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Chapter 1

Introduccion

1.1 Introduccion

La teoria de la relatividad general es si duda una de las teorias mas completas ja-
mas construidas [1] . Logré con gran acierto explicar fendmenos que la teoria de
la Gravitaciéon de Newton, formulada alrededor de doscientos afios antes, no po-
dia explicar, como por ejemplo la precesién perihelio de mercurio. Ademds como
consecuencia predijo fendmenos no observados antes, como la desviacion de la luz
por un objeto masivo, las ondas gravitacionales y la velocidad de propagacion de la
gravedad. Todo esto formulado desde un punto de vista geométrico y en el limite
de bajas energfias .

Sin embargo, al evolucionar los experimentos salieron a la luz nuevos hechos que
esta teoria no puede explicar, como la expansién acelerada del universo y la veloci-
dad de rotacién de las galaxias. Todos estos fenémenos cosmolégicos han intentado
ser explicados por diversas modificaciones de la teoria de la relatividad formulada
por Einstein.

Por otra parte, no existe una teoria cudntica de la gravedad. Si bien se puede con-
struir desde el punto de vista de teoria cuantica de campos una teoria que cumpla
con ser siempre atractiva y de largo alcance, teniendo como particula mediadora al
graviton, de spin dos y masa nula, esta presenta divergencias en el sector UV [2].
Por este motivo, la relatividad general se puede considerar como una teoria efectiva
con una escala de corte en la escala de Planck [3].

Estos dos puntos son el eje central de esta tesis. Por un lado, Massive Graviy
es una modificacion en el sector infrarojo de la teoria e intenta explicar fenémenos
macroscopicos, mientras que Asymptotic Safety, o la renormalizcion funcional, in-
tentan explicar el sector UV o de distancias cortas.

Las teorias en las cuales se considera el graviton como una particula masiva han
tenido cierto resurgimiento en el altimo tiempo debido a que algunos problemas de
esta teoria han encontrado solucién. Este el es el caso de la discontinuidad vDVZ, la
cual nos dice que las cantidades fisicas no coinciden para los casos m = 0y m — 0.
Con el truco de Stuckelberg se pudo dar solucién y retomar el estudio de teorias de
Massive Gravity, siempre considerando esta teoria como una teoria efectiva.

El caso de Aymptotic Safety tiene su origen en la vereda opuesta [4-6], es de-
cir, en poder completar el rango UV de la teorfa de la Relatividad General. Esta
idea fue propuesta primero por Weinberg y considera que la Gravitacién podria ser
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renormalizable en un contexto no perturbativo y de esta manera ser una teoria fun-
damental bien definida en todo el espectro de energia. Esto podria ser conseguido
a partir de dos requerimientos. Uno, que el niimero de constantes de acoplamiento
"esenciales"(o sea, aquellas que no pueden ser expresadas en funcién de otras con-
stantes) sea finito. Y dos, que las funciones beta para las constantes de acoplamiento
dependientes de la escala se anulen en el limite de altas energias, es decir, que exista
un punto fijo para las constantes de acoplamiento.

Laidea de la "Effective Average Action" (EAA) y su ecuacién de evolucion (FRGE
por Functional Renormalization Group Equations) propuesta por Wetterich [18] tiene
como raiz el problema de la Block Spin action de Wilson y Kadanoff. Ya que al inten-
tar explicar el comportamiento en distancias cortas (o altas energias) de una accién
efectiva para bajas energias que explica algtin modelo fisico, se pierden simetrias
macroscopicas como rotacién y traslacion. Gracias a las FRGE, la teoria podria com-
pletarse el sector UV a partir de la teoria efectiva conocida para bajas energias.

A fines de la década de los noventa Reuter implementaria este método para el
caso de la relatividad general [5], especificamente para un lagrangiano de Einstein
Hilbert con constante cosmolégica. Este fue el primer avance exitoso en comple-
mentar matematicamente la idea propuesta por Weinberg y a la fecha se ha imple-
mentado para diversas extensiones de teorias de gravitacién [8-11] como torsion, R?,
etc.... En todos estos trabajos, se demuestra el buen comportamiento de la Gravedad
como una teoria "asimptotically safe".

Ahora bien, volviendo al tema de Massive Gravity, la versién més simple de una
teoria de gravitacion masiva viene dada por la accién de Fierz Pauli més un término
de masa [15]. Esta teoria posee dos inconvenientes: la ruptura de la simetria bajo
difeomorfismos y la discontinuidad vDVZ. El primero aparece como consecuencia
de la inclusién del término de masa y el segundo, como dijimos, esta relacionado
con la discontinuidad que se produce al considerar las cantidades fisicas medibles
(como el d&ngulo de defleccién de la luz por un objeto masivo o el potencial de New-
ton) al considerar la teoria con m = 0 y tomar el limite m — 0 [16].

Ambos problemas pudieron ser explicados por el mecanismo de Stuckelberg
[12], el cual reincorpora la simetria bajo difeomorfismos y ademds deja en evidencia
que al hacer la descomposicién, el campo escalar se acopla a la traza del tensor de

energia momentum, cosa que no sucede en QED si consideramos un fotén masivo '.

Si consideramos la teoria completa, es decir, con el escalar de curvatura R en lu-
gar de s6lo los términos lineales, existe un limite hasta el cual podemos considerar
en la expansion, de manera que el escalar de la expansion produce una fuerza repul-
siva que podria explicar la expansion acelerada del universo. Esta teoria, llamada
Az, cumple con los requisitos de ser una teoria efectiva de massive gravity, por lo
que el método de Renormalizacién Funcional puede darnos indicios de la fisica més
alla de la escala de corte UV.

Esta es la gran motivacion para realizar este trabajo: combinar una teoria efec-
tiva de gravitacion que podria explicar fenémenos macroscépicos que la teoria de

LEn la referencia [15] se encuentra explicado de manera muy pedagoégica el mecanismo de Stuck-
elberg, discontinuidad vDVZ y la mayoria de los elementos de Massive Gravity utilizados en este
trabajo
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Einstein no predice, con el método de renormalizacién funcional, el cual nos puede
indicar el buen comportamiento de esta teoria en la escala UV y asi determinar si
esta teoria cumple con ser "asympltotically safe" o no.

1.2 Programa

La estructura de este trabajo es:

En el capitulo siguiente veremos la construccién de la "Effective Average Action”
(EAA) y su ecuacion de evolucion (FRGE por sus siglas en inglés, Functional Renor-
malization Group Equation), conocida también como "Wetterich equation”.

Luego veremos con més detalle las motivaciones expresadas brevemente en esta
introduccién. En la primera seccién veremos la parte de massive gravity, su con-
struccién, discontinuidad vDVZ y el mecanismo de Stuckelberg ademds de una
mencion a la teoria no lineal A3. Si bien en este trabajo aun no la hemos utilizado es
el foco a futuro y este trabajo sirve como un comienzo en esa direccién.

El capitulo cuatro constituye la parte principal de este trabajo. En la primera
secciéon vemos la aplicacién de la renormalizacién funcional para un lagrangiano
de Einstein Hilbert con constante cosmolégica mas un término de masa. En esta
parte el término de masa es un parametro no dependiente de la escala de energia
por motivos que detallaremos. Sin embargo, al ajustar este parametro se obtienen
resultados que se ajustan a las medias experimentales como lo es la cota de la masa
del gravitén en caso de ser distinta de cero [14].

En la seccién siguiente utilizamos el método de los "Proper Vertex Expansion”
sobre la ecuacién de evolucién [19] , el cual nos permite tratar el término de masa
como un pardmetro dependiente de la escala de energia. Se obtienen las funciones
beta y el punto fijo para esta teoria, sin embargo el valor de los "critical exponents"
deja en evidencia algunas falencias de este método.

Finalmente un capitulo de conclusiones y anélisis de nuestros resultados y tra-
bajos futuros a considerar.






Chapter 2

Asymptotic Safety

Como dijimos en la introduccién, la teoria de la relatividad general formulada por
Einstein no es renormalizable en el contexto de la teoria cudntica de campos . Esta
presenta divergencias en el limite UV.

De todos modos se puede considerar como una teoria efectiva hasta la escala de
planck ~ Mp. La masa de Planck esté relacionada con la cte. de gravitacion medi-
ante G ~ 1.

M

Cuando renormalizamos la cte. de acoplamiento la hacemos dependiente de la
escala G — Gy. Usualmente esta dependencia va a depender de los "loops" en los
diagramas de Feynman . En este punto diverge y es por esto que decimos que es no
renormalizable [13].

Sin embargo, los resultados al aplicar las ecuaciones del grupo de renormal-
izacion funcional no muestran este comportamiento.

2.1 Weinberg Asymptotic Safety

Si bien ha sido generalizado e implementado en diversas teorias, la idea de Asymp-

totic Safety propuesta por Weinberg tiene su origen en intentar explicar la no-renormalizabilidad
de la gravitacién como una teoria cudntica de campos. La idea principal tiene que

ver con el valor de las constantes de acoplamiento en cierta escala de energia y.

Si consideramos las constantes renormalizadas g; (), con dimensién de masa d;
y # la escala de energfa, las constantes adimensionales van a estar definidas por

Si(w) =p %igi(p) (2.1)

Cualquier reaccién R, con dimensién de masa D, para una cantidad fisica medi-
ble va a tener la forma

R =40 (%, 300) 2)

donde X son variables fisicas adimensionales y E es alguna energia caracteristica
del proceso.

Si la constante de acoplamiento tiene un comportamiento §;(y) — oo para el
limite 4 — oo, es de esperar que la cantidad R también diverja, aunque puede no ser
el caso .
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Sin embargo, se pude asegurar el "buen comportamiento” de R si, por el con-
trario, se cumple que en el limite y — oo las constantes de acoplamiento adimen-
sionales converjan a un punto fijo g;(1#) — g. Esta es la primera condicién para
asegurar que una teoria cumpla con ser "asymptotically safe".

La informacién respecto al comportamiento de las constantes de acoplamiento
segun la escala de energia viene determinada por las funciones beta 8; = 9;3;. En-
tonces, esta primera condicién se puede escribir como

Bi(g*) =0 (2.3)

De esta manera, la teorfa va a estar bien definida en todo el rango de energia y
pasa a ser una teoria "fundamental”(en lugar de una teoria "efectiva” valida hasta
una cierta energia de corte ).

La segunda condicién, es que el ntiimero de constantes esenciales sea finito. Por
constantes esenciales nos referimos a las constantes que no pueden ser redefinidas
en términos de las otras constantes de la teoria (estas dltimas llamadas constantes
"redundantes").

Con estas dos simples condiciones se podria asegurar el buen comportamiento
de la teoria en todo el espectro de energifa y la ausencia de divergencias en las con-
stantes fisicas medibles.

Se puede profundizar mucho en este tema respecto a su aspecto formal [5-7], en
cuanto a que la hipersuperficie en la cual viven estas constantes debe ser finita y que
estas constantes fluyen a un punto fijo en esta hipersuperficie, sin embargo, para la
parte practica de este estudio nos basta con tener en cuenta esas dos condiciones.

El método de renormalizacién funcional, propuesto inicialmente por Wetterich
[18] e implementado luego por Reuter [5] para el caso de gravitacién, ha demostrado
que para diversas teorfas de gravitacion se cumplen las condiciones antes men-
cionadas, por lo que ésta cumpliria con ser "Asymptotically Safe"[8-11].

A continuacion revisaremos las bases de este método para una teoria escalar, y
luego realizamos la implementacion para el caso de Einstein Hilbert con un término
de masa

2.2 Effective Average Action (EAA) y Ecuaciones del Grupo
de Renormalizacién Funcional (FRGE)

Comenzamos por la funcién de particién
Z[j] = / D¢e—5[¢]+f dxjp (2.4)
El primer truco es agregarle un término (llamado ”cutoff action") del tipo

248ig] = [ d'xgRig 25)
a la accion original S[¢] — S[¢p] + AkS[¢].
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La idea de este término es que s6lo contribuye en el limite UV. Para esto, el ”cutoff
operator” Ry cumple con discriminar entre los momentos de altas y bajas energias
(p?> >> k* y p* << k?, respectivamente). Este va a depender de la forma de los
campos ¢, pero tiene una estructura de la forma Zk?RY(—D?/k?) . El primer fac-
tor Z; corresponde a una constante de acoplamiento dependiente de la escala k y
Rg(—DZ/ k?) se conoce como “cutoff function”. Esta funcién contiene la informa-
ci6n de la forma del cutoff. Es arbitraria salvo que debe cumplir con R?(0) = 1y
RY(c0) = 0. Esta tltima condicién se puede fortalecer imponiendo que en el limite
de k yendo a cero se cumpla limy_, Rg =0.

Ahora, tenemos una funcién de particién modificada donde hemos incluido la
"cutoff action" y las constantes de acoplamiento son ahora dependientes de la escala

Zl)) = / D¢ exp S~ +[ dxp (2.6)

De esta manera, podemos construir la funcional generatriz de la manera usual

Wi[7] = log Z[/] (2.7)

cuya transformada de Legendre nos da la accién efectiva

i) = ~Wili] + [ dxje 28

Finalmente, sustraemos el término de cutoff y obtenemos la ”Effective Average
Action” (EAA)

T[] = Tilg] — AiS[g] (29)

De esta manera, la EAA cumple con las siguientes propiedades que nos permiten
considerarla vélida

e limy_,g ' [‘P] = F[(P]
o limy_,o T[] = S[¢]

Estas dos propiedades nos indican que la EAA esta definida en todo el espectro
de energfa de manera continua. Ademads, se puede demostrar que los valores de
expectacion para operadores < O > son iguales si se calculan a partir de Z o Z;
debido al comportamiento impuesto para el cutoff Ry.

2.2.1 Ecuacion de Wetterich

La parte fundamental es determinar como evolucionan las constantes de acoplamiento
al depender de la escala de energia k. Para esto, primero definimos la derivada log-
aritmica con respecto a la escala de energia d; = d/dInk. Entonces, si derivamos el
funcional generatriz se obtiene

o

= OAENEIR) (210)

Sl

0
= —gwk — Tr{@¢@}o:Ry

= Tr{{¢¢)}o:Rx — Tr{pp}d:Ry
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Donde la traza es una integral en el espacio y una suma sobre los campos.

Ahora, considerando (¢) = ¢, utilizamos la relacién

Wl _
55 = (00— (@) @11)
y obtenemos
0 1., 82W[j]
Finalmente, reemplazamos en la traza utilizando la relacion
SPWh] _ (PTelgl\ ! _ gy
5161 ( Spbg ) = () @13)
y obtenemos
d 1
=Tk = Ewrg + Ry) 19y Ry} (2.14)

Esta ecuacion es conocida como "Wetterich equation y es la principal herramienta
que utilizaremos para demostrar si alguna teoria cumple con el requisito de ser
""asymptotically safe” a partir del comportamiento de las “running couplings” en
funcién de la escala de energia. Si bien esta ecuacén se ve bastante abstracta, ya
que muestra el flujo de la EAA en el espacio de teorias, existen diversas maneras
de extraer valiosa informacién respecto a las funciones beta de las constantes de
acoplamiento, las cuales representan cantidades fisicas reales.

La implementacion se ha estudiado para diversos casos como ya mencionamos
pero s6lo veremos en detalle el caso de la gravitacion ya que es el tema fundamental
de esta tesis. Para otros ejemplos como campos escalares, teorias no abelianas, tor-
sidn, etc... existen numerosos articulos y publicaciones al respecto.

Ademas , y como veremos mds adelante, se puede utilizar la derivada funcional
de esta ecuacién, la cual da como resultado otra ecuacién de flujo cuyos resultados
son consistentes con la ec. anterior.

. e 2 . .

Si llamamos al propagador modificado Gy = [F,(( ) 4+ Rty F,E”) es la derivada

funcional n-sima WD{ con respecto a @, a primer y segundo orden tendremos

TtV = Tr{le",(f)GkatRk} (2.15)

T = Tr{ckr,§3)ckr,£3)c;kat1<k}

1
—ETr{GkF,(f) GkatRk} (2.16)

Como veremos en detalle en el capitulo 4, el segundo resultado es importante
para nuestro trabajo ya que nos permite definir la masa del gravitén como un pardmetro
dependiente de la escala y calcular la funcién beta de esta. De este modo se puede
calcular el punto fijo no gaussiano de la teoria y los exponentes criticos de este sis-
tema.



Chapter 3

Gravitacion Masiva

Historicamente, la Relatividad General formulada por Einstein tuvo su origen en
fundamentos geométricos para describir el comportamiento de la radiacién y los
objetos materiales en el espacio al ser afectados por un objeto masivo. Si comen-
zamos por la accién de Einstein Hilbert y redefinimos la métrica como fluctuaciones
alrededor de la métrica de Minkowski 7, , es decit, gyv — 7y + hyy a segundo
orden, se obtiene la accién de Fierz Pauli para una particula de Spin 2 y sin masa.

3.1 Accion de Fierz-Pauli

/ dPx\/g >+ h(-R) — / dPx — %aAhwaAh”V + 0 R + %aAhaAh

Que cumple con la simetria de gauge:

Sin embargo, la accién de Fierz-Pauli fue construida originalmente como la ac-
cién que representa una particula con las caracteristicas descritas en el parrafo ante-
rior pero inclufa un término de masa. O sea, en un espacio plano,

Spp = / dPx — %a A @ I+ 90y 00V + %aAhaAh (3.3)

_%mZ(hwhyv _ hZ)

A partir de la ecuacién de movimiento para h se puede llegar a

(O—m*)hy = 0 (3.4)
My = 0
h =0

y asi identificar los cinco grados de libertad que corresponden a una particula de
spin 2 con masa .

Ahora, si queremos obtener cantidades fisicas a partir de esta accién, existe una
inconsistencia entre considerar m = 0 en el lagrangiano y considerar m — 0 en la
cantidad en cuestion.
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Por ejemplo, se puede obtener el potencial de interaccién entre dos fuentes con
masa M; y M, para los casos sin y con masa. Para el primero se obtiene

GM M
Vino) = ———— (3.5)
Mientras que para el segundo
4GMiM, _
Vin) = —3———¢ " (3.6)

por lo que aparece una discontinuidad en el limite m — 0

Si consideramos redefinir la constante G — 3G para hacer coincidir estas can-
tidades, aparece una diferencia al considerar la defleccién de la luz por un objeto
masivo de masa M. En ambos casos el valor para el 4ngulo de deflecciéon a resulta

4
b
con b el parametro de impacto. Si redefinimos G esta cantidad se transforma en
n = @ (3.8)

por lo que la discontinuidad persiste.

Ademas, si consideramos el caso de los propagadores para, m = 0 se obtiene

i1
Daﬁ,m\ = ? |:2 (7704077/82\ + 770()\77&7) - 7704‘5770)\:| (39)
mientras que para el caso masivo tenemos

—i [1 2
szﬁ,a/\ = m [2 (Uwﬂm + 77a/\77,5c7) - 3771x,577m\] (3.10)
Esta discontinuidad en el limite de la masa m — 0 y considerar la masa identi-
camente cero m = 0 es la discontinuidad vDVZ y es uno de los principales inconve-
nientes que presenté esta teoria ya que se espera que las cantidades fisicas medibles
sean continuas en sus pardmetros, cosa que no ocurre en este caso.

Este problema aparece debido a que la teoria masiva tiene cinco grados de lib-
ertad, mientras que la teoria sin masa propaga s6lo dos. Como veremos a contin-
uacion, el mecanismo de Stuckelberg muestra las causas de estas diferencias de man-
era explicita, ademas de permitirnos restaurar la simetria que se rompe al incluir un
término de masa.

3.2 Truco de Stuckelberg

Por simplicidad, podemos comenzar suponiendo una teoria vectorial para un
fotén masivo acoplado a una corriente J#

| 1
S= [dPx— (FuF" = JnlA AN + A, (3.11)
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En D = 4 hay tres grados de libertad para spin 1. El termino de masa rompe la
"would be gauge invariance" A, = 9, A.

Acé el propagador va como pz%’;nz (1w + p’,;zzv) que es como 1/m?.

El truco de Stuckelberg redefine el campo original AH al introducir un nuevo
campo escalar ¢ con

Ay — A+ ay% (3.12)

y asi para la accién obtenemos

Las simetrias de gauge quedan 6 A, = d, A\, 6¢ = —mA,

En este caso, podemos tomar directamente el limite m — 0 en el lagrangiano y
al considerar la corriente conservada d,J# — 0 obtenemos un fotén acoplado a la
corriente J# y un escalar libre

Esta accion propaga los mismos tres grados de libertad que la accién original,
por lo que no se pierde informacién al considerar el limite de la masa yendo a cero.

Se puede tomar un gauge tipo Lorenz para obtener los propagadores p;fz: sy

pz%nﬂ que para momentos grandes van como 1/p?, que es lo que debiera esperarse.

El Truco de Stuckelberg deja en evidencia que la simetria de gauge puede restau-
rarse utlizando variables redundantes, por lo que no tiene directa relacién con las
cantidades fisicas a considerar sino que la parte esencial es no perder grados de lib-
ertad en el calculo de dichas cantidades.

En el caso de Electromagnetismo no existe diferencia dado que es una teoria
abeliana. Sin embargo para el caso de la gravedad si realizamos el mismo proced-
imiento comenzando por la accién de Fierz-Pauli més un termino de masa acoplado
a un tensor de energia momentum T*?, el mecanismo es un poco més extenso ya que
primero se realiza una transformacion para el tensor

Ty — By + 3 Ay + 0, A, (3.15)

y luego otra para el vector A,

Ay = Ay +0u (3.16)

y luego de tomar el limite m — 0 mds algunas transformaciones similares al caso
anterior, se obtiene
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2
D-2

+ichy,, TH + kT (3.17)

Aca estan los cinco grados de libertad, dos en el "canonical massless graviton"
hyy, dos en el vector A, y uno en el escalar ¢.

Esta tiltima ecuacion refleja explicitamente el por qué de la discontinuidad vDVZ.
El campo escalar en este caso se acopla a la traza del tensor de energia momentum
T = Tﬁ , asi que al hacer perder ese grado libertad haciendo la masa igual a cero en
el lagrangiano, estamos despreciando esa parte de la interaccion.

En el caso de la defleccion de la luz, la traza del tensor de energia momentum
es cero, por lo que el resultado es el mismo al considerar la masa igual a cero en el
lagrangiano o en el dngulo de defleccion.

Hasta acd hemos expuesto sélo el caso para la teoria lineal. Para el caso no lineal
el procediemiento es analogo salvo algunas particularidades. En este caso aparecen
interacciones y efectos que veremos a continuaiéon

3.3 Gravitacion

Comenzamos por la acciéon de Einstein Hilbert

Sle] = ZKZZNk/ddx\/g(—R—l—ZA)
(3.18)

3.3.1 Soluciones Esféricas

Para un background plano (A = 0) la ecuacién de movimiento resulta R, — %R S =
0y se supone una métrica esféricamente simétrica segtin el ansatz

gudx'dx" = —B(r)dt* + C(r)[dr* + r*dQ)?] (3.19)

Se puede demostrar que, para una masa puntual M en el origen, los términos de
la expresion anterior toman la forma

2GM GM
B(r) -1 = —= (1— - +>
2GM 3GM
cr -1 = = (1+ - +) (3.20)
Estas son una expansién en s /v donde
s = 2GM ~ ﬂz (3.21)
Mp

corresponde al radio de Schwarzschild, el cual representa la distancia en la que
son importantes los términos no lineales. A todo orden, se encuentra la solucién de
Schwarzschild en el gauge de Lorenz



3.3. Gravitacion 13

Clr) = (1+—)4 (3.22)

En el caso de incluir un término de masa en el lagrangiano el resultado nueva-
mente no coincide en el limite de m = 0

3.3.2 Relatividad General Masiva

La accién va a ser la extensiéon mds simple de Einstein Hilbert, que es incluir un
término de masa tipo Fierz-Pauli con lo que queda

1
S = 55 [@x[Va(-R)
—\/§%m2(hwhf”’ — hz)} (3.23)

donde los indices de h*V suben y bajan con la métrica del background §. La
ecuacion de movimiento en este caso resulta

VE(RM — %Rg””) + g%mz(hw’ —g"h)=0 (3.24)

Siguiendo el mismo analisis que para el caso anterior, se tiene en un background

plano g, dxtdx’ = —dt* + dr*> + r*’d0? y suponemos un ansatz para la métrica ab-
soluta

gudxtdx’ = —B(r)dt* + C(r)dr* + A(r)r*dQ)? (3.25)

En este caso no se puede hacer C(r) = A(r) ya que no hay invarianza bajo difeo-
morfismos. Igual que antes se expande cada término y se obtienen las series

8GM 1 GM
B =1 = =37 (1= g + )
8 GM GM
C =1 = —3aa(l-Vms +-)
4 GM GM
AN -1 = Soas(1-4-T0 + ) (3.26)

En este caso la expansién no es en torno a rs si no que en torno al pardmetro
ry/r, donde

rv = (%)US (3.27)

corresponde al Radio de Vainshtein. Este radio diverge para m — 0 por lo que
no dice nada respecto al comportamiento no lineal de la teoria de massive gravity
en el limite sin masa.
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[Juantumn (laszical

[ |

MNon-linear Linear

FIGURE 3.1: En la figura se ven los regimenes donde son validas las
soluciones a una distancia r de una fuente de masa M en el origen [15]

Para poder estudiar mas en detalle el comportamiento del caso masivo como una
teoria efectiva se debe realizar el mecanismo de Stuckelberg para el caso no lineal.

3.3.3 GR como una Teoria de Campos Efectiva

Einstein Gravity en D = 4 no es renormalizable. Los coupling tienen dimensién de
masa negativos. Sin embargo, puede ser tratada como una teoria efectiva hasta la
escala de la masa de Planck M,,. Por analisis dimensional, la amplitud de scattering

. ) . . 2 .
de 2—2 gravitones a una energia E tiene una amplitud que va como % que viola
P

unitariedad a una energia E ~ Mp.

En la figura (3.1) se ve que existen tres regimenes para las soluciones, uno donde
las soluciones son lineales y clasicas, otro donde son no lineales y cudnticas, y el ter-
cero que es un regimen intermedio donde el comportamiento es cldsico y no lineal.

Para el caso de Massive Gravity se verd que los limites donde comienzan los
términos no lineales y los efectos cuanticos no son independientes entre si, como
sucede en el caso usual.

34 A,

Como se puede observar, construir una teoria de "Massive Gravity", no es trivial. A
continuacién haremos mencién a algunos puntos importantes.

Al incluir un término de masa en el lagrangiano de EH se rompe la invarianza
bajo difeomorfismo, la cual debemos restaurar utilzando el mecanismo de Stuckel-
berg. En este caso la transformacion va a ser del tipo

Hyy = hyy + 04 Ay + 0y Ay +20,0,¢ + 0, A0y Ay + 0,,A%0,04¢p + 0,,0" POy Ay +- ...
(3.28)
por lo que aparecen muchos términos de interaccién. A nivel lineal se repro-
ducen los resultados para Fierz-Pauli siempre y cuando se normalicen los campos
segln

. . 1 L1
h=SMph , A=-mMA qaziszpcp (3.29)



34. Aj 15

Entonces, los términos que aparezcan a partir del término de masa van a ser de
la forma

~ m*Mph"t (9 A)"4 ()" (3.30)

que en funcién de los campos normalizados resultan

~ A‘)L\—ﬂh_znA_E}n(Pi:lnh (aA)ﬂA (824\))1/14; (331)
con

3 ny+2n4 +3np — 4
N np+nag+np—2

Ay = (Mm*HVA (3.32)

Este valor A nos da la escala de corte hasta el cual los términos son significativos.

El término suprimido por la menor escala es el con un término escalar ctbico
ny =3, n, = ny = 0.que es suprimido por la escala As en el limite
m—0, M, — oo, As fijo (3.33)

Todos los términos van a cero excepto el escalar ctbico, la parte escalar de la
accin va a aser

A 2 A A 1 .
Sp= [ d*x—3(2p)* + 5 (@67~ @9)@0 ] + 39T B3

El escalar se acopla a la traza T del tensor de energia momentum T#" y para una
fuente puntual de masa M, a orden lineal se tiene

A M1
~— 3.35
M, r ( )

El término no lineal se suprime con respecto al término lineal por el factor
o M 1

A2 T M, AZP

(3.36)

Cuando este factor es de orden uno, las no linearidades se hacen importantes y
eso determina el radio de Vainshtein

M 1 M 1o 1 GM 1o
My A2ry, v (Mp> As ( m4 ) (3.37)

Entonces, cuando r < ry las no linearidades comienzan a ser importantes.

3.4.1 Ghosty Screening Mechanism

Al descomponer el escalar longitudinal § = ¢ — ¥ se encuentra que el campo ¥
corresponde a un ghost (conocido como Boulware-Deser ghost) que tiene validez en
el rango

1/3
M 1
Tohost ™~ <]\/Ip> E >>1ry (3.38)
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Para r << ry la fuerza tipo coulomb atractiva del escalar ¢ se cancela con la
repulsiva del ghost ¥

Para r >> ry, el campo ¢ se comporta como 1/r mientras que el ghost en esta

i6 My2_ 1 o .
regién va como ~ (W> A% POT lo que su contribucién es despreciable con re-
specto a la contribucion de ¢.

Este efecto se conoce como “Vainshtein Screening Mechanism”.

3.4.2 Effective Theory As

En este caso el radio en el cual los efectos cudnticos son relevantes viene dado por

M 13 1
~ | — — 3.39
ro ( Mp) A (3.39)

Lo relevante en este caso es que ro > ry, por lo que no hay un regimen inter-
medio con un comportamiento clasico y no lineal. Ademads, al fijar valores para el
sistema solar A; ' ~ 10''km se obtiene ro ~ 10**km que es del orden del radio del
universo, por lo que esta teoria no predice las observaciones en su rango de validez.

343 A3

Para el caso de A3 el andlisis es similar al caso anterior pero se incluyen mas terminos
de interaccién en el término de masa, de esta manera se eleva el cutoff de As a As.
Para esto, en lugar de utilizar s6lo el término cuadrético de masa, como se ha hecho
hasta ahora, se incluyen términos de orden superior definiendo la accién como

I S ! gl
§=32 /d *|VER = /g m V(g h) (3.40)

con

V(g h) =Vi(g h) + Va(g h) + V(g 1) + Va(g, h) + V5(g,h) + ... (3.41)

Vi(gh) = (K*)—(h)?
Va(g,h) = c1(h®) + ca(h?)(h) + c3(h)®

(3.42)

En este caso, luego de realizar el mecanismo de Stuckelberg los términos de in-
teraccion de menor escala son

h(04)" (9A)%(0)"
MZ“mZ”” s~ MZ+2m2n+4 (343)

que se suprimen por la escala Az = (M,m?)1/3,
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En este caso no hay ghosts y al realizar el mismo analisis que para el caso ante-
rior se encuentran valores mucho maés acordes con las observaciones. Ademas existe
un régimen donde son importante las contribuciones no lineales y atin no son im-
portantes los efectos cuanticos, como se ve en la figura (3.1). Ahora el “Decoupling
limit” es

m—0, M, — oo, Az fijo (3.44)
Acé el radio de Vainshtein viene dado por
M e 1 GM
T (MP> A ( ) o

que marca dénde comienzan a ser relevantes los términos no-lineales.
Ademads, como teoria efectiva, los efectos cudnticos comenzarian a ser relevantes
en distancias menores a

1
A3

que para el caso de la masa del sol es del orden r; ~ 1000km.

rq (3.46)

El modo escalar es de vital importancia en esta teoria, ya que su contribucién es
relevante en regiones en las que el radio es mayor que el radio de Vainshtein ry, de
manera que en distancias del orden del sistema solar este no afecta y la gravitacion
estd dominada por la accién de Einstein-Hilbert usual.

Esta teoria esta en nuestro foco de trabajo a futuro y se encuentra con detalles en
[15].
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Chapter 4

FRG of MG

Este capitulo constituye la parte central de este trabajo. Aplicaremos las ecuaciones
del grupo de renormalizacion funcional a la accién de Einstein Hilbert mas un tér-
mino de masa.

Al estudiar el comportamiento de las constantes de acoplamiento dependientes
de la escala desde el punto de vista de la renormalizacién funcional podemos obtener
resultados distintos de los que se obtienen con el método usual en QFT al considerar
loops en los diagramas de Feynmann.

Junto con esto, podemos analizar desde otro punto de vista las consecuencias
al considerar la masa estrictamente igual a cero y su diferencia con tomar el limite
m — 0.

Ademas, la energia de corte para la teoria Az depende de la masa que se le asigne
al gravitéon y de la constante de gravitacion, por lo que las funciones beta de estas
constantes van a estar directamente relacionadas con la energia de corte.

Este capitulo se divide en dos partes. En la primera parte aplicamos la ecuaciéon
de Wetterich directamente al lagrangiano y la evaluamos utilizando el método de la
"Heat Kernel Expansion", al igual que el trabajo original de Reuter [5] para el caso
de Einstein Hilbert usual.

Este método nos permite comparar nuestros resultados con los originales para el
caso m = 0y asi ver si existen o no diferencias con el limite m — 0 que no es trivial,
como vimos en los capitulos anteriores.

Sin embargo, no nos permite obtener la funcién beta de la masa B, = 9dymy ya
que la ecuacién de flujo estd evaluada en el limite de bajas energias h,, = 0, por lo
que se pierde la informacién de la funcién beta del término de masa al ser cuadrético
en los campos.

De todos modos se puede obtener valiosa informacién respecto a los diagramas
de flujo, puntos fijos y exponentes criticos y su relacién con el valor de la masa y vice
versa.

En la segunda parte utilizamos derivadas funcionales de la ecuacién de evolu-
cién , llamada "Proper Vertex Expansion” [19] de manera que podemos obtener ex-
plicitamente la funcién beta para la masa.
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Como veremos, asi podemos conseguir valores coherentes para los puntos fijos
en los diagramas de flujo, pero el valor de los exponentes criticos deja en evidencia
que estos resultados no puede ser considerados como validos.

4.1 Graviton masivo en EH

Comenzamos por la ecuacién de evolucion

1
T, = ETr{ r® Rk]‘lakRk} 4.1)

Ahora, nuestro funcional total I'y estard compuesto por la accién de Einstein
Hilbert méds un término de masa, una parte para fijar el gauge y otra de los cam-
pos fantasmas de Fadeev-Popov. Entonces, la ecuacién de evolucién que utilizamos
estd dada por

arilh & gl = iTr[(rff’+Rk)___1(atRk)__]

_ %Tr [{ <r](<2) T f{k> (;; - <T](<2) + IA{k) ;;} (atRk) &

donde ¢ corresponden a los campos de Fadeev-Popov.

La traza en el espacio de volumen incluye una integracién [ d?x./g(x) que im-
plica el elemento de volumen del background. Los detalles de como se obtiene esta
ecuacién se encuentran en los apendices A y B.

Entonces, para la parte de Einstein Hilbert con masa vamos a tener

Tilg, g] = 2627 / dix /g(—R +2X) + / dlx\ /3 — %mz(hwhw 1) 43)

Realizamos una expansion en torno a la métrica del background § fija de manera
que g — 3" + h*¥. El campo h es una fluctuacién en torno a la métrica del back-
ground y es el campo a integrar en la integral funcional.

Trabajamos en un espacio maximalmente simétrico que cumple

_ 1 o - \B
Ryvptr = m(gﬂngU_nggﬂa)R

1 _
R = Z8wR (44)

El primer paso es expandir en torno a la métrica del background para tener los
(2)

términos cuadraticos en h y asi obtener las derivadas funcionales para I p

Para el el determinante /—g obtenemos
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1
V-8 — \/—g—E\/—ggW(Sg’” (4.5)
1
_g / —g|: — th‘Bg}/ﬂ/ + (5;4,151//5 + 51/0(6;1/5] 5g]”“/5g“16
El procedimiento como viene ordenado en las siguientes sub-secciones es:

: (2) 8
e Calculamos primero I'; wap = er

e Incluimos el cutoff R, de manera que sea consistente con la parte tensorial,

vectorial y escalar para obtener F,EZ) + Ry

e Luego determinamos (T,EZ) + Ry) ! realizando una expansioén en torno al tér-

mino de masa y la curvatura en el denominador del tipo (1 + A(R +m))~! ~

1—A(R+m)

e Multiplicamos por 9;Rj tambien segtin corresponda el caracter tensorial, etc...
para tener Tr[(l“](f) + Ri) 1Ry

e Dado que el gauge que utilizamos nos permite tener esta dltima expresiéon en
la forma Tr[W(D®))], podemos calcular esta traza utilizando la "Heat Kernel
Expansion" y una transformacién de mellin

e Comparamos los términos proporcionalesa [ /gy [ /R aambos lados de la
ecuacioén de evolucion y obtenemos un sistema de ecuaciones en funcién de las
funciones beta de las constantes de acoplamiento y las "threshold functions",
estas dltimas dependen del tipo de cutoff que escojamos.

e Finalmente, expresamos las constantes de manera adimensional y fijamos el
cutoff Ry para obtener las funciones beta para las constantes adimensionales.

e Con éstas ya podemos realizar los diagramas de flujo, encontrar los puntos
fijos y los exponentes criticos en funcion del valor de la masa

4.1.1 Lado Izquierdo : 0T

Vamos a calcular primero el lado izquierdo de la ec. de flujo

2
oIy = /ddx\/g{atZNk(_R - m?(hwhw —h?)) + 2(atZNk)\k)} (4.6)

En esta parte consideramos sélo los términos

/ dxJTR(—)9: Zn 4.7)

/ dx/32(3: Znhe) (4.8)

ya que se toma el limite en 1 — 0

Es por este motivo que la informacion respecto a d;m se pierde al utilizar este
método. De todos modos, como veremos, se puede extraer valiosa informacioén al
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considerar la masa m s6lo como un pardmetro que podemos ajustar y asi ver como
cambian los diagramas de flujo, puntos fijos y exponentes criticos en funcién de este
valor

412 1)

Consideramos primero sélo los términos cuadraticos en h se obtiene I'7##
I8 8] = x* Zn / A /Gl | — K'ogD? 4 U | 17 (4.9)

donde D? = D,,D¥ se construye a integrando por partes y utilizando la relacion
entre las derivadas covariantes en un espacio curvo

Dy, D = R, 1+ RE i (4.10)

Con esto obtenemos

1
K = 5 [hor+ 830t — 9 gp0]
1 - < 1 _ _
e = 3|85 +0;00 = 8 Zpo | (R =220 & 5 (8" R + R"'go0)
1, 4= . ~ _ 1, . _
— (O RG + 0RG + 00 Ry + 0 Rp) — 5 (R + RY) (411)

Esta accion corresponde a la accién de Fierz-Pauli en un espacio curvo con la
métrica del background en torno a la cual expandimos. Entonces, para introducir
el término de masa podemos comenzar desde acd simplemente agregando el tér-
mino de masa — 3m?(h,,h"*" — h?), que lo podemos reescribir separando h#" = v+
d~'®g" donde /1 tiene traza nula y 1 u = © obtenemos

= _%mZ [ﬁyvﬁuv + d71CI)CI) — CI)(I)]
1 PN 1—d
= "+ 0]
Vamos a obtener
el (. & 1 /) b, m2 v
rdih gl = EKzsz/ddx{hw [ —D?—2)+CrR 7];1;
d—2 9 _ 5
_ch[_p —2Ak+CSR+CmM]<b} (4.13)
con
d—4 d(d—3) +4 d-1
CS — 7 s CT d(d — 1) Cm - fz (4.14)
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413 T@ 4R,

Para los cutt off Ry se hace R‘Emv e — Zf”w ”VPUkZR(_k—?Z) y el Z;fmv M7 se define
como
grav yvpor Voo d—2 Hvpo
z8 — 7k [(1 — Po)"” — =P} ] (4.15)
con Py?" = d1g"g¢?, de esta forma entra directo en las expresiones de ih y

OP.
Entonces tenemos

_ —D? m?
d—2 _ —D?
(M@ + Rioo = Zne(—)" [ — D? =24+ CsR+K*R(—7-) + Cmmz]

El detalle para la contribuci6 de los ghost se encuentra en el apéndice y se obtiene

—D?
(T + Rz = [ —D?+ CyR+KR(—; )] (4.16)
con Cy = —%
414 (T +R;)~19;Ry
Ahora multiplicamos por 9;Ry = 0; (Z Nksz(—thﬂ)) con lo que obtenemos
2 1 2~ D? 21 ~D? 2 5
(@ + Re)oiR, = [(z — i (k)FPR(—5-) +2D R/(Tz)} [— D? — 2\ + CrR
_D2 mz -1
2 [ _
+R(—5-) = =
) -1 P 21— D? 2 5
(I®@ + R)gloRe = [(2 — (k) PR(—5-) +2D°R (kT)} [— D? — 2\, + CsR
—D? -1
+ER(—5-) + Cmmz]
Con yn(k) = —0¢{nZyy que corresponde a la dimensién anémala del operador

V3R,

415 Tr[W(-D?)]

Para resolver estas trazas, consideramos la transformada de Fourier W(s) de W(—D?)
y tenemos

Tr[W(—D?)] = /dsW(s)Tr[e’iSDz] (4.17)

Ahora se puede utilizar la "Heat Kernel Expansion”

Tr [e*isDz] = (4%5) gtr(l) /ddx\/g[l - %isR + O(R2)] (4.18)
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La tr(I) es la traza en el espacio donde actta D? asi que es 1 para el escalar P,
"d" para el vector de los ghost y 3(d — 1)(d + 2) para el i que es un tensor simétrico
y de traza nula. Con esto tenemos

N
Tr[W /dsW 2tr /ddx\f 1 - 1zsR + O(Rz)] (4.19)
Definiendo

0, = / ds(—is)" W (s) (4.20)

Podemos identificar

/dsI/NV(s)(AhiTS)g/ddx\/g — (47{)_g/ds(;>gv~\/(s)/ddx\/§ @21)
= (4m iy [d'xyg
= (471)_%/515(—15 % /ddx\f

Y de la misma forma

/dsW(s)(LL:T’S)g/ddx\/g(—)éisR - (4n)géle/d‘1x\/§R 4.22)

Con lo que se obtiene

d 1 '
Tr[W(-D?)] = (4m)"z2tr(I) [Q% [W] /azdx\/gJr £ Qs (W] / ddx\/gR}(sza)
Los Q, se pueden evaluar por una transformada de Mellin para n > 0
Qu0] = 0 (4.24)
1 (e}
Qn [W] = m /0 dZZn_1W(Z)

Combinando estos resultados obtenemos la expresioén para el lado izquierdo de
la ecuacion de flujo

_p2 D2 —DZ)}

%Tr{[r,?)JrRk]—lakRk} = %Tr [(2—;7N(k))k2 (@) + 5 R (5

[ D2 — 27, + K*R( kl2)2)+(CTR_ 2)}1]

1
~T
+2 r

2 2
(@~ N ()RR(T5-) + DPRI()]
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[ D? — 2Ax + I2R( k?z) (CSR+Cmm2)}(i}z5)

Ahora tenemos que evaluar ;Tr de esos dos objetos. Cada una de estas expre-
siones es del tipo N(A + C;R + C,m?)~! y se expande en torno a (C;R + C,,m?)
segtin N(A + (CiR + C,m?))™! = NA ' (14+ A"Y(CR+ Cym?))"! = NA™! -
NA~2(C;R + C,ym?) con i=V,S,T.

Si llamamos

-D
N = [@-m(k)KR(—5) + DR (—5-)]
DZ
A = —D?—2\+KR( 2 ) (4.26)
tenemos
Lo (@ o, g1 _ 1 5 My
ETr{[rk + Ry akRk} = ST N[A+(CTR—7)}
1 _ -1
+§Tr N[A+(C5R+Cmm2)}
_ lplnan [1+A*1(c R—mz)}_l
T2 ™77
1 -1 ~1(C.P 2]t
+5Tr|NA 14+ A7H(CsR + Cp?)|
1 2
= Tr NA™' - NA~ (CTR——)
+%Tr

NA™' — NA“%(CsR + C,m?) ]
’l
2

% Trr[NA~Y] — Tre[NA=2)(CrR —

+Trs[NA™Y — Trs[INA72](CsR + Cmmz)]

= %(47‘()*% [(trT(I)—Hrs( ) |Q % [NA™! /ddx\f
+%Q% INATY [ d'x 3R]

~[QqiNa= [ ddx\/§+%Qg_l[NA*2] JEENES

C

m2

|(CrR— 2 )tre(1) + (CsR + cmmZ)trs(z)}] (4.27)
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Ahora, comparamos los coeficientes de [ ddx\/g y [ ddx\/gR en ambos lados y
obtenemos el sistema de ecuaciones:

2(9Znihi) = %(4@*% [(trm) + trs(1) ) Qg[NAT!] = 2ty (1)Qy [NoAg ]
- [( — ”f)trT(I) + (Cmmz)trs(l)] QyINA~?
(Szne = 5ol [; (trr(1) + r6(1)) @y [NAT
~QyINA=2)(Crirn(1) + Cstrs(1))
- ”Vg(l }(Qq_1[NoA7"] - 6CvQy[NoA7?)

2
—%Q%_I[NA*Z] (Gtrr(D - Cmmztrs(l))] (4.28)

Utilizamos la Transformada de Mellin para Q,

Qu0] = 0 (4.29)
Qu[W] = F(ln)/o dzz""'W(z)

Entonces lo que se hace es reemplazar = k2 * s zenN/A y N/A?

T kz” 1 (2 — n(k))R(z) —2zR'(z)
Q,[NAY = / dzz" e
2n—2 00 _ 7) — 2z /Z
Qn[NA_Z] — ];(n) A dzzn—l (2 nN(k))R< ) 2 1;( ) (430)

[z - 2% + ZR(Z)}

Las ecuaciones de flujo anteriores las podemos escribir en funcién de las inte-
grales Q' y Qp con

o 1 ) R(Z)

mex kZ = dzz"™
Q' (Ax/k7) T(n) /0 = z—2/\k+R(z)]

mex, /k2) — z) —2R'(z) 431
Qi (Ar/K%) z—zAk+R(2)]’” o

paran = 1,2 y m = 1,2 y asi obtener las funciones beta y los diagramas de
flujo. Para escribir las funciones beta y las ec. de flujo en funcion de estas variables,
podemos escribir los Q,[NA~™] como

QuINATY = {20} - nn(K)Q} }
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QuINATY = K 2{2Q} ()@
(4.32)

Y con eso tenemos:

_ 1 4
o (ZnkAk) = @(4”) gkd

m2 _ 2 _ ~
S i)

d(a+1){2Q} (k) Qk | —84Q} (0)

i = ety e[ o) iy
~a-1){20} -~ B} - 24Q}_, (0) - Q3 (0)
2d%(d -1 ~

Estas son las ecuaciones para las "dimensionfull” couplings Zyy y A y nos in-
teresan las ecuaciones para las "dimensionless" couplings:
M=k2A , @=GKTzy) (4.34)
Directamente al derivar obtenemos

2
g = (d —2)gk — 5= Znk (4.35)

Para encontrar las ecuaciones de flujo, consideramos 7 (k) independientemente.
Para esto consideramos la ecuacién de d; Zyy y la dividimos por —Zyy al lado izquierdo
y al lado derecho lo escribimos en funcién de g

1 _d
m) = e e ) o) md; )

~Aa-1) {20 - 0@} - 240, 0) - Q2 0)

SIS

m? d*(d —1) ~
—kz24<d_2>{2ng_1—UN(k) ?21_1}] (4.36)
) = gsn(an)t| 2 (a41)Q), —d(d-1)Q - 2aQ}_,(0) - Q)
m? d*(d — 1) d
K2 12(d—2)Q2%—1_'7N(k){E(d+1) i

(4.37)
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Con lo que se obtiene

d 2 2401 2 w? 2(d=1) ~2
) — ngH(M)_gé(dH) L —d(4-1)Q% - 340}, (0) - Q3 (0) - BHENQY |

2
_d d 2 d2(d—-1)
1+ gk87r(47T) 2 { iVl (d + 1) 12 (d - 1> Q%l - %24%01—2; Qngl}
Para la ecuacion de g la obtenemos directo a partir de su definicién
g = GK?Zy

g = Go(k12Zy})
gk = (d—2+nn(k))gk (4.38)

Finalmente, la ec. de A la obtenemos de

_ _ 1 _
oAy = Ayn(k) + 7o Ot (A Znk)
Nk

oA = (yn(k) —2)Ax + Sk

deat(AkzNO
at)\k = (UN(k)—z)/\k

+27rgk(471)’%

d(d+1){2Q% —yn()Q} } —84Q}4 (0)

2

+7<122 . _(;)Ed;_ 2 {Zng - WN(k)QZ%} (4.39)

Con esto, tenemos el siguiente sistema de ec. de flujo

gk = (d—2+nn(k))sk

d

dihi = (nn(k) —2)Ax +27ge(4m) 7 |d(d +1){2Q} —n (K)Q

}

SN

a0l o)+ 2 a0y -

L A(d+1)Q)  —d(d-1)Q% - 3Q) | (0) - Q(0) - Q)

k) = admdm) 1+8k8n(4ﬂ)_%{12(d+1) d 1_7( _1>Q2_TZ;§‘2‘Z ;Q }

Estas ecuaciones en funciéon de las "Threshold Functions" Q}} tienen la ventaja
de que dependen sélo de la forma del cutoff Ry a escoger, por lo que podemos ver
los diagramas de flujo y demases s6lo evaluando estas funciones para los distintos
cutoff.
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4.2 Ecuaciones de Evolucion y Diagramas de Flujo

Para obtener los diagramas de flujo, necesitamos especificar el cutoff R(z) para
poder evaluar las funciones Q" (w) y Q/(Ax/k?). Tomamos el caso del "Sharp-
cutoff"

2

R(p*) = lim RO(1~15) (4.40)

que cumple con los requerimientos mencionados en el capitulo 2.

En este caos, las "threshold functions" tienen un valor

log(1+w)

Qu(w) = WJF”@(”WLU
" (m—1)TI(n) (14 w)m-1
- 1
Qu(w) = Tnt1)
Or* (w) = 0 (4.41)

En este caso y en d=4, las ecuaciones de flujo resultan

_ 2gk 18 . N 3
W= emtag | Toan, o124 §(2)+6+m1_2Ak]
dgk = (d—2+nn(k))gk
5 21
I = —(2—nn)A— % [5171(1 =24 = 24(3) + 5 — mg( - %N —2In(1—2M) - 4@’(3))]

En la figura (4.1) se ven los gréficosen d = 4 y param = 0,0.1,0.5 y 100 para ver
como se deforma el diagrama de flujo a partir del caso m = 0, el cual coincide con
el obtenido originalmente por Reuter en [5]. En el eje vertical va la coordenada g
y en la horizontal A;. Como se puede apreciar, a crecer la masa la informacién del
digrama deja de ser confiable.

Ademads hay que destacar que no aparece la discontinuidad vDVZ, ya que valor
del punto fijo cambia de manera continua con el valor de la masa.

Para encontrar los puntos fijos, necesitamos B (Ar, §k) = B¢ (A, gk) = 0.Tenemos
el primero que es trivial (gausiano) g = Ay = 0. Para encontrar el no gausiano
vemos el sistema de ecuaciones. Entonces de la ec. de B, se deduce 2 + 7y = 0 =

N = —2. Con esto tenemos un sistema de dos ecuaciones
2% 18 3
-2 = - 5In(1 —2Ax) —C(2) +6
67+ 5gr | T=2n, T O —24) —62) + +m1—2Ak]

0 = —4A— g;" [5171(1 —20) —20(3) —5— m% (1 —20n(1—2M) — 4&;(3))]
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0.3296 and gx =

0.5y m = 100(abajo,
0.40266. Se puede ver como se va desformando el diagrama original

Para el caso m = 0 tenemos

m = 0 amedida que crece la masa

FIGURE 4.1: Diagramas de flujo para m? = 0;0.1;
el punto fijo no gaussiano con coordenadas A

derecha). Con Ay (gx) en el eje x (y) .
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Para m = 0 resulta

_ gk 18 . -

1 = 6+ 5g |12, +5In(1 —2A,) — 2(2) + 6
_ 8k

0 = —4h—< [51n(1—2/\k)—2g(3)—5]

Este sistema de ecuaciones tiene solucién numérica segiin mathematica en el
punto (0.329681,0.402661) para el caso m = 0.

Podemos realizar una iteracién en Mathematica para obtener el valor del punto
fijo dependiendo del valor asignado a m. Podemos ver cémo varia esta coordenada
del punto fijo en el lado derecho de la figura (4.2), donde comienza por el caso m = 0
y luego va cambiando de manera continua, pese a que en la iteracién esté graficado
de manera discreta.

4.2.1 Critical Exponents

Para obtener los "critical exponents" seguimos el procedimiento usual. Es decir, con-
sideramos la matriz de Jacobi B

9Bs Py
B(gk, M) = a"’g;k a"’g}k (4.42)
e o

Luego evaluamos esta matriz en el valor encontrado para los puntos fijos (g}, A;)
y calculamos sus autovalores 0;.

Dado que el valor de los puntos fijos depende de el valor que le asignemos a la
masa, nuevamente realizamos una iteracién en matemaética para encontrar el valor
de los exponentes criticos para cada uno de estos valores.

La parte real de los "critical exponents" nos dira si las trayectorias chocan contra
el punto fijo no gausiano, de manera que las trayectorias en el diagrama de flujo son
finitas en el limite de altas energias k — oo

En nuestro caso encontramos un par de autovalores complejos conjugados 6; =
6. La parte real de estos se puede ver en el gafico izquierdo de la figura (4.2).

El caso m=0 coincide con el encontrado en la literatura y vemos como varia en
funcién de la masa. Este resultado es relevante ya que, ademds de corroborar el
caracter del punto fijo, nos dice que la masa del gravitéon debe ser pequenia, acorde
con los resultados experimentales que le dan una cota de alrededor de los ~ 102
eV.

4.3 Proper Vertices

Para poder encontrar la funicén beta de la masa dxmy debemos “aislar” el término
que lo contiene en I'y. Para esto, el método de los proper vertices consiste en consid-
erar las derivadas funcionales con respecto a los campos en la ecuaciéon de evolucion
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FIGURE 4.2: En la figura de la izquierda vemos como varia el valor de

la parte real del exponente critico en funcién de la masa. En el lado

derecho tenemos como varia el valor de la coordenada del puto fijo al
crecer la masa

1
Ty = ETr{ r® 4 Rk]*lakRk} (4.43)

Asf, para nuestro caso la EAA es

1
Tulh, g = / A3 JR(=R +24) — 5 Zygn? / dx /3 (" — 1) (4.44)

El truco para encontrar el flujo de las constantes es tomar las derivadas fun-
cionales con respecto a los campos en la ecuacién de flujo. En nuestro caso, quere-
mos determinar la funcién beta del término de masa d;m. En el lado izquierdo de
la ecuacioén de flujo (4.43)vamos a tener un término del tipo

~ 0r(Zun?) [ /F (" — 1) (4.45)

Como vemos, este va acompanado de términos cuadraticos en h, por lo que se

. . 2 .
toma la segunda derivada funcional (siw en ambos lados de la ec. de flujo y de esta
manera el término anterior se transforma en

~ 3 (Zyyer2) / dx /3 (4.46)

de manera que luego podemos incluirlo al comparar los términos proporcionales
a [ dx,/3 al igual que en la secci6n anterior.

Entonces al tomar las derivadas funcionales, la ecuacién de flujo resulta

5 12 @, -1
Mk-gmﬂ{[rk + Ry akRk} (4.47)

Ohéh
que explicitamente es

ar? = Tr{ckrf)ckr,?)c;katlak}

1
—ETr{GkF,(f) GkatRk} (4.48)
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Donde G, = [F](f) + Ry] ! es el propagador modificado y FIE") es la derivada fun-

cional n-ésima ~2— T, con respecto a h
Shoh—+ k p .
En este caso vamos a necesitar las expansiones hasta cuarto orden en los campos.

Entonces lo primero es encontrar I'®) y T'®) que van a ser los 3 y 4-vertices. Nece-
sitamos los términos ctibicos y cudrticos en la accién ,/g(R — 2A;) luego de expandir
g§=8+h

Para /g tenemos

V=8 = V—8——8guh"
1 vV1,&
) \/jg[ — 8uap8uv T Ouadyp + 51/04(5;15} h* P (4.49)
1
+§ _g{ — 8ap8rc8uv + gyv(cméaﬁ + 5ga5A‘B)
+gzxﬁ (5;4/\51/0 + (31/(75;1/\)

+g)\0—(5]/1“51/,8 + 51/0(5’/{‘3)] hD‘.Bh/\UhHV

1 . .
VTR { — 8up8rc8uv8ys T &uv&ys0roup + §up8ro9rouy

+g)\ag'y(5$a5;w + g/\agyvgaﬁ'yé’ + g)wgzxﬁgyv'y&
+g;4vgzx/55)\a'y(5 + 5/\0&[35;41/75
_52\07(55;4%& - 5)\0;11/504576 haﬁh)\ah}wh%& (4-50)

donde dyyap = Suadup + Svadyp
Para los términos cudrticos en h*" al expandir R tenemos

RW = i [Zh""‘h"ﬁaAhwavhﬂv — WP 1Py dph — WP 0V, By hg,
—2h"* W*Po,h, 0, hpy + 20" W PO\, Dghyy (4.51)
Los términos ctibicos son
R®) = i 2149\ hoy ", — W10\ 1y 0 + 2hP 0 g, 00 B

—h*P9,\hdgh + 219, 1, s 1
—4hWaAhMath] (4.52)

Ahora ordenamos los términos ctibicos al sumar los productos \/§R(3), \/g(l) R®),

\/g(z) RM), \/§(3) R. Los tres primeros dan términos del tipo i#9,h"79gh"° + h#* 7 9,05h ™

y el tltimo da un término h*Yh**h’ R con distintas contracciones para los indices
1, v, a...etc. El procedimiento para los k() es similar pero considerando los produc-
tos \/§R(4) + \/§(1)R(3) + ... etc... Se calculan las derivadas funcionales utilizando
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Sh* (x)

5P (y) %(5”“5‘43 + 8V%51P) o (x — ) (4.53)

4.3.1 Lado Izquierdo
En el lado izquierdo de la ecuacién de evolucién vamos a tener atr}f), que ya lo
tenemos de los célculos anteriores y es

2
1 = 262 [ d' /R~ D? = 200+ CrR]W = ZE (i 1) (459

Al tomar las derivadas queda

52
ShPshra

2)

1 _11
F,E wprc = EKZZNk / ddx\/gi[ —D?>—2)\ + CTR} §(5ag55A + 5&7(5“/\)
m? /1
—7k <§(5aa5m +0po0ar) — 5a55Aa) (4.55)

Luego multiplicamos por g*fg'?

re)sf = ;KZZNk/ddxﬁ[—D2—2/\k+CTR]d
2
M, 0
—7(d d) (4.56)

Donde d es la dimensién que luego hacemos d = 4. Finalmente se toma la
derivada c/r a la escala de energia asi que resulta

« 1 _ _
8t1",(<2; B P = EKZ / ddx\/g[ — (atZNk)Dz — Zat(ZNk)\k) + atZNkCTR:| d

ot (Znxm3)
e (d - dz) (4.57)

Los términos 9;Zny) v 9:(ZnkAx) son conocidos del calculo anterior, por lo que
luego de obtener el valor de las trazas en el lado izquierdo de la ecuacién podemos
reemplazarlos para luego despejar 9 (Zyym3)

4.3.2 Lado Derecho

Las expresiones dentro de las trazas s6lo pueden ser obtenidas mediante algtn pro-
grama computacional (en este caso usamos mathematica) ya que , primero, hay que
expandir a orden tres y cuatro y ademds al tomar las derivadas funcionales cada tér-
mino se multiplica exponencialmente.

Por este motivo exponemos sélo los resultados obtenidos para las expresiones
dentro de las trazas.

El resto del calculo sigue el mismo procedimiento que en el caso anterior.
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433 Tr [le”(3)le"(3)Gk}

Para Tr [le"(3) G I® Gk] obtenemos

[43626(D2)2 + 6504(—R +2A;)(D?) +272(—R + 2Ak)2]
Tr[GIC®GICG] = Tr —
[ — D2 =20+ KR(52) + CrR + %}

(4.58)

con Gy = (F,Ez) + Ry) L.

Como es del tipo I se expande el denominador en torno al término de

I S
[A+(R+m)
masa y la curvatura

1
[A+ (R+m)]3

entonces queda

=[A+(R+m)]2=A3-3A*R+m) (4.59)

i [43626(D2)2 +6504(—R + 24)(D?) +272(—R + ZAk)Z] 1
Tr[GICGICG] = Tr —
I [—D2—2Ak+k2R(—k—’¥)+cRR+%} ]
i [43626(D2)2 4 6504(—R +2A;)(D?) +272(—R + ZAk)Z] 1
= Tr
3
i [—DZ—Z/\k+k2R(‘k—?2)} ]
[ [43626(1)2)2 4 6504(—R +2A;)(D?) +272(—R + 22\,{)2}
—3Tr
4
{— D2 — 24 +k2R(*k—?z)]
mZ
(CRR + 7") (4.60)
Definimos ahora
Ay = 43626(D?)% 4 6504(—R + 2A;)(D?) + 272(—R + 2A;)?
—D?
Ny = —D? -2+ Kk*R( 2 ) (4.61)
De manera que la traza resulta
1] [ 14
Tr[GIOGI®G] = Tr = | = 3(CrR+ 1) Tr : (4.62)
] ]

434 Tr [Gkr<4> Gk}

Para TrG; I Gy se obtiene
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[ ~100(D?) — 8(—R + 2Ak)}

TrGITWG, = Tr

: — 2] (4.63)
[ - D2 -2 + RR(58) + CrR + 5|

Al expandir el denominador en este caso se obtiene

TrGIWG, = Tr

[—100(1)2) —8(—R+2Ak)} ]

2
L[~ D2~ 20, + 2R(5Z%) + CxR + '

i [ ~100(D?) — 8(—R + 2Ak)} ]

= Tr 5
i [ — D2 —2M + sz(—k—?z)}
[—100([)2) —8(—R+2Ak)} 2
—2Tr - (CrR + Tk) (4.64)
[ — D2 —2A + kZR(‘k—?z)}
y como antes definimos
Ay = —100(D?) —8(—R+2A;)
—D?
No = —D?>-2)\+ sz(k—z) (4.65)
y asi la traza queda
4] mt 1 142]
TrGIWG, = Tr | —2(CrR+ —-5)Tr . (4.66)
2
] N

4.3.5 Ecuaciones de Evolucion

Ahora, sumamos los resultados anteriores y multiplicamos por d;Ry = 0¢ (Z Nksz(%l;Z)) =

(2- WN(k))kZR(_TTE)Z) + 2D2R/(_TEZ)2) para obtener

Tr[W(D?/K?)] = Tr{GkFIES)GkF,(f)GkBtRk} - %Tr{ckrff) GkatRk} (4.67)

Con los resultados anteriores tenemos para el lado derecho (L.D.) de la ecuacién
de flujo

[Al} 3Ry

L.D. = Tr [Nlr

—3(CrR + ) Tr
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—%T [/Eja}tf ‘ + (CrR + n;'%)Tr [Tja}f ‘ (4.68)
2 2
Donde ademads vamos a definir
[ [A]}at.Rk (4.69)

que sirve en el siguiente paso.

Lo siguiente es encontrar la forma del polinomio W (—D?) en la traza de la ecuacién
. _ N2
anterior y luego hacer el reemplazo k—? — Z.

Con esto se puede escribir

TIW(-D?)] = (4r) 4r(1) [Qq W] / ddx\/§+%Q%_l[W] / dx/gR|(4.70)

donde Los Q,, son

Q.W] = r(ln) /Ooodzz”1W(z) 4.71)

que son integrales ya conocidas dependiendo de la forma del cutoff Ry.
Entonces utilizando eq(4.70) para cada una de las trazas en (4.68) se tiene

2
LD. = Tr [Wf] —3(CrR + %)Tr [w{*]

1
—5Tr W2

m2
+ (CrR + Tk)Tr w3

1
= () Hr (D] QW] [ d'ryg + 2Qq Wi [ dxygR]
my d 4 [ 1 4 [
~3(CrR + 5E) (47)~$tr(1) [Qq W] /d xVg+ 2 Qu (W] /d xy/3R]|
1 1
5 (4m) i) [Qq W3] [ a'x /g + cQq W3] [ a'xy/gR]
2 1
+(CrREE) () Hr(1)[QqW3] [ d'xyg+ 2 Qy 4 W3] [ d'xygRI4T2)
Como estamos buscando s6lo la ecuacién para el término de masa, no nos intere-

san los términos proporcionales al término de curvatura R, asi que nos quedamos
con

LD. = (4m)ftr(1)[QyW]) [ d'xyg]
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2
3(%)(4@ fr(n[Qy Wi /ddxf
S (4m)~tr() [ @y W3] [ d'x g

(
2 d
+ 28 () a1 [ Qg W3] [ ] (4.73)

En el lado derecho de la ecuacién nos va a interesar los términos proporcionales
a [ d?x,/g, por lo que se obtiene

2 2
12 [ 201z — A (4 2] = r00am) [y 7] - 3y

2
503+ e, 3] @74

Los términos 9;Zny v 9:(ZniAk) son conocidos del célculo anterior y los pode-
mos utilizar de manera consistente, como esta explicado en [19] .

Ahora hay que despejar los Q, [W]Z ] en funcién de las integrales

DN (A /K = 1 / dzz"1 ;\R(z)
I'(n) Jo [z—2—§—|—R(z)]’”
- —zR/(z
Or(A /) = R(z) - 2R (z) (4.75)
[z — 2% + R(z)]™
que son conocidas dependiendo del cut off R(z) que se escoja
Asi, la ecuaci6n en funcién de las “threshold functions” @ y ® resulta
0 (Znxm2 . ~
k2] = 204 (Zwihs) - t(g”‘mk) (¢-a*)] = 10(am)3 !zmﬁkd (2-272 20, — 1@

5272 [0t - i)

+k78 x 2Ak( [2¢§/z - 77N<T>fz/z]

% {Zcpd/z WNa’g/zD

Donde en el lado derecho de la ecuacién iy = mk~! y Ay = Ark~2 son las con-
stantes adimensionales.

Con esta ecuacién mads las ya conocidas de la seccién anterior

1

Ten — (4m)” 2k

9H(Zie) d(d+ 1){20} —yn(k)®} | — 84} (0)




4.3. Proper Vertices 39

K (d—2
0:7Z = 1 4 _%kd_z d d+1){2dL Yy
tLNK = _@( ) E( + ){ %71_77N( ) %71}
d BH2 1 2
—5 (4 1) {207 - ()@} } - Zao}_,(0) - 3 (0)
m? d*(d — 1) 9 ~
—ﬁm{2¢g,l - '7N(k)<1>g,1} (4.76)

podemos despejar la funcién beta o;m2.

2 2 - ~
amp = - S10(4m) 4K [4Ai (2-272|203 ), — @}
Znk (d - d2)

ﬁ’l% 4 ey
3272 [2c1>d/2 - chpd/zD

v 2ie( 203 - @3] - 5 0 2] )
2 12
—2ZNk(d_dZ)at(ZNk/\k) - Emm%at(ZNk) (4.77)
oomf = —2m} — (d— d)10(47) 4+ 327g, [41% (2-272[203 5 — v @3,
3. 272@’% 204, — @l )
i

+8 % 24 ( {24%/2 - WNég/z} 5 [ZCDEW B ”N&)‘g/z} )]

—4 (d - d2> 27 (4m) -3

d(d + 1){2@1% - qN(k)&Dl%} — 84! (0)

¥}

- 2 _
7t} (@ (;)Edz) 2) {2@2% — N (k)@

[SWS)

40 1) oo ) - S0 070

2
L d2(d—1)

—mkm{méq - nN(k)szgil} (4.78)

ycond =4
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ot -2 1a0(en) 422y 332 272[a0) - ]
R )
+8+ 20 [203 — v 3] - 7[2<I>3 WNCT%])]
+48 # 271y (477) 2 [zo{zcbé — N (K)®} } — 84}(0)

+21m§{2c1>§ - qN(k)cB%}

5|5 ~
+iiigi8r(4m) 2| 2 {201 — gy (k) D} |

~6{203 — ()33} — Sa0}(0) - B3(0)

i {20t - (037} 79)

El resto de las ecuaciones para las constantes ya adimensionales son

ogk = (d—2+nn(k))gk
at/\k = (77N(k) — 2)/\k

+27rgk(47t)_% m (d —1)(d* 2

){2c1>%2, — N (k)¢

d(d+1){20} -y ()P} | — 842} (0) +

© (d-2)
con
Li(aen)el —a(a-1)e} - a0l (0) - @3(0) - B
in(k) = gidm(dn) d > m2d2(d-1) %2
1+ g87(4m)~ 2{12 (d+1) 1_7(51_1)@ Y }

De esta manera y para el sharp cutoff obtenemos la funcién beta para la masa

960¢% 544 272m? m? 16
2 a2 2 B k B k
dumic = —2mj+ — [Ak ( A—20)7 (=200°) 20—2n 7 T1=2A,

20 (45(3) ~2log(1 - 24¢) + 142"21; — 647(3)

8
L 88
7T

_ 3% oo 12 10,7 B e
2(5gk+67t)< 1—2A; 1—2/\,(+ 3 (& 6 —log(1 —2A)) 9 4
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SkMi |5 (m° B _ 2mg 12 4mt

2 3(3 2log(1=2M) = 7 71~ 9 |
3¢k ( 2m? 12 10, 72

(5¢k + 677)

472
“1oon 1o, T3l Tlesl=2M)) = - 4)@}1)
4.3.6 Puntos Fijos y Exponentes Criticos

Ahora tenemos un sistema de tres funciones beta para los tres couplings de la teoria.

Este sistema de ecuaciones nos da el punto fijo gaussiano habitual para Ay =

gx = my = 0y ademds obtenemos un punto fijo no gaussiano con las coordenadas
A = 0.3981, g, = 0.2192 y my = 0.4221.

Estos valores son similares a los encontrados en la seccién anterior anterior (A

0,33y g; = 0,40). Sin embargo, en este caso no podemos directamente hacer m — 0
ya que el valor de m viene dado por la teoria.

Para los exponentes critics el clculo es similar salvo que se incluye en este caso
la funcién beta de la masa y las derivadas con respecto a la masa en las funciones
beta.

Los valores que encontramos en este caso son ; = 342408, 6, = 7.91 y 65 = 5.09
para el punto fijo no gaussianoy 6; = 6, = 2y 63 = —2 para el punto fijo en el
origen.

Los valores encontrados para el punto fijo no gaussiano dan cuenta de que estos

resultados no pueden ser relevantes desde la fisica y los detalles de esto lo vemos en
las conclusiones y andlisis de los resultados.
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Chapter 5

Analisis y Conclusiones

Hemos estudiado el grupo de renormalizacién funcional aplicado al caso de grav-
itacion de Einstein-Hilbert mas un término de masa.

En primera instancia estudiamos el caso en el cual la masa del gravitéon es un
parametro no dependiente de la escala de energia y encontramos que el valor del
punto fijo depende de manera continua del valor asignado a la masa.

En este caso vemos que no existe una discontinuidad en el limite m — 0, de man-
era que la discontinuidad vDVZ no estd presente en este caso, por lo que los valores
dependientes de los couplings gi v Ak se reproducen de manera continua para m = 0
ym — 0.

Esto se puede ver de manera explicita en la figura(4.1) al ver cémo se deforman
de manera continua los diagramas de flujo al variar el valor de la masa.

Esto puede deberse de algtin modo a que, al realizar la expansion alrededor del
escalar de Ricci mas la masa del gravitéon ~ R + cmm% , la masa actda como una cor-
reccién a la curvatura R, la cual se produce de manera continua.

La ausencia de la discontinuidad vDVZ aparece como un resultado relevante de-
bido a que hasta ahora la tinica solucién para esta discontinuidad viene dada por el
mecanismo de Stuckelberg, y ademads a que la variacién de los valores de las con-
stantes de acoplamiento se produce de manera continua dependiendo del valor de
la masa.

Al incluir un término de masa en la accién de Einstein-Hilbert estamos modif-
icando la teorfa en el sector infrarojo. Sin embargo, esto tiene consecuencias en el
sector UV, especificamente en el punto fijo no gaussiano de la teorfa. Por otro lado,
el término de masa no produce cambios en el punto fijo gaussiano para Ay = gy = 0

Al considerar el término de masa independiente de la escala, los valores de los
"critical exponents" varian también de manera continua al hacer variar la masa del
graviton. Estos se desvian de su valor esperado (~ 2) para m = 0 de manera con-
tinua. Este hecho es consistente con el valor esperado para el caso en que la masa
del gravitén es no nula, ya que los experimentos fijan una cota superior para la masa
del graviton en el limite ~ 107 eV (cinco ordenes de magnitud de diferencia com-
parado con la cota experimental para la masa del fotén < 107® eV). De manera que
nuestro procedimiento es consistente con estos resultados.
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Ademads, vemos que al considerar la masa en un valor aproximado a m = 0,422,
que es el valor encontrado para el punto fijo en el caso de la masa dependiente de
la escala, los valores para los otros couplings son similares a los que se obtienen en
este tltimo caso, por lo que este hecho aparece como una demostracién de que hay
consistencia entre ambos calculos.

Al considerar la masa como dependiente de la escala seguimos obteniendo un
punto fijo no gaussiano y con valores similares al caso anterior, cumpliendo el reg-
uisito para considerar a esta teorfa como "asymptotically safe". Sin embargo, los
valores encontrados para los exponentes criticos indican serios problemas en la con-
tiabilidad de estos resultados.

Estos valores demuestran que las teorias de massive gravity presentan amplias
dificultades para poder obtener resultados relevantes para la fisica.

Una solucién seria considerar términos no lineales para investigar los resulta-
dos. De hecho esto aparece dentro de nuestras motivaciones para escoger este tema
de estudio, ya que la teoria A3 considera estos términos no lineales.

Otra posibilidad en cuanto a los valores que se obtienen para los critical expo-
nents puede deberse a que la teoria que consideramos no era manifiestamente in-
variante bajo difeomorfismos. Como vimos en el capitulo de massive gravity, esta
invarianza puede restaurarse mediante el mecanismo de Stuckelberg y se aplica en
la teoria de As.

Esta teoria, como dijimos, tiene una escala de corte que depende de la masa del
graviton y de la constante de Gravitaciéon, de manera que nuestro trabajo se puede
extender en esa direcciéon considerando los resultados hasta acd obtenidos.
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Appendix A

EAA for Gravity

A1 EAA para gravedad

En este apéndice vemos con detalles la construccion de la "Effective Average Action"
para el caso de la gravitacion.

Comenzamos por una métrica y,, (Riemanniana) de manera que la integral fun-
cional [ Dvy,wexp{—S[yu| + sourceterms} y la accién S[7,,| (positiva definida) son
invariantes bajo una transformacién general de coordenadas

3w = Loy = 0700 Yy + 0,07 You + 0007 Yo (A1)

L, representa la derivada de Lie. Utilizamos el formalismo de la background
metric de manera que podemos descomponer Yuv = Suv + hMV' La métrica del back-
ground g se mantiene indefinida.

La transformacion de gauge entonces resulta

Shyy = Lok
5gyv = ng]/“/ (A.Z)

Se toma un gauge fixing a priori F,(h;§) = 0y el truco de Faddeev Popov se
aplica de manera directa . Se incluye un cut off infrarojo AS[h, C, C; ] y tenemos el
funcional generatriz Wj para las funciones conectadas de Green

exp{Wi[t", 0", 0, §u]} = /thDCP‘DC’H@xp{—S[g'+h] — Sgrlh; 8]
_Sgh [h/ C, C; g] - Aks[h/ C, C/' g] - Ssource} (A3)

con Ser
1
Surlh gl = o / dix\ /35" E,F* (A4)
Fu[l; §) = V2x(D'hyy — @D, 1Y) (A.5)

Donde D va con los christoffel de la métrica del background.x tiene dimensiones
de masa y la podemos tomar k¥ = (327tG)~!/2 y G un valor de referenacia de la cte
ne newton. Este gauge es de la forma mds general y reproduce para el caso de la
métrica plana la condicién arménica 19,,h} = dyh,.

Para los Faddeev Popov tenemos
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- _ __ ., OF _
Sen[h, C, G 8l = —x 1/ddx\/§cugwéﬂzvﬁLC(8aﬁ+hwﬁ)
o
= —Klﬁx/ddx\/gjc_yg‘waha(f)"hw — @D, 1)
B

[C?0p8up + 9uCPggp + 95C Qg (A.6)

= 2(8% g + (5"(55) y las derivadas de Lie se pueden expresar en funcion

de derlvadas covariantes y Dg = 0

- 1 _
Saulh,C,C;5) = —\f/d x/3Cug" [2 (6260 + 6268)D” —
1 ]
5 (8305 + 8300 0g 7 }(D CP0p + DpC8a9) (A7)

Para el primer término tenemos

gﬂ”l((s“csﬁ +6260) D7 (DC?g4p + DpC?guy)
= g”" [D*D.C?gpv + DD, C? 4o
D*D,C?gup + D’DsC? gy
= D*g,DaC? + D7gys D' C? (A.8)

Y para el segundo

1 o
508" (830 + 830))8"7Dy (DuC? ggp + DpClguy)

- %‘9«?” ) [28'“’3 DyDuC?g4p + 23" Dy DCr

= 203"PD'DoC?gyp (A.9)

Con lo que obtenemos

Senlh,C,C;8] = —\f/dd {D g D,C? + D" gy D'C? —
Za)g“ﬁD”DaC‘qu,ﬁ] (A.10)

Que se puede escribir como

Senlh, C,C; 3] = \f/d x\/3C, Mg, 5]",C" (A11)

Con el operador de Faddeev Popov

M(g, )"y = DPg",D, + D gy Dy — 20D* 3" g, Dy (A.12)



A.1. EAA para gravedad 47

La parte escencial es el IR cut off, que es de la forma

2
28 =5 [ de /B R IRV e + V2 [ d'x RERIEICH (A3)

Los R discriminan entre los momentos grandes y chicos, los con p? > k? se
suprimen, los otros se integran sin problema. Estos se pueden escribir como Ry[g] =
Zik*R©) (—D?/k?) conlos R (0) = 1y R (c0) = 0.

Hay opciones para fijar los R, como R (1) = u(exp* —1)~! o el optimizado
RO (u) = (1 —u)0(1 —u) con u = p?/k*. Los Z son distintos para los ghost y para
los graviton cut off. De manera que se cumple que Z,fh es un numero mientras que
Zf”w es un tensor a partir de g.

Consideramos D? en el /S debido a que asf el hy, es cuadratico, asi s6lo hay
segundas derivadas funcionales de I';. Ademads es invariante frente a las transfor-
maciones de gauge de background.

Volviendo al funcional generatriz Wy,hemos acoplado 5y, CP‘,C_H a las fuentes
th, o, 0¥ respectivamente, y tenemos para los valores de espectacién

P U
v — \/§5ﬂ,¢v
g = L oW, (A.14)

V& 00y
y lo mismo para ¢ relacionado al valor de expectacién de C. La transformada de
Legendre del funcional generatriz Wi[t"", 0¥, ,; &) resulta

[, ¢ &8 = /ddx\/gt(f”vflw +0u8" +0"u) — Wilt, 0,03 8] (A.15)
Ahora podemos escribir la effective average action
[, ¢, &8) = Tilh, ¢, & 8] — LSRG, & 8] (A.16)
Que cumple con
lﬂk—)oo [Ijl, Cr 5; g_] = 1:‘k—><>0 [Fl/ g/ g; 8_]
= /ddx\/§(t’”ﬁw + 08" +0"Cy) — Wisseolt, 0,55 8]
= (A.17)

Podemos definir el valor de espectacion cuantico de Yy, guv(x) = hyu(x) +
Suv(x) para despejar /1, en T. Lo bueno es que todo transforma como corresponde
en 'y para transformaciones de coordenadas

T4 [® + Lo®] = [i[®] (A.18)

con ® = {g,¢,& g} Esto es una consecuencia de

Wil] + LoJ] = Wi[J] (A.19)
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con | = {tVV,O'V,ﬁy ; g‘w,} Como los R mueren para k — 0, se recupera la accién
efectiva F[gw] haciendo ¢,y = &uv, 0 hyy = 0. Tomando la derivada de escala de
exp[Wg] y reexpresando en funcion de Iy se obtiene

atl—‘k[ gé’ ] = atfk[fl,g,g,'g]_atAkS[’jl,é,g}g]
= —0Wit,0,0;8] — 0:/NiS[R, G, E3 ]
[ DhyyDCFDC,,0¢(—) AiS[h, C, C; glexp{Stor }

= - 7 —atAkSU_l/(:/g,g—]
[ DhyDCFDC, [ [ dhx\/Fhyd RS [§]FPhpy — V2 [ dx\/3C,3RS" [3]CH]

o Z
_atAkS[hI (:-{/ C; g]

2
- % KE / dx\/ < hyhor > RS [g]P7 — /2 / d'x\/3 < CuC" > Ry

_atAkS[}_l/ g/ 6; g]

Utilizamos la relacion

Gij(xy) = <xi(¥)xjy) > — <xi(x) >< x;(y) >

= ! O Wi (A.21)

VT3 () 6T (x)8]i(y

Y obtenemos

< hyyhpo’ > = G,;,;(x,y) + fzw(x)fng(x) (A.22)

y lo mismo para los ghost. Se eliminan los términos con hhd;Ry y los de los
fantasmas con el 9;/A\S y obtenemos

2
ITk[h ¢, 58] = % / d?x /3G9 RY (3] — V2 / dx\/3Gz:RY(A.23)

y que G y I son matrices inversas segin

/ddy\/ Y)Gij(x, )T (y, 2) = 555(’72)) (A24)
Z

g

entonces denotamos G;; = [fsz)] ! con

1 s@T(x, y)
Vg 5?{1 57(]
52 )AkS(x,y)
oxi(x)ox;(y)

Iy =

= Tff) (x,y) +

(A.25)

Redefiniendo "—;Rfmv — Rfmv y \/ERih — ﬁfk obtenemos

(A.20)
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-1

- = 1 HIrav
ol Ggl = 5 [ate/a(rd R

A _1 A
N / ddx\/§<r,§2) + Rk)gg 9 RS" (A.26)

(atﬁf’“v

Que finalmente lo podmeos escribir como
oTyh e 55 = LT (T + Re) ! (e )
2 k il 7

_%Tr [{ (1“’((2) + Rk) ; — (F,((2) + Rk> ;;} (atRk> &

La traza en el espacio de volumen incluye una integracién [ d?x/g(x) que im-
plica el elemento de volumen del background. El R en el denominador y el dR en
el numerador aseguran que las contribuciones dominates vienen en una banda del-
gada alrededor del momento generalizado k. Los momentos grandes se suprimen
exponencialmente. Ademas de las FRGE se debe cumplir

(A.27)

Tikseolh, €, 8 8] = S[g + h] + Sgflh; 8] + Senl€, & 3] (A.28)

Intuitivamente, se puede ver este limite como una supresion de las fluctuaciones
cudnticas por un termino de masa infinita en la integral de camino. En este limite
coincide I' con S microscopico porque no hay que integrar fluctuaciones. El back-
groud gauge invariance (I'y[® + L,®] = I'4[®]) implica que si el funcional inicial no
contiene términos no invariantes el flujo no los generara
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Appendix B

Contribucion de los
Fadeev-Poppov ghost

Para los ghost tenemos

Senlh, C,C; 8] = —V2 / d'x,/3C,M[g, 3]",C" (B.1)

Con el operador de Faddeev Popov

Mg, g)"y = D¢,D, + DPgyp, D" — 20D" 37 ¢4, Dy (B.2)

Que en el limite § = g, lo podemos escribir como

M[g,g]ﬂv - ng;i/Dp + ngva;t - D”g””gpuDa
8" ¢"PDygpuDp + 878" DugovDp — 8D 8""gov Do
= 0)D*+ ¢'"6iD,Dg — g"'67 DDy
= SID? 4 gMBs" [D,X, Dﬁ] (B.3)

Reinsertando el término ¢V para realizar el cdlculo de forma mads explicita, pode-
mos ver que el término con el conmutador resulta

g"6) | Du, Dyle" = g"6% | Dy, Dy
= 8Vﬁ5ﬁRVaaﬁCU
= 8”51{1/01/560
= g Rypc
= g”ﬁégvﬁRCV

1
= E(sﬁ’Rgv (B.4)

con lo que obtenemos

Mg, g]", = o [DZ T %R} (B.5)

y con esto
2)

rég - [— D? + CVR} (B.6)
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Appendix B. Contribucién de los Fadeev-Poppov ghost

conCy = —

Ul
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Appendix C

Casos Especiales

C.1 Caso especial: optimized cutoff, d=4
En el caso d = 4 las ecuaciones resultan
dgr = (2+nn(k))gk
dAr = (yn(k) —2)A
-2 1 A1 1 m? 2 ~2
+2mgi(4m) 2 |20{2Q) — yn (k) Q3 | — 32Q3(0) + 5 21{2Q3 — 1w (k) B3

20} - 1208 3010) - Gh0) - 2%
1+ gn(an) {30} - 60} - £ 0]

nn(k) = g8m(4m)

Consideramos el "optimized cutoff" R(z) = (1 —z)8(1 — z) y asi tenemos los
valores
o _ 1 1
" T(n41) (1—2A)
1 1
Qi = (C.1)

T(n+2) (1—2A)

Y con estos, las ecuaciones de flujo reslultan

k) - Sk| 24901 —2A) +6M?
NG = 5 g4+ 3M2) — 67(1 — 2Ay)

_ o (4 00) (o)
at)\k = (T]N(k) — Z)Ak — %gk + % 1— 2/\k

gk = (2+nn(k))gk (C2)

En este caso los diagramas de flujo que obtuvimos no son confiables, por lo que
realizamos mayor analisis sobre este caso.

C.2 Expansion en torno a R

Como vimos en el capitulo (4), para obtener las funciones beta realizamos una ex-
pansion en torno a ~ (R + m). En este caso realizamos una expansion sélo en torno
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a la curvatura R, de manera que el término de masa queda en el denominador.

Partimos desde

Y 2 M2

TP 4 R TaR = ;Tr[[(Z—nN(k))sz( )+ R (g)]
*[—Dz—zflk—i-sz(_k?Z)-F(CTR—nj)}_ll

2 2
5T | [2 - N ()RR(5-) + DR (5]

2 2~ D7 p 2] (¢
*[—D —2Ar+k R(T) + (C5R+Cmm )} (%3)

Lo que hicimos fue evaluar 1Tr de esos dos objetos. Cada una de estas expre-
siones es del tipo N(A + CiR + C,;m?)~! y se expande en torno a (C;R + Cy,m?)
segun N(A + (CR + C,m?))"! = NA7Y(1+ A"} (GR + C,ym?))™1 = NA™! -
NA~2(CR + C,ym?) coni=VS,T.

Llamando

D2 , —D?
N = [@-m®)IeR(—5) + DR(—5)]
A = —D2—2Ak+k2R(_k]232) (4)

Ahora vamos a hacer las expansiones en torno a R, por lo que hay que hacer es
que cada una de estas expresiones es del tipo N(A + C;R) ! y se expande en torno
a CiR segun N(A+ CR)™! = NA {1+ A YCR)"! = NA"! = NA"2CR) con
i=V,S,T.

Entonces en este caso llamamos

_D2 _DZ
N = [@-k)KR(—5) + DR (7))
—-D?
y usamos el sufijo At y luego lo asociamos con el C,, que corresponde. Para T
Zm? . §
es —— y para S es el Cy, obtenido en el capitulo 4.

Entonces tenemos

%Tr{[rl(f)JrRk]flakRk} _1p N[AT—#(CTR)}_I

2

—i—%Tr N[AS + (CSR)} -
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1 -1

= STr[NAT'[1+A7'(CrR)]

1
~T
+2 r

NAG![1+ A5 (CsR)| 1]

1
= ZTIr

5 NA;' — NA7*(CrR)

1 _
+5Tr NAg' — NAS?(CsR)

= % [TrT[NATl] — Trr[NA7?](CrR)

+Trs[NAg'] — Trs[NAS?](CsR)

(C.6)

Ahora hay que aplicar la férmula

HW(-DY] = (m)ter(n) [ [ ddx\/§+%Q%71[W] [ dixyzR]c)

y obtenemos

1 o) _
ETT"{ /o} =
1 -1
| Trr[NAZY
2
—TT’T[NAEZ](CTR)
+Trs[NAg']
~Trs[NAG?(CsR)
l o, —_
ETr{ /o} -

E’ltr Q, [NA;' /ddxf+ Qs ,[NA7! /ddx\fR
Im)[Qy[NA72 / d'x,/g(CrR)
+r(15) [Qy [N A /ddxf+ £Qu_,[NAG! /ddx\fR
~(tr(19)[Q4[NAZ"] [ d'x /R(CsR) 8

Comparamos los coeficientes de [ /gy [ /SR a ambos lados en la ec. de flujo
y obtenemos
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20,2k zl,cz(m)‘%[ r(T)Qy[NAF
+r(18)Qq [NAG'] — 2trv (1)Q4[NoAy ']
(o = 5zl [tr(T)éle[NA;ll - (tr(IT)Cr [QqINAF?
20 INAGT) - (1r(18)CsQg[NAGY
try(I)

. (ngl [NoAy"] - 6CvQy [N0A52]> (C.9)

Para escribir las funciones beta y las ec. de flujo en funcién de estas variables,
podemos escribir los Q,[NA~™] como

Qu[NATY = K{20) —yn (k)] }
Qu[NATY = 2202 — ()@}
(C.10)
con las "threshold functions"
& (1,/12) X2
[z—z %+ ol + R(z)]m
D) (Ar/ k)

/ 1 R()—2R(2)
=

(C.11)
2Ak +“k2 +R( )]
y el a5 depende del que vaya en el A asi que va a ser ®(4;)

2(0tZniAx) %(4”)7% [”(T)kd{ZCD};(AT) - ’7N(k)61%<AT)}
+tr(IS)kd{2CI>1g(As) —nn(k)® 1%(As)}
—2try (1)K {2<1>1%(A0)}

(=)0t Zni

oz (47) létrw)k“{zcbg_lmn — v (R, (Ar) }
—(tr(IT)Crk 2 {20 (A7) = yn () (A7) |

+tr(SDK{20)_ (Ag) = yn ()P}, (45) |

—(r(19)Csk"2{ 203 (As) — ()P} (4s) |
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trv3( )kd 2{2(131%71(140)}

+2Cde‘2{2<I>2%(A0)} (C.12)
Con los valores para trS, trT y trV queda
WZnidy = 5;2(471)‘gkd[(d_1)2M{2<b};(AT)—nN(k)q?};(AT)}
+{2q>1d (As) — nN(k)&Dl%(AS)} — 4401 (Ay)
W = gl I EW{MHAT) (0} (4r)}
ST ¢ (007 (Ar) - (09 (An) )
+ {20, (As) — (BB, (45)}
~Cs {207 (As) — v (k)@ (4s) }
23d<1> (Ao)—4¢2%(A0) (C.13)

Estas son las ecuaciones para las "dimensionfull” couplings Zyy y Ax y nos in-
teresan las ecuaciones para las "dimensionless" couplings:

El célculo es similar al que ya vimos en el capitulo (4). En d=4 tenemos las ec. de
evolucién para el sharp cutoff

_ 38k
k) = 5gx + 677

2 M 12
3(Z-—log [ —2Mc— = +1) ) —
(6 Og( K72 )) E Ty

1 (2 3M 472

at)\k = (77—2)1

8
+47'(

1 _ M
2—|—36§(3) 1810g< 21 > —|—1> 5

+47(3) — 2log <—2z - g + 1) —327(3) (C.14)

En este caso tampoco podemos confiar en los resultados, como se ve en la figura
C.1. Esto debido a que el término de masa queda dentro del argumento del logar-
itmo por lo que se estd restringido segtin la condicién —21 — 34 +1 > 0
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FIGURE C.1: Diagramas de flujo al expandir en torno a R en el de-

nominador para m,% =0,0.1and 0.5 ( A¢ (gx) en el eje x (y)
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