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ABSTRACT

One of the main goals of theoretical physics is to describe physics at all energy scales. The usual
renormalization scheme of quantum field theory provides a way to investigate the details of physical
systems at different energy scales, potentially up to some energy cut-off. When a theory is predictive
at arbitrarily high energies and hence the cut-oft can be removed, we say the theory is UV complete.
The importance of UV completeness lies in its ability to explain physical phenomena at arbitrarily
small distances or high energies. However, when standard techniques from quantum field theory
fail to provide such a description, new degrees of freedom are expected to become important.

In this thesis, we investigate two types of UV completions; one associated with conformal field
theories and the other with quantum gravity. For the former, we study the fixed points of the renor-
malization group where one needs to integrate-in light solitonic particles/strings in the context of
supersymmetric conformal field theories. For the latter, we review the challenges of UV complet-
ing quantum gravity and the severe constraints that such a completion is expected to provide for
the low-energy physics. The study of such constraints constitutes the idea behind the Swampland
program, which aims to identify theories that are inconsistent when coupled to gravity.

A guiding tool for further understanding and constructing both classes of theories is string the-
ory, which provides a framework to analyze strongly coupled systems. In particular, it can be used
to provide a classification framework for five dimensional superconformal field theories. However,
string theory, being a theory of quantum gravity, can also be used to analyze the possible landscape
of supergravity theories. We reconstruct some of the results suggested by string theory from bottom
up and in particular focus on questions related to the finiteness of quantum gravity. Our results are
suggestive of a possible string universality for supersymmetric gravitational theories.
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“The existence of a single structure that unifies such a
broad range of physical and mathematical ideas, and
many others as well, is unexpected and remarkable.
Earlier I declined to define beanty, but one can recognize

it when one sees it, and here it is.”

Joseph Polchinski '5°

Introduction

What makes our world tick? That is the question scientists, philosophers and theologists have tried
to address for thousands of years. Maybe not all of their approaches are the same but the question

is universal. From the perspective of a scientist one would like to analyze their world around them
and describe it through some fundamental principles. The laws that underline our cosmos have
been studied in different frameworks split into different fields. To make this possible one of the gifts

the universe has given us is scale separation, which means that short distance effects do not affect



long distance physics, and this is why we are able to predict the trajectory of a rolling ball without
referring to its molecules and atoms. In high energy physics, scale separation comes in the form of
short scale (high energy/UV) processes mediated by heavy or fast particles that can actually decouple
from long scale (low energy/IR) physics.

This is the idea behind Effective Field Theories (EFT) where physical processes are modelled up
to some energy scale, beyond which we need to include processes we had decoupled. A well-known
and successful example is the Standard Model (SM) of particle physics, which is an EFT that models
the interactions of sub-atomic particles up to some cut off. In particular, it gives us a good grasp of

the physics between the large scale of the size of the universe (R} ~ 1072 GeV ') and the

universe

short scales (~ 1000 GeV), as probed in the LHC?. However, the standard model is still not very
well understood beyond certain energy limits and in regions the physics becomes strongly coupled.

One particular class of strongly coupled field theories are conformal fields theories (CFT). Such
theories have scale invariance and appear in the deep IR/UV limit of quantum field theories® mak-
ing their appearance in condensed matter physics, string theory and holography. Understanding
CFTs together with supersymmetry (SCFTs) simplifies the problem, and in particular they are be-
lieved to be fully classified in the maximal dimension six'°*. In chapter 4 we will study conformal
field theories in five dimensions with minimal supersymmetry. In particular, we will use the conjec-
ture that all lower dimensional conformal field theories come from a higher dimensional theory on
various compactifications''*. Therefore, the five dimensional conformal field theories are expected
to be descendants of the six dimensional classification when compactified on some circle with the

possible choice of a discrete twist, called sd Kaluza-Klein (KK) theories. These twists correspond

to automorphisms of the theory for which one could turn on discrete holonomies giving rise to a

"Note that GeV is a unit of energy and corresponds to fic/GeV ~ 10~ ®m in units of distance.

*We note that there is physics beyond the Standard Model including Dark matter, Dark Energy, Neutri-
nos etc.

*Including free, empty and strongly coupled CFTs with the latter being most interesting.



bigger class sd KK theories. The classification of theories without such twists can be found in 5.

Such a full list of theories is crucial because it is believed that any sd SCFT can be reached via a mass
deformation of the KK theory*+.

Gravity can also be coupled to the standard model as long as it is weak, and we do not ask ques-
tions about high enough energies. But, the notion of shorter scales and the idea of UV/IR decou-
pling can break down because of the creation of black holes and their thermodynamic properties
as will be reviewed in chapter 1. Hence, above some energy scale, a new description is expected to
emerge.

Among various approaches to quantum gravity, string theory has been a strong candidate as it
unifies gravity with the standard model and predicts various properties of black holes. In fact, grav-
ity is incorporated very naturally within the theory. Despite its various successes, the vast number
of possible solutions (vacua) in string theory, called the Landscape #, makes it hard to identify which
solution corresponds to our universe. Additionally, the difficulty of computational control also
makes it hard to make concrete predictions.

One could then rephrase the question of finding our universe into a more naturalness type ques-
tion: Why do we live in a specific vacuum if there is a huge number of other possibilities? Why is the
standard model gauge group so small 2 Why is the cosmological constant so small? Why is there a
hierarchy in the masses of subatomic particles?

One could argue that our existence and being here to ask these questions is really the answer.

But what if there was a more natural explanation? It could be that gravity, the force that keeps our
universe together, is responsible for that. In other worlds, if we were able to have a “Theory of Ev-
erything” then we would automatically have an answer to these questions. This is motivated by the
old wisdom that gravity has no global symmetries. This really means that there are no free parame-

ters to tune and that gravity does not provide us with superselection sectors. So it is natural to think

+of the order ~ 10272000 182



that a very specific and finely tuned universe is not preferred.

This is a powerful result towards nailing down a fundamental principle of quantum gravity.
However, in the search of principles of quantum gravity a natural question arises: What is gravity?
This is a questions that we are still not as close to defining but what we can do is understand deeply
the basic elements that a gravitational theory should obey. In other words we are looking into de-
scribing what gravity really is based on some simple universal properties and rules. But how do we
find these rules when we do not have a clear understanding of gravity? We believe that a consistent
quantum gravity should also include black holes, a limit of Einstein gravity, the holographic prin-
ciple, 4 large dimensions, UV/IR mixing, be unitary and more. However, to get inspiration for the
fundamental principles we really need a quantum theory of gravity. We might not necessarily have
“the” quantum theory of gravity but we have one, string theory.

Another way to rephrase this approach is to focus firstly on understanding what is not possible!
This is called the Swampland program 18¢ where one attempts to understand the theories that do
not provide consistent quantum gravitational theories.

The important contribution of string theory to the Swampland program is that it provides a
framework to study such questions and extract some general principles. Then these principle need
to be studied outside of string theory and if believed to still hold then provide concrete evidence
using UV completion independent methods.

In section 1.1 we will review some of these proposals and the evidence to support them. One
fundamental principle is the idea of duality. In theories with gravity we expect that at infinite dis-
tances in some moduli space we would find new physics described by some dual theory. In chapter 2
we trace such infinite distance limits in theories with 16 supercharges and understand some prop-
erties of their dual theories. In particular, in section 2.2 we follow the supersymmetric states and
uncover a form of T-duality inspired from string theory and in section 2.1 we are able to follow the

path of the non-bps states in 9 dimensions and understand their dual description when they decom-



pactify. Interestingly, the duality scheme we see is very similar to that of string theory. This makes
one wonder whether string theory is unique and if all low-energy theories have a UV completion
within string theory. This is called string universality.

Furthermore, there is another important reason to understand string theory’s role in the land-
scape of low-energy physics. Earlier we described the role string theory plays to inspire and propose
general principles of quantum gravity. However, if string theory is only a small part of the quantum
gravity landscape then we are being mislead into principles that are only true within the string the-
ory realm. This is called the String Lamppost Principle (SLP). Therefore, attempting to understand
the universality of string theory is important.

In fact, in theories with 16 supercharges the duality principle can be enough to constraint the
massless modes of the low-energy physics. In particular, in subsection 2.2.1, we show that in dimen-
sions d > 3 there can only be finitely many massless modes (up to some cut-off) with the rank of the
gauge group of these theories bounded by 7¢ < 26 — d. For example, N = 4 Super-Yang Mills with
rG > 22 are inconsistent, and said to belong to the Swampland.

Interestingly, the idea of finiteness of the quantum gravity landscape ' can also be tested in six
dimensional supergravity theories with 8 supercharges which have chiral anomalies severely con-
straining the spectrum. In section 3.1 we show that the rank of the possible gauge groups is finite
and in section 3.4 we provide strong bounds on the type of matter that can appear. This bound also
extends to five dimensions.

However, the finiteness question is significantly harder to address in five dimensions. This is
because the theory has no chiral anomalies which could help constraint the spectrum. In fact, even
from the string theory point of view it is not clear since a classification of the string landscape is not
complete but it is expected that there are only finitely many inequivalent Calabi-Yau threefolds.

In section 3.2 we investigate the Calabi-Yau landscape of five dimensional theories with a focus to

extract some general principles. In particular, we propose that these hold more generally and we



provide evidence to support them from the bottom up.

In chapter 1 we will review details of supergravity theories and superconformal theories in var-
ious dimensions with varying amount of supersymmetry which will motivate the more detailed
analysis of the next chapters.

116,120,179,

This thesis is based on five papers 3> '7 completed in collaboration with Cumrun Vafa,
Sheldon Katz, Hee-Cheol Kim, Patrick Jefferson, Laksya Bhardwaj, Alek Bedroya and Sanjay Ra-

man.



“Nature isn’t classical, dammit, and if you want to make
a simulation of nature, you'd better make it quantum
mechanical, and by golly it’s a wonderful problem,

because it doesn’t look so easy.”

Richard Feynman '*+

Quantum Field Theory and Quantum
Gravity in a Nutshell

This chapter’s main focus is to review certain aspects of supersymmetric field theories and gravity
theories that will provide an introduction to important concepts utilized in the subsequent chap-
ters. In particular, section 1.1 will provide a short introduction to key concepts of string theory and

the general framework used to construct examples in both gravitational and non-gravitational theo-



ries.

In section 1.2 the general ideas of the Swampland program for gravity theories will be reviewed,
which provides a way to understand fundamental principles of quantum gravity without referring
to a specific UV completion. Additionally, general bottom up principles that quantum field theories
need to satisfy to be well-defined in the UV will be discussed.

The rest of the chapter will provide a more detailed introduction to supergravity theories and
superconformal theories in various dimensions with various amount of supercharges and their con-

structions within string theory.

1.1 TorDownN

String Theory provides a framework where one can study gravity and field theory as part of a single
theory. In particular, string theory is a theory of quantum gravity where the elementary degrees

of freedom are strings. For example, the graviton is a closed string excitation and the spacetime is
believed to be an emergent phenomenon. The string like nature of the particles solve some of the
divergence issues in field theory but most remarkably describes a theory of quantum gravity with
finite S-matrix.

The insight in a lot of the UV properties of string theory come from dualities. Meaning that a
given theory changes description based on the values of its parameters. This duality web seems to
be a fundamental principle of quantum gravity where UV and IR degrees of freedom can be inter-
changeable. This is a remarkable feature which provides us all the information we need to explore
regions that are inaccessible from the traditional descriptions. However, certain non-perturbative
corners of string theory are still not as clearly understood.

String theory is best understood together with supersymmetry as it provides a stable vacuum

and special computational control. However, non-supersymmetric string also exist, which have no
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Figure 1.1: Duality web in string theory: T-duality is indicated by T, indicating the equivalence of two theories when put

on a small and large circle respectively. M-theory, Type IIA and 1I1B have 32 supercharges. The heterotic theories, Type |
and Type I’ have 16 supercharges. These also have gauge groups for which upon compactification on a circle permit the
introduction of Wilson lines. In the absence of Wilson lines the heterotic £g X Eg is self T-dual. Certain theories can

also enjoy a strong/weak duality (S duality). Type lIA supergravity also permits the introduction of a mass deformation
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m known as Roman’s mass ~°~ which when non-trivial provides extra possible dualities.

tachyonic degrees of freedom theories but have rolling potentials 577,

The maximal string theories live in 10 dimensions with 32 supercharges. In fact there is a choice
of chirality which subsequently defines two theories: non-chiral Type ITA and chiral Type IIB.
A parent 11 dimensional theory also exists which has no strings but rather membranes called M-
theory. This theory can be reached as the strong coupling limit of Type IIA. In 1o dimensions also
string theories with 16 supercharges exist which are chiral with anomalies dictating the existence of a
gauge group Eg X Eg or SO(32). The web of dualities relates them to also orbifolds or orientifolds
of M-theory/IIB as seen in Figure 1.1.

String theory can be a powerful tool to understand strongly coupled physics, black hole thermo-
dynamics, holography and more. In the next section compactifications of string theory to lower di-

mensions will be discussed with an emphasis on Calabi-Yau manifolds. Such manifolds break part of



the higher dimensional supersymmetry and hence provide lower dimensional supergravity theories
with less supersymmetry. There are other compactifications one can consider beyond Calabi-Yau

manifolds like non-geometric worldsheet constructions *5°

but they are beyond the scope of this the-
sis. However, it has been conjectured that all possible geometric or non-geometric compactification
are connected through transitions leading to the uniqueness of quantum gravity. An example of
such transition is conjectured to exist between Calabi-Yau manifolds and asymmetric orbifolds as
studied in**3.

The set of possible low-energy gravity theories in a given dimension and with a given amount of
supersymmetry is called the String Landscape. An important open question is to what extend does
that cover the full quantum gravity landscape? In an attempt to answer such a question one needs
to define what a quantum gravity theory or at least what are the basic properties of a gravity theory.
The understanding of the possible landscape of quantum gravity theories starting from low energy

physics (bottom up) and how it fits in the string landscape will be the main focus of the next two

chapters.

1.2 BorTtom Up

1.2.1  QUANTUM GRAVITY

As was discussed in the previous section string theory provides a complete framework to study field
theories and gravity theories in lower dimensions. However, string theory describes a very particular
behavior of gravity in high energies. In particular, the Einstein effective action is believed to break
down beyond some energy scale at about A1y;. In string that scale is reached before A1, at the string
scale M, where the string like nature of particles and spacetime start to become important. This
provides a stringy UV completion. However, one could argue that alternative UV behaviors could

also be possible, making string theory not necessarily unique. Although it provides an excellent

I0



candidate for a quantum gravity, it would be very beneficial to understand if in fact this behavior is
universal of any quantum gravity theory that has the potential to describe our world.

In order to approach such questions one firstly needs to understand the fundamental axioms of
gravity. The most well established description of semi-classical gravity is through Einstein’s general
relativity which provides a general description of the gravitational interactions in terms of the curva-
ture of spacetime and the effect of matter on it. One of the most interesting consequences of general
relativity is the prediction of black holes. In fact black holes where recently observed #® and hence
making them fundamental objects in any quantum gravity discussion.

However, this is a course grained description mainly in regions that the physics is well behaved
and quantum effects are not as important. Therefore, a Hilbert-Einstein field action can be coupled
to the Standard Model as long as one does not ask questions for high enough energies as the lack of a
UV completion and the non-renormalizable nature of gravity will provide obstacles.

Perhaps a more intuitive way to understand why quantum gravity should be expected to be hard
or different from common field theory is because of black holes. In fact Bekenstein and Hawk-

ing ""%99 showed that a black hole has a non-trivial temperature and entropy given by:

Spr = e (r.1)

where A is the area of the horizon of the black hole. This means that black holes have a rich struc-
ture with many microstates and degrees of freedom something very surprising from the classical
equation of Einstein’s gravity which are suggestive of a single state characterised by classical quan-
tities like mass, charge and angular momentum. This fact is particularly interesting because it is
indicative of some UV/IR connection and the standard way of separating scales does not work for
gravity. This could also be understood in a simple thought experiment where one tries to probe

higher and higher energies. The large amount of energy localized in a small region would lead to the

II



creation of a black hole. But the more the energy increases the bigger and more classical the black

hole becomes causing trouble to our current understanding of smaller scales 167,

UV/IR Connection

But this is not the only reason to expect gravity to be different but rather the idea of locality falls
apart too. For a quantum field theory all observables correspond to local operators. However, a
quantum gravity necessarily includes a sum over topologies and geometries making the idea of
spacetime itself non-fundamental. In fact the spacetime itself fluctuates and one can think of our
particular spacetime as some classical averaged limit of those fluctuations. Locality is expected to
be restored at certain “classical” regions. From the string theory point of view dualities also make a

clear understanding of locality ambiguous.

Failure of Locality

The black holes also provide a new surprise, the holographic principle implied from the structure
of their entropy Equation 1.1. In quantum field theories one would expect that the entropy to sat-
isfy a volume-law but Equation 1.1 seems to imply that the degrees of freedom are encoded on the
boundary and hence satisfying an area-law. In fact t Hooft'7¢ and Susskind '75 argued that gravity
has a holographic nature. A beautiful example of such a principle is the AdS/CFT correspondence
which describes a bulk gravitational theory with some conformal field theory living on the bound-
ary. As expected local observables emerge in this description either form the local classical gravity or

the locality of the boundary.

I2



Holographic Principle

Therefore, because of the above points one should not have expected to be able to describe grav-
ity using a local field theory description and hence the obstacles of the field theory have a very physi-
cal reason to exist.

On the one hand, the above issues may significantly complicate any such description with known
tools, but on the other hand they can also be guiding principles to unravel more fundamental con-
cepts of quantum gravity. For example, Equation 1.1 means that one can look for UV signatures to
the IR physics.

Furthermore, one can also understand the duality web of the previous section as a consequence
of these observations and hence a potential fundamental aspect of gravity. Both the holographic
principles and the entropy formula of Equation 1.1 have a description within string theory. In
particular, a demonstration of holography can be understood through the AdS/CFT correspon-
dence ?3, and the black hole entropy was given a microscopic explanation 7+,

However, the large landscape of string theories and the lack of computational control makes it
particularly hard to find our universe and make the theory predictive. Therefore, an understanding
of more basic rules of quantum gravity are important.

The Swampland program provides a way to study gravity through exclusion. In other words, it
can be understood as a way to distinguish low energy theories that can be consistently coupled to
gravity versus those that cannot. The goal is to unravel the basic principles of quantum gravity, such
that if an apparently consistent low-energy theory does not obey them it is deemed inconsistent
when coupled to gravity.

Many of these swampland constraints have origins from string theory and are consistent with

the general intuition of gravity. However, an important step is to refine them and provide evi-
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dence through more fundamental principles of gravity like black hole physics, scattering amplitudes,
causality, unitarity and holography. Some important examples of such constraints are summarized
below in their most intuitive form. More details and refinements can be found in? and references

thereof.

No global Symmetries 979%3: A theory of quantum gravity should have no global symme-

tries and consequently no free parameters.

* Cobordism Conjecture '**: Quantum gravity is unique and defines an equivalence class of

configurations connected through domain walls.

¢ Completeness of Spectrum: *5997>3The charge lattice of a quantum gravity theory is com-

plete in the sense that all possible representation appear in the spectrum.

* Distance Conjecture '*5: Infinite distance excursions in the moduli space of a given theory

leads to a tower of massless states with mass m ~ M e *.

* Weak Gravity Conjecture *°: For a U(1) gauge field coupled to gravity there must exist an

object of charge 4 and mass m satistying:

l] Z@

7> (12)

where Q and M are the charge and mass of an extremal black hole.

In fact the first three conjectures are very closely related to each other and the last two can be
related (for a review?).

A large part of the next chapters will be to understand implications of these conjectures for super-

186(

symmetric theories. In particular, the potential finiteness of quantum gravity '*® (see also *°) will be
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addressed together with the String Lamppost principle which is concerned with the universality of

the string landscape.

I.2.2 QUANTUM FIELD THEORY

String theory provides a strong framework to study UV physics of local quantum field theories.
However, from the low energy perspective it is not a simple problem to find necessary and sufficient
conditions for the existence of a UV completion for a low energy theory. In the previous subsection
it was noted that in a gravitational theory that could be possible because of the connected nature of
gravity.

However, even in a quantum field theory one can study the necessary conditions for the theory
to have a UV completion beyond the requirement to be anomaly free. In fact attempts have been
made to study consistency conditions for the existence of UV superconformal field theory (SCFT)
points for the low-energy theories. The first attempt for the sd minimally supersymmetric theories
was studied in "¢ and a more refined set of conditions was worked out in*'* and references thereof.
Additionally, for 6d SCFTs some bottom up details are reviewed in 196 and the E-string global sym-
metry was attempted to be argued from bottom up in'7". Moreover, more general properties of the

instanton moduli spaces were worked out in"'7 where an ADHM-like construction was proposed.

1.3 REVIEW OF SUPERGRAVITY THEORIES WITH 16 SUPERCHARGES
Let us start with reviewing the bosonic content of theories with 16 supercharges in d dimensions’.
* Supergravity multiplet: g, BW,A;, @ where ¢ is the dilatonand 7 € {1,...,10 — d}.

* Vector multiplet: 4* and @ wherej € {1,...,10 — d}.

"The only exceptions are the chiral 6d theory which has 21 tensor multiplets fixed by anomalies and the

1od theory which is chiral and completely fixed.
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A non-chiral theory with 16-supercharges in 4 dimensions has matter scalar fields which belong to

the coset space '*?

SO 10 —d
MV' (VG7 )

= S0(rg) x SO(10 — d)’ (1:3)

and in addition an R ford > 4 and a complex axio-dilaton ind = 4 coming from the gravity
multiplet. Here 7 denotes the rank of the gauge group G and for generic point of the scalar field
the G is abelianized to U(1)"¢. Moreover, the gravity multiplets of a non-chiral theory have (10 — d)
U(1) gauge fields as well as an anti-symmetric two-form field B,,*. In theories with 16 supercharges
the moduli space does not receive corrections and hence one can follow the trajectory of moduli
across different limits.

We can arrange these scalars ina 10 — d + r dimensional symmetric matrix A4, the generalized

metric, such that satisfy if satisfies the familiar:

Lo O Y lio—s O

= (1.4)
0 —I, 0 -1,
The kinetic term for the gauge field is
1 Tio— 0 Iio- 0
RGP 10—d g | o= P (1)
4 uv uy
0 —I, 0 —1I,

ab

where @ is the dilaton in the gravity multiplet.

*Sometimes one considers the dual of this field; for example in 4d the B-field is usually dualized to a
scalar.
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1.3.1 TYPE I SUPEGRAVITY

The Type I theory is typically understood as a string theory but we would like to define it as a super-
gravity. To that end, we will briefly review the massive type IIA supergravity. In particular, the type
ITA supergravity has a mass deformation which adds a parameter known as the Romans mass'®3.

The case where the Romans mass is set to zero reduces to the ordinary ITA supergravity. There are

two important features to keep in mind about the massive type IIA supergravity.
* the Romans mass is not a dynamical field and must be thought as a parameter of the theory?.

* Due to the coupling of the Romans mass to the dilaton, any non-zero value of the Romans

mass creates a linear profile for ¢~ in space.

We would like to study the supersymmetric backgrounds of massive type ITA theory on an interval.
For bottom-up reasons that we will explain in section 2.3the Romans mass needs to change along
the interval for that we must allow for jumps in the Romans mass which are mediated by super-
symmetric 8-branes. Such branes might or might not exist in the UV theory, but in this section,
our analysis is limited to what is or is not allowed in field theory. So we postpone those concerns to
future sections.

The supersymmetric 8-branes that mediated the jump must satisfy a BPS condition involving a
9-form charge. In this case, the 9-form gauge field must be dual to the Romans mass. Therefore, the
charges of the 8-branes and, consequently, the jumps in the Romans mass must be quantized*. We

take the tension of the 8-brane with a unit 9-form charge to be ug.

*Note that the application of no global symmetry conjecture **7 to (—1)-form symmetry implies that no
theory of quantum gravity must have a free parameter. For the massive type ITA, this implies that massive type
IIA in 10 non-compact dimensions with an arbitrary value of the Romans mass belongs to the Swampland
(see’ for a string theory argument). Therefore, we expect the profile of the Romans mass be set by boundary
conditions and defects. As we will shortly see, this is indeed the case in the backgrounds of massive IIA on an
interval.

*In string theory these are the D8 branes. But here we do not rely on string theory and therefore, so far,
we do not have any bottom-up information on the worldvolume theory of one or a stack of the 8-branes.
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Type I supergravity : is a supersymmetric background of massive type ITA on an interval with
a configuration of BPS domain walls perpendicular to the interval with the domain walls creating
a profile for the dilaton. This is a field theory definition and the existence of such a background
depends on the UV properties such as the spectrum of non-perturbative BPS domain walls and
end-of-the-universe walls.

Now we are ready to use the equations of the supergravity, to find the profile of the dilaton based
on the positions of the supersymmetric 8-branes. The calculations parallel those carried in the con-
text of string theory, however, we ignore any UV input and focus on the supergravity.

Suppose we have 9 large dimensions and a single compact dimension parametrized by x” such
that 0 < %2 < 27andx® ~ —x2. There are end of the universe walls sitting at the endpoints
x? = 0and x? = 7, which we do not know their microscopic description.

The type I supergravity action is

Sp = /dlox\/—ge%lo <;R + 28M¢108M¢10> — ;/F*F—l- e (1.6)

Here we have included only the bosonic terms coming from the metric and the top-form gauge field
strength F/which is dual to the Romans mass. The BPS 8-brane solutions are electrically coupled

to the 9-form gauge field 4 with field strength F. Suppose the 8-branes are positioned at x?. Let the
indices M, N € {0,---,9},and letu,» € {0, - - ,8}. Suppose further that there are 1 branes at
xsl), n9 branes at xg, and so on.

The equation of motion for the 9-form field 4 yields
F=vpd® A Nd, (1.7)

where v is a piecewise constant function which jumps at the positions of the branes.
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Since the supergravity equations are identical to the ones appearing in type I string theory, we
can use the solution in'®". However, due to lack of any bottom-up knowledge about the number
of 8-branes at this point, we have to generalize that solution to an arbitrary number of 8-branes.
The profile of the type I’ dilaton and the type I’ metric may be parametrized by a constant C'and a
piecewise constant function B(x”) whose value changes at the position of each brane and which is

entirely determined by the value B(0). In conformal gauge, gary = Q% (%), and we then find

5‘¢10(x9) = z(xg)_5/6, Q(Xg) - Cz(xg)_1/6 (18)

#(x?) = 3C(Bug — v0x”) /V/2. (1.9)

Here vy = (") is a piecewise constant function with jump discontinuity Avy = nug at each
stack of 7, 8-branes. See Fig. 1.2 for an illustration of the type I’ dilaton profile on the compact

interval.

8-brane 8-brane

57¢10

Figure 1.2: A schematic illustration of type I’ supergravity with two BPS end of the universe walls and two BPS 8-branes
located at the specified positions. The red line describes the profile of the type I dilaton (in the string frame instead of
the Einstein frame) on the compact interval. Note also that the distance between the two 8-branes in the middle can be
arbitrary.
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1.4 STRING THEORY EXAMPLES WITH 16 SUPERCHARGES

1.4.1 CHIRAL THEORIES

These theories are chiral and hence subject to strong anomaly cancellation conditions.
* N =(1,0)in 1od

In particular, the gauge and gravitational anomaly cancellation in rod implemented by the Green-
Schwarz mechanism7? requires the gauge groups to be limited to: s x Es, SO(32), Es x U(1)?48, U(1)4%.
However, only the first two gauge groups lead to consistent supergravities and the latter two belong
to the swampland as argued in>""?.

We can construct the two consistent theories in string theory in various ways: Eg X Eg and

SO(32) heterotic strings, Type I, or via M-theory on an interval as in Figure 1.3 which are related

through various dualities as seen in Figure 1.4 and Figure 1.1.

9d Heterotic M-theory
Mo Lide
Ey Ey
T
o v -
% T %
o= | QH
g
R—0

Figure 1.3: M-theory on the Horava-Witten wall. 12
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T-duality without Wilson lines

R; — 0
g1 fixed
®T-dual
HersOGa) (> Typel (155002 <}={> Type I (14) SO(32)
S-dual
gh — 0 a—0 R; =0 T-dual Ry — 400
7l D1 a=i
NS5 D5 ga—0 ar fixed
- Non — BPS F1
Light
Non — BPS F1 Non — BPS KK
Heavy
BPS KK BPSF1
BPS D1 BPS DO

@ =w=

Figure 1.4: A corner of the 10d dualities in string theory with 16 supercharges

* N'=(2,0)in 6d

These theories have similar anomaly cancellation condition as the 10 dimensional theories. How-
ever, vector multiplets are absent in such a theory and hence only the number of tensor multiplet
is restricted for a consistent theory coupled to gravity. In particular, a 6d analogue of the Green-
Schwarz mechanism '® restricts the number of tensor multiplets to be 7 = 2183, The moduli
space of scalars in this theory is given by

S0(21,5)
SO(21) x SO(5)

(1.10)

(where here, and in the following we ignore the duality group quotient for the moduli space and all

groups are over the reals).
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This theory can be understood as the low-energy limit of Type IIB string theory on a K3. A T-

dual description of this theory can be found by considering M-theory on the orbifold 7° /Zq 19°53.

1.4.2 NON-CHIRAL THEORIES

In this subsection, we review various known constructions of non-chiral theories with 16 super-
charges in dimensions 3 < d < 10 giving more detail for the casesd = 9, 8, 7 which have been
more thoroughly studied.

As we will review below, even though classical supergravity alone allows arbitrary rank ¢, the
ones that appear from string theory constructions all satisfy the bound »g < 26 — d. This bound
is saturated by considering toroidal compactifications of heterotic strings. Below we review some of

the string theory constructions leading to various lower ranks as well.

d = 9 THEORIES

e Rank=17

The 9 dimensional N = 1 theory with rank 17 can be constructed in many ways. The sim-
plest way is by considering a circle compactification of heterotic strings. This can of course
be described in many dual ways, including Type I or M-theory as well.

The moduli space branches for the Eg x Eg and SO(32) gauge groups in 9d are actually not

151

distinct but parts of the full moduli space of rank 17 theories'5'. Each of these components
can be reached by turning on Wilson lines for the heterotic/Type I theories or equivalently
moving D8-branes in Type I’(similar to the dicussion of the previous section). Therefore,

for rank 17 there exists one inequivalent 9 dimensional N = 1 theory with moduli space

SO(17,1)/SO(17).
e Rank =9
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There is also one inequivalent rank 9 theory which in different regions of its moduli space
can be described in terms of M-theory on a Mobius strip *5*5*, the 9d CHL string **** and
1A with a shift-orientifold O8° and O8~ + 7D8 with an extra D8°. Hence, we obtain

9 dimensional N' = 1 theory with gauge group Eg x U(1) and moduli space given by
50(9,1)/S0(9).

e Rank=1

There exist two inequivalent rank 1 theories in 9 dimensions with moduli space given by
SO(1,1).

The first one can be obtained from M-theory on the Klein Bottle’" resulting in a theory with
16 supercharges and gauge group U(1). The moduli space of this theory has different weakly
coupled descriptions at different regions of the space. In particular, the different regions can
be characterized by M-theory on the Klein Bottle, IIA with two shift-orientifolds 08Y and

the Asymmetric Orbifold of IIA (AOA)°.

The second inequivalent theory is given by Type IIB theory on a Dabholkar-Park(DP) back-
grounds’. This latter theory also has various weak coupling descriptions®. Upon compact-
ification on a further circle this leads to a T-dual description of M-theory on Klein Bottle
mentioned above. Therefore, we have reviewed here two theoriesind = 9withrg = 1
which are distinct, since they have disconnected moduli spaces and can only be connected

through T-duality by going to 8d.

d = 8 THEORIES

Discussions for constructions of theories in d = 8 can be found in3+5" as well as in78.

¢ Rank =18
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This theory can be constructed by considering the circle reduction of the 9d rank 17 theory

with an extra U(1) factor coming from the second circle.

e Rank =10

This theory can be viewed as the 8d CHL string** which is dual to ITA orientifold on the

158

Mobius strip **°. The strong coupling limit of the latter description is M-theory on the Mo-

bius strip which is dual to the 9d CHL string.
* Rank=2

There are two inequivalent 9d rank 1 theories which describe the same theory in 8 dimen-
sions®. Therefore, there is one 8 dimensional rank 2 theory coming from the 9d circle reduc-

tion with an extra U(1) factor.

d = 7 THEORIES

The 7 dimensional theories are interesting because they don’t all come from a simple circle com-
pactification of the 8d theories’#. In particular, they find new theories by considering the heterotic
string on 73 with some Z, triples of commuting holonomies, IIB orientifolds, and F/M-theory

compactifications.

* Rank =19, 11
These theories are equivalent to the 8d rank 18, 10 theories compactified on a circle respec-
tively.

* Rank =7

There is one theory with rank 7 obtained from the heterotic string on 7% with some Zj

triples. This theory is dual to F-theory on %XJSI
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* Rank=5

Similarly, this theory can be constructed from the heterotic string with Z triples and is dual

K3xst
to F-theory on =57°=-.

e Rank =3

There are in total 4 inequivalent theories with rank 3. In particular, there are two inequiv-

alent theories obtained from the heterotic string with Zs g triples and are dual to F-theory

1 . .. . . . . .
on Kg:ﬁs respectively. In addition, there are two inequivalent theories coming from IIA ori-

entifolds 406~ + 4067T. They could possibly both be described in M-theory on K3 with

frozen singularities (assuming two non-isomorphic embeddings of the (D4)* weight lattice

1
into the K3 lattice exist) with dual F-theory compactification on (T‘%S)

¢ Rank=1

. . . . . 1
Finally, there are three inequivalent theories coming from F-theory on 7;3256 . These three
theories do not have a heterotic description but have an M-theory description in terms of K3

compactification with frozen singularities.

1.5 REVIEW OF 6D N=1 SUPERGRAVITY

In this section we review various features of 6d (1, 0) supergravity theories. In addition, we provide
a review of the conditions that have been conjectured to be necessary for the consistency of these
theories. The set of all such conditions provide Swampland constraints that severely limit the possi-
ble low energy theories that could be consistently coupled to gravity.

Anomaly Cancellation consideration : A six-dimensional supergravity with 8 supercharges
consists of four types of massless supermultiplets: a gravity multiplet, vector multiplets, tensor mul-

tiplets and hypermultiplets. The chiral fields of those multiplets contribute to the anomalies pro-
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duced in such a theory characterized by an 8-form anomaly polynomial /3. Such anomalies can be

cancelled by the Green-Schwarz-Sagnotti mechanism ** if the anomaly polynomial /g factorizes as
I3(R,F) = [gX'xX'i, X = fd tVR2+Zb“ftrF2 (r.11)

where 2%, b are vectors in R, Q Q,p is the metric on this space and 4; are normalization factors
of the gauge groups G;. The anomaly factorization conditions for gravitational, gauge and mixed

anomalies are summarized as follows:
* RY: H— 1V =273-29T (1.12)
. F': 0= B, — > ngBy (1.13)
* (R*?:a-a=a"Qua’ =9—T (1.14)
© PR b= a*Quplf = L0y — g nigdy) (1.15)
« (B2 b b=t QQM 22X e — Ciyy) (1.16)
* F?F]? Db b= b?Qaﬂbf = ZR,S"IZ'AJ”%SA%A{;‘ i#j (1.17)

where H, V, T'denote the number of hypermultiplets, vectors multiplets and tensor multiplets in
the theory respectively. The number n% represents the number of hypermultiplets in the representa-

tion R of the gauge group G; and A%, By, Cs are the following group theory coefficients:
tRF? = AptrF?,  trpF = BptrF* 4 Cr(trF?)? (1.18)

the values of those coefficients for various representations and the normalization factors A, are sum-
marized in *7. In addition as shown in'>* the vectors 2%, b* € R1:T are constrained to have integer

inner productsa - a,a - b;, b; - b; € Z with respect to the bilinear form Q,,5, we call this the anomaly
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lattice. The anomaly lattice as described in "®® needs to be embedded in the full string lattice of the
6d supergravity. Moreover, it was shown in "4 that the vector « is a characteristic vector of the lat-
tice I', meaning that for any x € I'we have 4 - x + 2 €27,

Moduli space consideration: The moduli space of the 6d (1, 0) supergravity locally takes the
form SO(1, T) /SO(T) which is parameterized by the a vector /* € RY7 with positive norm j -/ > 0
representing the positivity of the metric on the moduli space. As discussed in ">+ consistency of
the theory requiresj - b, > 0, 7 - a < 0. The first set of conditions are required for the positivity of
the gauge kinetic terms and the latter condition is associated to the positivity of the Gauss-Bonnet

term in gravity #+°° which has been conjectured to hold.

1.6 F-THEORY ON A CALABI-YAU THREEFOLD

In the previous section we analyzed the structure of minimal 6d supergravity theories. A large class
of such theories can be constructed through F-theory on an elliptic Calabi-Yau threefold. An elliptic
threefold with a section can be viewed as having base that is K3, Enriques, BL,IF,,0rBl,P2, more
details on complex surfaces can be found in Appendix B. The total Calabi-Yau threefold is retrieved
by adding non-trivial fibrations over the base as seen in Figure 1.5.

We note that the process of making the fibers smooth described in Figure 1.5 is not possible in
6d because the vector multiplets have no scalars and hence a resolution of this type can only be ac-
complished by compactifying the theory on a circle which corresponds to M-theory on the resolved
threefold. This is because the 6d theory on a circle now can have moduli associated with Wilson
lines around the circle. In this picture the KK modes correspond to M2 branes wrapping the fibers.
In section 1.8 the 5d supergravities will be the main focus and details of M-theory constructions will
be discussed.

The fact that these are the only surfaces can easily be understood because we expect the Calabi-
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Yau geometry to be Ricci flat. This means that since the Ricci scalars decompose for the fibers and
the base then one needs them to both be zero or cancel each other. This can be accomplished by
considering bases that are ruled, rational, or Ricci flat. The classification of minimal compact com-

plex surfaces and their properties is summarized in Table 3.5.

Resolved

i

Singular

SO

Figure 1.5: This figure depicts the base of an elliptic Calabi-Yau with tori fibered over the base. At special points de-
scribed by the codimension one locus on the base the fibers may degenerate. One can resolve the singular fiber by
replacing the singularity with a collection of spheres P!, The intersection pattern of these spheres provide us will a
Dynkin diagram corresponding to the gauge symmetry.

The correspondence between the 6d supergravity of the previous section and the geometric data

is simple, where strings correspond to D3 branes wrapping various curves in the base:

—a — Kp (1.19)
where K3 is the canonical class of the base.
b—C (1.20)
where C is a holomorphic curve in the base. The rigid curves have C?=-n<0 corresponding

to O(—n) — P! rigid bundles. Such curves are shrinkable in the sense that can reach zero size at
finite distance in the moduli space. These correspond to instantonic local strings and give rise to 6d

SCFTs. In particular, curves with c? < -2 necessarily require non-trivial fibrations and define the
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Non-Higgsable Clusters (NHC) "#5. We will use such curves chapter 4 to understand the structure
of sd superconformal theories(SCFT) as descendants of the 6d SCFTs.

When Q2 > 0 they correspond to supergravity strings, which we will define in chapter 3, which
exist only in supergravity theories. For curves with Q> = 0 one can find them in gravity theories
corresponding to sd small black holes or strings in Little string theories in which though gravity
is decoupled. Curves associated to the supergravity strings are not shrinkable but they can only be
asymptotically massless at infinite distance in the moduli space.

Additionally, in F-theory it is required that the vectors 4, &; satisty the Kodaira conditon '*#:

(=124 — Z vib;) >0 (r.21)

;

where »; is the multiplicity of the respective singularity or equivalently the number of 7 branes
needed for the non-abelian gauge group G; (e.g. v = N for SU(N)). Additional constraints are
imposed from F-theory considerations regarding the irreducibility and effectiveness of divisors.
Moreover, for all odd lattices « is primitive and for 1912 < 0also &; is primitive in F-theory and in that
case the former can also be brought in the form 2 = (—3,17) 124,

The hodge structure of the threefolds is in correspondence with the massless modes of the super-

gravity theory as follows:

P1B)=T+1 (1.22)
PYX)=r+ b B)+1=r+ T+2 (1.23)
P 2(X) = Hypurat = 1 = V — Hopargea + 272 — 29T (1.24)

(1.25)

The geometric origin of the gravitational anomaly H — V' = 273 — 297 was discussed in®3.
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Interestingly the finiteness of such construction is well established. The only elliptic Calabi-Yau
two-fold with SU(2) holonomy is the K3 surface. As for the threefolds, they were also shown to be
finite®* and the largest hodge numbers are given by (b1:1, h21) = (491,11) and (KM1, h>1) =
(11,491) which are related by mirror symmetry. In fact both of these theories can be realized with a
toric base '*°. In chapter 3 we will show that 6d supergravity theories are finite which matches well

with our intuition from F-theory.

1.7 REVIEW OF §D N=1 SUPERGRAVITY

Considera sd N = 1 gravitational theory with gauge group G. We are primarily interested in its
effective field theory at low energy on the Coulomb branch of the moduli space. The massless su-
permultiplets in the spectrum are the gravity multiplet, a number of vector multiplets, and charged
and neutral hypermultiplets. The vector multiplets of G contain the vector fields 4, and the real
scalar fields . The scalars @ can take nonzero expectation values in the Cartan subalgebra of the
gauge group G. The scalar expectation values, which we denote by %, 4 = 1,--- | r, are moduli
parametrizing the Coulomb branch. At a generic point on the Coulomb branch, the gauge group G
is broken to its abelian subgroup U(1)" with r = rank(G) and the theory reduces to a supergravity
theory coupled to r Abelian vector multiplets as well as neutral hypermultiplets.

The bosonic action on the Coulomb branch for the gravity multiplet and vector multiplets is

given by3933
1
S:/<*RG1]d¢1/\ xdg/ — GyF N *ﬂGCUKAI/\F’/\PK> , (1.26)

where R is the Ricci curvature and 7/ = dA” is the field strength of the gauge group. Here we
collectively denote the graviphoton field Ag in the gravity multiplet and the r gauge fields in the

vector multiplets by AL T=0,1,---r. Gy is the metric for the geometry of the scalar moduli space.

30



Cy is the level for the cubic Chern-Simons term and it is quantized due to gauge invariance of the
Abelian symmetries as Cygx € Z'9".

The metric on the scalar moduli space in the eftective action is determined by the prepotential

defined as

1
F = Cue'ele" (127)

which is a homogeneous cubic polynomial in the scalar expectation values ¢1 obeying the hypersur-

face constraint,

1
F = ECUK@I@I¢K =1. (1.28)

The geometry parametrized by @1 under this constraint is called the very special geometry. The met-
ric on this hypersurface can be obtained as
10%log F
Gy = 2 0gl0g) . . (1.29)

One can also consider hypermultiplets in the low energy theory. Charged hypermultiplets are
all massive at a generic point on the Coulomb branch. They are already integrated out in the above
effective action. On the other hand, the neutral hypermultiplets remain massless in the low energy
theory. They will play some role in our discussion later.

On the Coulomb branch of the moduli space, the low-energy spectrum includes 1/2 BPS ex-
tended objects magnetically charged under the Abelian gauge groups. We call them magnetic monopole

strings, or monopole strings for short. A monopole string carries the magnetic charge of gauge fields
Al as,

f:;LF. (1.30)

Here the integration is taken over the two-sphere S2 surrounding the string. The tension of this

string can be exactly computed from the prepotential. For a string carrying unit magnetic charge of
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A/IL, its tension is given by
OF

T == .
9’ F=1

(131)

The monopole strings and their geometric counterparts will be central ingredients in section 3.2. We
will discuss their properties in detail in the next subsections.

The low-energy theory may involve higher derivative corrections to the effective action. Some
special higher derivative terms are determined by a combination of topological data and supersym-
metry. One is the mixed gauge/gravitational Chern-Simons term of the form,

1
SRR = % CrA" Ne(RAR), (1.32)

where R = dw 4 @ A w is the curvature 2-form for the spin connection w. This term is linear in the
gauge field 4, so we call this term as the linear Chern-Simons term. The supersymmetric comple-
tion of this four-derivative correction was obtained in”? using conformal supergravity techniques.

The level Ct for the linear Chern-Simons term is also quantized as follows*°. Let us put the the-
ory on a five manifold M5 = S' x M. Then consider a large gauge transformation of the gauge
field 47,

AL = AT+ %dxs , (1.33)

where n € Z and R is the radius of the S* with coordinate x°. This gauge transformation varies the

linear Chern-Simons term as

nw
OSARR = _ﬂCI " p1(T), (1.34)
4

where p1 (774 ) is the first Pontryagin class for the tangent bundle 7}. Note that the integration of pq
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over a spin manifold My gives an integer number:

1
18 M4P1(T4) €Z. (1.35)

Now demanding that the partition function is invariant under this large gauge transformation
quantizes the level as an even integer, therefore C; € Z.

The gauge symmetry can enhance to a bigger symmetry at special loci in the moduli space where
some charged vector fields become massless. On the special locus, the Abelian gauge groups can en-
hance to non-Abelian groups provided that the massless charged vector fields form the adjoint repre-
sentation of the non-Abelian symmetries. The full gauge group is then given by G = Gx U(1)* 1"
where G is the product of the enhanced non-Abelian groups with » = rank(G). There can also be
massless hypermultiplets charged under the enhanced gauge symmetry G. The low-energy theory on
the special vacua is then described by the gauge theory of the enhanced gauge group G coupled to
the massless charged hypermultiplets.

Two-derivative terms in the gauge theory action for each gauge multiplet @, of a simple non-
Abelian group G; C G are determined from the prepotential

= —%Tr(@f) + B3y (1.36)

Fe 5

i

where ; is the gauge coupling and «; is the classical Chern-Simons level for G;. The classical Chern-
Simons level is an integer and non-zero only for G; = SU(N) with N > 3. Here, the gauge coupling

h; is given by a linear sum of the scalar values ¢* in the Abelian part, such as

r+1—r

bz’ = Z hz’,ac@a . (1'37)
a=1

These scalar moduli ¢* parametrize the special sub-manifold of the moduli space where the gauge
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symmetry enhancement occurs. There is no four-derivative correction to the non-Abelian action
because if it exists, it is linear in @;, but @; is traceless.

One can move away from the special vacua by turning on generic scalar expectation values, say
p%,a = 1,--- rank(G;), for the Cartan generators of the non-Abelian symmetry G;. This will
bring us back to the Abelian effective theory at low energy. The prepotential of the Abelian the-
ory in the neighborhood of the special loci is determined by a one-loop calculation with charged
fermions that become massive with non-zero values of ¢?. For a non-Abelian gauge group G; and
matter hypermultiplets in generic representations, the prepotential after the one-loop calculation

is 191,166,110

hl’ a Kz' a ¢ 1
]:Gi - _5 I(iﬂb i @f] + gdi’“bfpi @f@l + E Z |R ' ¢z”3 o Z Z |Wf ¢z”3 ) (1‘38)
R fowr

where K , is the Killing form of G; and d; 4 = %Tr( T#{T?%, T5}) with the generator 7% in the
fundamental representation of G;. R and wyare the roots and the weights for the f-th hypermulti-
plet of G;, respectively.

In addition, a mixed gauge/gravitational Chern-Simons term with the level C; , is induced by

integrating out the charged fermions. The result from the one-loop computation is*

0
Cia= _(9§D‘? Z\R o] —ZZ!Wf'gl . (1.39)
! foovr

R

Note that not all supergravity theories have such special sub-manifolds of the moduli space sup-
porting enhanced gauge symmetry. Also, it is possible that a single theory has different special vacua
with different non-Abelian gauge theory descriptions, which may lead to interesting dualities. How-
ever, at a generic point on the Coulomb branch, the effective theory after integrating out all the

massive charged fields always reduces to an Abelian gauge theory description.
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A large class of sd N = 1 supergravities can be constructed from M-theory compactification on

compact Calabi-Yau threefolds. Such theories will be discussed in more details in the next section.

1.8 M-THEORY ON CALABI-YAU THREEFOLDS

In the previous section we studied general aspects of sd N =1 supergravity theories. However,
a large class of such supergravity theories can be engineered by compactification of M-theory on
compact Calabi-Yau threefolds (CY3’s) with SU(3) holonomy. In M-theory compactifications, the
Coulomb branch of the moduli space in the sd theory is identified with the Kihler moduli space
of the CY 3-fold. The Kihler moduli space is parametrized by Kihler parameters @I associated to
an integral basis wy for H51(X) in a threefold X. The action and the matter content in the effective
five-dimensional theory are specified by topological data of the Kihler moduli space.

Let us expand the three-form potential C3 in 11d supergravity in terms of the basis two-form
classes wy of X as

C3=A' Ny, (1.40)

where A7 = A{‘dxv“ with /=0, -+, h1(X) — 1 are the 1-form vector fields along the non-compact
sd spacetime. A particular linear combination of the 1-form fields will become the graviphoton field
in the gravity multiplet and the remaining 2y = h11(X) — 1 vector fields will become the U(1)
gauge fields in the vector multiplets in the low-energy supergravity theory. The 11d supergravity
action integrated on the threefold X reduces to the effective action of the sd supergravity up to four-

derivative terms written in terms of massless supermultiplets.

The reduction of the 11d Chern-Simons term on X leads to the sd cubic Chern-Simons term *5°:
1 1 7
Scs = —= C3/\G4/\G4:—*CUK A /\Fr/\fj, (1.41)
6 M xX 6 M

35



where Gy = dC3 and Fl = dA’. In this expression, the triple intersection number

C[]KE/(/.)[/\(;J]/\@K, (1.42)
X

counts the intersection numbers of 4-cycles dual to w7 in X. This triple intersection numbers natu-
rally reduce to the cubic Chern-Simons coeflicients Cy in the sd effective action.

We can now write the Kihler form Jin this basis as
]:Z¢Iw17 120)17"'7]91’1()()_17 (143)
I

where ¢ are the h1'1(X) = n, + 1 Kihler moduli. Note that one of these moduli controlling
the overall volume of X becomes a scalar component in a hypermultiplet and the other moduli are
mapped to the scalar expectation values in the vector multiplets in the low-energy theory. The total

volume of X measured with respect to /is then given by

1 1
F=z / JNIN = cCxp'glo" (1.44)
X

We shall fix the value of this volume (so a hypermultiplet scalar) by a constraint /* = 1. The re-
maining scalars @I subject to this constraint form an 7 dimensional Kihler moduli space in X. This
Kihler moduli space is identified with the Coulomb branch of the moduli space in the sd supergrav-
ity theory.

The metric on the Kihler moduli space is geometrically defined as

1

1
X

where the * denotes the Hodge dual taken in the internal Calabi-Yau manifold. This metric agrees
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with that of the supergravity theory given in (1.29) when we identify the volume F of X with the
prepotential in the sd gravity theory.

The spectrum of charged objects under the sd gauge symmetry originate from M2/Ms-branes in
M-theory wrapped on 2/4-cycles in the 3-fold. The M2-brane has a three-dimensional worldvolume
carrying unit electric charge of the 3-form potential C3. The worldvolume of M2-branes can wrap
on holomorphic (and also effective) 2-cycles in the internal 3-fold. The wrapped Ma-branes give rise
to electrically charged BPS particles coupled to the vector fields A for the 2-cycles in the sd theory.
In this case, the mass of the BPS particle is proportional to the volume of the 2-cycle. So the BPS
particles coming from the wrapped M2-branes are massive at generic points on the Kihler moduli
where all 2- and 4-cycles have finite volume. Thus they can be integrated out and do not appear in
the spectrum of the low-energy effective theory.

At certain special values of the Kihler moduli g)l , some 2-cycles (and also 4-cycles) shrink to
zero size and the 3-fold X becomes singular. The singularity with vanishing cycles can support a
non-Abelian gauge algebra G and the Ma-branes wrapping shrinking 2-cycles give rise to massless
charged states in the 5d field theory. In particular, the massless vector states can participate in the
gauge symmetry enhancement to the non-Abelian symmetry G supported along the singularity of
the 3-fold.

The Ms-brane is a magnetically charged object with respect to the 3-form potential. The six-
dimensional worldvolume of the M s-brane can wrap around holomorphic 4-cycles labelled by w;
in the internal threefold. The remaining two-dimensional worldvolume stretches along the sd non-
compact spacetime. Thus the wrapped Ms-brane yields a magnetically charged monopole string of
the Abelian gauge field Afl in the sd supergravity theory.

The tension of the BPS monopole string is set by the volumes of 4-cycles in the Calabi-Yau man-

ifold. For the string with unit magnetic charge of A’ the volume of a basic 4-cycle wr, so the string
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tension, is given by

7 = 81f:1/w1A]A]
2 Jx

1

The string tension is always positive within the Kihler cone of a smooth 3-fold X.

In the singular limit of X, as stated above, some 4-cycles can collapse to a point or to a collection
of 2-cycles. Then the M s-branes wrapping the set of collapsing 4-cycles become tensionless strings.
The low-energy theory in the neighborhood of the singular locus when gravity is decoupled reduces

to alocal sd SCFT strongly interacting with the tensionless strings 166,147,

59, However, for gravity
theories we are not interested such tensionless strings in local sd SCFTs. But they will become rel-
evant in chapter 4. The wrapped Ms-brane states over 4-cycles which never collapse to zero size in

the Kihler moduli space of the Calabi-Yau threefold correspond to supergravity strings as will be

discussed in section 3.2.

1.9 BPS STRINGS

As noted in earlier sections gravity multiplets with 16 supercharges and those with 8 supercharges in
d > 4 contain a two-form field. A natural object charged under these fields is a string. If the string
is BPS then their tension and charge are determined by supersymmetry. In fact the completeness of
spectrum hypothesis summarized in section 1.2 implies the existence of such strings associated to
each charge of the two-forms. A stronger version of this conjecture is that any state allowed to be
BPS has a BPS representative and hence predicting the existence of such BPS strings.

In this section some of the properties of such strings is summarized including their central charges.

It is well known that the gauge symmetries of the bulk theory, if seen by the string, will appear as
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global symmetries of the string worldsheet in the form of a current algebra with non-zero level.
Their levels and central charges can be computed exactly using the anomaly inflow mechanism
summarized in Appendix A.1. A necessary condition for all these strings to be BPS with the right

R-symmetry is that their levels and central charges are non-negative.

Theory sdN =1 6dN =1 16 Supercharges
BPS String (0,4) (0,4) (0,8)
Charges Q=5 [ FeR™ Q' e RTH! QeZ
n =#of the vectors T =# of tensors
R-symmetry SU(2) SU(2)r x SU(2), SO(d — 2)
Central charge | ¢, = CjrQ'Q' QX + C,Q' — 2 0 =30-0—90-a+2 ¢ =24 +2—d
CR:C]][(Q]QIQK—F%C]QI—6 CR:?)Q'Q—Q'éZ CR:].2<7C—].>
Level k]]:CUKQK k@IQQ‘i‘QéZ—FQ,kG:QbZ Kzl,/e,-:Q
Tension T, = %f . T=]-0Q T=Me"?(d>5)
Supergravity CyxQ'Q'0F >0 Q°>0 Always (d > 5)

Table 1.1: This table summarizes the R-symmetry, central charges, levels and tensions of a charge Q string. We present
the most general cases that do not have any spontaneous symmetry enhancements in the IR. Some of these theories
also have “anti”-BPS strings like local strings which may preserve a different set of supercharges and will be discussed
in the next subsection. One exception exists for the 6d chiral theory which has 21 tensor multiplets but the theory is
completely fixed by supersymmetry. Additionally for 4 = 5 the vector multiplets can be dualized to two forms and
hence one has monopole strings with a moduli space depending on the rank of the theory. In some cases we can also
have little string theories but they give rise to null charges.

16 Supercharges BPS string consideration: For dimensionsd > 5 the charge lattice of the
string is 1-dimensional since there exists a single By, in the gravity multiplet.
The central charge and hence the tension of these BPS strings are completely fixed by supersym-

metry and do not receive any corrections. The form of the tension is

T:Mfl e *? (1.47)

with 2 some number fixed by the dimension. The scalar ¢ is the canonically normalized and dimen-

sionless version of the d-dimensional dilaton. For example, for d = 10 one hasz =

i
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6d BPS string consideration: This theory has one self-dual two-form B;; in the gravity multi-
plet and 7"tensor multiplets with an anti self-dual two-forms B,,. The 6D theory has gravity/gauge
dyonic strings with charges —a, b, constrained by the anomaly polynomial. Those charges span the
anomaly lattice which is contained in the full string lattice of the 6d theory. Therefore, as discussed
in*%® the anomaly lattice is required to have a unimodular embedding into a self-dual lattice and this
fact provides a constraint on possible theories. Furthermore, the existence of the two-form fields 5%
implies the existence of string sources in accordance with the hypothesis that the spectrum of a grav-

119,116

itational theory needs to be complete '>*5?. Therefore, according to , a supergravity BPS string

with charge Q and non-negative tension provides the following constraints:

7>0,Q0-0>0
ke >0, k>0 (1.48)

Yo <cr

where £; is the level of G; and ¢¢, the central charge associated with the current algebra of G;. In
addition, ky is the level of the current algebra associated with SU(2), which arises from the normal
bundle SO(4) = SU(2)r x SU(2); for the transverse R*, where SU(2)y is the R-symmetry of the
IR (0,4) SCFT and SU(2); appears as a left current algebra.

sd BPS string consideration: In this case the strings are magnetic monopoles of the various
vectors in the theory. To be concrete we have one graviphoton vector and 7 vector multiplets for a
general sd theory. The constraints are equivalent to the ones discussed in 6d. In section 3.2.2 the
supergravity strings will be explicitly defined giving rise to strings that only exist in gravitational
theories. This implies that in the gravity decoupling limit also these strings decouple.

The motivation of the conditions on supergravity strings of table 1.1 will be analyzed in more de-

tail in chapter 3. In the language of M-theory on some Calabi-Yau manifold these correspond to M5

40



branes wrapping Nef divisors which will be explored in 3.2.4. In the F-theory language and hence
the 6d theories these would correspond to Nef curves of the base. This positivity condition is nec-
essary because of the entropy formula of black holes. These strings will give rise to BPS black holes
in lower dimensions and hence their contribution to the entropy is known 136,185,173 Therefore,
having N multiples of these strings for large N will dominate the entropy S5, ~ N3 and Sg; ~ N?
therefore the coeflicients need to be non-negative. Equivalently, one could have derived the same
condition by looking into extremal BPS states.

This distinction we have made is important because it is informative of when this strings are
associated to local theories like SCFTs or gravity theories. In this thesis both classes of BPS strings
will be studied. An important distinction between these strings is their R-symmetry, as local strings

have an enhanced R-symmetry which will be summarized below.

1.9.1 POTENTIAL SYMMETRY ENHANCEMENTS

These subsection is devoted into the analysis of accidental IR symmetry enhancements beyond
the ones presented in Table 1.1. In fact they can be categorized into: supergravity strings with en-
hanced IR supersymmetry, supergravity strings that come from higher dimensions, SCFT/local

strings(including little strings).

SYMMETRY ENHANCEMENT IN THEORIES WITH 16 SUPERCHARGES:  In this case there is one
type of symmetry enhancement (0,8) — (8, 8). As described in section A.1 one needs to change
the anomaly inflow computation of the central charges to account for the extra center of mass de-
grees of freedom. In fact such strings provide more restrictions as will be demonstrated in chapter 2.

Form the string theory point of view they can be thought of as descendants of the type II string.
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SYMMETRY ENHANCEMENT IN 6D:  In this case an important type of enhancement occurs when
the strings have an accidental SU(2); symmetry in the IR which occurs for 6d SCFTs and little
string theories in the decoupling limit. In fact this becomes the R-symmetry of the string worldsheet
in those cases.

This makes it crucial to identify the correct R-symmetry since the right-moving central charge
depends on it.

Example: Consider the SO(8) Non-Higgsable cluster with Q? = —4 this means that

cr=—-18<0 (1.49)

However, if one uses the right R-symmetry to compute the central charge as done in 7" a positive
central is guaranteed given by ¢; = Qh” = 6 > 0. The positivity of the central charge is crucial in

order to maintain the unitarity of the string worldsheet.

SYMMETRY ENHANCEMENT IN sD:  Naively, one expects that the SU(2) g symmetry would re-
duce to the IR R-symmetry of the 2d CFTs on monopole strings because this is the only SU(2)
symmetry under which the supercharges are charged. However as was demonstrated above this is
not always the case and some accidental symmetries may emerges in the IR.

For example, monopole strings living on local sd SCFTs amount to Ms-branes wrapping 4-cycles
in local CY3’s corresponding to shrinkable divisors. Such strings become tensionless strings in the
CFT limit of the local theory when gravity decouples. The corresponding 4-cycles in a local CY3
can collapse to zero size in the CFT limit. For those strings, the IR worldsheet CFT acquires an
accidental SU(2); symmetry inherited from the SU(2); R-symmetry of the local sd SCFT. This
emergent SU(2); symmetry, instead of SU(2)g, in the IR CFT becomes the R-symmetry of the IR

superconformal algebra. Therefore in this case the central charges should be calculated with respect
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to the SU(2); symmetry. These strings can tell us physics of local sd SCFTs. However since their
low-energy physics is not affected by bulk gravitational interactions, we cannot use them to explore
consistency of gravity theories. For this reason, we are not interested in these strings embedded in
local sd SCFTs with accidental SU(2); symmetry.

Also, the strings arising from 6d self-dual strings by § 1 compactification have a different R-
symmetry in their worldsheet CFTs at low-energy. The SU(2)z x U(1) symmetry, where the U(1)
is for the KK momentum, in the worldsheet theory enhances to SU(2), x SU(2); in IR after decou-
pling the center-of-mass modes and the SU(2),, instead of SU(2) g, becomes the R-symmetry of the
IR N = (0,4) superconformal algebra in the interacting sector. Here SU(2)r is the diagonal sub-
group of SU(2); x SU(2),. The anomaly polynomial and the central charges of self-dual strings in
6d supergravities are computed in ' by using anomaly inflow mechanism (See also "*®'7*). The
anomaly polynomial of the 6d self-dual strings reduces to that of sd monopole strings given in
(A.16) by identifying 4/ = Q' and C; = —124y,and also c2(/) = c2(7) = c2(R) from the relation
SU(2)r C SU(2), x SU(2); under S* reduction. From this, one can deduce that Cyxg’g/g% = 0
and Cig’ = —12Q- a for the 6d self-dual strings. In M-theory compactified on CY3, the 6d self-dual
strings correspond to M s-branes wrapped on elliptic surfaces equipped with elliptic fibration struc-
ture which will further be discussed in Section 3.2.5. We note that when a 6d theory is compactified
on a circle with automorphism twists, the worldsheet theory on a string that is affected by the twist
do not have SU(2); x SU(2), symmetry enhancement since the Lorentz symmetry SU(2); x SU(2),
is broken to SU(2) g x U(1) by the twist. In this case, we expect that the SU(2) g will become the IR
R-symmetry of the worldsheet CFTs.

It may also be possible that the IR worldsheet CFT shows supersymmetry enhancement. For
example, the worldsheet CFT on self-dual strings in the 6d SCFT of O(—2) — P! model is real-
izedbya UV N = (0, 4) gauge theory®>*¢, but this theory is expected to flow in the infrared to a

CFT with enhanced NV = (4, 4) supersymmetry. Another interesting example of 2d CFTs show-

43



ing supersymmetry enhancement is the worldsheet theory on strings in the 9d supergravity theory
constructed in M-theory on the Klein Bottle 5*. This worldsheet theory naively has only V' = (0, 8)
supersymmetry, but the IR SUSY turns out to get enhanced to N = (8, 8)%.

Similarly, the N/ = (0, 4) supersymmetry on monopole strings in sd supergravity can also en-
hance to a larger SUSY in the infrared CFT. Let us first discuss N = (4,4) SUSY enhancement. In
this case the enhanced superconformal algebra must be the small V' = (4,4). Thelarge N' = 4
algebra in 2d CFTs involves two SU(2) R-symmetries in each chiral sector. However, when coupled
to sd gravity we cannot have such two SU(2) R-symmetries. So the enhanced (4, 4) symmetry can
only be the small N/ = (4, 4) symmetry. The small ' = 4 conformal algebra involves a single
(anti-)holomorphic SU(2) R-symmetry which may be identified with the SU(2)z C SO(1,4)
Lorentz symmetry in the sd theory. However, the small AV = (4, 4) conformal algebra involves
two copies of N = 4 conformal algebra referred to as the left-moving and right-moving sectors,
and the SU(2) R-symmetries in those two sectors are independent and distinct if the CFT is unitary
and the vacuum is normalizable. We expect after removing the center-of-mass degrees of freedom
that the interacting sector in the IR CFT on a single monopole string which does not degenerate to
monopole strings in local SCFTs is unitary and has normalizable vacua. Thus the small V' = (4,4)
superconformal algebra cannot be realized in the non-trivial CF'Ts on monopole strings unless there
exists an accidental SU(2) symmetry in IRS.

This argument however cannot rule out the possibility of N' = (4, 4) SUSY enhancement

5If a sd monopole string comes from a 6d self-dual string on S 1 without twist, the worldsheet theory can
flow to a non-trivial SCFT with (4, 4) SUSY enhancement. This is because in this case the symmetry SO(3)z
for the transverse R rotation enhances to SU(2); x SU(2),in IR, and the SU(2); and SU(2), can become
the left-moving and the right-moving R-symmetries, respectively, of the (4, 4) superconformal algebra. We
expect that the 6d supergravity strings studied in "™ with Q - 2 = Ohavea N’ = (4,4) SUSY enhancement
on a non-trivial interacting sector. When geometrically realized, such 6d strings have the same number of
left-moving bosons and fermions, N¥ = Nf = 4(g + 1) when the pull-back Ewrapped by dual M5 brane
is a trivial fibration C X E, where E is an elliptic curve and g is the genus of the curve of the string in the base.
This is consistent with (4, 4) SUSY (or (8,8) SUSY when ¢ = 1) enhancement.
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when the interacting sector in the IR CFT is trivial. It is possible that the IR worldsheet CFT con-
sists of only the center-of-mass degrees of freedom so that the interacting CFT sector is trivial. The
above argument does not hold for the center-of-mass sector due to the non-compact free bosons
parametrizing the transverse motion of the string. The worldsheet theory can flow in the infrared
to a free theory consisting of the N’ = (4, 4) center-of-mass multiplet formed by 3 non-compact
bosons X,—1 2,3 and a compact scalar @ and 4 chiral and anti-chiral fermions A% where « is the dou-
blet index of SU(2) z. In this case, the IR R-symmetry is identified with the SU(2) z symmetry, and
the central chargesare¢;, = ¢z = 6. This implies that the A' = (4, 4) SUSY enhancement can
occur only if cg — ¢;, = 0 and kg = 0, therefore only if Cyxq'q/q® = Ciq" = 0.

The worldsheet theory can have a further enhancement to ' = (8, 8) SUSY. In this case, the
worldsheet theory consists of a free (8, 8) center-of-mass multiplet and the interacting sector in the
IR CFT is again trivial. The central charges from the free (8, 8) multiplet are ¢; = ¢g = 12. Thus,
this string has C UKqJ q/ qK = C [qI = 0. This string lives in the sd supergravity theory with 32
supercharges. This string amounts to a Ms-brane wrapping an Abelian surface with irregularity
g = 2 in M-theory compactification.

Lastly, the worldsheet SUSY can enhance to N = (0, 8) supersymmetry. The strings coupled
to sd bulk gravity with such enhancement are those in the sd supergravity theories with 16 super-
charges. It was conjectured in'*? that such strings have central charges ¢; = 24 and cg = 12 coming
from only the (0, 8) center-of-mass modes. This indicates that the A" = (0, 8) enhancement can
occur in the worldsheet theory only when Cpxg’g/gX = 0and Cjg’ = 24. An Ms-brane wrapping

a K3 surface of Table 3.5 leads to such a monopole string with (0, 8) supersymmetry.
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1.10 REVIEW OF QUANTUM FIELD THEORY IN FIVE AND SIX DIMENSIONS

A lot of the structure of quantum field theories is already encoded in the study of supergravities just
reviewed if one eliminates the gravitational sector. In fact in many cases a clear distinction between
supergravity strings and the local strings was made. In this section the properties of local strings will
be reviewed and their relations to SCFTs will be described. Such SCFTs contain tensionless strings
making their existence mysterious but as will be discussed below, string theory provides a framework
to construct and study such examples.

The most natural starting point to define a quantum field theory would be to consider some

gauge theory lagrangian of the form:
1 d v
S= ? A’ xF, F* (1.50)

Requiring that the action is dimensionless means that g ~ [1] 3 Butford > 5it implies that
4%”1 < 0 and hence the theory is non-renormalizable.

This means that such theories can be defined as effective field theories with some UV cut-off.
However, the fact that the theory is non-renormalizable could also be thought of as an indication
that new degrees of freedom related to new physics need to be integrated in to make the theory con-
sistent in arbitrarily high energies. This is in similar spirit to the o theory. A good starting point
to study such theories would be adding some amount of supersymmetry. The minimal amount of
supersymmetry in 6 and 5 dimensions is 8 supercharges. This corresponds to the 4d N = 2 theory
after reduction.

The 6d theory does not have a lagrangian description because the (anti)self-dual tensors make it

hard to express it in this way. However, the 4d N/ = 2and sd V' = 1 can have a lagrangian de-

scription in certain cases expressed in terms of the vector multiplet which includes (4, 2y, ¢) with
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one real scalar for sd and one complex scalar for 4d . We promote the fields to superfields and each
superfield contains all the fields in the corresponding multiplet and some of their derivatives. There-
fore, the superfield for the vector multiplet will include the fields A = (4, Fy», 1, Oux; @, 9,¢) and

the effective action can be writen as A
ﬁZ/A2+A3+.... (r.51)
making the lagrangian a polynomial function in A

L= /]-'(A) (1.52)

This function F (A) in called a prepotential and determines fully the form of the Lagrangian.

In section 1.7 it was discussed that the structure of the supergravity action depends on the (very)
special geometry for the (4d) sd theories. The special geometry is parameterized by the prepotential
which exactly fixes the coupling constants and masses of BPS particles as reviewed in Appendix A.

In particular for sd N = 1 the low-energy abelian theory is given by the prepotential 7 (¢,) and
takes the form

L = (8,0;F)dg’ Nxd@/ + (8,0, F)F AxF + 24—17[2(8,-@8,6?),45 NEPANF 4 (153)

The only main difference with the gravity theories is that one does not impose the hypersurface
constraint ' = 1. This constraint could be thought of as reducing the number of scalars by one to

accommodate for the graviphoton that has no scalar parameter.

MoputriSpace:  The moduli space of this theory is defined to be the space parametrized by the

massless scalars which are flat directions of the potential. Assume we have a vector multiplet in the
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4d N = 2 theory of some Lie group G. Then, the superymmetry dictates a potential of the form
V(@) = [pf, ¢]2. This potential is zero exactly when [T, @] = 0 and the non-trivial ¢'s that satisfy
the condition are part of the Cartan subalgebra. Hence, those ¢’ § parametrize a non-trivial space,
the moduli space.

The scalars in the vector multiplets parametrize the Coulomb Branch and the scalar in the hyper-
multiplets parametrize the Higgs Branch. In sd those branches are completely decoupled and no
mixed branches exist. For the 6d theory the Higgs branch is equivalent but there are no moduli asso-
ciated to the vector multiplets. However, there is something worth to be called a Coulomb branch
or a Tensor Branch and this is the space parameterized by the scalars in the tensor multiplets.

In factin 5 and 6 dimensional there are three consistent superconformal groups '+?, with 6 being

the maximal dimension:

d=6: Osp(6,2|N) = SO(6,2) x Sp(N)g with N = 1,2 (1.54)

and

d="5: F4) = S0(5,2) x Sp(1)x (1.55)

This means that in principle if such a superconformal theory does exist and some supersymmet-
ric relevant deformations can be found then they could potentially trigger an RG flow towards a
low energy effective action. Superconformal deformations are deformation that will preserve the

supersymmetry of the theory. All such deformation where classified in*7 and they correspond to

d = 6 : Moduli space (1.56)

d =5 : Mass deformation + O(x) and Moduli space (1.57)
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By moduli space it is meant that one can tune the boundary conditions at spatial infinity which will
lead to the moduli acquiring non-trivial vacuum expectation values. These expectation values give
rise to a non-trivial scale which consequently takes the theory away form the conformal vacuum by
breaking the conformal symmetry. Such deformations do not aftect the dynamics of the theory as
the mass deformation does. So the RG flow can be thought of as connecting the UV CFT to the IR
phase when the theory is on its moduli space. Both of the above cases have scalars that parametrize
the Tensor and Coulomb branch physics respectively. But in five dimensions relevant deformations
also exist associated to flavor masses. These are supersymmetry preserving deformations of the form
oL = O(x).

In fact, string theory provides a framework to realize such SCFTs. The main ingredient is the
existence of BPS solitons which provide stable vacuum and help “renormalize” the theory.

The main goal of chapter 3 will be to describe in detail such solitonic objects and differentiate be-
tween those in quantum field theories versus those in gravitational theories. Additionally, in chap-
ter 4 a classification framework for sd superconformal theories will be discussed. These theories can
be found in string theory by considering regions where the effective physics is much less than the
Planck mass of the system and hence eftectively gravity is decoupled.

An important point that will also be discuss in chapter 3 is that the conformal field theory need
not be coupled to the same dimensional gravity but rather it could be a lower dimensional localized
region in a higher dimensional gravitational theory. This distinction is very important because one
of the main points of this thesis is the expectation that only finitely many low energy theories can be
coupled to the same dimensional gravity. While on the other hand conformal field theories provide
unbounded classes. Therefore, the right way to think about such theories is as theories living on the
worldvolume theory of some collection of branes. In fact this is how these theories where first real-
ized in"°. An implication of this is that the local Calabi-Yau threefolds are not in general expected

to be embeddable into compact threefolds. Therefore, thinking of the compactification as a com-
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Figure 1.6: This figure depicts M-theory on the interval. The two M9 branes define the boundaries of the interval.
Anomaly cancellation of each boundary requires an Eg gauge symmetry living at each boundary. The addition of M5
branes allows to study the 6 dimensional theory on their worldvolume. When the M5 branes are near the boundaries
their worldvolume supersymmetry is spontaneously broken to 8 supercharges. However, the expectation is that in the
middle of the interval when the interval is large their supersymmetry is restored. Therefore, the M2 stretched between
the two end-of-the-universe walls is the heterotic string Qﬁ enjoying the E£g X Eg global symmetry when the radius
is small. The M2 brane stretched between one M5 brane and the boundary M5 brane is the E-string Qb of the 6d (1,0)

theory. The M2 brane stretched between the two central M5 branes is the M-string QM associated with the 6d (2,0)

SCFTs. For more details on the interplay of these strings 87,85

pact threefold where the volume has been taken to infinity is not exactly the right way to think of
them as this will not be possible for almost all of them.

The simplest examples of a 6d ' = 1 SCFT can be constructed in M-theory on the Hotava-
Witten wall'* created by compactifying the theory on St /Zs together with some Ms and M2
branes as depicted in Figure 1.6.

The 6d (1, 0) SCFT in this picture is the E-string which is depicted by an M2 stretched between
the boundary and the middle Ms. The stretched direction corresponds to the tension of the string
and hence when the brane comes close to the boundary the 7z — 0. An equivalent string with

the opposite orientation exists on the other side of the interval but in the large radius limit only one

50O



stays effectively massless. The E-string has no gauge symmetry associated to it and has an £y global
symmetry inhereted from the symmetry on the boundary which is forced by anomalies.

On the other hand, the 6d V' = (2, 0) SCFT is obtained on the worldvolume of multiple M5
branes which preserve half of the supersymmetry. In Figure 1.6 these can be obtained locally as the
worldvolume theory on the overlapping M5 branes in the middle of the interval in the limit that
the tension of the M-string is zero and the radius is infinite. The radius being infinite is the effective
decoupling of gravity as the 1od Planck mass is given by M§, = MY, R and hence for a fixed M1y
the ten dimensional Planck mass goes to infinity. Equivalently, we know that the heterotic string is
the one stretched between the two Mg branes with the distance of the branes defining its tension
and hence it becomes infinitely massive in that limit and hence the 6 dimensional Planck mass also
diverges in the sense that the graviton modes of the heterotic string are decoupled.

In the more general case that the tensionless string caries some gauge symmetry due to the cou-
pling B A t7(F?), it will also carry instanton number and hence be a tensionless instantonic string.

The next example from string theory is the construction of the sd minimal SCFTs which is re-
lated to this E-string example. In particular, one can take Type ITA on an interval where the bound-
aries will have two O87 planes. Consider the case where 7 D8 branes are on the left boundary and
9 on the other. In fact it is known that this is the maximum number of branes since they give the
maximal rank. In subsection 1.3.1 the most general form of Type ITA on an interval was described
which had non-zero mass deformation called the Roman’s mass. The Roman’s mass couples to the
dilaton and hence gives a non-trivial profile of the dilaton. The case considered here can be thought
of as a dilaton having a linear profile at some angle where in the most general case the coupling con-
stants are finite at the boundaries. The strong coupling limit of the worldvolume theory of the D4
branes which is the small instanton of the D8 also corresponds to the strong coupling limit of the
bulk coupling. Therefore, the coupling will diverge and the global symmetry of the D4 will enhance

to Eg as depicted in Figure 1.7. The extra U(1) factor that combines with SO(14) to enhance to Ey is
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the global symmetry associated to the U(1) current of the sd SCFT or in other words the instanton
U(1);. In particular, when the coupling is infinite the instantons become massless. Therefore, the

SCFT fixed point is characterized by massless instantonic particles and tensionless monopole strings.

08~ +9D8

08~ +7D8

sd Type IIA

S0(14) x U(1) x SO(18)

gfinite gfinite

g7 ¢ finite

Es x SO(18)

Figure 1.7: This picture shows a way to visualize the 5d SCFT constructed from a D4 brane on the boundary of this
theory. The D4 brane has an su(2) gauge symmetry on the boundary since the interval is actually the Coulomb branch
of the small instanton which is the D4 itself. Additionally, it has an extra U(1) global symmetry which corresponds to
the extra instanton global symmetry on its worldvolume. The coupling of the theory can be finite exactly when the left
endpoint has algebra D7. When the coupling diverges which corresponds to turning the instantonic mass my = glz
then the SCFT fixed point is reached. This can be thought of as attaching an extra node to the D7 Dynkin diagram.
From the string theory point of view the gauge instanton on the D4 can be thought of as a DO brane which has been

exchanged with the gauge instanton. The mass of the DO is exactly the mass of the instanton.

The idea of having massless dyons and monopoles near singularities was already well established
in*%. Reaching the SCFTs from the IR description is not so obvious as one has to integrate in light
instantonic strings for the 6d theory and light monopole strings and massless instanton particles
for sd. This makes it clear that such theories are very hard to be studied from the point of view of
quantum field theory.

In fact the two pictures of the 6d and sd SCFTs are connected. If one takes one of the D8 branes
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Figure 1.8: This figure shows the gauge theory limit and the SCFT limit of a 5d effective theory with an SU(2) gauge
symmetry.

from the right boundary of Figure 1.7 to the left boundary then both sides have 8 D8 branes. Now
the coupling does not depend on the Coulomb branch parameter and can be taken to infinity ev-
erywhere. This is exactly the M-theory limit of type IIA. From the point of view of the D4 brane
the theory also should decompactify because there is no 4 brane in M-theory but it is rather the
wrapped Ms brane. Therefore, the worldvolume theory of the D4 decompactifies to Ms and the
E-string is recovered. This is exactly what one expects from the SCFT point of view. In the case that
the number of flavors is Ny = 8 which are the 8 D8 branes, the coupling of the gauge theory does
not depend on the any scalars and it is expected to decompactify to the 6d E-string. To see this note
that the string stretched between the D4 and the D8 also decompactifies to the M2 brane stretched
between the M5 and the boundary which is exactly the E-string. The extra rank can also now be
understood as the KK U(1) coming form the reduction.

The sd SCFTs have an additional visualization from (p,q) s-brane webs as follows*: Consider
two (1,0) Ds and two (o0,1) NS5 forming a square along one direction. In order for the diagram to
be supersymmetric at each edge the forces should cancel and hence a (1,1) brane is needed as seen
in Figure 1.8. From this picture the D3 brane wrapping the square is the monopole string which
becomes tensionless when the whole square collapses, the W-bosons become massless in the thin and
long limit and the instanton particles become massless when the long side collapses too which leads

to the fixed point as depicted in Figure 1.8.
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One can increase the number of hypermultiplets by bringing in 77 branes from infinity and through
Hanany-Witten transitions** arrive at Ny = 7 corresponding to the theory above. If one adds one
more D7 from infinity then the theory has Ny = 8 which is expected to have a 6d UV fixed points.

As was argued in "**

this 6d limit can be observed from the (p,q) s-brane web too.

A key observation of the above discussion is that the sd SCFTs descend from a 6d parent SCFT
on a circle. This was conjectured '** to be a more general aspect of sd SCFTs where all are believed
to come from 6d. In chapter 4 this argument will be reviewed and more evidence will be provided in
addition to a full classification of all such parent theories.

One dual way to get such theories is from M-theory on a local Calabi-Yau threefold. In fact as
was argued in”S the (p,q) s-brane webs can have a geometric interpretation and in fact it matches
the toric structure of surfaces in these local threefolds. The rank one theories where classified to be
dP,<9,Fo, for a review subsection B.1.3, where dPg corresponds to the 6d E-string. These are ex-
pected to be surfaces in the local threefold that M5 branes wrap and M2 branes wrap curves inside
the surfaces. Then the Figure 1.8 can be thought of as collapsing some curves in the surfaces and the
last step as collapsing the whole surface. In fact it is very reasonable that 4Py would correspond to
the E-string both because it can be thought of as K3 but also because its triple intersection is zero
which as will be reviewed is expected to imply an elliptic structure. It is a well known mathematical
fact that d Py can be connected to dP, 9 through successive blow downs corresponding to integrat-
ing out matter. In chapter 4 the classification will be described using F-theory on a local threefold
times a circle with some twists. This also predicts the existence of M-theory duals to these twisted
compactifications which generalizes the duality between M-theory and F-theory to allow for discrete

Wilson lines around the circle.
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“The quantum dualities, which are also known as S-
duality or U-duality, extend the classical T-duality
and lead to a beautiful and coberent picture of stringy

dualities.”

Nathan Seiberg 167

Supergravity theories with 16 supercharges

As reviewed in the previous chapter the higher the amount of supersymmetries in a given theory, the
more constrained the physics is. In fact in theories with 16 supercharges one only needs to specify
the gauge group of the theory and the moduli space is known to be given by Equation 1.3 for non-
chiral theories while chiral theories are completely fixed as seen in section 1.3. This means that it
does not receive corrections and hence it is easier to ask questions about the UV features of gravity

theories and their implications to the low energy action. However, from the bottom up perspective
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there is nothing constraining the rank of the gauge group and naively it seems unbounded while

as seen in section 1.3, string theory can only realize theories with rank 7¢ < 26 — d. The main
focus of this chapter will be to show that this bound is expected to be valid for any theory with 16
supercharges without relying on string theory. Additionally, aspects of dualities for theories with 16

supercharges will be discussed and the String Lamppost Principle(SLP) will be addressed.

2.1 INFINITE DISTANCE LIMITS

The idea of studying infinite distance limits is based on the expectation that in a theory of gravity
new physics can be unraveled in these special corners. This is because such limits signal the break
down of the current description of the theory and hopefully the emergence of a new one. Interest-
ing limits also exist for quantum field theories which are expected to require the inclusion of new
physics but they are expected to be at finite distance. Usually such limits are associated to strong
coupling directions and chambers inside the moduli space of the theory which can be crossed at fi-
nite distance, such examples are studied in chapter 4. In a theory of quantum gravity we expect that
infinite distance limits should still yield a well defined theory and from string theory we expect to
uncover some duality scheme of different corners of the moduli space of the theory. For example,
in theories with 16 supercharges such duality webs were given in Figure 1.4 and Figure 1.1. Gen-
erally, at infinite distance in the moduli space of a gravitational theory we expect, according to the
distance conjecture (discussed in section 1.2), an infinite tower of massless states to emerge. Such a
tower of massless modes signals the break down of the current description. Gravitational theories
are expected to break down at a scale called the species scale®’, which is usually reached before the
Plank scale. In string theory that is the string scale A4;, where we expect string effects to become im-
portant. The only theory that we expect to break down at M) is M-theory as it has no other scale

in the theory or a similar theory if it exists in other dimensions e.g."#'. More details on the relation
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between the species scale and the distance conjecture can be found in 187, Similarly, one can mo-
tivate the expectation of the theory breaking down in that limit from the point of view of global
symmetries. At infinite distance limits where the coupling of the theory is weak, approximate global
symmetries emerge and they become exact at ¢ = 0. However, we know that a theory of quantum
gravity should have no global symmetries and hence we expect that the current description of the
theory breaks down and some other should becomes relevant. Therefore, we see that in a theory of
gravity infinite distance limits are rather special and they can unravel new physics for us.

Usually the only such limits we study are BPS because supersymmetry protects their masses and
we can study them across the limit we are considering. In this chapter we will analyse both BPS and

Non-BPS such limits.

Definition

A BPS limit is an infinite-distance limit in the moduli space in which the leading light tower
compared to the Planck scale is BPS.
A non-BPS limit is an infinite-distance limit in the moduli space in which there are no light

BPS particles compared to the Planck scale.

Sharpened Distance Conjecture

An infinite-distance limit in the moduli space has an emergent light tower of states with masses

2 74@ . . 1 . . . 1 .
m* ~ ¢ “? where the coefficient s = T3 if the tower is a string tower and 2 > =) if the

tower is a KK tower.

The sharped distance conjecture”" tells us that the coefficient for the distance conjecture satisfies

a > \/b As a stronger observation one sees that in fact when the bound is saturated the leading
tower corresponds to a string tower, while in all other cases it is a KK tower signaling a decompact-

ification. The conjecture does not clarify the properties of the string that becomes light. However,
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the emergent string conjecture *3* predicts a weakly coupled string theory at that limit. In particular,
this means that at tree level there is a gravity subsector that is weakly coupled but not all physics of
the worldsheet theory need to be weakly coupled. For example, there are F-theory limits that corre-
spond to the heterotic string with multiple NS5 branes?". This implies that in these case it is not a
simple task to relate the worldsheet fields to the bulk fields. However, crucially as will be discussed
in the next subsection for 16 supercharges a perturbative bulk coupling seems to have a simple corre-

spondence with the worldsheet fields.

Emergent String Conjecture

The asymptotic states of the Sharpened Distance Conjecture in the case of the string tower corre-
spond to a weakly coupled string theory. In particular, the graviton is expected to be a mode of the

string.

The above behaviors teach us about the fate of these theories in these extreme limits. We expect
that each theory should have a well defined description beyond these limits probably in terms of a
dual effective description where the modes of the first theory become part of the weak coupling limit

of the dual theory.

2.1.1 MODULI REPRESENTATION

In the previous section, we studied the general expectations of infinite distance limits in a theory
of gravity. Moreover, in chapter 1 we discussed that in a theory of quantum gravity we expect the
charge lattice to be complete. In fact for theories with 16 supercharges we may also assume that
when a state can be BPS it does have such a representative. This gives rise to the BPS completeness
hypothesis. In general we do expect that at least some sublattice should be BPS and hence would be

interesting to also think about relaxing the condition to a sublattice BPS completeness in the future.
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In section 1.3 we reviewed basic properties of the supergravity with 16 supercharges and its mod-
uli space. From eq. (1.4), we can see that the gauge couplings in theories with 16 supercharges are
controlled by the entries of the matrix A4 which represents the scalars in the vector multiplets. Since
the gauge coupling also affects the gauge charges, the charge lattice depends on A as well. The 16
supercharges almost fix the dependence of the charge lattice on the moduli (see Appendix D in*%).

The action is invariant under the following transformation of A4

M — QMQT;, Q € 0(10 — d, r), (2.1)

This transformation also acts on vectors of the charge lattice Q € A as

Q0 — Q0. (22)

If we identify the first 10 — d entries of Q as Qg and the rest with Oy, then the quantity Q? =
Q% — Q7 is invariant such Q meaning that it acts isometrically on the lattice.

We are interested in infinite distance limits * in the moduli space along geodesics. Such limits are
characterized by boosts lim,_,o0 Q () MQ(y)? where Q(y) = exp(yU). The geodesic we are con-
sidering needs to be a global geodesic, which are geodesics that are the shortest path between any two
points on them?. Note that adding a rotation piece to the boost will lead to spiraling trajectories in
the moduli space that are locally geodesic, but not globally. It is easy to show that an infinite boost
always takes a null line to the origin.

Therefore, for any infinite distance limit of A4, a line of particles that satisfy |Qz| = Q| and
are in the plane of boost will go to the origin of the charge lattice. Let us call that line in the charge

lattice, the /ine of boost.

'Due to the large number of supercharges we know that the moduli space will not receive corrections.
*For more on the definition of the global geodesic see Sec. 2.1.2.
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Figure 2.1: In any infinite boost of the charge lattice, a line in the light-cone (|QL| = \QR |) goes to the origin while the
other points go to infinity. The line that goes to the origin is colored blue.

We would like to study the BPS states along this limit. The BPS condition in theories with 16

supercharges is '7°

m = |Qg]. (23)

This is because the mass of the particles is associated with the graviphoton charges as it represents
the gravitational charge.

This implies that if there is BPS particle with |Qz| = |Q;| on the line of boost, that particle
will become light in the infinite distance limit. Of course another set of massless particles are those
satisfying |Qz| = 0 which identically zero. These corresponds to Q* = —Q? states associated to
states like gauge bosons which satisfy Q? = —2. We note that such states become massless only
at special points in the moduli space where |Qr| = 0, such states can be understood as occupying
the spacelike directions of 2.1. Infinite towers of these states occur only for conformal field theories

at finite distance. From the bottom up perspective this might not be as obvious. However, we do
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know that only states with Q2 > 0 can be black holes because of consistency of the entropy formula
section 1.9 or the extremality bound for black holes. This means that any states with Q? < 0 can be
regarded as "non-gravitational” as we saw for the gauge bosons. Now it is clear that an infinite tower
of such states signals a local conformal theory. However, in non-chiral theories with 16 supercharges
ind > 4 we have no such fixed points and therefore such infinite towers should not exist.

This means that the only BPS states that become massless as infinite distance are those with m =
|Or|and |Qr| = |Qr|- The BPS completeness hypothesis''*?" which states that in theories with
16 supercharges, any charge that is allowed to be BPS, is occupied by a BPS state ensures that such a

state exists®. The black hole extremality condition '7° is given by:

m > |0l (2.4)

The above inequality follows from the classical extremality condition which can receive higher

derivative corrections''S or quantum corrections .

m 2 |QL| + O(m%/M)corrections' (2..5)

As long as the corrections on the right side are non-positive, the a BPS particle with m = |Qr| =
|Q1| is allowed. But the non-positivity of the corrections is guaranteed by the mild version of the
Weak Gravity Conjecture (WGC)'°. Therefore, based on WGC and BPS completeness, we argue
that for any point of the charge lattice on the line of boost, at least one BPS particle or black hole of
that charge exists. It could be the case that the line of boost does not intersect with the lattice at all.
In that case, all the BPS particles become massive and the corresponding limit is non-BPS. However,

if the line of boost intersects with a BPS particle, the BPS particles at the intersection will become

*In fact if we interested in non-BPS states we do not even need this condition as if the particles are not
BPS we are automatically at a non-BPS limit
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massless at the infinite distance limit.
Let us make the above discussion more explicit. Consider the following infinite distance limit

generated by a boost.

€sacO8hy e, sinhy
Q7)) = ; (2.6)
e, sinhy e, coshy

where ¢y, is a matrix with one non-zero element of 1 in row p and column g. Then the two axes
acted uponarea € {1,--- ,10 —d} axisand 7 € {1, -+, r} axis.

An infinite-distance limit in the moduli space therefore corresponds to y — £00. Now, take the
action of Q,; on the charge vector Q = (Qr, Qr).

Under the action of Q, ; on M, a charge vector Q = (Qg, Q1) goes to

. 1 1 _
|Qr.a| > |Qr.a coshy + Qp ;sinhy| = ‘§(QR,4 + Qr.)e + §(QR,4 — Qi) (2.7)

Depending on the sign of  in the infinite distance limit, the line of boost is

QRrp X Iy

Qrj o g

Qr;= E0r,- (2.8)
Suppose we have BPS particles on both lines of boosts. As we take y — £o00, usingm = |Qg|
we find that m ~ el?!, unless we have Qr,. = FQr in which case the masses scaleas m ~ ¢7.

Based on the sign of y such particles become massless in the limity — 400 ory — —o00. Soin

the presence of BPS particles on lines of boosts, any infinite distance limit in the moduli space of the

62



vector multiplets could yield light BPS particles.

However, as one can see from (1.5), the gauge couplings also depend on the dilaton. Therefore,
the gauge charges (and hence masses) of the BPS particles also depend on the dilaton as m o< ¢?.
However, the expression in (1.5) is in the string frame. After going to the Einstein frame, we find

the following mass relation in terms of the canonically normalized dilaton @
+y 4 o
m e aie VA2 Ty, (2.9)

We conclude that even if there are BPS particles on the lines of boost, all of them will become
heavy in the limit y — =00 if we also take ¢ to infinity such that|p| /|y| > (2v/d — 2/d). Note
that in these limits, there is no light BPS string.

To conclude, we showed that any infinite distance limit |y|, @ — oo that ||/]y| > (2V/d — 2/d)

is a non-BPS limit. The complement of these limits are BPS.

2.1.2 TENSIONLESS STRING OR KK TOWER?

In this section, we will show that most infinite distance limits decompactify. In particular, we will
do that by arguing that the are only countably many infinite-distance limits in which the leading
light tower is a string tower. We will do that by firstly showing that the number of inequivalent
strings is countable and then we will argue that every string limit has a unique inequivalent (up to

dualities) direction in the moduli space.

Step 1: countable strings

We will assume that there are uncountably many inequivalent strings each of which has a world-
sheet theory which is trustable in some region of the moduli space M. Will argue that this is not

possible and using the finiteness of black hole entropy.
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Suppose we have uncountably many string limits labelled by « € 7 where 7is uncountable.
Assuming that there is a distinct point p, in the moduli space such that in a string limit the corre-
sponding string description is valid in a neighborhood of radius ¢ around p,. We can write the mod-
uli space as the countable union of U,cnD, where D,, is a closed disc with radius 7/« with respect
to the canonical metric. Assuming the moduli space is completely regular and Hausdorft, the closed
discs admit Stone—Cech compactification D,,. Since D, are compact and have finite volume, we can
cover them with a finite number of neighborhoods each with a diameter less than ¢. Therefore, we
can cover the moduli space M C U, D, with a countable number of neighborhoods of diameters
less than «.

Now that the moduli space is covered by countably many neighborhoods D, one of them must
include uncountably many of the points {p,|¢ € I}. Let us call that neighborhood U. Therefore,
there are uncountably many distinct strings in U. Now we show that there exists a finite cutoff A,,
such that uncountably many of the strings have mass scales below A,.

Suppose V, is the subset of the points p, in Usuch that the mass scale of the string « is less than
nmp in U. Since U,enV, contains all the uncountably many strings in U, for some ¢, the set
must be uncountable. Therefore, there are uncountably many strings in the neighborhood U that
have mass scale below A, = ¢ - mp. However, this violates the finiteness of the Bekenstein-Hawking
entropy, and therefore must not be allowed. Therefore, our original assumption is incorrect, and the

number of inequivalent strings must be countable.

Step 2: rigidity of string limits

In this step, we want to show that each one of the countable many string limits forms the lead-
ing tower in most one direction in the moduli space. We show that if one makes a small change in
the direction of the infinite distance limit away from a string limit, the leading tower is no longer a

string tower. But first, let us define a useful notion to study the infinite distance limits. We define
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a global geodesic in the moduli space to be a geodesic which is the shortest path between any two
points on it. We can think of infinite distance limits as global geodesics. This refinement excludes
infinite geodesics that are stuck in a compact subspace. Note that not every infinite geodesic that
starts at a given point of the moduli space is a global geodesic. For example, in type IIB string theory,
for any point p in the moduli space, there is a unique global geodesic that starts at p. This is because,
for any two BPS strings, the limits where they become tensionless are mapped to each other via du-
ality. Changing the angle of the initial velocity of the geodesic will create a geodesic which either
does not get to infinity or winds around the fundamental domain of SL(2, Z) and is not a global
geodesic. Therefore, even if the new path is locally a geodesic, it is not a global geodesic. Due to this,
we would say the type IIB theory has a unique inequivalent infinite distance limit. In the rest of this
section, we will show that if we make a sufficiently small change in the direction of a string limit, the
resulting limit cannot be a string limit. We assume that such a sufficiently small variation can change
one global geodesic to another. Otherwise, if the limit is rigid, then we trivially know that there is no
nearby string limits.

Sharpened distance conjecture tells us that in a string limit, the tension of the string will go like

X

VT x Mmpe V2 P (2.10)

where @ is the canonically normalized distance in the field space. If we make a sufficiently small
change in the direction of the infinite distance direction that combines the modulus ¢ with an-

other spacetime modulus, the distance travelled in the moduli space per change of @ will increase*.

+We assume that ¢ is a linear spacetime modulus as opposed to somethinglike =/ ¢% + gz)% which
would give the same rate of change of @ in every infinite distance limitin (¢, , ¢,) plane. By linear modulus,
we mean that if a global geodesic at point p, which is in the asymptotics of the moduli space, has an infinitesi-
mal angular separation 9¢ from 0 then A@/Al converges to cos(¢) where Alis the canonical distance. Note
that this follows from the emergent string conjecture which conjectures that the string is fundamental. In
that case, the modulus @ can be shown to always be a linear spacetime modulus. This follows as a corollary of
the argument for the sharpened distance conjecture from the emergent string conjecture in>.
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This would lead to a decrease in the coefficient 1/+/d — 2 in the exponent in (2.10). Therefore, the
sharpened distance conjecture implies that the string (2.10) can no longer be the leading tower any-
more. So we find that any worldsheet theory has at most one infinite distance limit where the string
is the leading tower which corresponds to the direction in which the tension decays the fastest.

By putting steps 1 and 2 together, we conclude that there are only countably many infinite dis-
tance limits in which the leading tower is a string tower. This is a powerful result because it means
that even though the direction we have considered has a tensionless string as the lightest tower, the
nearby infinite distance limits must be decompactification limits. For our purposes, this will mean
that if there is a non-BPS limit with a string leading tower, any sufficiently close non-BPS limit de-

compactifies.

2.2 T-DUALITY FROM BOTTOM UP

In the previous section we discussed BPS and Non-BPS infinite distance limits. In fact we made
clear that if the limit decompactifies the theory should descend from a higher dimensional theory
on some compact space with loosely speaking some S* cycles if it is BPS and without any S* cycles
if itis Non-BPS. An example of a one dimensional decompactification is a circle and an interval
respectively.

In this section we will focus on T-duality associated to BPS limits. A simple example is the het-
erotic shelf T-duality in the absence of any Wilson lines. An example of the T-duality which is not a
self-duality is the two inequivalent rank 1 theories we discussed in 9 dimensions, which are T-dual of

one another section 1.4.
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Summary of steps

* Step 1: Consider a circle compactification with a finite but small coupling.
¢ Step 2: Consider the limit where R — 0.

* Step 3: Argue the theory decompactifies to a 4 dimensional theory

with 16 supercharges.

We consider a d-dimensional non-chiral theory with 16 supercharges and a gauge group of rank
7 in the low energy effective action on a circle S'. The moduli space of this theory was written in
(1.3) and upon the circle compactification and in the absence of Wilson lines on the circle it only
acquires an extra factor SO(1, 1) coming from the radius of the circle. This subspace of the moduli

space associated with the vector multiplets is then given by

SO(rg,10 — d)
SO(rg) x SO(10 — d)

x SO(1,1), (2.11)
Additionally, the reduction implies the inclusion of:

* Gauge field B, and the wound string charged under this gauge field

* Gauge field G5 and KK momentum modes charged under this gauge field

The fact that a string exists is guaranteed by completeness of spectrum as discussed earlier.

The supersymmetry algebra implies that BPS states charged under the momentum and winding
modes have central charges M,, = n/R, M,, = wR where (7, w) denote the momentum and
winding numbers. Now consider the radius of the circle very small. Then one would expects the
dual theory to at least have (d — 1) dimensional Lorentzian symmetry. We will now argue that the

theory should actually end up being 4 dimensional in the limit R — 0.
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The general statement of the distance conjecture 5 is that at infinite distance in moduli space
an infinite tower of light states emerges. A stronger version of this conjecture states that when this
tower appears then there exists a dual weakly-coupled description with its basic modes comprised of
the states in the light tower. In the case athand as R — 0 the supersymmetry algebra implies that
the winding modes are getting light.

These winding modes should be the dual description of some elementary excitations of a dual
theory. On the other hand we have found that the moduli space of the theory whose masses do not

depend on R includes
SO(rg,10 — d)
SO(rg)

(2.12)

which predicts that the theory must have at least 4 dimensions, because of the classification of scalar
moduli space of theories with 16 supercharges. Thus the light modes which used to be winding
modes of the original theory, must now be part of the weak coupling limits of this d-dimensional
theory. In other words, they must be the momentum modes of this theory.

Said differently we have argued that every non-chiral theory enjoys T-duality. Of course this ar-
gument does not predict whether the T-dual theory is different or the same as the original theory,
compatible with the fact that both versions do occur in string theory. Note that this implies that the
singly wound string of the original theory in its ground states should carry the same quantum num-
bers as a graviton multiplet with one unit of momentum around the circle, since it is dual to it. In
particular it is a massive state in ad — 1 dimensional theory with maximum spin 2. We will use this
fact in the next subsection.

We note that these arguments depend on supersymmetry very strongly since even in 8 super-
charges we know that the moduli space receives corrections which can change the decomposition
of the moduli space metric as well as the distances. A simple example is the case of sd A" = 1 to 4d

N = 2 where one sends the radius to zero size, instanton corrections can bring the distance of our
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limit to finite.

Our only assumption beyond the Distance conjecture to reproduce this arguments is really that a
dual theory exists. It could have been that such a limit signals the break down of the theory without
any other fundamental description beyond that point. In some sense this could correspond to some
cut off.

This discussion can also be rephrased in the language of the emergent string conjecture *3* or
sharpened distance conjecture”" because we consider a simple compactification on .S 1 and the lead-
ing tower is BPS in both the large and small radius limit. The amount of supersymmetry fixes the
masses and tensions of BPS objects and hence the exact coefficient of the distance conjecture can be
computed which shows that in fact it is a decompactification.

It would be interesting to study also the T-duality in theories with non-BPS leading towers. In
fact we already know from the previous section that most limits decompactify and we will study
later on the theory that they decompactify to. So we could start from a theory in d-dimensions on
a circle and tune the coupling to infinity so that the BPS states are heavy and the light KK tower
is Non-BPS in that case the resulting decompacitifcation involves a Non-BPS tower at some fixed
coupling so it should be a manifold with a boundary. This tells us that T-duality is a feature of the
theory and it also describes where we land in certain cases. In the Non-BPS case we can see that we
end up necessarily to a different theory as we expect that supersymmetry was broken during the
compactification. But in decompactifications that the tower is BPS it is not so clear if the theory
is self-dual or not. In"S it was shown that in fact T-duality changes the chirality of the theory in
theories with 32 supercharges and hence one expects to land in a different theory. Other bottom up

aspects of dualities were also discussed in that work.
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2.2.1 DERIVATION OF THE BOUND ON THE RANK

As we discussed in Appendix A the worldsheet theory of the BPS strings is a (0, 8) CFTs. We also
argued that the current algebra of the bulk gauge symmetry is in the left sector. In particular, uni-
tarity of the string worldsheet requires that the current algebra of simple non-Abelian group G with

level £ in the 2d CFT satisfy the following relation (see, e.g., 5°)

kdimG

= my (2.13)

G

where dim G is the dimension and /" is the dual-Coxeter number of group G respectively. For a
U(1) current algebra, the central charge contribution is ¢;1) = 1. This leads to the following

constraint on the left-moving central charge ''?:

S <. (210

z

where the sum for 7 is taken over the left-moving currents.
On the Coulomb branch where the bulk gauge symmetry is broken to Abelian groups including

U(1)¢, we can further simplify the bound as
rg <t =24x+2—d. (2.15)

where « is associated to the  Hooft anomaly of the R-symmetry. If this bound is violated, the
anomaly inflow from the bulk gravity theory cannot be cancelled by the anomalies of a unitary CFT
on the string. Hence, a consistent bulk gravity theory involving BPS strings must satisfy this bound.
This is because as we saw in the appendix the addition of the string charge modifies the Bianchi

identity and hence requires the anomaly inflow mechanism to cancel those anomalies.
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From eq. 2.15 we see that if a bound for x exists then the rank of the gauge group is bounded. In
particular, we will argue that for a gravity theory with 16 supercharges that has a well-defined T-dual
theory necessarily has x < 2.

For this we consider a string with Q = 1 wrapped around a circle of radius R and study its
ground states. Consider first the ground states of the wound string in the Ramond sector of the
interacting CFT. As has been argued in "*># the maximum charge for the U(1)z spectrum in the
Ramond sector for this theory is given by cz /6 the central charge of the current, i.e. 2(x — 1) after
removing the center-of-mass contribution, which means that the spin is less than or equal to (x —1).
Moreover as argued there this maximum range is actually realized by the spectral flow of the vacuum
state of the NS sector to the R sector?.

Now we use the fact that the spectrum of the singly wound string already includes spin 2 states
arising from the center-of-mass degrees of freedom in the right-moving sector. As we argued, in ad-
dition, the internal degrees of freedom from the interacting CFT contains right-movers carrying
charges under the SO(2) C SO(d — 2) rotational symmetry. This simply means that the ground
states of the wound string will include a state with a net spin bigger than 2 when ¥ — 1 > 0. This
higher spin state is generated by a tensor product of the spin 2 states in the center-of-mass spectrum
and the internal right-moving state carrying SO(2) Lorentz charge ¥ — 1. On the other hand, a con-
seqence of T-duality is that the ground states of the wound string should have the same quantum
numbers as the gravity multiplet in the dual theory. So T-duality cannot hold if & > 1 due to the

higher spin states. Therefore, we conclude there are only two possibilities

k=1or0. (2.16)

5The argument in *** is mainly in the context of (2,2) supersymmetric theory, but that can be easily
adapted to the (0,2) C (0, 8) being considered here, using the integrality of charges of the U(1)g, which
follows from the fact that it is twice the spins in physical space which are integer or half-integer.
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When x = 1, the central charges of the 2d CFT on a single string are (¢, cg) = (24, 12). The
unitarity of this string probe when coupled to the bulk gravity imposes a novel constraint on the
rank of the bulk gauge groups,

r¢g <26 —d. (2.17)

The case x = 0 is not allowed for the (0, 8) case as can be seen from the fact that there are always
the center of mass modes and thus we cannot have ¢; = ¢z = 0 which would be a consequence of
(A.8). However, the x = 0 case is in fact forced on us, as we will discuss next, for the case when the
supersymmetry is enhanced in the IR to (8, 8).

We now turn to the case with (8, 8) supersymmetry. In this case we still have

L —cp =12«

but in addition we have two U(1) currents, one left- and one right-moving with anomaly coeffi-
cients ky, kg, satisfying

kr — kg = 4k,

withez = 3kr,cr = 3kg. By the T-duality argument we just used which implies that we should
have no additional spins other than those coming from the center of mass, we learn that k7 = kg =
4 and ¥ = 0. Moreover, this implies thatc; = ¢z = 12 and subtracting the degrees of freedom
coming from the center of mass, we get the bound on the rank of the gauge group ¢ < 10 — d.
This bound is stronger than the one coming for theories with (0, 8) supersymmetry (2.17). Taking
this into account we learn that any gravity theory with 16 supercharges and rank beyond the bound
in (2.17) is inconsistent and therefore belongs to the swampland.

Both the (0, 8) and (8, 8) supersymmetric cases on BPS strings are realized in string theory. In

particular, the toroidal compactifications of heterotic string realizes the (0, 8) case, consistent with
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the fact thatit has (¢, cg) = (24, 12). An interesting example of this is the rank 9 theory ind = 9.
In this case we can have at the CHL point the Eg X U(1) matter gauge symmetry. The central charge
of the left-moving degrees of freedom comes from the center of mass contribution of (¢; = 7) plus
Egatlevelk = 2(cp = 15%) plus the U(1) (c3 = 1) and a left-over piece which is an Ising model
(= %) leading to ¢, = 24.

The case with (8, 8) is also realized: One such example is the ITA limit of M-theory compacti-
fied on Klein bottle, called the AOA theory, introduced in®. A BPS string in the AOA theory en-
joys the (8, 8) symmetry enhancement. The 2d theory on a single string consists of bosonic fields
(Ao, A1, A2, Y') with7 = 1,--- | 7and a pair of fermionic fields %i where Ao, A7 are 2d gauge
fields and A5 is a compact (but non-chiral) scalar and Y; are non-compact scalars, and £ denotes
the 2d chirality®. The SO(7) Lorentz symmetry acts on both (anti-)chiral fermions ¢~ as well as
Y;. These fields form a free (8, 8) multiplet for the center-of-mass degrees of freedom of the string.
From the matter content, one can read off the central chargesascg = ¢z = 12. We also notice
that the ’t Hooft anomalies for the U(1) x U(1) gauge symmetry receive contributions +1 and —1,
respectively, from the left- and the right-moving components of the compact scalar 42, which pre-
cisely cancel the anomaly inflow for U(1) x U(1) gauge symmetry. Toroidal compactifications of
this theory give rise to other examples with N = (8, 8) enhanced supersymmetry in x = 0 gravity
theories.

Note that the upper bound on the rank (2.17) is saturated by the toroidal compactifications of
1od heterotic strings to lower dimensions. Hence the above bound on the rank provides strong

evidence for the completeness of the string lamppost principle.

2.2.2 NON-BPS DECOMPACTIFICATION

In the previous section we analyzed a very particular type of infinite distance by consider the theory

on a circle and taking the infinite distance limit of small radius. The amount of supersymmetry was
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enough to bound the total rank of the theory since the theory enjoyed T-duality.

Moreover, in the first two sections of this chapter we found that infinite distance limits where the
leading tower is non-BPS can still have some decompactification limits that we can follow. In the
case of nine dimensions we can explicitly study the possible decompactification limits. The 9d the-
ory can only decompactify to either a 10d or an 11d which is the highest dimension for supergravity.

Therefore, there are two cases to consider.

11D BACKGROUNDS

We firstly consider the decompactification to 11d supergravity, which is unique at low energies*%75.
We note first that the compact dimension cannot be disconnected, as if it were, we would find two
copies of the supergravity multiplet in lower dimension. The only boundary-less smooth two-
dimensional Ricci-flat manifolds are torus, Klein bottle, and the ones with at most one non-trivial
cycles are Mébius strip or cylinder. However, all of the above manifolds have an § 1 piece that the
KK tower along the ST piece will be a light BPS tower.

One could also consider singular combinations of such backgrounds by gluing multiple compo-
nents along the boundaries with some degrees of freedom living on the boundary (for example as in
Figure 2.2). However, there is no evidence of such exotic backgrounds in string theory. This ques-
tion should be addressed also beyond string theory, since whether such a boundary theory exists is
a UV question. We provide a bottom-up argument based on the classification of sd SCFTs for why
such exotic backgrounds do not exist.

Let us consider the small instantons of the 9d theory (for definition see 2.3). Using the BPS com-
pleteness hypothesis **?, we assume BPS small instantons exist. Furthermore, the strong version of

the cobordism conjecture in 138 implies that the moduli space of these small instantons is connected.
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Now, a generic BPS 4-brane in 9d supergravity will carry a s-form chargeé. However, the 5-form
gauge potential in 9d must be the KK reduction of the dual of the 3-form gauge potential in 11d.
Therefore, the 9d small instantons must correspond to wrapped BPS s-branes in 11d supergravity
picture. When the s-brane approches the boundary, the small instanton will approach the bound-
ary of its moduli space.

Now, from the rank 1 classification of sd SCFTs, we know that any local piece of the Coulomb
branch of an SCFT or a free theory must either look like an open interval which has at most one
closed end ¢¢:59:147:243° The one dimensional Coulomb branch of an SCFT has the local structure
of R /7" but not a star shaped singularity. In other words, such exotic compactification are not
permited. Thus, the compact dimensions (corresponding to the moduli space of a 5d theory in its
IR) can have at most two boundaries, and the only singularities/boundaries allowed in the moduli

space of sd theories (either free or SCFT) are R /Zs.

04 02

Figure 2.2: An exotic 11d supergravity background on a 2d space resulted from identifying a boundary of three cylin-
ders. The existence of such a background depends on the existence on the appropriate boundary theories O;, which is a
UV question. For example, there is no evidence for the existence of such boundary theories in string theory.

©We will give a detailed argument for this point in 2.3, but is a summary of the argument. The number
of gauge instantons and branes with s-brane charge is not independently conserved due to gauge symmetry.
Therefore, they must be transformable to each other and share a moduli space.
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10D BACKGROUNDS

Suppose our theory decompactifies to a 10d theory. Again we need to exclude the circular compacti-
fication since it leads to a BPS tower.

The other possibility is that the local physics is described by a supergravity with 32 supercharges,
but the global structure of the compact dimension breaks half the supersymmetry. For example,
at the massless level, we can have accidental supersymmetry which is broken by the massive states.
Such 1od low-energy effective field theories can type II supergravity theory on a 1d manifold with
boundaries. Now let us consider type II supergravities on 1d manifolds with boundaries. Since the
type IIB supergravity is chiral, putting it on a manifold with a co-dimension 1 boundary would
break all supersymmetry, whether or not they are accidental.

Type I1A supergravity however allows BPS end of the universe walls and BPS domain walls since
it is non-chiral. Therefore, the theory can decompactify to a type IIA background on a union of
circles and intervals that are joined via some boundary defects and some BPS domain walls on the
inside. Even though the supergravity allows for such a background, their existence depends on the

spectrum of the non-perturbative 8-branes which is a UV information.

Figure 2.3: The internal geometry for an exotic type IIA background. The red points are boundary theories and the blue
points represent BPS domain walls. We provide a bottom-up argument from the classification of 5d SCFTs that rules out
such backgrounds.

Similarly as above the one dimensional Coulomb branch of the small instanton can have a local
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singular structure of R /Z **® but not a star-shaped singularity with more than two legs. In other
words, star-shaped moduli spaces are not allowed. Therefore, the only candidate for a type IIA back-
ground with a boundary is type IIA supergravity on an interval.

A more general background is the massive type IIA supergravity background on an interval
which is nothing other than type I’ supergravity. In the subsection 1.3.1, we defined and reviewed
the general properties of type I’ supergravity backgrounds without relying on string theory. In the
next subsection, we use the type I supergravity action to express the 9d moduli discussed in section

2.1.1 in terms of the type I’ parameters.

2.2.3 MATCHING 9D AND TYPE I’ MODULI

Our following study is purely field theoretic and does not rely on string theory. For example, the
number of branes are left arbitrary to be determined by the Swampland principles which capture
the restrictions imposed by the consistency of a UV completion. Having said that, our calculations
must parallel the existing results in string theory*®" when the number of branes match.

The type I’ action eq. (1.6) is expected to be exact for BPS configuration where no light field
(except the non-trivial profile of dilaton) is excited. Therefore, the dependence of the action on the
position of the 8-branes as 9d scalar fields is protected by supersymmetry. This allows us to find the
scalar kinetic terms of the 9d action and match them with the moduli in eq. (1.6). Let us first start

with the od dilaton ¢. If we dimensionally reduce the action (2.1.1) we find

—5/2
7 2
¢ =2 (2)_2(47r)7C_10/3 </0 dxgw(x9)> , (2.18)
where
1/3

w(xg) = 31/39-1/6 [KuSB(xg) — xgvo(xg)} ) (2.19)
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Moreover, by comparing the gauge actions we find that

Muyn =
(27R) ™2 — (872 R?) L4 4 — ke
S| =(87°RY) "4 4" (272R)? + (167%R?) ™1 (Apd*)? + Apd*F  ((872R?) 1 Apd* +1)4,| S,
. _ A4,
— (2;513)2 ((872R%) 14y A* +1)4; e + %
(2.20)
where
Lio—a  li0-a 0
1
§= NG) Lio—a  —lio-a 0 ; (2.21)
0 0 L, (10-a)
and
1 27 1/2 27 -1
R=2 1p,? / dx%w(x") / dxw(x) 7t , (2.22)
0 0
and
1 27 -1 x?
A= 3 / dx¥w(x”) / dOw(x") 7t (2.23)
0 0

One can verify that the above results are consistent with those in string theory”.

7For that, one can first express the moduli of type I’ in terms of the Heterotic theory *" and then use eq.
4.7 in'® to express the Heterotic moduli in terms of the 9d moduli A45. The parameters R and A4; would
be the radius and Wilson lines in the Heterotic picture.
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According to (2.9), non-BPS limits correspond to limits where the 9d dilaton goes to infin-
ity sufficiently fast. Keeping A1 fized and sending ¢ to infinity corresponds to keeping the rela-
tive 8-brane positions fixed while taking C to infinity. If we change the positions of the branes
such that A4 moves on a global geodesic given by (2.6), then non-BPS limits correspond to Ap >
(2v/d — 2/d)| Ay| which can always be accomplished by taking C — o0 fast enough. We will
see that the C — o0 limit corresponds to a limit of type I’ theory where the length of the interval
becomes large.

To conclude this section, we will directly show that C — oo yields a decompactification limit,
verifying that the type I’ description of the non-BPS limits is indeed valid. The size of the type I’
interval is given by the square root of the metric in the Einstein frame. To convert between the string

frame metric ¢, and the Einstein frame metric g5, we have g5 = ¢~ #10/2¢%, . Thus,
L= Q2(x9)’7MN7 O = /24 o 25/ (2.24)
The limit where the interval size goes to infinity is thus C — 00, and in this limit, we have
myx ~ C 2124, (2.25)

On the other hand, let us compute the mass scale of the string frame action which we will call the

string mass 7z;.
ms = 6¢10/4mp ~ CO/%, (2.26)
We therefore see that mgk << s, in the limit where the type I’ interval becomes large. This is a

genuine decompactification limit, as required.
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2.3 GAUGE SYMMETRY ENHANCEMENTS

In the previous section, we showed that the Swampland principles could be used to argue that in
certain limits where all BPS states are heavy, the 9d theory must decompactify to a massive ITA back-
ground on a compact 1d space with an arrangement of parallel 8-branes. In this section, we will give
a bottom-up argument for why the position of the branes uniquely determines the spacetime gauge
group. We will show that the gauge groups living on the 8-branes can be determined from Swamp-
land principles.

From string theory, we expect the position of the 8-branes on the interval to encode the informa-
tion about the gauge theory. This is because the vector multiplets come from open strings ending
on the branes, and as two branes approach each other, some massive multiples become massless
leading to gauge symmetry enhancement. However, from the bottom-up perspective, the connec-
tion between the brane positions and the gauge symmetry is far from clear. Our goal is to provide a
bottom-up argument for this connection based on Swampland principles. We provide a bottom-up
argument that allows one to read the gauge group directly from the moduli which can be expressed
in terms of the brane positions as (2.20). For that, we use the recent progress in demonstrating as-
pects of the string lamppost principle using the Swampland principles.

In®"'¢, it was shown that using the finiteness of black hole entropy and a strong version of the
cobordism conjecture, one can classify the possible geometries for the moduli space of the small
instantons in minimal supergravities in d > 6 with 16 supercharges.

Let us take a moment to explain what small instanton means. For non-Abelian gauge groups,
the moduli space of gauge theory instantons can be constructed using the ADHM construction *".
One of the moduli of the instanton is its size. If we take the size of the instanton to zero. The gauge
theory instantons are charged under the (d — 4)-form gauge symmetry of type IIA and can be in-

stanton. Based on the BPS completeness hypothesis''?, we assume such BPS gauge instantons exist
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which preserve 8 supercharges. These instantons are known as non-Abelian small instantons.

There is a non-Abelian small instanton for any semisimple piece of the gauge algebra. From the
field theory perspective, these can be completely disconnected configurations. However, using the
Cobordism conjecture 138 in 0, it was argued that one should be able to continuously deform one
non-Abelian small instanton to another without breaking the supersymmetry. Therefore, there
must exist a BPS co-dimension four defect with a worldvolume theory preserving 8 supercharges,
that has a Coulomb branch that parametrizes the non-Abelian small-instantons as well as the BPS
configurations that connect them. We refer to this defect as the small instanton.

The non-Abelian instantons correspond to the point of symmetry enhancement on the Coulomb
branch of the worldvolume theory of the BPS defect. The global symmetry of the non-Abelian in-
stanton reflects the action of the spacetime gauge transformation on them. So far, the only gauge
instantons we considered were non-Abelian, however, it is natural to have instantons even when the
spacetime gauge group is broken to its Abelian subgroup. As opposed to the non-Abelian instan-
tons that can be blown up and given a size, the Abelian instantons only exist as point-like objects.
For that reason, they are non-perturbative objects whose existence depends on UV information.
The field theory construction for them relies on taking some limit in a regularized solution (e.g.
non-commutative instantons **). Therefore, the moduli space of the small instanton only has a
Higgs branch at specific points of the Coulomb branch where the worldvolume theory has an en-
hanced non-Abelian global symmetry.

To get a better intuition about the small instantons that connect the gauge instantons, it is help-
ful to see what they correspond to in string theory. The gauge instantons are typically confined
to a stack of branes on which the gauge theory lives. Moreover, different semi-simple pieces of the
gauge symmetry correspond to distinct stacks of branes. The BPS configurations that connect the
two non-Abelian instantons are D-branes that have four dimensions less than the original branes.

The connectedness of this space follows from the fact that an instanton on a stack of brane can be
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shrunk to zero size and pinched oft into a bulk D-brane with four fewer dimensions 192,58 There-
fore, the small instanton at a generic point of its Coulomb branch is usually a D-brane that can be
absorbed into branes with four higher dimensions and create a gauge theory instanton on them.
The only conserved quantity that is protected by higher form gauge symmetry is the instanton num-
ber plus the corresponding D-brane charge. If they could not transform into each other, we would
have conservation of each brane separately, which is not protected by gauge symmetry and leads to a

138

global (d — 4)-form global symmetry which is forbidden in quantum gravity '**3%. This implies that
in supergravities, the D-brane solutions must be connected to gauge instantons. This implies that

co-dimension four D-branes are indeed the small instanton.

n Dp branes n Dp branes n Dp brane D(p-4) brane

,/6/’ A d / |

/§/ g L~ - / |

Fat SU(N) instanton Small SU(N) instanton

Figure 2.4: The process of shrinking a gauge instanton on the worldvolume of Dp branes to zero size and pinching it off
into a spacetime D(p — 4) brane.

Now we go back to summarizing the results of 16, Using the cobordism conjecture and finite-
ness of black hole entropy, the authors showed that the moduli space of small instantons in various

dimensions is given as follows?®:

$1n all the examples, the resulting manifold matches the internal geometry in a string theory construc-
tion, i.e. IIA on interval, F-theory on elliptic K3, and M theory on K3. This is no surprise, given that from
string theory we know that the Coulomb branch has a geometric meaning.
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* 9d: An interval with a piece-wise linear profile of 1/¢2, where g is the coupling constant
of the worldvolume theory of the small instanton. The derivative of the coupling constant

becomes singular at some points.

* 8d: A sphere, with an SL(2, Z)-equivariant profile of 7, where 7 is the complexified coupling
constant of the worldvolume theory of the small instanton. We can view this configuration

as an elliptic K3 surface with some singularities.
¢ 7d: A K3 surface with frozen singularities.

Moving in the Coulomb branch of the small instanton corresponds to moving a brane around in
the internal geometry. The global symmetries correspond to different singular behaviors in the
Coulomb branch of the worldvolume theory of the small instanton. Therefore, one can read off the
global symmetries of the small instantons from the geometry of the Coulomb branch. The match-
ing of global symmetries on the small instantons and the gauge symmetries in the spacetime then
was used to find a bottom-up classification of ranks and gauge symmetry enhancements in super-
gravities ind > 6.

This picture classifies the gauge symmetry enhancements based on the geometry of the moduli
space of the small instantons. However, it does not tell us how that geometry depends on the space-
time moduli. This missing piece of information is necessary to understand at which points of the
spacetime moduli space the gauge symmetry enhances.

In this section, we show that our results from the previous section easily fill this gap. In the previ-
ous section, we showed that the 9d theory admits a massive type IIA background in specific corners
of its moduli space. In these limits, it is easy to see that the compact dimension must represent the
Coulomb branch of the 9d small instanton. Above, we used the no-global symmetry conjecture
to show that a generic small instanton carries a (4 — 5)-brane charge. Therefore, we are interested

in the moduli space of BPS configurations with a BPS 4-brane. Supergravity tells us that placing a
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4-brane parallel to the 8-branes and perpendicular to the compact dimension does not break the su-
persymmetry. Therefore, the position of the 4-brane in the compact dimension is part of the small
instanton moduli space in 9d. On the other hand, based on '® we know that the moduli space of
small instantons has one real dimension. Therefore, it must correspond to the compact dimension.

Now we can match the singular point in the moduli space of small instantons to the position of
the 8-branes. Then we can use the results of " to read off the spacetime gauge symmetry. Therefore,
we can find the gauge symmetry in the spacetime by finding the position of the 8-branes in type I’
supergravity. For example, in a generic point of the moduli space where the gauge group is U(1)’,
there must be 7 4- 1 8-branes along the interval whose positions are constrained to make sure that
dilaton goes to infinity at the two endpoints of the interval. As 8-branes approach each other and
coincide, the gauge symmetry enhances. We can see the enhanced gauge symmetry, by reading off
the global symmetry of the small instanton that has the corresponding singular structure in '°. For
example, in the maximal rank case of » = 17, if we move 8 8-branes to each endpoint and leave two
at the center, the gauge algebra will be eg + eg + s%(2).

Note that if the gauge group has an £, piece, the worldvolume theory of the small instanton
at the endpoint of its Coulomb branch will have £, global symmetry. From the classification of
sd SCFTs we know that the coupling must diverge at that point. Therefore, following the above
mapping between the internal geometry and the moduli of the small instanton, we conclude that in
such cases, the dilaton must diverge at the endpoints of the interval.

This approach also provides a Swampland argument for the fact that the world volume theory
of a stack of 8-branes has a U(n) gauge group. Moreover, we can read off the gauge group living on
the end of the universe wall, and the top-form charge that brane must have to cancel the flux of 8-
branes. By fixing the number of the 8-branes, this argument even fixes the top-form charge of the
end of the universe wall and we can even read off the gauge group living on the stack of 8-branes on

top of an end of the universe branes, which is non-trivial.
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Our argument maps the gauge symmetry to the position of the branes, and the brane positions
can be expressed in terms of the 9d moduli. Therefore, we know the location of the gauge symmetry
enhancements in terms of the 9d moduli. On the other hand, the dependence of the gauge symme-
try enhancement on the 9d moduli is controlled by the charge lattice. The dependence of the charge
lattice on the moduli is controlled by supersymmetry® and whenever the sublattice of zero charges
under the graviphoton has an ADE sublattice, we have a gauge symmetry enhancement. Therefore,
our argument uniquely fixes the charge lattice. Since the charge lattice is even self-dual in string the-
ory constructions in 9d, we find that the choice is unique. In'®, all gauge symmetry enhancements
of the lattice were classified and shown to belong in the same moduli space. This strongly suggests
that the charge lattice which gives rise to those symmetry enhancements is unique. Our work pro-
vides a concrete explanation for the uniqueness of the charge lattice but also gives a bottom-up ex-

planation for the strong coupling behavior of the infinite distance limit.

2.4 SUMMARY AND DiscussioN

In this chapter important properties of theories with 16 supercharges were studied with a focus in
the finiteness of massless modes and the String Lamppost Principle. In particular, it was shown that
following infinite distance limits of BPS states, which receive no corrections due to supersymmetry,
gives rise to dualities which constraint the rank of any gauge group to be 7¢ < 26 — 4. Interest-
ingly, consequent works *#* extended that result and used Swampland conjectures to prove a refined
statement that in 9 and 8 dimensions, the possible gauge group ranks satisty ¢ = 1 mod 8 and
r¢ = 2 mod 8, respectively, which all have some string theory realization *7. In subsequent
works5>", the bottom-up argument for such features of string theory were taken a step further

in*°, the authors used Swampland conjectures to derive a list of gauge algebras ind > 6 supergrav-

?See Appendix D in '3
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ities'® and showed that they identically match the algebras realized in string theory. In this chapter
we also considered this classification from a different perspective. In fact for theories in 9d it was
shown how these enhancements can associated to BPS 8-branes. In fact the infinite distance limit
of Non-BPS states was studied and it was shown that the theory must decompactify to IIA super-
gravity on a one-dimensional manifold. Then, we used the classification of sd SCFTs and no-global
symmetry conjecture > to show that the internal geometry must be an interval with BPS 8-branes
placed along the interval. We also showed that the internal geometry must match the moduli space
of the 9d small instantons. This allowed us to read the gauge group from the positions of the branes
which are directly expressed in terms of the 9d moduli using supersymmetry alone. Therefore, we
find a bottom-up argument for the low-energy worldvolume theory of an arbitrary stack of non-
perturbative 8-branes. This provides strong evidence for the completeness of the SLP in such theo-
ries.

Most of the results discussed depend on the amount of supersymmetry and hence it is crucial
to study such questions in theories with less supersymmetry which will be the main topic of the
next section. Lastly, it is important to note that even in theories with 16 supercharges many open
questions still exist especially related to the possible landscape in dimensions less than 7, where not
all possible ranks and gauge groups are known even in string theory. Therefore, it is particularly
important to understand the string landscape and subsequently understand if what appears from

string theory is universal.

"“Thed = T case assumed a classification of 3d SCFTs which lacks a bottom-up argument outside string

theory.
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“People started studying string theory and they say; Ob
there is gravity in this; I didn’t put it in; where did that
come from ? So it gives more credibility to the theory;

it’s kind of brings out things we want to have without
actually putting it in so we believe that’s one of the most
beautiful aspects of string theory, this magical property
that things that you get out of it are more than what you
putin.”

Cumrun Vafa®

Supergravity theories with 8 supercharges

The previous section was focused on supegravity theories with 16 supercharges and their bottom
up properties. In particular it was evident that certain features of string theory are reproducible
using Swampland idea from bottom up and hence heavily constraining the low energy physics.
The most important result was that for supersymmetric theories with 16 supercharges there is an
upper bound on their rank 7¢ < 26 — d, a bound also first suggested by string theory. This

therefore completes the finiteness arguments for the number of massless modes in supergravity
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theories with 16 supercharges. A natural next question is whether similar results also apply to the-
ories with 8 supercharges. The highest dimension with 8 supercharges is 6d where chiral anoma-
lies are also present. Over the past decades a lot of effort on analyzing the landscape of such theo-
ries 124181 127:126:145,146,125,162, 119,133,157 has Jed to a better understanding of the possible consistent
theories, although not yet complete. The chiral anomalies heavily constraint the possible spectrum
but not enough to address finiteness type questions. However, if combined with Swampland ideas
many of the infinite families can be shown to be finite. This will be the focus of section 3.1. On the
other hand, in sd chiral anomalies are absent and hence the spectrum is generally not easily con-
strained. However, section 3.2 is devoted on investigating such questions and finding possible ways
to study the Swampland in sd. Additionally, in contrast to the theories with 16 supercharges, in 8

supercharges one can also have hypermultiplets in a given theory. In section 3.4 also constraints on

the type of matter will be analysed as enforced by the existence of BPS strings for both sd and 6d.

3.1 TOWARDS A 6D FINITE LANDSCAPE

In"?7"*# it was shown that a large subset of all possible distinct combinations of non-abelian gauge
groups and matter representations that can appear in a 6d N=1 supergravity is finite for 7 < 9,
where 7'is the number of tensor multiplets.

However, their arguments in some cases do not generalize to 7" > 9. In particular, 165,127

provide
five potentially infinite families with two simple gauge group factors that are not constrained to
have an upper bound in the number of massless modes and three with three simple gauge factors for
T > 9. In this section it will be shown that these theories are in fact restricted to a finite subset, and
similar finiteness conditions will extend to more classes of non-abelian theories.

As discussed in section 1.5 2 6d N = 1 supergravity contains two-form fields which could imply

the existence of string sources. In particular, the completeness of spectrum hypothesis will require
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that all charges compatible with the Dirac quantization condition appear in the theory '3 and form
the string lattice I of the 6d theory. Moreover,in the case of supersymmetric theories the lattice of
all states should be generated by BPS states because any black hole in the theory could eventually
decay to a collection of BPS/anti-BPS states and hence these charges should be in the lattice too.
Even though this is a heuristic argument, it is a motivation for this assumption. Therefore, each
charge in I'is a Z-linear combination of the BPS charges and hence they generate the lattice. In fact
the belief is that this assumption is more general than the setup in this chapter. Namely the lattice
of allowed BPS charges are generated by BPS generators in all cases which seems to be the case in all

string theory examples. This can be summarized as follows:

The string charge lattice I' always has a basis of BPS charges that spans the entire lattice.

Secondly, a second assumption is:

There are only finitely many inequivalent theories with a given gauge group G and matter

M.

Although, no proof of this statement is provided it constitutes a reasonable physical assumption.
It would be rather strange to have a fixed low energy matter content be represented by infinitely
many inequivalent theories.

Lastly,when a particular theory has enough matter to be Higgsed then the string lattice I of that
supergravity does not get affected by the process. This is because the Higgsing process only involves
the hypermultiplets and vector multiplets of the theory and does not affect the tensor multiplets and
hence the dyonic string charge lattice I" should remain unaffected. In addition, one should note that
the vectors 4, b; provide the coupling of the two form B fields to the spacetime curvature B - atrR?

and the coupling to the field strengths B - b,7F2. Therefore, since the 6d theory contains strings of
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charges b; associated to gauge instantons  we know that &; should belong to I, similarly it has been
argued that the vector 4 should also belong to the lattice corresponding to a gravitational instanton
and hence should also be unaffected by the Higgsing process.

The next step is to construct potential infinite families which will be argued to be inconsistent.
In order to construct infinite families of unbounded size one can start by identifying gauge groups
that satisfy the 77/ anomalies for arbitrarily large size. The simple gauge groups that can have un-
bounded dimension are SU(N), SO(N), Sp(N/2). For example, a theory with an SU(NN) factor

should satisty:

Buy=2N=> ngBg (3.1)
R

As discussed in '*7>'*# for large /N the only representations that can appear have By at most linear
in N. Those are the fundamental, adjoint, two-index antisymmetric and symmetric representations.
The set of possible such theories including the groups SO(N), Sp(IN/2) is summarized in Table 3.1.

In particular, from Table 3.1 it can be noted that the only theories that satisfy the gravitational
anomaly for arbitrary N are SU(N) with Adj/1[ 1]+ 15 and SO(N) /Sp(IN/2) with H/ [T Jwith
T < 9. Asdiscussed in '** T" < 9 are excluded since there is no solution for the vectors z, 4 satistying
a®> > 0,0> =0,a - b = 0. However, for T = 9 both 4, & are null vectors with z - ¥ = 0 and hence
parallel, i.e. & = Aa with A < 0 (such that;-2 < Oand- b > 0). Specifically, in this case it is simple
to find solutions #, & and in fact such an example is constructed later in this section. Therefore, for
T = 9 this theory constitutes a potentially infinite family with unbounded size.

Next consider theories with gauge groups of the form G1 x G with G; drawn from Table 3.1.

In 8127165 they identify 5 potentially infinite families with arbitrarily large dimension given in

Table 3.2 and composed of two simple gauge factors from Table 3.1. The expectation is that even
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1 Adj
1o+ 1H
2N N2+ 1
SUN) (N+8)O+1 H | sN+EN+1
(N=8)0+ 101 | 3 = PN +1

Group Matter H-V
0
1

16D+2|:| 15N+1
SON) | (N=-8)[J 3N — N
1H 0
(N+8)[] IN2 L IN
$p(N/2) 16D+1H 5N 1
17 0

Table 3.1: Most theories have H — I — 00 as N — 00 except those with  — I = 0, 1 for which 7" < 9 and there
is no obstruction to having an infinitely large gauge group from anomalies alone.

SU(N) x SU(N) 2 (O0)

SO(2N + 8) x Sp(N) | (0,0

SU(N) x SOIN+8) | (O,00) +(-, 1)

SUN) x SUN+38) | (0,00 +(— 1) +(1,C1])
Sp(N) x SU(2N +8) | (O,00) +(1,CT])

Table 3.2: Potentially infinite families with two simple gauge group factors.

though each individual factor may not satisty the gravitational anomaly, it can be arranged so that
introducing matter charged under both gauge groups reduces / — " enough to make it possible.
Furthermore, it is important to note that the only matter charged under two gauge groups is bifun-
damental matter. This can be justified by considering the fact that for 6d N = 1 gauge theories we
know that all theories are Higgsable until one reaches the Non-Higgsable Clusters(]NHC) '#5 or the
gauge group gets completely Higgsed away and hence we expect that any family of theories should
be Higgsable to some minimal gauge group. As discussed earlier Higgsing does not affect the string

lattice and consequently the vectors &; of the instantonic strings of the gauge theory, which implies
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that their inner products defined through the anomaly cancellations condition (1.17) should be
independent of the size IV of the gauge group which gets reduced by the process.

In particular, for two vectors b1, by their inner product is given by & - by = > RS liljnz SA%AQ
which as noted in "*7>"*# can only be independent of /N if both R and S are the fundamental repre-
sentations. But more specific to the theories from Table 3.1, one can see that no theory has enough
matter to gauge any of the Adj,[ ], H because for example a theory of the form SU(N) x Ga(N)
with (A4dj, R) would require that SU(N) has dim(R) number of Adj representations but any theory
has at most one. Therefore, no G; factor can be SU(N) with Adj/1[ ]+ 15 or SO(N) /Sp(N/2)
with B /T

One could consider £ gauge groups from Table 3.1 with matter charged under only one factor
and constant // — V. But the gravitational anomaly would then become (H,, — V)k < 273 — 29T
with (H,; — V) > 0 and hence restricting the number of terms. Therefore, we only need to focus on
excluding the theories of Table 3.2". The first theory is valid for 7" < 9 and the rest for 7" < 10. For
T < 9 it was shown in '**'*7 that no solution exists for «, b, for any of the theories that satisfy all
the consistency conditions studied earlier and specifically all 4,’s be associated with positive kinetic
terms. Similarly, for all theories except the first one, there is also no solution for vectors 2, b; when
T = 9. This is easy to verify for example for SO(2N + 8) x Sp(N), which has vectors 2, b; € RLT

that satisfy:
a-by=2a-by=—1,0=—4,b3=—1,by - by=2 (3.2)

There are two null vectors 2, (b1 + 2b3) thatsatisfy 4 - (b1 + 2b2) = 0 and hence need to be parallel
by + 2by = da = by = Aa — 2by forsome 1 € R. However, since b1 - b = 2thend = 0

implying that; - b1 = — - 2b2, meaning that we can not find vector ; ensuring the positivity of both

"We note that we do not present the full set of theories since exchanging matter with its conjugate when
gauging it provides distinct theories but this does not affect our calculations.
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kinetic terms. In an identical fashion one can show the same result by considering the null vectors 2

and 261 + bo(for the third) or b1 + by (for the fourth and fifth).

SU(N — 8) x SU(N) x SU(N + 8) OO 1) +(1eOe0)
+He1en+ 0010

Sp((N—18)/2) x SUN) x SON+8) | (oo 1) +(1 o 0)
SU(N — 8) x SU(N) x SO(N + 8) OO0 ) +(1e0e)+(H®1®1)
Sp((N—18)/2) x SUN) x SUN+38) | e )+(1e0e0) +(1®1e[1])

Table 3.3: Potential infinite families with three simple gauge factors.

Furthermore, as described in the Appendix anomalies permit classes of infinite families with
more than two simple gauge factors. For example, the gauge group theories described in Table 3.3
where first introduced in '**. More generally, one can construct theories which satisfy all the anoma-
lies with arbitrarily large number of gauge factors. Specifically, linear chains of such theories are
presented in Table 3.4. In addition, in Appendix C.2 we discuss theories that have gauge groups
connected in a non-linear fashion.

For example, one can construct theories where one gauge group is connected to multiple others.
Specifically, in C.2 we find that a large class of these theories have inner products &; - bj’s correspond-
ing to the affine ADE, where each 4; represents a node on the Dynkin diagram. Each b; is associated
with a gauge group SU(a; N) where 2" is the dual coxeter label and the matter is bifundamentals
according to the links of the affine Dynkin diagram.

However, an interesting observation is that even though anomalies permit the 4, D type inner
products to have arbitrarily many factors, a more careful analysis shows that this is not possible.

This is because the vectors 4, b; form the anomaly lattice which needs to be embedded in the string
lattice I'. The anomaly lattice is generated by at most £ + 1 vectors «, b; and the full lattice I'is of
signature (1, (—1)7) and generated by 7'+ 1 vectors. This implies, that # < 7'and since the gravita-

tional anomaly cancellation requires 7 < 9 then £ < 9.
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Moreover, one can show that /' = Zf b; is a null vector which satisfies z - V7 = 0. Hence for
T < 9wehaves? > 0 which implies that ”” = 0 but now one can notice that notall; - b; > 0
can be satisfied simultaneously. Therefore, the only case for which solutions could be found is for
T=9.

Similarly, for the theories of Table 3.4 with  factors the anomaly lattice has signature (1, (—1)*~1)
for T'< 8 4 k which means that # < 7'+ 1. Therefore, using the last column of Table 3.4 one can
show that all the theories have a finite number of gauge factors and more specifically the second
theory has 7" < 138 while the rest 7" < 137.

Furthermore, we note that the theories of Table 3.4 with 7' < 8 + £ have no consistent solutions.
In particular, the first and last theories have the same anomaly lattice and hence can be considered
together, same holds for the second and third. For the first and last theory one can consider 77 < 9
and note that4? > Oand (b1 + - -+ + &) = Owitha - (b1 + - - - &) = 0 from which it follows

that 41 + - - - by = 0 and hence cannot satisfy 7 - &; > 0 simultaneously for all . We can extend this

for8 + k& > T > 9 by considering the following vectors:

k—1 k
Vi=at+ Y bli—k+T—8)+(T—=9)b, Va=) b (33)
i=k—T+9 =1

It is simple to verify that V% = V% = V71 - Vo = 0 from which it follows that ', = AV7. Now

consider the product b - Vo = by - AV7 = A = 0. Therefore, /' = 0and hence notall
~—— ~——

) =)
J - b; > 0 conditions can be satisfied. This method though does not constrain the theories that have

T = 8 + k which arise when £ < 6 for the first theory and when k£ < 7 for the last and solutions can
be found as we will see later. Similarly, one can note that also for the second and third cases there are
no solutions for 7' < 8 + k.

We will now provide a general argument that restricts all the theories presented above to a fi-

nite set. The argument is based on'"? where they use completeness of spectrum as evidence for the
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Gauge group Matter Tensors

SUN = 8) x SUIN) x SUN+8) x - x SUN+8(k-2) |Hel-e1+1e1-orm|r<Z+22

— 29

Sp((N —8)/2) x SU(N) x SUN + 8) x - - x SO(N + 8(k — 2)) T< 24 20
SU(N — 8) x SUN) x SUN+8) x -+ x SO(N+ 8(k — 2)) H®1-~-®1 T< 2k H
Sp((N—8)/2) x SUN) x SUN+8) x -~ x SUN+8(k—2)) [ 1®@1--- @[] T<ZE4 I

Table 3.4: Each theory has bifundamental matter between any adjacent groups and the matter indicated in the table
is matter charged under only one gauge group. The last column indicates the upper bound on 7 that the gravitational
anomaly imposes.

existence of BPS strings with some charge Q = (41, - - - 910) and g; € Z satisfying consistency con-
ditions (1.48). Those consistency conditions will then provide us with an upper bound on the size
N of the gauge group.

All the theories above have a gauge group with a finite number of non-abelian simple gauge
groups and their size is controlled by the parameter /N which is not bounded by the arguments al-
ready presented. However, one can notice that each family of theories labelled by N is connected
through Higgsing. For example, SU(N) + 1A4dj can be Higgsed to SU(N — 1) + 1A4dj by mak-
ing 2N — 1 full hypermultiplets massive. However, as discussed earlier the Higgsing process does
not affect the string lattice which implies that any vectors in the lattice is independent of the size .
Specifically, by considering { Q;} as the BPS string states that generate I and satisfy the conditions
(1.48) then one has that these charges are also independent of /. This therefore implies that there
should exist a minimal choice of BPS charge Q € {Q;} thatis also independent of N. Therefore, for
an infinite family drawn from the examples above and using that Q? + Q - 2 > —2 the unitarity

bound becomes (for at least one non-zero ;):

dim G; i .
b <ot Sk <o =30~ 9Q a+2<120° +20 (3.4)

where k; is the level of the G; current algebra and ¢, = ;’fﬁé the central charge of SU(2),. Note that

if k; # 0 then for G; = SU(N;) one hasthat N; — 1 = Ciifb?' < /elgjj_lh?vf ,for G; = Sp(IN;) one
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has that 2N; — 3 < dllfh?l < k; (/ijilh? , for G; = SO(NN;) one has that % = dllfb?l < k; 23111??/"
where all N; are a linear function of /N. This implies that left-hand side of the inequality is always

a linear function of N’s. Moreover, since Q? is independent of N then this provides a finite upper
bound for the size /N. This is clear if there is one chain of theories related by Higgsing for arbitrarily
large N. However, there is a slight loophole in this argument: it may be that there is no such infinite
chain, but that there are infinitely many finite Higgs chains each of which start from a maximal
Ny Then by Higgsing them down to a given /it can be seen that for a fixed N one has to have
infinitely many inequivalent theories with the same massless matter content which was assumed can
never happen.

In the above argument it was assumed that at least one of the levels £; can be chosen to be non-
zero. One can now argue that some Q can always be chosen to have at least one non-zero k;. Let us
assume that there is no charge Q such that 4, - Q = &; > 0. In this case &, - Q = 0 for any of the Q’s.
But for any &; there exists a vector in the lattice which has a non-vanishing inner product with it, by
the requirement of the self-duality of the charge lattice. However, since Q generates the lattice this
leads to a contradiction. And so there are some BPS states Q with non-vanishing ;.

Even though our argument above does restrict the infinite families to only a finite consistent
set under reasonable assumptions, it does not provide us with a concrete upper bound of the size
of the gauge groups for each theory. Therefore, the remaining of the section will be devoted to go
through some of the theories presented above and find particular solutions for z, &; such that we can
illustrate using unitarity the exact upper bound for the size N in those cases.

Considering the single gauge group infinite families: SU(NN) 4+ 1Adjor 111+ 15 with 7= 9.
In order to ensure that the theory is unitary the following inequality needs to hold:

k(N2 —1)

¢+ PN

<c (3:5)
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3k
2+kyp

where £ is the level of the SU(N) current algebra and ¢y = being the central charge of SU(2),.
The inequality would be strongest for a minimal choice of ¢; which depends on the choice of
charge Q. Let us consider a representation of the «, & vectors. In particular in the integral basis

let us take Q = diag(1, (—1)?),andz = (—3,1%), and choose a string with minimal charge

Q=(1,-1,-1,0...,0) which givesc; = 8and Q*> = —1,k = —2, k; = 0. Therefore with this

realization, one can easily check that the only possible £, IV that satisty the unitarity bound are:

(k>1,N=0,1,2,3),(4>k>1,N=14) (3.6)

Therefore, the size of the gauge group for this theory is bounded by N' < 9 at least for this realiza-
tion of vectors. In the next section it will be shown that the theories of the second class with £ = 1
belong to the Swampland and hence the size is bounded by N' < 5. To show that these are general
Swampland bounds one needs to show that these results hold independently of possible inequiv-
alent realizations of the (2, b) vectors in the lattice. One potential issue is that for N' < 3 there
are infinitely many potential solutions for the vector & but the number of massless modes is still fi-
nite. However, in this work, as was discussed earlier, it will assumed that there are only finitely many
theories with a fixed gauge group and matter, and therefore such issues are avoided. Furthermore,
according to '** both vectors 4, & need to be primitive in F-theory and hence theories with A > 1
can not have an F-theory construction. Combining this with our conjecture of the next section one
expects that no F-theory construction should be possible also for 1 = 1.

A more general worry is that the above result was deduced with the assumption that Q =
diag(1, (—1)%),4 = (=3, 19) while one could imagine other inequivalent choices for these. In fact,

since 7= 1 ( mod 8) in this case one could either have the lattice be odd and isomorphic to Z 1
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0 1
or it can be an even lattice isomorphic to U ® Eg(—1) with U = . One needs to en-

1 0

sure that these as well as other choices for 2 provide finite size too. Therefore, our previous general
argument ensures the finiteness of these theories independently of the type of lattice or particular
solution.

Next step is to move to theories with two simple gauge group factors summarized in Table 3.2.

« SU(N) x SU(N)

For "= 9in"" it was shown that for a particular choice of Q, 2, b;’s all theories with N' > 9
belong to the Swampland because they contain non-unitary strings.

More general solutions can be found by noticing that a, 1 + b are null witha - (&1 + b2) = 0
and hence satisfy —a = m(b1 + bo) with m > 0. In this case the general argument translates into

the equations NV < 12Q2 + 20 with Q2 some constant.
* SO(2N + 8) x Sp(N)

The anomaly cancelation conditions dictate the following inner products between the vectors

a,b; € RLT:

a-by=2a-by=—1,0=—4,b3=—1,by - by=2 (3.8)

For T'= 10 solutions «, b, exist but one can show that unitarity ensures the finiteness of the theory.
We may choose a presentation of these such that the bilinear form Q and the vectors 4, b1, b are

given as follows:

Q = diag(1, (-1)19), 2= (-3,1'0)

by = —2a, by = (1,—-1,—1,098)
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In this presentation one can choose j = (1,010) which satisfiesj - 2 < Oandj - &; > 0 as desired.
Considering a BPS string with charge Q = (41, - - - 911) satisfying conditions (1.48) then unitarity

of the string worldsheet requires that:

k(2N +8)2N+17)/2) | k2(2N(2N+1)/2) _
ki + 2N+ 6 ko +(N+1) =

cr (3.10)

One can easily check that a minimal string charge solution can be Q = (1, —1, 0%, —1), which
has levels k1 = 2, k2 = 0 and central charge ¢; = 8. The unitarity bound for this string configura-

tion reduces to:

2((2N + 8)(2N +7)/2)
2+2N+6

<8=N<1/2

This seems to be reassuring because it does not rule out the theories at N = 0 with a single SO(8)
which do have known string theory realizations'#'37:1%°_ As for the case of N = 1/2 one has
asingle SO(9) with 1 fundamental hypermultiplet which is the unHiggsed version of the SO(8)

theory and if it exists could have the same base.
* SU(N) x SO(N + 8)

We note that the gravitational anomaly restricts 7 < 10 and hence we need to ensure finiteness of

the theory for 7"= 10 as before. In this case the charge lattice is given by

a-by=—1,a-by=2,0=—1,b3=—4,by - by=2 (3.11)

It seems that the anomaly charge lattice is identical to the one before and hence we can use those
results. In other words, for 7" = 10 the vectors are identical as in the previous example but with

b1 <> by. Therefore this string configuration with k3 = 2, k1 = 0 implies that
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ka((N+8)(N+T7)/2)
s EN16 <8=N<1 (3.12)

Therefore, as expected this bound does not rule out the single SO(8) or SO(9) theories as dis-

cussed above.
* SU(N) x SUN + 8)

This family has charge lattice vectors satisfying:
a-by=—=1,a-by=1,0=—1,b3=—1,b1-by=1 (3.13)

Similarly to the previous example for 7" = 10 such vectors exist but there are finitely many consis-
tent unitary solutions. One such representation is given by the choice
Q= diag(la (_1)10)’ a= (_3a 110)
(3.14)
by = (1,—-1,-1,09), by = —a
One can easily check that Q = (1, —1, 08, —1) is a minimal string charge which satisfies eq.(1.48)
with levels k1 = 0, k2 = 1 and ¢; = 8. For the string configuration to be unitary we need to satisfy:

(N+8)%—1)

<8= N1 .
1+ (N+8) — = (.15)

This bound potentially allows for N = 0, 1 corresponding to SU(8) + [ land SU(9)) + [+ [
However, such string theory realizations are not known and as we will argue in the next section these

theories belong to the Swampland.

* Sp(N) x SU(2N + 8)
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This theory has the same anomaly lattice as (3.11) and hence we can reuse those results. For 7= 10

vectors &, b; can be found as in (3.14). Therefore, for k1 = 0, k2 = 1 we see that unitarity implies

k2((2N +8)% — 1)
ko + 2N+ 8

<8 = N<1/2 (3.16)

This bound allows for N = 0, 1/2 corresponding to SU(8) + [T Jand SU(9) +[J+ [ ]but as was
discussed these theories will be ruled out in the next section.

More generally, since for the last two examples (2 + b2), (b1 + b2) are null and orthogonal,
the most general vectors needed are given by the family of solutionsa = A b1 + (1 — 1)bp with
A < 01in order to ensure positivity of the kinetic terms(for the first two examples one can replace
by — 2by). Similarly to the first example, since the above theories can be Higgsed from Nto N — 1
then unitarity would imply the finiteness of each family of theories as was discussed earlier.

Next we move on to theories with three simple gauge factors. For example, the set of theories
from Appendix C.2 have 4,’s form inner products according to the affine ADE algebras. For exam-

ple, the A type theory with SU(N)? and T = 9 has the anomaly lattice:

a? —a-by —a-by —a-bs 0 0 0 0
—a-by B by-by by -bs 0 -2 1 1
A= = (3.17)
—a-by by-by b3 by bs 0 1 -2 1
—a - bg bl . 172 bg . 52 19:2)’ 0 1 1 —2

These inner products can be solved for vectors satisfying the linear relation 2 = A(b1 + ba + b3) for
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A < 0. For example, a solution to the anomaly lattice (3.17) is given by:

Q = diag(1, (—1)?), a=(-3,1%

(3.18)
by = (1,—-1,—-1,-1,0%), by =(1,03,—-1,—-1,—-1,0%), b3 =(1,0%—1,—-1,—,1)
One can choosej = (1,0%) and charge Q = (1,—1,0,0, —1,0°) which gives k; = ko = 0,
k3 = 1and ¢; = 8. Therefore, worldsheet unitarity implies:

(N*—1)

< N < .
1IN <8=>N<9 (3.19)

Therefore, for the particular choice of anomaly vectors this theory is finite and theories with
N > 9belong to the Swampland. For more general possible representations of the vectors, the
argument works exactly as discussed earlier.

Furthermore, other types of theories with three gauge groups can be found in Table 3.3 but they

are all particular cases of those in Table 3.4 for # = 3 and hence can be handled together.
* SUN—-8) x SUN) x SUN+4+8) x -+ x SUN+ 8(k—2))

For this theory the maximum number of tensor multiplets arises for £ < 6 and has 7,,,, = 8 + &
and these constitute the only case we need to consider as the other values of 7"were ruled out earlier.

The anomaly charge lattice of the strings determined by the type of gauge group and matter is given

by :
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9—-T7 1 0 0 -1
a® —a-by —a-by —a-by -+ —a-b
1 -1 1 0
—a- by b3 bi-by by-bs ... bi-b
0 1 -2 1
A= —d'bg bl‘bg b% bg-bg [72'[% =
0 0o 1 =2
—a-b, by-b, by-b, bs-b, ... b,-b
-1 0O 0 0 1 -1
(3.20)
We may consider a particular solution for the vectors «, b; given by:
a=(-3,1,1,1---,1), b =(1,-1,-1,0---,0), by = (0,0,1,—1---,0)
(3.21)

b3 = (0,0,0,1,=1---,0), b= (0---,1,—1,---,0), bp=—a+ S 2b(—i+k—1)

=

Moreover, we also need to identify a consistent Kihler form 7 and we would like to make a minimal
choice of string charge Q for each .

Fork = 3 we may choose: j = (2,0,0,1,0%),Q = (1,—1,0% —1) for which k; = 0,4y =
0,k3 = 1,¢c; = 8. Therefore, string unitarity can be expressed as:

k3((N+8)2 —1)
ks + N+ 8

<8=N<=1 (3.22)
For k = 4 we may choose: j = (3,0,0,1,2,08),Q = (1,—1,00, —1) withk; = 0,ks =
0,k =0,ky =1,c; =8

ki((N+8(4—2))2—1)
ks + N+ 8(4—2)

<8=N< -7 (3.23)
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For k = 5 we may choose: j = (4,0,0,1,2,3,0%),0 = (1,—1,0'9 —1) with 41 = 0,4y =

0,ks = 0,ks =0,ks = 1,c;, =8

ks((N+8(5—2))% — 1)
ks + N+ 8(5 —2)

<8=N<-15 (3.24)

For k£ = 6 we may choose: / = (6,0,0,1,2,3,4,0%),0 = (1,—1,012 —1) withk; = 0,k =

0,k3 =0,ks =0,ks =0,k = 1, = 8.

ks((N+8(6 —2))% — 1)
ks + N+ 8(6 — 2)

<8=N<-23 (3.25)

We therefore, conclude that the above inequalities suggest that only SU(9) + 1] + 1[ T Jand

SU(8) + 1 Jare allowed which as was discussed earlier will be ruled out in the next section.
* Sp((N—8)/2) x SUN) x SUN+8) x --- x SO(N+ 8(k — 2))

The anomaly lattice is the same as in the previous theory except with &, — 24, and the maximum
Tonax = k + 8 attained for k£ < 7.
Fork = 3wehavek; = 0,k = 0,k3 = 2,¢; = 8 giving us:

2((N+8)(N—-1T)/2)
2+N+6

<8=N<1 (3.26)

Fork = 4 wehaveky = 0,k = 0,k3 = 0,k4 = 2,¢; = 8 giving us:

(N +8(4 — 2)) (N +8(4 — 2) — 1)/2)
S rN+8(4-2) 2 S8= N7 (327)

Fork = 5wehavek; = 0,k = 0,k3 = 0,ks = 2, k5 = 2,¢; = 8 giving us:

ks((N+8(5—2))% — 1)
ks + N+ 8(5—2)

<8 = N<-15 (3.28)
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Fork = 6 wehave k1 = 0,k = 0,k3 = 0,ks = 0,k5 = 0, kg = 2,c; = 8 giving us:

ke((N+8(6 —2))% —1)
ke + N+ 8(6 — 2)

<8 = N<-23 (3.29)

Fork = Twej= (8,0,0,1,2,3,4,5,0%),0 = (1,—1,0 — 1) with

k1 =0,k =0,k3 =0,ky =0,k5 =0,k =0,k7 =2,¢c;, =8 (3.30)

kr(N+8(7—2))2—1)
k7 + N+8(7—-2)

<8=—=N<-31 (3.31)

Therefore, unitarity implies that the only theories that survive are SO(9) + 1[Jor SO(8) which have
been discussed earlier in this section.
Finally, there are two more infinite families of this type that can be found by replacing Sp — SU

or SO — SU giving us identical results to those above.

s SUN)*

Earlier in this section the cases £ = 2, 3 where shown to be finite and hence we need to focus on

k > 3 for T'=9. The anomaly lattice of this theory is determined by the inner products:
a2 =0,a-bj=0,b; b1 =1,0°=—-2by-b =1 (3.32)

Consider the quadratic form to be Q = diag(1, (—1)?) then a solution to the anomaly lattice for

k < 9 (the upper bound was determined by requiring the anomaly lattice to embed into I') is:

a=(-3,1,1,1---,1), b =(0,1,-1,0---,0), b =(0,0,1,—-1---,0)
(3-33)
b3:(07070717*1"'70)a bi:(o'”717717"'70)> b/ezidizfzillbf
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A compatible Kihler form can be found for example; = (4,1,2,---,9). Fork < 9 aminimal
choice of BPS string chargeis Q = (1, —1,0--- ,0, —1) whichhas Q? = —land Q-2 = —1and
k1 =1,k =0, k;, = 0and hence

(N*—1)

<g=8=—N<9 .
TN S« < (3-34)

which is the same result we found previously for £ = 3.
For £ = 9 a minimal choice of BPS string charge is Q = (1, —1,0--- , 0, 0) which has Q* = 0
and Q-4 = —2andk; = 1,k = 0,k = 1 and hence

2(N? — 1)

<o =20=N<I11 :
o N Sa=20=N< (335)

As presented earlier in the section and in the Appendix one can see that there are more theories
that we could analyze but the methods are parallel to those already discussed. Therefore, the general
argument in the beginning of the section applies to those infinite families too and similar choice of
solutions as to those already made would reveal potential upper bounds for the sizes of the gauge
groups.

We note that our general argument resticted the dimension of each gauge group to be finite.
Additionally, we were able to show that a number of theories with SU(N), SO(N), Sp(N/2) type
gauge groups may only have finitely many simple gauge groups by studying the lattice embedding
of the anomaly lattice to the full 6d string lattice. However, more theories can be constructed with
bounded dimension and unbounded number of tensor multiplets allowed by anomalies.

Recall that the gravitational anomaly is given by

Hy — V<273 —29T (3.36)
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As we have seen before constructing theories with arbitrarily many gauge factors not restricted by
anomalies requires / — V7 < 0 so thateq. (3.36) is always satisfied. Therefore, if one could choose
more theories of finite dimension and minimal matter that satisfy the anomaly conditions but have
negative / — I then it could be possible to have an unbounded number of those. Additionally,

assuming that A, — V" < 0 for a given simple gauge group we can rearrange eq. (3.36) to write it as

273 (Hyp— V)k
[< — — >~ 7 .
- 29 29 (3:37)

where £ is the number of simple gauge factors. However, as was discussed earlier in this section one
needs to be able to embed the anomaly lattice in the full string lattice of the 6d theory and hence
satisfy # < 7. This is possible only if (H,, — V) < —29.

Examples of theories with minimal matter include the NHC’s and more found in "45:*°¢. For
example, pure SO(8) has H,, — V' = —28 and SO(9) + 1[Jhas H,, — V' = —27. However, neither
satisfy H, — V7 < —29 and hence one can not have an infinite number of those. Likewise, also
SU(3)* is bounded because H,, — V' = —8and hence k# < 17. Also, for (gg x SU(2))* one has
H,, — V = —9and for (SU(2) x SO(7) x SU(2))* one has H,, — V' = —11. Therefore, from the

NHC’s the following are compatible with (H,;, — V) < —29:

« fiwithb, - b; = —b.

The gravitational anomaly determines that 7" < 52—256 + %. For example when 7= k 4+ 9 we

107



can find solutions of the form:

a=(-317) (3-38)
by = (-1,-1,-1,2,0"7) (3-39)
by = (0,0,—2,—1,0773) (3.40)

(3.41)
by = (—1,—1,0%07D 1,2 07"1=%) (3.42)
biv1 = (0%, -2, —1,0T717%) (3.43)

(3-44)
b/efl _ (_17 _1’ OQ(/e/Q—l)’ _17 2, 0T—1—2k/2) (3'45)
bk _ (02/6/2’ _27 _1’ 0T—1—2/e/2) (3.46)

If & is odd just replace /2 — |k/2| andk# — k — 1and add as the last vector: bzdd =

(=1, —1,0%*/2D) —1 2 07=3-2l%/2]) As for Kiihler class we can choose:
. AT T _ . .
7= (—jo,1 )forg >jo>VTegjo=|k/3] —1and k> 21 (3.47)

where the upper bound is chosen such that —j - @ > 0 and the lower bound to ensure

]'2 > 0. Moreover, it is also simple to check thatj - ; > 0. One could find more solutions
for small &£ but we are only interested in this work for large £ and hence we will not attempt
to enumerate those. This choice of vectors shows that anomalies permit to have unbounded

rnany such gauge gI'OLIpS.

However, one could consider a string with minimal charge Q = (—¢,07). This choice of

charge has: k;—110 = 9, ki—even = 0, k¢ = g°>+39+2 > 0,cr = 34°> — 99 > 0 true for
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g > 3. However imposing worldsheet unitarity

3(4> + 39 +2) +(é1 52
2+(?+3g+2) 2

749 <39(g—9)+2 (3.48)

one can note that the inequality cannot be satisfied when 3 < g < 9 for any k(with lower

bound as discussed above).

In particular, more generally these solutions are valid forany £ + 2 < T' < %k + % and

hence similarly restrict £ just as we saw above.

eg with b; - b; = —6

The gravitational anomaly imposes that 7" < 72—%6 + % For example a solution can be found

when 7= 2k + 9:

a=(-3,17) (3.49)
by = (—-1,-1,1,-2,1,07%) (3.50)
by = (03, -1,-2,—-1,0777) (3.51)

(3-52)
by = (—1,—1,0°¢"D 1,2 1,07%) (3.53)
bin = (0°,0%071 1, —2 —1, 0741 (3.54)

(3-55)
by = (—1,—1,0** /21 1, _9 1, 07-%/2) (3.56)
b/e _ (037 04(k/2_1), _1’ _2, _1’ 0T—4/e/2—1) (3‘57)

If & is odd as before we can replace #/2 — |k/2] and £ — k — 1 and add as the last vector:

bzdd = (—1,—1,0%W/2) —1, —2 —1,074(#/214+1)_ As for Kihler class we can choose:
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j=(=jo, 17) for § > jo > VT.
However, just as we saw above strings with charge Q = (—¢,07) and 3 < 4 < 10 satisty

cg > 0,k > 0 but are none unitary because unitarity relation cannot be satisfied:

3(* +39+2) ky T8
2 +[7—‘
24+ (g2 +39+2) 2

<349(q—9)+2 58
qu12_4(61 )+ (3.58)
More, generally these solutions can be adjusted and used for any 2k + 2 < 7. Apart from
the NHC one can note that also g with 1 fundamental hypermultiplet is possible *°°. This
theory has 1912 = —b,a - b; = 3and =51k < 273 — 297T. The analysis of this is very similar

to f4 above so we will not repeat it.

e ey with b, - b = —7 with %56 matter

The gravitational anomaly imposes that 7" < %gk + 22—793. For example a solution can be

found when 7'= 3£ + 9:

a=(-3,17) (3.59)
b= ((=1)%,—1,-2,(1)%,0"?), (3.60)
by = (0%, (~1)%,-2,—1,077%) (3.61)

(3.62)
bi = ((=1)%,0°07Y, —1,-2,(1)%,0™%), (3.63)
biv1 = (07,0701, (=1)?, =2, —1,0"%) (3.64)

(3.65)
by = ((=1)%,0°0271), —1, 2, (1)%,0794/2), (3.66)
b/e — (027 05(k/2—1)’ (_1)27 _2’ _1’ 0T—5/e/2) (3.67)



Similarly, as above strings with charge Q = (—¢,07) where 3 < 4 < 10 are none unitary

because they do not satisfy unitarity relation:

3(* + 39+ 2) k, 133
2 + [7—‘
24+ (g2 +39+2) 2

S+ 18 <3g(g—9)+2 (3.68)

These solutions can be used for any 7"such that 3k + 1 < T giving the same result.

e erwithb, - b; = —8
The gravitational anomaly imposes that 7" < %g’k + %. For example the following solutions

can be found when 7'= 4% + 9:

a=(-3,17) (3.69)
b= ((-1)%(-1)%-2,(1)*,0") (3.70)
by = (0%,(=1)°,~2,-1,0"7) (3.71)

(3.72)
b = ((=1)%,007D, (=1), =2, (1), 0" %) (3.73)
b1 = (0%,007, (=1)%, =2, —1,07%1) (3.74)

(3.75)
by = ((=1)%, 090271 (—1)%, =2, (1)%,077%4/2) (3.76)
b = (037 (_1)6(16/271)7 —2,-1, OTi6k/271) (3.77)

For the stings of charge Q = (—¢, 07) one has k;—pyq = ¢, ki—even = 0, k¢ > 0,cp > 0 true



for g > 3 but the unitarity bound:

3(4> +37+2) Hkl 133
24+ (42 +3¢g+2) '2'4g+18

<39(g—9) +2 (3.78)

shows that strings with 3 < ¢ < 10 are non-unitary. Generically, we can find such solutions

forall32+3 < T.

Apart from the two NHCs we studied one can note that also e7 with 1, % fundamental
hypermultiplet are possible. These theories have 52 = —6/ — 5,2 - b; = 4/3and
—TTk/ — 49 < 273 — 29T respectively. The analysis of this is very similar to f3, ¢g as

above and hence we will not repeat.

e egwith b, - b; = —12

A specific solution for this theory for large T'is discussed in '**'*? where in the latter work

they show that & can not be arbitrarily large for that solution.

Even though in the last four cases we do not have a more general way to show that there can only be
finitely many terms, the solutions above seem to suggest so.

To sum up, in this section we have shown that certain theories which could potentially be al-
lowed to have arbitrarily large size or arbitrarily many gauge factors, have in fact an upper bound or a
more careful analysis reveals that they do not exist.

This gives a positive answer to the assumption of the Lampost principle that there should be
an upper bound on the number of massless modes in a theory of quantum gravity at least for the

majority of the proposed infinite families of anomaly free matter content.



3.2 FIVE DIMENSIONAL SUPERGRAVITY

The previous section was devoted on addressing the finiteness of 6d landscape, which already was
heavily constrained due to chiral anomalies. The next step would be to study similar questions in
five dimensions. However, the problem is significantly more complicated as there are not as many
conditions constraining the low energy physics as in 6d. One should note that even from the string
geometry perspective a classification of Calabi-Yau threefolds is not complete and neither is a proof
of their finiteness. However, as mentioned in chapter 1 swampland ideas suggest that indeed we
expect the landscape to be finite. A good starting point would be to understand general swampland
constraints for the sd minimally supersymmetric theories. This section is devoted on the study of
such conditions from both the bottom up and top down.

In chapter 1 the salient features of the A' = 1 supergravity theory in five dimensions were re-
viewed. In particular, a gauge theoretic perspective of the sd supergravity theory was presented
which is described by the effective theory of gravity coupled to vector multiplets for the gauge group
G and hypermultiplets carrying the gauge charges. Additionally, basic concepts of the monopole
strings of the sd theory were reviewed and their existence was argued using the completeness hy-
pothesis. In this section a special class of those strings will defined called supergravity strings which

exist only in a supergravity theory.

3.2.1 MONOPOLE STRINGS IN D SUPERGRAVITIES

In section 1.9 and section 1.2 it was suggested that completeness of spectrum implies the existence
of BPS monopole strings in sd and their various properties were discussed.

Similarly to the 6d case and as reviewed in section A.1 the anomaly inflow for the gauge and the
Lorentz transformations must be cancelled by the anomalies developed by the worldsheet degrees of

freedom living on the monopole strings as. This fact allows us to compute the quantum anomaly of
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the 2d CFT on the string worldsheet from the anomaly inflow. Collecting those results the follow-

ing relations are expected to hold:

* The monopole string has (0, 4) superconformal algebra in the IR CFT with SU(2)g as the

R-symmetry

* o= Cyxq'q/q" + Cig and cx = Cxeg’q/q" + 3Crg’

* Center of mass modes: ¢;°" =3, (" =6

* & = Cyxq'g g™ + Cig" — 3and i = Cyxq'q/g" + 5Crg" — 6

* "t Hooft anomaly coefficient kg = % for the SU(2)z is quantized to be an integer which

means cg € 6Z.

* The worldsheet theory can carry the current algebras for the bulk gauge symmetry. As noted

in Equation A.19 't Hooft anomaly k77 was computed to be

ky = Cyiq"™ (3.79)

for the mixed anomaly between two Abelian currents // and 7. In our convension, the right-
(or left-) moving charged fields add positive (or negative) contributions to the anomaly coef-

ficient kyy.

* According to Equation A.20 bulk Abelian gauge symmetry can enhance to non-Abelian

symmetry, say G;, at some special points of the Coulomb branch. Then:
1 2 : a
—Z/el-TrFi with  k; = —h; 9", (3.80)

where £ is the field strength of G; and b; , is the coefficient in the gauge coupling 4; for G; in
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the bulk effective action. The ’t Hooft anomaly coeflicient &; for the non-Abelian symmetry
is quantized as an integer number. The &; is related to the level for the current algebra of
the symmetry G;. The level £ current algebra of G; realized by right-movers (or left-movers)

provides +k (or —k) contribution to the anomaly coefficient ;.

As a simple example, let us consider the M-theory compactification on the quintic Calabi-Yau
3-fold discussed in the next section. This engineersa sd N = 1 supergravity theory with a single
U(1) gauge symmetry at low energy. The effective action is characterized by the cubic and the linear

Chern-Simons levels given by

Cooo =5 and Cy=50. (3.81)

Now consider a monopole string with positive magnetic charge g for the U(1) gauge symmetry.

Using (A.18) and (A.19), one can easily compute the central charges of the 2d CFT on the string,

= 5q3 +50g, = 543 + 25¢, (3.82)

and the 't Hooft anomaly of the U(1) current,

kyy = 99 - (3.83)

This implies that the worldsheet theory has a U(1) current algebra with level 54 in the right-moving

sector.

3.2.2 SUPERGRAVITY STRINGS

We will now introduce a special class of monopole strings called supergravity strings. The super-
gravity strings are 1/2 BPS objects that appear only in gravity theories and not in local CFTs. In this

section, we will make this distinction clear and investigate consistency conditions on supergravity
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strings together with their implications for 5d supergravity theories. If the supergravity is geomet-
rically engineered then these strings can be understood as M s branes wrapping semi-ample 4-cycles
in the geometry. In particular, the distinction between supergravity strings and local strings can be
understood through the different properties that the 4-cycles need to satisfy. We will also investigate
these properties in detail which will lead us to a geometric definition of supergravity strings studied
in more detail in Section 3.2.4.

The BPS states of the sd supergravity are electrically charged particles and the dual magnetically
charged monopole strings. All BPS states are expected to have non-negative masses and non-negative
tensions on the Coulomb branch, which essentially defines the Coulomb branch of the scalar vevs
in the vector multiplets. We first propose that the Coulomb branch C is the space of the scalar mod-

uli gD[ bounded by the set of hyperplanes where some BPS particle states become massless:

C={p' . 1=1,--- x|m’(¢) > 0}. (3-84)

Here m?(p") > 0 denotes that mass squared of all BPS particles are non-negative at the point
labelled by @1 . We also conjecture that if all BPS particles have non-negative mass squared, then the
monopole string tensions are also non-negative at the point. This follows from the fact that if the

volumes of all 2-cycles are non-negative, the volumes of 4-cycles are also non-negative in Calabi-Yau

threefolds.

Definition: A 1/2 BPS magnetic monopole string on the Coulomb branch C in a sd super-
gravity theory defines a supergravity string if all supersymmetrically compatible BPS particle
states in the theory carry non-negative electric charge ¢(4,,) under the dual Abelian gauge field
Ay:
e(d,) >0, (3.85)
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where 7 runs over all particles obeying the BPS mass formula |m| = Y, ¢;¢”.

The dual gauge field 4, in this definition precisely means the Abelian gauge field whose positive
minimal magnetic charge is carried by the supergravity string with tension 77 = 9F > 0. We
remark that the supergravity string here is defined with respect to a particular pair of supercharges
shared by the supergravity string and the BPS particles taken into accountin (3.85). For a given
supergravity string preserving these supercharges, the electric charge condition (3.85) holds for all
BPS particles preserving the same supercharges, but does not need to hold for anti-BPS particles
satisfying |m| = — >, e;@ that preserve another set of supercharges. This distinction between BPS
and anti-BPS states allows one to clearly distinguish the supergravity string from other strings. In
the followings, BPS states we will use refer to the states preserving this pair of supercharges.

We now claim that the supergravity strings exist only in supergravity theories, while local theories
such as sd SCFTs cannot have any supergravity strings. This property will enable us to explore some
distinguished features of gravitational theories by using the supergravity strings. We note that the
BPS W-boson of U(1) C SU(2) gauge symmetry in a local gauge theory, called E7 theory, in this
convention has negative charge —2 under the U(1) symmetry. Similarly, on the Coulomb branch
the BPS W-bosons of a non-Abelian gauge group G carry electric gauge chargese, = —(/Cyp) of
the U(1)" C G gauge fields Az, where KC,;, is the Cartan matrix of G with rank . This implies
that in local sd gauge theories, the BPS monopole strings with magnetic charge g > 0 of the
dual gauge fields 47, cannot satisfy (3.85) and thus cannot be supergravity strings. More generally,
we expect that supergravity strings cannot reside in any local theories. This can be proven for the
cases admitting geometric constructions using geometric properties of special 4-cycles related to

supergravity strings as we will see in the next section.
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Conjectures
1. Supergravity strings exist only in supergravity theories.

2. The worldsheet theory on a supergravity string with magnetic charge ¢’ flows to a (0,4)

SCFT with SU(2) g R-symmetry if Cyxq’q/q® > 0.

The condition Cyxg’q/qX > 0 for the second conjecture rules out emergence of accidental
symmetries in the worldsheet theories. For the strings with this condition, the R-symmetry in the
infrared worldsheet CFT will be the SU(2) g symmetry. We are interested in only this type of super-
gravity strings in this section.

As presented above, on the other hand, it is possible that the worldsheet theories on monopole
strings with Cyxg’g/qX = 0 have the SUSY enhancements or come from the strings in the 6d
supergravity theories. The 6d supergravity strings were already studied in **? by employing the same
idea we use in this section. The monopole strings hosting interacting CFTs with N” = (4,4) SUSY
are also a part of the 6d supergravity strings. The supergravity strings with N = (0, 8) SUSY were
studied in ' and the strings with V' = (8, 8) SUSY come from Type II strings compactified on 7°.

Supergravity strings are magnetic sources for the gauge fields in a supergravity theory and they
should exist due to the completeness assumption for the spectrum in the gravity theory *5>'3. We
will be assuming a stronger version of completeness assumption because we will in addition assume
that the corresponding states in the spectrum are represented by BPS objects. This is obvious in
geometry because any semi-ample divisor D with D3 > 0, which is defined in the next section,
is effective and thus can be wrapped by an Ms-brane. The wrapped M s-brane always leads to a
supergravity string in the sd gravity theory.

We expect that the worldsheet degrees of freedom living on a supergravity string satisfy unitary
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conditions. Basic unitary conditions are the following:

1. The central charges of the interacting 2d SCFT on a supergravity string with charge ql are

given by (A.18) and they have to be non-negative

2. The right-moving central charge is quantized as
1
& = Cyxq'qq" + §quj €6Z. (3.87)

3. The tension of the supergravity string eq. (1.31) is always non-negative, i.e. 77 > 0, on the

Coulomb branch C.

From the condition (3.85) for supergravity strings, one can find an interesting relation between
supergravity strings and Coulomb branch in supergravity theories. The condition (3.85) tells us that
the positive scalar vev in the vector multiplet* dual to a supergravity string by itself without turn-
ing on other scalar vevs parametrizes a direction of moduli space where all particle states have non-
negative mass squared. Therefore, this positive scalar vev necessarily lies within the Coulomb branch
in the supergravity theory. Conversely, one may be able to find associated supergravity strings for

any line on the Coulomb branch parametrized by a positive real number.

3.2.3 GENERAL SUPERGRAVITY CONDITIONS

In this subsection, we will discuss unitarity conditions on supergravity strings without assuming

geometric embeddings of the gravity theory.

*This scalar vev can also be in a hypermultiplet if the dual gauge field is the graviphoton.
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We will also argue that some geometric conditions discussed in the next section can be inter-
preted as physical constraints on supergravity strings.

Consider a BPS monopole string with magnetic charge qf in the sd gravity theory and suppose
that this string is a supergravity string. Then the central charges ¢z and ¢z in (A.18) for the 2d IR
CFT should be non-negative. This is an obvious condition for unitarity of the supergravity string.

More conditions can be found by using the ’t Hooft anomalies given in (A.19) and in (A.20) for
the Abelian and the non-Abelian symmetries, respectively. For this, let us first clarify the relation be-
tween the ’t Hooft anomaly coefficients and the levels of Kac-Moody current algebras of G in the 2d
CFTs. For a non-Abelian group G, the ’t Hooft anomaly coeflicient £; given in (A.20) is required
to be an integer by quantization condition. The ’t Hooft anomaly receives positive contributions
from right-moving modes while receives negative contributions from left-moving modes. Thus the
level £ current algebra adds 44 or —£ to the associated anomaly coefficient according to its chirality.
It then follows that a non-zero coefficient k; implies that the 2d CFT contains at least a Kac-Moody
current algebra for G; with level & = |k;| in the right-moving sector when k£, > 0 or in the left-
moving sector when £; < 0.

The 't Hooft anomalies for Abelian groups can mix each other. The anomaly coefficient 77 in
(A.19) is a symmetric matrix and the eigenvalues are identified with the levels of Abelian current al-
gebras. The precise values of the levels are not important in our discussions. However, the signature
of the anomaly coefficient £y is of some significance. It encodes the lower bounds on the number
of representations of Abelian current algebras in the left- or right-moving sector. If the anomaly
coefficient kj; has signature (7., 7_ ), where 74 and z_ denote the number of positive and nega-
tive eigenvalues respectively, the worldsheet CFT necessarily involves at least 24 Abelian current
algebras in the right-moving sector and z_ Abelian current algebras in the left-moving sector.

We shall now argue that the signatures of "t Hooft anomaly coefficients in the 2d CFT on a su-

pergravity string are restricted. The current algebras of a worldsheet CFT are realized by zero modes
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of the bulk fields on the magnetic monopole string background. The right-movers come from the
Goldstone modes of broken symmetry generators including three position zero modes and a com-
pact bosonic mode for the broken U(1) gauge symmetry as well as their fermionic partners. On the
other hand the other charged matter fields coupled to the supergravity string leave only fermionic
zero modes that are left-movers on the worldsheet *°. This means that the current algebras of gauge
groups, but a single Abelian group, necessarily sit in the left-moving sector.

In the next section we define supergravity strings geometrically as M s-brane states wrapping
semi-ample divisors by definition 3.93. Note that a semi-ample divisor has a non-negative intersec-
tion with every divisor in the threefold. This implies that a semi-ample divisor at the intersection
with the gauge divisors for gauge group G can provide only hypermultiplets charge under the gauge
symmetry. These hypermultiplets give fermionic zero modes in the left-moving sector on the string
background.

We can rephrase this as the following condition on the signatures of the 't Hooft anomaly coeffi-

cients of the gauge groups under which the string is charged:

sig(ky) = (1,7 —1), (3.88)

for Abelian groups where 7 is the rank of Abelian groups, and

/61' <0 ) (3-89)

for all non-Abelian groups. This condition on the ’t Hooft anomalies and thus on the levels of cur-
rent algebras is one of the special features of supergravity strings. Moreover, this provides a field the-
ory interpretation of the Hodge index theorem B.1.32 for the signature of the intersection pairing of

semi-ample divisors in geometry.
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Note that one of sig(kyy) for a supergravity string is always positive. This positive level is the
center-of-mass contribution. The corresponding U(1) current algebra is generated by the compact
right-moving scalar field @ in the ' = (0, 4) center-of-mass free hypermultiplet. In the geometric
setting, this current algebra is generated by the divisor class itself for the monopole string '3¢. After
subtracting this center-of-mass contribution, all other levels in the interacting worldsheet CFT are
negative meaning that the current algebras of gauge symmetries, but that of the SU(2) g symmetry,
are realized in the left-moving sector.

We remark here that the supergravity strings in the 6d supergravity theories share the same prop-
erty. As studied in''?, the worldsheet CFTs on 6d supergravity strings contain only left-moving cur-
rent algebras. This property was used to distinguish supergravity strings from the instanton strings
in 6d local SCFTs or little string theories.

A unitary realization of a current algebra contributes to the central charges in the 2d CFT. The
central charge contribution from an Abelian current algebra is ¢;1) = 1. For a non-Abelian current
algebra of G; at level £, the central charge contribution is

k - dimG;

G, = W , (3-90)
where dimG; is the dimension and /)’ is the dual Coxeter number of group G;. Unitarity requires
the level £ to be positive definite. As discussed, all the current algebras are sitting in the left-moving
sector in the interacting CFTs on supergravity strings. From this we find an inequality between the

levels and the left-moving central charge

n—’_Zsz‘ SZLa (391)
P

where 7 is the number of Abelian gauge groups and G,’s are the non-Abelian groups whose current
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algebras are realized in the interacting CFT.

The unitary 2d (0,4) CFT on a supergravity string must satisfy this inequality together with the
conditions ¢z, cg > 0. If these conditions are violated by a supergravity string, then it means the
string cannot host a unitary CFT that cancels the anomaly inflow arising from the bulk sd super-
gravity theory. As a result the supergravity string cannot consistently couple to the sd supergravity.
By the completeness of string spectrum, the supergravity theory is therefore in the Swampland.

One can find more conditions on the supergravity strings from the properties of black holes. For
example, let us consider a cone of monopole strings given by a linear combination of supergravity
stringsas D = >, n7q" with positive coefficients 7;. This defines a Kihler cone of the low-energy
theory. Choose now an arbitrary string of D inside the Kihler cone with positive coefticients z; >
0. Then the large multiple of the chosen string, i.e. 7D with m >> 1, is expected to form a black
string state with the entropy S o< /7. At large m, the cubic terms in the ¢/, scale as m?> and will
dominate the other terms. The central charge of the black string should be positive by unitarity.

This immediately restricts the cubic term for any supergravity string to be positive semi-definite,

Crxq'qd' g > 0. (3.92)

In geometry such string 7D at large 7 amounts to a very ample divisor.

Indeed, the wrapped M s-brane on a very ample divisor with large ¢/, form a black string '°.

3.2.4 SUPERGRAVITY STRINGS FROM WRAPPED MS BRANES

In Section 3.2.2 we defined a certain class of sd monopole strings called supergravity strings which
appear only in supergravity theories. In fact the definition of supergravity strings was motivated
by geometric considerations of monopole strings and associated 4-cycles in Calabi-Yau geometry.

In the case that the supegravity is geometrically engineered through M-theory on a Calabi-Yau
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threefold, the BPS states can be understood as M2- and Ms-branes wrapping holomorphic 2- and
4-cycles respectively. Therefore, the sd monopole strings arise from Ms-branes wrapping 4-cycles
represented by effective divisor classes [D] € Pic(X) & H?(X,Z) of the Calabi-Yau 3-fold X. The
divisor class being effective means that it can be represented by an effective divisor D, i.e. D is a non-
negative linear combination of surfaces D; (possibly singular): D = > . 7;D; (Definition B.1.1).

In order for a monopole string to be a supergravity string as defined in (3.85), we require the
electric charges of all BPS particles for the dual gauge field to be non-negative. A BPS particle is the
M2-brane wrapping a curve C and its electric charge for the gauge field dual to a divisor class D is

given by the intersection of Cand D. We thus claim that

The monopole string wrapping an effective divisor D is a supergravity string precisely when

D-C>0 forall curves C C X. (3.93)

The above condition on a divisor D is called z¢f in the algebraic geometry literature (Defini-
tion B.1.4). So our supergravity strings arise from Ms-branes wrapping nef and eftective divisors.
Assuming a conjecture which we will formulate and motivate below, this is equivalent to just nef, or
just semi-ample (Definition B.1.5).

The nef condition is closely related to the condition of a divisor being ample, or equivalently
that its cohomology class is a Kihler class. Like nef divisors, ample divisors are characterized by its
intersections, but the condition is more complicated: for D to be ample we require D? > 0, D? -

S > 0Oforall surfaces.S C X,and D - C > 0 forall curves C C X. This is the Nakai-Moishezon
criterion for ampleness (Theorem B.1.16). In particular, from the point of view of divisors, the

Kihler cone KC(X) is generated by ample divisor classes.
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As explained immediately after Theorem B.1.17, the closure of the Kihler cone K(X) is simply
the nef cone spanned by the classes of nef divisors. Therefore, the BPS states can be understood as
Ma2-branes wrapping curves in the Mori cone M(X) and the supergravity strings are the dual Ms-
branes wrapping surfaces in the dual cone K(X).

The effectiveness of the divisor class that the Ms-brane wraps is required in order for it to be
represented by a surface. However, the basic criterion of distinguishing supergravity strings from

other monopole strings wrapping surfaces is the condition that the 4-cycle is nef.

Conjecture: any nef divisor is linearly equivalent to an effective divisor, and so can be repre-

sented by a surface.

Assuming the conjecture, we only need the nef condition in order to get a supergravity string in
the geometric setting. This conjecture is an open question of mathematics which has been discussed
in the mathematics literature for several decades, e.g. '3

However, we are making this conjecture based on considerations of physics, specifically the com-
pleteness of spectrum hypothesis. But first, we explain a bit more of the mathematical background,

referring to the appendices for more complete definitions, proofs, and references. Assuming that the

divisor D is nef, we have the following:

e IfD3 > 0 weknow that D is in fact big (Definition B.1.8) by Theorem B.1.21, which

implies that is linearly equivalent to an effective divisor (Corollary B.1.29).

* IfD3 = 0butD? # 0,and ca(X) - D > 0 then by's> we know that the divisor is also

linearly equivalent to an effective divisor.

* If we only require ca(X) - D > 0 then by '5* we know that there is a multiple of the divisor

mD that is linearly equivalent to an effective divisor for m >> 1.
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Mathematically, there is no known proof that we can take 7 = 1 in the last case. However, since
mD is an eftective nef divisor then an M brane wrapping it gives rise to a supergravity string. In ad-
dition, by the completeness of spectrum hypothesis we know that the charge lattice should include
all minimal charge states for a given state. Therefore this supports the claim that if 7D gives rise to a
supergravity string then the class of D should too. This implies that D should be effective as well in
order to be represented by a physical surface.

Moreover, if we consider the cases where D3 = ¢5 - D = 0, by Section 3.2.1 we expect that
those cases are presenting supersymmetry enhancement of the monopole string worldsheet. In par-
ticular, these divisors lead to (4,4) and (8,8) supersymmetry enhancement. As we will see in the next
section, (hyper-)elliptic and abelian surfaces of this type can be understood as giving rise to exactly
that amount of supersymmetry respectively. Therefore, we expect that the divisors associated to
D3 = ¢y - D = 0 are also effective.

(Semi-)Ample divisors in a CY3 have several distinguished features. Let us consider a subspace of
the Kihler moduli space parametrized solely by the Kihler parameter for a given ample divisor D.
The volume of a 2-cycle Cin X is determined with respect to the Kihler form Jas vol(C) = /- C. On
this subspace, the Kihler form can be written as/ = @D with the positive Kihler parameter ¢ for
D. Then the volume of a curve C'is given by vo/(C) = ¢ D - C. Since the ample divisors positively
intersect any Cin the Mori cone, the volume of every C in the Mori cone is positive with the positive
Kihler parameter @, i.e. v0/(C) > 0 forall curves C C Mori cone. This implies that the 3-fold X
is smooth with positive volume on this subspace. Similarly, on a subspace of the Coulomb branch
parametrized by a single positive Kihler parameter for a semi-ample divisor, the volume of every

curve in the 3-fold is non-negative, thus vo/(C) > 0 for all curves C C Mori cone.

Remarks

1. If D is nef and eftective, then it is semi-ample (Definition B.1.5), which implies that the class
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of mD can be represented by a smooth surface for 7 > 1 (see Bertini’s Theorem B.1.14 and
the remark immediately following). With our main conjecture, we only need to assume D is

nef.

2. It can be seen using the results in Appendix B.1.4 that the conjecture “nef implies effective”
is mathematically equivalent to the juxtaposition of the two conjectures “nef implies semi-
ample” and “semi-ample implies effective”. If the conjecture “nef implies effective” is true,
then every nef divisor is nef and effective, hence semi-ample (Theorem B.1.22). Further-
more, if a divisor is semi-ample, then it is nef (Proposition B.1.15), hence semi-ample by the
assumed conjecture. The other direction of the equivalence is trivial. In particular, our con-
jecture implies that the monopole strings which are supergravity strings are precisely the ones

which wrap semi-ample divisor classes.
3. The statement that all nef divisors are semi-ample was conjectured in >*.

In the meantime we would like to distinguish the supergravity strings from the monopole strings
in local theories from a geometric viewpoint. Local field theories such as sd SCFTs and 6d SCFTs
on S! can be engineered by M-theory compactified on local non-compact Calabi-Yau 3-folds. We
illustrate this with local P2. Let D be P2, thought of as a divisor in the local threefold. Let Cbe a
curve of degree d in this P2. Then D - C = —3d. So D is not nef and the associated monopole string
cannot be a supergravity string, even after embedding our local geometry in a compact geometry.

On the other hand, (—D) - C = 3d > 0. This is precisely the condition needed to get an SCFT!
Returning to mathematical terminology, —D is nef, if we understand nef on a noncompact three-
fold to be a condition on intersections with all compact curves.> But —D is not effective. Rather,

it is anti-effective, meaning that its negative is effective. So on local P?, we have an anti-effective nef

3See the remark following Theorem B.1.17 for further discussion of this point.
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divisor, which guarantees that we have an SCFT .*
Recall that the geometries for local sd (and also 6d) SCFTs are constructed by gluing ruled or ra-

tional surfaces and their blowups ***3°

. The monopole strings in these theories are constructed from
M5 branes wrapping those surfaces, but they are not supergravity strings as the wrapped divisors
are never nef. By simply changing some signs in'*", we summarize the local case by saying that we
geta sd or 6d SCFT when the local geometry supports an anti-effective nef divisor which includes
each of the glued surfaces in its support. Thus we claim that nef divisors exist only in compact CY
3-folds. This supports our claim that supergravity strings exist only in the sd supergravity theories.
The supergravity strings are closely related to black strings (or MSW strings) studied in "33,
One can find a black string solution with a smooth horizon when the corresponding Ms-brane
wraps on a very ample divisor with a large central charge in the compact CY3 . Theorem (B.1.24)
tells us that a very ample divisor can be constructed by considering a multiple of an ample divisor,
i.e. 10D is very ample if D is ample. In the black string solution, the attractor mechanism forces
the Kihler class at the horizon to be the divisor class wrapped by the M s-brane giving rise to the
black string. Then the requirement for the volume of every 2-cycle near the horizon to be positive
restricts divisors forming black strings to be ample. So the black string should come from a wrapped
M;-brane over an ample divisor. Furthermore, for the black hole solution being weakly curved, the
ample divisor necessarily has large triple intersection number, implying that the divisor for the black
string solution has to be very ample. This therefore means that a black string can always be written
as a positive linear combination of Kihler cone K(X) generators which are semi-ample divisors and

thus is related to supergravity strings.

+If we embed the divisor D = P2 inside a compact Calabi-Yau, then the anti-effective divisor —D cannot
be nef. To see this, take any curve C which meets D in a finite nonzero number of points, for example the
intersection of two general very ample divisors. Then (—D) - C < 0 and consequently —D is not nef.
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3.2.5 GEOMETRIC CONDITIONS

We can extrapolate several geometric conditions by considering the various properties of semi-
ample, ample and very ample divisors in a Calabi-Yau threefold. Ideally, our supergravity strings
would arise from wrapping smooth surfaces. Any very ample divisor class has a smooth represen-
tative by Bertini’s Theorem (Theorem B.1.14), but this is not necessarily the case for semi-ample
or even ample divisors. An example of an ample divisor class that does not have a smooth repre-
sentative is given in Appendix B.2.1. All we know is that some multiple of a semi-ample class has a
smooth representative. For ample divisor classes D, we can bound the multiple needed as the class
5D has a smooth representative as observed before.

If a semi-ample divisor class can be represented by a smooth surface P, we can say more. Using
tools from algebraic geometry one can show that smooth semi-ample divisors are minimal surfaces’
with Kodaira dimension ¥ > 0, as shown in Proposition B.1.27. If Pis an ample divisor, or more
generally if we have a divisor Psatisfying P> > 0and P - C > 0 for all curves C, then &1 (P) = 0 and
k = 2, also by Proposition B.1.27.

A complete classification of minimal projective surfaces is provided in Table 3.5 in terms of «.
The first row of Table 3.5 represents surfaces with x = —o00 which can give monopole strings in
local field theories, not relevant for our current study.

For this reason, we only consider surfaces with > 0 in the rest of this section.

5These surfaces are shown to be minimal in Appendix B.1.4, meaning that they are not isomorphic to
the blow up of any other smooth surface.

¢Consider an elliptic threefold with a section and a curve C in base of the fibration wrapped by a D3
brane. The M/F-theory duality implies that the pull-back Cis wrapped by an M5 brane but such an elliptic

surface always has a section. Therefore, an elliptic surface with no section does not correspond to a 6d string.
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K Kihler surfaces § Type
—00 P2, ruled surface I, Local Theories
0 K3 (0,8) susy enhancement.
0 Enriques surface sd supergravity string
0 hyperelliptic surface (4,4) susy enhancement
0 abelian surface (8,8) susy enhancement.
1 minimal elliptic surface 6d supergravity string on a circle
when it has a section (5d otherwise)°.
2 | minimal surface of general type | sd (0,4) supergravity string when &, = 0

Table 3.5: The first column is the Kodaira dimension x of the surface S. The second column presents the Enriques-
Kodaira classification of minimal Kahler surfaces. The third column describes the surfaces of the second column that
could be 5d supergravity strings as defined in section 3.2.2.

COMPUTING THE CENTRAL CHARGES CR,¢r FROM GEOMERTY

The central charges of the 2d SCFT on monopole strings in the sd supergravity are related to in-
variants of the associated surfaces. In particular, the degrees of freedom contributing to the cen-
tral charges come from the moduli of the surface P, the two-form tensor fields and fermions on the
worldvolume of the Ms-branes on P. The computation of the central charges cg, ¢z, which we will

review here, was done originally by * 36

, assuming very ampleness of the divisor 2. However, the same
arguments hold for an ample smooth divisor which we will assume for the next computation. Here
Pis a 4-cycle and its cohomology class is [P] € H?(X, Z), which we will also write as P for simplic-
ity. In particular, P can be expressed with respect to a basis w; of H2(X, Z) and charges g/ > 0 as
P =" q'w;, meaning that the divisor is effective.

The left-moving central charge ¢z has no contributions coming from fermion zero modes since
b1(P) = 0by (B.1.31)” and the contributions from the bosonic degrees of freedom in terms of

P H(X,Z) — Zandcx(X) € H*(X,Z) the second chern class of the threefold X; are the

my = %P3 + %Q (X) - P— 2 real moduli of Pand the b, = %Pg + %cz (X) - P— 1 dimensional space

7 Assuming the Calabi-Yau threefold has an SU(3) holonomy.
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of anti-self dual two-forms on P. Therefore,
cL=my+by +3, (3.94)

where the last contribution represents the 3 translation zero modes. Similarly, the bosonic contri-
bution to ¢z is given by the moduli 72, and the 6 = %PS + %CQ (X) - P — 1 dimensional space
of self-dual two-forms on P, together with the 3 translational zero modes. In addition, ¢z also has
I = %Ps + %cz (X) - Pfermion contributions as required by supersymmetry which come from
(0,2) forms on P. Hence,

R =my+ by +3+f (3.95)

The ¢z, cg central charges can be expressed in terms of Pas

1
cL:173+62-Panch:Pg—l—fQ(X)-P

5 (3.96)

In particular, one can note that the right-moving central charge cg is mapped to the geometric
genus p, = h*0(P) of the divisor P. This can by seen by considering the holomorphic Euler charac-

teristic y(Op) which by Theorem B.1.18 is given by

A0 = P b =pt1 = [=6(+ 1)

(3.97)

Note that we used the fact that y(Op) = p, + 1 = p, — g + 1 where p, is the arithmetic genus
of Pand that the irregularity g = 19 (P) = 0, as we saw previously by (B.1.31). The left-moving

central charge ¢z including the center-of-mass contribution can be understood as the topological
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Euler characteristic y(P):

2(P) = = PP+ P-cy(X). (3.98)

In the case of semi-ample divisors with P* = 0 inside a Calabi-Yau threefold, technically the
irregularity g = »°(P) might not be zero.
The cases of surfaces with a non-zero irregularity either lead to SUSY enhancement of the 2d

worldsheet CFT or describe 6d supergravity strings.

Claim 3.2.1 Any surface with q > 0 corresponds either to a string of a 6d supergravity compactified
on a circle or susy enbancement of the worldsheet CFT with the exception of k = 1 surfaces without a

section 8. In particular, smooth Kéibler irregular surfaces fall in the following classes:

* « = 0 hyperelliptic surfaces: which have g = 1, co - P = 0 with cg = ¢; = 6. This surface gives

rise to N' = (4, 4) supersymmetry enbancement.

* & = 0abelian surfaces: which have g = 2, co - P = Qwithcg = ¢p = 12. This surface gives

rise o N” = (8, 8) supersymmetry enbancement.

* & = 1elliptic surfaces (with a section) over genus ¢ > O curves: which haveq = g% ¢o - P > 0
with cg = 6g + %6‘2 - P, cp = 6g + ca - P. These surfaces give rise to 6d supergravity strings'"?

on circle.

The central charge of the first two surfaces can be computed tobe cg = ¢ = 6¢ by similar
methods as we did in Section 3.2.5 but with 419(P) = 0. They both have the same number of left-

moving bosons and fermions, NE = Nf = 4q where the left-moving fermions are induced by the

8 As described previously this class of surfaces does not describe 6d strings but they can be irregular with
g # 0.In particular, consider the bundle L isomorphic to the Hodge bundle (whose fiber overp € Cis
the 1-dimensional vector space of holomorphic 1-forms on the elliptic fiber £, over p). The Hodge bundle
is trivial if and only if you can find (globally over C) a family of nonvanishing holomorphic 1-forms on the
fibers E, which varies holomorphically in p. In the case thatitis trivial g = ¢ + 1, otherwise g = g76.

¥When the surface is a trivial fibration of the form C'x E for C a genus g curve and E an elliptic curve, g =
¢+ landhencecg = 6(g+ 1), ¢, = 6(g+ 1) sincecs - (C x E) = 0.
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non-zero h10(P) = 4'3°. This is compatible with (4,4) and (8,8) supersymmetry enhancements
of the worldsheet CFT. However, the last case of surfaces gives rise to 6d supergravity strings on

acircle. This is because by "*%5>

we know that the existence of & = 1 elliptic surfaces with ¢y -
P > 0inside a Calabi-Yau threefold means that the threefold always has an elliptic fiber structure.
Since the threefold is elliptic we can invoke the M-theory/F-theory duality and realize the string
coming from Ms-brane wrapping the elliptic surface over genus g curve C as a D3-brane wrapping

the curve C. As was discussed in 834

the central charges for these surfaces can be computed as in
Section 3.2.5 with non-vanishing »1'? with the addition of an emergent SU(2) g flavor symmetry in
the IR. Therefore, the central charges will be the same as in the formula (3.96) as expected.

An important note is that the geometric genus p, of the surface Pis an integer number which is
in accordance with the quantization condition of cg € 6Z as seen in (3.97) .

The formulas for the cg, ¢/, central charges match the one found from field theories in (A.18),
which are given by a combination of the cubic and linear Chern-Simons terms evaluated on the

charge ¢ string. These Chern-Simons terms are the Chern classes of the divisor P which can be

express in terms of a bases wy of H?(X, Z) and charges 4’ as P = . g'wr:

P= /C%(P) = Cxq'dq", PeX) = /‘2(X) = Crq' . (3.99)
P P

Until now we only considered smooth divisors, but there is no reason to assume that the divi-
sor is smooth and in fact there is no simple algebraic criterion to determine smoothness. However,
even though the geometric procedure of computing the central charges of Section 3.2.5 is no longer
well-defined, we can still compute the central charge from physics as we did in Section 3.2 through
anomaly inflows. This procedure shows that the central charges are still given by (A.18) and hence
by the equation (3.99), so they can still be expressed geometrically as (3.96). Unfortunately, there is

no classification for singular Kihler surfaces as we saw for smooth ones in Table 3.5. However, if we
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have a singular nef surface P then it is also semi-ample as we saw previously and hence some multiple
mPfor m > 0 is smooth. Therefore, 7. is smooth and semi-ample and hence is one of the smooth
surfaces described in Table 3.5. For example, consider 7P to be a smooth K3 surface for m > 1. In
that case we have that (mP)? = 0, hence P> = 0. From eq. (3.97 ) we can see that 2P + ¢9 - Pisa
multiple of 12, we conclude that ¢y - P € 12Z since P3 = 0. We also know that ¢y - mP = 24 for K3
, and therefore we conclude that 7 = 2. Similarly, we note that 7P cannot be a smooth Enriques

because in that case ¢ - mP = 12, hence m = 1. But we assumed that P is not smooth.

3.2.6 CONDITIONS ON 4-CYCLES AND STRINGS

In this section, we will analyze the geometric condition that arise by considering semi-ample, am-
ple or very ample divisors in a compact threefold together with their implications as Swampland
conditions for the associated supergravity theory. In particular, we will relate the conditions on the
divisors of supergravity strings with the constraints on the gauge group and the matter content in
the bulk supergravity theory. Interestingly, some of the geometric conditions can be interpreted as

unitarity constraints on 2d worldsheet CFTs of supergravity strings.

GEOMETRIC CONDITIONS ON THE SUPERGRAVITY STRINGS

The various properties that the divisors will need to satisfy will lead us to various consistency con-
ditions for the supergravity when geometrically engineered. Some of the conditions which we will
discuss below can also be derived from a field theory analysis of the sd supegravity theory, and some
are new ingredients that do not have obvious origin in the physics. Supergravity strings amount to
semi-ample (or, equivalently, nef) divisors in a Calabi-Yau threefold.

As we have discussed above, a smooth semi-ample divisor is a minimal surface with Kodaira di-

mension ¥ > 0 (See Table 3.5). Some bounds on the invariants of these minimal surfaces are listed
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in Table 3.6. These bounds are discussed in some detail in appendix B. We conjecture that these

bounds hold for singular semi-ample divisors as well.

. 2 >0,in particular {]P; i 8 ﬁ;gfxzzoél

2. P ¢3(X) > 0, (Theorem B.1.28) (with strict inequality if ample)
and P ¢3(X) € 2Z (Theorem B.1.18).

36 P even
30 P odd

for smooth surfaces with x = 0, 2 (Theorem B.1.33)

3.4P% — P oy(X) + C > Owith C =

4. hH(X) < PP+ P c5(X) — 2 for Psmooth and ample (Theorem B.1.34)

5. N_y < ¢(4P° + 5P c5(X)) — 1 for Pbig and nef (Theorem B.1.35)
Here, N_5 denotes the number of rational (—2) curves on P.

Table 3.6: Conditions that the surface P needs to satisfy depending on its general properties.

In the first inequality, P > 0 follows from Theorem B.1.17 while the subcases follow from
Proposition B.1.27. The first two inequalities imply that the supergravity strings arising from M-
theory on a threefold X have non-negative cubic and linear Chern-Simons terms found in eq.(3.99).
The fourth bound can be rewritten as /11 (X) < ¢; — 2 and it will precisely match the constraint on
the rank of the gauge group of the low-energy sd theory coming from a constraint on the unitary 2d
CFTs living on supergravity strings. The fifth bound, as we will see in the next section, will turn out
to be very useful in constraining the rank of the non-Abelian gauge groups in the low-energy theory
engineered by geometry. This inequality does not seem to have an obvious origin from physics.

Another important property is given by the Hodge index theorem (Theorem B.1.32). This theo-
rem tells us that on any smooth divisor 2, the intersection product on /2 (P) has signature (1, h*! (P)—

1). This mathematical theorem is interpreted in physics as the condition (3.88) on the signature of
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levels of the current algebras in the worldsheet CFT on the supergravity string.

Lastly, there exists an interesting inequality on the Hodge numbers of a Calabi-Yau threefold X:

c3(X)
2

—36P° — 80 < = b1 (X) — b*H(X) < 6P° +40 for Pvery ample (3.100)

Moreover, the inequality can be sharpened by replacing the left hand side by —80, —180 and the
right hand side by 28, 54 when P* = 1, 3 respectively. The proof of this inequality can be found
in''.

In particular, this inequality does not seem to have an obvious origin from physics but it provides
a strong bound on the dimension of the Higgs branch, therefore on the representations of matter
hypermultiplets in the 5d effective theory.

Suppose for example that a threefold X leads to an effective theory with gauge group G, and this
theory can Higgs to another threefold X with 411 (X’) = 1. The gauge group G of the original
theory will be broken to U(1) under this Higgsing. The charged hypermultiplets in the original
theory parametrize the Higgs branch of the moduli space '7* which is a subspace of the complex

moduli parametrized by cohomology classes in /%! (X"). This implies the relation
) " dim(R;) — dim(G) + 1 < #*1(X) (3.101)

where 7 runs over all hypermultiplets and dim(R;) is the dimension of the representation R; of the
i-th hypermultiplet. The resulting 3-fold X’ has a single Kihler class represented by an ample divisor
P. According to (B.1.24), the divisor classes 2P are very ample when » > 10. Using the inequal-

ity (3.100) for h*1(X’), we find a bound on the representations of charged hypermultiplets in the
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original theory of the 3-fold X:

Z dim(R;) — dim(G) < 362°P® + 80, where Pis ample and z > 10.. (3.102)

3.3 CONSTRAINTS ON SUPERGRAVITY THEORIES

In this section, we will constrain sd supergravity theories by using the geometric conditions on semi-
ample divisors and the unitary conditions on worldsheet CFTs of supergravity strings presented in

the previous sections.

3.3.1  U(1l) X G THEORIES

The first example is the supergravity theory with U(1) x G gauge group where G is a product of
non-Abelian groups G = [], G;. Without loss of generality, we can choose a basis for the U(1)
divisor A such that both its triple intersection and Kihler parameter ¢ are positive. In addition the
gauge couplings /; for non-Abelian symmetries are required to be positive. The eftective theory in

this basis has
H? = Coo0 >0, ¢ >0 and h; = b 9" > 0 forall G; . (3.103)

The perturbative hypermultiplets carrying the U(1) charge have masses proportional to ¢° and
integrating them out leads to shifts in the Chern-Simons levels. We assume that all such U(1) hyper-
multiplets are already integrated out. Then the remaining perturbative states are charged only under
the non-Abelian group.

There can also be non-perturbative states carrying the U(1) charge: for example, the instanton

particles of the non-Abelian gauge group G. When the Coulomb branch parameters for G are
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small enough compared to 4;, the BPS instanton state has mass proportional to the gauge coupling,
|Minse| = h; up to a constant factor. This implies that all the BPS particles carrying non-zero U(1)
charges have positive electric charge under the U(1) gauge symmetry. The divisor H is the dual to
this U(1) gauge symmetry. Therefore the magnetic monopole string with positive charge 4 on this
divisor H is a supergravity string and the divisor / is thus semi-ample. This should be true even if
the supergravity theory is not geometrically realized. Since the string on H is a supergravity string,
we can analyze consistency of this string by using the conditions presented in the previous sections
and can examine if the bulk gravity theory with the string is consistent or not.

The worldsheet theory on the monopole string of the divisor // should bea N' = (0,4) CFT.
Since the A positively intersects the gauge divisors, the worldsheet theory should contain unitary
representations of current algebras for G. We find that the CFT on a single string with unit mag-
netic charge g4 = 1 contains the current algebras for the bulk gauge group G; atlevel £, = b, 9. Then

the unitary condition in (3.91) puts a bound on the total rank of the non-Abelian gauge group as

k; - dimG;
ZCG Z PR <cq = ZV;’§C000+C0—37 (3.104)

where 7; = rank(G;). Here we have used the fact that ¢, takes the minimum value ; when &£; = 1.
In particular, this shows that the rank of the non-Abelian gauge group G in the bulk sd supergravity
theory is bounded from above by the Chern-Simons coefficients Cpoo and Cp. We remark that this
bound generically holds for any sd supergravity theory with gauge group U(1) x G regardless of
whether it admits geometric construction or not.

For example, suppose that a supergravity theory with U(1) x G gauge group is Higgsed to a
quintic threefold. The Higgsing does not change the Chern-Simons coefficients Cyoo and Co. This
implies that the Chern-Simons levels of the original theory before being Higgsed are fixed to be

those of the quintic hypersurface H, i.e. Chop = H3 = 5and Cy = H - ¢ = 50. From this, we find
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a strict bound on the rank of the non-Abelian gauge group G

Zrl' <52, (3.105)

/

in any supergravity theory with a single U(1) symmetry which Higgses to a quintic threefold.
When the supergravity theory before being Higgsed has a geometric construction, we can find a
stronger bound by using the geometric bound in (B.1.35). Note that the non-Abelian symmetry G
can remain unbroken, when the Kihler parameter ¢ is turned on, only if the U(1) divisor / and
the gauge divisors E; are glued along rational (—2) curves in / and the fibers in E;. Also / must be
glued to all £; divisors in order that the low-energy theory has gauge couplings 4, with proper signs.
This imposes abound ) .7, < N_5 on the rank of the non-Abelian group with respect to the

number of (—2) curves in H. Therefore, the bound (B.1.35) on N_g tells us that

2 )
Zrig §H3+6H'52(X)—1 =44. (3.106)

z

for supergravity theories admitting M-theory construction on Calabi-Yau 3-fold that reduce to a
quintic threefold after Higgsing.

In Appendix B.2, we present a number of concrete constructions of compact Calabi-Yau three-
folds that Higgs to a quintic threefold. These geometries engineer the supergravity theories with
gauge group U(1) x SU(2) or U(1) x SU(3). Itis obvious that the above bound (3.106) is consis-
tent with these examples. One can check that divisors contained in these geometries and the corre-
sponding monopole strings satisfy all the conditions we listed in the previous sections.

The first example is for the supergravity theory with U(1) x SU(2) gauge group coupled to Ny =
9 SU(2) fundamental hypermultiplets. The threefold consists of two divisor classes /, the proper

transform of the hyperplane class of the quintic, and , the exceptional divisor of the blowup. The
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triple intersections of H and E classes are given in (B.69). Two divisors are glued along a (—2) curve
in A and the fiber class in E. In this example, the Kiher cone is generated by H itself and A — E.

The supergravity strings are then the Ms-branes wrapping any 4-cycles D which can be written as

D=mH+nH—E), mmn>0. (3.107)

The central charges of the supergravity strings are

¢ = m(5m® + 15mn + 9n*) + 50m + 360 — 3,

tr = m(5m* + 15mn + 9n*) + 25m + 182 — 6. (3.108)

One can easily see that the central charges are positive and ¢z € 6Z for the non-trivial supergravity
strings as expected. On generic points of the Kiher moduli space, the gauge symmetry is broken to
U(1) x U(1). We checked that the signature of the levels of U(1) x U(1) current algebras, which
include the center-of-mass sector, in the supergravity strings is always sig(k;7) = (1,1). Thisis
consistent with the condition (3.88) on the signature. This result is guaranteed by the Hodge index
theorem B.1.32 for the semi-ample divisors in this geometry. All other geometric conditions are
surely satisfied.

When we turn on only the Kihler parameter of the A class, then the SU(2) gauge symmetry
remains unbroken. In this case, the 2d CFT on the monopole string of the H class carries a U(1)
current algebra at level 5 in the right-moving sector and a SU(2) current algebra at level 1 in the left-
moving sector. The central charge of the SU(2) current algebra in the worldsheet is ¢52) = 1. So
the inequality c5(2) < ¢z in eqn. (3.91) is satisfied.

More examples of supergravity theories with U(1) x SU(2) gauge symmetry are given in Ap-

pendix B.2.2.

140



The second example is the supergravity theory of U(1) x SU(3) gauge symmetry with Ny = 11
fundamental hypermultiplets. The CY3 geometries for this theory are constructed in Appendix
B.2.3. Each threefold is labelled by an integer 0 < 7» < 3 and corresponds to the SU(3) gauge
group at Chern-Simons level x = —% + 7. The threefold consists of three surfaces, A, E1 and Fo.
The divisor H is the proper transform of the hyperplane class of the quintic and £ is a Hirzebruch
surface F5 1, with 11 blowups’® and Ej is a Hirzebruch surface. Two (—2) curves in H are each
glued to a fiber in £1 and another fiber in E5. Two surfaces £1 and E3 are glued along the section
¢> = —(n + 5) in Ey and arational curve C> = 7 + 3 in Ey. The triple intersections of three
surfaces are given in eqn. (B.1o0).

Let us consider the case with » = 0. The Kihler cone is generated by H, H — E1 — Eo and
2H — 2E1 — E3. The supergravity strings come from the Ms-branes wrapping linear combinations
of these generators with non-negative integer coefficients. The central charges (¢z, ¢z ) for these
three generators are (52, 24), (33, 12) and (79, 42) respectively. As expected since the (self-)triple
intersections of the generators are non-negative, all supergravity strings have positive central charges.
We also checked that the signature of the level of the current algebras is sig(k77) = (1, 2) for all three
generators which is in accordance with the condition (3.88).

The low-energy theory has the SU(3) gauge symmetry enhancement along the Kihler moduli
space of the Kihler parameter for . The Ms-brane wrapping the divisor H gives rise to a monopole
string hosting in the left-moving sector a level 1 current algebra for the SU(3) symmetry. The uni-
tary condition ¢ggy3) < ¢ for this monopole string is therefore satisfied with cgy3) = 2and

¢ = 52.

'°Our construction exhibits this surface as an 11-fold blowup of F or [Fy depending on the parity of 7,
but by blowing down the half-fibers disjoint from the section where the two components are glued, we get
Fsi,.
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3.3.2 ABELIAN GAUGE THEORIES

Now consider a generic point on the Coulomb branch of the moduli space in a supergravity theory
engineered in M-theory on a CY3. The gauge symmetry G in the sd supergravity is fully broken

1 There are a set of basis 4-cycles Py with 7 = 0,1, , r for the

to its Cartan subgroup U(1)
U(1)"! gauge group. We claim that the holomorphic surfaces Py can always be chosen to be semi-
ample divisors in the 3-fold. In other words, all Abelian gauge groups in the low energy effective
theory can be represented by a set of r 4 1 semi-ample divisors that are part of the Kihler cone
generators. Since they are semi-ample, the corresponding strings are all supergravity strings.

The effective Abelian theory is characterized by the triple intersections Cyx = f Pr- P Px
and the second Chern classes C; = |, ' Pr - c2(X). From the fact that all P are nef and semi-ample
divisors, one finds that the triple intersections and the second Chern classes are all non-negative. We
propose

Cpk >0, Cr>0 forall,/ K, (3.109)

from the properties of semi-ample divisors. The inequalities for Cyr and Cj are obvious by the defi-
nition of semi-ample divisors. Also, Cyyy with 7 # Jis the sum of intersection numbers ;- C between
a semi-ample divisor P; and curves C at the intersection P; N P, which tells us that Czy > 0. Sim-
ilary, Cpx is the sum of intersection numbers between the divisor P and curves at the intersection
PN Pk, and it needs to be non-negative for the semi-ample divisors.

In addition, the surfaces P; must satisfy the Hodge index theorem. For r = 1 cases, for instance,
the Hodge index theorem or the relation (3.88) says that the signature of the levels k7 with 7,/ =
0, 1 should be (1, 1) for the worldsheet CFT on wrapped Ms-brane over each P;. One can then

deduce the following two conditions on the triple intersections from the Ms-branes wrapping once
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on Py and P; respectively :

2 2
Co00Coo1 < Co11,  C111Co11 < Gy - (3.110)

3.3.3 GENERIC GAUGE THEORIES

We will now turn to supergravity theories coupled to generic gauge groups. If these theories can be
geometrically engineered, then we can constrain them by using conditions on divisors in the 3-fold
as follows.

Let us consider a 3-fold X and the low-energy theory at a special submanifold on the Kihler mod-
uli space of X where some Abelian symmetries enhance to non-Abelian symmetries G = [[, G;.
More precisely, we are interested in the effective theory in the moduli space where all the Kihler
parameters @ for U(1) symmetries are taken to be large, while the Kihler parameters @, for some
non-Abelian symmetries G are turned off. If the non-Abelian symmetry G in the low-energy the-
ory remains unbroken even after integrating out all matters charged under the Abelian symmetries,
then we say that M-theory compactified on X at low-energy is described by the supergravity theory
with gauge group G times multiple Abelian factors. We shall now assume this and constrain such
effective theories.

We first conjecture that all the 4-cycles P, for Abelian gauge groups in X can be chosen to be
semi-ample divisors. So there exists a basis where all 2,’s for U(1) gauge groups are semi-ample. In

this basis we find the following conditions on the Chern-Simons levels,

Cyy >0, C,>0 foralla,B,y, (3.111)

where 2, 8, ¥ denote the indices for the Abelian gauge groups. These conditions again follow from

the fact that divisors 2, are semi-ample and they non-negatively intersect all eftective 2- and 4-cycles
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inX.

The requirement for the non-Abelian symmetry G; unbroken imposes non-trivial constraints
on the intersection structure between the Abelian divisors P, and non-Abelian gauge divisors ;.
First, since we want to preserve the non-Abelian symmetry G on the moduli space of the Kihler
parameter ¢” for P, the triple intersections C,g; necessarily vanish. Otherwise the corresponding
Chern-Simons interaction (partially) breaks the symmetry G. This condition C,5; = 0 should be
true even after we turn on small Kihler parameters ¢’ for the non-Abelian gauge divisors E; because
the massive states sitting in some representations of the non-Abelian symmetry that is weakly bro-
ken by ¢ after integrated out cannot induce Chern-Simons terms with coefficient C,g;.

Also the gauge couplings of the non-Abelian groups need to be positive. This forces

hia 20, (3.112)

’

for all 7 and «. From this, one can deduce more conditions on the Chern-Simons levels when X is
fully resolved. Let us turn on small Kihler parameters ng' for non-Abelian gauge divisors £; and

assume @' < ¢~ The positivity of the gauge couplings (3.112) is then translated into

Cuir <0 foralli, C,; >0 foralli#. (3.113)

3.4 A BOUND ON THE MATTER REPRESENTATIONS

In this section a further consistency condition that needs to be imposed for a consistent 6d super-
gravity theory is proposed. In the previous sections it was summarized how the existence of BPS

strings strongly constrains the bulk theory. In particular, the bulk gauge groups emerge as current
algebras on the 2d worldsheet and together with unitarity on the worldsheet, one can impose con-

straints on the rank of the gauge groups. Similarly, we argue that the 2d worldsheet also has infor-
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mation about the bulk matter. In particular, we now argue that massless matter hypermultiplets in
the bulk correspond to relevant/marginal vertex operators on the string. Evidence to support this
claim comes from the fact that at least, when giving a vev to a charged massless hypermultiplet it
can Higgs the bulk gauge group, the worldsheet theory of the BPS string for which there is a flavor
current associated to the group should get deformed. This is because the gauge symmetry in the
bulk induces the flavor symmetry on the BPS string and consequently the Higgsing process also re-
duces the flavor symmetry on the BPS string. This means that there must exist a relevant/marginal
deformation of the BPS worldsheet associated to a primary field in representation R of the matter
field on the worldsheet (note that non-primary fields except from the current itself will always have
dimension bigger than 1). Since the current is on the left-moving sector of the string which is non-
supersymmetric, this means that there is an operator of left-moving dimension less than or equal to
1 associated to a primary field of representation R. This argument can be extended to all massless
representations regardless of whether they can Higgs the gauge group: Having massless fields in the
representation R of a gauge group should lead to at most marginally irrelevant deformations. In
other words giving a vev to them is obstructed by more than quadratic terms in the bulk theory. So
at the quadratic/leading level they behave as if they are Higgsing the bulk theory and so should be at
most marginally irrelevant, i.e. dimension no more than 1.

A simple example of this condition is realized in the heterotic string on K3, where the massless
charged fields are represented by primary fields with (left,right) dimension (1, 1/2) of the (0,4)
supersymmetric theory on the worldsheet.

To summarize we have argued that the hypermultiplets transforming in a particular representa-

tion R need to satisfy the following conditions:
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1. The vertex operator of the massless modes with representation R of G with conformal

weight AR = % where C(R) is the second Casimir of the R must obey:

AR <1 (3.114)

2. The representation R of a primary’" with highest weight A = (A, - - -, A,) where ris

the rank of the Lie algebra must satisfy :

ZAZ-S/e (3.115)

where £ is the level of the current algebra of G on the worldsheet.

The first condition as discussed above requires the hypermultiplet states of the spacetime theory
to appear as vertex operators in the WZW model and in particular they need to be relevant/marginal
primary fields. Therefore, the conformal dimension associated to the hypermultiplets can be at most
1. The second condition is a standard result of the highest-weight representation in Kac-Moody
algebras’®.

In addition, these inequalities are independent of the dimension of spacetime and can also be
extended to BPS strings in sd and 4d. For example, in sd N' = 1 we have monopole strings which
need to satisfy the above consistency conditions in the presence of bulk matter and hence constrain-
ing the possible representations that can appear.

For example, consider the sd N = 1, SU(2) x U(1) theory constructed in'*® and subsec-

tion B.2.2 with the geometry being the singular quintic with 4; singularity along a curve of degree d

""With the exception of the adjoint representation which need not be a primary.
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and genus ¢. Assuming that A is the proper transform of the hyperplane class of the quintic, and £

the exceptional divisor of the blowup then the following relations are true:
H =5 HE=0,HE* = —2d,E*> =4 — 4¢ — 5d (3.116)
In this case the ' Hooft anomaly of the non-abelian gauge symmetry is given by:
1 )
T/el'”Fz‘ (3.117)

with k;, = —b; .q°, where b; , are the the coeflicients in the gauge coupling 4, for G; in the bulk
effective action and ¢ the string charges. Therefore, the levels of U(1) , SU(2) with divisors A, E

respectively and ¢ = (1, 0) are:

3 -3

ko = Cooo = H3,/€1 = _gcoll = ?HEQ =d (3.118)
which implies that condition (3.115) is given by:
> A <d (3.119)
-

Therefore, for a degree d = 1 curve we can only have fundamental matter in 2 of SU(2). This is

in accordance with the fact that

E3:4—4g—5d:—1ford:1,g:0 (3.120)

was interpreted as having N = 9 fundamental hypers rather than 1 adjoint and 1 fundamental since

the genus was zero. Geometrically, this is the fact that there is no degree 1 genus 1 curve.

147



However, if d = 2 we have
ZAi <2 (3.121)

and say E2 = —6 could be either N = 14 fundamental hypers or N = 6 fundamental hypers and
1 adjoint. In other words our inequality does not restrict which case it is. From geometry we know
that the first case is correct in this example because £2 = 4 — 4¢ — 54 = —10 for a genus 1 and
degree 2 curve.

Returning to 6d we are interested in seeing how these inequalities can help us as Swampland
conditions. Let us start by considering the 6d supergravity theory coupled to SU(N) with (N —
8)[J + 1[I The gravitational anomaly restricts these theories to exist up to 7 = 10 and the
gauge/gravitational anomalies are cancelled forz - & = 1,6 - b = —1. We can choose a basis such

that the bilinear form and the vectors «, b are given by:
Q= dlag(lv (71)T)7 a = (737 1T)7 b= (OT7 71) (3'12'2)

In this particular basis we can choose the Kihler form to be / = (7, 07=1,1) which satisfies /> > 1
forn > land/-a < 0,/ b > 0. Now we consider a BPS string with charge Q = (90, - - - ¢7)

which must satisfy eq.(1.48):

T T T
B-> 0> -Lg—> 4 =30 4:>-2k=0Q-b>0 (3.123)
=1 =1 =1

A string charge consistent with these inequalities is Q = (3,071, 1) which gives level £ = 1 for any



T. We can now use eq.(3.115) which states that every representation should satisfy:
YA <k=1 (3.124)

However, the symmetric representation has highest weight A = (2, 0V~2) and therefore does not
satisfy this inequality. We conclude that this theory belongs to the Swampland. This is consistent
with the observation in **# that for 7" = 1 this theory has no F-theory realization.

Another example, that was also discussed in the previous section is: 1] ]+ 15 with 7= 9. We

found that the following choices of (k, IN) are consistent by using unitarity considerations:

(k>1,N=0,1,23),4>k>1,N=4) (3.125)

(2>k>1,N=5),(k=1,N=6,7,8,9) (3.126)

However, if we apply condition (3.115) we see that # = 1 is not a consistent choice because both the
symmetric representation have ) ;. A; = 2. Therefore in particular all theories with N' > 5 belong
to the Swampland.

Consequently, the second condition has helped us rule out theories that do not have string theory
realizations but methods such as unitarity bounds of the previous section did not exclude them.
However, the first condition even though non-trivial we did not find useful in these examples. The
issues are that for simple representations that we consider here this is automatically satisfied (for
example Ap = %, Ag = %, Apdj = NA_% < 1). Therefore, this condition could
have a chance to be useful for higher index symmetric and antisymmetric representations and exotic
ones. However, most such examples constructed are for 7= 0 126 byt those theories tend to have a

very large level £ since 4, b are scalars. Therefore, we would expect this to be more useful if a full 6d

supergravity classification is considered and more exotic representation are considered for large 7.

149



3.5  SUMMARY AND DiscuUssioN

In this chapter the finiteness of massless modes was addressed for 6d theories with 8 supercharges
showing that the rank of a given theory is bounded. We also studied general swampland principles
for sd and 6d theories including constraints on the matter of the theory. It would be interesting

to refine the results in 6d and understand where do they fit with regard to the string landscape. An
important direction to understand this, is to look into constructions outside F-theory compactifi-
cations and perhaps to non-geometric families as studied in ***> were such constructions were shown
to give rise to more exotic models which may be related to the usual F-theory through stringy transi-
tions. Such studies will give a more general understanding of the string landscape and hence a good
guide to understand the swampland. With regards to the sd swampland similar results are harder

to obtain but it would be beneficial to address the boundaries of the possible landscape including

finiteness and potential new exotic models e.g. '#'.



“Turning on quantum mechanics makes the behavior
much gentler; in particular, the effective dimension

of space-time is not changed. Perbaps a better under-
standing of the singular behavior of the conformal field
theory would enable one to understand in a more a priori
fashion what bappens quantum mechanically.”

Edward Witten '8

Quantum Field Theory in Five Dimensions

In the previous chapters we discussed extensively conditions that low energy theories need to satisfy
in order to have a gravitational UV completion. However, a similar UV question is interesting in
quantum field theory too in the absence of gravity. As discussed in subsection 1.2.2 one can also
study necessary conditions for a quantum field theory to have a UV completion. In fact as was seen

in section 1.10 five dimensional gauge theories traditionally where thought to be not interesting as

they are non-renormalizable. However, in 166 jt was shown that under some conditions, sd UV fixed



point do exist for such theories and string theory provides a framework to construct them.

In some interesting cases that did not satisfy the consistency conditions to have a 5d UV fixed
point it was shown to have a 6d'°°. All known examples of such theories are characterized by the
emergence of an intrinsic length scale that is interpreted as the size of a compactification circle,
and it has been argued that each of these theories is a circle compactification of a 64 SCFT possi-
bly twisted by the action of a discrete global symmetry”; see for example "' 701 102194103, 121,29,28, 100,

As reviewed in section 1.10 it is believed that all 54 SCFTs can be obtained via RG flows starting
from the 5d Kaluza-Klein (KK) theories and hence every 64 SCFT compactified on a circle provides
a natural starting point for the systematic identification of a large family of 5d SCFTs.

In this chapter, we focus on the geometric approach in which one realizes a 5d KK theory via a
compactification of M-theory on a genus one fibered Calabi-Yau threefold. The set of holomorphic
curves in the threefold completely encode the information about the spectrum of BPS particles
required to track all RG flows down to 5d SCFTs. Therefore, a precursor to classifying RG flows
from sd KK theories to sd SCFTs is to geometrically classify all sd KK theories themselves in terms
of Calabi-Yau threefolds.

Itis believed that all 64 SCFTs can be constructed by compactifying F-theory on singular ellipti-
cally fibered Calabi-Yau threefolds admitting certain singular limits characterized by the contraction
of holomorphic curves in the base of the fibration. Here we include constructions that may also in-
clude O7™ planes from the point of view of type IIB string theory, which correspond to the frozen
phase '935+177 of F-theory. The unfrozen 64 SCFTs were classified in "*+'°5 (see also **) while the
ones coming from the frozen phase of F-theory were classified in*S.

A 5d KK theory corresponding to the untwisted compactification of a 64 SCFT arising in the

unfrozen phase can be constructed by compactifying M-theory on a Calabi-Yau threefold which is

"Twisting the theory around the circle means that we introduce a holonomy for the background gauge
fields associated to discrete global symmetries of the theory.



a resolution of the Calabi-Yau threefold arising in the F-theory construction. This fact is a special
case of the duality between M-theory and (unfrozen phase of) F-theory compactified on a circle
(without any twist). Explicit resolution of all Calabi-Yau threefolds associated to 64 SCFTs was

28,29

performed by ***?, and hence the Calabi-Yau threefolds associated to corresponding 5d KK theories
was determined. These threefolds are elliptically fibered since the threefolds associated to 64 SCFTs
are elliptically fibered to begin with.

In this chapter, we extend the work of this to include potential twists along the circle and de-
termine a resolved local Calabi-Yau threefold describing every 54 KK theory. We find that these
Calabi-Yau threefolds are in general only genus one fibered * which is associated to the twist we have
considered.

Our analysis can be divided into two parts. In the first part of the analysis, which is purely field
theoretic, we determine the prepotential for each 54 KK theory by using the following observations:
Each 64 SCFT admits a 6d gauge theory description which can be reduced on a circle with an ap-
propriate twist to obtain a canonical 54 gauge theory description of the associated 54 KK theory.
The Green-Schwarz term in 64 reduces to a Chern-Simons term in the 54 gauge theory, which in-
duces a tree-level contribution to the prepotential. Combining this contribution with the one-loop
contribution coming from the 54 gauge theory produces the full prepotential for the 54 KK theory.

In the second part of the analysis, we interpret the prepotential as describing the triple intersec-
tion numbers of 4-cycles inside a yet to be determined Calabi-Yau threefold. Using the data of these
triple intersection numbers, along with some other consistency conditions, we are able to determine
a description of the Calabi-Yau threefold as a neighborhood of intersecting Kihler surfaces along the

111,29,28

lines of the discussion in , and we verify that each threefold admits the structure of genus one

fibration.

*See for example #* for a discussion of F-theory compactifications on genus one fibered, in contrast to
elliptically fibered, Calabi-Yau varieties.
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One can view these Calabi-Yau threefolds as providing previously unknown M-theory duals of
general unfrozen and frozen F-theory configurations compactified on a circle possibly with a dis-
crete twist. Even though we have provided explicit results only for F-theory configurations realizing
64 SCFTs, our methods should in principle apply to any general F-theory configuration.

This chapter will be a summary of >° where we will discuss in detail only some parts of this classi-
fication in order to demonstrate our methods with few examples with most of the details left to the

original work.

4.1  STRUCTURE OF 6D SCFTs

The 6d SCFTs can only be reached through the tensor branch and hence that is enough to define
their RG flow. The low-energy theory on the tensor branch of a 64 SCFT T can be organized in
terms of tensor multiplets B;. There is a gauge algebra g, associated to each 7 where g, can either be a
simple or a trivial algebra. Each tensor multiplet B; is also associated to a “fundamental” BPS string
excitation §” such that the charge of &’ under B; is the Kronecker delta 5]’ The Dirac pairing Q7
between 5" and . appears in the Green-Schwarz term in the Lagrangian

QYB; N ur(F7) (4.1)

where F; is the field strength for g; if g; is simple and F; = 0 if g; is trivial.

[Q7] is a symmetric, positive definite matrix with all of its entries valued in integers. Thus, it
is analogous to the Cartan matrix for a simply laced Lie algebra. The only possible values for oft-
diagonal entries are Q7 = 0, —1, —2. We note that Q7 = —2 is only possible for 64 SCFTs arising
from the frozen phase of F-theory 53,

We can thus display the data of a 64 SCFT in terms of an associated graph X that is constructed

as follows:
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é”ﬂ Comments Hypermultiplet content
5p§n)9 6=0,r (2n + 8)F
5%@ n>3 (n + 8)F + A2
S ul(h\) n > 8; frozen; non-geometric | (n — 8)F + S?
su(6) 15F + 2A°
I
su(n) 2nF
2
su(3)
3
50‘570 n>38 (n — 8)F
s%& 1<k<3 (4—k)F + (4= &)S+ (4 — &)C
S0(n) | < b <37<n<12n#8| (n—4—kF+214 — £)S

)

k
wg% k=1,2 (8 —kF+1(3—k)S+1icC
s0(13) 7F + 1S
2
% 1<k<3 (10 — 3k)F
E 1<k<5 (5 — k)F
? 1<k<6 (6 — k)F
o7 1<k<8 L8 —k)F
)2 =r = 2
€8
12

Table 4.1: List of all the possible nodes with non-trivial g, appearing in graphs associated to 6d SCFTs. A hat or a tilde
distinguishes different nodes having same values of Q” and g;.
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gﬁ- Comments | Flavor symmetry algebra, f
5p(0)s =07 eg
I
su(1) su(2)
2

Table 4.2: List of all the possible nodes with trivial g, that can appear in graphs associated to 6d SCFTs. If Q" = 2, we
refer to the trivial gauge algebra as 5u(1) and if Q7 = 1, we refer to the trivial gauge algebra as sp(O). In the latter
case, sometimes a Zs valued theta angle is physically relevant. We also list the flavor symmetry algebra f for each case.
The sum of gauge algebras neighboring each such node must be contained inside the corresponding f.

9s
* Nodes: For each tensor multiplet B;, we place a node 7 with value Q7 . All such possibil-
ities are listed in Table 4.1 when g; is non-trivial, and in Table 4.2 when g; is trivial. In the
former case, each node contributes hypers charged under a representation R, of g; where R;

is shown in Table 4.1.

* Edges: Each edge corresponds to a hyper transforming in a mixed representation R;; =

R; @ R;of g; © g; where R; is a representation of g, and R; is a representation of g;.

An example of such a gauging procedure is demonstrated in Table 4.3 where one joins the two nodes
with an edge corresponding to bifundamental matter. A full list of all possible edges between nodes

of table 4.1 and 4.2 can be found in3°.

9; g]
QF 04 Condition Mixed hyper content

su(n)  su(m) m<2mn<2m|F®F
2 2

Table 4.3: Example of an edge joining two nodes corresponding to gauging of bifundamental matter.



4.2 STRUCTURE OF §D KK THEORIES

The most general way to compactify the 6d SCFTs to sd is by permitting the gauging of some dis-
crete symmetry around the circle. In this section we will present two main classes of such discrete
symmetries and discuss their action on the theory. In particular, we can understand them as two
classes of automorphisms acting on the gauge symmetry of the fibers of the elliptic fibration or auto-

morphisms associated to exchanged tensor multiplets in the base.

4.2.1  TwisTs

Consider a QFT ¥ that admits a discrete global symmetry group I'. When we compactify T on a cir-
cle, we have the option of “twisting” T around the circle. This means that we introduce a holonomy
y € T for the background gauge field corresponding to I'. The number of inequivalent twists is

given by the number of conjugacy classes in I'. This is because two holonomies that are conjugate in

I are physically equivalent and thus lead to the same twist.

4.2.2 DISCRETE SYMMETRIES FROM OUTER AUTOMORPHISMS

Let us consider the most basic discrete symmetries that arise from outer automorphisms of gauge
algebras g;. This automorphism can be thought of as a symmetry of the Dynkin diagram. Turning
on a holonomy for such symmetries leads to the twisted affine algebras.

The algebras that admit an order two outer automorphism O(?), are su(z) for n > 3, s0(2m)
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for m > 4 and eg which exchanges the roots in the following fashion

L S A —

~

su(22+1),0%: o—e— - —0—0— - —e—e

SNe—

°
s0(22),0%; e—e—e—--- oo/ >
\,

'

The 50(8) Dynkin diagram also admits an order three outer automorphism O®). Tt cyclically per-




mutes the roots as shown below

50(8), 0 o/:7.
AN

The full group of outer automorphisms of 50(8) is the symmetric group S3 which can be generated
by combining O?) and O,

The above action of an outer automorphism O (for g = 2, 3) on the roots of g translates to an
action on the Dynkin coefficients of the weights for representations of g. In other words, the action

of O can be viewed as an action on representations of g—see Table 4.4.

(& [09]0v R, |

@
su(m) | OP | F+—F, A" +— A", 5 «+— §*
s0(2m) | 0@ |F — F,S<—C
¢6 0% |F<—F
so0(8) | O® |F—SS—CC—F

Table 4.4: List of non-trivial outer automorphisms O of g and their actions (9(‘1) . 'Rg on various irreducible rep-
resentations T\’,g of g. F denotes fundamental representation, A” denotes the irreducible 7-index antisymmetric rep-
resentation, S2 denotes the irreducible 2-index symmetric representation, and S and C denote irreducible spinor and
cospinor representations. Bar on top of a representation denotes the complex conjugate of that representation. F of
50(2m) is left invariant by the action of 02,
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As an example consider the 64 theory given by

su(n) su(n)

2 22 F ] [nF] 2 [2F]

The theory includes 2z hypers in F. The outer automorphism O?) of su () descends to a discrete
symmetry of the theory whose action on the hypermultiplets can be manifested as follows: we divide
the 27 hypers into two ordered sets such that each set contains 7 hypers and then we exchange these

two sets with each other.

4.2.3 DISCRETE SYMMETRIES FROM PERMUTATION OF TENSOR MULTIPLETS

We can also consider discrete symmetries that arise from permutations of tensor multiplets 7 — S5(7)

such that

8s() = i (43)

QSIS0 = oF (4.4)

for all 7,;. This is a symmetry of ¥ if representations also preserve it:

Ry = Ri (4-5)

Risws() = Ry (4.6)

forallz,;.
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As another example, consider the 64 theory given by

su(m) su(n) su(n) su(m)

P (+7)
which has the following permutation as a symmetry of the theory
su(m) su(n) su(n) su(m)
2 2 2 2
(4.8)
The untwisted matrix element [QY] is
2 -1 0 0
-1 2 -1 0
0o -1 2 -1
0 0 -1 2
and hence the twisted one is [Qgﬁ} is
1 -1
-1 2
which represents the following graph:
su(n) su(m)
22— 2
- (4.9)
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To understand the low energy 54 theory for (4.9), one needs to have a clear view of the action
of this twist to the bifundamental of the central algebra. The two su(m) get identified to a single
su(m) algebra. Similarly, the two su(7) get identified to a single s11() algebra. Thus the 5d gauge
algebra is h = su(n) @ su(m). The bifundamentals of su(m) @ su(n) descend to a single bifunda-
mental of . The bifundamental of su(%) @ su () descends to S? of su(z). Furthermore, we obtain
n — m extra fundamentals of su(7) and 2m — 7 extra fundamentals of su (). Thus, the low energy
5d theory is an su(n) @ su(m) gauge theory with a bifundamental plus (27 — 7)F of su(m) plus
(n — m)F @ S? of su(n).

4.2.4 GENERAL DISCRETE SYMMETRIES

We can now combine the two types of twists discussed in Sections 4.2.2 and 4.2.3. That is, we con-

sider actions of the form

H o | s (4.10)

where S is a permutation of the tensor multiplets and O(#) is an outer automorphism of order g; of
gauge algebra g;, where each ¢; € {1, 2,3} and ¢; = 1 denotes the identity automorphism.
A nice demonstration of the combined twist is the following example, consider the 64 SCFT

su(m)  su(n)  su(m)

(4.11)

Suppose we want to perform the outer-automorphism O®?) for the middle su(72) node. Recall from
the discussion around (4.2) that the outer automorphism of su(7) exchanges the fundamental hy-
pers in pairs. However, the graph in (4.11) indicates that the fundamental hypers of the middle
su(n) algebra are part of bifundamental representations formed by taking the tensor product with

the fundamental representations of the neighboring st(72) algebras. Therefore, if we want O?) to
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be a symmetry of the theory, we must permute the two neighboring su(2) as well. Thus, 0®?) by

itself is not a symmetry of the theory, but its combination with the permutation

su(m) su(n)  su(m)

NS

is a symmetry of the theory. Thus, we see that in general it is not possible to decompose a general

(4.12)

symmetry of the form (4.10) into more basic symmetries discussed earlier. However, we can per-

form the combined twist which gives rise to

su(z)®  su(m)D)
2

7.*)2

(4.13)

4.3 PREPOTENTIAL FOR 5D KK THEORIES

The goal of this section is to propose a formula for the prepotential of a 54 KK theory Kﬁf{{(qa} start-

ing from the tensor branch description of the corresponding 64 SCFT . This includes incorporat-

ing the KK reduction of the theory together with any possible twists performed.

4.3.1 PREPOTENTIAL

Compactify a 64 SCFT T on a circle with a twist S, {g, } around the circle. Let us analyze the low

Z;{q“} gives rise to a low energy 5d gauge algebra b, = g,/ 022

energy theory. Every node « in
which is the subalgebra of g, left invariant by the action of outer automorphism 0 In this
work, our choice of outer automorphisms is such that the invariant subalgebras are those listed in

Table 4.6. For each node , we obtain an additional u(1), gauge algebra in the low energy 54 theory
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Comments

2
(2
% k=246
k

n 2> 1; non-geometric

Table 4.5: List of all the new nodes that can appear in graphs associated to 5 KK theories. We also list all the possibili-
ties where an edge starts and ends on the same node. The comment “non-geometric” for the last entry refers to the fact
that there is no completely geometric description of this node. See also a node appearing in Table 4.1. If a KK theory
involves either of these two kinds of nodes, then it does not admit a conventional geometric description.



o | 09 | b | Ry = Ry
su2m) | O® | spm) |[FSFFoFA2 5 A’al
su?m+1) | OP | sp(m) |FoFoLF—Fal
so(2m) | O® |so(2m—1) |[F 5 F®1,S—5C—S
e 0o® fa FoFOoLF>Fal
50(8) [oJ8) g2 FoF®1L,S—>FalLCoFal

Table 4.6: The table displays the invariant algebra ) when g is quotiented by 0@ pAn irrep Rg of g decomposes to
an irrep Rh of b and this decomposition is displayed (for representations relevant in this section) in the column labeled
Rg — Ry. 1 denotes the singlet representation.

coming from the reduction of a tensor multiplet B; on the circle where 7 lies in the orbit .

Now we determine the spectrum of hypermultiplets charged under @©,h,, under the low energy

@dim(Ry,)

i . Recall that

5d theory. First of all, for every node 7 in 6d theory, we define 7; = &R
T; € R;and hence the 6d theory contains hypermultiplets charged under representation S; of g,
where S; is defined such that §; @ 7, = R,. S; is the representation formed by those hypers that are
only charged g; and not under any other gauge algebra g; with j # 7.

As detailed in Table 4.6, irreducible representations Ry, of g,, can be viewed as irreducible repre-
sentations of Ry,. We can thus view hypers transforming in representation S; of g; as transforming
in a representation of h,. Let us denote this representation of b, by S,. The outer automorphism

04 then permutes constituent irreps inside S, and thus acts on S, as an automorphism. The low

energy 5d theory then contains hypers transforming in the representation

S, = 8,/0) (4.14)

These hypers are only charged under b, and not under any other gauge algebra b with 3 # «.
Now consider other hypermultiplets that are charged under multiple gauge algebras in the 64

theory. These descend to hypermultiplets charged under multiple gauge algebras in the low en-



ergy 5d theory plus some hypers only charged under the individual algebras. Consider the mixed
representation R;; = R;;; @ Ry of g; @ gy in the 64 theory. Let 7 and / lie in orbits # and j re-
spectively. Let R;;; decompose as R, D 74p,,1 when viewed as a representation of b, where
Rp,e is the full subrepresentation that is charged non-trivially under b,. Similarly, let R;;; de-
compose as Rz 5 @ 7,551 when viewed as a representation of g, where R, 5 is the full subrep-
resentation that is charged non-trivially under bs. Then, under the twist, R;; descends to a mixed
representation R,5 of b, & b plus representations S5, and S, of b, and by respectively. Here
Rup = Raupa @ Rapps Sapa = 1up pRaparand Sup g = 145, Rap p-

In addition to the above, we also obtain hypers in the symmetric product Sym?(R;;) for all j #
such that both 7 and 7 are in the same orbit . Thus, the full representation R, formed by hypers

under b, is

dim(R,,
R.= @]'Easme (,R’z'j,z')‘ha ® S, Dg (Rj;,a (Reee) © S, ,a) (4.15)

where Sym®(R /)|, means that we view Sym? (R ;) as a representation of h,. Note that in the
above expression, 7 is a fixed node in the orbit @, j cannot equal 7, and 4 cannot equal a. There are
no hypers charged under 1(1),. Just as the representations R; and R; for all 7 and j determine the
full matter content for 64 SCFTs, the representations R, and Rap for all # and £ determine the full
matter content for 5d KK theories. An example of this form was demonstrated in (4.9).

The low energy 5d gauge theory also contains tree-level Chern-Simons terms that arise from the

reduction of (4.1) on the circle. These can be written as
aB 2
Q¢ Ay, A tr(Fﬁ) (4.16)

where A4 , is the gauge field corresponding to the u(1), obtained by reducing B, on the circle and
Fj is the gauge field strength for bg. In writing (4.16), we have used the fact that the index of bz in gg

is one which is true for our choice of f listed in Table 4.4. (4.16) contributes the following tree-level
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term to the prepotential
ree 1 af ab
6 .;;{%z} = GZ QQS P0,x (K,e ¢a,ﬁ¢b,ﬂ> (4.17)
a,B

where g,  is the scalar living in the vector multiplet corresponding to u(1), and P, pare scalars liv-
ing in the vector multiplets corresponding to u(1),,g which parametrize the Cartan of h. Here K[‘@’b
is the Killing form on g normalized such that its diagonal entries are minimum positive integers
while keeping all the other entries integer valued.

Leth = @,bh, be the total gauge algebra visible at low energies. The low energy hypermultiplets
form some representation R of h which decomposes into irreducible representations of h as R =
DR . Note that it is possible to have /' # f such that Ry = Ry. In other words, the index /
distinguishes multiple copies of representation R . Now we can add the one-loop contribution to

the prepotential (4.17) to obtain

P 1
6F5 0.} = 2395[8%,“ (bi%,/z%,p) T3 Z - ol — Z Z (w(Ryp) - @+ md’
a,B r f (Rf)

(4.18)
where 7 are the roots of ) = ©,b,, w(Ry) parametrize weights of Rrand my € R is a mass term for
each full® hypermultiplet /. The notation w - @ denotes the scalar product of the Dynkin coefficients
of the weight w with Coulomb branch parameters. Note that similar approaches for computing
prepotentials of sd theories have appeared in the literature—see for example 333482,

In (4.18) we must impose that mass terms for hypers belonging to S,g., and S, 5 equal the mass
term for hypers belonging to R 5. This is because Rz, Spp., and S,p 5 all descend from the same 64
representation R;; which has only a single u(1) symmetry rotating it. The Wilson lines for this 1(1)

around the compactification circle gives rise to the mass terms for R, Sy, and S, 5, and hence all

Half-hypermultiplets do not admit mass parameters unless completed into a full hypermultiplet.
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these mass terms must be equal.

We propose that (4.18) is the full exact prepotential for T{él{(q .} Where we have ignored the terms
involving the mass parameter % where R is the radius of compactification. We are justified in doing
so since these terms do not play any role in this section. Moreover, only the part of 6.F ¢, ; thatis
cubic in Coulomb branch parameters P is relevant to the discussion in this chapter; so, for conve-
nience, we denote the part of the prepotential cubic in Coulomb branch parameters by 6., z e

Notice that fixing the relative values of @ . A0d 72¢ fixes the signs of the terms inside absolute
values in (4.18). As the relative values of ¢, and myare changed, the sign of some of the terms in
(4.18) changes. This leads to jumps in the coefficients of various terms in the resulting 6.F, ng (g}
This means that different relative values of P and mylead to different phases inside the Coulomb

branch of the 5d KK theory.

4.3.2 SHIFTING THE PREPOTENTIAL

Consider a 6d theory T with gauge algebras g; on its tensor branch. Consider further compactifying
T on a circle of finite size without a twist. On a generic point of the resulting 54 Coulomb branch,

the massive BPS spectrum includes W-bosons for the corresponding untwisted affine gauge algebras

o

. In other words, the abelian gauge algebra visible at low energies on the Coulomb branch is
®,u(1),,, parametrizing the Cartan of g; plus a u(1)g ; responsible for affinization. The u(1); aris-
ing from the reduction of tensor multiplet B; is central to ®,u(1),,; © u(1)p,. The untwisted Lie
algebras are listed in Table B.2 along with their Coxeter and dual Coxeter labels.

We now generalize the above statements to the twisted case. Consider compactifying ¥ on a circle
of finite size with a twist S, {4, }. On a generic point of the resulting 5d Coulomb branch, the mas-
sive BPS spectrum includes W-bosons for the corresponding twisted/untwisted affine gauge algebras

(

gaq“). In other words, the abelian gauge algebra visible at low energies on the Coulomb branch is

®,u(1),,, parametrizing the Cartan of b, plusau(1)g , responsible for affinization. The u(1), aris-
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ing from the reduction of tensor multiplet B; (with 7 in orbit of 2) is central to B ,u(1),, & u(1)g .
The twisted Lie algebras are listed in Table B.3 along with their Coxeter and dual Coxeter labels.

The charge under u(1), , (corresponding to a simple co-root ¢)’) of a W-boson 17, (correspond-
ing to simple root e, of gg(tq“)) is given by the element A4, of the Cartan matrix. Now consider the
u(1) embedding into & ju(1),, by the map ¢# — &7 (e"dbv ‘9) , where (e’dbv ﬁ) , is the ele-
ment ¢4 7 of u(1);, and 4} are dual Coxeter labels of giq“) listed in Tables B.2 and B.3. Since all
the W-bosons ¥, are uncharged under this u(1), it follows that this u(1) can be identified with the
central u(1),. The charge of a particle 7, under u(1), can be written as Y_)*  d)/ ;. where n;, , is
the charge of the particle under u(1), ,.

The truncated prepotential 6.F S¢ (2.} is written in terms of Coulomb branch parameters ¢ b
(with1 < & < 7,) corresponding to u(1),, and ¢, , corresponding to u(1),. To facilitate com-
parison with geometry, we wish to write the prepotential in terms of Coulomb branch parameters
corresponding to u(1) b for 0 < b < 7,. This is achieved by performing the following replacement
in 65 1,.)

@b,zx - @b,zx o d}i/gp(],a (4'19)

foralll < & < 7, and for all 2. We will call the prepotential obtained after this shift as F S{qa}-
The Coulomb branch parameter g, , in .7357{%} corresponds to u(1)g , rather than 1(1),.

A Mathematica notebook, using”*, accompanying the submission of the original paper3° can be
used to compute the contribution to 6.F (in any gauge-theoretic phase) from a single node or two

nodes connected by an edge.

*Note that the shift (4.19) has been studied before the in the literature in relation to resolutions of ellip-
tically fibered Calabi-Yau threefolds; in these examples, the effect of the shift is to expand the Kihler form /in
basis of primitive divisors—see for example®”.



4.4 GEOMETRIES ASSOCIATED TO 5D KK THEORIES

In this section, we will show that we can associate (at least one) genus-one fibered Calabi-Yau three-
fold X 1,,) to every 5d KK theory’ Q{?(,I{(qa}' Compactifying M-theory on X 1, 1 produces the

KK
Coulomb branch of ‘Z& (7.}

Some of the results appearing below also appeared in ©+67:66:63:65:70:68,69,55,29.28

4.4.1 GENERAL FEATURES

In this subsection, we start with a description of general features of the geometric structure of
X5, {4,y and the relationship between this geometry and the low energy effective theory governing
the Coulomb branch of the KK theory ‘ISK,I{;%}'
We will show that X 1, 1 can be realized as a local neighborhood of a collection of irreducible
compact holomorphic surfaces intersecting with each other pairwise transversely. As we will see,
the surfaces fall into families indexed by «. We denote the irreducible surfaces in each family « as
Sanwhere0 < 2 < 7, (where 7, is the rank of b, ). The Kihler parameters associated to S, , are
identified as the Coulomb branch parameters P of the corresponding 54 KK theory discussed in

the previous section. Whenever b, is trivial, the rank of b, is zero and hence there is only a single

surface Sp , associated to the node « in that case.

TRIPLE INTERSECTION NUMBERS AND THE PREPOTENTIAL

A key role in the relationship between X 1, 1 and ‘I{g{{(qﬂ} is played by the shifted prepotential

65 {4.}- The coeflicients ¢z 5., of @, , @, 9., in 6F5 ;.1 capture the triple intersection num-

5We remind the reader that this statement is not completely true for KK theories involving the last node
in Table 4.5. For such KK theories, we only propose an algebraic description whose structure closely mimics
the structure of genus-one fibered Calabi-Yau threefolds to be discussed in the next subsection 4.4.1.
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bers of surfaces in X 1, } as follows:

Can,ac,an — Sﬂ,zx : Sﬂ,zx ' Sﬂ,a (4-2'0)
Canan,bf = 3Sa,a : Sﬂ,zx 'Sb,/Z (4.21)
Can,bB,cy = 6Sa,a ) Sb,ﬂ : Sc,y (4.22)

where (2,2), (b,8), (¢, y) denote distinct non-equal indices.

A triple intersection product of three surfaces can be computed via intersection numbers in-
side any one of the three surfaces. To explain it, let us first first define the notion of “gluing curves”.
Consider the intersection locus £, 2 between two distinct surfaces S, , and Sy, g in X, (g2} Lonp
splits into geometrically irreducible components as >, £ 24 Each L 4,4 APpears as an irreducible
curve Cfl, wb g in S, , and an irreducible curve C”A Bia in Sy 4. In other words, we can manufacture

the intersection of S, , and S}, 5 by identifying the curves

Ciz,zz;b,(@ ~ CZ,/Z;a,a (4'23)

with each other for all 7. Identifying pairs of curves in the above fashion can be thought of as “gluing
together” two surfaces along those curves®. The reducible curve C wabf = > wa; b is called the
“total gluing curve” in S, ,, for the intersection of S, , and S}, 5. Similarly, Cy ., 1= >, CZ, B 18
called the total gluing curve in Sy, g for the intersection of S, , and S, .

As two distinct surfaces S, , and S, b8 can intersect each other, so can a single surface S, , intersect
itself. Much as above for the intersection of two distinct surfaces, the self-intersection of S, , can be
captured in terms of gluings

Coo ™~ Di (4.24)

°On multiple occasions throughout this chapter, we abuse the language and denote the identification of
two curves as “gluing” of the two curves.
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; l . . .
where C}, , and D, , are irreducible curves in S, ,.

Then the triple intersection numbers can be expressed as:

Sa,cx ’ Sa,oc ' Sa,zx = K:l,zx : K:l# (4..2.5)
Szz,zx : Sa,ac 'Sb,ﬂ = K:z,zx : Ca,x;b,ﬁ = Ciﬁ;d# (4.26)
Sﬂﬂ ’ Sb”g ’ S[77 = Ca,a;b,ﬁ ’ Cﬂ’“;[’}/ = Cb:[g;[77 ’ Cb:(g;ﬂvd = Cf:}/;dvo‘ : Cfv}/;bug (42’7)
where
K:z,u = Kﬂ,“ + Z (Ci,a + Djz,zz) (4'28)

and K, , denotes the canonical class of S, ,.

CONSISTENCY OF GLUINGS: VOLUME MATCHING, THE CALABI-YAU CONDITION, AND IR-

REDUCIBILITY

Not every pair of curves can be identified with one another to form a consistent gluing. First of all,
the topology of the two curves must be identical. This implies that a geometrically irreducible curve
in one surface can only be identified with a geometrically irreducible curve in another surface, and
furthermore that the genera (as defined in Appendix B.3.1) of the two curves must be identical and
non-negative. If C C S'is an irreducible curve, then a necessary condition that must be satisfied by
C'is that for any other irreducible curve ¢’ C Ssuch that C # C, the intersection product must be

non-negative:

c-C >0. (4.29)

In this chapter, some of the algebraic examples are non-geometric (i.e. do not admit a conventional

geometric description satisfying these consistency conditions) because they involve gluings which
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identify a geometrically reducible curve in one surface with a geometrically irreducible curve in an-
other surface. Despite this apparent pathology, these examples nevertheless satisfy the remaining
conditions described below.

In addition to the above topological constraints, the volumes of a pair of gluing curves must be

the same. The volume of a curve Cis computed by intersecting the curve with the Kahler class / via

vl(€) = 7 C (430)
where
J= Z Py et Z meNy (4.31)
a.a f

where 77 are mass parameters and Nyare non-compact surfaces corresponding to those mass pa-
rameters. The contribution of mass parameters to the volume will not play a prominent role in
this chapter, so we define a truncated Kahler class /% which only keep track of the contribution of

Coulomb branch parameters to the volume

]¢ = Z ¢ﬂ7dSa,zz (4-32')

The volume of C equals the mass of the BPS state obtained by wrapping an M2 brane on C because

the intersection number

—S40-C (4.33)

captures the charge under u(1), , of the BPS state arising from M2 brane wrapping C. If C lies in

S4 4> then the intersection (4.3 3) is computed via

Saa  C=K,, - C (434)
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Cl? C21 C23 Cq’—lz’
S1 S2 I 1 S,-

Calabi — Yau Condition : (07)2 + ((71')2 =2¢—2

Figure 4.1: Gluing using the Calabi-Yau condition

If Clies in some other surface Sy, g, then (4.33) is computed via

Sﬂ,ﬂt -C= Cb,{@;a,a -C (435)

Now, for (4.23) to be consistent we must have

jSD ’ Cjz,a;b,,@ :j?’ ’ CZ,,@;A,@: (4-36)

which is an important consistency condition for constructing X ¢, ;. We have checked that (4.36)
is satisfied for all the geometries presented in this chapter.

Finally, the gluing curves also have to satisty the Calabi-Yau condition which states that
. 2 . 2
<C§z,zx;b,ﬂ> + (%,ﬁ;a,a) = 2g —2 (4.37)
where g is the genus ofCZ b See'28 for more details.

WEIGHTS, PHASE TRANSITIONS AND FLOPS

A hypermultiplet transforming in a representation Ry of the 5d gauge algebra ) = @, b, appears as

a collection of curves inside X 1, 1. These curves are characterized as follows. Let 727 be the mass
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parameter corresponding to R . For each weight w(Ry) of Ry, define a quantity vol (w(Rf)) ,

which we call the virtual volume, by shifting the quantity

w(Ry) - @ + my (4.38)

by the shift (4.19) for all #. Then, one can find a holomorphic curve Cw(Rf) in X (,,1 such that

vol (Cw(Rf)) = |vol (w(Rf)) | (4-39)

In general, the curve Cy( ) can be a positive linear combination of curves living inside various
irreducible surfaces. However, some of the curves Cy( ) turn out to be living purely inside a single
irreducible surface S, . If such a curve C,, has genus zero and self-intersection —1 inside S, ,, then
one can perform a flop transition” on X ¢, y by lopping C, which corresponds to a phase transition
in the Coulomb branch of the 54 gauge theory described in previous section. We refer to such a flop
transition as a “gauge-theoretic flop transition” to distinguish it from the flop transitions associated
to more general —1 curves not associated to any hypermultiplet.

Let the geometry obtained after the flop transition associated to Cy, be Xg, (0} As for Xg 1,1,

there exist curves C/w(Rf) in Xg’ (g} associated to weights w(Ry) such that

vol (C,w(Rf)) = |vol’ (w('Rf)) ] (4.40)

where vol’ (w(Rf)) is the shift of the quantity (4.38) computed in the new phase. The relationship

7This transition corresponds to blowing down Cinside S, , and performing a blow-up in the neighbor-
ing surfaces intersecting C transversally. We will explain such transitions via various illustrations throughout
this chapter. More detailed background can be found in Section 2 of**.

175



between the two virtual volumes vol’ (w(Rﬁ) and vol (w(Rf)> is

vol’ (w(Rf)> = vol (w(Rf)) (4.41)

forall w(Ry) # w, and

vol' (w) = —vol (w) (4.42)

with a minus sign.

AFFINE CARTAN MATRICES AND INTERSECTIONS OF FIBERS
For each surface S, , in X, {g.}> We define a canonical fiber £, , inside it:

* If g, is non-trivial, then S, , will always be a Hirzebruch surface® whose fiber class is the
canonical fiber f; ,. An M2 brane wrapping this curve gives rise to the W-boson 17, ,, dis-
cussed in last section.

e Ifthe node z is

su(1)™M

* (4-43)

then it turns out that there is a single corresponding surface Sy, = F% which is self-glued
since ¢ — xwand e — y are identified with each other where x and y are the exceptional curves
corresponding to the two blowups. Due to the self-gluing, the fiber class of Sy ,, intersects
itself inside the threefold X r, 1 and appears as an elliptic curve with a nodal singularity. Itis

this fiber class that we refer to as the canonical fiber fj ,, in this case.

81n this chapter, by a “Hirzebruch surface”, we refer to a Hirzebruch surface possibly with blowups at
generic or non-generic locations. Some background on Hirzebruch surfaces can be found in Appendix B.1.3.



e Ifthe node z is

(4.44)

then it turns out that there is a single corresponding surface So, = dPg. The del Pezzo
surface® dPg admits a unique elliptic fiber class 3/ — > x; which we refer to as the canonical
fiber fp ,, in this case.

* Ifthe nodeais

su(1)M
2

-

(4.45)

then it turns out that there is no completely geometric description. We provide an algebraic
description in terms of algebraic properties of the curves inside the surface S, = F% which
is self-glued since x and y are identified with each other. The canonical fiber in this case is

fo,.. = 2h + f— 2x — 2y which is a genus one curve of self-intersection zero.

For each « we find that
f;z,a : Sb,zx = _Aﬂb (4-46)

(92)

where A, is the Cartan matrix of g,’*’ and 4,;, = Agg = 0 whenever g,, is trivial. This means
that the fibers of Hirzebruch surfaces S, , for a fixed « intersect in the fashion of Dynkin diagram
associated to affine Lie algebra giq“).

Intersection (4.46) is of the form C - S, , where Cis some curve in the threefold X (g2} and S, ,

is a surface inside the threefold. Like the triple intersection numbers of surfaces inside a threefold,

such intersections can also be computed in terms of intersection numbers inside a surface. If Ciis a

°In this chapter, by a “del Pezzo surface dP,”, we refer to a surface which is an 7 point blowup of P2
but the blowups can be at non-generic locations. Some background on del Pezzo surfaces can be found in
Appendix B.1.3.
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curve inside S, ,, then

C-Sn=C-K (4.47)

a,a

and if C'is a curve inside a surface Sy, g that is distinct from S, 4, then

C- Sa,a =C- Cb,ﬂ;a,a (4-48)

In fact one can show that the Calabi-Yau we are describing is genus-one fibered and we have sum-
marized it in subsection B.4.1.
Let us now discuss the relationship between fibers £, and the radius of compactification circle R.

In general, we can find at least one node w such that

Ruffu ~ Ny afa (4.49)

with Nyo 2 ny > 1 for all # . Then the curve

N (4.50)
with /, defined in Section 4.2.3 can be identified with the KK mode of unit momentum in Zflqu}

and has mass % where R is the radius of the circle on which the 6 theory T has been compactified.
Thus, all the £, can be identified as fractional KK modes with mass n%R where n, = [,n,,. This

generalizes the condition in the untwisted unfrozen case where the KK mode is identified with

f=f (4.51)

for any 7, which is consistent since f; ~ f; forall 7, ;.



UNTWISTED SIMPLE NODE EXAMPLE

Let us illustrate through a simple example of the KK theory specified by the graph

su(3)M)

> (4:52)
This theory has six hypers in fundamental of s11(3). The Dynkin coefficients of the positive roots of
su(3)are (2,—1), (1,1) and (—1, 2). The Dynkin coefficients for the weights of fundamental are

(1,0), (—1,1) and (0, —1). The Killing form is

and Qg‘g isal x 1 matrix which equals 2. Without loss of generality, we can take - @ for positive
roots to be positive. This implies that 7 - ¢ for negative roots is negative.

Let us first fix all the mass terms to be zero. Then the first weight (1, 0) contributes with a posi-
tive sign since the positivity of 7 - @ for positive roots implies that ¢, is positive. Similarly, the third
weight (0, —1) contributes with a negative sign to the prepotential. However, the sign of second
weight (—1, 1) cannot be determined uniquely, and hence the theory has two phases when all mass
parameters vanish. These two phases are distinguished by the sign s of the contribution due to the

weight (—1, 1). The prepotential can be written as

677 = 6F =120, (2 + 93 — 21, ) + (221 — 22)° + (1 + 2,)° + 20, — 21)°)

3
~3(s(po— )" + ¢} +¢3) (453)
Here 129, (gp% + gpg - ¢1¢2) is the contribution coming from the Green-Schwarz term in 64,

179



(2¢>1 — @2)3 + (¢>1 + ¢2)3 + (2¢2 — @1)3 is the contribution coming from the positive and
negative roots, and —3 (5 (py — gol)g + % + gpg) is the contribution coming from the weights of
six hypers in fundamental.

When we turn on mass parameters, the sign of the weights corresponding to different hypers can
be changed. For example, consider turning on a mass parameter for one of the fundamentals 21
while keeping the mass parameters for the other five fundamentals zero. Now we obtain contribu-
tions from terms of the form |m1 + @, |, [m1 — @, + @,| and |[m1 — @,|. Depending on the value
of m1, we go through various new phases of the theory which are parametrized by choices of signs of
these three terms. For example, suppose that 721 is positive and very large, so that all the three terms
are positive. Moreover, assume that @, — @, is positive, so thats = +1. Then the resulting phase is

governed by the following prepotential

6F =120, (p% + 03 — p1,) + (201 — 22)° + (1 +2,) + 20, — 1)°)

5
~ (=) + ol ed) =5 (o= o1 +m)" + (2 +m)* + (—py +m1)*)

N

(4-54)

which implies that the truncated prepotential is

677 =120, (03 + 03 — p10,) + (201 — 22)° + (o1 +2,)° + 20, - 21)°)

~3((p2— )" +¢%) — 26} (4:55)

Shifting the prepotential according to4.19
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For illustrative purposes, we note that the shift for our example (4.52) is

P17 P11~ Po

Py P2 — Py

which means that the shifted prepotential corresponding (4.53) is

6F = 8p) + 8¢ + 205 — 60,05 + 60,05 — 60,07 — 120,07 (4.56)

where we have chosen the phase s = +1.

The shifted prepotential for (4.55) is

6F = Tp; + 8% + 305 — 60,05 + 60,03 — 30,05 — 30,05 — 120,07 (4.57)

Reading off the Geometry according to 4.4.1

We propose that the associated geometry is as follows. Since there is a single node, we drop the
index « and only display the index 2. The surfaces are Sy = Fo, .51 = Fa, 5> = F§. The gluing
curves between Sg and S7 are Cp;1 = ¢, C1,0 = e. The gluing curves between S1 and Sp are C1,2 =
b, Ca.1 = e. The gluing curves between Sz and S are Co.g = b — > x;, Cp.p = e

Now we can check that the intersections of these curves indeed give rise to the various coefficients

in (4.56):

* First of all, recall from (B.22) that K* = 8 — & for F%. Indeed, the coefficients of ¢2 in (4.56)

equal K2.

* One third the coefficient of @, @7 is zero which matches ng = (€?)s, where (¢2)s, denotes

that the intersection number ¢? is computed inside S and that in particular the curve e is
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inside Sp. The coefficient also matches K - C1.0 = (K- ¢)s, = 0. One third of the coefficient
of @, @¢ is —2 which indeed matches C3., = ((h — z:x,')Q)S2 = (P-X x?)52 =
4—6=—2and Ky - Cp.2 = (K - ¢)s, = —2. Similarly, we can check the matching of such

intersection numbers with one third the coefficients of other terms of the form ¢_g7.

* Onessixth the coefficient of @@, @, is zero which matches Co;1 - Co,2 = (%), = 0,

Cii2 - Cryo = (h-e)s; = 0,and Co9 - Co51 = ((h— X w) - ¢) g, = 0.

On the other hand, the geometry associated to (4.57) has Sy = IF(l), S1 = Fyand Sy = FZ. The
gluing curves between Sp and 7 are Cp;; = ¢, C1;0 = e. The gluing curves between S1 and S5 are
Ci.2 = b, Co = e. The gluing curves between S and Sp are Co.p = b — D> x;, Co2 = ¢ — x.
Here x denotes the exceptional curve of the blowup of Sy and x; denote the exceptional curves of the
blowups of S. One can check that the intersections of these curves indeed give rise to the various
coefficients in (4.57). As an example, in what preceded above we discussed the geometry associated

to (4.56). We can check that (4.36) is satisfied for all the gluing curves in the geometry. For instance,

J? - Coa = @y (Ko - Coa) + 9,C5.0 + 25 (Cos2 - Coq1) (458)
=0y (K-¢)g, + 0, <€2>50 + o, <€2>50 (4.59)
= 29, (4.60)

and comparing it with

J? - Cro = %C%;O +¢, (K1 - Cro) + ¢, (Cr2 - Cryo) (4.61)
=00 (), + 01 (K-0)s, + e, (1.62)
= 29, (4.63)
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we find that indeed the gluing Co,1 ~ C1,g is consistent. Similarly, it can be checked that all the
other gluings are consistent as well. In a similar fashion, one can also check that all of the gluings in
the geometry associated to (4.57) discussed above satisty (4.36).

Flops as discussed in 4.4.1:

We know from the above analysis that the canonical 54 gauge theory associated to (4.52) is an
s1(3) gauge theory with six fundamental hypers. The Dynkin coefficients of the weights of funda-
mental are (1,0), (—1,1) and (0, —1). We call these weights w1, wy and w3 respectively. We can

compute

vol(w1) = —@, + ¢ (4.64)
vol(wg) = —@, + 0, (4.65)
vol(ws) = @5 — @, (4.66)

Recall that the phase (4.56) corresponds to vol(w1 ) and vol(ws2) being positive and vol(ws) being
negative for all the six fundamentals. Now compute the volume of one of the blowups x; living in

the surface S in the geometry corresponding to (4.56):

vol(x;) = —@, + @, (4.67)

Thus we see that Cy,, for each fundamental is xv;. The reader can check that C,,, = f5 + x; and
Cw, = f1 + f2 + x; where £, denotes the fiber of the Hirzebruch surface S,.

In fact, the geometries corresponding to (4.56) and (4.57) are related by a flop transition. We first
blow down one of the blowups, say xg, inside S2. Under this blowdown the identity of S5 changes
from F§ to IF. Since x intersects the gluing curve » — 2?21 x; at one point, the gluing curve after

the blowdown becomes » — Z?:l X+ xg = b — Zle ;. The other gluing curve inside 2 is
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unaffected since xg does not intersect with it. Correspondingly, since the gluing curve for S in o
does not intersect x6, the surface Sy is unaftected by the flop transition. However, since the gluing
curve for Sy in S intersects xg, we have to blowup Sy at a point lying on the gluing curve for S»
inside Sp. Under the blowup the identity of Sy changes from F to F§. The gluing curve for S»
inside S7 is changed to e — .

Recall that the phase (4.57) corresponds to turning on a large mass 7 for one of the fundamen-
tals such that

vol(w3) = @y — @y + m (4.68)

for this fundamental is positive. Correspondingly, we can compute that

vol(x) = ¢y — @, (4.69)

which indeed matches (4.68) up to the contribution from mass parameter, thus verifying (4.42). We
are not keeping track of non-compact surfaces in this work, so we are only able to verify (4.42) up to

the contribution from .

4.4.2 GEOMETRY FOR EACH NODE

In this section we will describe the surfaces S, , along with their intersections associated to a single
node a.

We will capture the data of the surfaces and their intersections by using a graphical notation that
would be a simpler version of the graphical notation used in **2°. We will provide some examples to
demonstrated the form of the geometries mainly associated to examples discussed in the previous
subsections. An exhaustive presentation of our results can be found in>°.

Intersection Matrix as the Affine Cartan Matrix according to 4.4.1:



We can compute that

fo
N
f2
fo
S
f2
il
f2
fo

Thus we see that £, - S, indeed reproduces the negative of Cartan matrix of affine Lie algebra

So = (K-fg, = —2
S = (K-fs, = —2

Sy = (K-f)s, = —2

81 =Co1-fo=(e-fls, =1

S =Cio-fi=(h-fls, =1

o= Cop fo = ((Io—Zx,») -f)SO —1
So=Cro-fi=(e-fs, =1
S1=Con-fo=1(e-fs, =1

S =Cop fo=(e-fls, =1

su(3) (1), We can similarly check that the geometry associated to (4.57) also leads to the Cartan

matrix of su(3)(1).

UNTWISTED

In this subsection, we collect our results for nodes of the form

g
k

(4.79)

with 6d su(z) symmetries. More general gauge symmetries were studied in the original work. That

is, we restrict ourselves to the case where the associated affine Lie algebra is untwisted. All such

nodes are displayed in Table 4.1 and Table 4.2. Most such cases were first studied in *?. We will
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be able to recover their results. We will associate a collection of geometries parametrized by » to each
node of the form (4.79). Geometries for different values of » are flop equivalent as long as there are
no neighboring nodes, but might cease to be flop equivalent in the presence of neighboring nodes.
The geometries associated to (4.79) in*® are obtained as » = 0, 1 versions of the geometries associ-

ated in this chapter.

h ¢ h e
looy ——— 24, (n—1)25-2-,
‘ b

e .
O(()4nfv)+v -

ey X b

h (4
(2n —1)4n-2- (2n — 2)40-4- (n+1)2nt2-

) (4.80)

where 0 < v <4mandzn > 2.

For n = 1, we have

Oé_v e, e x; ) e, h-y x; 1.\2,
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where 0 < » < 4,

1o, 24y s N2p—y

‘ b
e i

0(()4n+27v)+v

ey X
b e

2n)4n— 2n — 1)gp—92—y — -+ — (0 + 1)ony2—
( )4 v ( )4 2—v 7, b ( )2 +2—v (4,82)

¢ h

where 0 < v <4n + 2andn > 1.

For n = 0, we claim that the geometry is

e-X

1+1
00

(4-83)

which can be recognized as a limit of » = 1 phase of (4.82). A detailed analysis of this was done in

Appendix B of >°.



TwISTED SINGLE

In the previous example we saw how one can start from a 6d SCFT, write down the sd prepoten-
tial and successful read off the geometry. The example was done for the untwisted case in order to
demonstrate the general methods. However, in the previous sections we demonstrated how auto-
morphisms act on the prepotential and the theory in general and hence incorporating those too we
end up with the sd geometry of the twisted compactification.

We would like to demonstrate some of the geometries associated to a single node which will be
used for gluing, all such nodes are listed in Table 4.5. Here we will not try to be exhaustive as the
results are in the original paper*° but we will focus on single nodes associates with the 6d gauge

symmetry su(z) and consider geometric descendants.

Fiber Twist:
. lomg2
/ f
mq EZi ¢ (m—1)6 b ¢ 22m )
m
h
Sy
mr (4.84)

where m > 3. Notice that the Cartan matrix associated to this geometry is precisely that of su(2m)?).
Similar comments hold for all the geometries discussed below in this subsection. For each example

below, one can check that £, - S reproduces negative of Cartan matrix of the associated twisted affine
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algebra g,

Xi

2h ¢

m; (m—1)g h ... © omig 2 e Xy 0é2m+1)+(2m+1) il
7’v
(4.85)
where m > 2.
X
9— 3k 0(9=3K)+(9-3k) _ 2 ud det(4-k)f 1

4k—2

Ji



where 1 < k£ < 3.

Base Twist:

(20— 1)3p5 —= (20— 2)},, - P+ 1)),
h e
o ¥ | fa ATz
B3 e+(n-2)f .
o3 nitt )
h\ £ £ /e+f-x—2y, 4
-X X f:x 2 J‘:x
13 bh-x ¢ 24 bh-x e (n o 1)n+1
(4.88)
forn > 2.
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Forn = 1, we have

X

9 bb-Y e+fx-2y, e-x 141
02 : 1L

J

Now we discuss some examples which are not completely geometric:

(@)}, 25 @n— Db, g o 2 ()l T (g gl
h
x e+fx-2y-z,
/ S x| fx fx fz Zix yz
b-Zx[
2n+1
ot 2
h
fx S fx
% . X bf
1% . p 2411 o B (n— 1);11+1 o B n111+2
(4-90)
forn > 2.
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For n = 1 we have

2%-{-1-{-1
e+f e+fx-2y,
fxz
h->" x;
03 2
h
bf
‘1
3 (4.91)
For n = 0 we have
oo
y
(4.92)

Let us now discuss the reasons why the above five examples are not completely geometric. Let us
start with (4.92). The geometry for this example contains the —1 curve » — x — y and hence an

M2 brane wrapping this curve should give rise to a BPS particle. However, this BPS particle cannot
appear in the associated 5d KK theory for the following reason. The existence of a particle associated
to b — x — y implies that the KK mode, which is associated to the elliptic curve 2/ 4 f — 2x — 2y,

decomposes as a bound state of » — x — yand b + f — x — y but this is a contradiction since these
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two curves do not meet each other and hence there cannot be such a bound state.

Another reasoning is as follows. The volume of fis 2¢p where ¢ is the Coulomb branch parame-
ter associated to the above surface. On the other hand, the volume of » — x — yis —@. Requiring
non-negative volumes for both curves implies that @ must be zero. In other words, there is no direc-
tion in the Coulomb branch where all BPS particles have non-negative mass. Thus, this geometry is

not marginal, in the sense defined by ***

, which is a condition that must be satisfied by geometries
associated to KK theories.
The precise sense in which the above self-glued F1 surface is associated to the KK theory

su(1)M

2

-

(4.93)

is as follows. The Mori cone of the surface is generated by b — x — y, f — x, x, e. However, since
the curve b — x — y does not correspond to a BPS particle, the generators of the Mori cone thus do
not correspond to the fundamental BPS particles'® in the associated KK theory (4.93). We propose
that the fundamental BPS particles instead correspond to the curves 2/ — x — 2y, f — x, x, e. This
set of curves satisfies all the properties that must be satisfied by the generators of the Mori cone of a
surface. Thus, it is a complete set which can be consistently associated to fundamental BPS particles.
The KK mode can be found as a bound state of 2/ — x — 2y and f — x. One can check that this set
of proposed BPS particles is marginal in the sense that it allows a direction in Coulomb branch with
all BPS particles having non-negative volumes. See also Appendix B1 of *° where we verify that this
description of the KK theory allows the existence of an RG flow to an N = 2 54 SCFT, which is a

fact well-known in the literature.

"°We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of other
BPS particles.
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There are two viewpoints one can take on the relationship between self-glued F1 and the KK the-
ory (4.93). The first is that indeed compactifying M-theory on this surface leads to the KK theory
(4.93), but the compactification has some extra ingredients which account for the mismatch be-
tween the set of Mori cone generators and the set of fundamental BPS particles'*. The other view-
point is that the relationship with self-glued [F1 has no deep meaning and is probably a red herring.
At the time of writing of this work, we do not know which of these two viewpoints, or if either of
these two viewpoints, is the correct one. We leave this issue for future exploration, and only use the
relationship between the two as an algebraic tool to build a formalism for KK theories from which
one can explicitly perform RG flows to 5d SCFTs.

Now let us discuss the non-geometric nature of the KK theories

su(m)M)
2

-

(4.94)

with 7 > 1. Consider as an example the case of 7 = 3. The surface > contains a gluing curve

¢ + f — x — 2yand hence there must be a BPS particle associated to it. However, notice that it
decomposes as e + f—x — 2y = (e —x — y) + (f — y) such that the components e —x — yand f— y
do not intersect each other. This leads to the same problem as discussed above, and we are forced

to hypothesize that the fundamental BPS particles are distinct from the generators of Mori cone

due to some non-geometric feature in the M-theory compactification. It is also evident that some

of the components of the gluing curves in certain surfaces (which are identified with irreducible

curves in adjacent surfaces as part of the gluing construction) fail to satisfy the necessary properties

"' A similar situation occurs in the frozen phase of F-theory?', where the set of generators of the Mori
cone of the base of a threefold used for compactifying F-theory does not match the set of fundamental BPS
strings arising in the associated 64 theory.
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of irreducible curves that are described at the beginning of Section 4.4.1."* Similar comments apply
to each of the m > 1 models presented above should be regarded as an algebraic proposal which

retains many of the features of the local threefolds that seem to be necessary to compute RG flows to

sd SCFTs.

4.4.3 GLUING RULES BETWEEN TWO GAUGE THEORETIC NODES

In this section we will describe how to glue the surfaces S, , corresponding to a node « to the sur-
faces S g corresponding to another node f if there is an edge between « and 8. The gluing rules are
different for different kinds of edges between the two nodes but here we will give some simple exam-
ples based on theories with 6d s11(7) gauge symmetry. It turns out that the gluing rules between «
and 4 are insensitive to the values of Q% and Q. This was also true for all of the cases studied in>®.

For this reason, we will often suppress the data of Q** and Q% in this subsection.

UNDIRECTED EDGES BETWEEN UNTWISTED ALGEBRAS

The simplest untwisted example of such an edge was displayed in Table 4.3 and were first studied
in*®. We are able to reproduce their results using our methods.

Gluing rules for 5u(”a)(1) — 5“(”/3)(1) : Here we allow 7, = 7, and 7, = 6. We can take

any geometry with 0 < » < 2z, — ng for 5u(n“)(1), and any geometry with 0 < » < 2n5 — , for

su(ng)(). The gluing rules are:
c f— X1, %5, i0 So,» are glued to f'— x1, x,,, in So,6-

* x; — X1 in8p 4 is glued to fin Sip fori=1,--- ,np — 1.

"*For example, in the case 7 = 3, one can see that the surface z;“‘“ contains a curve class e + f — x — 2y,

which is identified with the curve class / in the surface 1;. Since b is irreducible, this implies thate 4+ f — x —
2y must also be irreducible, but this leads to a contradiction (with smoothness) if the usual class /' — y remains

among the generators of the Mori cone of 227+
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* X — x411in8p g is gluedto fin S;, fori =1,--- ,m, — 1.

There is another possibility appearing in the twisted case that involves an undirected edge be-

tween two untwisted algebras. This was seen earlier and corresponds to:

5u(na)(1) Su(n[g)(l)
22— 2

-

(4.95)

The gluing rules for this case are the same as the gluing rules for

su(n,))

su(n/;)(l)

presented above.

DIRECTED EDGES

Now we move onto gluing rules for directed edges in the sense of example 4.13 with and without
the fiber twist.

Gluing rules for su(n,) ) — 2 — 5u(”ﬂ)(1) : We can take any geometry with 0 < » < 2z, —

2ng for su(n,)), and any geometry with 0 < » < 2ng — n, for ﬁu(ﬂ[g)(l). The gluing rules are:
c f— X1, Xng = Xng1, ¥2n, N S0, are glued to f— x1, f; %, in So .
® Xj = Xppls Xpgi — Xngit1 i0 S, are gluedto f, finS;pfori =1,--+ ;nmg— 1.
* x;— X41inSp g is gluedto fin S;,fori =1,--- ,n, — 1.

Gluing rules for su(n,) ) — 3 — 5“(”/3’)(1) : We can take any geometry with 0 < » < 2z, —

3ng for su(n,)), and any geometry with 0 < » < 2np — n, for 5u(n[g)(1). The gluing rules are:
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. f— X5 Xng — Xng41,¥2n5 — X¥2ng41, X35, IN So,. are glued to f — x1, £, £, %,, in So4-

X = Xl Xngbi = Sngib s Xngti — X2nptigl iD S0, are glued to £, £, fin S; g fori =

1, g — 1.

* X — x411in8p g is gluedto fin S;, fori =1,--- ,m, — 1.

Gluing rules for 5U(2na>(2) i su(”ﬂ)(l) : We can take any geometry with 0 < » <

2ng — 2n, for su(n‘g)(l). The gluing rules are:
c f— ynﬂ,xnﬁ,f— x1, 91 in 8o, are glued to x9,, 1, ¥2,,, f — %2,/ — x1 in So,6-
* X — X1, Yi+1 — ¥:inSp, are glued to £, fin Sip fori=1,---, ng — 1.
X — X1, %2m,—i — %on,—i+1 inSp g areglued tof, fin S, fori =1, n, — 1.

® X, — Xp,+1inSpgis glued to fin Sy, 4.

Gluing rules for su(27, — 1) S 5“(”(@)(1) : We can take any geometry with 1 < » <

2ng — 2n, + 1 for 5u(n[g)(1). The (non-geometric) gluing rules are:

o ynﬂ,xnﬂ,f—xl,f—yl,f,finSoM are glued to X2, 1, ¥2,,—1, Y1,/ — X1, %1 — X2, f — X2 — y1

in 507/2-
* X% — %i+1,)i — Yir1inSp, aregluedto f, finS;pfori =1, -+ ;mg — 1.
® Xipl = X425 X2n,—i—1 — X2,—; 0 S gareglued to £, fin S, fori =1, -+ ,n, — 2.

® X, — Xp,+1inSpgis glued to fin S, 1 4.
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4.4.4 GLUING RULES INVOLVING NON-GAUGE-THEORETIC NODES

There are only two such nodes which are listed below

(4.97)

We note that in fact there is one more class of non-gauge theoretic nodes > but we do not discuss

it here. Similarly to the previous examples we can define the gluing rules as:

su(1)@M su(2)M
Gluing rules for 2 —2 : We can choose any geometry with 1 < » < 4 for

su(2)(M). The (non-geometric) gluing rules are:

* f—x—yinSp, is glued to fin Sp p.

* x,7inSp, are glued to £ — x1, %1 in 5 p.
As in cases discussed in last subsection, the blowup x1 in S} 4 can be used for gluing osu(2)(1) with
another neighbor such that the gluing rules for su(2) ") with that neighbor allow a blowup on S g
to be used for more than once.

su(1)@M su(1)M
Gluing rules for 22— 2

* f—x,xinSp, are glued to £ — x, xin Sp g.

The blowups x in Sp , and x in Sy g can be used for gluing to other su(1)M neighbors. See Ap-

pendix (B.3.3) for a derivation of the above gluing rules.

su(2) M su(1)®
22— 2

Gluing rules for Q




* f—x1,x1inSp, are glued to x, y in Sop-

* fin S, isglued to f'— x — yin.Sp p.

su(1)@M su(1)®
22— 2

Gluing rules for Q

* 2h—x—2y,f—xinSp, are glued to f — x, x in So.4-

The blowup x in Sp g can be used for gluing to other su(1)™M) neighbors.

Gluing rules for 2 2— 2  : Wecan use any geometry with 1 < » < 3 for su(2)(1),

The gluing rules are:
* f—x1,x1in S8, are glued to x, y in Sp 4.
* f—x1,x1in81 , areglued to f — x, f — y in Sp .

The blowups x1 in Sy , and x7 in S , can also be used for gluing to other neighboring nodes of

su(2)() that carry some su(r) (1),

su(2) M su(1)®
Gluing rules for 2 — 3 —2  : We can use any geometry with 1 < » < 3 for su(2)).

The gluing rules are:
* f—x1,x1 inSp, are glued to x, y in Sp .
* f—x1,x1 081, are glued to 2f — x, f— y in Sp 4.

The blowups x1 in Sy , and x; in S , can also be used for gluing to other neighboring nodes of

51(2)™) that carry some su () (1),
su(1)@M su(1)M

2 — 9

Gluing rules for 2
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* f—x,xin 8o, are glued to 2f — x, x in So.p-

(Note that the gluing rules proposed above are non-geometric.) The blowups x in So , and x in Sp g

can be used to further glue to other neighboring su (1)),

su()M su(1)®
Gluing rules for 2—3—2

* f—x,xin Sy, are glued to 3f — x, xin S 4.

(Note that the gluing rules proposed above are non-geometric.) The blowups x in Sp , and x in Sp g

can be used to further glue to other neighboring s11(1) ),

4.5 SUMMARY AND DISCUSSION

According to a conjecture reviewed in chapter 1 all the 54 SCFTs sit at the end points of RG flows
emanating from 54 KK theories. Thus, this work can be viewed as providing a preliminary step to-
wards an explicit classification of 5d SCFTs. In particular, in the original work associated to this
chapter we provided a full list of all the possible vertices and edges that can appear in graphs asso-
ciated to 5d KK theories. In principle, the Coulomb branch data of all 54 SCFTs is encoded in the
properties of Calabi-Yau threefolds presented in this chapter (see Section 4.4). Explicitly, such RG
flows can be performed through a sequence of flops and blowdowns on the Calabi-Yau threefolds
associated to 5d KK theories. This method has been discussed in*"***¥ and the explicit classifi-
cation of 5d SCFTs up to rank three was done in** using the results of this work. Additionally,

extensions of this work have been considered in 2+*®

3227 The classification programs of SCFTs have
been proven very fruitful and new constructions and new physics always seem to emerge through
these programs. It would particularly interesting to study such classification programs for lower di-

mensional SCFTs. It would also be interesting to study in what extend similar ideas can be used in

gravitational theories with the hope of classifying large classes of compact threefolds.
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"String theory is a miracle through and through.”

Edward Witten *5

Conclusion

In this thesis various properties of UV completions in quantum gravity and quantum field theory
were studied. Such questions are usually hard to study with only information from the low en-
ergy physics but string theory has shown to be a powerful guiding tool to uncover the secrets of UV
physics. From the quantum field theory perspective it provides a way to construct explicit examples
of UV CFTs which may contain tensionless strings and light solitonic objects. From the gravity side

it provides a way to gain intuition about the potential basic properties of quantum gravity which
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are then supported by basic properties of gravity from the bottom up through he Swampland pro-
gram. Strings theory has proven a useful tool to understand holography, dualities and microscopic
information of black holes physics. In both cases it is important to attempt to understand similar
characteristics without the help of string theory. This approach can help support the uniqueness
of quantum gravity and its interplay with field theory or it can suggest new pathways forward and

provide a deeper understanding of such UV questions.
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Supersymmetry in diverse dimensions

In this appendix some important features of supersymmetries in diverse dimensions will be summa-

rized. The following table summarizes the spinors in diverse dimensions.
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s-tmod8 | Spinors SO(d) SO(1,d-1)

o MW= R(2472/2) & R(2472/2) SO(8) SO(1,1/9)
1,7 M=R(2¢71/2) SO(7) SO(1,2/8/10)
2,6 M*=C(24-2/2) SO(2)/SO(6)/SO(10) | SO(1,3/7)
3,5 SM= HI(243/2) SO(3)/SO(5)/SO(11) | SO(1,4/6)

4 SMW= H(2~9/%) & H(29/%) | SO(4) $O(1,5)

Table A.1: SO(t,s),MW=Majorana—WeyI,M=Majorana,]l/Ii sign, SM=symplectic Majorana, SMW=Symplectic Majorana
Weyl

The super-Poincare algebra has the following generators 178,160,

* Translations: P, and Lorentz transformation: A,
* Supercharges: Q* and R-symmetry: 74

* Central charge: Z,...4,

SO(1,d —1) Spinors Algebra R-Symmetry

SO(1,9) MW (0,,0"y=P,C 7 SO(N,) x SO(N_)
{Q0, Qi) = Py Py

SO(1,8),/50(1,10)_ | M (0,07} = #CiP, + C 7L | SO(N)

SO(1,3)_/SO(1,7), | M {0..0/} =P, C.ZL U(N)

(QL) =0 {0, Q") = Poyreyp,y

SO(1,4)4/SO(1,6)- | SM, Q¥(Q) = Q' | {Q,Q"} = yCoP,QY + C.Z7 | Up(N)

S0(1,5) SMW Q. Q1 =PC 2 Usp(N;) x Up(N.)
s N ) ; - i
Qi(Q/i) - Q;: {in Qli} - PiVquPyQi
Table A.2: Chirality Projection P4 = %(1 + ;/), Symplectic form Q7 = —QY, Central charge 7l = :I:Zli,Charge

Conjugation C..
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Massive representations with Z%7 # 0 satisfy
M > |Z| (A.1)

called Bogomol’nyi-Prasad-Sommerfield (BPS) bound. States that saturate this bound are called BPS
and are particularly important as they preserve some of the supersymmetry and hence provide stable
solutions since they are the lightest charged states.

Adding extended objects that also preserve some of the supersymmetry will change the alge-
bras by adding a corresponding central charge term. For example in string theory D-branes and

NS branes have the following contributions:

{QL, QL) = PLy“C (P, + T QNS (A2)

o R
{%ihZﬁlwm (A3)
?

for the

Q’”Z/ML J (A.4)

d—p—1

where the current/ = d x Hy41.

In fact the central charges for the BPS particles and strings are:
* 16 Supercharges: m = Qg, T'= ¢~ “? for some z that depends on the dimension.*

e 6dN =1:T=> ;t; Ji where ¢; are the scalars in the tensor multiplets

"Note that for the d < 5 there are more string charges and hence more scalars similar to the N =1 cases.
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e sdN = 1:m = |Q.p| and T = |Qarp”| where pP = %—; with @ the Coulomb branch

parameters.

As stated above BPS states are states that their mass is equal to their charge. In a gravitational the-
ory the mass of a particle can be thought of as a gravitational charge. In the absence of global sym-
metries in fact the central charge should depend on some combination of the gauge fields. But the
BPS condition equates these two. In fact one would expect that the central charge would also have
to do something with gravity since the mass does. Such a linear combination could be the gravipho-

ton charges. For example, it explains why A4 = Qg for the theories with 16 supercharges.

A.1 PROPERTIES OF BPS STRINGS

A.1.1 16 SUPERCHARGES

The supergravity multiplet for non-chiral theories with 16 supercharges includes an anti-symmetric
2-form tensor field B. By completeness of the spectrum in a gravitational theory we can consider a
BPS string charged under this field and study the consequences of supersymmetry and unitary of
the worldsheet CFT on this string.

The string with tensor charge Q couples to the bulk theory through the following term:

d—2
ST =0 ; B/\H&(x")dx”:Q/M B, (A.s)
d =1 2

where we assume the string is located at the origin #* = 0 of the transverse R4~2 directions.

The 1/2 BPS string will preserve N' = (0, 8) supersymmetry. This can be explained as follows.
The supersymmetry algebra in the presence of the string should be comprised only of unbroken
symmetry generators. In particular, the momentum generators along the transverse R4~2 cannot

be parts of the algebra. First consider the 4d case. Suppose a string is stretched along x°, x* direc-
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tions in 4d supergravity. The 4d SUSY algebra involves { Q., Q{ZJ} ~ (d*P,) 3][ with the Pauli

b
matrices o = (—1,4%). Then for the absence of Py, P» generators in this algebra the string will
pick unbroken 8 supercharges Q' , Q; s (or Q-,0- /) whose currents turn out to be right-moving
(or left-moving) in the 2d worldsheet. Also, half the supercharges in d > 4 supergravity preserved
in the presence of 2d defects reduce to these chiral supercharges under toroidal compactification to
4d (with the string worldsheet transverse to the circles). This shows that the 8 supercharges have a
definite chirality on the worldsheet for all 4. They are right-moving in our convention.

We note that the B field transforms non-trivially under the local Lorentz and the gauge transfor-

mations with parameters © and A; respectively:
1
OB = —ZTr(A -F)+xtu(OR), (A.6)

with the gauge field strength F7’s and the curvature 2-form R in the bulk supergravity. We have used
a-b= Q’]’aibj for the dot product of two vectors in the charge lattice I',,, 19—, with respect to the
SO(rG,10 — d)-invariant metric QY with signture (7, 10 — d). Here, the gauge variations of B
are fixed by invariance of the action under 16 supercharges*>#"*'. On the other hand the variation
under the local Lorentz transformation is from higher derivative corrections that cannot be fixed
solely by supersymmetry. So the coeflicient « is yet to be determined by other means. The bulk ac-
tion now includes the string action $* that is not invariant under the symmetry transformations
due to the variation rules (A.6) of B. Therefore, the presence of the string induces anomaly inflow
toward the string worldsheet. This anomaly inflow must be cancelled by the anomaly coming from
the worldsheet degrees of freedom.

The chiral degrees of freedom on the worldsheet CFT could have non-trivial anomaly and we
expect that this worldsheet anomaly cancels the anomaly inflow from the bulk gravity theory dis-

cussed above. The cancellation of the anomaly inflow then restricts the anomaly polynomial of the
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worldsheet CFT on Q strings to the form,

L, = Q [—mr(ﬁ) + iTr(F. F):|

— Q[5p(m) - ralsold-2) + yTi(F B (A7)

where p1(T2) is the first Pontryagin class of the tangent bundle 7% on the 2d worldsheet and 3 (SO(d—
2)) is the 2nd Chern-class of the SO(d —2) normal bundle for the transverse R*2 rotation. Here we
used the decomposition trR? = —1p(73) + ¢2(SO(d—2)).

Whend = 10, for example, the anomaly polynomial with ¥ = 1 coincides with that of the 2d
CFT on BPS strings in the tod NV = (1, 0) supergravity with Eg x Eg or SO(32) gauge group
computed in**?. In this case the constant ¥ = 1 is fixed by the bulk anomaly cancellation by Green-
Schwarz mechanism.

The worldsheet theory at low-energy reduces to a 2d conformal theory with at least (0, 8) super-
symmetry. It is a priori conceivable that the supersymmetry gets enhanced in the IR to (8, 8). Itis
important to distinguish these two possibilities because the anomaly coefficients compute the left
minus right contributions. Let us first discuss the case where there are no enhancements and the
theory in the IR has (0, 8) supersymmetry only.

For the (0, 8) case we can easily compute the central charges of the 2d worldsheet theory from
the anomaly polynomial. First, the coefficient of the gravitational anomaly — 2—14 21(T2) encodes the
relative central charge cx — ¢z. In addition, we can obtain the right-moving central charge ¢ using
the N = (0, 2) superconformal subalgebra in the N” = (0, 8) supersymmetric theory. The U(1)g
R-symmetry group of the N’ = (0, 2) superconformal algebra is chosen as an SO(2) subgroup of
the SO(d — 2) rotation group (which can be done sinced > 4). Then the (0, 2) algebra relates
the right-moving central charge with the ’t Hooft anomaly &z of the U(1)g symmetry such as cg =

3kr = 12x where « is the ’t Hooft anomaly coefficient for the Jgo(2) current of SO(2) C SO(d — 2)

208



bulk symmetry related to the U(1)g current by Jr = 2/50(2). As a consequence, we find the central
charges,

g =12x, ¢ = 24x. (A.8)

x is quantized to be an integer because the SO(2) C SO(d—2) is part of the Lorentz symmetry.

We note that this result involves the contributions from the center-of-mass degrees of freedom
that come from the zero modes of broken symmetries in the presence of BPS strings. The center-of-
mass modes form a free (0, 8) multiplet (o4, ¥/, A1) witha = 1,--+ ,10—dandi = 1,---d — 2
where o are right-moving compact scalars and Y” are non-compact scalars (which realize the sym-
metry currents associated with the 10 — 4 graviphotons), and 2" are 8 right-moving fermions. A
simple counting yields their central charges ¢g™ = 12,¢°™ = d — 2. Thus the central charges of

the interacting sector in the worldsheet theory are

R=aqr—cR"=12(x—1), g=c—"=24x+2—4d. (A.9)

The ’t Hooft anomaly coefficients of flavor symmetry groups are identified with the levels of the
Kac-Moody current algebra. For a string with Q = 1 the anomaly polynomial in (A.7) tells us that
the ’t Hooft anomalies #; for flavor symmetry groups, which originate from the bulk gauge symme-
tries, are given by eigenvalues of the metric QY. In our convention, right-moving (or left-moving)
current algebra provides negative (or positive) contribution to the associated 't Hooft anomaly. The
k; is a net contribution from both sectors. Therefore one can deduce that the 2d CFT on a single
string must contain at least one current algebra for every symmetry group G; realized in the right-

moving sector if £; < 0 or in the left-moving sector if £; > 0.
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A.1.2 FiveE DIMENSIONAL ANOMALY INFLOW

Monopole strings in five dimensions are two-dimensional magnetic sources for the low-energy
Abelian gauge fields on the Coulomb branch. In particular, we shall consider 1/2 BPS monopole
string configurations preserving 4 chiral supercharges in the 2d worldsheet.

The monopole string with magnetic charge ql can be introduced by a delta function source in the

Bianchi identity of the gauge field strength F = dA! as,

4
dF' = g' [T o(x)ds*. (A.10)
u=2
We assume here that the monopole source is located at the origin x%3% = (0 on the transverse

R3. Completeness of charged string spectrum in a gravitational theory ensures existence of such
monopole string states as long as Dirac quantization condition is obeyed '*' and the string tension
is positive. In the following discussions, we shall focus on single BPS monopole string states for a
given primitive magnetic charge 4. The question of existence of such string states will be discussed
later.

The string source supports a microscopic 2d theory that flows in the IR toa2d ' = (0,4)
SCFT. The worldsheet SCFT involves chiral degrees of freedom coming from zero modes of the
charged fields in the bulk gauge theory on the string background. The 2d chiral fields charged under
the bulk symmetry develop non-trivial anomalies for the symmetries. The anomaly arising from the
worldsheet degrees of freedom must be cancelled by an other source since otherwise, the monopole
string configuration in the sd supergravity will be inconsistent by the quantum anomaly along the
string worldsheet.

The anomaly cancellation can be achieved by the anomaly inflow mechanism from the bulk grav-

ity theory toward the string source. The anomaly inflow in the presence of BPS monopole strings in



sd supersymmetric theories was studied in 73423 (See also 37-2> 105118171119 for anomaly inflow of
BPS strings in other dimensions). We shall generalize these earlier studies and compute the anomaly
inflow in the presence of the string sources in sd supergravities. Using the result we will then com-
pute gravitational and 't Hooft anomalies as well as central charges of the 2d SCFTs on monopole
strings.

Let us first compute the anomaly inflow induced from the bulk Chern-Simons terms. The
Chern-Simons terms in the bulk effective action is no longer invariant under the symmetry trans-
formations when monopole strings are introduced.

When the string source with magnetic charge 4’ in (A.10) is inserted, the cubic Chern-Simons

term transforms under the local gauge transformation dAT = dA! as73,

1
IS = / (_chAfAmFK) O / AP A dFE
Ms 2 Ms

= Cg® | AP, (A.11)
Mo

We here used the modified Bianchi identity in (A.10) for the second line. Thus the gauge variation
does not vanish for general charge and Chern-Simons level. This non-vanishing gauge anomaly is
the gauge anomaly inflow induced along the 2d string worldsheet.

The gravitational anomaly inflow computation for the local Lorentz transformation is more
involved. In particular both the cubic and the linear Chern-Simons terms contribute to the gravita-
tional anomaly inflow. To compute these contributions, we first solve the Bianchi identity in (A.10)

of a string source by using the magnetic flux of the smoothed form 7436
Aol (0)
= —591660/\61 , (A.12)

where p(7) is a smooth function of the radial direction 7, with p(0) = —1and p() = 0 for suf-



50) is the 1-form in the descent relations dego) = e9, 5650) = de(()l) for the

ficiently large , and e
global angular form ez of the 2-sphere surrounding the monopole string. This smooths out the

string source as

dF = g'd(pes/?2) . (A.13)

In this case, the gauge field for the magnetic flux transforms under diffeomorphisms as oA =
— %ql d (,oe(()l) ). The following integrals for the 2-form e on the 2-sphere bundle over the string

worldvolume will prove to be useful for later discussion:

/ e =2, / 6’(()1)6’2 Neg =2 pﬁl)(N) ; (A.14)
52 S.(M2) Mo

where p{") (N is the 2-form in the descent relation, dp\”) (N) = p1(N) and 3" (N) = dp{") (N),

of the first Pontryagin class p; (N) of the SU(2)z normal bundle for the transverse R? directions.
We now consider the local Lorentz transformation of the effective action on the background

magnetic flux. One can compute the variation of both the cubic and the linear Chern-Simons terms

under the local Lorentz transformation as’+3°

1 1
IpSes = @lewlq/ 7~ / d(pei)e + %Clqj / e2 A o\ (T5)
Ms M

5

1 1
it [ A0 - o [ A, ()

where p1(7T5) is the first Pontryagin class of the tangent bundle 75 of the sd spacetime. This non-
vanishing variation of the bulk action is the gravitational anomaly inflow toward the monopole
string.

The anomaly inflow for the gauge and the Lorentz transformations must be cancelled by the
anomalies developed by the worldsheet degrees of freedom living on the monopole strings. This

fact allows us to compute the quantum anomaly of the 2d CFT on the string worldsheet from the



anomaly inflow that we just computed. Collecting the above results, we conclude that the 2d SCFT
on the monopole string with magnetic charge q1 must have gauge and gravitational anomalies that

are encoded in the 4-form anomaly polynomial of the form,

I = —Il;fﬂow (AIG)
= SCrgPF S g da p(N) + 1 Ciglpr (75)
— _%C,]KqIF’FK ~ é (C}]Kq]q/qK - ;qu]> c2(R) + %Clqul(Tz) ;

where 9% js the anomaly inflow whose variation is related to the variation of the bulk action

Igl) = 085, via the descent relations I‘Eﬂow = dl3, o3 = d](Ql). For the last line we used the
relations of characteristic classes p1(75) = p1(72) — 4c2(R) and p1 (N) = —4ca(R), where p1(12)
is the first Pontrygin class of the tangent bundle 7% of the 2d worldsheet and c2(R) is the second
Chern class of the SU(2) g Lorentz group transverse to the 2d worldsheet.

The anomaly polynomial 74 of a 2d CFT encodes the left- and the right-moving central charges
and the levels of the Kac-Moody current algebra coupled to the bulk gauge symmetry G. The rela-
tive central charge cg — ¢z can be read off from the coefficient of the gravitationaly anomaly term
— ipl (73) in Iy. The right-moving central charge is cg = 6kg where kg is 't Hooft anomaly co-
efficient of the SU(2) R-symmetry in the IR (0, 4) superconformal algebra. In order to compute
the individual left- and right-moving central charges of the IR CFT, we thus need to know the exact
value of kg, which demands us to identify the correct SU(2) R-symmetry in the IR CFT.

These central charges involve the contributions from the center-of-mass degrees of freedom. The
center-of-mass modes consist of four bosons (X;?;, @) and four fermions A% in the right-moving

142

. They form a free hypermultiplet of NV =

sector and three bosons X;ﬁ in the left-moving sector

(0, 4) supersymmetry. Their contribution to the central charges can be easily read off from the free
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field content as

gom 3 om_ g (A.17)

The center-of-mass modes decouple from the interacting CFT in IR.

Therefore, the central charges (¢z, ¢r) of the interacting SCFT on a single string with magnetic

charge 4" are given by

o = cL—ciom:CUKq"q/qK—i-C[q‘,—?),

~ com 1
(R = (R—CR :C[JKq[q/qK+§C1q]—6. (A.IS)

The worldsheet theory can carry the current algebras for the bulk gauge symmetry. The t Hooft

anomaly £y of the current algebra can also be extracted from the anomaly polynomial as
ky = Cyrg" (A.19)

for the mixed anomaly between two Abelian currents J and /. In our convention, the right- (or
left-) moving charged fields add positive (or negative) contributions to the anomaly coefficient £y;.
As we discussed the bulk Abelian gauge symmetry can enhance to non-Abelian symmetry, say G;,
at some special points of the Coulomb branch. In this case, the string worldsheet theory can furnish
a representation of the current algebra for the non-Abelian symmetry. The chiral fields realizing the

current algebra yield ’t Hooft anomaly, which can be read off from (A.16), of the form
1 2 . a
_ZkiTrFi with  k; = —bh; 4", (A.20)

where F; is the field strength of G; and b, , is the coeflicient in the gauge coupling /; for G; in the

bulk effective action. The ’t Hooft anomaly coefficient &, for the non-Abelian symmetry is quan-
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tized as an integer number. The £; is related to the level for the current algebra of the symmetry G;.
The level & current algebra of G, realized by right-movers (or left-movers) provides +4 (or —k) con-

tribution to the anomaly coefficient £;.

A.1.3 Six DIMENSIONAL ANOMALY INFLOW

The anomaly inflow of 6d supergravity strings was studied in *** and we review here. The 2d SCFT

on strings with charge Q in the 6d supergravity theory has the anomaly polynomial of the form

I =Q; Q¢ ( Atr(R?) + b’tr( 2y Q’;[4(N4)) (A.21)
-a . _|_ -a
= —Q—pl (T3) + Z Q- b;TH(F?) — MCQ(R) + M@(D (A.22)
2 2

where v, (Ny) = ¢2(/) — c2(R) is the Euler characteristic of SO(4) = SU(2); x SU(2) the normal
bundle of the transverse to the string R* and #(R?) = — %]71 (T2) + co() + c2(R).

The center of mass modes consist of 4 bosons common to left and right movers and 4 right
moving fermions and they form a free hypermultiplet (X, A,) where a& are indices for SU(2); x

SU(2)g. The contribution to the anomalies is given by:

" =~ (1) - al) (A23)

which needs to be subtracted from Equation A.21.

Therefore we can read off the central charges as

2 =30-0-90-2a+2 cx=30-Q0—3Q-a (A2g)
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The levels for the G; and SU(2); current algebras are given by

b= 0 kl:Q.Q+2Q-ﬂ+2

216



sd Geometry: Compact and Non-Compact

B.r FunNwiTH MATH

B.1.1 MATHEMATICAL FACTS AND PROOFS

In this section, we describe the concepts and results which we need about divisors and linear sys-
tems on surfaces and threefolds. Our motivation is to understand the extent to which numerical

conditions on divisor classes on compact Calabi-Yau threefolds do or do not guarantee the existence
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of a smooth surface. While no numerical criterion exists, there is a rich classical theory in algebraic
geometry providing many results in that direction which will be useful for us.

A good general reference which touches on many of these issues is the book 7.

B.1.2 DEFINITIONS

We begin by stating the relevant definitions and notions from algebraic geometry. We consider di-
visors P on smooth projective varieties X of dimension 7. A divisor can be expressed in terms of its

irreducible components P; as P = ) . n;P; with n; € Z. Our primary interestis z = 2 or 3.
Definition B.x1.x The divisor P is effective if all n; > 0.

Definition B.x.2 The divisor of a nonzero meromorphic function fon X is given by (f) = (f)o —
(f)oos where (f)o is the divisor of zeros of f including multiplicity and (f) o is the divisor of poles of f

including multiplicity.

To a divisor P, we associate the sheaf Ox(P) of meromorphic functions fon X with (f) + P
effective. By convention, the o function is also a section of Ox(P). Such an f'can be viewed as a holo-
morphic section s¢* of Ox(P). For a general f (i.e. one not necessarily satisfying (f) + P effective),
the corresponding sy might only be a meromorphic section of Ox(P). We can equivalently think of
a meromorphic function fon X as either a function or a meromorphic section sy of Ox(P). Con-
versely, identifying a nonzero meromorphic section s of Ox(P) with a meromorphic function fon
X (so thats = sp), we define the divisor (s) of sas (f) + P. In particular s is a holomorphic section
of Ox(P) if and only if (s) is effective. This observation leads to conclude that we can always find an

effective divisor associated to Pif and only if 4°(X, Ox(P)) # 0 given by Proposition B.1.13.

"This is non-standard notation, introduced to expedite the discussion.
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Definition B.1.3 Two divisors Pand P are linearly equivalent, denoted P ~ P, if there exists a
nonzero meromorphic function fon X with P = (f) + P. The complete linear system |P| of P is the set

of all effective divisors linearly equivalent to P.
Definition B.1.4 A divisor Pisnetif P- C > 0 for all curves C C X.

The term nef is in part intended as an acronym for “numerically eventually free”. To say that a divi-

sor is “eventually free” means that some positive multiple is base point free:

Definition B.x.s The linear system | P| is called base point free when the intersection of all the divi-
sors in | P| is empty. A divisor P in X is called semi-ample if the linear system |mP) is base point free for

somem € N,

A base point free linear system | P| defines a mapping of X to projective space

Pip i X — PV, ¢‘P|(x) = (s0(x), ... ,sn(x)). (B.1)

In (B.1), {50, ..., sn} isa basis for H°(X, Ox(P)). The map ¢, depends on the choice of basis, but
is well-defined up to a linear change of homogeneous coordinates in PV,
If | P| is not base point free, then P|p| is not defined precisely at the base points. But we still get a

rational map @ : X — — — PN whenever | P| is not empty.

Definition B.1.6 A divisor P is very ample if | P| is base point free and the corresponding map Pip s

an embedding. The divisor P is ample if mP is very ample for some m € N.

We can always determine if a divisor is ample using the numerical criterion given by Theorem
B.1.16. Moreover, we can always pass from an ample to a very ample divisor through Theorem

B.1r.24.
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Definition B.1.7 The holomorphic Euler characteristic of @ divisor P in X is the alternating sum

3
2(0x(P)) =Y _(~1)k (0x(P)), (B.2)
=1
where as usual b (Ox(P)) = dim H (Ox(P)). The holomorphic Euler characteristic of X is defined as
2(0x) =1 =) + P20 (X) — ... + (—=1)"»O(X).
Definition B.1.8 A divisor Pin X is Big if i°(X, Ox(mP)) > cm” for some ¢ > 0 and all m > my,.

Remark. By Riemann-Roch we have y(Ox(mP)) ~ (P*/n!)m”. If follows immediate that for
divisors P satisfying the vanishing condition (X, Ox(mP)) = 0 for7 > 0and m > my, Pis big if
and only if 7” > 0. Vanishing theorems which imply such vanishing conditions will be discussed in

Section B.1.5.

Let Ky be the canonical bundle of X and P,,(X) = h°(Op(mKy)) be the m-th plurigenus® of X.

Definition B.1.9 7he Kodaira dimension x of a smooth? surface X is defined as follows.

x(X) = min{k| PW;n(kX) is bounded } (B.3)

When all plurigenera vanish we say x(X) = —ooc.

We can similarly associate a Kodaira dimension to any line bundle L on X.

—00 HY(X, L") = Oforalln > 1
(X, L) = (B.4)
sup({dim ¢,,(X) | > 1}) otherwise

*Note that m = 1 is the geometric genus /%Y (X).

3Singular surfaces do not have a canonical bundle in general. However, effective divisors in a smooth
threefold are Gorenstein, hence their dualizing sheaves are again line bundles. We can generalize the notion of
Kodaira dimensions to these surfaces if desired, but there is no known classification. We do not pursue this
point further.

220



We can recover B.3 when L = Ky i.e. x(X) := (X, Kx).

We now specialize to smooth projective surfaces, which we will denote by S instead of X. We use

the standard notation and terminology of classical algebraic geometry.

Definition B.1.10 The geometric genus p,(S) of S is the dimension of H'(S, Ks) ~ H*%(S). The
irregularity g(S) of S is the dimension of H°(S). The arithmetic genus p, () is defined as p,(S) —

q(S).

In particular, y(Os) = 1 + p,(S).

When S'is clear from context, we simply denote these by Do 9> and p, respectively.

Definition B.x.x1 A smooth projective surface S is regular if g = 0. The surface S is irregular zf
g > 0.

Since 1 (S) = 2g, to say that S'is regular is equivalent to the topological condition 41 (S) = 0.

Definition B.1.12 4 (—1)-curve is a curve C C S with C isomorphic to P! and C* = —1. A surface

S is minimal £t bas no (—1)-curves.

By the adjunction formula, equivalently Cis a —1-curve if and only if C?=Kg-C=—1.

Any (—1)-curve C C S can be blown down to a smooth surface. This means that we can find a
smooth surface S1 with a point p € S and a holomorphic mapping f': § — Sy such that {C) = p
and frestricts to an isomorphism of § — Cto S1 — p. If §7 is not minimal, then it containsa —1
curve, which can be blown down to a surface So. It can be shown that this process terminates after
finitely many steps and we wind up with a minimal surface S, and a holomorphic birational map

S — S, which blows down 7 (—1)-curves in succession.
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In this way, the classification of compact Kihler surfaces is reduced to the classification of mini-
mal compact projective surfaces. In particular, in our case we are only interested in minimal surfaces
because a surface with a (—1) curve can never be nef. We will futher restrict to the classification of
compact algebraic surfaces, since all of our supergravity strings arise from wrapping surfaces which
are algebraic instead of being merely Kihler, as will be explained in Appendix B.1.4. Kodaira’s clas-

sification of minimal compact algebraic surfaces, organized by Kodaira dimension «, is given in Ta-

ble B.1.
K minimal projective algebraic surface S
—00 IP?, ruled surface
0 | K3, Enriques, hyperelliptic, abelian surface
1 minimal elliptic surface
2 minimal surface of general type

Table B.1: The first column is the Kodaira dimension x of the surface S. The second column presents the Enriques-
Kodaira classification of minimal projective algebraic surfaces.

The first class of surfaces with ¥ = —o0 are ruled surfaces or P2, which are never nef divisors in a
Calabi-Yau threefold. In particular, a ruled surface is a P! bundle over a smooth curve C, which can
have any genus g. If ¢ = 0, the ruled surfaces are rational and are precisely the Hirzebruch surfaces
IF,.. The ruled surfaces over curves of genus g > 0 have continuous complex structure moduli
and there is no standard notation for them. We sometimes denote a ruled surface in one of these
continuous families by .

The next three cases all represent semi-ample divisors. Enriques surfaces are regular algebraic sur-
faces which are Zo quotients of K3. Hyperelliptic surfaces or bi-elliptic surfaces are finite abelian
group quotients of a product of elliptic curves. Abelian surfaces are tori and all other elliptic sur-

faces other than those with x = —00 or o have x = 1.
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B.1.3 RULED AND RATIONAL SURFACES ¥ = —00

In this section, we will review some mathematical background useful for this thesis. We refer the

reader to Section 2 of 2® for a more detailed background on various points discussed below.

HIRZEBRUCH SURFACES

A Hirzebruch surface is a P! fibration over P1. We denote a Hirzebruch surface with a degree —n

fibration as IF,,. We refer to the fiber P! as fand the base P! as ¢. Their intersection numbers are

e =—n (B.s)
£ =0 (B.6)
e f= (B.7)
Another very important curve in I, is
h:=e+nf (B.8)

whose genus is zero and intersection numbers are

P =n (B.9)
h-e=0 (B.10)
h-f=1 (B.11)

Note thate = b for . The set of holomorphic curves, often referred to as Morz cone, for I, with
n > 0 is generated by ¢ and f. For IF,, with » < 0, the Mori cone is generated by » and £.
The canonical class K of I, is an antiholomorphic curve which can be determined by the virtue

of adjunction formula which states that for a surface S'and a curve Cinside S, the canonical class Kg
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of S satisfies

(Ks+C)-C=2¢(C)—2 (B.12)

where ¢(C) is the genus of C. Demanding that K satisfies (B.12) for ¢, f determines it to be

K=—(e+h+2f) (B.13)

from which we can compute that

K2 =38 (B.14)

Notice that [F,, and IF_,, are isomorphic to each other via the map

e b (B.15)
fef (B.16)
h<re (B.17)

Thus, we will restrict our attention to Hirzebruch surfaces with > 0 in what follows. However,
at various points in the main body of this work we find it useful to include Hirzebruch surfaces with
negative degrees since they allow us to express answers in a more uniform way.

We also deal with surfaces which arise by performing & number of blowups on IF,,. The blowups
will often be non-generic. We can obtain different surfaces by performing & blowups in different
tashions on IF,,. In this work, we refer to all the different surfaces arising via & blowups of I,, as Ffl.
The curves inside F% can be described by adding the curves x; with7 = 1,--- , b which are the
exceptional divisors created by the blowups. We will use the convention that the total transforms* of

the curves ¢, fand b are denoted by the same names ¢, fand » in Fﬁ Thus, the intersection numbers

4IfB : § — Sisablowup of a surface S, then the total transform of a curve Ciin S'is the curve B~(C) in

S.
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between ¢, fand b are those mentioned above, and their intersections with x; are

XX = =0 (B.18)
¢ ;=0 (B.19)
Foa=0 (B.20)
hex;=0 (B.21)

The blowup procedure creates curves that can be written as

ae+ Bf — Z VX (B.22)

with 2,3, ¥, > 0. The important point is that the blowups «; can appear with negative sign.

Again, using the adjunction formula (B.12) we can find the canonical class K for F? to be

K=—(e+h+2)+> 5 (B.23)

from which we compute

K2=8—1b (B.24)

An important isomorphism exists between F§, and F} with the blowup on both surfaces being

performed at a generic point. In fact, a single blowup of F is always generic. The map from ]F% to

F{ is

e—>e—x (B.25)
f—x—=x (B.26)
x— f—x (B.27)
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It is easy to see that the above isomorphism only works when the blowups are generic. For, the non-
generic one point blowup of F; contains the curve e — x, which would be sent to ¢ — finside F{. But
¢ — fis not a holomorphic curve in F§.

To differentiate between the different surfaces F for fixed 7 and &, we have to track the data of
their Mori cone. One important point is that the gluing curves inside the surfaces must be the gen-
erators of Mori cone. The final point we want to address is that IFo and F are same up to decoupled
states. This can be seen by noticing that the Mori cone of latter embeds into the Mori cone of for-

mer. This embedding Fg — Fo is

e—e+f (B.28)

f—=f (B.29)

This means that [Fy equals Fo plus some decoupled states. Decoupling these states corresponds to
performing a complex structure deformation Fo  — . When IFg and Fa carry blowups, this

conclusion might be changed or unchanged depending on how the blowups are done.

DEL PEZZ0O SURFACES

The discussion of del Pezzo surfaces starts with the discussion of complex projective plane P2 which

contains a single curve / whose genus is zero and intersection number is

2=1 (B.30)

(B.12) determines the canonical class to be
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from which we compute

K>=9 (B.32)

Performing 7 blowups on P? at generic locations leads to the del Pezzo surface dP,,. It can be

described in terms of curve / and x; with intersection numbers

Again, the blowups create new holomorphic curves which can be written as

al — Z Vi (B.35)

with e, 7, > 0. In the work, we abuse the notation and call a non-generic 7 point blowup of P2 as

dP, too. The canonical class for dP,, is

K= -3+ le- (B.36)

with

K =9-n (B.37)

del Pezzo surfaces and Hirzebruch surfaces are related to each other by virtue of an isomorphism
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dP; — 1 which acts as

x—>e (B.38)
l—x—f (B-39)
[—=h (B.40)

A one point blowup of P2 s always generic and thus there is a unique 4P; which appears in the

above isomorphism.

The curve
F=3l—- in (B.41)
has the properties that
FF=0 (B.42)
and
K-F=0 (B.43)

Thus, Fis a fiber of genus one, or in other words a torus fiber inside dPy.
dP, for n > 3 admits the following basic automorphism. We first choose three distinct blowups

%;, % and x, and then implement

x>l —x— (B.44)
x>l —x —x (B.4s)
W — L —x — x5 (B.46)

[ =2l —x — % — 5 (B.47)
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Combining this automorphism with permutations of blowups, we can obtain more general au-
tomorphisms of 4P, (with » > 3) which can be decomposed as a sequence comprising of above
mentioned basic automorphisms and permutations of blowups. Notice that for 4Py, any such auto-

morphism leaves the torus fiber (B.41) invariant.

RULED AND RATIONAL SURFACES IN COMPACT THREEFOLDS

Ruled and rational surfaces with x = —o0 and their blow ups are never semi-ample divisors in a
compact Calabi-Yau threefold. Obviously, if we consider any surface with blowups it will automat-
ically not be semi-ample because it will always contain a rational (—1) curve with K - C = —1
coming from the blow up as mentioned above. Therefore, it is enough to consider minimal such
surfaces and hence P2 or IF,.

Hirzebruch surfaces P over a curve of genus g > 1have P = 8(1 — g) < 0 therefore they
are not ample. As for ¢ = 0, the cohomology of the ordinary Hirzebruch surface IF,, is generated
by the section e with ¢*> = —# and fa fiber. We can inspect the intersection of the canonical divisor
K = —2¢ — (n + 2)f'with any section b satisfying #* = », which givesus K - h = —(n + 2) < 0.
Forg = 1wehave K = —2¢ — nf,andnow K - h = —n < O forn > 0. Finally,if » = Oand g = 1
we have K = —2¢and hence K - f = —2 < 0. Therefore, any ruled surface cannot be semi-ample.
Lastly, IP? has a canonical bundle which satisfies K = —3/ for the class 2 = 1 with K-/ = —3 < 0.

We conclude that smooth projective surfaces with x = —o0 are never semi-ample.

B.1.4 THEOREMS FOR COMPACT CALABI-YAU THREEFOLDS

In this section, we let X be a smooth projective variety of dimension 7. In several situations, we will
specialize to the case where X is a Calabi-Yau threefold and add something more precise. We will

always assume that such a Calabi-Yau has SU(3) holonomy, so that #°(X) = H#*°(X) = 0.
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Proposition B.1.13 Given a divisor P, there is a 1-1 correspondence between | P| and elements of the
projective space P(H® (X, Ox(P)). In particular, in which case |P| is a projective space of dimension
(X, 0x(P)) — 1.

This is a well-known foundational result (e.g. ) but we provide a proof to fix ideas.

Proof. A holomorphic sections € H"(X, Ox(P)) can be writtenass = s¢for (f) 4 Peffective.
Thus (s) = (f) + P € |P|. For any nonzero constant ¢ we have (¢s) = (s5). Thus the assignment
sp= (f) + Pinduces a map P(H"(X, Ox(P)) — |P).

In the other direction, let 7' € |P|. Let fbe such that 7 = (f) + P. For this f we have (s5) = P,
which was assumed effective. Thus sis holomorphic, i.c. gives a section of H°(X, Ox(P)). If instead
we choose a different // with 7 = (f') + P, then (/' /f) = (P — P) — (P — P) = 0. It follows that
/' /f is a holomorphic nonvanishing function on X, which must be constant since X is compact. So

/> hence s, is unique up to scalar and we have defined an inverse map |P| — P(H°(X, Ox(P)).

Theorem B.1.14 (Bertini’s Theorem) The general member of a base point free linear system is

smooth.

In particular, if X is a Calabi-Yau threefold and P is semi-ample, then we can find a smooth sur-

face in the linear system |mP| for some m > 1.
Proposition B.1.x15 Semi-ample divisors are nef.
Thus the nef condition is a purely numerical condition on a divisor which is automatically satis-

fied if it semi-ample, i.e. “eventually free”.

Proof: Suppose |m.P] is base point free. Let Cbe an irreducible curve,andp € C. Since p is not
a base point of |mP)|, there is a divisor D in |mP| not containing p. This implies that D does not

contain C, hence D - C = (mP) - C > 0 and finally P- C > 0.

Recall the notion of an ample divisor from Appendix B.1.2.
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Theorem B.1.16 (Nakai—Moishezon criterion for ampleness) A divisor D in X is ample iff
DF -V > 0 for all irreducible subvarieties V C X, where k is the dimension of V. In particular, if X is
a (Calabi-Yau) threefold, D is ample iff the following three conditions hold: D* > 0, D* - S > 0 for

all irreducible surfaces S C X, and D - C > 0 for all irreducible curves C C X.

The Nakai-Moishezon criterion implies that the ampleness of D only depends on the class [D] €
H?(X,R). The cohomology classes of ample divisors span a cone in 2 (X, R), the ample cone or
Kiéihler cone K(X) C H?(X,R). The reason for the interchangeable terminology is that the line
bundles associated to ample divisors are precisely the line bundles which admit Kihler metrics. We
will describe the cone spanned by the ample divisor classes as the Kihler cone to match usage in
physics.

While the Nakai-Moishezon condition is a purely numerical condition, it is not completely sat-
isfactory for our purposes since we have to know 4// surfaces S C X in order to implement the
criterion. As we will see presently, it is easier to work with the nef cone, which gives us almost as

much information anyway.

The following theorem shows that the nef cone Nef(X) generated by nef divisors is the closure

IC(X) of the ample cone, as we just replace “>” in the Nakai-Moishezon criterion with “>”.

Theorem B.1.17 (Kleiman’s Theorem'*?) Let D be a nef divisor on X. Then for any subvariety V
of X we have DF -V > 0 where k is the dimension of V. In particular, if X is any threefold, such as a

Calabi-Yau threefold, we see that D3> 0.

Said differently, Kleiman’s Theorem says that Nef(X) = K(X) is dual to the Mori cone M(X) C
Hs(X, R), the cone generated by the classes of all irreducible curves C C X. The conclusion of
Kleiman’s theorem holds for semi-ample divisors, since semi-ample divisors are nef by Proposi-

tion B.1.15.
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In general, the determination of the Kihler cone (X) C Nef(X) is more subtle. But it can be
shown that the ample cone is the interior of the nef cone'**. In particular, if the nef cone is known
to be a polyhedral cone generated by finitely many nef divisors, then this fact determines the ample

cone.

Remark. We have assumed that X is projective throughout this section, so these results do not ap-
ply to local Calabi-Yau threefolds. To see the issue, suppose that Pis a smooth surface in a compact
Calabi-Yau X. To say that Pis nef means that P - C > 0 for all curves C C X, not just those contained
in P. In the local case, all compact curves are either contained in P or a deformation of curves con-
tained in P, hence homologous to curves in P. So the condition becomes P - C > 0 for all curves

C C P(aswas studied in the context of sD SCFT''"), which is a substantially weaker condition

than requiring that - C > 0 for all curves C C X for any given compact Calabi-Yau X containing 2.

For simplicity, we only state the Hirzebruch-Riemann-Roch theorem for Calabi-Yau threefolds.

Theorem B.1.18 (Hirzebruch-Riemann-Roch theorem) The holomorphic Euler characteristic of a

divisor Pin a Calabi-Yau threefold X is given by

1 1
x(0x(P)) = 61)3 + P el (B.48)
If H*(X, Ox(P)) = Oforallk > 0, then dim |P| = dim H*(X, Ox(P)) — 1 = y(Ox(P)) — 1,
and we can compute the dimension of our moduli space of surfaces | P| very simply by Hirzebruch-

Riemann-Roch. We now give a few theorems which guarantee these vanishings of cohomology.

Theorem B.1.19 (Kodaira Vanishing theorem >’ )Let P be an ample divisor on a smooth projec-
tive variety X. Then H (X, Kx(P)) = 0 foranyi > 0. In particular, if X is Calabi-Yau we have

H (X, Ox(P)) = 0 foranyi > 0.
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Since Nef(X) is the closure of Amp(X), one might hope that the desired vanishing holds for nef
divisors, but that is not true in general. A slight strenghtening of the nef hypothesis works which is

more general than ample.

Theorem B.1.20 (Kawamata-Viehweg vanishing'??) Let P be a nef and big divisor on X. Then
H(X,Kx(P)) = 0 foranyi > 0. In particular, if X is Calabi-Yan we have H' (X, Ox(P)) = 0 for

anyi > 0.

Specializing to a Calabi-Yau threefold for definiteness, we see that y(Ox(mP)) grows like (P°/6)m3.
If P > 0, this is close to the condition for being big, but is not the same since y(Ox(mP)) is not
the same as dim H° (X, Ox(mP)) in general. To conclude the required growth of dim H°(X, Ox(mP)),

the growth of dim /2 (X, Ox(mP)) must be controlled for 7 > 0. This can be done:

Proposition B.x.2x Suppose X is a Calabi-Yau threefold, and P is nef and satisfies P> 0. Then P

is big.

Since semi-ample divisors are nef, it follows immediately from the Kawamata-Viehweg vanishing
theorem that we get the desired vanishings (X, Ox(P)) = 0 for7 > 0if Pis nefand P > 0.
Proof. Follows immediately from *** Cor. 1.4.41. Indeed, the proof shows that dim /7 (X, Ox(mP)) =
O(m377).

If Pis an eftective divisor, nef already implies semi-ample. Hence nef and semi-ample are equiva-
lent conditions on effective divisors:
Theorem B.x.22 5% If P is effective (or more generally if (X, P) > 0)and nef; then P is semi-

ample.

Corollary B.1.23 If Pis nef and |nP| contains an effective surface for anyn > 1, then |nmP| con-

tains a smooth surface for some m > 1.
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We can be more precise for ample divisors.
Theorem B.1.24 (Oguiso-Peternell Theorem'* )
Let P be an ample divisor in a Calabi-Yau threefold. Then
1. |mP| is base point free for m > 5
2. mP is very ample for m > 10

By Bertini’s Theorem, we see that we can always find a smooth surface in |5P].

We are primarily interested in smooth irreducible surfaces 7 C X. Note that since X is as-
sumed projective, we have that S is automatically projective, stronger than merely Kihler. We will
see presently that if Pis a regular surface, we get the desired vanishings # (X, Ox(P)) = 0 fori > 0
without any additional hypotheses on the linear system |P|. The reason is that the numerical invari-

ants of the surface P are related to the properties of Pas a divisor in X.

Proposition B.1.25 For X and P as above, we have
. dimH'(X,0(P)) =p,+ 1
2. dimHY (X, O(P)) = ¢4

3. HY(X,0(P)) = 0fork > 2.
Corollary B.1.26 If the surface Pis regular, then H' (X, Ox(P)) = 0 fori > 0 and dim |P| = p,.

Proof. We consider the short exact sequence

0 — Oy — Ox(P) — Ox(P)|p — 0. (B.49)
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By the adjunction formula and the Calabi-Yau condition, we have Ox(P)|p ~ Kp. Using H' (X, Ox) =
H?*(X, Ox) = 0 which is part of the Calabi-Yau condition, the associated long exact sequence of co-

homology splits up into a short exact sequence,

0 — H(X,0x) — H(X, Ox(P)) — H(P,Kp) — 0, (B.s50)

an isomorphism A (X, O(P)) ~ H*(P, Kp), and an exact sequence

0 — H*(X, Ox(P)) — H*(P,Kp) — H>(X,Ox) — H*(X, Ox(P)) — 0. (B.s1)

Taking dimensions in (B.50) gives 1. By Serre duality on P, we have (P, Kp) ~ H'(P,Op)*,
which has dimension 4% (P) = h10(P) = 4. So 2 follows immediately from the isomorphism
between (B.50) and (B.s1). By Serre duality on X we get H°(X, Ox(P)) ~ H°(X, Ox(—P))* = 0,
using the Calabi-Yau condition Ky ~ Oy. Since H*(P, Kp) ~ H*?(P) and H3(X, Oy) are each
1-dimensional, (B.s 1) implies that 2 (X, Ox(P)) = 0. We trivially have H*(X, O(P)) = 0 for

k > 3 for dimension reasons. This completes the proof of 3 and of the proposition.

Continuing to assume that Pis a smooth surface, note that if in addition Pis either ample, or
more generally nef with P > 0, then Kodaira vanishing or Kawamata-Viehweg vanishing implies

that (X, O(P)) = 0, so that Pis regular by Proposition B.1.25.

If Pis merely semi-ample, then [m.P] is base point free for m >> 0, hence its restriction to P
is still basepoint free. Since P restricts to Kp on P, we see that |mKp| is base point free and hence
x(P) > 0. Furthermore P cannot contain any (—1) curve C, since Kp - C = —1 on Pis equivalent
to P- C = —1 on X, contradicting the fact that Pis nef.

Furthermore, if Pis ample, then the restriction Kp of Ox(P) to Pis still ample, hence mKp is

very ample for m >> Oand x(P) = 2.If Pnefwith P> > 0,thenK% = P* > Oand Pis

235



a minimal surface with ¥ > 0 as we just saw. As a consequence of the Kodaira classification of
minimal surfaces, we see that K% = 0 for minimal surfaces Pwith ¥ = 0 or 1. It follows that x = 2
in this case as well.

Summarizing, we have proven

Proposition B.1.27 Suppose that P is a smooth surface which is also semi-ample as a divisor in X.
Then P is a minimal surface with x > 0. If in addition P is ample, or more generally nef with P>

0, then P is a regular surface of general type.

Of course, if | P| is very ample, then a general surface in | P] is automatically smooth by Bertini’s theo-

rem.

Regarding ¢y we have
Theorem B.1.28 If Pis nef, then ca - P > 0.
This follows from '#° Theorem 1.1.

Corollary B.1.29 If[P] is an ample dlass, or more gencrally if [P is nef with P> > 0, then it has an

effective representative P.

Proof. By Kodaira vanishing in the ample case, or Proposition B.1.21 and Kawamata-Vichweg in
the more general case, we get H'(X, O(P)) = 0 for7 > 0. Then we have /°(O(P)) = y(O(P)) =
P3/6 + ¢2.P/12 > 0, the first equality coming from the vanishing of higher cohomology.

Theorem B.1.30 "3 If Pis nef and ca(X) - P > 0, then Pis semi-ample.

Theorem B.1.31 (Lefschetz byperplane theorem)
Let P be an effective ample divisor on a smooth projective variety X of dimension n. Then the restric-

tion map r; - H' (X, Z) — H'(P,7) is an isomorphism fori < n — 2 and injective fori = n — 1.
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In particular, if X is a Calabi-Yau threefold, then dim (P, Z) = 0 so that Pis regular, and

dim A%(X, Z) < dim(H?*(P,7Z)).

Theorem B.1.32 (Hodge index theorem)
Assume P is a compact surface then the cupproduct form on H? (P, R), restricted to H]E’l (P), is non-

degenerate and of signature (1, b4 — 1)

Theorem B.1.33 (Noether bound)

Let P be a smooth minimal surface of general type (x = 2). Then
1 2
KB = p(P) 2 (B.52)

In the case that Pis a smooth surface with ¥ = 2, then p, = %P?’ + %QP.CQ (X) — 1 by Hirzebruch-
Riemann-Roch and Proposition B.1.25. Since K2 = P2, we conclude that 4P > P ¢y (X) — 36
if PP isevenor 4P3 > P ¢9(X) — 30 if P is odd. In addition, all minimal smooth surfaces with

x = 0 have co(P) < 36, which can be found in# and hence satisfy the same inequality. This implies
that smooth ample or semi-ample divisors that correspond to smooth surfaces with x = 0, 2 satisfy

4P% > P c3(X) — C, where C = 36 when P3 is even and C = 30 when P is odd.

B.1.5 PROOFS OF INEQUALITIES
Theorem B.1.34 (Inequality 4, Table 3.6)

Let P be a smooth ample divisor inside the Calabi-Yau threefold X. Then

P X) < PP+ Pop(X) -2 (B.s3)
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Proof. Since Pis smooth and ample in X, the Lefschetz hyperplane theorem applies. Therefore the

restriction map 7 : H2(X, Z) — H?(P, Z) is an injection. Hence,
dim(H*(X,C)) < dim(H?(P,C)). (B.s54)

By the Hodge Decomposition we know that dim (H?(X,C)) = b1 (X) since #*°(X) = 0and
dim(H? (P, Z)) = h"(P) + 2h*°(P) = b (P) + 2p,. In addition, since Pis a regular surface, the
topological Euler characteristic of Pis given by y(P) = 2 + by = 2 + 2p, + b'! (P), while from
(3.98) we also know that y(P) = P* + P ¢3(X). Hence, h'! (P) = PP + P- ¢3(X) — 2p, — 2 which

implies that (B.5 4) becomes ™ (X) < b (P) + 2p, = PP+ P+ cy(X) — 2.
Theorem B.1.35 (Inequality 5, Table 3.6)

Let P be a smooth, big and nef divisor inside the Calabi-Yau threefold X. Then the number of rational

(—2) curves on P is bounded by
1
N_, < 6(41)3+5P~62(X))—1. (B.ss)

Proof A smooth nef and big divisor inside the Calabi-Yau threefold is a minimal surface of general
type. A consequence of the Hodge Index Theorem is that the number N_o of rational —2 curves in
a surface of general type Pis bounded by N_y < p(P) — 1,where p(P) is the Picard number of P,
the rank of the group of divisor classes. This claim can be found in [*4,Prop.VII(2.5)]

In addition, the Picard number p(P) is clearly bounded above by A1 (P), as the Picard lattice
of cohomology classes of divisors is a sublattice of HY} (P, C) N H?(P, Z). Therefore N_y <
b1 (P) — 1.1In the proof of (B.53), we saw that b1 (P) = P° + P - ¢p(X) — 2p, — 2. But
2(O(P)) = p, + 1 by Proposition B.1.25 and y(O(P)) = (2P° + ¢3 - P)/12 by Hirzebruch-

Riemann-Roch. Combining these formulas, we conclude that N_y < 2(4P% + 5P 5(X)) — 1.
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B.2 sp ComMPACT THREEFOLDS

In this section of the appendix, we collect examples supporting the discussion in the main text. We
begin with an example of an ample divisor class with no smooth representative. We then follow with

examples of SU(2) and SU(3) gauge theories which Higgs to the quintic.

B.2.1 AN AMPLE DIVISOR CLASS WITH NO SMOOTH REPRESENTATIVE

Referring to 38 we let X be a smooth Weierstrass elliptic fibration over P2, equivalently the blowup
of a weighted hypersurfacej( of degree 18 inIP(1, 1, 1,6, 9). The closure m of the Kihler cone is
generated by two classes, denoted by A and L. The dual Mori cone generators are denoted by » and
£. Each of the classes H and L are nef but not ample (we have /- £ = Oand L - h = 0). But H + L
is in the interior of the nef cone hence is ample (cf. the discussion following Theorem B.1.17). We
study the surfaces in | + L| and show that all are singular.

The blowup of X is performed along the singular locus vy = x3 = x3 = 0 (asingle point
in X due to the imposition of the defining weight 18 equation), with exceptional divisor E ~ P2,
The blowup guarantees that the projection to the first three coordinates gives a well-defined map
X — P? with elliptic fibers, the base being embedded in X as the section E. The Mori generator /
isalinein £ ~ P? and the Mori generator 5 is the class of the elliptic fiber. The divisor class L is
the pullback of Op2 (1) to X, and in particular is represented by the proper transforms of any of the
surfaces defined by x; = 0,7 = 1,2, 3. The class / is defined as 3L + E. In particular, A projects
to a class of weight 3 in P(1, 1,1, 6,9). Thus 2H projects to a class of weight 6 and 3H projects to a
class of weight 9. Furthermore, it can be checked that the proper transform of x4 = 0 is in the class
2H and the proper transform of x5 = 0 is in the class 3H.

We now examine the class /4L = 4L+ E, which has weight 4 after projection to P(1, 1, 1,6,9).

But the only weight 4 polynomials in P(1, 1,1, 6, 9) are just the degree 4 homogeneous polynomi-

239



als f{x1, %2, x3) in the homogeneous coordinates of the base P2. The proper transform of f = 0 is
in the class 4Z. Thus any effective divisor D in |H + L| contains as a component a surface in [4L|,
which is simply the restriction S of the elliptic fibration to a plane curve Cin the base of degree 4.
We conclude that D = S U E, which is singular along § M E. This last is just the curve C identified as

a curve in the section E.

B.2.2 SU(2)

In our first example, an SU(2) gauge theory, the geometry is a singular quintic with an 4; singu-

larity along a line Z, and smooth otherwise. For definiteness, we choose homogeneous coordinates

(x0,...,%4) on P4 5o that L is defined by xg = x1 = x2 = 0. Then the equation of the quintic has
the form
2
> wfy(s,x0) =0, (B.s6)
i,j=0

where the f;; are homogeneous polynomials of degree 3.

More generally, we can find a quintic with an SU(2) on any curve C which can be defined by the
simultaneous vanishing of a collection of homogeneous polynomials ¢;(x) = g;(xo, . ..,x) of
degrees d; < 2. Inaddition to the case of the line above {d,;} = {1,1, 1}, we will also consider the
cases where C'is a plane conic {d;} = {1, 1,2} ora twisted cubic {d;} = {1, 2,2, 2}. In general,
letting f3;(x) = fij(x0, - . . ¥4) denote generic homogeneous polynomials of degrees 5 — d; — d, the

quintic defined by the equation

> qi(@)g(x)fy(x) = 0 (B.s7)
i

has an 41 singularity at the generic point of C. The assumption d; < 2 is needed to ensure that
5 — d; — d; > 0 and so nonvanishing f;(x) exist.

Note that we are not assuming that the g, are independent (as in the case of the line above), so

240



there could be more than one way to choose the f;(x) to get a fixed quintic. The twisted cubic is an
example where such an ambiguity arises, with a linear syzygy relating the three quadratic terms.

Returning to the case of an SU(2) on a line L, we now identify the matter. Ata point (0,0, 0, x3,x4) €
L (which hereafter we simply write as (x3,x4) € L), the type of the transverse singularity can be

identified by the matrix

foo(xs,x4)  for(xs,xa)  foz(xs, xa)
A(x37x4): ﬁo(xg,x4) fll(xg,x4) f12(x3,x4) . (B.58)

foo(x3,x4)  fo1(x3,x4)  fo2(x3,%4)

We have a transverse 41 singularity at (x3,x4) when det 4(x3,x4) # 0. We assume that the f;;

are chosen generically, so that det 4 (3, x4) is a degree 9 homogeneous polynomial vanishing at

9 distinct points, which are generically 42 singularities. The SU(2) gauge theory therefore has Ny =
9, with the matter localized at the zeros of det 4. Similar methods can be used to locate the matter
starting from equations of the form (B.57). However, in this work we primarily concerned with

the value of Ny rather than the more precise information of the location of the matter. Later in this
example, we will compute Ny = 9 by a different method which will generalize in a straightforward
manner.

Blowing up the singular quintic gives a Calabi-Yau X with 4!} (X) = 2. The cohomology genera-
tors are H, the proper transform of the hyperplane class of the quintic, and £, the exceptional divisor
of the blowup. We need to compute the triple intersection numbers of // and £, their intersections
with cg = ¢2(X), and the generators of the Kihler cone.

We proceed by first blowing up Z inside P* to obtain the blown-up fourfold P4, Then H! (I/P?Z)

is generated by H, the proper transform of the hyperplane class of P4, and E, the exceptional divisor.
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We have

H=H|y, E=E|x (B.59)

Since X is obtained by blowing up a quintic (degree 5) with a multiplicity 2 singularity along L, we

get for the class [X] € HI’I(I’PZ) of X
[X] = 5H — 2E. (B.60)

To compute the triple intersections on X, we lift to classes to P4 using (B.59) and then restrict the
p p gib.59

corresponding triple intersection on P4 to X. Using (B.6o) we get

H?® = H? (5H — 2E), H*E = HE (5H — 2E),
(B.61)
HE? = HE? (5H — 2E) , E> = E3 (5H — 2E) .

To finish the calculation, we just need the four-fold intersection products H’E* 7 on I/[’?Z. Thisisa
standard calculation in algebraic geometry, using Segre classes””. The Segre class 5(S, M) of a sub-

manifold § C A is the inverse of the total chern class of the normal bundle N 57 of Sin A:
5(S, M) = ¢(Nsar) ™", (B.62)

a cohomology class on S. Now suppose that we have a birational mapping of manifolds /: M — N

with 7'= f{5) also a manifold. Then we have

S (J(SvM)) =s(T,N), (B.63)

i.e. Segre classes are invariant under birational pushforward”” P. 76.

In the special case where S is a divisor, we have N 57 is a line bundle, and ¢ (N a7) is the restric-
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tion of the cohomology class of Sitself to S. So ¢(N a7) is the restriction of 1 4+ Sto S. Specialing

SC MtoEC Ptand inverting, we get
s(E,PY) =E — E* + B3 — E4, (B.64)

For the projection 7 : P4 — P4 we have 7(E) = L. Since c1 (N pa) = 3p (p being the class of a

point), we invert ¢((Nz ps) = L + 3p on L and get
s(L,P*) = L — 3p. (B.6s)
Then 7. (E — E* + E3 — E*) = L — 3p gives
7+(E) = 0, 7.(E?) = 0, 7. (E®) = L, 7..(E*) = 3p. (B.66)

Letting b be the hyperplane class of P*with »* = 1,and H = 7*h, we can now compute the

four-fold intersections on P4 by
HEY = 7, (HEY™) = 7. (z*V)EY) = Wz (E1). (B.67)
Combining with (B.66) we get

H* =)' =1, H’E = i’z (E) = 0, H2E? = /%=, (E?) = 0,
(B.68)
HE? = hz, (E}) = hL =1, E* = 3.

Plugging these into (B.61) we get

H3 =5, H*E =0, HF?> = -2, 3 = —1. (B.69)
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Since E is a ruled surface over L ~ P!, itis the blowup of a Hirzebruch surface at Nppoints. How-
ever, F3 is the self-intersection of the canonical bundle of E, which is 8 — Nr. So E}=—1is equiva-
lent to Ny = 9.

For a smooth surface S on any Calabi-Yau we have S + 5 - ca = c2(S). Applying this to H, a
quintic surface in P3 with ca = 55 we get H - ¢co = 50. From the description of £ as the blowup of
a Hirzebruch surface at 9 points we get ca(E) = 13, as a Hirzebruch surface has ¢ = 4 and each

blowup adds 9. Combining with £> = —1 we get £ - ¢ = 14. Summarizing:

H - ¢y =50, E-co = 14. (B.70)

Finally, we turn to the Kihler cone, which is most easily computed from the dual Mori cone. The
calculation is elementary albeit a bit lengthy. We provide all of the details in this case to illustrate the
ideas. In the other examples in this and the following section, we omit details in the calculation of
the Mori cone. In some cases, we do not have a mathematical proof that we have found all of the
Mori generators, but we provide justification by checking consistency with physics.

We coordinatize the Mori cone by identifying the class [D] of a curve D C X with the ordered
pair

(D-H,D-E)cZ (B.71)

Alternatively, if desired we could identify of pair of curve classes which generate Ho (X, Z) and ex-
press all curve classes in terms of the two chosen generators. While that approach might clarify the
geometry, using our coordinates is simpler.

We identify irreducible curves D C X with help of the blowdown map z : X — Y which
contacts £ to the line Z in the singular quintic ¥ C P4. The restriction of 7 to E exhibits £ as a ruled
surface over L. Let 7 be the class of the generic fiber. Since a general hyperplane in Yintersects L at

one point, its proper transform / in X is disjoint from the fiber » over any other point of L. Thus
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H - r = 0. Furthermore, E - » = —2 because the curve » can be viewed as the exceptional curve of a
transverse 41 singularity. Thus  has coordinates (0, —2).

There are Ny = 9 special fibers which split into a pair of PLs. Since each P! in this pair is orthog-
onal to A, the two classes lie in the same 1-dimensional subspace of the two-dimensional Hy (X, Z)
and are therefore proportional. We conclude that each of these P!’s has class 7/2 and coordinates
(0,—1).

If D is not contained in a fiber of 7, then 7(D) isa curvein ¥ C P* of some degreed > 0.

For example, 7(D) can be aline,d = 1. There are two cases to consider separately: 7(D) = L or
7(D) # L.

We consider the latter case first. Let 4 be the degree of 7(D) asa curve in X C P4, so that A -

D = d. Since 7(D) # L, the curves 7(D) and L meet at finitely many points (possibly none).
Equivalently, D and £ meet at finitely many points. Putting # = £ - D > 0, we conclude that the
coordinates of D are (d, k).

We now show that £ < d. Choose a hyperplane 2 C P* containing Z but not containing 7(D).
Then P meets (D) in d points (including multiplicity) by the definition of degree. On the other
hand, P meets 7(D) in at least £ points (including multiplicity), namely those contained in L. Thus
k < d, as claimed.

We now exhibita curve D withd = k = 3. Choose a two-plane Q C P* containing L. Since
YC Ptisa quintic, we have that Q N Yis a degree s plane curve, including multiplicities. However

L C QN Y, and L occurs with multiplicity 2 in Q M Y due to the 41 singularity. It follows that

QNY=2L+D (B.72)

for some degree 3 curve D, i.e.d = 3 for the curve D. Since D and L are contained in the same plane

Q, they meet in exactly 3 points, and # = 3 as claimed. Thus D has coordinates (3, 3).
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Thus the Mori cone is spanned (over Q) by the curve classes with coordinates (0, —1), (1, 1),
and the curves D with z(D) = L.

We are now ready to turn to the case 7(D) = L, i.e. curves D C E, and show that these classes are
already in the span of the curve classes found above.

Since the half-fibers have self-intersection — 1, we can blow down either of the P!s in the 9 sin-
gular fibers and get a P!-bundle over P!, Thus £ is the blowup of a Hirzebruch surface. Note that
the Mori cone of a blown up Hirzebruch surface is generated by the exceptional curves and some
sections, as discussed for example in***. The exceptional curves which are not sections are among
the half-fibers /2 which we have already accounted for in the Mori cone.

To determine the possible coordinates of the sections, we describe £ as a hypersurface inside
P! x P? by viewing (xo, x1, ¥2) as homogeneous coordinates for P? and (3, x4) as homogeneous
coordinates for P! in (B.56). Thus Z is a hypersurface of bidegree (3, 2).

Now a section of E can be thought of as the image of a map P' — E C P! x P2. Thus any
section D of E is the graph of a map P! — P2 Let s be the degree of this map. We now compute the
coordinates of D in terms of s.

First, we have /- D = 1, since H meets E in a fiber of £, which in turn meets D in exactly one
point since D is a section.

Next, E - D is equal to the degree of the restriction (Kf)|p to D of the canonical bundle of E.
Since the canonical bundle of P! x P?is O(—2, —3) and E is a section of O(3, 2), the adjunction
formula tells us that Kz is O(1, —1), which has degree 1 — s after restricting to D. Thus the section
D has coordinates (1,1 — s). Since these classes are all in the cone spanned by the curve classes
with coordinates (0, —1) and (1, 1), we see that the Mori cone is spanned by the curve classes with

coordinates

(07_1)7 (1’1)' (B.73)
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Finally, the Kihler cone is generated by
H, H—E, (B.74)

the dual basis to (B.73).

Before turning to other examples, we first make some general observations. Suppose we have a
Calabi-Yau threefold Y'with a generic 41 singularity along a smooth curve C of genus g, enhancing
to Ao at ]\Qdistinct points. Let 7 : X — Ybe the blowup of C, with exceptional divisor £. Then
E'is a ruled surface over C with generic fiber 7, and ]\Grspecial fibers consisting of pairs of P, each
of class /2. Let { D;} be any collection of divisors in /2 (Y, Z), and we continue to denote their

pullbacks to X by the same symbols. Then by similar methods to the above example, we compute
D,D;E =0, D;E*> = —2D,C,E* = 8 — 8¢ — N, (B.75)

while the triple intersections of the D; are identical when computed on either X or Y. The intersec-
tion D;C is computed on Y, while the triple intersections in (B.75) are computed on X.

We have done computations for quintics with SU(2) on various curves C. Suppose that C C
Y C P* has degree cand genus g. Since ¢ (Nepe) = 5d + 2¢ — 2, we compute ¢(Nep1) =
[C] + (5d 4 2¢ — 2)p so that

5(C,PY) = C+ (5d + 2¢ — 2)p. (B.76)
Birational invariance of Segre classes then reads 7, (E — E* + E3 — E) = C — (54 + 2¢ — 2)p,

giving
7.(E) = 0, 7. (E?) = 0, 7. (E®) = C, 7. (EY) = (5d + 2¢ — 2)p, (B.77)
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hence

H' =1, H’E = 0, H’E®* = 0, HE? = )C = d, E* = 5d + 2¢ — 2. (B.78)

It follows that

H* =5 HE=0, HE* = —2d, F* = 4 — 4¢ — 5d. (B.79)

Since a P*-bundle over Chas K? = 8 — 8, the surface E must be a P*-bundle over C blown up at
Ny = (8 —8¢) — (4 — 4g — 5d) = 5d + 4 — 4g points.

Combining ¢z (E) = 4 — 4¢ 4+ Ny = 5d + 8 — 8¢ (since a P*-bundle over a curve of genus ¢ has
2 = 2(2—2¢) = 4—4g and each blowup adds 1) with c3(E) = E>+Eco, we get Fcy = 10d+4—4g.

We collect the results in the following table. Here d' is the degree of C C P4,

d|g Mori gens Kahler gens Ny H3 | H?E | HE? | E® | oH | oF

1ol @), -1 BHH-E|9|5] 0 | -2|-1]|50]|14
(B.8o)

210((1,2), (0,-1) | H2H—E |14 5 | 0 | -4 | —6 | 50 | 24

310((1,2),(0,-1) |H,2H—E|19| 5| 0 | =6 | —11| 50 | 34

The only information in (B.80) which does not follow immediately from (B.79) and the following
paragraphs are the Mori generators and the Kihler generators. We have continued to coordinatize
the Mori cone by [D] — (H - D, E - D). The Kihler generators are immediately deduced from the
Mori generators by duality, so we need only describe the Mori generators.

The method is a straightforward adaptation of the case of a line. We consider the blowdown 7 :
X — Y'toaquintic Y'with an 4 singularity along C, and separately consider the cases 7(D) = C
and 7(D) # C. We have half-fibers /2 with coordinates (0, —1). If #(D) # C, then [D] has
coordinates (d, k), withd > 0and k > 0 exactly as in the case C = L. We find a curve D which

maximizes the slope of the ray from the origin through (d, k) and as before, we can show that the
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case 7(D) = Cdoes not produce any new classes. Then the Mori cone is generated by (, &) and
(0,—1).

Inthecased = 2,g = 0, such curves are well-known to be contained in a unique two-plane
Q% Example 6.4.2, which intersects Y'in a degree 5 curve YN Q. This intersection contains C with

multiplicity 2. Considering degrees, we see that we must have

YNQ=2C+D (B.81)

for some line D, d = 1. Since D meets C in 2 points by plane geometry, we see that £ = 2 and D has
coordinates (1,2) and slope 2.

We now show that any other irreducible curve D with coordinates (d, k) has slope k/d < 2.1t
follows that Mori generators are those appearing in the second line of (B.80).

To see this, our previous argument shows that the line D above is the on/y curve in the quintic ¥
other than C which is contained in Q. Since any other curve D' is not contained in Q, we can find a
hyperplane P containing Q (hence containing C) which does not contain I)'. The same argument
as in the case of an SU(2) on a line shows that ¥ < d, and we are done since the slope of the rays
associated to these curves are at most 1.

In the case where C'is a twisted cubicd = 3, ¢ = 0, we found the curve D whose coordinate ray
has maximal slope experimentally by a computer search. We simply describe this curve.

First, we note that the curve Cis defined by the vanishing of homogeneous polynomials /1, g2, 93,44
of degrees 1,2,2,2. The hypersurface £1 = 0 intersects the singular quintic threefold Y'in a quintic
surface S which is also singular along the curve C. We let Sbe the proper transform of S inside the
Calabi-Yau X. The surface S'is the blowup of S'along C, and is a smooth surface assuming that we
have chosen the singular quintic ¥ containing C generically.

We now calculate intersections on S by blowingup § C P3 along C using exactly the same
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method we previously used to find intersections on X by blowing up ¥ C P along C. We state
results without providing all of the supporting calculations.

We denote the exceptional divisor of the blowup fP?é of P3 by F, the proper transform of a hyper-
plane by H, the projection P3 — P3 by 7, the restriction of F to S by Fand the restriction of H to S
by H. Calculating Segre classes as in the SU(2) cases, we get 7(F) = 0, 7. (F?) = —C, F? = —10,
which yields

H? = 1, H’F = 0, HF? = -3, F? = —10. (B.82)

Since S has class 5SH — 2F in E’E, we calculate products of H and Fin S'by replacing H and Fby H
and F respectively, multiplying by 5SH — 2F, then calculating the resulting intersection on I,PE using

(B.82). We obtain after calculation
F? =5, HF =6, H> = 5. (B.83)

The desired curve D has class 7H — 4F. For this class, we compute / - D = 7TH? — 4HF = 11 and
F-D = THF — 4F* = 22,So D has coordinates (11, 22), slope 2. This ray is indicated (B.80). To
show that D is in the Mori cone, we just have to show that there is an effective curve in this class.

By the adjunction formula for § C IP3, the canonical class K5 of Sis ((—4H + F) + (5H —
2F))|; = H — F. Since K has degree H(H — F) = —1 < 0, the class K5 is not effective, i.e.
2(S) = 0and hence (O;) = 1. Riemann-Roch then gives y(O(D)) = (1/2)D(D — Kg) + 1 =
(1/2)(7TH — 4F)(6H — 3F) + 1 = 1 > 0. Also H*(O(D)) is Serre dual to H’(Ky — D) =
H(O(—6H + 3F)), which is zero since —6/ + 3F has negative degree H(—6H + 3F) = —12.
Thus 1 = dim A°(O(D)) — dim A (O(D)) and so H°(O(D)) is nonzero. Hence D is effective, as
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B.2.3 SU(3)

To achieve an SU(3) geometry on a line Z, we inspect the SU(2) geometry (B.56) and see that by
reinterpreting (xp, x1, ¥2) as homogeneous coordinates on P2, the same equation describes £ as a
ruled surface over the P! with homogeneous coordinates (3, x4 ). The fibers are degree 2 curves in
P2 which are generically isomorphic to P!, except over the Ny =9 points where det 4(x3,x4) = 0.
For those points, the degree 2 curve factors into a product of linear terms and the fiber is a pair of
lines, corresponding to the geometry of an SU(2) enhancement.

This description immediately suggests a way to achieve an SU(3): we require the degree 2 curve

in every fiber to factor. This can be achieved if the equation of E factors as

(vogo (3, x4) + x1g1 (53, 24) + 222 (53, 24) ) (x0ho (3, %4) + 2151 (53, 24) + x2bo (a3, x4)) -
(B.84)
In (B.84), the degrees of the polynomials g; and /; are fixed by an integer 0 < 7 < 3: the g; all have
degree 7 and the /; all have degree 3 — 7. By construction, each term in (B.84) has degree s in the
full set of variables (x, . . ., x4) so is the equation of a quintic. But this is not a good quintic when
viewed as a hypersurface in P4, since it visibly has two components, one of degree » + 1 and the

other of degree 4 — 7. This is easily fixed by adding terms of order greater than two in (xg, x1, x2)

(xogo + x141 —I-XQgQ) (xObo + x1/h1 —1—9@192) 4+ ... (B.Ss)

For generic g, bj, and higher order terms, the quintic (B.85) has an SU(3) geometry along a line, and
no other singularities.

We will blow up this geometry twice to a smooth Calabi-Yau threefold which Higgses to the
quintic. The choice of blowup depends on the ordering of the factors in (B.84). For this reason,

the construction is not symmetric in g and . In particular, switching ¢ and b, and replacing # with
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3 — n gives the same geometry (B.85) but a different smooth Calabi-Yau. These distinct Calabi-Yaus
are related by a flop.

We start by blowing up P4 along the line Z, just as we did in the SU(2) case, and now consider
the proper transform Z of the quintic Y defined by (B.85). The exceptional divisor £'is still fibered
over L, and by construction it splits into two components, each component being a P!-bundle over
L, i.e.a Hirzebruch surface. The two components intersect in a section F of £ over L. While it is
clear that Z is smooth away from F'and at the generic point of £, there is nothing to prevent Z from
having conifolds at finitely many points of £. We will perform a blowup of Z along one of the Hirze-
bruch surfaces which will both detect the conifolds and resolve them by small resolutions. A choice
of small resolution will be made in the process.

As a preliminary, we show how blowing up a surface in a threefold can detect a singularity in
the threefold. First, consider a smooth surface in a smooth threefold. We can choose local analytic
coordinates (x, y, z) in the threefold so that the surface is defined by z = 0. Since there is only one
equation, blowing up z = 0 does nothing, and the proper transform of the surface is isomorphic to
the surface being blown up.

By contrast, suppose a smooth surface passes through a conifold point. We can choose local an-
alytic coordinates (w, x, y, z) so that the conifold is defined by wx = yz and the surface is defined
byw = y = 0. Now if we blow up w = y = 0, we get two coordinate patches. In the first patch
we have a new coordinate # = w/y, leaving coordinates (, x, y, z) after eliminating w via w = uy.
Making this substitution into the equation of the conifold and factoring out y, we get ux = z,i.e. 2
can be eliminated as well, leaving independent coordinates (#, x, ), i.e. this patch of the blowup is a

smooth threefold. The blowdown map is seen to be

(”ax7_y) = (LU,x’)’a Z) = (%yvxa)'a ”x) (BSG)



The inverse image of the conifold point in this patch is {(#, 0,0)}, a copy of C.
We have a second coordinate patch described in terms of a new coordinate v = y/w. A similar

calculation gives coordinates (v, w, z) and blowdown map

(v,w,2) = (w,x,,2) = (w, vz, 0w, 7). (B.87)

The inverse image of the conifold point in this patch is {(v, 0, 0) }, another copy of C. Since the first

1, we see that the conifold gets blown up to

coordinates in these two patches are related by v = #~
P!, and we have a small resolution. Furthermore, the local forms (B.86), (B.87) of the blowdown
map show that the exceptional P! is identified with the exceptional P! of the blowup of surface

w = z = 0 with coordinates (x, y).

Now the divisor w = 0 in the singular threefold has two component divisors: w = y = 0 and
w = z = 0. Blowing up the first introduces an exceptional P! in its proper transform. We now
show that the blowup does not change the other divisor. If we consider the divisor w = z = 0 and
make the coordinate change w = uy, recalling that the exceptional divisor is y, we get the proper
transform of this divisoris# = z = 0, orjust# = 0 since & = #y as discussed above. The inverse
image via (B.86) of the conifold pointinside # = 0isjust (0, 0, 0), so the proper transform of the
divisorw = z = 0isisomorphic to the original divisor inside this coordinate patch. A similar
calculation in the other coordinate patch completes the verification of our assertion.

This gives us our strategy for identifying and resolving the conifolds: by blowing up one Hirze-
bruch surface, we introduce exceptional PLs in its proper transform without changing the other
Hirzebruch surface. We will see this explicitly in our SU(3) model after further calculation. This
process involves a choice and is asymmetric, related by flops. Furthermore, since we are using alge-
braic blowups, the resulting smooth threefold is guaranteed to be Kihler.

We now implement this strategy by blowing up the Hirzebruch surface S corresponding to the
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first factor of (B.84). It can be shown that

Fo neven
S~ (B.883)

Fi nodd

but we do not need this, as Kg (needed for Segre classes) can be computed by other techniques. In-
stead, we note that the exceptional divisor E of P4 is a trivial P2-bundle over L, i.e. is isomorphic to
P! x P2, essentially because the homogeneous coordinates (x, x1, x2) on the fiber are independent
of the coordinates on L. The equation of the surface S has degree 7 in the P! variables and degree 1
in the P2 variables. If welet b1 € H?(P!,Z) and by € H?(P?,Z) be the respective generators, we
therefore have for the class of §

[S] = nby + bo. (B.89)

Then we can generate H2(S, Q) by f = hi|sand h = ha|s, where fis a fiber of the Hirzebruch

surface and / is a section. We compute
b2 = b3 (nh1 + ho) = n. (B.90)

We also have

fz =0, bf=1, (B.91)

either by lifting to P! x P2 and intersection with the class zh; + ho of S, or more simply by noting
that fis a fiber and / is a section.

For K we write Kg = abh 4 ff and solve for « and j using the adjunction formula

Af+Ks) = -2, h(h+ Ks) = —2. (B.92)
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We get

Ks=—-2b+ (2n—2)f (B.93)
In preparation for blowing up S, we need to compute its Segre class. We have
5(S,P1) = (N /ﬁ)—l = o(Ts)e(Tzls) - (B.94)

We have

o(Ts) = [S] + (210 - (2n — 2)]‘) + 4p. (B.9s)

To compute ¢( Tﬁ,;;), it is most convenient to use that P4 is a toric variety, whose six torus-invariant

divisors have classes H, H,H — E,H — E,H — E, E. We get
((Tm)=(1+H)?(1+H-E)(1+E). (B.96)

We now blow up S and let E; denote the exceptional divisor of this second blowup. We then

identify the class of the proper transform of E and denote it as
E; =E - E;. (B.97)

Using invariance of the Segre class as we did in the SU(2) case, we can compute all of the 4-fold
intersections involving H, Ey, Eo.

We now choose our singular quintic threefold ¥ to have multiplicity 2 along L, and furthermore,
after blowing up as we did in the SU(2) case, contains S. Our Calabi-Yau X is the proper transform

of Yafter our two blowups. We see that X has class

[X] = 5H — 2E — E;. (B.98)
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We then put

H=H|x, E1 = Ei|x, E2 = Eg|x (B.99)

By construction, X has a resolved A2 configuration over L. The surface £7 is a Hirzebruch sur-

tace and E5 is a blown up Hirzebruch surface. We can then compute all of the triple products of
H, Ey, E by lifting to the blowup and multiplying by 5SH — 2E — Ej. In particular, Nyis deduced
from E3. We omit the calculations and state the results.

For all values of 0 < 7 < 3, we get

H? =5, H’E) = H?Ey = 0, HE? = HE3 = —2, HE\Fy = 1,
(B.100)
F3 =3, E =8,

Since £ is a blown-up Hirzebruch surface by our general discussion and K2=8-— ]\Qfor a Hirze-
bruch surface blown up Nptimes, we conclude that Ny = 11. Note that £ is a Hirzebruch surface
which has not been blown up, again consistent with our general discussion.

The other intersection numbers depend on 7:

F2Ey =n+3EF3=—n—5. (B.101)

From the description of £y as a Hirzebruch surface and of E3 as a blown-up Hirzebruch surface,

we get ca(E1) = 4and co(Es) = 15. From ¢o(E;) = E? + ¢ - E; and (B.100) we get

co-E1 =18, ¢o - Eo = —4. (B.102)

It remains only to describe the Mori cone and Kihler cone. As in the SU(2) case, we choose a
two-plane Q C P4 containing Z and we again find a degree 3 curve D C PN Yby (B.72). This curve

again meets L in 3 points. The factorization in (B.85) tells us that after blowing up, 7 of these points
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meet £ and 3 — 7 meet Es.

The curves D and the fiber 7| of £ are again in the Mori cone. However, unlike the SU(2) case,
the two components of the reducible fibers of £ are asymmetric: since a fiber 7 satisfies 71 - E3 = 1,
one of these two components must meet £5 and the other one does not. We let 7} be the compo-
nent which intersects £5. The other component is then 1 — ;/1 and is disjoint from E». In principle,
we might need both 7| and | — 7} to generate the Mori cone.

The intersection numbers of each of ' € {D, ry,7,, 72 — ra} are listed as an ordered triple

D)= (D' -H,D -E\,D - E).

D] = (3,n,3 —n), [r2] = (0,1,-2), [}] = (0,—1,1), [r1 —#] = (0,—1,0).  (B.103)

The coordinates of D can be found by an explicit geometric computation using the equation (B.85)
of the singular quintic Y. Alternatively, since D is the complete intersection of the proper transform
of two hyperplanes containing L, we get D = (H — Ey — E3) - (H — E; — E3), and then the
intersection numbers of D with A, E1, and E5 follow readily from (B.100) and (B.1o1).

The coordinates (B.103) make plain the relation [} — 7] = [r2] + 2[#}]. So [r1 — 7] isnot
needed to span the Mori cone.

We need another curve to generate the Mori cone. But it will be instructive to explain how we can
find new curves iterative. We content ourselves with working out the case z = 0.

So let’s assume that the Mori cone is actually spanned by D, 72, 7. Then dually, the Kihler cone
would be generated by

H, H—Ey — Ey, H— 2E| — Es. (B.104)

In particular H — 2E; — E. But we compute (H — 2E; — E)? = -3 <0, contradicting

Theorem B.1.17. Thus H — 2E1 — E5 is not nef.
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But this class does have an effective representative. Interpreting (B.84) as an equation inside the
exceptional divisor P* x P? C IP)Z) as before, without loss of generality we can change coordinates in
P2 5o that the first factor is just xg = 0. Then the proper transform H—F = H—Ey —FE3 of xg = 0
contains the first Hirzebruch surface £1. So when we blow up a second time, we have to subtract £1
again. So the class of the proper transform S of xg = 0 after both blowups is /' — 2E1 — E», hence
that class is effective.

Since S'is not nef and S is a surface, a curve Csatisfying S - C < 0 is necessarily contained in S.
This gives us a strategy for finding missed curves: look for curves in S. Since |H — E1 — E3| is base
point free’, we know that we can find a representative where the intersection S - (H — E; — E3) is
an effective curve K C § C X, hence is in the Mori cone. Using [S] = H — 2E; — E, (B.100) and

(B.101), we get for the coordinates of K

[K’] = (27270)' (B.Ios)

Comparing with (B.103) and recalling that » = 0, we see that (1/3)[D] = (1/2)[K] + [#;]. The
Mori cone is generated by K, 79, and 7/1

Dually, the Kihler cone is generated by
H, H—El—Eg, 2H—2E1 —EQ. (B.IOG)

As a check, we compute (2H — 2F; — E3) = 14 > 0. We have also checked in Section 3.3.1 that

this example satisfies the physical requirements of supergravity strings.

5This linear system corresponds to hyperplanes in ¥ containing L. That linear system has L as a base
locus, but it is immediately checked that the base locus is removed by the blowups.
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B.3 sp NoN-CoMPACT THREEFOLDS

B.3.I ARITHMETIC GENUS FOR CURVES IN A SELF-GLUED SURFACE

When a surface has no self-gluings, then the arithmetic gf:nus6 of curves living inside the surface can
be computed using the adjunction formula (B.12).

However, when the surface has self-gluings, the genus of the curve is modified. For example,
consider gluing the exceptional curves x and y in a generic two point blowup of [F1. The curve » —
x — y (which is a rational curve before gluing) looks like an elliptic fiber with nodal singularity after
the gluing, so its arithmetic genus should be one instead of zero, which is what would be suggested
by (B.12). This example suggests that the intersection numbers of a curve C with the curves Cy
and Cy participating in a self-gluing should be used to modify (B.12) in order to obtain the correct
arithmetic genus. However, not all such intersection numbers participate in such a modification. To
see this, consider the curve /' — x in the above example. This curve remains rational even after gluing.
Thus, even though it intersects , its genus is correctly captured by (B.12).

The examples of b — x — y and /' — x above suggest that the genus of a curve C should only be
modified whenever an intersection with C7 has a partner intersection with Cy. Thus our proposal
for the computation of genus of an arbitrary curve C'is as follows: Let 71 and 7 be the intersections
of C with Cy and C respectively, and let # = min(71, 72). Then, our proposal for computation of
genus is

2¢(C) —2=(Ks+C)-C+2n (B.107)

(B.107) allows certain curves to have a non-negative genus even though they did not have a non-

negative genus before self-gluing. For example, consider

GThroughout this work, we never use the geometric genus. Whenever the word “genus” appears in this
work, it always refers to arithmetic genus.
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* Asurface F2, with x glued to y. The curve ¢ — x — 2y has ¢ = 0 according to (B.107) while
ithas g = —1 according to (B.12) which is the formula we would use in the absence of self-

gluing. ¢ — x — 2y appears as a gluing curve in some of our geometries.

* Asurface F with ¢ — x glued to ¢ — y. The curve 2f — x has ¢ = 0 according to (B.107) while

ithas ¢ = —1 according to (B.12). 2/ — x appears as a gluing curve in the gluing rules for

22 (B.108)

B.3.2 EXCEPTIONAL CASES

In this Appendix we study some of the exceptional cases where the methods used in chapter 4 are

not applicable in a straightforward manner.

B.3.3 GLUING RULES BETWEEN NON-GAUGE THEORETIC NODES

As we combine non-gauge theoretic nodes via edges, the prepotential 6.F still remains zero. Thus,
another method to compute the gluing rules presented in the main body of chapter 4 is desirable.

The goal of this section is to provide this alternative derivation.

su(H)®M su(1)®
Gluing rules for 2 ———— 2 :Itis known that this KK theory is equivalent to a 5d

s1(3) gauge theory with an adjoint and Chern-Simons level zero. The geometry for su(3) with CS
level zero is

4 4
L 2 (B.109)
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The weight system for adjoint in this phase is

(L,1)*
(-L2)7(2,-1)"
(0,07 (0,0)"
(L,-2)" (=2, 1)"

(_L _1)+

The weight (—1, —1) can be identified with a —1 curve living in a2 non-compact surface and inter-
secting both S1 and S at one point each. Flipping the sign of this weight leads to the appearance of

ablowup on both §1 and o

ex ex

1 21

(B.110)

Notice that both the blowups are glued to each other. This can be understood as a consequence of
the fact that they both correspond to the same weighti.e. (—1, —1)7, but since there is a single such

weight, these two curves must be identified with each other. In this flop frame, the weight system is

(L,1)*
(-L2)"(2,-1)"
(0,0)" (0,0)*
(L,-2)7 (=2, 1"

(_L _1)_

and the curves corresponding (—1,2)" and (—2, 1) can be identified as (£ — x)s, and (f — x)s,

respectively. Flopping both of these, flips the sign of both the weights (—1,2) and (—2, 1) and leads
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to the geometry

X

x
-y, [ ey, -
ST
J

’ (B.rrr)
which after performing an isomorphism of both the surfaces can be written as
C 141 S 5 for o141 :)
0 0

7 7 (B.rr2)

leading to the same gluing rules as those presented in the main text.
su(H)M su(1)®

Gluing rules for 2 ——2—2  :Itis known that this KK theory is equivalent to a 5d

sp(2) gauge theory with an adjoint and theta angle zero. The geometry for pure sp(2) with zero

theta angle is known to be

1o — 2 2,
The weight system for adjoint in this phase is

(2,0"

(0, 1)"
(-2,2)7 (2,-1)"
(0,07 (0,0)"
(2,-2)7 (=2, 1)"
(0, -7

(_27 0)+
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Flipping the sign for (—2, 0) leads to the geometry

X
Crre2
J

(B.114)

In this phase, the weight (0, —1)™ can be identified with curves i — xand /i — y, along witha —1
curve z living in a non-compact surface and intersecting o at one point. z is glued to /i — x but not
to f1 — y. Since if it glues also to /1 — y, then it would mean that f; — xis glued to fi — y resulting in
another self-gluing of S1, namely /i — x ~ fi — y. After this self-gluing, the volumes of /{ — xand
f1 —ywillbe @, — @, leading to a contradiction with our starting step that their volume is —¢,,.

Now, to flip the sign of the weight (0, —1), we have to flop /i — x ~ z which automatically
flops /i — y since its volume is same. The flop of /i — x creates a new blowup on S; that we call .
Similarly, the flop of /i — y creates a new blowup on S7 that we call y’. Moreover the flop of z creates
ablowup on S that we call 2/.

After the flop §1 = F3 with i — «/ glued to /i — % and Sa = F3. The total gluing curve for Sy in
Siise; +« + 5/, and the total gluing curve for S; in S is 2h. The gluing /i — x ~ z transforms into

the gluing ' ~ 2’ in the new frame. Thus, the total gluing curve splits into two gluing curves:

e +y ~2h—2 (B.rrs)

¥~ (B.116)

The reader can check that the curves involved on both sides in both of these gluings have same
genus, and moreover (4.36) and (4.37) are satisfied for both gluings. Notice that if we would have
tried to split the total gluing curve into three gluing curves e1, ', y' glued respectively to 2 —

27,2, 7, we would have run into two problems. First is the same problem that we noted before
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the flop was performed, that this would imply a second self gluing &’ ~ 5 of S; and the weight sys-

tem won’t match with the system of curves in the geometry anymore. Second, the genus of 2/ — 22/

is —1 and the genus of ¢1 is +1, so the first gluing curve wouldn’t make sense.

Thus at this step of the integration process, the geometry is

fx

1+1 ety, x 2h-2,2 1
(i : 2
Sy

where we have dropped the primes on the blowups. The corresponding weight system is

(2,0"

0, 1)"
(-2,2)7 (2,-D)7"
(0,07 (0,0)"
(2,-2)7 (=2, 1)"
(0,-1)"

(_27 0)_

By performing an isomorphism, we can write the geometry as

X
-2, F- .
Cléﬂ etfa-2y, fx ) 2h-z, 2 2%
y

(B.117)

(B.118)

The weight (2, —2)" corresponds to the curve x ~ y, and the weight (—2, 1) corresponds to

the curve o — z. Upon flopping them, we obtain the geometry with adjoint matter completely
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integrated in

X

X
141 _ etffx 2efx2y, fx 5141
i

7 (B.119)
After an isomorphism, we obtain
ot e g
“ “ (B.120)
which shows that gluing rules are precisely those quoted in the main text.
su(1)M su(1)®
Gluing rules for 2 é : Itis known that this KK theory is equivalent to a 54

5p(2) gauge theory with an adjoint and theta angle 7. Thus, the analysis for this case is similar to

that of the last case which was
su()@M su(1)®
2 22 (B.121)

since only the theta angle is difterent for these two cases. Following similar steps as above, the final

“geometry”” analogous to (B.119) is found to be

C 1%+1 e+fy, fx 5 2b-x-2y, fx 2%+1 :)
7 7 (B.122)

7We remind the reader that it should only be viewed as an algebraic description since the KK theory
involves the non-geometric node.
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which after an isomorphism becomes

e-x X
C 1(1)+1 fxx ) 2h-x-2y, fx 2%+1 :)
“ J (B.123)

which matches the gluing rules claimed in the text.

B.3.4 A CONCRETE NON-TRIVIAL CHECK OF OUR PROPOSAL

We devote this section to a concrete and non-trivial check of our proposal. It is known that"°" the

KK theory
su(2)®  su(2)®
2—2—2 (B.124)

is equivalent to the 5d gauge theory with gauge algebra s1(2) @ su(4) with a hyper transforming in
F ® A2. More precisely, the gauge-theoretic phase diagram for the s1(2) @ s1(4) embeds into the
phase diagram for the KK theory (B.124). In this section we will show this explicitly.

Let us start with the geometry assigned to (B.124) with » chosen to be zero for both su(2) oF

f1, ¥2-%3, X4 fx1,frx2

X1-X2, X1-X2

X3-X4

(B.125)

where the surfaces Sy and Sy correspond to the left su(2) (1) in (B.124), and the surfaces Sh and S}
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correspond to the right s1(2) M in (B.124). As visible in the above diagram, x4 in S is glued to xo

in Sj,. Flopping this curve, we obtain

(B.126)
Now flopping f — x in S which is glued to x1 in S, we obtain
Sy, w3 A
03+1 2 0/2
0 . 0
ey ed s xi N e ey %
2 3 2
ff,
e h 2 e by xi
L — 17
Y e (B.127)
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which after performing an isomorphism on Sy can be written as

X4-X1, ¥2-X%3 A
!
0} 2 0
x1-%2,
by x w3, fa e ey %
2 3 2
St
x2
e, h ) h‘z Xi
1 1.2
1 X1-X 2
f e (B.128)

Now, flopping the ¢ curves inside Sp and S (which are glued to each other), we obtain

X471, X273 LS
/
04 5 002
X1-X2,
I 2 5 € 2
S x3. loxa e ey X,
3 2
; e by xi
’
1 122+1
! Ry (B.129)

where a surface without a subscript denotes that the surface is a del Pezzo surface rather than a

Hirzebruch surface. Thatis, Sy = dPyandS; = P? = dPy. Let us use the blowup x4 on Sy to
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write Sy in terms of the Hirzebruch surface [F;

€-X1, X2-X3 AHf
3 2
X1-X2,
oo xi w3, f XD
3 2
[
oo
; > e h-> xi
241
! X1-%2- 12
! Y (B.130)

b Fey (B.131)
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We use x in .S to write Sy in terms of Hirzebruch surface Iy

€K1, X2 ffy

Fox

f ey (B.132)

(B.133)
0, — L g2
e h-y X
* fx2-y2,
\xl‘}’l &by x;
]_2 2 1’12+2
hf fr1y1, 6202 (B.134)
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Flopping f — x2 in 5[, we obtain

02 e f 0/1

e, X

* fx2-y2,
\xl-}’l ez, b-y_ X

1, ) 1’12+2+1
rf [y, x2y2 (B.135)

Now flopping x in S, we get

0, — 0

2

fx2-y2,
\xl'}’l ez, by X

1, 5 13+2+1
£f fr1o1 %292 (B.136)

Performing the automorphism on S, that exchanges ¢ and f, we obtain

0y —* — 0,

2

fx2-y2,
\xl‘}’l ez bS] %

]_2 2 1/13+2+1
hAf Jx1y1, %272 (B.137)
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Now let us write S’l as a del Pezzo surface. This rewrites the ¢ curve as a blowup which we denote by

w
4 4 /

0, 0o

Af

2
* lw-x2-y2,
N}/l w-z, -y x;

1, N 1/3+2+1+1

lw-x1-y1, x2-y2

(B.138)

We can now perform a basic automorphism (of del Pezzo surfaces) on S} involving the three blowups

x1, %2 and y1 to obtain

(4 € !’

0, 0o

b

2
* l-w-x2-y2,
Nyl w-z, Y1-X3
!
1, 5 1/3+2+1+1
e x2-w, l-x1-y1-y2

272

(B.139)



Converting $ back into F'y using the blowup y2, we obtain

0y —* — 0

2

w2,
\.}/ w-z, y-x3

!
1, ) 113+1+1+1
5 xo-w, fx1-y

This is the final form of the geometry that we wanted to obtain.

(B.140)

It is clear that Sy, S, and 1 describe an su(4) and 5] describes an su(2) in (B.140). This can be

checked by intersecting the fibers of the corresponding Hirzebruch surfaces with these surfaces.

The intersection matrix yields the Cartan matrix for su(4) & s1(2). Now, let us show that the

configuration of blowups indeed describes A% ® F of 51(4) @ su(2). For this we relabel the surfaces

as

S()—>S1
.%—)Sg

S1— 83

273

(B.141)
(B.142)

(B.143)



thus rewriting the geometry as

1, — <2,

2

w2,
N.}/ w-z, y-x3

!
3, ) 113+1+1+1
5 xo-w, fx1-y

The weight system for A2 ® F can be written as

(0,1,0[1)

(_1707 1|1) (1’05 _1|1) (17 _1) ]-’ - 1)

(07 _170‘1) (_17 17 _1‘ - 1)

(07 _170’ - 1)

(B.144)

where the three entries on the left hand side of slash denote the weights with respect to s1(4) com-

prised by S1, $2 and §3, and the entry on the right hand side of slash denotes the weight with respect

to 5u(2) comprised by 5.
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From the geometry (B.144) we see that the holomorphic curves

vol(x1) = (1,0,—1|1)
vol(xp) = (—1,0,1]1)
vol(xs) = (0, —1,0]1)
vol(y) = (—1,1,—1]1)
vol(f— z) = (0,1,01)

vol(f —w) = (1,—1,1|1)

(B.14s)
(B.146)
(B.147)
(B.148)
(B.149)

(B.150)

match weights of the form (x, y, z|1), and the antiholomorphic curves x; — f,x2 — f,x3 — /17 —

f» —2, —w match weights of the form (x, y, z| — 1), where fdenotes the fiber of Hirzebruch surface

Sy = IFS. Thus we have reproduced the full weight system for A? ® F, justifying our claim. More

precisely, the geometry (B.144) describes the s1(4) @ su(2) gauge theory in the gauge-theoretic

phase given by the following virtual volumes

(0,1,0/1)*

(1,—1,1/1)* (0,1,0] — 1)~
(—=1,0,1|1)* (1,0, —1|1)" (1, -1,1| — 1)~
(-1,1,-1]1)" (=1,0,1] = 1)~ (1,0, -1 — 1)~
(0,-1,0/1)" (=1,1,-1] = 1)~

(07 _17 0| - 1)7
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B.3.5 COMPARISONS WITH KNOWN CASES IN THE LITERATURE

In this section we provide a comparison with some 5d KK theories known in the literature via other
methods. In particular, we show that the geometries we obtain for these 54 KK theories allow us to
see the 5d gauge theory descriptions of these 5d KK theories that have been proposed in the litera-

ture.

B.3.6 TwWISTED

Now, let us consider an example when we twist by an outer automorphism. It has been proposed

in'°* that

su(n)?

2 (B.rs1)
can be described by 5d gauge theory with gauge algebra so(z + 2) and 7 fundamental hypers. First
let us consider the case when 7z = 2. In this case the geometry is displayed in (4.84). Flopping all

the y;, we obtain

. 13m o
h S
m; —2 ‘ (m—1) b ~ 29m o
b
S
0%$+2 (B.152)
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Now flopping all the £ — x;, we obtain

e 1,
b‘z:xi/
m 2 (m— 1) — 23m
b-le\
2 (Basy)
Now we can carry the 2, blowups onto S, to obtain the geometry
/ 12
m%m%fo—b(m_l)Zm_G ¢ ...’?20\
€
02 (B.154)
which after an isomorphism on S,, can be rewritten as
4 ].2
. ) . ) /
i s o \
2 (Buss)
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The Cartan matrix associated to this geometry is indeed that for 50(27 + 2) and the 2 blowups

can be identified as 27 hypers in fundamental of s50(2m + 2).

Similarly, the geometry for n = 2m + 11is given in (4.85). Flopping x; ~ y; living on Sp, we

obtain

m 2 ¢ (m—1)g h ¢ 1321% 2h-23" x; 0c
After performing an isomorphism we can write the above geometry as
m -2 ¢ (m—1)g h . el 1%m+1 2h 0
Now moving the blowups onto S, we obtain
m>m 2w e (m— 1)om g L eee 1y 2 .
which can be rewritten as
mit L P (m 1)y s s — 1 2 c

which precisely describes §0(2m + 3) with 2 + 1 hypers in fundamental of s0(2m + 3).
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(B.158)
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! O11
1
: |
2>
o—0—0— -+ —0—0—0 [ J [ J (] (] [ ]
1 1 1 1 1 1 1 2 3 2 1
1 1 1 1 1 1 1 2 3 2 1
1
s0(2n + 1)) el
O11 @22
o—0— 00— 7.7.#. O (] (] (] (] (] ([ J
1 2 2 2 2 1 1 2 3 4 3 2 1
1 2 2 2 2 2 1 2 3 4 3 2 1
1 (1)
513(”)( : €g
@33
O=——0—0— -+ —@ (] (] ([ J (] (] (] (] o o O
1 1 1 1 1 1 2 4 6 5 4 3 2 1
1 2 2 2 2 1 2 4 6 5 4 3 2 1
1
50(271)(1): fi ):
1 1
1 1 o) ° ° ° °
1 2 3 2 1
© ® 1 2 3 4 2
o—0— - —0—@ (1)
2 2 2 2 g
2 2 2 2 -
°® °® e==e——O
1 1 1 2 1
1 1 3 2 1

Table B.2: Untwisted affine Lie algebras. The affine node is shown as a hollow circle. The numbers in black 4 denote
the column null vector for the Cartan matrix, popularly known as dual Coxeter labels. The numbers in red d,, denote the
row null vector for the Cartan matrix, popularly known as Coxeter labels.
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su(2n 4 1)2): el

O=%-0—0— -+ —0—0=%=0 O ° ° ° °
1 2 2 2 2 2 1 2 3 4 2
2 2 2 2 2 1 1 2 3 2 1
s50(2n)); 50(8)®);
O—%-0—0— - —0—0——0 e=—0 O
1 2 2 2 2 1 3 2 1
1 1 1 1 1 1 1 2 1
5u(2n)(2): su(4)(2):
O—<(e0——e
1 2 1
1 1 1
1
1
? su(3)®:
° o—0— —o——@ ° O °
1 2 2 2 2:% 2 1 $ 2
1 2 2 2 2 1 2 1

Table B.3: Twisted affine Lie algebras. The affine node is shown as a hollow circle. The numbers in black ddv denote the
column null vector for the Cartan matrix, popularly known as dual Coxeter labels. The numbers in red d,, denote the row
null vector for the Cartan matrix, popularly known as Coxeter labels. The total number of nodes for 5u(2n + 1)(2) is

n + 1, for50(22) ) is , and for su(2n) @ is n + 1.
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B.4 LIE ALGEBRA

B.4.1 THE GENUS ONE FIBRATION

For each &, combining the fibers f; ,, let us define a fiber £, via

Jo = dafan (B.160)

where d,, are Coxeter labels for giq“) listed (in red color) in Tables B.2 and B.3. If g,, is trivial, then

dg = 1.

We claim that f;, is a genus one fiber. This means that f, can be obtained by a degeneration of a
torus. It is well-known that torus fibers can degenerate into Kodaira fibers, which are collections of
rational curves® intersecting in the pattern of untwisted affine Dynkin diagrams of type su(r)(!),
50(27)M) and e\, The multiplicity of each rational component curve is given by the Coxeter label
for the corresponding node in the affine Dynkin diagram. The fiber £, on the other hand, is com-
posed of rational curves £, , with their multiplicity given by the Coxeter labels for affine Dynkin

(92)

diagram g,'*’. Now, one can notice that every affine Dynkin diagram can be obtained by folding

$This means they have genus zero.
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affine Dynkin diagrams of type su(z)™), s0(22)(1) and el as follows:

s0(22)1) — s0(22 — 1)) — s0(2 — 2)@) (B.161)
e — 5§ — s0(8)® (B.162)
50(8) = s0(7)V) — gg) (B.163)
s0(4n) M = su(22)? — su(2z — 1)@ (B.164)
50(8)D) = 50(7) V) — su(4)® — su(3)? (B.165)
e(71) — eég) (B.166)

Moreover, observe that the Coxeter numbers of two nodes are added if they are identified under
gluing. This means that f, can be obtained by identifying the rational components of the Kodaira
fibers according to the above folding rules. This explicitly shows that £, is a genus one fiber.

Moreover, we find that due to the virtue of gluing rules, f, is glued to ﬁg as

9u(— Q) ~ qo(—Qup)fs (B.167)

This generalizes the condition in the untwisted unfrozen case>® where f; ~ J; whenever there is an
edge between 7 and j in Xg. This shows that certain multiples of genus one fibers are identified with
each other as one passes over from one collection of surfaces to another, allowing us to extend the
fibration structure consistently throughout the threefold.

More formally, according to a theorem due to Oguiso and Wilson 153,188 5 threefold X admits an

genus one fibration structure if and only if there exists an effective divisor S72 satisfying

S-S -Sp2=0, Sp-Sp2#0 (B.168)
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where S72 lives in the extended Kihler cone, possibly on the boundary. The extended Kihler cone is

parameterized by all the Coulomb branch and mass parameters satisfying
J-C>0 (B.169)

for all holomorphic curves Cin X. Physically, the extended Kihler cone corresponds to the Coulomb
branch of the (possibly mass deformed) 54 theory corresponding to X.
In all of geometries associated to 5d KK theories, we can find an S72 which lies in the extended

Kihler cone satisfies (B.168). Pick any node « and define
Ta
Sy = Zd;/Sﬂ# (B.170)
a=0

where " are dual Coxeter labels for the associated affine algebra g/’ (see Tables B.2 and B.3) and
7, is the rank of invariant subalgebra . If the node « carries a trivial gauge algebra, then we define
dy = 1 and take (B.170) to be the definition of S;2.

In the gauge theoretic case, the direction parametrized by (B.170) is special since all the fibers £;, ,

have zero volume along this direction?

—S72 'f;z,ac = ZAﬂbd;/ =0 (B'I7I)
b

Similarly, in the non-gauge theoretic case

—S12 fou = —Kou fou =0 (B.172)

where the last equality can be checked to be true for every non-gauge theoretic case. Moreover, the

°In fact, non-negativity of the volumes of fibers implies that the only directions in the Coulomb branch
when mass parameters are turned off are given by > &S, ,, for various a.
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reader can check using the explicit description of geometries presented in this chapter 4 that

Sp2-C>0 (B.173)

for all other holomorphic Cin the threefold X 1, 1. So, S72 as defiend in (B.170) lies in the ex-
tended Kéhler cone of X 1, 1.

Now it can be easily checked for all the geometries presented in this work that

Vo

Sy2 - Sp2 = —g, Q™ Z(dﬂfﬂ,a) #0 (B.174)
a=0
where d, are the Coxeter labels for gfzq“) withdy := 1if«isanon-gauge theoretic node. We can
now compute
Sy Sp2 - Sy o< Y (dafaw) - (D dySpa) = = Y dadud =0 (B.175)
a=0 b=0 a,b=0

thus verifying both the conditions in (B.168) and establishing the presence of a genus one fibration

inX&{qﬂ}.
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6d Supergravity

C.1  INFINITE FAMILIES

The objective of section 3.1 is to show that there are only finitely many massless modes for a 6d
N = 1 theory and hence it is important to understand the possible infinite families that could oc-
cur. As was discussed in Section 3.1, the only theories with one simple gauge factor and unbounded

size are presented in the first two rows of Table 3.1. However, they were both shown to be finite be-
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cause of the existence of non-unitary BPS strings for arbitrarily large size. Therefore, of particular
interest will be theories with multiple simple gauge factors drawn from Table 3.1 for which one can
reduce A — V by gauging matter.

Specifically, we will argue that the only matter that can be gauged is fundamental matter. This
fact was shown in '*# to be true for 7 < 9 and can be generalized for any 7. By considering the
group theory coefficients A presented in **7 one can note that all representations except the fun-
damental contribute to &; - b; at least linear in N. However, as was discussed extensively in Section
3.1 b; vectors belong to the string charge lattice and consequently are independent of N. Alterna-
tively, one can also note from Table 3.1 that this would not be possible for the specific theories. For
example, consider the gauge group Gx X Gjr with gauge factors picked from Table 3.1 with matter
of the form (R, Rar) charged under both gauge groups in representations R, Ry respectively.
Assume now that at least one of representations is not fundamental and hence the only choices are
symmetric /antisymmetric/adjoint. We may assume that R is such a representation and hence
(Rn, Rar) = (Rp, % or Adj). In order to form such a representation SU(M) needs to have
at least dim(R ) representations in M (M= 1) /2 or Adj but that is not possible since there is only a
finite number of those for each theory. Therefore, we conclude that any matter charged under more
than one gauge groups necessarily includes gauging of fundamental matter.

Furthermore, one should note from Table 3.1 that only matter charged under at most two groups
can appear. For example, let us consider a theory of the form SU(N) x SU(M) x SU(K), even
though trifundamental matter is possible for finite N, M, K as shown in '*3, it is not possible to con-
struct it for unbounded size. This is because there needs to exist sufficiently many bifundamentals
between every pair of simple factors and the theories we are considering for arbitrary size do not. Al-
ternatively, one could note that for example a trifundamental of SU(N) x SU(M) x SU(K) would
require at least K bifundamentals (I, A1) but in this case b; - b; would also grow with K which as

discussed earlier is not consistent.
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We also note that SU(N) /Sp(IN) with 16 0 + 2/1Hor any other group of finite size can not be a
factor because gauging bifundamental matter between unbounded size gauge groups requires also
an unbounded number of hypermultiplets in the fundamental representation. Therefore, we pro-
ceed by considering the possible ways three gauge groups from Table 3.1 can combine and produce a

theory with unbounded size not restricted by anomaly cancellation.

* Firstly, consider matter charged as (N, M, 1) + (1,M,K) + (N, 1,K).

This type of matter is only possible if the inequalities Fjy > M + K, Fpr > N + K, Fx >
N + M are satisfied, where Fy, Fyr, F represent the number of hypermultiplets in the
fundamental representation. From Table 3.1 we know that there are three choices of each
Fn, Far, Feg. F = N — 8, N + 8, 2N. Starting from the first possibility the above

inequalities become:

Fy=N-8>M+K (C.1)

and

M+2K+8< N+ K< Fpy=2M (C.2)

with Fpr = 2M being the only consistent choice for K > 0. The third inequality becomes:

IM+K+8<N+M< Fy=2K (C.3)

again with Fx = 2K being the only consistent choice.

Note that these inequalities can not be satisfied simultaneously for any combination of
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N, M, K for large values because the combination of the last two implies:

K+ M
N< =T (C4)
2
While the first
N>M+K+38 (C.s)

One could also try Fy = N + 8 which leads to Fxr = 2K, Fpy = 2M forlarge N, M, K
and hence one would need to satisfy N < %4, N > M + K — 8 for unbounded N, M, K

which is impossible.

Lastly, one can choose Fiy = 2N which forces Fx = 2K, Fpy = 2M and substituting this

in the above inequalities imply that N = M = K. In particular, this theory has gravitational
anomaly H—V = 3N?—3(N?—1) = 3 and hence T < 9. More generally, we could consider
such a loop for arbitrary number of factors SU(N)* which has H — V' = kN? — kN? +k = k

and hence £ < 12,7 < 9.

We now move on to charged matter of the form: (N, M, 1) + (1, M, K)

Lets us consider the three simple gauge factors Gy X G X Gg with each component drawn
from Table 3.1. Then assuming that no matter is charged under more than one gauge group
we have that the leading contribution to  — V'is given by alN? + oM? + 3K? with

¢; = 3 or1depending on the matter. Therefore, in order to make 7/ — ¥ finite we can
gauge matter in bifundamental representations which may eliminate the quadratic leading
behavior of the contribution to the gravitational anomaly. As we did before the number of
fundamental hypermultiplets F, Far, Fx needs to satisty Fy > M, Fpy > N+ K, Fx > M

with the leading behaviour Fy ~ 2¢1N, Fpr ~ 2c0M, Fg ~ 2c3K and hence 2c; N & 2(1 —
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)8 > M, 2cM=+2(1 —¢3)8 > N+ K, 2c3K=+2(1—c3)8 > M. Therefore,
for large values of M, N, K we have the leading terms M ~ 2ciaN, K ~ 4cicoaffN
witha < 1,8 < 1 and such that they satisty the above inequalities. This implies that the
contribution for each bifundamental is 2c; 2 N? + 8(%(2522(5]\[2 and hence this is the amount
subtracted from A — V'when gauging Fy, Far, Fx. We thus require that aN? + e M? +
3K? = | N? + ¢3(2c14)°N? + 16(3(515204,8)2N2 = 2c1aN? 4+ 8052C%C2[3N2 in order to
cancel the leading N behavior of the gravitational anomaly. The equation N* + 4caci2? N? +

16(3(15542{82N2 = 2aN? + 805261(2[61\[2 has the following solutions that eliminate the
), (L, 5,11, 5).

Starting from the first solutions and enforcing Fy > M, Far > N+ K, Fx > M we can find

N[ —
D=

quadratic behavior from H — V2 (a, 8, c1,¢2,¢3) = (1, %’ %, 1,

the consistent solutions. The possibilities as indicated from («, 3, ¢1, ¢2, c3) = (1, %, %, 1, %)
are: Fy = N—8 N+8, Fy =2M =2N, Fx=N-—8, N+ 8. Thefirstcase
requires Fy = N—8 > M,M+K+8 < N+ K < 2Mand K+ 8 < M < Fg we have

Fx =K+ 8.

The second choice of Fyis similar to above with N +8 > MM + K — 8 < N+ K < 2M
and K — 8 < M < Fg. Consistency then requires Fx = K — 8 (which is identical to the

previous case)or Fr = K + 8.

The second category with (, 8, ¢1, c2,¢3) = (1, %, 1,1, %) requires 2N > M, M < 2K,

M < N+ K < Fyprwith Fpp = 2M.

All the theories that satisfy those conditions are summarized in Table C.1. The last column
indicates the contribution to A/ — V of each theory, one can see that although the quadratic
terms are eliminated there can still be linear terms. This could have also been deduced by
looking at each individual contribution of /' — V¥ from Table 3.1 and noticing that the the-

ories with ¢; = 1/2 need to come in pairs such that the linear contributions cancel because
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gauging bifundamental matter does not affect the linear terms as long as the size is not re-

stricted to be even. Therefore, only four theories do not have their dimensions restricted by

anomalies.

SU(N+ 8) x SU(N) x SU(N — 8) (oo,1) +(1,00)+Hm,1,1) -53
+(1,1,6)

SU(N — 8) x SU(N) x SUN — 8) (oo,1) +(1,00)+(H,1,1) 15N — 53
+(1,,8)+16(1,5,1)

SU(N — 8) x SU(N) x SU(N + 8) (3,0,1) +(1,00)+(H 1,1)
+(1,1,8)+16(1,1,0) 15N + 67

SU(N) x SU(2N) x SU(N) (oo,1) +(1,00) 16N -3
+8 (1,0,1)+(1,81)

SU(N) x SU(2N) x SU(N + 8) (o,0,1) +(1,0,0) 15N + 61
+(1,8,1) +16(1, 1,0)

SO(M + 8) x SUM) x SU(M — 8) (o,0,1) +(1,0,0) —58
+(1,1,H)

SUM + 8) x SUM) x Sp((M —8)/2) (g,0,1) +(1,0,0) —58
+my1,1)

SO(M + 8) x SUM) x Sp((M — 8)/2) (o,0,1) +(1,0,0) —57

Sp((M — 8)/2) x SUM) x Sp((M —8)/2) | (0,0,1) +(1,0,0) +16 (1,0,1) | 15N — 57

SU(N) x Sp(M) x SUN) (6,0,1) +(1,0,0) +8 (1,5,1) | 16BN — 2

Table C.1: Theories with three simple gauge factors and // — I at most linear in /.

In a similar way we can extend this analysis to more than 3 gauge factors. We may start by
considering a linear chain of gauge groups of the form G; X Ga X --- x G}, with bifunda-
mental matter charged under every adjacent pair of groups G; each of size N; = 4;N + ¢;.
Let us start by considering G, with matter in Fy, = N; & 8. Then the size of each adjacent
gauge group is bounded as: Fy, > N1 + N;—1 which implies that ;N + ¢; £ 8 >
a;—1N + a;+ 1N + ¢;41 + ¢;—1. For large N this inequality can be translated to keeping only

the linear terms in /\ given by:

a;N > a, 1N+ a; 1N (C.6)
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Assuming the same type of matter for the adjacent groups we have

ﬂz'JrlNZ a;N + ﬂl’+2N5 a; AN > a;N+ a; oN (C7)

Adding the first inequality and the last two gives:
0>a;,+a42+ a2 (C.8)

which can not be satisfied for positive #;’s. We can instead consider a different type of matter

for one of the gauge groups(Fi1 = 2N;y1) satistying:
2a; 11N 2> a;N + a;1oN, a; \N > a;N+ a; oN (C.9)
Combining these equations gives:
1 1
0> —a;,+ a2+ a2 (C.10)
2 2
which is also not satisfied for positive 4;’s.

Next we can consider also £;_1 = 2N,_1 which needs the following inequalities to be satis-

fied:
2a; 01N > a;N+ a;yoN,2a; 1N > a;N+ a;_oN (C.11)
Which can combine to:

1 1
0 > 5611'-‘,-2 + iﬂz‘_Q (C.IZ)
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Similarly, if instead one had: F;_1 = N,_1,F;11 = N1, F; = 2N, then the following

inequalities need to be satisfied:

2aiN > a; 1N+ a; (1N, a; 1N > a;N+ a; i oN, a; {N > a;N+a; oN (C-I3)

And hence

0>ai2+ai o (C.14)

as above, which can not be satisfied for theories with more than three gauge groups. How-
ever, if the chain has only three gauge groups 4;42,4,_2 = 0and hence the C.14, C.12
inequalities are satisfied. In particular, both theories were found earlier in Table C.1 but the
latter had /' — V'linear in N while the former had A — ¥ constant as desired. Therefore, any
infinite family should only have gauge groups away from the edges of type SU(N) + 2N\
However, even though the other simple gauge factors do not appear away from the edges of
the chain, there is nothing wrong with them being the first and last factors. For example, if
G; was the first gauge group then #;_1 = a,_3 = 0and hence the inequalities become:

a; > a1, 24,41 > a; + a;+o which can be solved.

Lastly, let us look at theories with more than three gauge groups starting with SU(N) + 2N\b.
In this case we require the following inequalities to be satisfied for the SU(N) x SU(a1N +

¢1) X -+ SU(apN + ¢;) gauge group:

2> a1,2a1 > 1 +az, 2a2 > a1 +asz, - 24,1 > ap +ap_2,Fg > a, 1N  (Cus)

We can start by investigating the different possible solutions for these inequalities. Let 21 =

1 then there is a unique choice for allz; = 1 but there are /N fundamental hypermulti-
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plets for the first and last gauge groups which have not been gauged and consequently give
quadratic contributions to / — V. However,ifa; = 2thenay = 2,3,foray = 2
thenallz; = 2butifas = 3 then trying to saturate all inequalities we get increasing 4;:

ag = 1,a1 = 2,a2 = 3,a3 = 4, - -ap_1 = k,a;, = k + 1. All these theories have a large
number ~ NN of ungauged matter in the fundamental representation which lead to quadratic
diverge in H — V' for large N irrespectively of the choice of F. Therefore, the only theories

that may give potential infinite families are those with gauge groups of the form:

Gy X SU(NQ) X X SU(N/C_l) X Gy, (C.IG)

with Gy, any group with matter that contains (N; 4 8)o. All these cases are studied extensively

in Section 3.1.

Here we have considered only linear chains of groups that could be potential infinite fami-

lies.

C.2 NON-LINEAR CHAINS

Consider a theory that has at least one of the groups connected to 7 other groups.

G, -
~ |
G1 Go(No) Gs
AN
2 G, Gy

We know from Table 3.1 each group G;(N;) depends on a parameter NN; that control its size and
the matter associated to that group can be either /V; £ 8 or 2/N; fundamental hypermultiplets, which

we will label as k,N; £ (2 — k;)8 with k; = 1 or 2. Therefore, assuming that there is matter charged
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under each adjacent group the following inequalities for the leading contributions should hold:

k
ZNi < Fny = kolNo, No < Fn, = kiN; (C.17)
P

We can combine them to get

Z/ell < ko (C.18)

The largest number of gauge groups 7 is reached when £, = 2andky = 2forwhich; = 4.
Therefore, n = 4 is the largest number of adjacent groups one can have. We have already studied
the cases with » = 0, 1, 2 which corresponds to the linear chains. For» > 3 one would require
ko = 2 and hence the only possibilities are (1, k2, k3) = (1,2,2),(2,2,2) or (k1, k2, k3, k3) =
(2,2,2,2).

Forn = 4:
N1 + No + N3 + Ny = 2Ny (C.19)

and N; > Np/2 then the unique solution is:

SU(N)
|
SU(2N)

SU(N)

SU(N) SU(N)

with  — V"= 5and hence 77 < 9.

Forn = 3:

3
§N0 < Nj + Na + N3 = 2N (C.20)
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and N; > Np/2 from which one could construct the following infinite families of theories :

SU(N) SU(N)
SU(N) SU2N) ----- SU@RN)™ ------ SU(2N) SU(N)
with H — V' = 6 + m which implies that 7' < 9.
SU(N)
SU(2N)
SU(N) SU(2N) —— SU(3N) —— SU(2N) SU(N)

with A — V= 7 which implies that 7" < 9.
SU(N) — SU(2N) — SU(3N) — SU(4N) — SU(3N) — SU(2N) — SU(N)
\
SU(2N)

with A — V' = 8 which implies that 7" < 9.

SU(2N) — SU(4N) — SU(6N) — SU(5N) — SU(AN) — SU(3N) — SU(2N) — SU(N)
|
SU(3N)

with 4 — V"= 9 which implies that 7" < 9.

All these theories have 22 = 9 — T, b? = —2,b, - bj = lorofori # jdepending on the inner
product pattern presented on the diagrams above. These theories together with the cyclic SU(N) we
found earlier C.1 have anomaly lattices equal to the negative of the extended Cartan matrices from
affine ADE.

The other case with

N + No + N3 = 2N (C.21)

and N1 > Ny, N1 > Np/2 does not seem to give infinite families.

We note that the list of theories might not be exhaustive since we have not considered any more
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exotic configurations where for example loops could appear.
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