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| |

. ( , ( )) = 0 > 0

( ,O ( )) = 0 > 0
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⊂
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( ,P4) = + 3

( ,P4) = − 3 .

∗( − 2 + 3 − 4) = − 3

∗( ) = 0, ∗( 2) = 0, ∗( 3) = , ∗( 4) = 3 .
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= −2 + (2 − 2)

( , P̃4) = (
/P̃4)

−1 = ( ) (
P̃4 | )−1.

( ) = [ ] +
(
2 − (2 − 2)

)
+ 4 .

(
P̃4) P̃4

, , − , − , − ,
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−

− − −

1 2

1 2

1 2 = ( 1, 2)

2 ( )− 2 = ( + ) · + 2
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