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After a s h o r t  r e v i e w  o f  t h e  "FPS ( F l a t o ,  P inczon,  Simon) 
approach"  t o  t h e  s tudy  o£ n o n l i n e a r  group r e p r e s e n t a t i o n s  and o f  
t h e i r  e a r l i e r  a p p l i c a t i o n s  t o  non l imear  e v o l u t i o n  equat ions~ we 
pass t o  t h e  most r e c e n t  a p p l i c a t i o n s  t o  e q u a t i o n s  in 1+1 and 3+1 
space - t ime  d imens ions ,  In p a r t i c u l a r  t h e  p roo f  o f  e x i s t e n c e  o f  
g loba l  SOlUtiOnS t o  t he  coup led Maxwe l I -D i r ac  equa t i ons  Ts 
b r i e f l y  o u t l i n e d ,  

I - THE FPS APPROACH. 

i_~. Historical Background. 

The problem of llnearizatlon of group actions or vector-flelds 

goes back almost a hundred years ago, to the works of Sophus Lie 

(local actions on A n) and Henri Polncar~ (the famous non-resonance 

condition for the elgenvalues of the linear part to llnearlze one 

analytic vector field in a finite-dimensional space around a point 

where it vanishes). Other authors studied the llnearlzabillty of 

local group actions around a fixed point in finite-dimensional 

spaces in the past 40 years during which time the theory of linear 

Lie group representations, and even that of analytic functions, in 

infinite-dlmensional spaces made considerable progress. But it was 

only ten years ago that M. Flato, G. Pinczon and J. Simon i combined 

in some sense both theories, developing what is now called the "FPS 

approach" to nonlinear representations and evolution equations. 

2_~_The framework. 

Let E be a Banach or Fr~chet space (Fr~chet space are needed since 

the space of differentlable vectors of a continuous linear Lie group 

representation on a Banach space has a natural Fr~chet topology). We 
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shall denote by Zn(E) the space of continuous symmetric multillnear 

maps from E n to E, which have a natural extension to continuous linear 

maps from ~nE (the nth-order symmetric tensor power of E, endowed and 

completed wlth'the projective topology 4) to E. To any fn ¢ Zn(E ) is 

associated the monomial ~n defined by ~n(~) = fn(~ ..... ~) ~ E for ~ e E. 

The space F(E) of formal series on E is then defined as the space of 

® ~n fn f = En= I , with E ~n(E), and endowed with a product by the 

composltlon of maps (having the orlgln as flxed point) from E to E. Now 
n 

let E = ~ E n , E n = • ~P E be the (vacuum-less) "Fock space" bullt on E. 

Then we can define t~1one-to-one map A from F(E) to ~(E) by (® denoting 

the symmetrlzed tensor product) : 

A(f) n = El(p~n Ell+...+ip=n (fil®...®flp) 

whlch maps the composltlon f o h of two power series f and h into the 

product of the linear operators A(f) and A(h) in Z(E). Its differential 

dA maps the bracket [f,h] : f×h - hxf of f,h e F(E), where 

(fxh)n = El(p(n fp o (Eo(q(p_ i Iq ® hn-P +I ® Ip_q_ 1) 

onto the commutator of dA(f) and dA(h), and is thus a Lle algebra 

morphlsm for the bracket so defined on F(E). 

We can therefore deflne I a formal (resp. analytic) nonllnear 

representation of a Lie group G as a mapping G 9 g ~ Sg ~ F(E) such 

that, for all ~ E E, g ~ S~(~) is measurable from G to E (resp. also 

analytic near 0 in E for g in a nelghbourhood of the identity in G), 

with the abovementloned product law on the invertlble elements of 

F(E). Similarly one defines a formal nonlinear representatlon of a Lie 

algebra ~ as a Lie algebra homomorphlsm from ~ into F(E) endowed with 

the abovedefined bracket. When E is a Banach space, an analytic 

functlon 2 on E belongs to a Banach space 

Hr(E) = [f¢ F(E) ; llfll r = Er= I r n llfnll < ®} 

for some r > 0 ; for a Fr~chet space one has similar notions involving 

sets of semlnorms. 

As for linear representations, we shall say I that two formal 

(resp. analytic) nonlinear group representations (S,E) and (S',E' = E) 

are equivalent if there is an invertlble formal (resp. analytic) 

series A ¢ F(E) which intertwines S and S', i.e. S'E = A Sg A -I . In 

particular S will be said llnearlzable if there is an equivalent S' 

which is linear. 
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3. Relations with i-cohomology and first applications. 

Let G be a Lie group, (S,E) a nonlinear representation. Then, for 

g , g '  e G : 

S2(gg ' )  = S l ( g )  o S2(g ' )  + S2(g)  o ( S l ( g  ' )  ® S l ( g ' ) )  

which shows that when G acts on ~2(E) by 

~2(E) • A ~ St (g )  o A o (S1(g -1)  ® S t ( g - i ) ) ,  

then R2(g) = S2(g)o(® 2 S t ( g - i ) )  i s  a one-cocyc le o f  G va lued in  ¢2(E) ,  

and t h e r e f o r e  A(S 2) i s  ob ta ined  as an ex tens ion  3 of  S i by Si@S i .  

Similarly, one sees that A(S) is obtained by successive extensions of 

S I by the ($I) ®n , with cocycles Rn(g) = sn(g) o (®n St(g-l)). Now let 

us suppose that R 2 is a 2-coboundary, i.e. that there exists B 2 ~ ~2(E) 

such that S2(g) = St(g) o B 2 - B 2 o (®2 St(g)). Then 

S2(g) = (I-B2) -I S(g)(I-B 2) = St(g) + En) 3 S~(g). 

Similarly one shows that if all cocyles R2,...,R m are coboundarles 
m 

then Pm = ~ (I-Bk), where the B k are built successively as B 2, 
k=2 

intertwines S with a representation S m that has no nonlinear terms of 

order 4m. Therefore ~, If iS,E) is a formal nonlinear representatlon of 

a Lie group G in the Fr~chet space of dlfferentlable vectors for the 

linear part S I, and if the (dlfferentiable) l-cohomology spaces 

H~(G,En(E)) = 0 for all n)2, S is llnearlzable by A = llm Pm • 

One of the main features of the FPS approach is therefore first to 

build such an A, and then to show that it is analytic (and not only a 

formal serles). 

A related result is the "smoothening" of analytlc 

representatlons I : an analytic representation S in a Banach space E is 

said smooth if the function g ~ R(g) = Si(g -I) o S(g) is C ¢ from some 

nelghbouchood of the identlty in G into some space Hr(E) (for some 

r>0), i.e. if all the "obstructions to dlfferentlabillty" lie in the 

llnear part. One can show that If (S,E) Is analytic there always 

exists an equivalent representation which is smooth (and linear on any 

compact subgroup of G). The baslc reason is that one can always 

~ubstract coboundaries in the successive extensions process so as to get 

dlfferentlable l-cocycles. A smooth nonlinear group representation 

can always I be differentiated to a nonlinear Lie algebra representation 

on the space of dlfferentiable vectors for the linear part ; conversely I 

a formal representation T of a Lie algebra ~, the linear part T i of which 
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is the differential of a linear Lie group representation and such that 

all Tn(x), x e ~ , are continuous n-llnear maps, Is the differential 

of a unique formal group representation. 

A consequence of this seemingly inocuous result is a trivial 

proof I of a theorem (due 20 years ago to Gulllemin and Sternberg and 

suggested 40 years ago by Palais) that any analytic action, wlth fixed 

point, of a seml-simple Lie group in a finite- dimensional space Is 

linearizable (one just uses Weyl's "unitary trick") ; formal 

linearlzability is even more evident (Whltehead's lem~a). 

Conversely, non-trivial 1-cocycles can give rise to non- 

linearizable representations -though the nonlinearity of these 

representations, as the trlvlality of the cocycles, is sensitive to 

the choice of space. Examples of such phenomena can be found in Ref.5, 

with actions of G = R, SL(2, R) or SL(2,¢), built using non-trivlal l- 

cocycles of G valued in the linear representation space E. Other cute 

examples include 6 truly nonlinear representations of inhomogeneous 

classical groups (such as Poincar~) in the (flnite-dimensional) 

translation subgroup space (where two types of nonlinear 

representations are found, coupled by a non-dlmenslonal coupling 

constant taking discrete values). 

4: ~An ordinary differentia! evolution equation. 

To end thls part, and as a transition to the next one, let us 

mention a simple result I and its consequences. If (S,E) is a nonlinear 

analytic representation of a nllpotent Lle group GIn a Hllbert space 

H, the linear part S I of which is unltary and nontrlvlal, then S is 

analytically llnearlzable. Now taking H = ¢ and G = ~ represented 

linearly by t ~ e It , we see that all evolution equations of the type 

~--- = ix + F(x), where F is an analytic series wlth no constant or 
dt 
linear term, expressing the generator of a nonlinear representation of 

G in H, are linearizable. Therefore if Ix(0)l is small enough, thls 

property being preserved by the unitary linear part, all those 

equations will have global solutions in time (no singularity appears 

as t ~ m ). Thls would of course be true only for t~0 or t40 If the 

factor i was replaced by a real number. 
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II - APPLICATIONS TOGROUPS AND EVOLUTIONEOUATIONS IN 3+I AND I+I 

SPACE-TIME DIMENSIONS. 

S. Poincar~ group and Euclidean groups. 

We shall here only mention some results, the proofs of which are 

often qllite involved and require fine estimates. 

at Let G be the Euclidean group of 2-space E(2) = S0(2). ~2 or the 

same with dilatations (S0(2) x R+). ~2 Then 7 an analytic nonlinear 

representation (S,E) of G such that $I is unitary with no l- 

dimensional subrepresentation is (analytically) linearizable if and 

only if the cocycle R z defined by Sz is trivial (in other words, 

obstructions to linearizability lie in the quadratic term). 

b) In 3-space, a nonlinear representation (S,E) of S0(3). ~3 with 

linear part S i coming from a finite direct sum of unitary 

irreducible representations (UIR) of the (3+I) Poincar~ group with 

mass m2~O and energy Po ~ 0 is linearizable. 

c) If G is the Poincar~ group SL(Z,~). ~4 and (S,E) a nonlinear 

representation of G on the space E of dlfferentiable vectors for S i, 

then @,s,9,1o: 

i) If S I is a finite sum of UIR wlth mz>O, it is formally 

linearizable, and analytically linearizable if all energy signs are 

the same and ml+m 2 > m 3 for any combination of masses of the UIR. 

il) If S 1 is a finite sum of massless UIR with arbitrary energy 

sign, then Po (and the Euclidean group) are linearlzable. 

d) For the Poincar~ group in 1+I dimensions S0(I,I). R 2 there exist I° 

truly nonlinear (on the translations) representations (with linear 

part massless). The same holds II in 3+i dimensions, wlth linear part 

aassless wlth hellcities ±I or ±~2, but there the nonlinearity occurs 

on the Lorentz boosts. 

6~_Nonlinear evolution equation s. 

An evolution equation (d/dt)~t = Po(~t ) is said covariant under a 

Lie algebra ~ if there exists a representation (T,H~) of ~ on the 

apace H~ of differentiable vectors for a linear representation U of 

the corresponding Lie group G in a Banach space H, such that T 1 = dU, 

Tn(x) e ~n(H) for all n~2 and x~ , En~ 2 Tn(x) being analytic near the 

Origin in H for all xE~ , and such that PO = T(xo) for some x o E ~ . 

In particular, one sees that if the cohomology spaces 



70 

H~(G,Zn(H))=0 for all n)2, and (S,H) denotes the corresponding 

representation of G, then the solution ~t = S(exptxo)~ of the evolution 

equation with initial value ~ ~ H® can be formally expressed by 

~t = A-I U(exptxo) A 

where A E F(E) is the formal linearization operator built in section 3. 

One of the main ideas in the applications of the FPS approach to 

nonlinear equations is thus to build such an A and show that it 

converges in a suitably chosen space of initial data, for small enough 

initial data, which ensures global existence (in time) of solutions when 

U is isometric, and then (this works especially well in i+l 

dimensions) to extend analytically to more general initial conditions. 

7__~. A short survey of the i+l dimenslonal case. 

(For more complete reviews and references, see Refs 12 and 13). As 

for other methods, the FPS approach gives excellent results for all 

known completely integrable systems. In fact it has been shown (see 

Ref.12c) that the inverse scattering transform method, the Hirota 

formalism and the Kac-Noody constructions of Date et al. all give the 

same inverse linearlzation map A -i as the one built following the FPS 

approach, indicated in the previous section. In the I+I dimensional 

case the group has two generators, the (nonlinear) evolution operator 

given by the equation and the (linear) generator of space- 

translations. Published explicit examples of equations treated in this 

manner include (Ref.13) the Korteweg-De Vrles equation, the Burgers 

equation [for which a Hamiltonlan formalism and an infinite sequence 

of (nonlocal) constants of motion have been found], and the 

integro-dlfferentlal BenJamln-Ono equation (both in the nonsollton and 

in the soliton sectors). 

Theses cases exampllfy the general result that equations which are 

linearizable by the FPS approach have Lax pairs. The converse is not 

true since the Kowalewskl top, which has no linear part, does have LaX 

pairs la. However such examples can in some sense be viewed as limiting 

cases (when the linear part vanishes) of nonlinear equations to which 

the FPS appproach is applicable, and this fact suggests a further 

extension of that approach to cases that can be solved by introducing ~ 

linear part (given a priori) and by llnearlzlng against that linear part 

(obviously the llnearlzlng operator becomes singular when the linear P~f~ 
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is made to vanish, but some properties such as the existence of Lax pairs 

may remain). 

To be a little more explicit, let us look at Burgers equation 

u t = (Ux+U2) x = ~2u + 2u~u = Tl(U) 

with To(u) = ~u =(~u/~x) and inverse ~-i(u)(x) = ~x u(~)d~. Then it is 

seen that the linearization map A can be written A(u) = ~exp(~-lu) and 

maps the Schwartz space 4(~) into an open subset of 4(~). An infinite 

set of constants of motion (local in 5-iu) can be obtained in 

transforming by A those of the heat equation. The most instructive example 

is however probably the Benjamin-Ono equation, for which an explicit 

linearization map on large initial data (including solitons) is 

constructed using the cohomological algorithm of the FPS approach. This 

shows that for more complicated examples the algorithm can be worked out 

on a computer (using e.g. Reduce or Macsyma), and that approach has 

indeed been tested for the so-called chlral model (gpU ~pa-1 ~u a = 0 ; 

p,u = 0,i, gpU hyperbolic metric and a e GL(n,~)). 

8_~ Relatlvistlc evolution equatlons in 3+i dimensional space-tlme. 

As a consequence of the results mentioned in section 5c, we see s 

that classical field equations such as (0 + m2)~ = F(~), with F 

analytic without constant or linear terms, are analytically 

llnearizable on a neighbourhood of zero in the subspace of smooth 

Positive (or negative) energy initial conditions. Similarly, the 

results in the massless case show s that Yang-Mllls equations 

8u F pu + [Au,F pu] = 0 supplemented by a relativistic gauge condition 

SUch as ~p AP = 0 (or 0 ~p AP = O, which is conformally covariant), or 

~insteln equations (without matter), etc.. are linearizable. 

Recently results have been obtained, in the massive case, with 

arbitrary energy signs for the initial data. The method used is to 

Prove the existence of a wave operator W (taking the free solutions at 

t = +~ to the initial data at t=O) on a domain of small entire test 

functions of exponential type by solving a Yang-Feldman equation for W 

hy iteration as an element of F(H) defined in a Banach subspace D of H 

of functions with Fourier transforms compactly supported (and 14 times 

£ontinuously dlfferentlable) with values in the Sobolev space H of 

f~nctions from ~3 to a complex vector space which are square integrable 

together with their derivatives up to third order ; and then by showing 
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that W is analytic in a neighbourhood of 0 in D, using a stationary phase 

technique. This method has been applied 15 to nonlinear Klein-Gordon 

and nonlinear Schr6dinger systems of equations (Fj(O) = F'j(O) = O) 

(0 + m2j)~j = Fj(~,V~,V2~), m2j > 0 

(3t ± IA)~j = Fj(~,V~) 

In particular, a quadratic nonlinearity is permitted here. For the 

case of the classical Maxwell-Dirac equations 16 

(i 7~ ~p + m)~ = Ap 7P ~ , m > 0 

a variation of this method had to be used. The essential difference 

with the case of the nonlinear "massive" Klein-Gordon equations is due 

to the presence of the long-range electromagnetic interaction in the 

Maxwell-Dirac equations, which causes the non-exlstence of the usual 

wave operator. However the solution of the Hamilton-Jacobl equation 

for a classical electron in an exterior potential Ap permits to 

construct an approximate solution to these equations, absorbing the most 

slowly decaying (in space-tlme) parts of Ap and ~. The remaining part of 

the solution is then easy to handle and the global existence (for t ~ 0) 

of solutions can be proved. The modified wave operator so constructed 

intertwines the nonlinear and the linear evolutions. Here Ap • C®( R 3) 

and ~ belongs to a Sobolev space ~,2(R3,~) of functions which are 

square-lntegrable together wlth any (finite) number of their derivatives ; 

the final states are small enough in spaces of entire analytic functions 

of exponential type. It is the first time that such a result, of great 

physical importance, could be obtained. 
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