrams from top to bottom.

Example 10.6.
1. The tensor endomorphism for the ordered oriented based Heegaard diagram from Example 10.4 is
given by

l1 l2 l3

u1 u2 u3

KH(D) (l1 ⊗ l2 ⊗ l3) = S(l2(2))l1(1) ⊗ S(l3(2))⊗ S(l1(3))l1(2)l
2

(1)S(l3(1))
= S(l2(2))l1 ⊗ S(l3(2))⊗ l2(1)S(l3(1)). (82)

Here, (6) is applied to simplify KH(D).

2. In [Les, Figure 1] Lescop shows two oriented Heegaard diagrams for RP3, which we equip with
basepoints and orders. To the ordered oriented based Heegaard diagram of genus 1

l

u

a

b

we assign the morphism KH(D) (l) = l(2)l(1), as both intersection points are positive and the order
in IL is given by b < a, the order in IU by a < b.

To the ordered oriented based Heegaard diagram of genus 2
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u1 u2

l1

l2

a

b

c

d

with the ordering l1 < l2, u1 < u2 in L and U we assign the morphism

KH(D) (l1 ⊗ l2) = l1(2)l
1

(1) ⊗ l1(3)l
2

All intersection points are positive, the order in IL is given by b < a < c < d, the order in IU is
given by a < b < c < d.

3. The ordered oriented based Heegaard diagram

l

u

represents S1 × S2, compare for example Ozsváth and Szabó [OSa, Sec. 2.5]. As the diagram has no
intersection point, one has KH(D) = η ◦ ε.

4. The ordered oriented based Heegaard diagram

au

l

represents S3, compare for example [OSa, Sec. 2.5]. As there is only a single intersection point,
which is positive, we obtain KH(D) = idH .

5. A special class of 3-manifolds are lens spaces L(p, q) with p and q coprime positive integers,
p ≥ 3. They are obtained by considering a group action of Z/pZ on the 3-sphere S3 ⊆ C2. For σ a
generator of Z/pZ this fix point-free action is given by

σ B (z, w) = (e2πi/pz, e2πiq/pw).
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The lens space L(p, q) is the quotient of S3 obtained by identifying each point x ∈ S3 with the points
σ B x, . . . , σp−1 B x, see [PS, Sec. 11]. The lens spaces L(p, 1) can be described by a standard
Heegaard diagram D = (Σ,U ,L) on the torus, compare [WY, Sec. 4.2]. For this we take the square
[0, 1]× [0, 1] and identify its opposite sides to obtain a torus. The single element in U is represented
by [0, 1]×{0}, its intersection points with the single element in L are given by the p points {kp}×{0},
k = 0, . . . , p− 1 in the square. The element in L is represented by the p straight lines which connect
the points {kp} × {0} and {

k+1
p } × {1} for k = 0, . . . , p− 1. Suppose that the lines are oriented in

the x, y-direction and equip u ∈ U and l ∈ L with induced orientations. Additionally, we add the
basepoints {2p−1

2p } × {0} and {
2p−1

2p } × {
1
2}.

For the lens space L(5, 1) this yields the following Heegaard diagram:

l

u

1 2 3 4 5

u

l

.

All intersection points in the Heegaard diagram for L(p, 1) are positive and the ordering of the
intersection points induced by L and U coincides. Hence, the associated tensor endomorphism is
given by

KH(D)(l) = l(1)l(2) . . . l(p).

6. The following oriented based Heegaard diagram

1
2

3
4

5

6

7

a

b

c

d

e

l1

l2

u1

u2
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represents Poincaré’s homology 3-sphere. It can be constructed by identifying opposite faces of a
dodecahedron after a twist of π

5 , see Kirby and Scharlemann [KS, Description 5] for more details.
For better viewing the circle u1 is drawn in green contrary to our usual colour convention. This
Heegaard diagram is often depicted in a different way: The surface Σ is cut along the circles l1 and
l2:

1
2
3
4

5

6

7

a

b
c

d
e

l1

l2

u1

u2

l2
e

b

c

a

d

1

3
4

5

2

6
7

.

l1

Then it is deformed such that there is one big circle l1 on the left-hand side and one small circle l1
as well as two small circles l2 on the right-hand side.

1

2

3
4

5

6

7

a
b

c

d
e

l1

l2

u1

u2

l2

e

b

c

a

d

1

3
4 5

2 6

7 l1

Looking at this diagram from the right gives the diagram:
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1

2

3 4

5

6
7

a
b

c

d
e

l1

l2
u1

u2

l2
e

b

c

a

1

3
52

6

7

l1

d

4

.

The last diagram coincides with the one from [KV, Sec. 3.5,(3)], which is the one Poincaré provided
in [Poi, Fig. 4] with slightly different notation. Equipping U and L with the orders u1 < u2, l1 < l2
induces the orders

1 < 2 < 3 < 4 < a < 6 < c < b < 7 < d < e < 5,
1 < 2 < 3 < 4 < 5 < 6 < 7 < a < b < c < d < e

of intersections points by U and L. As the negative intersection points are 5, 6, 7, a, b, c, the tensor
endomorphism KH(D) is given by

l n

l(1)l(2)l(3)l(4)S(n(1))S(l(6))S(n(3)) S(n(2))S(l(7))n(4)n(5)S(l(5))

KH(D) (l ⊗ n) = l(1)l(2)l(3)l(4)S(n(1))S(l(6))S(n(3))⊗ S(n(2))S(l(7))n(4)n(5)S(l(5)).

10.3 Kuperberg invariants of 3-manifolds

In this section, we summarise the construction of Kuperberg invariants of 3-manifolds by Kashaev
and Virelizier [KV] using involutive Hopf monoids in a symmetric monoidal category C and good
pairs. Their construction is based on the work of Kuperberg [Ku] who introduced the invariants in
terms of involutive Hopf algebras over C and their (co)integrals.

The construction assigns to an oriented 3-manifold, which we require to be closed and connected in
this section, a morphism

τ(λ,Λ)(M) ∈ EndC(e),
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called Kuperberg invariant. It is a topological invariant of M , but defined via an ordered oriented
based Heegaard diagram representing M . A main ingredient of the definition is the tensor endomor-
phism from Section 10.2. Before we summarise the proof that τ(λ,Λ)(M) is a topological invariant
of M given by Kashaev and Virelizier [KV] and provide some examples, we outline the definition
of good pairs and the construction of the Kuperberg invariant. In contrast to [KV] we restrict
attention to good pairs involving the tensor unit instead of more general invertible objects as source
or target of morphisms.

Throughout this section let H be an involutive Hopf monoid in C. Recall that EndC(e) is a
commutative monoid with unit 1e. Its elements are often called scalars. For any k ∈ N the map

EndC(e)→ EndC(e⊗k), α 7→ α⊗ 1e⊗k

is an isomorphism of monoids, see [KV, Sec. 2.5]. For f ∈ EndC(e⊗k) we denote by 〈f〉e⊗k its
inverse, i.e. the unique morphism 〈f〉e⊗k ∈ EndC(e) satisfying

f = 〈f〉e⊗k ⊗ 1e⊗k . (83)

Applying this notation, we can define good pairs, as in [KV, Sec. 4.1].

Definition 10.7. [KV, Sec. 4.1] Let H be an involutive Hopf monoid in C. A good pair for H is
a pair (λ : H → e, Λ : e→ H) of morphisms in C such that

a) λ ◦ Λ = 1e,
b)

(λ⊗ λ) ◦ (m⊗ 1H) ◦ (1H ⊗∆) = λ⊗ λ, (m⊗ 1H) ◦ (1H ⊗∆) ◦ (Λ⊗ Λ) = Λ⊗ Λ, (84)

c) setting ν(λ,Λ) := 〈λ ◦ S ◦ Λ〉e ∈ EndC(e) one has

λ ◦ S = ν(λ,Λ) ⊗ λ and S ◦ Λ = ν(λ,Λ) ⊗ Λ, (85)

d) there exists a morphism f : H → H in C satisfying

λ ◦m ◦ τH,H = λ ◦m ◦ (f ⊗ 1H) and ∆ ◦ Λ = (f ⊗ 1H) ◦∆ ◦ Λ, (86)

e) there exists a morphism h : H → H in C satisfying

τH,H ◦∆ ◦ Λ = (1H ⊗ h) ◦∆ ◦ Λ and λ ◦m = λ ◦m ◦ (1H ⊗ h). (87)

Graphically, the conditions in Definition 10.7 are given by

Λ

λ

=a) , b)
λ λ

λ λ
=

,

ΛΛ
Λ Λ=

, c)
λ λ

=
,

ν(λ,Λ)

Λ Λ
ν(λ,Λ)=

,

d)

λ

,

f

λ

Λ

f

Λ
= , e)=

Λ Λ
= ,

λh

=
h

λ

.
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Example 10.8. 1. Any finite-dimensional involutive Hopf algebra H over a field F with char(F) -
dimF(H) has a two-sided integral Λ ∈ H and a two-sided cointegral λ ∈ Hom(F, H) = H∗ such
that λ(Λ) = 1. This is derived from the semisimplicity and unimodularity of H via Proposition
2.27 and Lemma 2.26. From [KV, Sec. 4.4,(1)] follows that (λ,Λ) is a good pair for H. In
particular, it satisfies ν(λ,Λ) = 〈λ ◦S ◦Λ〉e = 1e, as S ◦Λ = Λ. This is obtained as the space of
left integrals of H is one-dimensional, hence Λ = k · l for some k ∈ F and l the Haar integral
of H. Thus, one has S(Λ) = k · S(l) = k · l = Λ.

2. For the Hopf monoid C[H] in RepC(G) from Example 2.2, 5. the integral Λ : C → C[H],
r 7→ r

∑
h∈H δh and cointegral λ = ρe : C[H] → C from Example 2.19, 1. form a good pair.

The conditions in Definition 10.7 are satisfied with ν(λ,Λ) = 1C and f = h = 1C[H]. This
example in particular includes the special case G = {•}, where RepC(G) coincides with the
category VectfdC of finite-dimensional C-vector spaces.

3. For any Hopf monoid H in a symmetric monoidal category the counit λ := ε and unit Λ := η
form a good pair for H. The conditions in Definition 10.7 are satisfied with ν(λ,Λ) = 1e and
f = h = 1H .

4. A pair (λ,Λ) is a good pair for H in C if and only if (Λ, λ) is a good pair for H∗ in Cop.

For a good pair (λ,Λ) for an involutive Hopf monoid H in C we set

γ(λ,Λ) :=
{

1 if ν(λ,Λ) = 1e
2 else,

(88)

where ν(λ,Λ) is given in Definition 10.7, c). To an oriented 3-manifold M represented by an ordered
oriented based Heegaard diagram D of genus g we assign the morphism

λ(g) ◦KH(D) ◦ Λ(g) ∈ EndC(e⊗g)

with the tensor endomorphism KH(D) : H⊗g → H⊗g from (81). Passing to the corresponding
morphism in the monoid EndC(e) and using (88) yields the following definition of the Kuperberg
invariant.

Definition 10.9. [KV, Sec. 4.3] Let (λ,Λ) be a good pair for an involutive Hopf monoid H in C.
Suppose M is an oriented 3-manifold represented by an ordered oriented based Heegaard diagram D
of genus g. Then the Kuperberg invariant assigned to M is the endomorphism

τ(λ,Λ)(M) := 〈λ(g) ◦KH(D) ◦ Λ(g)〉γ(λ,Λ)
e⊗g ∈ EndC(e) (89)

with KH(D) from (81) and γ(λ,Λ) from (88).

Example 10.10. For a finite-dimensional involutive Hopf algebra H over a field F with char(F) -
dimF(H) and the good pair (λ,Λ) from Example 10.8, 1. one has

τ(λ,Λ)(M) = 〈λ(g) ◦KH(D) ◦ Λ(g)〉e⊗g .

In particular, τ(λ,Λ)(M) coincides with the Kuperberg invariant as introduced by Kuperberg in [Ku],
compare [KV, Sec. 4.4,(1)].

Theorem 10.11. [KV, Th. 1] The Kuperberg invariant τ(λ,Λ)(M) from (89) assigned to an oriented
3-manifold M is a topological invariant of M .

Summary of the proof of Theorem 10.11 from [KV, Sec. 4.6]. As the Kuperberg invari-
ant is defined based on an ordered oriented based Heegaard diagram D, first one has to show that
it does not depend on orientations, basepoints and orders of U and L. Each change of orientation,
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basepoint or order transforms D into another diagram D′ with corresponding Kuperberg invariant
denoted τ ′(λ,Λ)(M). If the orientation of an upper or lower circle is reversed, applying the antimulti-
plicativity of S from (5), the involutivity of S and (85) transforms τ ′(λ,Λ)(M) into τ(λ,Λ)(M). Hence,
τ(λ,Λ)(M) = τ ′(λ,Λ)(M).

If the basepoint of a circle a ∈ U ∪ L is changed, the order of Ia is cyclically permuted. Compared
to τ(λ,Λ)(M) the morphism τ ′(λ,Λ)(M) defined by (89) and (81) has additional braidings. By the
associativity of m, naturality of the braiding and (86), or (87) respectively, the morphisms can be
transformed into each other. Likewise, changing the order of U or L involves additional braiding
morphisms. The identity τ ′(λ,Λ)(M) = τ(λ,Λ)(M) then follows from the naturality of the braiding.

It remains to show that τ(λ,Λ)(M) is independent of the choice of the Heegaard diagram itself. For
this we can apply the Reidemeister-Singer theorem, see for instance Kuperberg [Ku, Th. 4.1] or
Singer [Si, Sec. III-IV]. By this theorem, two Heegaard diagrams describe homeomorphic oriented
3-manifolds if and only if the diagrams can be transformed into each other by a finite sequence of
moves and their inverses of the following four types: a) homeomorphism of the surface, b) isotopy
of the diagram, c) stabilization and d) sliding one circle past another. We describe the four moves
in the following.

a) homeomorphism of the surface: An orientation-preserving homeomorphism from Σ into an
oriented surface Σ′ carries D to a Heegaard diagram D′ on Σ′, where the upper and lower circles of
D are brought to the upper and lower circles of D′. Basepoints, orientations of the circles and orders
of U ′ and L′ in D′ can be chosen such that they are preserved by the homeomorphism, compare
[KV, Sec. 4.6]. Hence, KH(D) = KH(D′) and thus τ ′(λ,Λ)(M) = τ(λ,Λ)(M).

b) isotopy of the diagram: An upper (lower) circle is replaced by an isotopic circle that is disjoint
from the other upper (lower) circles, compare [OSb, Sec. 2.1]. The isotopy can be decomposed into
a sequence of the following two-point moves with u ∈ U and l ∈ L, see [Ku, Th. 4.1] and [KV, Sec.
4.6]:

u

l

u

l
.

As one of the above intersection points of u and l is positive and the other one negative, the
invariance of τ(λ,λ)(M) under the two-point move follows from (3).

c) stabilization: A disk from Σ which is disjoint from all circles is removed and replaced by a
punctured torus equipped with one upper and one lower circle. One of the new circles can be chosen
to be the standard meridian and the other one as the standard longitude of the torus:

DD

.
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For more details on stabilizations we refer to [Ku, Th. 4.1], [KV, Sec. 4.6] and [Sav, Sec. 1.3]. The
invariance of τ(λ,Λ)(M) under stabilizations can be seen as a consequence of Definition 10.7, a).

d) sliding one circle past another: Here, the two considered circles are both upper or both lower. A
circle u1 ∈ U is slid past a circle u2 ∈ U if u1 is replaced by a circle u′1 disjoint from the upper circles
such that u1, u′1 and u2 bound an embedded pair of pants in Σ \⋃u∈U\{u1,u2} u [OSa, Sec. 2.6] and
analogously for lower circles. Another way to view the handleslide is to connect u1, u2 by an arc δ
in Σ \⋃u∈U\{u1,u2} u. Then u1 is replaced by u′1 which is the connected sum of u1 with a parallel
copy of u2, where the connected sum is taken along a neighborhood of δ, see [Hom, Sec. 1.2]:

u1

u2

δ

u′1

u2

.

The invariance of τ(λ,Λ)(M) under handleslides follows by computing τ ′(λ,Λ)(M) from (89) for the
slided diagram. By applying the coassociativity of ∆, anticomultiplicativity of S, multiplicativity of
∆ and (84) one can show that τ ′(λ,λ)(M) = τ(λ,Λ)(M).

For the detailed computations associated with these steps we again refer to [KV, Sec. 4.6]. ♦

Example 10.12. 1. We consider examples of Kuperberg invariants based on the Hopf monoid C[H]
in RepC(G) from Example 2.2, 5. and its good pair consisting of λ = ρe and Λ : r 7→ r

∑
h∈H δh

from Example 10.8, 2. As for n ≥ 3 there is a group homomorphism

Φ : Z/2Z→ Aut(Z/nZ), Φ0̄(k̄) = k̄, Φ1̄(k̄) = −k̄,

we can consider G = Z/2Z, H = Z/4Z. For RP3 described by the Heegaard diagram from Example
10.6, 2. with tensor endomorphism KH(D)(l) = l(2)l(1) and r ∈ C we obtain

λ ◦KH(D) ◦ Λ(r) = ρ0̄ ◦KH(D)(r · (δ0̄ + δ1̄ + δ2̄ + δ3̄)) = r · ρ0̄(δ0̄ + δ2̄ + δ0̄ + δ2̄) = 2r.

Hence, the associated Kuperberg invariant, which is a scalar in C, is τ(λ,Λ)(RP3) = 2. Analogous
computations for the other 3-manifolds in Example 10.6, 1. to 6. yield:

manifold M reference τ(λ,Λ)(M)
described by Example 10.4 Example 10.4 and 10.6, 1. 1
RP3 Example 10.6, 2. 2
S1 × S2 Example 10.6, 3. 4
S3 Example 10.6, 4. 1
L(5, 1) Example 10.6, 5. 1
Poincaré’s homology 3-sphere Example 10.6, 6. 1

Here, we often obtain 1 as Kuperberg invariant. By replacing for instance C[Z/4Z] by C[Z/5Z] in
RepC(Z/2Z) for example in the case of the lens space one obtains τ(λ,Λ)(L(5, 1)) = 5.

2. We consider the Hopf algebra H8 in F = C with integral and cointegral

Λ = 1 + x+ y + xy + z + xz + yz + xyz, λ = ρ1
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from Example 2.23. For RP3 from Example 10.6, 2. with KH(D)(l) = l(2)l(1) and r ∈ C we obtain

λ ◦KH(D) ◦ Λ(r) = r · ρ1(KH(D)(1 + x+ y + xy + z + xz + yz + xyz))

= r · ρ1(1 + 1 + 1 + 1 + 4 · 1
2(1 + x+ xy − y) + 4 · 1

2(y + xy + 1− x) = 8r

by applying the identities (18), hence τ(λ,Λ)(RP3) = 8.

For the manifold M represented by the Heegaard diagram from Example 10.4 with tensor endomor-
phism (82) we obtain τ(λ,Λ)(M) = 1. This follows from the identity

ρ
(3)
1 (KH(D)(a⊗ b⊗ c)) = 0

if a has the form

a = a1 · 1 + a2 · x+ a3 · y + a4 · xy + a5 · z + a6 · xz + a7 · yz + a8 · xyz

with a1 = 0 and likewise for b, c.

In contrast to mapping class group actions, Kuperberg invariants for Hopf monoids in cartesian
monoidal categories are trivial. Although the construction of Kuperberg invariants works, all
Kuperberg invariants are given by the single element in EndC(e) in these categories.

Remark 10.13. 1. In comparison to [KV] we restrict the source of Λ and target of λ in a good
pair (λ,Λ) to the tensor unit, as it is the most relevant case for us. In [KV] the tensor unit e is
replaced by any invertible object. This is an object I such that there exists an object J in C with
I ⊗ J isomorphic to e. Defining the Kuperberg invariant for good pairs based on an invertible object
I is accompanied by taking the morphism 〈τI,I〉I⊗I into account in the definition of γ(λ,Λ) in (88).
In the case I = e it reduces to 〈τI,I〉I⊗I = 1e and can be neglected.

2. One can use integrals and cointegrals over Hopf monoids H in symmetric monoidal categories C
to construct good pairs of H. In detail this is described in [KV, Sec. 5.3 and 5.4] and in particular
in [KV, Th. 2].

For this one needs a left integral Λ : I → H and a right cointegral λ : H → I of H with λ ◦ Λ = 1I .
Here, in contrast to Definition 2.18 the tensor unit is replaced by an invertible object I. Both Λ
and λ have to be universal, meaning that for any left integral Λ′ : X → H and any right cointegral
λ′ : H → Y there exist unique morphisms f1 : X → I and f2 : I → Y with Λ ◦ f1 = Λ′ and
f2 ◦ λ = λ′. The universality of Λ and λ in particular implies the existence of unique morphisms
g : e→ H and α : H → e with

g ⊗ λ = (1H ⊗ λ) ◦∆, m ◦ (Λ⊗ 1H) = Λ⊗ α.

The existence of such a pair (λ : H → I,Λ : I → H) of universal (co)integrals with I an invertible
object is guaranteed if C is left rigid and all idempotents split, see Bespalov et al. [BKLT, Prop.
3.1]. If C is also preadditive and additional assumptions on the morphisms g and α are satisfied,
compare [KV, Sec. 5.3], then [KV, Th. 2] provides a construction of a good pair from (λ,Λ) via
sums of (co)integrals, (co)multiplication and the distinguished morphisms.

Overall, in comparison to the main part of the thesis, the assumptions on the category C mentioned
in Remark 10.13 are far more restrictive. Apart from the existence result in [BKLT, Prop. 3.1],
there appears to be no efficient way to check universality of given (co)integrals. It is also worth
pointing out that not all good pairs arise from integrals and cointegrals. As mentioned earlier,
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(ε, η) is a good pair for any Hopf monoid H in Set, but there are no integrals and cointegrals over
H 6= {e} in Set.

Besides Kashaev’s and Virelizier’s generalisation, there are various other extensions of Kuperberg
invariants. For instance, Kuperberg [Ku2] himself generalised his original setting to invariants of
framed 3-manifolds based on finite-dimensional Hopf (super)algebras, which are not necessarily
involutive. The framing equips the manifold with linearly independent vector fields with suitable
orientations. Neumann [Ne] worked in the setting of involutive Hopf superalgebras and sutured
manifolds. That is, a 3-manifold M with a collection of pairwise disjoint annuli in ∂M that divide
∂M into two subsurfaces. Whereas Virelizier [Vi] extended the Kuperberg invariants to invariants
of flat G-bundles over 3-manifolds based on involutive Hopf G-coalgebras for a group G. If G is the
trivial group, involutive Hopf algebras and Kuperberg’s invariants of 3-manifolds are recovered.

Likewise, Costantino et al. [CGPT] regained the Kuperberg invariants for finite-dimensional
involutive Hopf algebras as a special case when constructing invariants of 3-manifolds using pivotal
F-categories equipped with traces for a field F.

Kuperberg invariants are also related to other 3-manifold invariants. For example, in the case
of finite-dimensional semisimple Hopf algebras they are linked to Turaev-Viro-Barrett-Westbury
invariants, see Barrett and Westbury [BaW, BaW2] and Turaev and Viro [TV].

10.4 Colored ribbon graphs assigned to Heegaard diagrams

Heegaard diagrams are related to mapping class group actions via gluing homeomorphisms in
Heegaard splittings as described in Section 10.1. This raises the question how they are related to
the mapping class group actions by edge slides in Section 9.3. We will address this question in the
next section by expressing the tensor endomorphism as a sequence of edge slides. The first step
towards this result is to assign a 2-colored ribbon graph Γ(D) as well as g paths P1(D), . . . , Pg(D)
in Γ(D) to each ordered oriented based Heegaard diagram D.

Definition 10.14. A coloring of a graph by a set X is an assignment of an element of X to each
edge. If |X| = n ∈ N we call the graph n-colored.

In the following, we consider 2-colored graphs and assign the colors red and blue to the edges of
a graph. To construct the desired graph from a Heegaard diagram D we use an auxiliary ribbon
graph Γ′(D), obtained by taking the upper and lower circles of D together and inserting vertices at
each intersection point and basepoint. More formally, we characterise Γ′(D) as follows.

Definition 10.15. The 2-colored ribbon graph Γ′(D) for an ordered oriented based Heegaard diagram
D = (Σ,U ,L) has:

• vertex set V ′(D) = I ∪BD,
• edge set E′(D) = E′L(D) ∪̇E′U(D) = (⋃l∈LE′l(D)) ∪̇ (⋃u∈U E′u(D)), where the set E′l(D) for
l ∈ L consists of |l|+ 1 oriented blue edges, from each intersection point in Il to its successor,
from the base point to the first intersection point and from the last intersection point to the
basepoint. The set E′u(D) of red edges for each upper circle u ∈ U is defined analogously.
• cyclic orderings at an intersection point c ∈ I between incoming edges r ∈ E′u(D), b ∈ E′l(D)
and outgoing edges r′ ∈ E′u(D), b′ ∈ E′l(D) given by (t(r), t(b), s(r′), s(b′)) if c is positive and
by (t(r), s(b′), s(r′), t(b)) if c is negative.

This construction is illustrated in Example 10.17. Note that in particular if a circle in the Heegaard
diagram has no intersection points, there is only a loop attached at the basepoint.
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For any a ∈ U ∪ L the set of target vertices of edges in E′a(D) is the union of Ia and the basepoint
of a. Assigning to each edge its target vertex defines a total order on E′a(D). Here, the basepoint is
chosen to be the last element.

At positive intersection points we call the incoming red edge end t(r) the inner red edge end. At
negative intersection points the outgoing red edge end s(r′) is called inner red edge end. Note that
a red edge can have two inner red edge ends. For instance, in the graph Γ′(D) in Example 10.17
the edge from s to r has two inner red edge ends.

From the ribbon graph Γ′(D) associated to a Heegaard diagram, we can construct another ribbon
graph Γ(D), which has exactly one based loop for each lower circle. This is achieved by contracting
edges, adding vertices, reversing edge orientations and splitting edges, cf. Chapter 3.

Definition 10.16. The 2-colored ribbon graph Γ(D) associated to an ordered oriented based Heegaard
diagram D = (Σ,U ,L) arises from the graph Γ′(D) from Definition 10.15 by successively iterating 1.
over u ∈ U in the order given by U , then carrying out 2. and iterating 3. over l ∈ L in the order
given by L:

1. If |E′u(D)| > 1 an edge in E′u(D) is contracted towards the basepoint: If the first intersection
point in Iu is positive (negative), then the last (first) edge in E′u(D) is contracted. For the
remaining edges a in E′u(D) the following is iterated in the order of E′u(D): If s(a) is negative
and t(a) positive, a is split into two edges.

2. The orientations of all red edges are reversed.
3. If |E′l(D)| > 1 each edge in E′l(D) except for the last one is contracted such that all intersection

points on l are removed and the basepoint is kept.

If the condition in 3. is not satisfied, nothing is contracted. As reversing the orientations of two
different edges commutes, one can choose any order in which the orientations of the red edges in
step 2. are reversed.

We denote the edge sets arising from E′u(D), E′l(D) for u ∈ U , l ∈ L in steps 1., 3. by Eu(D), El(D).
The latter are singletons, and we label the unique edge in El(D) by l. The sets Eu(D) are endowed
with the induced order of E′u(D), such that contracted edges are omitted in the order. Splitting
edges is taken into account as follows: If an edge a with possible predecessor b′ and successor b′′ in
E′u(D) is split into an edge a′ with s(a′) = s(a) and an edge a′′ with t(a′′) = t(a), then in the order
of Eu(D) the edge b′ is succeeded by a′, then a′′ and b′′. If s(a) = s(a′) is the last element in Iu,
then a′ is the last element and a′′ the first element with successor b′′ in Eu(D). This is illustrated
in Example 10.17.

Note that in Definition 10.16 the splitting of an edge a happens if and only if (s(a), t(a)) is an
inversion pair. The splitting of edges ensures that each red edge has at most one inner red edge end.
Conversely, as each intersection point has an inner red edge end, we can label the corresponding red
edge by the intersection point.

Reversing the orientations of all red edges in Definition 10.16, 2. amounts to reversing the order
of Eu(D). This ordered set Eu(D) defines a closed path in Γ(D). We denote by Pi(D) the path
described by Eui(D) for the i-th element ui in U .

The following example illustrates the described procedures.
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Example 10.17. From the Heegaard diagram

u1l1 l2

l3

a
b

r
s

z

k

d

u2

u3

from Example 10.4 we first construct the 2-colored ribbon graph Γ′(D) given by

a

b
z

d

k

r

s
u1

u2

u3

The edges arising from u1 are indicated in orange, the ones arising from u3 in magenta.

As the first intersection point s in Iu1 is negative, the first edge in E′u1(D) is contracted:

a

b
z

d

k

r

s
u1

u2

u3

As (s, r) is an inversion pair, the edge that is outgoing at s is split. As the first intersection point in
Iu2 is negative, the first edge in E′u2(D) is contracted.
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a

b
z

d

k

r

s
u1

u2

u3

Likewise, the first intersection point b in Iu3 is negative and thus the first edge in E′u3(D) contracted.
As (b, a) is an inversion pair, the red edge outgoing at b is split:

a

b
z

d

k

r

s
u1

u2

u3

In the next step the orientations of all red edges are reversed:

a

b
z

d

k

r

s
u1

u2

u3

After that all blue edges in E′l1(D) except for the last one are contracted, the contained intersection
points vanish. The red edges with inner red edge ends at the disappearing intersection points are
labelled by these points. The single element in El1(D) is labelled by l1.
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a b

z

d

k
r

s

u1

u2

u3

Then all edges in E′l2(D) except for the last one are contracted

a b

z
d

k
r

s

u1

u2

u3

and in the last step all edges in E′l3(D) except for the last one are contracted. This yields the graph
Γ(D):

a b

z

dk

r

s

u1

u2
u3

x1

x2

The edges x1, x2 have no inner edge end. The paths associated to the three red circles are

P1(D) = s ◦ r ◦ x2, P2(D) = d, P3(D) = b ◦ a ◦ z ◦ x1 ◦ k.
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Remark 10.18. The distinction between contractions of first or last edges in Definition 10.16, 1.
has technical reasons. The general aim is to remove the basepoint and one edge for u ∈ U , hence
contract this edge. But inner red edge ends should not be contracted, as contracting the corresponding
edge would possibly lead to red edges with two inner edge ends, both labelled by an intersection point.
More specifically, if the first intersection point in Iu is negative, the first element in E′u(D) has no
inner edge end and is contracted.

no inner

If the first intersection point in Iu is positive and additionally the last element in Iu positive, the
last edge in E′u(D) has no inner red edge end and is contracted.

If the last intersection point in Iu is negative, both the first and the last edge in E′u(D) have an
inner edge end. After contracting the last element in E′u(D), the first edge in E′u(D) has two inner
edge ends. But as its source vertex is negative and its target positive, Definition 10.16 ensures that
it is split into two edges, each having one inner edge end.

inner no inner inner inner

The 2-colored ribbon graphs Γ(D) assigned to the Heegaard diagrams D from Example 10.6 are
collected in Appendix A.

10.5 Relation between Kuperberg invariants and mapping class group actions

After constructing the ribbon graph associated to a Heegaard diagram in the last section, we now
show how the tensor endomorphism from Definition 10.5 can be obtained via edge slides in the
associated graph. This relates it to mapping class group actions considered in the thesis.

For this, let D = (Σ,U ,L) again be an ordered oriented based Heegaard diagram and H an involutive
Hopf monoid in a symmetric monoidal category C. Recall that N∗ = ∑

u∈U N
∗
u is the number of

inversion pairs in all upper circles, N the number of intersection points. Let Γ(D) be the 2-colored
ribbon graph associated to D from Definition 10.16.

Roughly speaking, we take the ribbon graph Γ(D) and assign to each blue edge a copy of H and to
each red edge a copy of the tensor unit. We then perform a Dehn twist along each lower circle, that
is, slide all red edge ends to the left of the blue edge towards its starting end. After applying the
counit to each copy of H associated with a lower circle, and multiplying the contributions of each
red edge for each lower circle, this yields the tensor endomorphism.
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Definition 10.19. Let D = (Σ,U ,L) be an ordered, oriented based Heegaard diagram of genus g
and Γ(D) the associated 2-colored ribbon graph with paths P1(D), . . . , Pg(D). The sliding endo-
morphism K ′H(Γ(D)) : H⊗g → H⊗g associated to Γ(D) is obtained as follows:

1. Start with H⊗g, with each copy of H assigned to a blue edge of Γ(D).
2. Apply a unit for each red edge.
3. Successively slide all red edge ends to the left of a blue edge towards its starting end.
4. Apply a counit for each blue edge.
5. For i = 1, . . . , g multiply the contributions of the edges contained in Pi(D) in reversed order.

As edge slides only affect the copies of H associated to edges involved in the slide, sliding along
different blue edges in Γ(D) commutes. Thus, one can choose any order of blue edges for the slides
in Definition 10.19, 3., in particular the order given by L. We denote the composite of all slides in 3.
of Definition 10.19 by

Ss(L)L : H⊗(g+N+N∗) → H⊗(g+N+N∗)

and the tensor product of all multiplications in 5. by

mP−1 : H⊗(N+N∗) → H⊗g.

Then we obtain the sliding endomorphism as

K ′H(Γ(D)) = (ε(g) ⊗mP−1) ◦ Ss(L)L ◦ (1H⊗g ⊗ η(N+N∗)) : H⊗g → H⊗g. (90)

We show that the sliding endomorphism coincides with the tensor endomorphism. This is illustrated
in an example before we state and prove the theorem.

Example 10.20. We consider the graph Γ(D)

a b

z

dk

r

s

u1

u2
u3

x1

x2

associated to the Heegaard diagram D from Examples 10.4, 10.17 with paths

P1(D) = s ◦ r ◦ x2, P2(D) = d, P3(D) = b ◦ a ◦ z ◦ x1 ◦ k.

Successively sliding all red edge ends to the left of a blue edge towards its starting end means that
first the outgoing edge end of r is slid towards the starting end of l1 such that:
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a b
z

dk

r
s

u1

u2
u3

x1

x2

Then the edge ends of a, b to the left of l1, then the edge ends of z, s to the left of l2 and afterwards
the edge ends of k, d to the left of l3 are slid towards the starting end of the corresponding blue loop.
The associated sliding endomorphism K ′H(Γ(D)) = (ε(3) ⊗mP−1) ◦ Ss(L)L ◦ (1H⊗3 ⊗ η(9)) is given by

l1 l2 l3 r a b z s k d x1 x2

.

This coincides with the morphism KH(D) assigned to D in Example 10.6, 1.

Other examples of sliding endomorphisms based on the Heegaard diagrams from Example 10.6 are
given in Appendix A.

We now prove that the sliding endomorphism always coincides with the tensor endomorphism.

Theorem 10.21. Let D = (Σ,U ,L) be an ordered oriented based Heegaard diagram, Γ(D) the
associated 2-colored ribbon graph and P1(D), . . . , Pg(D) the paths corresponding to the upper circles
in U from Section 10.4.

Then the sliding endomorphism from Definition 10.19 coincides with the tensor endomorphism from
(81): K ′H(Γ(D)) = KH(D).
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Proof. By construction of Γ(D) each l ∈ L is a loop at its basepoint. In the cyclic ordering of the
basepoint there are exactly |l| edge ends between the starting and the target end of l. The |l| edge
ends are all inner red edge ends, hence labelled by the associated intersection point with l. The
cyclic ordering at the basepoint is inherited from Γ′(D) and thus given by the opposite order in Il:
The successor of s(l) is the last element of Il, followed by the predecessors in Il such that the first
element in Il comes directly before t(l). The sliding procedure in Definition 10.19, 3. successively
slides the |l| red edge ends towards s(l), starting with the first element in Il.

The associated sliding morphims are given in Definition 5.5 and Remark 5.6. All edge slides are left
edge slides, but one has to distinguish slides of the target or the starting end of an edge c along a
blue loop l. If c is incoming at the basepoint the morphism l ⊗ c 7→ l(2) ⊗ S(l(1))c is applied. If c is
outgoing one applies l ⊗ c 7→ l(2) ⊗ c l(1), see Remark 5.6. Pre-composing this with the unit for the
edge c yields l ⊗ 1 7→ l(2) ⊗ S(κc)(l(1)), where κc from (80) is given by κc = 1 if the red edge c is
incoming at the basepoint and κc = 0 else.

After sliding all edge ends as in Definition 10.19, 3. there are |l|+ 1 copies of H assigned to l ∈ L.
Applying the counit to the blue loop associated to l ∈ L removes the (|l|+ 1)-th copy. The order
in which the other |l| copies are assigned to intersection points is given by Il. Edge slides along
distinct elements of L commute, as they do not share intersection points. Thus, up to braiding
morphisms (ε(g) ⊗ 1H⊗N ) ◦ Ss(L)L ◦ (1H⊗g ⊗ η(N)) coincides with SL ◦∆L. The units associated to
red edges that are not labelled by intersection points are not affected by edge slides.

Applying mP−1 after the edge slides gives the same morphism as post-composing SL ◦∆L with
mU ◦Pσ, which describes the tensor endomorphism from (81): the i-th path Pi(D) contains the edges
labelled by intersection points in Iu in reversed order, where u is the i-th element of U . Possibly,
edges that are not labelled by intersection points are contained in Pi(D). As these edges are not
affected by edge slides, their contribution in the multiplication along Pi(D) is the unit. Hence, they
can be neglected.

As applying the morphism mP−1 multiplies for each i = 1, . . . , g the edges in Pi(D) in reversed
order, the i-th component coincides with multiplication along the i-th element of U . Hence, the
assertion follows.

The sliding procedure in step 3. of Definition 10.19 exactly describes the Dehn twist from Remark
9.11. This is the inverse Dehn twist to the twist in Definition 9.9, a) with an imaginary cilium at
blue edges β such that s(β) < t(β). Thus, for an ordered oriented based Heegaard diagram D with
associated 2-colored ribbon graph Γ(D), where a copy of H is assigned to each blue curve in Γ(D)
and the tensor unit to each red edge, Theorem 10.21 can be reformulated in terms of Dehn twists:

Corollary 10.22. The tensor endomorphism is the composition of Dehn twists along the blue curves
in Γ(D), applying the counit to each blue curve and multiplying together the contributions of red
edges for each upper circle.
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Appendix

A Examples of assigned ribbon graphs and sliding endomorphisms

In this appendix, we collect the 2-colored ribbon graphs Γ(D) assigned to the Heegaard diagrams in
Example 10.6, 2.-6. and the corresponding sliding endomorphisms. For the definition of Γ(D) we
refer to Section 10.4. The sliding endomorphism is defined in Section 10.5.

Example A.1. The 2-colored ribbon graphs Γ(D) assigned to the two Heegaard diagrams in Example
10.6, 2. are given by

a b

l

a

b

c
d

l1
l2

.

The graph on the left has a single path P1(D) = a ◦ b, the graph on the right the paths P1(D) = a ◦ b
and P2(D) = c ◦ d. This yields the following sliding endomorphisms:

a b c d
l2l1

u1
u2

a b
l

u

.

As shown in Theorem 10.21, the sliding endomorphisms coincide with the tensor endomorphisms
from Example 10.6, 2.

The graphs assigned to the Heegaard diagrams from Example 10.6, 3. and 4. are
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l u

a

l

with paths P1(D) = u for the graph on the left and P1(D) = a for the graph on the right. The
associated sliding endomorphisms are given by

al l

u

u

.

The 2-colored ribbon graph Γ(D) associated to Example 10.6, 5. with p = 5 is depicted as

a

b

c d

e

.

The single path is given by P1(D) = a ◦ b ◦ c ◦ d ◦ e. Together they yield the following sliding
endomorphism:
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a b c d el

u
.

The ribbon graph Γ(D) assigned to Example 10.6, 6. is

a

b
c

1

x2

2
34

5
6

7

x1

d

e

with paths P1(D) = 1 ◦ 2 ◦ 3 ◦ 4 ◦ x1 ◦ a ◦ 6 ◦ c and P2(D) = b ◦ 7 ◦ d ◦ e ◦ x2 ◦ 5. Together they yield
the sliding endomorphism:

1 2 3 4 5 6 7 a b c d e x1 x2l1 l2

u1 u2 .
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