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Chapter 1

Introducción

1.1 Introducción

La teoría de la relatividad general es si duda una de las teorías más completas ja-
mas construidas [1] . Logró con gran acierto explicar fenómenos que la teoría de
la Gravitación de Newton, formulada alrededor de doscientos años antes, no po-
dia explicar, como por ejemplo la precesión perihelio de mercurio. Además como
consecuencia predijo fenómenos no observados antes, como la desviación de la luz
por un objeto masivo, las ondas gravitacionales y la velocidad de propagación de la
gravedad. Todo esto formulado desde un punto de vista geométrico y en el límite
de bajas energías .

Sin embargo, al evolucionar los experimentos salieron a la luz nuevos hechos que
esta teoría no puede explicar, como la expansión acelerada del universo y la veloci-
dad de rotación de las galaxias. Todos estos fenómenos cosmológicos han intentado
ser explicados por diversas modificaciones de la teoría de la relatividad formulada
por Einstein.

Por otra parte, no existe una teoría cuántica de la gravedad. Si bien se puede con-
struir desde el punto de vista de teoría cuántica de campos una teoría que cumpla
con ser siempre atractiva y de largo alcance, teniendo como partícula mediadora al
gravitón, de spin dos y masa nula, esta presenta divergencias en el sector UV [2].
Por este motivo, la relatividad general se puede considerar como una teoría efectiva
con una escala de corte en la escala de Planck [3].

Estos dos puntos son el eje central de esta tesis. Por un lado, Massive Graviy
es una modificación en el sector infrarojo de la teoría e intenta explicar fenómenos
macroscópicos, mientras que Asymptotic Safety, o la renormalizción funcional, in-
tentan explicar el sector UV o de distancias cortas.

Las teorías en las cuales se considera el gravitón como una partícula masiva han
tenido cierto resurgimiento en el último tiempo debido a que algunos problemas de
esta teoría han encontrado solución. Este el es el caso de la discontinuidad vDVZ, la
cual nos dice que las cantidades físicas no coinciden para los casos m = 0 y m → 0.
Con el truco de Stuckelberg se pudo dar solución y retomar el estudio de teorías de
Massive Gravity, siempre considerando esta teoría como una teoría efectiva.

El caso de Aymptotic Safety tiene su origen en la vereda opuesta [4-6], es de-
cir, en poder completar el rango UV de la teoría de la Relatividad General. Esta
idea fue propuesta primero por Weinberg y considera que la Gravitación podría ser
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renormalizable en un contexto no perturbativo y de esta manera ser una teoría fun-
damental bien definida en todo el espectro de energía. Esto podría ser conseguido
a partir de dos requerimientos. Uno, que el número de constantes de acoplamiento
"esenciales"(o sea, aquellas que no pueden ser expresadas en función de otras con-
stantes) sea finito. Y dos, que las funciones beta para las constantes de acoplamiento
dependientes de la escala se anulen en el límite de altas energías, es decir, que exista
un punto fijo para las constantes de acoplamiento.

La idea de la "Effective Average Action" (EAA) y su ecuación de evolución (FRGE
por Functional Renormalization Group Equations) propuesta por Wetterich [18] tiene
como raiz el problema de la Block Spin action de Wilson y Kadanoff. Ya que al inten-
tar explicar el comportamiento en distancias cortas (o altas energías) de una acción
efectiva para bajas energías que explica algún modelo físico, se pierden simetrías
macroscópicas como rotación y traslación. Gracias a las FRGE, la teoría podría com-
pletarse el sector UV a partir de la teoría efectiva conocida para bajas energías.

A fines de la década de los noventa Reuter implementaría este método para el
caso de la relatividad general [5], específicamente para un lagrangiano de Einstein
Hilbert con constante cosmológica. Este fue el primer avance exitoso en comple-
mentar matemáticamente la idea propuesta por Weinberg y a la fecha se ha imple-
mentado para diversas extensiones de teorías de gravitación [8-11] como torsión, R2,
etc.... En todos estos trabajos, se demuestra el buen comportamiento de la Gravedad
como una teoría "asimptotically safe".

Ahora bien, volviendo al tema de Massive Gravity, la versión más simple de una
teoría de gravitación masiva viene dada por la acción de Fierz Pauli más un término
de masa [15]. Esta teoría posee dos inconvenientes: la ruptura de la simetría bajo
difeomorfismos y la discontinuidad vDVZ. El primero aparece como consecuencia
de la inclusión del término de masa y el segundo, como dijimos, está relacionado
con la discontinuidad que se produce al considerar las cantidades físicas medibles
(como el ángulo de deflección de la luz por un objeto masivo o el potencial de New-
ton) al considerar la teoría con m = 0 y tomar el límite m→ 0 [16].

Ambos problemas pudieron ser explicados por el mecanismo de Stuckelberg
[12], el cual reincorpora la simetría bajo difeomorfismos y además deja en evidencia
que al hacer la descomposición, el campo escalar se acopla a la traza del tensor de
energía momentum, cosa que no sucede en QED si consideramos un fotón masivo 1.

Si consideramos la teoría completa, es decir, con el escalar de curvatura R en lu-
gar de sólo los términos lineales, existe un límite hasta el cual podemos considerar
en la expansión, de manera que el escalar de la expansión produce una fuerza repul-
siva que podría explicar la expansión acelerada del universo. Esta teoría, llamada
Λ3, cumple con los requisitos de ser una teoría efectiva de massive gravity, por lo
que el método de Renormalización Funcional puede darnos indicios de la física más
allá de la escala de corte UV.

Esta es la gran motivación para realizar este trabajo: combinar una teoría efec-
tiva de gravitación que podría explicar fenómenos macroscópicos que la teoría de

1En la referencia [15] se encuentra explicado de manera muy pedagógica el mecánismo de Stuck-
elberg, discontinuidad vDVZ y la mayoría de los elementos de Massive Gravity utilizados en este
trabajo
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Einstein no predice, con el método de renormalización funcional, el cual nos puede
indicar el buen comportamiento de esta teoría en la escala UV y así determinar si
esta teoría cumple con ser "asympltotically safe" o no.

1.2 Programa

La estructura de este trabajo es:

En el capítulo siguiente veremos la construcción de la "Effective Average Action"
(EAA) y su ecuación de evolución (FRGE por sus siglas en inglés, Functional Renor-
malization Group Equation), conocida también como "Wetterich equation".

Luego veremos con más detalle las motivaciones expresadas brevemente en esta
introducción. En la primera sección veremos la parte de massive gravity, su con-
strucción, discontinuidad vDVZ y el mecanísmo de Stuckelberg además de una
mención a la teoría no lineal Λ3. Si bien en este trabajo aun no la hemos utilizado es
el foco a futuro y este trabajo sirve como un comienzo en esa dirección.

El capítulo cuatro constituye la parte principal de este trabajo. En la primera
sección vemos la aplicación de la renormalización funcional para un lagrangiano
de Einstein Hilbert con constante cosmológica más un término de masa. En esta
parte el término de masa es un parámetro no dependiente de la escala de energía
por motivos que detallaremos. Sin embargo, al ajustar este parametro se obtienen
resultados que se ajustan a las medias experimentales como lo es la cota de la masa
del gravitón en caso de ser distinta de cero [14].

En la sección siguiente utilizamos el método de los "Proper Vertex Expansion"
sobre la ecuación de evolución [19] , el cual nos permite tratar el término de masa
como un parámetro dependiente de la escala de energía. Se obtienen las funciones
beta y el punto fijo para esta teoría, sin embargo el valor de los "critical exponents"
deja en evidencia algunas falencias de este método.

Finalmente un capítulo de conclusiones y análisis de nuestros resultados y tra-
bajos futuros a considerar.
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Chapter 2

Asymptotic Safety

Como dijimos en la introducción, la teoría de la relatividad general formulada por
Einstein no es renormalizable en el contexto de la teoría cuántica de campos . Esta
presenta divergencias en el límite UV.

De todos modos se puede considerar como una teoría efectiva hasta la escala de
planck ∼ MP. La masa de Planck está relacionada con la cte. de gravitación medi-
ante G ∼ 1

M2
P
.

Cuando renormalizamos la cte. de acoplamiento la hacemos dependiente de la
escala G → Gk. Usualmente esta dependencia va a depender de los "loops" en los
diagramas de Feynman . En este punto diverge y es por esto que decimos que es no
renormalizable [13].

Sin embargo, los resultados al aplicar las ecuaciones del grupo de renormal-
ización funcional no muestran este comportamiento.

2.1 Weinberg Asymptotic Safety

Si bien ha sido generalizado e implementado en diversas teorías, la idea de Asymp-
totic Safety propuesta por Weinberg tiene su origen en intentar explicar la no-renormalizabilidad
de la gravitación como una teoría cuántica de campos. La idea principal tiene que
ver con el valor de las constantes de acoplamiento en cierta escala de energía µ.

Si consideramos las constantes renormalizadas gi(µ), con dimensión de masa di
y µ la escala de energía, las constantes adimensionales van a estar definidas por

ḡi(µ) = µ−di gi(µ) (2.1)

Cualquier reacción R, con dimensión de masa D, para una cantidad física medi-
ble va a tener la forma

R = µD f
(E

µ
, X, ḡ(µ)

)
(2.2)

donde X son variables físicas adimensionales y E es alguna energía característica
del proceso.

Si la constante de acoplamiento tiene un comportamiento ḡi(µ) → ∞ para el
límite µ→ ∞, es de esperar que la cantidad R también diverja, aunque puede no ser
el caso .
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Sin embargo, se pude asegurar el "buen comportamiento" de R si, por el con-
trario, se cumple que en el límite µ → ∞ las constantes de acoplamiento adimen-
sionales converjan a un punto fijo ḡi(µ) → ḡ∗i . Esta es la primera condición para
asegurar que una teoría cumpla con ser "asymptotically safe".

La información respecto al comportamiento de las constantes de acoplamiento
según la escala de energía viene determinada por las funciones beta βi = ∂k ḡi. En-
tonces, esta primera condición se puede escribir como

βi(ḡ∗) = 0 (2.3)

De esta manera, la teoría va a estar bien definida en todo el rango de energía y
pasa a ser una teoría "fundamental"(en lugar de una teoría "efectiva” válida hasta
una cierta energía de corte ).

La segunda condición, es que el número de constantes esenciales sea finito. Por
constantes esenciales nos referimos a las constantes que no pueden ser redefinidas
en términos de las otras constantes de la teoría (estás últimas llamadas constantes
"redundantes").

Con estas dos simples condiciones se podría asegurar el buen comportamiento
de la teoría en todo el espectro de energía y la ausencia de divergencias en las con-
stantes físicas medibles.

Se puede profundizar mucho en este tema respecto a su aspecto formal [5-7], en
cuanto a que la hipersuperficie en la cual viven estas constantes debe ser finita y que
estas constantes fluyen a un punto fijo en esta hipersuperficie, sin embargo, para la
parte práctica de este estudio nos basta con tener en cuenta esas dos condiciones.

El método de renormalización funcional, propuesto inicialmente por Wetterich
[18] e implementado luego por Reuter [5] para el caso de gravitación, ha demostrado
que para diversas teorías de gravitación se cumplen las condiciones antes men-
cionadas, por lo que ésta cumpliría con ser "Asymptotically Safe"[8-11].

A continuación revisaremos las bases de este método para una teoría escalar, y
luego realizamos la implementación para el caso de Einstein Hilbert con un término
de masa

2.2 Effective Average Action (EAA) y Ecuaciones del Grupo
de Renormalización Funcional (FRGE)

Comenzamos por la función de partición

Z[j] =
∫

Dφe−S[φ]+
∫

dxφ (2.4)

El primer truco es agregarle un término (llamado ”cutoff action") del tipo

4kS[φ] =
∫

ddxφRkφ (2.5)

a la acción original S[φ]→ S[φ] +4kS[φ].
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La idea de este término es que sólo contribuye en el limite UV. Para esto, el ”cutoff
operator” Rk cumple con discriminar entre los momentos de altas y bajas energías
(p2 >> k2 y p2 << k2, respectivamente). Este va a depender de la forma de los
campos φ, pero tiene una estructura de la forma Zkk2R0

k(−D2/k2) . El primer fac-
tor Zk corresponde a una constante de acoplamiento dependiente de la escala k y
R0

k(−D2/k2) se conoce como ”cutoff function”. Esta función contiene la informa-
ción de la forma del cutoff. Es arbitraria salvo que debe cumplir con R0

k(0) = 1 y
R0

k(∞) = 0. Esta última condición se puede fortalecer imponiendo que en el límite
de k yendo a cero se cumpla limk→0 R0

k = 0.

Ahora, tenemos una función de partición modificada donde hemos incluido la
"cutoff action" y las constantes de acoplamiento son ahora dependientes de la escala

Zk[] =
∫

Dφ exp−S−4kS+
∫

dxφ (2.6)

De esta manera, podemos construir la funcional generatriz de la manera usual

Wk[] = log Zk[] (2.7)

cuya transformada de Legendre nos da la acción efectiva

Γ̃[φ] = −Wk[] +
∫

dxφ (2.8)

Finalmente, sustraemos el término de cutoff y obtenemos la ”Effective Average
Action” (EAA)

Γk[φ] = Γ̃k[φ]−4kS[φ] (2.9)

De esta manera, la EAA cumple con las siguientes propiedades que nos permiten
considerarla válida

• limk→0 Γk[φ] = Γ[φ]

• limk→∞ Γk[φ] = S[φ]

Estas dos propiedades nos indican que la EAA está definida en todo el espectro
de energía de manera continua. Además, se puede demostrar que los valores de
expectación para operadores < O > son iguales si se calculan a partir de Z o Zk
debido al comportamiento impuesto para el cutoff Rk.

2.2.1 Ecuación de Wetterich

La parte fundamental es determinar cómo evolucionan las constantes de acoplamiento
al depender de la escala de energía k. Para esto, primero definimos la derivada log-
aritmica con respecto a la escala de energia ∂t = ∂/∂lnk. Entonces, si derivamos el
funcional generatriz se obtiene

∂

∂t
Γk =

∂

∂t
(Γ̃k[φ]−4kS[φ]) (2.10)

= − ∂

∂t
Wk − Tr{ϕϕ}∂tRk

= Tr{〈φφ〉}∂tRk − Tr{ϕϕ}∂tRk
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Donde la traza es una integral en el espacio y una suma sobre los campos.

Ahora, considerando 〈φ〉 = ϕ, utilizamos la relación

δ2W[]

δδ
= 〈φφ〉 − 〈φ〉〈φ〉 (2.11)

y obtenemos

∂

∂t
Γk =

1
2

Tr{δ2W[]

δδ
∂tRk} (2.12)

Finalmente, reemplazamos en la traza utilizando la relacion

δ2W[]

δδ
=
(δ2Γ̃k[φ]

δϕδϕ

)−1
= (Γ̃(2)

k )−1 (2.13)

y obtenemos

∂

∂t
Γk =

1
2

Tr{(Γ(2)
k + Rk)

−1∂tRk} (2.14)

Esta ecuación es conocida como "Wetterich equation" y es la principal herramienta
que utilizaremos para demostrar si alguna teoría cumple con el requisito de ser
”’asymptotically safe” a partir del comportamiento de las ”running couplings” en
función de la escala de energía. Si bien esta ecuacón se ve bastante abstracta, ya
que muestra el flujo de la EAA en el espacio de teorías, existen diversas maneras
de extraer valiosa información respecto a las funciones beta de las constantes de
acoplamiento, las cuales representan cantidades físicas reales.

La implementación se ha estudiado para diversos casos como ya mencionamos
pero sólo veremos en detalle el caso de la gravitación ya que es el tema fundamental
de esta tesis. Para otros ejemplos como campos escalares, teorías no abelianas, tor-
sión, etc... existen numerosos artículos y publicaciones al respecto.

Además , y como veremos más adelante, se puede utilizar la derivada funcional
de esta ecuación, la cual da como resultado otra ecuación de flujo cuyos resultados
son consistentes con la ec. anterior.

Si llamamos al propagador modificado Gk = [Γ(2)
k + Rk]

−1 y Γ(n)
k es la derivada

funcional n-sima δn

δϕδϕ···Γk con respecto a ϕ, a primer y segundo orden tendremos

∂tΓ
(1)
k = Tr

{
GkΓ(3)

k Gk∂tRk

}
(2.15)

∂tΓ
(2)
k = Tr

{
GkΓ(3)

k GkΓ(3)
k Gk∂tRk

}
−1

2
Tr
{

GkΓ(4)
k Gk∂tRk

}
(2.16)

Como veremos en detalle en el capitulo 4, el segundo resultado es importante
para nuestro trabajo ya que nos permite definir la masa del gravitón como un parámetro
dependiente de la escala y calcular la función beta de esta. De este modo se puede
calcular el punto fijo no gaussiano de la teoría y los exponentes críticos de este sis-
tema.
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Chapter 3

Gravitación Masiva

Historicamente, la Relatividad General formulada por Einstein tuvo su origen en
fundamentos geométricos para describir el comportamiento de la radiación y los
objetos materiales en el espacio al ser afectados por un objeto masivo. Si comen-
zamos por la acción de Einstein Hilbert y redefinimos la métrica como fluctuaciones
alrededor de la métrica de Minkowski ηµν , es decir, gµν → ηµν + hµν a segundo
orden, se obtiene la acción de Fierz Pauli para una partícula de Spin 2 y sin masa.

3.1 Acción de Fierz-Pauli

SEH(g→ η + h) → SFP (3.1)∫
dDx

√
g→ η + h(−R) →

∫
dDx− 1

2
∂λhµν∂λhµν + ∂µhνλ∂νhµλ +

1
2

∂λh∂λh

Que cumple con la simetría de gauge:

δhµν = ∂µξν + ∂νξµ (3.2)

Sin embargo, la acción de Fierz-Pauli fue construida originalmente como la ac-
ción que representa una partícula con las caracteristicas descritas en el párrafo ante-
rior pero incluía un término de masa. O sea, en un espacio plano,

SFP =
∫

dDx− 1
2

∂λhµν∂λhµν + ∂µhνλ∂νhµλ +
1
2

∂λh∂λh (3.3)

−1
2

m2(hµνhµν − h2)

A partir de la ecuación de movimiento para h se puede llegar a

(2−m2)hµν = 0 (3.4)
∂µhµν = 0

h = 0

y así identificar los cinco grados de libertad que corresponden a una partícula de
spin 2 con masa m.

Ahora, si queremos obtener cantidades físicas a partir de esta acción, existe una
inconsistencia entre considerar m = 0 en el lagrangiano y considerar m → 0 en la
cantidad en cuestión.
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Por ejemplo, se puede obtener el potencial de interacción entre dos fuentes con
masa M1 y M2 para los casos sin y con masa. Para el primero se obtiene

V(m=0) = −
GM1M2

r
(3.5)

Mientras que para el segundo

V(m) = −
4
3

GM1M2

r
e−mr (3.6)

por lo que aparece una discontinuidad en el límite m→ 0

Si consideramos redefinir la constante G → 3
4 G para hacer coincidir estas can-

tidades, aparece una diferencia al considerar la deflección de la luz por un objeto
masivo de masa M. En ambos casos el valor para el ángulo de deflección α resulta

α =
4GM

b
(3.7)

con b el parámetro de impacto. Si redefinimos G esta cantidad se transforma en

α =
3GM

b
(3.8)

por lo que la discontinuidad persiste.

Además, si consideramos el caso de los propagadores para, m = 0 se obtiene

Dαβ,σλ =
−i
p2

[
1
2
(ηασηβλ + ηαληβσ)− ηαβησλ

]
(3.9)

mientras que para el caso masivo tenemos

Dαβ,σλ =
−i

p2 + m2

[
1
2
(ηασηβλ + ηαληβσ)−

2
3

ηαβησλ

]
(3.10)

Esta discontinuidad en el límite de la masa m → 0 y considerar la masa identi-
camente cero m = 0 es la discontinuidad vDVZ y es uno de los principales inconve-
nientes que presentó esta teoría ya que se espera que las cantidades físicas medibles
sean continuas en sus parámetros, cosa que no ocurre en este caso.

Este problema aparece debido a que la teoría masiva tiene cinco grados de lib-
ertad, mientras que la teoría sin masa propaga sólo dos. Como veremos a contin-
uación, el mecanismo de Stuckelberg muestra las causas de estas diferencias de man-
era explícita, además de permitirnos restaurar la simetría que se rompe al incluir un
término de masa.

3.2 Truco de Stuckelberg

.
Por simplicidad, podemos comenzar suponiendo una teoría vectorial para un

fotón masivo acoplado a una corriente Jµ

S =
∫

dDx− 1
4

FµνFµν − 1
2

m2Aµ Aµ + Aµ Jµ (3.11)



3.2. Truco de Stuckelberg 11

En D = 4 hay tres grados de libertad para spin 1. El termino de masa rompe la
"would be gauge invariance" δAµ = ∂µΛ.

Acá el propagador va como −i
p2+m2 (ηµν +

pµ pν

m2 ) que es como 1/m2.

El truco de Stuckelberg redefine el campo original Aµ al introducir un nuevo
campo escalar φ con

Aµ → Aµ + ∂µ
φ

m
(3.12)

y así para la acción obtenemos

S =
∫

dDx− 1
4

FµνFµν − 1
2

m2Aµ Aµ −mAµ∂µφ− 1
2

∂µφ∂µφ + Aµ Jµ − 1
m

φ∂µ Jµ (3.13)

Las simetrías de gauge quedan δAµ = ∂µΛ, δφ = −mΛ,

En este caso, podemos tomar directamente el límite m → 0 en el lagrangiano y
al considerar la corriente conservada ∂µ Jµ → 0 obtenemos un fotón acoplado a la
corriente Jµ y un escalar libre

S =
∫

dDx− 1
4

FµνFµν − 1
2

∂µφ∂µφ + Aµ Jµ (3.14)

Esta acción propaga los mismos tres grados de libertad que la acción original,
por lo que no se pierde información al considerar el límite de la masa yendo a cero.

Se puede tomar un gauge tipo Lorenz para obtener los propagadores −iηµν

p2+m2 y
−i

p2+m2 que para momentos grandes van como 1/p2, que es lo que debiera esperarse.

El Truco de Stuckelberg deja en evidencia que la simetría de gauge puede restau-
rarse utlizando variables redundantes, por lo que no tiene directa relación con las
cantidades físicas a considerar sino que la parte esencial es no perder grados de lib-
ertad en el cálculo de dichas cantidades.

En el caso de Electromagnetismo no existe diferencia dado que es una teoría
abeliana. Sin embargo para el caso de la gravedad si realizamos el mismo proced-
imiento comenzando por la acción de Fierz-Pauli más un termino de masa acoplado
a un tensor de energía momentum Tµν, el mecanismo es un poco más extenso ya que
primero se realiza una transformación para el tensor hµν

hµν → hµν + ∂µ Aν + ∂ν Aµ (3.15)

y luego otra para el vector Aµ

Aµ → Aµ + ∂µφ (3.16)

y luego de tomar el límite m→ 0 más algunas transformaciones similares al caso
anterior, se obtiene

S =
∫

dDxLm=0(h)−
1
2

FµνFµν − 2
D− 1
D− 2

∂µφ∂µφ
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+κh
′
µνTµν +

2
D− 2

κφT (3.17)

Acá estan los cinco grados de libertad, dos en el "canonical massless graviton"
hµν, dos en el vector Aµ y uno en el escalar φ.

Esta última ecuación refleja explícitamente el por qué de la discontinuidad vDVZ.
El campo escalar en este caso se acopla a la traza del tensor de energía momentum
T = Tµ

µ , así que al hacer perder ese grado libertad haciendo la masa igual a cero en
el lagrangiano, estamos despreciando esa parte de la interacción.

En el caso de la deflección de la luz, la traza del tensor de energía momentum
es cero, por lo que el resultado es el mismo al considerar la masa igual a cero en el
lagrangiano o en el ángulo de deflección.

Hasta acá hemos expuesto sólo el caso para la teoría lineal. Para el caso no lineal
el procediemiento es análogo salvo algunas particularidades. En este caso aparecen
interacciones y efectos que veremos a continuaión

3.3 Gravitación

Comenzamos por la acción de Einstein Hilbert

S[g] = 2κ2ZNk

∫
ddx
√

g(−R + 2Λ)

(3.18)

3.3.1 Soluciones Esféricas

Para un background plano (Λ = 0) la ecuación de movimiento resulta Rµν− 1
2 Rgµν =

0 y se supone una métrica esféricamente simétrica según el ansatz

gµνdxµdxν = −B(r)dt2 + C(r)[dr2 + r2dΩ2] (3.19)

Se puede demostrar que, para una masa puntual M en el origen, los términos de
la expresión anterior toman la forma

B(r)− 1 = −2GM
r

(
1− GM

r
+ ...

)
C(r)− 1 =

2GM
r

(
1 +

3GM
4r

+ ...
)

(3.20)

Estas son una expansión en rs/r donde

rS = 2GM ∼ M
M2

P
(3.21)

corresponde al radio de Schwarzschild, el cual representa la distancia en la que
son importantes los términos no lineales. A todo orden, se encuentra la solución de
Schwarzschild en el gauge de Lorenz
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B(r) =

(
1− 2r

GM

)2

(
1 + 2r

GM

)2

C(r) =
(

1 +
GM
2r

)4
(3.22)

En el caso de incluir un término de masa en el lagrangiano el resultado nueva-
mente no coincide en el límite de m = 0

3.3.2 Relatividad General Masiva

La acción va a ser la extensión más simple de Einstein Hilbert, que es incluir un
término de masa tipo Fierz-Pauli con lo que queda

S =
1

2κ2

∫
ddx
[√

g(−R)

−
√

ḡ
1
2

m2(hµνhµν − h2)
]

(3.23)

donde los índices de hµν suben y bajan con la métrica del background ḡ. La
ecuación de movimiento en este caso resulta

√
g(Rµν − 1

2
Rgµν) +

√
ḡ

1
2

m2(hµν − ḡµνh) = 0 (3.24)

Siguiendo el mismo análisis que para el caso anterior, se tiene en un background
plano ḡµνdxµdxν = −dt2 + dr2 + r2dΩ2 y suponemos un ansatz para la métrica ab-
soluta

gµνdxµdxν = −B(r)dt2 + C(r)dr2 + A(r)r2dΩ2 (3.25)

En este caso no se puede hacer C(r) = A(r) ya que no hay invarianza bajo difeo-
morfismos. Igual que antes se expande cada término y se obtienen las series

B(r)− 1 = −8
3

GM
r

(
1− 1

6
GM
m4r5 + ...

)
C(r)− 1 = −8

3
GM
m2r3

(
1− 14

GM
m4r5 + ...

)
A(r)− 1 =

4
3

GM
4πm2r3

(
1− 4

GM
m4r5 + ...

)
(3.26)

En este caso la expansión no es en torno a rS si no que en torno al parámetro
rV/r, donde

rV ≡
(GM

m4

)1/5
(3.27)

corresponde al Radio de Vainshtein. Este radio diverge para m −→ 0 por lo que
no dice nada respecto al comportamiento no lineal de la teoría de massive gravity
en el límite sin masa.
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FIGURE 3.1: En la figura se ven los regimenes donde son validas las
soluciones a una distancia r de una fuente de masa M en el origen [15]

Para poder estudiar más en detalle el comportamiento del caso masivo como una
teoría efectiva se debe realizar el mecanismo de Stuckelberg para el caso no lineal.

3.3.3 GR como una Teoría de Campos Efectiva

Einstein Gravity en D = 4 no es renormalizable. Los coupling tienen dimensión de
masa negativos. Sin embargo, puede ser tratada como una teoría efectiva hasta la
escala de la masa de Planck Mp. Por análisis dimensional, la amplitud de scattering
de 2−→2 gravitones a una energía E tiene una amplitud que va como E2

M2
P

que viola
unitariedad a una energía E ∼ MP.

En la figura (3.1) se ve que existen tres regímenes para las soluciones, uno donde
las soluciones son lineales y clásicas, otro donde son no lineales y cuánticas, y el ter-
cero que es un regimen intermedio donde el comportamiento es clásico y no lineal.

Para el caso de Massive Gravity se verá que los límites donde comienzan los
términos no lineales y los efectos cuanticos no son independientes entre sí, como
sucede en el caso usual.

3.4 Λ3

Como se puede observar, construir una teoría de "Massive Gravity", no es trivial. A
continuación haremos mención a algunos puntos importantes.

Al incluir un término de masa en el lagrangiano de EH se rompe la invarianza
bajo difeomorfismo, la cual debemos restaurar utilzando el mecanismo de Stuckel-
berg. En este caso la transformación va a ser del tipo

Hµν = hµν + ∂µ Aν + ∂ν Aµ + 2∂µ∂νφ + ∂µ Aα∂ν Aα + ∂µ Aα∂ν∂αφ + ∂µ∂αφ∂ν Aα + ....
(3.28)

por lo que aparecen muchos términos de interacción. A nivel lineal se repro-
ducen los resultados para Fierz-Pauli siempre y cuando se normalicen los campos
según

ĥ =
1
2

Mph , Â =
1
2

mMp A , φ̂ =
1
2

m2Mpφ (3.29)
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Entonces, los términos que aparezcan a partir del término de masa van a ser de
la forma

∼ m2Mphnh(∂A)nA(∂2φ)nφ (3.30)

que en función de los campos normalizados resultan

∼ Λ4−nh−2nA−3nφ

λ ĥnh(∂Â)nA(∂2φ̂)nφ (3.31)

con

Λλ = (Mpmλ−1)1/λ , λ =
nh + 2nA + 3nφ − 4

nh + nA + nφ − 2
(3.32)

Este valor Λ nos da la escala de corte hasta el cual los términos son significativos.

El término suprimido por la menor escala es el con un término escalar cúbico
nφ = 3 , nh = nA = 0.que es suprimido por la escala Λ5 en el límite

m→ 0 , Mp → ∞ , Λ5 f ijo (3.33)

Todos los términos van a cero excepto el escalar cúbico, la parte escalar de la
acciń va a aser

Sφ =
∫

d4x− 3(∂φ̂)2 +
2

Λ5
5

[
(∂2φ̂)3 − (∂2φ̂)(∂µ∂ν

)2
]
+

1
Mp

φ̂T (3.34)

El escalar se acopla a la traza T del tensor de energía momentum Tµν y para una
fuente puntual de masa M, a orden lineal se tiene

φ̂ ∼ M
Mp

1
r

(3.35)

El término no lineal se suprime con respecto al término lineal por el factor

∂4φ̂

Λ5
5
∼ M

Mp

1
Λ5

5r5
(3.36)

Cuando este factor es de orden uno, las no linearidades se hacen importantes y
eso determina el radio de Vainshtein

1 ∼ M
Mp

1
Λ5

5r5
V
=⇒ r5

V ∼
(

M
Mp

)1/5
1

Λ5
∼
(

GM
m4

)1/5

(3.37)

Entonces, cuando r < rV las no linearidades comienzan a ser importantes.

3.4.1 Ghost y Screening Mechanism

Al descomponer el escalar longitudinal φ̂ = φ − Ψ se encuentra que el campo Ψ
corresponde a un ghost (conocido como Boulware-Deser ghost) que tiene validez en
el rango

rghost ∼
(

M
Mp

)1/3
1

Λ5
>> rV (3.38)
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Para r << rV la fuerza tipo coulomb atractiva del escalar φ se cancela con la
repulsiva del ghost Ψ

Para r >> rV , el campo φ se comporta como 1/r mientras que el ghost en esta
región va como ∼ ( M

Mp
)2 1

Λ5/2
5 r6 por lo que su contribución es despreciable con re-

specto a la contribución de φ.

Este efecto se conoce como “Vainshtein Screening Mechanism”.

3.4.2 Effective Theory Λ5

En este caso el radio en el cual los efectos cuánticos son relevantes viene dado por

rQ ∼
(

M
MP

)1/3
1

Λ5
(3.39)

Lo relevante en este caso es que rQ > rV , por lo que no hay un regimen inter-
medio con un comportamiento clásico y no lineal. Además, al fijar valores para el
sistema solar Λ−1

5 ∼ 1011km se obtiene rQ ∼ 1024km que es del orden del radio del
universo, por lo que esta teoría no predice las observaciones en su rango de validez.

3.4.3 Λ3

Para el caso de Λ3 el análisis es similar al caso anterior pero se incluyen más terminos
de interacción en el término de masa, de esta manera se eleva el cutoff de Λ5 a Λ3.
Para esto, en lugar de utilizar sólo el término cuadrático de masa, como se ha hecho
hasta ahora, se incluyen términos de orden superior definiendo la acción como

S =
1

2κ2

∫
d4x

[
√

gR−√g
1
4

m2V(g, h)

]
(3.40)

con

V(g, h) = V1(g, h) + V2(g, h) + V3(g, h) + V4(g, h) + V5(g, h) + . . . (3.41)

y

V1(g, h) = 〈h2〉 − 〈h〉2

V2(g, h) = c1〈h3〉+ c2〈h2〉〈h〉+ c3〈h〉3
...

(3.42)

En este caso, luego de realizar el mecanísmo de Stuckelberg los términos de in-
teracción de menor escala son

∼ ĥ(∂φ̂)n

Mn+1
p m2n+2

, ∼ (∂Â)2(∂φ̂)n

Mn+2
p m2n+4

(3.43)

que se suprimen por la escala Λ3 = (Mpm2)1/3.
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En este caso no hay ghosts y al realizar el mismo análisis que para el caso ante-
rior se encuentran valores mucho más acordes con las observaciones. Además existe
un régimen donde son importante las contribuciones no lineales y aún no son im-
portantes los efectos cuánticos, como se ve en la figura (3.1). Ahora el “Decoupling
limit” es

m→ 0 , Mp → ∞ , Λ3 f ijo (3.44)

Acá el radio de Vainshtein viene dado por

r = r(3)V ∼
(

M
Mp

)1/3
1

Λ3
∼
(

GM
m2 )1/3 (3.45)

que marca dónde comienzan a ser relevantes los términos no-lineales.
Además, como teoría efectiva, los efectos cuánticos comenzarían a ser relevantes

en distancias menores a

rq ∼
1

Λ3
(3.46)

que para el caso de la masa del sol es del orden rq ∼ 1000km.

El modo escalar es de vital importancia en esta teoría, ya que su contribución es
relevante en regiones en las que el radio es mayor que el radio de Vainshtein rV , de
manera que en distancias del orden del sistema solar este no afecta y la gravitación
está dominada por la acción de Einstein-Hilbert usual.

Esta teoría está en nuestro foco de trabajo a futuro y se encuentra con detalles en
[15].
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Chapter 4

FRG of MG

Este capítulo constituye la parte central de este trabajo. Aplicaremos las ecuaciones
del grupo de renormalización funcional a la acción de Einstein Hilbert más un tér-
mino de masa.

Al estudiar el comportamiento de las constantes de acoplamiento dependientes
de la escala desde el punto de vista de la renormalización funcional podemos obtener
resultados distintos de los que se obtienen con el método usual en QFT al considerar
loops en los diagramas de Feynmann.

Junto con esto, podemos analizar desde otro punto de vista las consecuencias
al considerar la masa estrictamente igual a cero y su diferencia con tomar el límite
m→ 0.

Además, la energía de corte para la teoría Λ3 depende de la masa que se le asigne
al gravitón y de la constante de gravitación, por lo que las funciones beta de estas
constantes van a estar directamente relacionadas con la energía de corte.

Este capítulo se divide en dos partes. En la primera parte aplicamos la ecuación
de Wetterich directamente al lagrangiano y la evaluamos utilizando el método de la
"Heat Kernel Expansion", al igual que el trabajo original de Reuter [5] para el caso
de Einstein Hilbert usual.

Este método nos permite comparar nuestros resultados con los originales para el
caso m = 0 y así ver si existen o no diferencias con el límite m → 0 que no es trivial,
como vimos en los capítulos anteriores.

Sin embargo, no nos permite obtener la función beta de la masa βm = ∂tmk ya
que la ecuación de flujo está evaluada en el límite de bajas energías hµν = 0, por lo
que se pierde la información de la función beta del término de masa al ser cuadrático
en los campos.

De todos modos se puede obtener valiosa información respecto a los diagramas
de flujo, puntos fijos y exponentes críticos y su relación con el valor de la masa y vice
versa.

En la segunda parte utilizamos derivadas funcionales de la ecuación de evolu-
ción , llamada "Proper Vertex Expansion" [19] de manera que podemos obtener ex-
plícitamente la función beta para la masa.
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Como veremos, asi podemos conseguir valores coherentes para los puntos fijos
en los diagramas de flujo, pero el valor de los exponentes críticos deja en evidencia
que estos resultados no puede ser considerados como válidos.

4.1 Gravitón masivo en EH

Comenzamos por la ecuación de evolución

∂tΓk =
1
2

Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
(4.1)

Ahora, nuestro funcional total Γk estará compuesto por la acción de Einstein
Hilbert más un término de masa, una parte para fijar el gauge y otra de los cam-
pos fantasmas de Fadeev-Popov. Entonces, la ecuación de evolución que utilizamos
está dada por

∂tΓk[h̄, ξ, ξ̄; ḡ] =
1
2

Tr

[(
Γ(2)

k + R̂k

)−1

h̄h̄

(
∂tRk

)
h̄h̄

]

−1
2

Tr

[{(
Γ(2)

k + R̂k

)−1

ξ̄ξ
−
(

Γ(2)
k + R̂k

)−1

ξξ̄

}(
∂tRk

)
ξ̄ξ

]
(4.2)

donde ξ corresponden a los campos de Fadeev-Popov.

La traza en el espacio de volumen incluye una integración
∫

ddx
√

ḡ(x) que im-
plica el elemento de volumen del background. Los detalles de cómo se obtiene esta
ecuación se encuentran en los apendices A y B.

Entonces, para la parte de Einstein Hilbert con masa vamos a tener

Γk[g, ḡ] = 2κ2ZNk

∫
ddx
√

g(−R + 2λ̄k) +
∫

ddx
√

ḡ− 1
2

m2(hµνhµν − h2) (4.3)

Realizamos una expansión en torno a la métrica del background ḡ fija de manera
que gµν → ḡµν + hµν. El campo h es una fluctuación en torno a la métrica del back-
ground y es el campo a integrar en la integral funcional.

Trabajamos en un espacio maximalmente simétrico que cumple

R̄µνρσ =
1

d(d− 1)
(ḡµρ ḡνσ − ḡνρ ḡµσ)R̄

R̄µν =
1
d

ḡµνR̄ (4.4)

El primer paso es expandir en torno a la métrica del background para tener los
términos cuadráticos en h y así obtener las derivadas funcionales para Γ(2)

k

Para el el determinante
√−g obtenemos
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√
−g →

√
−g− 1

2
√
−ggµνδgµν (4.5)

−1
8
√
−g
[
− gαβgµν + δµαδνβ + δναδµβ

]
δgµνδgαβ

El procedimiento como viene ordenado en las siguientes sub-secciones es:

• Calculamos primero Γ(2)
k µν αβ = δ2

δhµνδhαβ
Γk

• Incluimos el cutoff Rk de manera que sea consistente con la parte tensorial,
vectorial y escalar para obtener Γ(2)

k + Rk

• Luego determinamos (Γ(2)
k + Rk)

−1 realizando una expansión en torno al tér-
mino de masa y la curvatura en el denominador del tipo (1 + A(R + m))−1 ∼
1− A(R + m)

• Multiplicamos por ∂tRk tambien según corresponda el caracter tensorial, etc...
para tener Tr[(Γ(2)

k + Rk)
−1∂tRk]

• Dado que el gauge que utilizamos nos permite tener esta última expresión en
la forma Tr[W(D(2))], podemos calcular esta traza utilizando la "Heat Kernel
Expansion" y una transformación de mellin

• Comparamos los términos proporcionales a
∫ √

ḡ y
∫ √

ḡR a ambos lados de la
ecuación de evolución y obtenemos un sistema de ecuaciones en función de las
funciones beta de las constantes de acoplamiento y las "threshold functions",
estas últimas dependen del tipo de cutoff que escojamos.

• Finalmente, expresamos las constantes de manera adimensional y fijamos el
cutoff Rk para obtener las funciones beta para las constantes adimensionales.

• Con éstas ya podemos realizar los diagramas de flujo, encontrar los puntos
fijos y los exponentes críticos en función del valor de la masa

4.1.1 Lado Izquierdo : ∂tΓk

Vamos a calcular primero el lado izquierdo de la ec. de flujo

∂tΓk =
∫

ddx
√

g
[
∂tZNk(−R− m2

2
(hµνhµν − h2)) + 2(∂tZNkλk)

]
(4.6)

En esta parte consideramos sólo los términos∫
ddx
√

gR(−)∂tZNk (4.7)

y ∫
ddx
√

g2(∂tZNkλk) (4.8)

ya que se toma el límite en h→ 0

Es por este motivo que la información respecto a ∂tm se pierde al utilizar este
método. De todos modos, como veremos, se puede extraer valiosa información al
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considerar la masa m sólo como un parámetro que podemos ajustar y así ver como
cambian los diagramas de flujo, puntos fijos y exponentes críticos en función de este
valor

4.1.2 Γ(2)

Consideramos primero sólo los términos cuadráticos en h se obtiene Γquad

Γquad[h̄; ḡ] = κ2ZNk

∫
ddx
√

ḡh̄µν

[
− Kµν

ρσD2 + Uµν
ρσ

]
h̄ρσ (4.9)

donde D2 = DµDµ se construye a integrando por partes y utilizando la relación
entre las derivadas covariantes en un espacio curvo

[Dµ, Dν]hαβ = Rα
λµνhλβ + Rβ

λµνhαλ (4.10)

Con esto obtenemos

Kµν
ρσ =

1
4

[
δ

µ
ρ δν

σ + δν
ρδ

µ
σ − ḡµν ḡρσ

]
Uµν

ρσ =
1
4

[
δ

µ
ρ δν

σ + δν
ρδ

µ
σ − ḡµν ḡρσ

]
(R̄− 2λ̄k) +

1
2
(ḡµνR̄ρσ + R̄µν ḡρσ)

−1
4
(δ

µ
ρ R̄ν

σ + δν
ρ R̄µ

σ + δ
µ
σ R̄ν

ρ + δν
σR̄µ

ρ )−
1
2
(R̄ν µ

ρ σ + R̄ν µ
σ ρ) (4.11)

Esta acción corresponde a la acción de Fierz-Pauli en un espacio curvo con la
métrica del background en torno a la cual expandimos. Entonces, para introducir
el término de masa podemos comenzar desde acá simplemente agregando el tér-
mino de masa− 1

2 m2(hµνhµν− h2), que lo podemos reescribir separando hµν = ĥµν +

d−1Φḡµν donde ĥ tiene traza nula y hµ
µ = Φ obtenemos

−1
2

m2(hµνhµν − h2) = −1
2

m2[(ĥµν + d−1Φḡµν)(ĥµν + d−1Φḡµν)− h2] (4.12)

= −1
2

m2[ĥµνĥµν + d−1ΦΦ−ΦΦ]

= −1
2

m2[ĥµνĥµν +
1− d

d
ΦΦ]

Vamos a obtener

Γquad[h̄; ḡ] =
1
2

κ2ZNk

∫
ddx
{

ĥµν

[
− D2 − 2λk + CT R̄− m2

2

]
hµν

−d− 2
2d

Φ
[
− D2 − 2λk + CSR̄ + Cmm2

]
Φ
}

(4.13)

con

CS =
d− 4

d
, CT =

d(d− 3) + 4
d(d− 1)

Cm = −d− 1
d− 2

(4.14)
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4.1.3 Γ(2) + Rk

Para los cutt off Rk se hace Rgrav µνρσ
k = Zgrav µνρσ

k k2R(−D2

k2 ) y el Zgrav µνρσ
k se define

como

Zgrav µνρσ
k = ZNk

[
(I − PΦ)

µνρσ − d− 2
2

Pµνρσ
Φ

]
(4.15)

con Pµνρσ
Φ = d−1gµνgρσ, de esta forma entra directo en las expresiones de hh y

ΦΦ.
Entonces tenemos

(Γ(2) + Rk)ĥĥ = ZNk

[
− D2 − 2λk + CT R̄ + k2R(

−D2

k2 )− m2

2

]
(Γ(2) + Rk)ΦΦ = ZNk(−)

d− 2
2d

[
− D2 − 2λk + CSR̄ + k2R(

−D2

k2 ) + Cmm2
]

El detalle para la contribució de los ghost se encuentra en el apéndice y se obtiene

(Γ(2) + Rgh
k )ξ̄ξ =

[
− D2 + CV R + k2R(

−D2

k2 )
]

(4.16)

con CV = − 1
d

4.1.4 (Γ(2) + Rk)
−1∂tRk

Ahora multiplicamos por ∂tRk = ∂t

(
ZNkk2R(−D2

k2 )
)

con lo que obtenemos

(Γ(2) + Rk)
−1
ĥĥ

∂tRk =
[
(2− ηN(k))k2R(

−D2

k2 ) + 2D2R′(
−D2

k2 )
][
− D2 − 2λk + CT R̄

+k2R(
−D2

k2 )− m2

2

]−1

(Γ(2) + Rk)
−1
ΦΦ∂tRk =

[
(2− ηN(k))k2R(

−D2

k2 ) + 2D2R′(
−D2

k2 )
][
− D2 − 2λk + CSR̄

+k2R(
−D2

k2 ) + Cmm2
]−1

Con ηN(k) = −∂tlnZNk que corresponde a la dimensión anómala del operador√
gR.

4.1.5 Tr[W(−D2)]

Para resolver estas trazas, consideramos la transformada de Fourier W̃(s) de W(−D2)
y tenemos

Tr[W(−D2)] =
∫

dsW̃(s)Tr[e−isD2
] (4.17)

Ahora se puede utilizar la "Heat Kernel Expansion"

Tr
[
e−isD2

]
=
( i

4πs

) d
2
tr(I)

∫
ddx
√

g
[
1− 1

6
isR + O(R2)

]
(4.18)
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La tr(I) es la traza en el espacio donde actúa D2 así que es 1 para el escalar Φ,
"d" para el vector de los ghost y 1

2 (d− 1)(d + 2) para el ĥ que es un tensor simétrico
y de traza nula. Con esto tenemos

Tr[W(−D2)] =
∫

dsW̃(s)
( i

4πs

) d
2
tr(I)

∫
ddx
√

g
[
1− 1

6
isR + O(R2)

]
(4.19)

Definiendo

Qn ≡
∫

ds(−is)nW̃(s) (4.20)

Podemos identificar

∫
dsW̃(s)

( i
4πs

) d
2
∫

ddx
√

g = (4π)−
d
2

∫
ds
( i

s

) d
2
W̃(s)

∫
ddx
√

g (4.21)

= (4π)−
d
2 Q d

2

∫
ddx
√

g

= (4π)−
d
2

∫
ds(−is)

d
2 W̃(s)

∫
ddx
√

g

Y de la misma forma

∫
dsW̃(s)

( i
4πs

) d
2
∫

ddx
√

g(−)1
6

isR = (4π)−
d
2

1
6

Q d
2−1

∫
ddx
√

gR (4.22)

Con lo que se obtiene

Tr[W(−D2)] = (4π)−
d
2 tr(I)

[
Q d

2
[W]

∫
ddx
√

g +
1
6

Q d
2−1[W]

∫
ddx
√

gR
]
(4.23)

Los Qn se pueden evaluar por una transformada de Mellin para n > 0

Qn[0] = 0 (4.24)

Qn[W] =
1

Γ(n)

∫ ∞

0
dzzn−1W(z)

Combinando estos resultados obtenemos la expresión para el lado izquierdo de
la ecuación de flujo

1
2

Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
=

1
2

Tr

[[
(2− ηN(k))k2R(

−D2

k2 ) +
D2

2
R′(
−D2

k2 )
]

[
− D2 − 2λk + k2R(

−D2

k2 ) + (CT R̄− m2

2
)
]−1
]

+
1
2

Tr

[[
(2− ηN(k))k2R(

−D2

k2 ) + D2R′(
−D2

k2 )
]
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[
− D2 − 2λk + k2R(

−D2

k2 ) + (CSR̄ + Cmm2)
]−1
]

(4.25)

Ahora tenemos que evaluar 1
2 Tr de esos dos objetos. Cada una de estas expre-

siones es del tipo N(A + CiR + Cmm2)−1 y se expande en torno a (CiR + Cmm2)
según N(A + (CiR + Cmm2))−1 = NA−1(1 + A−1(CiR + Cmm2))−1 = NA−1 −
NA−2(CiR + Cmm2) con i=V,S,T.

Si llamamos

N =
[
(2− ηN(k))k2R(

−D2

k2 ) + D2R′(
−D2

k2 )
]

A = −D2 − 2λk + k2R(
−D2

k2 ) (4.26)

tenemos

1
2

Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
=

1
2

Tr

[
N
[

A + (CT R̄− m2

2
)
]−1
]

+
1
2

Tr

[
N
[

A + (CSR̄ + Cmm2)
]−1
]

=
1
2

Tr

[
NA−1

[
1 + A−1(CT R̄− m2

2
)
]−1
]

+
1
2

Tr

[
NA−1

[
1 + A−1(CSR̄ + Cmm2)

]−1
]

=
1
2

Tr

[
NA−1 − NA−2(CT R̄− m2

2
)

]

+
1
2

Tr

[
NA−1 − NA−2(CSR̄ + Cmm2)

]

=
1
2

[
TrT[NA−1]− TrT[NA−2](CT R̄− m2

2
)

+TrS[NA−1]− TrS[NA−2](CSR̄ + Cmm2)

]

=
1
2
(4π)−

d
2

[
(trT(I) + trS(I))

[
Q d

2
[NA−1]

∫
ddx
√

g

+
1
6

Q d
2−1[NA−1]

∫
ddx
√

gR
]

−
[

Q d
2
[NA−2]

∫
ddx
√

g +
1
6

Q d
2−1[NA−2]

∫
ddx
√

gR
]

[
(CT R̄− m2

2
)trT(I) + (CSR̄ + Cmm2)trS(I)

]]
(4.27)
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Ahora, comparamos los coeficientes de
∫

ddx
√

g y
∫

ddx
√

gR en ambos lados y
obtenemos el sistema de ecuaciones:

2(∂tZNkλ̄k) =
1

2κ2 (4π)−
d
2

[(
trT(I) + trS(I)

)
Q d

2
[NA−1]− 2trV(I)Q d

2
[N0A−1

0 ]

−
[(
− m2

2

)
trT(I) +

(
Cmm2

)
trS(I)

]
Q d

2
[NA−2]

]

(−)∂tZNk =
1

2κ2 (4π)−
d
2

[
1
6

(
trT(I) + trS(I)

)
Q d

2−1[NA−1]

−Q d
2
[NA−2]

(
CTtrT(I) + CStrS(I)

)
− trV(I)

3

(
Q d

2−1[N0A−1
0 ]− 6CVQ d

2
[N0A−2

0 ]
)

−1
6

Q d
2−1[NA−2]

(m2

2
trT(I)− Cmm2trS(I)

)]
(4.28)

Utilizamos la Transformada de Mellin para Qn

Qn[0] = 0 (4.29)

Qn[W] =
1

Γ(n)

∫ ∞

0
dzzn−1W(z)

Entonces lo que se hace es reemplazar −D2

k2 → z en N/A y N/A2

Qn[NA−1] =
k2n

Γ(n)

∫ ∞

0
dzzn−1 (2− ηN(k))R(z)− 2zR′(z)

z− 2 λ̄k
k2 + zR(z)

Qn[NA−2] =
k2n−2

Γ(n)

∫ ∞

0
dzzn−1 (2− ηN(k))R(z)− 2zR′(z)[

z− 2 λ̄k
k2 + zR(z)

]2 (4.30)

Las ecuaciones de flujo anteriores las podemos escribir en función de las inte-
grales Q̃m

n y Qm
n con

Q̃m
n (λ̄k/k2) =

1
Γ(n)

∫ ∞

0
dzzn−1 R(z)

[z− 2 λ̄k
k2 + R(z)]m

Qm
n (λ̄k/k2) =

1
Γ(n)

∫ ∞

0
dzzn−1 R(z)− zR′(z)

[z− 2 λ̄k
k2 + R(z)]m

(4.31)

para n = 1, 2 y m = 1, 2 y así obtener las funciones beta y los diagramas de
flujo. Para escribir las funciones beta y las ec. de flujo en función de estas variables,
podemos escribir los Qn[NA−m] como

Qn[NA−1] = k2n
{

2Q1
n − ηN(k)Q̃1

n

}
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Qn[NA−2] = k2n−2
{

2Q2
n − ηN(k)Q̃2

n

}
(4.32)

Y con eso tenemos:

∂t(ZNkλ̄k) =
1

16κ2 (4π)−
d
2 kd

[
d
(

d + 1)
{

2Q1
d
2
− ηN(k)Q̃1

d
2

}
− 8dQ1

d
2
(0)

+
m2

k2
(d− 1)(d2 − 2)

(d− 2)

{
2Q2

d
2
− ηN(k)Q̃2

d
2

}]

∂tZNk = − 1
4κ2 (4π)−

d
2 kd−2

[
d
12

(
d + 1

){
2Q1

d
2−1 − ηN(k)Q̃1

d
2−1

}
−d

2

(
d− 1

){
2Q2

d
2
− ηN(k)Q̃2

d
2

}
− 2

3
dQ1

d
2−1(0)−Q2

d
2
(0)

−m2

k2
d2(d− 1)
24(d− 2)

{
2Q2

d
2−1 − ηN(k)Q̃2

d
2−1

}]
(4.33)

Estas son las ecuaciones para las "dimensionfull" couplings ZNk y λ̄k y nos in-
teresan las ecuaciones para las "dimensionless" couplings:

λk ≡ k−2λ̄k , gk ≡ Ḡkd−2Z−1
Nk (4.34)

Directamente al derivar obtenemos

∂tgk = (d− 2)gk −
g2

k
kd−2Ḡ

∂tZNk (4.35)

Para encontrar las ecuaciones de flujo, consideramos ηN(k) independientemente.
Para esto consideramos la ecuación de ∂tZNk y la dividimos por−ZNk al lado izquierdo
y al lado derecho lo escribimos en función de gk

ηN(k) =
gk

Ḡkd−2
1

4κ2 (4π)−
d
2 kd−2

[
d

12

(
d + 1

){
2Q1

d
2−1 − ηN(k)Q̃1

d
2−1

}
−d

2

(
d− 1

){
2Q2

d
2
− ηN(k)Q̃2

d
2

}
− 2

3
dQ1

d
2−1(0)−Q2

d
2
(0)

−m2

k2
d2(d− 1)
24(d− 2)

{
2Q2

d
2−1 − ηN(k)Q̃2

d
2−1

}]
(4.36)

ηN(k) = gk8π(4π)−
d
2

[
d
6

(
d + 1

)
Q1

d
2−1 − d

(
d− 1

)
Q2

d
2
− 2

3
dQ1

d
2−1(0)−Q2

d
2
(0)

−m2

k2
d2(d− 1)
12(d− 2)

Q2
d
2−1 − ηN(k)

{ d
12

(
d + 1

)
Q̃1

d
2−1

−d
2

(
d− 1

)
Q̃2

d
2
− m2

k2
d2(d− 1)
24(d− 2)

Q̃2
d
2−1

}]
(4.37)
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Con lo que se obtiene

ηN(k) = gk8π(4π)−
d
2

d
6

(
d + 1

)
Q1

d
2−1
− d
(

d− 1
)

Q2
d
2
− 2

3 dQ1
d
2−1

(0)−Q2
d
2
(0)− m2

k2
d2(d−1)
12(d−2)Q2

d
2−1

1 + gk8π(4π)−
d
2

{
d

12

(
d + 1

)
Q̃1

d
2−1
− d

2

(
d− 1

)
Q̃2

d
2
− m2

k2
d2(d−1)
24(d−2) Q̃2

d
2−1

}
Para la ecuación de gk la obtenemos directo a partir de su definición

gk = Ḡkd−2Z−1
Nk

∂tgk = Ḡ∂t(kd−2Z−1
Nk)

∂tgk = (d− 2 + ηN(k))gk (4.38)

Finalmente, la ec. de λk la obtenemos de

∂tλ̄k = λ̄kηN(k) +
1

ZNk
∂t(λ̄kZNk)

∂tλk = (ηN(k)− 2)λk +
gk

Ḡkd ∂t(λ̄kZNk)

∂tλk = (ηN(k)− 2)λk

+2πgk(4π)−
d
2

[
d
(

d + 1)
{

2Q1
d
2
− ηN(k)Q̃1

d
2

}
− 8dQ1

d
2
(0)

+
m2

k2
(d− 1)(d2 − 2)

(d− 2)

{
2Q2

d
2
− ηN(k)Q̃2

d
2

}]
(4.39)

Con esto, tenemos el siguiente sistema de ec. de flujo

∂tgk = (d− 2 + ηN(k))gk

∂tλk = (ηN(k)− 2)λk + 2πgk(4π)−
d
2

[
d
(

d + 1)
{

2Q1
d
2
− ηN(k)Q̃1

d
2

}
−8dQ1

d
2
(0) +

m2

k2
(d− 1)(d2 − 2)

(d− 2)

{
2Q2

d
2
− ηN(k)Q̃2

d
2

}]

ηN(k) = gk8π(4π)−
d
2

d
6

(
d + 1

)
Q1

d
2−1
− d
(

d− 1
)

Q2
d
2
− 2

3 dQ1
d
2−1

(0)−Q2
d
2
(0)− m2

k2
d2(d−1)
12(d−2)Q2

d
2−1

1 + gk8π(4π)−
d
2

{
d

12

(
d + 1

)
Q̃1

d
2−1
− d

2

(
d− 1

)
Q̃2

d
2
− m2

k2
d2(d−1)
24(d−2) Q̃2

d
2−1

}
Estas ecuaciones en función de las "Threshold Functions" Qm

n tienen la ventaja
de que dependen sólo de la forma del cutoff Rk a escoger, por lo que podemos ver
los diagramas de flujo y demases sólo evaluando estas funciones para los distintos
cutoff.
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4.2 Ecuaciones de Evolución y Diagramas de Flujo

Para obtener los diagramas de flujo, necesitamos especificar el cutoff R(z) para
poder evaluar las funciones Q̃m

n (w) y Qm
n (λ̄k/k2). Tomamos el caso del "Sharp-

cutoff"

Rk(p2) = lim
R̂→∞

R̂Θ(1− p2

k2 ) (4.40)

que cumple con los requerimientos mencionados en el capítulo 2.

En este caos, las "threshold functions" tienen un valor

Q1
n(w) = − log(1 + w)

Γ(n)
+ nζ(n + 1)

Qm 6=1
n (w) = − 1

(m− 1)Γ(n)
1

(1 + w)m−1

Q̃1
n(w) =

1
Γ(n + 1)

Q̃m 6=1
n (w) = 0 (4.41)

En este caso y en d=4, las ecuaciones de flujo resultan

ηN = − 2gk

6π + 5gk

[
18

1− 2λk
+ 5ln(1− 2λk)− ζ(2) + 6 + m

3
1− 2λk

]
∂tgk = (d− 2 + ηN(k))gk

∂tλk = −(2− ηN)λk −
gk

π

[
5ln(1− 2λk)− 2ζ(3) +

5
2

ηN −m
21
8

(
− ηN

2
− 2ln(1− 2λk)− 4ζ(3)

)]

En la figura (4.1) se ven los gráficos en d = 4 y para m = 0, 0.1, 0.5 y 100 para ver
como se deforma el diagrama de flujo a partir del caso m = 0, el cual coincide con
el obtenido originalmente por Reuter en [5]. En el eje vertical va la coordenada gk
y en la horizontal λk. Como se puede apreciar, a crecer la masa la información del
digrama deja de ser confiable.

Además hay que destacar que no aparece la discontinuidad vDVZ, ya que valor
del punto fijo cambia de manera continua con el valor de la masa.

Para encontrar los puntos fijos, necesitamos βλ(λk, gk) = βg(λk, gk) = 0.Tenemos
el primero que es trivial (gausiano) gk = λk = 0. Para encontrar el no gausiano
vemos el sistema de ecuaciones. Entonces de la ec. de βg se deduce 2 + ηN = 0 ⇒
ηN = −2. Con esto tenemos un sistema de dos ecuaciones

−2 = − 2gk

6π + 5gk

[
18

1− 2λk
+ 5ln(1− 2λk)− ζ(2) + 6 + m

3
1− 2λk

]

0 = −4λk −
gk

π

[
5ln(1− 2λk)− 2ζ(3)− 5−m

21
8

(
1− 2ln(1− 2λk)− 4ζ(3)

)]
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FIGURE 4.1: Diagramas de flujo para m2
k = 0; 0.1; 0.5 y m = 100(abajo,

derecha). Con λk (gk) en el eje x (y) . Para el caso m = 0 tenemos
el punto fijo no gaussiano con coordenadas λk = 0.3296 and gk =
0.40266. Se puede ver cómo se va desformando el diagrama original

m = 0 a medida que crece la masa
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Para m = 0 resulta

1 =
gk

6π + 5gk

[
18

1− 2λk
+ 5ln(1− 2λk)− ζ(2) + 6

]

0 = −4λk −
gk

π

[
5ln(1− 2λk)− 2ζ(3)− 5

]

Este sistema de ecuaciones tiene solución numérica según mathematica en el
punto (0.329681, 0.402661) para el caso m = 0.

Podemos realizar una iteración en Mathematica para obtener el valor del punto
fijo dependiendo del valor asignado a m. Podemos ver cómo varía esta coordenada
del punto fijo en el lado derecho de la figura (4.2), donde comienza por el caso m = 0
y luego va cambiando de manera continua, pese a que en la iteración está graficado
de manera discreta.

4.2.1 Critical Exponents

Para obtener los "critical exponents" seguimos el procedimiento usual. Es decir, con-
sideramos la matriz de Jacobi B

B(gk, λk) =

 ∂βgk
∂gk

∂βλk
∂gk

∂βgk
∂λk

∂βλk
∂λk

 (4.42)

Luego evaluamos esta matriz en el valor encontrado para los puntos fijos (g∗k , λ∗k )
y calculamos sus autovalores θi.

Dado que el valor de los puntos fijos depende de el valor que le asignemos a la
masa, nuevamente realizamos una iteración en matemática para encontrar el valor
de los exponentes críticos para cada uno de estos valores.

La parte real de los "critical exponents" nos dirá si las trayectorias chocan contra
el punto fijo no gausiano, de manera que las trayectorias en el diagrama de flujo son
finitas en el límite de altas energías k→ ∞

En nuestro caso encontramos un par de autovalores complejos conjugados θ1 =
θ∗2 . La parte real de estos se puede ver en el gáfico izquierdo de la figura (4.2).

El caso m=0 coincide con el encontrado en la literatura y vemos como varia en
función de la masa. Este resultado es relevante ya que, además de corroborar el
carácter del punto fijo, nos dice que la masa del gravitón debe ser pequeña, acorde
con los resultados experimentales que le dan una cota de alrededor de los ∼ 10−23

eV.

4.3 Proper Vertices

Para poder encontrar la funicón beta de la masa ∂kmk debemos “aislar” el término
que lo contiene en Γk. Para esto, el método de los proper vertices consiste en consid-
erar las derivadas funcionales con respecto a los campos en la ecuación de evolución
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FIGURE 4.2: En la figura de la izquierda vemos como varía el valor de
la parte real del exponente crítico en función de la masa. En el lado
derecho tenemos como varía el valor de la coordenada del puto fijo al

crecer la masa

∂tΓk =
1
2

Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
(4.43)

Así, para nuestro caso la EAA es

Γk[h, ḡ] =
∫

ddx
√

g(−R + 2λk)−
1
2

Zhkm2
k

∫
ddx
√

ḡ(hµνhµν − h2) (4.44)

El truco para encontrar el flujo de las constantes es tomar las derivadas fun-
cionales con respecto a los campos en la ecuación de flujo. En nuestro caso, quere-
mos determinar la función beta del término de masa ∂tmk. En el lado izquierdo de
la ecuación de flujo (4.43)vamos a tener un término del tipo

∼ ∂t(Zhkm2
k)
∫ √

ḡ(hµνhµν − h2) (4.45)

Como vemos, este va acompañado de términos cuadráticos en h, por lo que se
toma la segunda derivada funcional δ2

δhδh en ambos lados de la ec. de flujo y de esta
manera el término anterior se transforma en

∼ ∂t(Zhkm2
k)
∫

dx
√

ḡ (4.46)

de manera que luego podemos incluirlo al comparar los términos proporcionales
a
∫

dx
√

ḡ al igual que en la sección anterior.

Entonces al tomar las derivadas funcionales, la ecuación de flujo resulta

δ2

δhδh
∂tΓk =

1
2

δ2

δhδh
Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
(4.47)

que explicitamente es

∂tΓ
(2)
k = Tr

{
GkΓ(3)

k GkΓ(3)
k Gk∂tRk

}
−1

2
Tr
{

GkΓ(4)
k Gk∂tRk

}
(4.48)
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Donde Gk = [Γ(2)
k + Rk]

−1 es el propagador modificado y Γ(n)
k es la derivada fun-

cional n-ésima δn

δhδh···Γk con respecto a h.

En este caso vamos a necesitar las expansiones hasta cuarto orden en los campos.

Entonces lo primero es encontrar Γ(4) y Γ(3) que van a ser los 3 y 4-vertices. Nece-
sitamos los términos cúbicos y cuárticos en la acción

√
g(R− 2λk) luego de expandir

g = ḡ + h.

Para
√

g tenemos

√
−g →

√
−g−

√
−ggµνhµν

−1
2
√
−g
[
− gαβgµν + δµαδνβ + δναδµβ

]
hµνhαβ (4.49)

+
1
3!
√
−g
[
− gαβgλσgµν + gµν(δλαδσβ + δσαδλβ)

+gαβ(δµλδνσ + δνσδµλ)

+gλσ(δµαδνβ + δναδµβ)
]

hαβhλσhµν

− 1
4!
√
−g
[
− gαβgλσgµνgγδ + gµνgγδδ̂λσαβ + gαβgγδδ̂λσµν

+gλσgγδδ̂αβµν + gλσgµνδ̂αβγδ + gλσgαβδ̂µνγδ

+gµνgαβδ̂λσγδ + δ̂λσαβδ̂µνγδ

−δ̂λσγδδ̂µναβ − δ̂λσµνδ̂αβγδ

]
hαβhλσhµνhγδ (4.50)

donde δ̂µναβ = δµαδνβ + δναδµβ

Para los términos cuárticos en hµν al expandir R tenemos

R(4) =
1
4

[
2hµαhλβ∂λhαµ∂νhβν − hµαhλβ∂λhαµ∂βh− hµαhλβ∂νhαλ∂νhβν

−2hµαhλβ∂λh ν
α ∂µhβν + 2hµαhλβ∂λh ν

α ∂βhµν

]
(4.51)

Los términos cúbicos son

R(3) =
1
4

[
2hµα∂λhαµ∂µhλ

ν − hµα∂λhαµ∂λh + 2hλβ∂νhβν∂λh

−hλβ∂λh∂βh + 2hµα∂µhλν∂αhλν

−4hµα∂λhαν∂µhλν
]

(4.52)

Ahora ordenamos los términos cúbicos al sumar los productos
√

gR(3),
√

g(1)R(2),
√

g(2)R(1),
√

g(3)R. Los tres primeros dan términos del tipo hµν∂αhλσ∂βhγδ + hµνhλσ∂α∂βhγδ

y el último da un término hµνhαβhλσR con distintas contracciones para los índices
µ, ν, α...etc. El procedimiento para los h(4) es similar pero considerando los produc-
tos
√

gR(4) +
√

g(1)R(3) + ... etc... Se calculan las derivadas funcionales utilizando
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δhµν(x)
δhαβ(y)

=
1
2
(δµαδνβ + δναδµβ)δ(x− y) (4.53)

4.3.1 Lado Izquierdo

En el lado izquierdo de la ecuación de evolución vamos a tener ∂tΓ
(2)
k , que ya lo

tenemos de los cálculos anteriores y es

Γ(2)
k =

1
2

κ2ZNk

∫
ddx
√

ḡhµν

[
− D2 − 2λk + CT R̄

]
hµν −

m2
k

2
(hµνhµν − h2) (4.54)

Al tomar las derivadas queda δ2

δhαβδhλσ

Γ(2)
k αβλσ =

1
2

κ2ZNk

∫
ddx
√

ḡ
[
− D2 − 2λk + CT R̄

]1
2
(δασδβλ + δβσδαλ)

−
m2

k
2

(1
2
(δασδβλ + δβσδαλ)− δαβδλσ

)
(4.55)

Luego multiplicamos por gαβgλσ

Γ(2) α β
k α β =

1
2

κ2ZNk

∫
ddx
√

ḡ
[
− D2 − 2λk + CT R̄

]
d

−
m2

k
2

(
d− d2

)
(4.56)

Donde d es la dimensión que luego hacemos d = 4. Finalmente se toma la
derivada c/r a la escala de energía así que resulta

∂tΓ
(2) α β
k α β =

1
2

κ2
∫

ddx
√

ḡ
[
− (∂tZNk)D2 − 2∂t(ZNkλk) + ∂tZNkCT R̄

]
d

−
∂t(ZNkm2

k)

2

(
d− d2

)
(4.57)

Los términos ∂tZNk) y ∂t(ZNkλk) son conocidos del cálculo anterior, por lo que
luego de obtener el valor de las trazas en el lado izquierdo de la ecuación podemos
reemplazarlos para luego despejar ∂t(ZNkm2

k)

4.3.2 Lado Derecho

Las expresiones dentro de las trazas sólo pueden ser obtenidas mediante algún pro-
grama computacional (en este caso usamos mathematica) ya que , primero, hay que
expandir a orden tres y cuatro y además al tomar las derivadas funcionales cada tér-
mino se multiplica exponencialmente.

Por este motivo exponemos sólo los resultados obtenidos para las expresiones
dentro de las trazas.

El resto del cálculo sigue el mismo procedimiento que en el caso anterior.
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4.3.3 Tr
[

GkΓ(3)GkΓ(3)Gk

]
Para Tr

[
GkΓ(3)GkΓ(3)Gk

]
obtenemos

Tr[GkΓ(3)GkΓ(3)Gk] = Tr

[[
43626(D2)2 + 6504(−R + 2λk)(D2) + 272(−R + 2λk)

2
]

[
− D2 − 2λk + k2R(−D2

k2 ) + CRR +
m2

k
2

]3

]

(4.58)

con Gk = (Γ(2)
k + Rk)

−1.
Como es del tipo 1

[A+(R+m)]3
se expande el denominador en torno al término de

masa y la curvatura

1
[A + (R + m)]3

= [A + (R + m)]−3 = A−3 − 3A−4(R + m) (4.59)

entonces queda

Tr[GkΓ(3)GkΓ(3)Gk] = Tr

[[
43626(D2)2 + 6504(−R + 2λk)(D2) + 272(−R + 2λk)

2
]

[
− D2 − 2λk + k2R(−D2

k2 ) + CRR +
m2

k
2

]3

]

= Tr

[[
43626(D2)2 + 6504(−R + 2λk)(D2) + 272(−R + 2λk)

2
]

[
− D2 − 2λk + k2R(−D2

k2 )
]3

]

−3Tr

[[
43626(D2)2 + 6504(−R + 2λk)(D2) + 272(−R + 2λk)

2
]

[
− D2 − 2λk + k2R(−D2

k2 )
]4

(CRR +
m2

k
2
)

]
(4.60)

Definimos ahora

A1 = 43626(D2)2 + 6504(−R + 2λk)(D2) + 272(−R + 2λk)
2

N1 = −D2 − 2λk + k2R(
−D2

k2 ) (4.61)

De manera que la traza resulta

Tr[GkΓ(3)GkΓ(3)Gk] = Tr

[ [
A1

]
[

N1

]3

]
− 3(CRR +

m2
k

2
)Tr

[ [
A1

]
[

N1

]4

]
(4.62)

4.3.4 Tr
[

GkΓ(4)Gk

]
Para TrGkΓ(4)Gk se obtiene
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TrGkΓ(4)Gk = Tr

[ [
− 100(D2)− 8(−R + 2λk)

]
[
− D2 − 2λk + k2R(−D2

k2 ) + CRR +
m2

k
2

]2

]
(4.63)

Al expandir el denominador en este caso se obtiene

TrGkΓ(4)Gk = Tr

[ [
− 100(D2)− 8(−R + 2λk)

]
[
− D2 − 2λk + k2R(−D2

k2 ) + CRR +
m2

k
2

]2

]

= Tr

[[− 100(D2)− 8(−R + 2λk)
]

[
− D2 − 2λk + k2R(−D2

k2 )
]2

]

−2Tr

[[− 100(D2)− 8(−R + 2λk)
]

[
− D2 − 2λk + k2R(−D2

k2 )
]3 (CRR +

m2
k

2
)

]
(4.64)

y como antes definimos

A2 = −100(D2)− 8(−R + 2λk)

N2 = −D2 − 2λk + k2R(
−D2

k2 ) (4.65)

y así la traza queda

TrGkΓ(4)Gk = Tr

[ [
A2

]
[

N2

]2

]
− 2(CRR +

m2
k

2
)Tr

[ [
A2

]
[

N2

]3

]
(4.66)

4.3.5 Ecuaciones de Evolución

Ahora, sumamos los resultados anteriores y multiplicamos por ∂tRk = ∂t

(
ZNkk2R(−D2

k2 )
)
=

(2− ηN(k))k2R(−D2

k2 ) + 2D2R′(−D2

k2 ) para obtener

Tr[W(D2/k2)] = Tr
{

GkΓ(3)
k GkΓ(3)

k Gk∂tRk

}
− 1

2
Tr
{

GkΓ(4)
k Gk∂tRk

}
(4.67)

Con los resultados anteriores tenemos para el lado derecho (L.D.) de la ecuación
de flujo

L.D. = Tr

[[
A1

]
∂tRk[

N1

]3

]
− 3(CRR +

m2
k

2
)Tr

[[
A1

]
∂tRk[

N1

]4

]
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−1
2

Tr

[[
A2

]
∂tRk[

N2

]2

]
+ (CRR +

m2
k

2
)Tr

[[
A2

]
∂tRk[

N2

]3

]
(4.68)

Donde además vamos a definir

W i
j =

[
Aj

]
∂tRk[

Nj

]i (4.69)

que sirve en el siguiente paso.

Lo siguiente es encontrar la forma del polinomio W(−D2) en la traza de la ecuación
anterior y luego hacer el reemplazo −D2

k2 → z.

Con esto se puede escribir

Tr[W(−D2)] = (4π)−
d
2 tr(I)

[
Q d

2
[W]

∫
ddx
√

g +
1
6

Q d
2−1[W]

∫
ddx
√

gR
]
(4.70)

donde Los Qn son

Qn[W] =
1

Γ(n)

∫ ∞

0
dzzn−1W(z) (4.71)

que son integrales ya conocidas dependiendo de la forma del cutoff Rk.
Entonces utilizando eq(4.70) para cada una de las trazas en (4.68) se tiene

L.D. = Tr

[
W3

1

]
− 3(CRR +

m2
k

2
)Tr

[
W4

1

]

−1
2

Tr

[
W2

2

]
+ (CRR +

m2
k

2
)Tr

[
W3

2

]

= (4π)−
d
2 tr(I)

[
Q d

2
[W3

1 ]
∫

ddx
√

g +
1
6

Q d
2−1[W

3
1 ]
∫

ddx
√

gR
]

−3(CRR +
m2

k
2
)(4π)−

d
2 tr(I)

[
Q d

2
[W4

1 ]
∫

ddx
√

g +
1
6

Q d
2−1[W

4
1 ]
∫

ddx
√

gR
]

−1
2
(4π)−

d
2 tr(I)

[
Q d

2
[W2

2 ]
∫

ddx
√

g +
1
6

Q d
2−1[W

2
2 ]
∫

ddx
√

gR
]

+(CRR
m2

k
2
)(4π)−

d
2 tr(I)

[
Q d

2
[W3

2 ]
∫

ddx
√

g +
1
6

Q d
2−1[W

3
2 ]
∫

ddx
√

gR
]
(4.72)

Como estamos buscando sólo la ecuación para el término de masa, no nos intere-
san los términos proporcionales al término de curvatura R, así que nos quedamos
con

L.D. = (4π)−
d
2 tr(I)

[
Q d

2
[W3

1 ]
∫

ddx
√

g
]
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−3(
m2

k
2
)(4π)−

d
2 tr(I)

[
Q d

2
[W4

1 ]
∫

ddx
√

g
]

−1
2
(4π)−

d
2 tr(I)

[
Q d

2
[W2

2 ]
∫

ddx
√

g
]

+
m2

k
2
(4π)−

d
2 tr(I)

[
Q d

2
[W3

2 ]
∫

ddx
√

g
]

(4.73)

En el lado derecho de la ecuación nos va a interesar los términos proporcionales
a
∫

ddx
√

g, por lo que se obtiene

1
2

κ2
[
− 2∂t(ZNkλk)−

∂t(ZNkm2
k)

2

(
d− d2

)]
= 10(4π)−

d
2

[
Q d

2
[W3

1 ]− 3(
m2

k
2
)Q d

2
[W4

1 ]

−1
2

Q d
2
[W2

2 ] +
m2

k
2

Q d
2
[W3

2 ]
]

(4.74)

Los términos ∂tZNk y ∂t(ZNkλk) son conocidos del cálculo anterior y los pode-
mos utilizar de manera consistente, como está explicado en [19] .

Ahora hay que despejar los Qn[W i
j ] en función de las integrales

Φ̃m
n (λ̄k/k2) =

1
Γ(n)

∫ ∞

0
dzzn−1 R(z)

[z− 2 λ̄k
k2 + R(z)]m

Φm
n (λ̄k/k2) =

1
Γ(n)

∫ ∞

0
dzzn−1 R(z)− zR′(z)

[z− 2 λ̄k
k2 + R(z)]m

(4.75)

que son conocidas dependiendo del cut off R(z) que se escoja

Así, la ecuación en función de las “threshold functions“ Φ y Φ̃ resulta

1
2

κ2
[
− 2∂t(ZNkλk)−

∂t(ZNkm2
k)

2

(
d− d2

)]
= 10(4π)−

d
2

[
4λ̄2

kkd
(

2 · 272
[
2Φ3

d/2 − ηNΦ̃3
d/2

]
−3 · 272

m̄2
k

2

[
2Φ4

d/2 − ηNΦ̃4
d/2

])
+kd8 ∗ 2λ̄k

([
2Φ2

d/2 − ηNΦ̃2
d/2

]
−

m̄2
k

2

[
2Φ3

d/2 − ηNΦ̃3
d/2

])]

Donde en el lado derecho de la ecuación m̄k = mkk−1 y λ̄k = λkk−2 son las con-
stantes adimensionales.

Con esta ecuación más las ya conocidas de la sección anterior

∂t(ZNkλk) =
1

16κ2 (4π)−
d
2 kd

[
d
(

d + 1)
{

2Φ1
d
2
− ηN(k)Φ̃1

d
2

}
− 8dΦ1

d
2
(0)
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+
m2

k2
(d− 1)(d2 − 2)

(d− 2)

{
2Φ2

d
2
− ηN(k)Φ̃2

d
2

}]

∂tZNk = − 1
4κ2 (4π)−

d
2 kd−2

[
d
12

(
d + 1

){
2Φ1

d
2−1 − ηN(k)Φ̃1

d
2−1

}
−d

2

(
d− 1

){
2Φ2

d
2
− ηN(k)Φ̃2

d
2

}
− 2

3
dΦ1

d
2−1(0)−Φ2

d
2
(0)

−m2

k2
d2(d− 1)
24(d− 2)

{
2Φ2

d
2−1 − ηN(k)Φ̃2

d
2−1

}]
(4.76)

podemos despejar la función beta ∂tm2
k .

∂tm2
k = − 2

ZNk

(
d− d2

) 2
κ2 10(4π)−

d
2 kd

[
4λ̄2

k

(
2 · 272

[
2Φ3

d/2 − ηNΦ̃3
d/2

]

−3 · 272
m̄2

k
2

[
2Φ4

d/2 − ηNΦ̃4
d/2

])
+8 ∗ 2λ̄k

([
2Φ2

d/2 − ηNΦ̃2
d/2

]
−

m̄2
k

2

[
2Φ3

d/2 − ηNΦ̃3
d/2

])]

−2
2

ZNk

(
d− d2

)∂t(ZNkλk)−
1
2

2
ZNk

m2
k∂t(ZNk) (4.77)

∂tm̄2
k = −2m̄2

k −
(

d− d2
)

10(4π)−
d
2 4 ∗ 32πgk

[
4λ̄2

k

(
2 · 272

[
2Φ3

d/2 − ηNΦ̃3
d/2

]
−3 · 272

m̄2
k

2

[
2Φ4

d/2 − ηNΦ̃4
d/2

])
+8 ∗ 2λ̄k

([
2Φ2

d/2 − ηNΦ̃2
d/2

]
−

m̄2
k

2

[
2Φ3

d/2 − ηNΦ̃3
d/2

])]

−4
(

d− d2
)

2πgk(4π)−
d
2

[
d
(

d + 1)
{

2Φ1
d
2
− ηN(k)Φ̃1

d
2

}
− 8dΦ1

d
2
(0)

+m̄2
k
(d− 1)(d2 − 2)

(d− 2)

{
2Φ2

d
2
− ηN(k)Φ̃2

d
2

}]

+m̄2
k gk8π(4π)−

d
2

[
d

12

(
d + 1

){
2Φ1

d
2−1 − ηN(k)Φ̃1

d
2−1

}
−d

2

(
d− 1

){
2Φ2

d
2
− ηN(k)Φ̃2

d
2

}
− 2

3
dΦ1

d
2−1(0)−Φ2

d
2
(0)

−m̄2
k

d2(d− 1)
24(d− 2)

{
2Φ2

d
2−1 − ηN(k)Φ̃2

d
2−1

}]
(4.78)

y con d = 4
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∂tm̄2
k = −2m̄2

k + 120(4π)−24 ∗ 32πgk

[
4λ̄2

k

(
2 · 272

[
2Φ3

2 − ηNΦ̃3
2

]
−3 · 272

m̄2
k

2

[
2Φ4

2 − ηNΦ̃4
2

])
+8 ∗ 2λ̄k

([
2Φ2

2 − ηNΦ̃2
2

]
−

m̄2
k

2

[
2Φ3

2 − ηNΦ̃3
2

])]

+48 ∗ 2πgk(4π)−2

[
20
{

2Φ1
2 − ηN(k)Φ̃1

2

}
− 8dΦ1

2(0)

+21m̄2
k

{
2Φ2

2 − ηN(k)Φ̃2
2

}]

+m̄2
k gk8π(4π)−2

[
5
3

{
2Φ1

1 − ηN(k)Φ̃1
1

}
−6
{

2Φ2
2 − ηN(k)Φ̃2

2

}
− 2

3
dΦ1

1(0)−Φ2
2(0)

−m̄2
k

{
2Φ2

1 − ηN(k)Φ̃2
1

}]
(4.79)

El resto de las ecuaciones para las constantes ya adimensionales son

∂tgk = (d− 2 + ηN(k))gk

∂tλk = (ηN(k)− 2)λk

+2πgk(4π)−
d
2

[
d
(

d + 1)
{

2Φ1
d
2
− ηN(k)Φ̃1

d
2

}
− 8dΦ1

d
2
(0) +

m2

k2
(d− 1)(d2 − 2)

(d− 2)

{
2Φ2

d
2
− ηN(k)Φ̃2

d
2

}]
(4.80)

con

ηN(k) = gk8π(4π)−
d
2

d
6

(
d + 1

)
Φ1

d
2−1
− d
(

d− 1
)

Φ2
d
2
− 2

3 dΦ1
d
2−1

(0)−Φ2
d
2
(0)− m2

k2
d2(d−1)
12(d−2)Φ2

d
2−1

1 + gk8π(4π)−
d
2

{
d

12

(
d + 1

)
Φ̃1

d
2−1
− d

2

(
d− 1

)
Φ̃2

d
2
− m2

k2
d2(d−1)
24(d−2) Φ̃2

d
2−1

}
De esta manera y para el sharp cutoff obtenemos la función beta para la masa

∂tm2
k = −2m2

k +
960gk

π

[
λ2

k

(
544

(1− 2λk)2 −
272m2

k
(1− 2λk)3

)
−

m2
k

2(1− 2λk)2 +
16

1− 2λk

]

+
8gk

π

[
20
(

4ζ(3)− 2 log(1− 2λk) +
42m2

k
1− 2λk

− 64ζ(3)

− 3gk

2(5gk + 6π)

(
−

2m2
k

1− 2λk
− 12

1− 2λk
+

10
3
(

π2

6
− log(1− 2λk))−

4π2

9
− 4
))]
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+
gkm2

k
2π

[
5
3

(
π2

3
− 2 log(1− 2λk)−

2m2
k

1− 2λk
− 12

1− 2λk
− 4π2

9
− 1

− 3gk

(5gk + 6π)

(
−

2m2
k

1− 2λk
− 12

1− 2λk
+

10
3
(

π2

6
− log(1− 2λk))−

4π2

9
− 4
))]
(4.81)

4.3.6 Puntos Fijos y Exponentes Críticos

Ahora tenemos un sistema de tres funciones beta para los tres couplings de la teoría.

Este sistema de ecuaciones nos da el punto fijo gaussiano habitual para λk =
gk = mk = 0 y además obtenemos un punto fijo no gaussiano con las coordenadas
λk = 0.3981, gk = 0.2192 y mk = 0.4221.

Estos valores son similares a los encontrados en la sección anterior anterior (λ∗k =
0, 33 y g∗k = 0, 40). Sin embargo, en este caso no podemos directamente hacer m→ 0
ya que el valor de m viene dado por la teoría.

Para los exponentes crítics el cálculo es similar salvo que se incluye en este caso
la función beta de la masa y las derivadas con respecto a la masa en las funciones
beta.

Los valores que encontramos en este caso son θ1 = 342408, θ2 = 7.91 y θ∗3 = 5.09
para el punto fijo no gaussiano y θ1 = θ2 = 2 y θ3 = −2 para el punto fijo en el
origen.

Los valores encontrados para el punto fijo no gaussiano dan cuenta de que estos
resultados no pueden ser relevantes desde la física y los detalles de esto lo vemos en
las conclusiones y análisis de los resultados.
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Chapter 5

Análisis y Conclusiones

Hemos estudiado el grupo de renormalización funcional aplicado al caso de grav-
itación de Einstein-Hilbert más un término de masa.

En primera instancia estudiamos el caso en el cual la masa del gravitón es un
parámetro no dependiente de la escala de energía y encontramos que el valor del
punto fijo depende de manera continua del valor asignado a la masa.

En este caso vemos que no existe una discontinuidad en el límite m→ 0, de man-
era que la discontinuidad vDVZ no está presente en este caso, por lo que los valores
dependientes de los couplings gk y λk se reproducen de manera continua para m = 0
y m→ 0.

Esto se puede ver de manera explícita en la figura(4.1) al ver cómo se deforman
de manera continua los diagramas de flujo al variar el valor de la masa.

Esto puede deberse de algún modo a que, al realizar la expansión alrededor del
escalar de Ricci más la masa del gravitón ∼ R + cmm2

k , la masa actúa como una cor-
rección a la curvatura R, la cual se produce de manera continua.

La ausencia de la discontinuidad vDVZ aparece como un resultado relevante de-
bido a que hasta ahora la única solución para esta discontinuidad viene dada por el
mecanismo de Stuckelberg, y además a que la variación de los valores de las con-
stantes de acoplamiento se produce de manera continua dependiendo del valor de
la masa.

Al incluir un término de masa en la acción de Einstein-Hilbert estamos modif-
icando la teoría en el sector infrarojo. Sin embargo, esto tiene consecuencias en el
sector UV, específicamente en el punto fijo no gaussiano de la teoría. Por otro lado,
el término de masa no produce cambios en el punto fijo gaussiano para λk = gk = 0

Al considerar el término de masa independiente de la escala, los valores de los
"critical exponents" varían también de manera continua al hacer variar la masa del
gravitón. Estos se desvían de su valor esperado (∼ 2) para m = 0 de manera con-
tinua. Este hecho es consistente con el valor esperado para el caso en que la masa
del gravitón es no nula, ya que los experimentos fijan una cota superior para la masa
del gravitón en el límite ∼ 10−23 eV (cinco ordenes de magnitud de diferencia com-
parado con la cota experimental para la masa del fotón < 10−18 eV). De manera que
nuestro procedimiento es consistente con estos resultados.
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Además, vemos que al considerar la masa en un valor aproximado a m = 0, 422,
que es el valor encontrado para el punto fijo en el caso de la masa dependiente de
la escala, los valores para los otros couplings son similares a los que se obtienen en
este último caso, por lo que este hecho aparece como una demostración de que hay
consistencia entre ambos cálculos.

Al considerar la masa como dependiente de la escala seguimos obteniendo un
punto fijo no gaussiano y con valores similares al caso anterior, cumpliendo el req-
uisito para considerar a esta teoría como "asymptotically safe". Sin embargo, los
valores encontrados para los exponentes críticos indican serios problemas en la con-
fiabilidad de estos resultados.

Estos valores demuestran que las teorías de massive gravity presentan amplias
dificultades para poder obtener resultados relevantes para la física.

Una solución sería considerar términos no lineales para investigar los resulta-
dos. De hecho esto aparece dentro de nuestras motivaciones para escoger este tema
de estudio, ya que la teoría Λ3 considera estos términos no lineales.

Otra posibilidad en cuanto a los valores que se obtienen para los critical expo-
nents puede deberse a que la teoría que consideramos no era manifiestamente in-
variante bajo difeomorfismos. Como vimos en el capítulo de massive gravity, esta
invarianza puede restaurarse mediante el mecanismo de Stuckelberg y se aplica en
la teoría de Λ3.

Esta teoría, como dijimos, tiene una escala de corte que depende de la masa del
gravitón y de la constante de Gravitación, de manera que nuestro trabajo se puede
extender en esa dirección considerando los resultados hasta acá obtenidos.
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Appendix A

EAA for Gravity

A.1 EAA para gravedad

En este apéndice vemos con detalles la construccion de la "Effective Average Action"
para el caso de la gravitación.

Comenzamos por una métrica γµν (Riemanniana) de manera que la integral fun-
cional

∫
Dγµνexp{−S[γµν] + sourceterms} y la acción S[γµν] (positiva definida) son

invariantes bajo una transformación general de coordenadas

δγµν = Lvγµν ≡ vσ∂σγµν + ∂µvσγσν + ∂νvσγµσ (A.1)

Lv representa la derivada de Lie. Utilizamos el formalismo de la background
metric de manera que podemos descomponer γµν = ḡµν + hµν. La métrica del back-
ground ḡ se mantiene indefinida.

La transformación de gauge entonces resulta

δhµν = Lvhµν

δḡµν = Lvgµν (A.2)

Se toma un gauge fixing a priori Fµ(h; ḡ) = 0 y el truco de Faddeev Popov se
aplica de manera directa . Se incluye un cut off infrarojo4kS[h, C, C̄; ḡ] y tenemos el
funcional generatriz Wk para las funciones conectadas de Green

exp{Wk[tµν, σµ, σ̄µ; ḡµν]} =
∫

DhµνDCµDC̄µexp{−S[ḡ + h]− Sg f [h; ḡ]

−Sgh[h, C, C̄; ḡ]−4kS[h, C, C̄; ḡ]− Ssource} (A.3)

con Sg f

Sg f [h, ḡ] =
1

2α

∫
ddx
√

ḡḡµνFµFν (A.4)

Fµ[h; ḡ] =
√

2κ(D̄νhµν − v̄D̄µhν
ν) (A.5)

Donde D̄ va con los christoffel de la métrica del background.κ tiene dimensiones
de masa y la podemos tomar κ ≡ (32πḠ)−1/2 y Ḡ un valor de referenacia de la cte
ne newton. Este gauge es de la forma más general y reproduce para el caso de la
métrica plana la condición armónica 1

2 ∂µhν
ν = ∂νhν

µ.
Para los Faddeev Popov tenemos
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Sgh[h, C, C̄; ḡ] = −κ−1
∫

ddx
√

ḡC̄µ ḡµν ∂Fν

∂hαβ
LC(ḡαβ + hαβ)

= −κ−1
√

2κ
∫

ddx
√

ḡC̄µ ḡµν ∂

∂hαβ
(D̄σhνσ −vD̄νhλ

λ)

[Cφ∂φgαβ + ∂αCφgφβ + ∂βCφgαφ] (A.6)

con ∂hαβ

∂hµν
= 1

2 (δ
µ
α δν

β + δν
αδ

µ
β) y las derivadas de Lie se pueden expresar en funcion

de derivadas covariantes y D̄ḡ = 0

Sgh[h, C, C̄; ḡ] = −
√

2
∫

ddx
√

ḡC̄µ ḡµν

[
1
2
(δα

σδ
β
ν + δα

ν δ
β
σ)D̄σ −

1
2
(δα

λδ
β
γ + δα

γδ
β
λ)vḡλγD̄ν

]
(DαCφgφβ + DβCφgαφ) (A.7)

Para el primer término tenemos

ḡµν 1
2
(δα

σδ
β
ν + δα

ν δ
β
σ)D̄σ(DαCφgφβ + DβCφgαφ)

= ḡµν 1
2
[
D̄αDαCφgφν + D̄σDνCφgφσ

D̄αDνCφgαφ + D̄σDσCφgνφ

]
= D̄αgµ

φDαCφ + D̄σgφσDµCφ (A.8)

Y para el segundo

1
2

vḡµν(δα
λδ

β
γ + δα

γδ
β
λ)ḡλγD̄ν(DαCφgφβ + DβCφgαφ)

=
1
2

vḡµν

[
2ḡαβD̄νDαCφgφβ + 2ḡαβD̄νDβCφgφα

]
= 2vḡαβD̄µDαCφgφβ (A.9)

Con lo que obtenemos

Sgh[h, C, C̄; ḡ] = −
√

2
∫

ddx
√

ḡC̄µ

[
D̄αgµ

φDαCφ + D̄σgφσDµCφ −

2vḡαβD̄µDαCφgφβ

]
(A.10)

Que se puede escribir como

Sgh[h, C, C̄; ḡ] = −
√

2
∫

ddx
√

ḡC̄µ M[g, ḡ]µνCν (A.11)

Con el operador de Faddeev Popov

M[g, ḡ]µν = D̄ρgµ
νDρ + D̄ρgρνDµ − 2vD̄µ ḡρσgρνDσ (A.12)
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La parte escencial es el IR cut off, que es de la forma

4kS =
κ2

2

∫
ddx
√

ḡhµνRgrav
k [ḡ]µνρσhρσ +

√
2
∫

ddx
√

ḡC̄µRgh
k [ḡ]Cµ (A.13)

Los R discriminan entre los momentos grandes y chicos, los con p2 � k2 se
suprimen, los otros se integran sin problema. Estos se pueden escribir como Rk[ḡ] =
Zkk2R(0)(−D̄2/k2) con los R(0)(0) = 1 y R(0)(∞) = 0.

Hay opciones para fijar los Rk como R(0)(u) = u(expu − 1)−1 o el optimizado
R(0)(u) = (1− u)θ(1− u) con u = p2/k2. Los Z son distintos para los ghost y para
los graviton cut off. De manera que se cumple que Zgh

k es un numero mientras que
Zgrav

k es un tensor a partir de ḡ.

Consideramos D̄2 en el 4kS debido a que así el hµν es cuadratico, así sólo hay
segundas derivadas funcionales de Γk. Además es invariante frente a las transfor-
maciones de gauge de background.

Volviendo al funcional generatriz Wk,hemos acoplado hµν, Cµ, C̄µ a las fuentes
tµν, σ̄µ, σµ respectivamente, y tenemos para los valores de espectación

h̄µν =
1√
ḡ

δWk

δtµν

ξµ =
1√
ḡ

δWk

δσ̄µ
(A.14)

y lo mismo para ξ̄ relacionado al valor de expectación de C̄. La transformada de
Legendre del funcional generatriz Wk[tµν, σµ, σ̄µ; ḡµν] resulta

Γ̃k[h̄, ξ, ξ̄; ḡ] =
∫

ddx
√

ḡ(tµνh̄µν + σ̄µξµ + σµ ξ̄µ)−Wk[t, σ, σ̄; ḡ] (A.15)

Ahora podemos escribir la effective average action

Γk[h̄, ξ, ξ̄; ḡ] = Γ̃k[h̄, ξ, ξ̄; ḡ]−4kS[h̄, ξ, ξ̄; ḡ] (A.16)

Que cumple con

Γk→∞[h̄, ξ, ξ̄; ḡ] = Γ̃k→∞[h̄, ξ, ξ̄; ḡ]

=
∫

ddx
√

ḡ(tµνh̄µν + σ̄µξµ + σµ ξ̄µ)−Wk→∞[t, σ, σ̄; ḡ]

= (A.17)

Podemos definir el valor de espectacion cuantico de γµν, gµν(x) ≡ h̄µν(x) +
ḡµν(x) para despejar h̄µν en Γk. Lo bueno es que todo transforma como corresponde
en Γk para transformaciones de coordenadas

Γk[Φ + LvΦ] = Γk[Φ] (A.18)

con Φ = {g, ξ, ξ̄, ḡ}. Esto es una consecuencia de

Wk[J + Lv J] = Wk[J] (A.19)
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con J = {tµν, σµ, σ̄µ; ḡµν} Como los R mueren para k → 0, se recupera la acción
efectiva Γ[gµν] haciendo gµν = ḡµν, o h̄µν = 0. Tomando la derivada de escala de
exp[Wk] y reexpresando en funcion de Γk se obtiene

∂tΓk[h̄, ξ, ξ̄; ḡ] = ∂tΓ̃k[h̄, ξ, ξ̄; ḡ]− ∂t4kS[h̄, ξ, ξ̄; ḡ]
= −∂tWk[t, σ, σ̄; ḡ]− ∂t4kS[h̄, ξ, ξ̄; ḡ]

= −
∫

DhµνDCµDC̄µ∂t(−)4kS[h, C, C̄; ḡ]exp{Stot}
Z

− ∂t4kS[h̄, ξ, ξ̄; ḡ]

=

∫
DhµνDCµDC̄µ

[
κ2

2

∫
ddx
√

ḡhµν∂tR
grav
k [ḡ]µνρσhρσ −

√
2
∫

ddx
√

ḡC̄µ∂tR
gh
k [ḡ]Cµ

]
Z

−∂t4kS[h̄, ξ, ξ̄; ḡ]

=
1
2

κ2

2

∫
ddx
√

ḡ < hµνhρσ > ∂tR
grav
k [ḡ]µνρσ −

√
2
∫

ddx
√

ḡ < C̄µCµ > ∂tR
gh
k

−∂t4kS[h̄, ξ, ξ̄; ḡ] (A.20)

Utilizamos la relación

Gij(x, y) = < χi(x)χj(y) > − < χi(x) >< χj(y) >

=
1√

ḡ(x)ḡ(y)
δ2Wk

δJi(x)δJ j(y)
(A.21)

Y obtenemos

< hµνhρσ > = Gh̄h̄(x, y) + h̄µν(x)h̄ρσ(x) (A.22)

y lo mismo para los ghost. Se eliminan los términos con h̄h̄∂tRk y los de los
fantasmas con el ∂t4kS y obtenemos

∂tΓk[h̄, ξ, ξ̄; ḡ] =
κ2

2

∫
ddx
√

ḡGh̄h̄∂tR
grav
k [ḡ]µνρσ −

√
2
∫

ddx
√

ḡGξ̄ξ∂tR
gh
k (A.23)

y que G y Γ̃ son matrices inversas según∫
ddy
√

ḡ(y)Gij(x, y)Γ̃(2)jl
k (y, z) = δl

i
δ(x− z)√

ḡ(z)
(A.24)

entonces denotamos Gij =
[
Γ̃(2)

ij

]−1 con

Γ̃(2)
ij (x, y) =

1√
ḡ(x)ḡ(y)

δ(2)Γ̃(x, y)
δχi(x)δχj(y)

= Γ(2)
ij (x, y) +

δ(2)4kS(x, y)
δχi(x)δχj(y)

(A.25)

Redefiniendo κ2

2 Rgrav
k → R̂grav

k y
√

2Rgh
k → R̂gh

k obtenemos
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∂tΓk[h̄, ξ, ξ̄; ḡ] =
1
2

∫
ddx
√

ḡ
(

Γ(2)
k + R̂grav

k

)−1

h̄h̄

(
∂tR̂

grav
k

−
∫

ddx
√

ḡ
(

Γ(2)
k + R̂k

)−1

ξ̄ξ
∂tR̂

gh
k (A.26)

Que finalmente lo podmeos escribir como

∂tΓk[h̄, ξ, ξ̄; ḡ] =
1
2

Tr

[(
Γ(2)

k + R̂k

)−1

h̄h̄

(
∂tRk

)
h̄h̄

]

−1
2

Tr

[{(
Γ(2)

k + R̂k

)−1

ξ̄ξ
−
(

Γ(2)
k + R̂k

)−1

ξξ̄

}(
∂tRk

)
ξ̄ξ

]
(A.27)

La traza en el espacio de volumen incluye una integración
∫

ddx
√

ḡ(x) que im-
plica el elemento de volumen del background. El R en el denominador y el ∂R en
el numerador aseguran que las contribuciones dominates vienen en una banda del-
gada alrededor del momento generalizado k. Los momentos grandes se suprimen
exponencialmente. Además de las FRGE se debe cumplir

Γk→∞[h̄, ξ̄, ξ; ḡ] = S[ḡ + h̄] + Sg f [h̄; ḡ] + Sgh[ξ̄, ξ; ḡ] (A.28)

Intuitivamente, se puede ver este límite como una supresion de las fluctuaciones
cuánticas por un termino de masa infinita en la integral de camino. En este límite
coincide Γ con S microscopico porque no hay que integrar fluctuaciones. El back-
groud gauge invariance (Γk[Φ + LvΦ] = Γk[Φ]) implica que si el funcional inicial no
contiene términos no invariantes el flujo no los generará
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Appendix B

Contribución de los
Fadeev-Poppov ghost

Para los ghost tenemos

Sgh[h, C, C̄; ḡ] = −
√

2
∫

ddx
√

ḡC̄µ M[g, ḡ]µνCν (B.1)

Con el operador de Faddeev Popov

M[g, ḡ]µν = D̄ρgµ
νDρ + D̄ρgρνDµ − 2vD̄µ ḡρσgρνDσ (B.2)

Que en el límite ḡ = g, lo podemos escribir como

M[g, g]µν = Dρgµ
νDρ + DρgρνDµ − DµgρσgρνDσ

= gρλgµβDλgβνDρ + gραgµβDαgρνDβ − gλµDλgρσgρνDσ

= δ
µ
ν D2 + gµβδα

ν DαDβ − gλµδσ
ν DλDσ

= δ
µ
ν D2 + gµβδα

ν

[
Dα, Dβ

]
(B.3)

Reinsertando el término ξν para realizar el cálculo de forma más explicita, pode-
mos ver que el término con el conmutador resulta

gµβδα
ν

[
Dα, Dβ

]
ξν = gµβδα

ν

[
Dα, Dβ

]
ξν

= gµβδα
ν Rν

σαβξσ

= gµβRν
σνβξσ

= gµβRνβξν

= gµβ 1
d

gνβRξν

=
1
d

δ
µ
ν Rξν (B.4)

con lo que obtenemos

M[g, g]µν = δ
µ
ν

[
D2 +

1
d

R
]

(B.5)

y con esto

Γ(2)
ξ̄ξ

=
[
− D2 + CV R

]
(B.6)
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con CV = − 1
d
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Appendix C

Casos Especiales

C.1 Caso especial: optimized cutoff, d=4

En el caso d = 4 las ecuaciones resultan

∂tgk = (2 + ηN(k))gk

∂tλk = (ηN(k)− 2)λk

+2πgk(4π)−2

[
20
{

2Q1
2 − ηN(k)Q̃1

2

}
− 32Q1

2(0) +
m2

k2 21
{

2Q2
2 − ηN(k)Q̃2

2

}]

ηN(k) = gk8π(4π)−2
10
3 Q1

1 − 12Q2
2 − 8

3 Q1
1(0)−Q2

2(0)− 2 m2

k2 Q2
1

1 + gk8π(4π)−2
{

5
3 Q̃1

1 − 6Q̃2
2 − m2

k2 Q̃2
1

}
Consideramos el "optimized cutoff" R(z) = (1 − z)θ(1 − z) y así tenemos los

valores

Q̃m
n =

1
Γ(n + 1)

1
(1− 2λk)

Qm
n =

1
Γ(n + 2)

1
(1− 2λk)

(C.1)

Y con estos, las ecuaciones de flujo reslultan

ηN(k) =
gk

2

[
2 + 9(1− 2λk) + 6M2

gk(4 + 3M2)− 6π(1− 2λk)

]

∂tλk = (ηN(k)− 2)λk −
2

3π
gk +

gk

8π

(
10
3 + 7

2 M2
)(

2− 3ηN(k)
)

1− 2λk

∂tgk = (2 + ηN(k))gk (C.2)

En este caso los diagramas de flujo que obtuvimos no son confiables, por lo que
realizamos mayor análisis sobre este caso.

C.2 Expansion en torno a R

Como vimos en el capítulo (4), para obtener las funciones beta realizamos una ex-
pansión en torno a ∼ (R + m). En este caso realizamos una expansión sólo en torno
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a la curvatura R, de manera que el término de masa queda en el denominador.

Partimos desde

1
2

Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
=

1
2

Tr

[[
(2− ηN(k))k2R(

−D2

k2 ) +
D2

2
R′(
−D2

k2 )
]

∗
[
− D2 − 2λk + k2R(

−D2

k2 ) + (CT R̄− m2

2
)
]−1
]

+
1
2

Tr

[[
(2− ηN(k))k2R(

−D2

k2 ) + D2R′(
−D2

k2 )
]

∗
[
− D2 − 2λk + k2R(

−D2

k2 ) + (CSR̄ + Cmm2)
]−1
]

(C.3)

Lo que hicimos fue evaluar 1
2 Tr de esos dos objetos. Cada una de estas expre-

siones es del tipo N(A + CiR + Cmm2)−1 y se expande en torno a (CiR + Cmm2)
segun N(A + (CiR + Cmm2))−1 = NA−1(1 + A−1(CiR + Cmm2))−1 = NA−1 −
NA−2(CiR + Cmm2) con i=V,S,T.

Llamando

N =
[
(2− ηN(k))k2R(

−D2

k2 ) + D2R′(
−D2

k2 )
]

A = −D2 − 2λk + k2R(
−D2

k2 ) (C.4)

Ahora vamos a hacer las expansiones en torno a R, por lo que hay que hacer es
que cada una de estas expresiones es del tipo N(A + CiR)−1 y se expande en torno
a CiR segun N(A + CiR)−1 = NA−1(1 + A−1(CiR)−1 = NA−1 − NA−2CiR) con
i=V,S,T.

Entonces en este caso llamamos

N =
[
(2− ηN(k))k2R(

−D2

k2 ) + D2R′(
−D2

k2 )
]

A = −D2 − 2λk + k2R(
−D2

k2 ) + Cmm2 (C.5)

y usamos el sufijo AS,T y luego lo asociamos con el Cm que corresponde. Para T
es −m2

2 y para S es el Cm obtenido en el capítulo 4.

Entonces tenemos

1
2

Tr
{
[Γ(2)

k + Rk]
−1∂kRk

}
=

1
2

Tr

[
N
[

AT + (CT R̄)
]−1
]

+
1
2

Tr

[
N
[

AS + (CSR̄)
]−1
]
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=
1
2

Tr

[
NA−1

T

[
1 + A−1

T (CT R̄)
]−1
]

+
1
2

Tr

[
NA−1

S

[
1 + A−1

S (CSR̄)
]−1
]

=
1
2

Tr

[
NA−1

T − NA−2
T (CT R̄)

]

+
1
2

Tr

[
NA−1

S − NA−2
S (CSR̄)

]

=
1
2

[
TrT[NA−1

T ]− TrT[NA−2
T ](CT R̄)

+TrS[NA−1
S ]− TrS[NA−2

S ](CSR̄)

]
(C.6)

Ahora hay que aplicar la fórmula

Tr[W(−D2)] = (4π)−
d
2 tr(I)

[
Q d

2
[W]

∫
ddx
√

g +
1
6

Q d
2−1[W]

∫
ddx
√

gR
]

(C.7)

y obtenemos

1
2

Tr
{

%
}

=

1
2

[
TrT[NA−1

T ]

−TrT[NA−2
T ](CT R̄)

+TrS[NA−1
S ]

−TrS[NA−2
S ](CSR̄)

]
1
2

Tr
{

%
}

=

1
2
(4π)−

d
2

[
tr(T)

[
Q d

2
[NA−1

T ]
∫

ddx
√

g +
1
6

Q d
2−1[NA−1

T ]
∫

ddx
√

gR

−(tr(IT)
[

Q d
2
[NA−2

T ]
∫

ddx
√

g(CT R̄)

+tr(IS)
[

Q d
2
[NA−1

S ]
∫

ddx
√

g +
1
6

Q d
2−1[NA−1

S ]
∫

ddx
√

gR

−(tr(IS)
[

Q d
2
[NA−1

S ]
∫

ddx
√

g(CSR̄) (C.8)

Comparamos los coeficientes de
∫ √

g y
∫ √

gR a ambos lados en la ec. de flujo
y obtenemos
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2(∂tZNkλ̄k) =
1

2κ2 (4π)−
d
2

[
tr(T)Q d

2
[NA−1

T ]

+tr(IS)Q d
2
[NA−1

S ]− 2trV(I)Q d
2
[N0A−1

0 ]

]

(−)∂tZNk =
1

2κ2 (4π)−
d
2

[
tr(T)

1
6

Q d
2−1[NA−1

T ]− (tr(IT)CT

[
Q d

2
[NA−2

T ]

+ +
1
6

Q d
2−1[NA−1

S ]− (tr(IS)CSQ d
2
[NA−2

S ]

− trV(I)
3

(
Q d

2−1[N0A−1
0 ]− 6CVQ d

2
[N0A−2

0 ]
)]

(C.9)

Para escribir las funciones beta y las ec. de flujo en función de estas variables,
podemos escribir los Qn[NA−m] como

Qn[NA−1] = k2n
{

2Φ1
n − ηN(k)Φ̃1

n

}
Qn[NA−2] = k2n−2

{
2Φ2

n − ηN(k)Φ̃2
n

}
(C.10)

con las "threshold functions"

Φ̃m
n (λ̄k/k2) =

1
Γ(n)

∫ ∞

0
dzzn−1 R(z)

[z− 2 λ̄k
k2 + α m2

k2 + R(z)]m

Φm
n (λ̄k/k2) =

1
Γ(n)

∫ ∞

0
dzzn−1 R(z)− zR′(z)

[z− 2 λ̄k
k2 + α m2

k2 + R(z)]m
(C.11)

y el α m2

k2 depende del que vaya en el A asi que va a ser Φ(Ai).

2(∂tZNkλ̄k) =
1

2κ2 (4π)−
d
2

[
tr(T)kd

{
2Φ1

d
2
(AT)− ηN(k)Φ̃1

d
2
(AT)

}
+tr(IS)kd

{
2Φ1

d
2
(AS)− ηN(k)Φ̃1

d
2
(AS)

}
−2trV(I)kd

{
2Φ1

d
2
(A0)

}]

(−)∂tZNk =
1

2κ2 (4π)−
d
2

[
1
6

tr(T)kd−2
{

2Φ1
d
2−1(AT)− ηN(k)Φ̃1

d
2−1(AT)

}
−(tr(IT)CTkd−2

{
2Φ2

d
2
(AT)− ηN(k)Φ̃2

d
2
(AT)

}
+

1
6

tr(SI)kd−2
{

2Φ1
d
2−1(AS)− ηN(k)Φ̃1

d
2−1(AS)

}
−(tr(IS)CSkd−2

{
2Φ2

d
2
(AS)− ηN(k)Φ̃2

d
2
(AS)

}
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− trV(I)
3

kd−2
{

2Φ1
d
2−1(A0)

}
+2CVkd−2

{
2Φ2

d
2
(A0)

}]
(C.12)

Con los valores para trS, trT y trV queda

∂tZNkλ̄k =
1

8κ2 (4π)−
d
2 kd

[
(d− 1)(d + 2)

2

{
2Φ1

d
2
(AT)− ηN(k)Φ̃1

d
2
(AT)

}
+
{

2Φ1
d
2
(AS)− ηN(k)Φ̃1

d
2
(AS)

}
− 4dΦ1

d
2
(A0)

]

∂tZNk = − 1
4κ2 (4π)−

d
2 kd−2

[
1
6
(d− 1)(d + 2)

2

{
2Φ1

d
2−1(AT)− ηN(k)Φ̃1

d
2−1(AT)

}
− (d− 1)(d + 2)

2
CT

{
2Φ2

d
2
(AT)− ηN(k)Φ̃2

d
2
(AT)

}
+

1
6

{
2Φ1

d
2−1(AS)− ηN(k)Φ̃1

d
2−1(AS)

}
−CS

{
2Φ2

d
2
(AS)− ηN(k)Φ̃2

d
2
(AS)

}
−2d

3
Φ1

d
2−1(A0)− 4Φ2

d
2
(A0)

]
(C.13)

Estas son las ecuaciones para las "dimensionfull" couplings ZNk y λ̄k y nos in-
teresan las ecuaciones para las "dimensionless" couplings:

El cálculo es similar al que ya vimos en el capítulo (4). En d=4 tenemos las ec. de
evolución para el sharp cutoff

ηN(k) =
3gk

5gk + 6π

[
3
(

π2

6
− log

(
−2λk −

M
2

+ 1
))
− 12(
−2λk − M

2 + 1
)

+
1
3

(
π2

6
− log

(
−2λk −

3M
2

+ 1
))
− 4π2

9
− 4

]
∂tλk = (η − 2)l

+
g

4π

[
− η

2
+ 36ζ(3)− 18 log

(
−2l − M

2
+ 1
)
− 9η

2

+4ζ(3)− 2 log
(
−2l − 3M

2
+ 1
)
− 32ζ(3)

]
(C.14)

En este caso tampoco podemos confiar en los resultados, como se ve en la figura
C.1. Esto debido a que el término de masa queda dentro del argumento del logar-
itmo por lo que se está restringido según la condición −2l − 3M

2 + 1 > 0
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FIGURE C.1: Diagramas de flujo al expandir en torno a R en el de-
nominador para m2

k = 0, 0.1 and 0.5 ( λk (gk) en el eje x (y)
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