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ABSTRACT

After a short review of the "FPS (Flato, Pinczon, Simon)
approach’ to the study of nmonlinear group representations and of
their earlier applications to nonlinear evolution equations, we
pass to the most recent applications to equations in 1+1 and 3+1
space-time dimensions, In particular the proof of existence of
global solutions to the coupled Maxwel I-Dirac equations is
briefly outlined,.

I - THE FPS APPROACH.

1. Historical Background.

The problem of linearization of group actions or vector—fields
goes back almost a hundred years ago, to the works of Sophus Lie
(local actions on RM™ and Henri Poincaré (the famous non-resonance
condition for the eigenvalues of the linear part to linearize one
analytic vector field in a finite-dimensional space around a point
where it vanishes). Other authors studied the linearizability of
local group actions around a fixed point in finite-dimensional
gspaces in the past 40 years during which time the theory of linear
Lie group representations, and even that of analytic functions, in
infinite-dimensional spaces made considerable progress. But it was
only ten years ago that M. Flato, G. Pinczon and J. Simon! combined
in some sense both theories, developing what is now called the "FPS
approach” to nonlinear representations and evolution equations.

2. The framework.
Let E be a Banach or Fréchet space (Fréchet space are needed since

the space of differentiable vectors of a continuous linear Lie group

representation on a Banach space has a natural Fréchet topology). We
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shall denote by £,(E) the space of continuous symmetric multilinear
maps from EP to E, which have a natural extension to continuous linear
maps from ﬁgE (the nth-order symmetric tensor power of E, endowed and
completed with'the projective topology m) to E. To any fM e £,(E) is
associated the monomial fP defined by ?“(¢) = fMe,...,0) € E for v € E.
The space F(E) of formal series on E is then defined as the space of
f = Cpoq B0, with f0 e £, (E), and endowed with a product by the
composition of maps (having the origin as fixed point) from E to E. Now
let E = y En s Efq = §1 &P E be the (vacuum-less) "Fock space” built on E.
Then we can define tge one-to-one map A from F(E) to Z(E) by (® denoting
the symmetrized tensor product)

ACEID = Tyepen Exge. . +1pmn (fHo. . .0tp)
which maps the composition f o h of two power series f and h into the
product of the linear operators A{f) and A(h) in ¢(E). Its differential
dA maps the bracket [f,h] : fxh - hxf of f,h € F(E), where

(FxhIB = Tyenen fP o (Eggqep-1 Iq @ NP @ 1, )
onto the commutator of dA(f) and dA(h), and is thus a Lie algebra
morphism for the bracket so defined on F(E).

We can therefore define! a formal (resp. analytic) nonlinear

representation of a Lie group G as a mapping G s g » Sg € F(E) such
that, for all ¢ ¢ E, g = Sg(¢) is measurable from G to E (resp. also
analytic near 0 in E for g in a neighbourhood of the identity in &),
with the abovementioned product law on the invertible elements of
F(E). Similarly one defines a formal nonlinear representation of a Lie
algebra g as a Lie algebra homomorphism from g into F(E) endowed with
the abovedefined bracket. When E is a Banach space, an analytic
functionZ on E belongs to a Banach space

He(E) = {f € F(E) ; Iflly = Tpeq rD IfN) < o}

for some r > O ; for a Fréchet space one has similar notiong involving
gets of seminorms.

As for linear representations, we shall say! that two formal
(resp. analytic) nonlinear group representations (S,E) and (S',E' = E)
are equivalent if there is an invertible formal (resp. analytic)
gseries A € F(E) which intertwines S and S', i.e. S'g = A Sg Al | In
particular S will be said linearizable if there is an equivalent S'
which is linear.




67

3. Relations with 1-cohomology and first applications.

Let G be a Lie group, (S,E) a nonlinear representation. Then, for
g,8' € G :

S2(gg') = Si(g) o S2(g') + S2(g) o (Si(g') ® Si(g"))
which shows that when G acts on Z7(E) by

£2(E) 3 A » Si(g) o A o (St(g”Dh ® si(g™1n,
then R2(g) = S2(glo(®2 St(g™1)) is a one-cocycle of G valued in ZZ(E),
and therefore A{52) is obtained as an extension3 of S! by S1@Si.
Similarly, one sees that A(S) is obtained by successive extensions of
St by the (SH® | yith cocycles RMg) = SM(g) o (®" Si(g™1)). Now let
us suppose that RZ2 is a 2-coboundary, i.e. that there exists BZ e £o(E)
such that S2(g) = Si(g) o B2 - B2 o (®2 Si(g)). Then

Sptg) = (I-B2)71 S(g)(I-By) = Si(g) + Ln;3 Sh(g).

Similarly one shows that if all cocyles RZ,...,RP are coboundaries
then Py = % (I~Bk), where the BK are built successively as B2,
intertwines=s with a representation S, that has no nonlinear terms of
order ¢m. Therefore4, if (S,E) is a formal nonlinear representation of
a Lie group G in the Fréchet space of differentiable vectors for the
linear part Si, and if the (differentiable) 1-cohomology spaces
H1(G,2n(E)) = 0 for all n32, S is linearizable by A = lim Py .

One of the main features of the FPS approach is therefore first to
build such an A, and then to show that it is analytic (and not only a
formal series).

A related result is the "smoothening" of analytic
representations! : an analytic representation S in a Banach space E is
said smooth if the function g - R(g) = st(g™1) o Stg) is C® from some
neighbourhood of the identity in G into some space H.(E) (for some
r>0), i.e. if all the "obstructions to differentiability” lie in the
linear part. One can show that if (S,E) is analytic there always
exists an equivalent representation which is smooth (and linear on any
Compact subgroup of G). The basic reason is that one can always
Substract coboundaries in the successive extensions process so as to get
differentiable i-cocycles. A smooth nonlinear group representation
Can alyays! be differentiated to a nonlinear Lie algebra representation
On the space of differentiable vectors for the linear part ; conversely!

& formal representation T of a Lie algebra g, the linear part Tt of which
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is the differential of a linear Lie group representation and such that
all T™?x), x € ¢ , are continuous n-linear maps, is the differential
of a unique formal group representation.

A consequence of this seemingly inocuous result is a trivial
proof! of a theorem (due 20 years ago to Guillemin and Sternberg and
suggested 40 years ago by Palais) that any analytic action, with fixed
point, of a semi-simple Lie group in a finite- dimensional space is
linearizable (one just uses Weyl's "unitary trick") ; formal
linearizability is even more evident (Whitehead's lemma).

Conversely, non-trivial {-cocycles can give rise to non-
linearizable representations -though the nonlinearity of these
representations, as the triviality of the cocycles, is sensitive to
the choice of space. Examples of such phenomena can be found in Ref.5,
with actions of G = R, SL(2, R) or SL(2,€), built using non—trivial 1-
cocycles of G valued in the linear representation space E. Other cute
examples include® truly nonlinear representations of inhomogeneous
classical groups (such as Poincaré) in the (finite-dimensional)
translation subgroup space (where two types of nonlinear
representations are found, coupled by a non-dimensional coupling
constant taking discrete values).

4. An ordinary differential evolution equation.

To end this part, and as a transition to the next one, let us
mention a simple result! and its consequences. If (S,E) is a nonlinear
analytic representation of a nilpotent Lie group G in a Hilbert space
H, the linear part S! of which is unitary and nontrivial, then S is
analytically linearizable. Now taking H = € and G = R represented
linearly by t » elt | ve see that all evolution equations of the type
%% = ix + F(x), where F is an analytic series with no constant or
linear term, expressing the generator of a nonlinear representation of
G in H, are linearizable. Therefore if Ix(0)| is small enough, this
property being preserved by the unitary linear part, all those
equations will have global solutions in time (no singularity appears
as t » o ), This would of course be true only for t30 or t{0 if the

factor i was replaced by a real number,
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II - APPLICATIONS TO GROUPS AND EVOLUTION EQUATIONS IN 3+1 AND 1+1
SPACE-TIME DIMENSIONS.

S, Poincaré group and Euclidean groups.

We shall here only mention some results, the proofs of which are
often guite involved and require fine estimates.
a) Let G be the Euclidean group of 2-space E(2) = S0(2). R2 or the
game with dilatations (S0(2) x R,). R2 . Then7 an analytic nonlinear
representation (S,E) of G such that 81 is unitary with no 1-
dimensional subrepresentation is (analytically) linearizable if and
only if the cocycle R2 defined by §2 is trivial (in other words,
obstructions to linearizability lie in the quadratic term).
b) In 3-space, a nonlinear representation (S,E) of S0(3). R3 with
linear part S coming from a finite direct sum of unitary
irreducible representations (UIR) of the (3+1) Poincaré group with
mass m230 and energy P, » 0 is linearizable.
¢) If G is the Poincaré group SL(2,0). R4 and (S,E) a nonlinear
representation of G on the space E of differentiable vectors for St,
then 4.8,9,10;

i) If St is a finite sum of UIR with m2>0, it is formally
linearizable, and analytically linearizable if all energy signs are
the same and mq+mz > m3 for any combination of masses of the UIR.

1i1) If 81 is a finite sum of massless UIR with arbitrary energy
sign, then P, (and the Euclidean group) are linearizable.

d) For the Poincaré group in 1+1 dimensions S0(1,1). RZ there exist10
truly nonlinear (on the translations) representations (with linear
part massless). The same holdsti in 3+1 dimensions, with linear part
massless with helicities #1 or %¥%,, but there the nonlinearity occurs
on the Lorentz boosts.

6. Nonlinear evolution equatioms.

An evolution equation (d/dt)gy = Py(yg) is said covariant under a
Lie algebra g if there exists a representation (T,He) of g on the
Space H, of differentiable vectors for a linear representaéion U of
the corresponding Lie group G in a Banach space H, such that Tt = dU,
TMx) € ¢,(H) for all n32 and xeg , Enyz TMN(x) being analytic near the
origin in H for all xeg , and such that Py = T(x,) for some x, € g .

In particular, one sees that if the cohomology spaces
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Hé(G,zn(H))=0 for all n32, and (S,H) denotes the corresponding
representation of G, then the solution ¢ = Slexptx,)¢ of the evolution
equation with initial value ¢ € Hy can be formally expressed by
Op = A1 Ulexptxy) A o
where A e F(E) is the formal linearization operator built in section 3.
One of the main ideas in the applications of the FPS approach to
nonlinear equations is thus to build such an A and show that it
converges in a suitably chosen space of initial data, for small enough
initial data, which ensures global existence {(in time) of solutions when
U is isometric, and then (this works especially well in 1+1
dimensions) to extend analytically to more general initial conditions.

7. A short survey of the 1+1 dimensional case.

(For more complete reviews and references, see Refs 12 and 13). As
for other methods, the FPS approach gives excellent results for all
known completely integrable systems. In fact it has been shown (see
Ref.12¢) that the inverse scattering transform method, the Hirota <
formalism and the Kac~Moody constructions of Date et al. all give the
same inverse linearization map A~! as the one built following the FPS
approach, indicated in the previous section. In the 1+1 dimensional
case the group has two generators, the (nonlinear) evolution operator
given by the equation and the (linear) generator of space-
translations. Published explicit examples of equations treated in this
manner include (Ref.13) the Korteweg-De Vries equation, the Burgers
equation [for which a Hamiltonian formalism and an infinite sequence
of (nonlocal) constants of motion have been found], and the
integro-differential Benjamin-Ono equation (both in the nonsoliton and
in the soliton sectors).

Theses cases examplify the general result that equations which are
linearizable by the FPS approach have Lax pairs. The converse is not
true since the Kowalewski top, which has no linear part, does have Lax
pairsl4, However such examples can in some sense be viewed as limiting
cases (when the linear part vanishes) of nonlinear equations to which
the FPS appproach is applicable, and this fact suggests a further
extension of that approach to cases that can be solved by introducing 2
linear part (given a priori) and by linearizing against that linear Part
(obviously the linearizing operator becomes singular when the linear Part
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iz made to vanish, but some properties such as the existence of Lax pairs
may remain’.

To be a little more explicit, let us look at Burgers equation

U = (u+tu2), = d2u + 2udu = Ty (u)
vith To(w = du =(3u/dx) and inverse 3 1w (x) = JX u(E)dE. Then it is
seen that the linearization map A can be written A(u) = Bexp(a“iu) and
maps the Schwartz space 4({ R) into an open subset of A( R). An infinite
set of constants of motion (local in 3~ lu) can be obtained in
transforming by A those of the heat equation. The most instructive example
is however probably the Benjamin-Ono equation, for which an explicit
linearization map on large initial data (including solitons) is
constructed using the cohomological algorithm of the FPS approach. This
shows that for more complicated examples the algorithm can be worked ocut
on a computer (using e.g. Reduce or Macsyma), and that approach has
indeed been tested for the so-called chiral model (gHV apa"1 3,8 =0 ;
v,v = 0,1, gHY hyperbolic metric and a € GL(n,()).

8. Relativistic evolution equations in 3+1 dimengional space-time.

As a consequence of the results mentioned in section Sc, we see®
that classical field equations such as (O+m2)p = F(¢), with F
analytic without constant or linear terms, are analytically
linearizable on a neighbourhooed of zero in the subspace of smooth
Positive (or negative) energy initial conditions. Similarly, the
results in the massless case ghow8 that Yang-Mills equations
9y FHMV + [A,,,FHV] = 0 supplemented by a relativistic gauge condition
Such as 3y A =0 (or O 3y, AH = 0, which is conformally covariant), or
Einstein equations (without matter), etc.. are linearizable.
ReCently results have been obtained, in the massive case, with
arbitrary energy signs for the initial data. The method used is to
Prove the existence of a wave operator W (taking the free solutions at
t = +o to the initial data at t=0) on a domain of small entire test
functions of exponential type by solving a Yang-Feldman equation for W
by iteration as an element of F(H) defined in a Banach subspace D of H
°f functions with Fourier transforms compactly supported (and 14 times
fontinuously differentiable) with values in the Sobolev space H of
funCtions from R3 to a complex vector space which are square integrable

together with their derivatives up to third order ; and then by showing
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that W is analytic in a neighbourhood of 0 in D, using a stationary phase
technique. This method has been applied?5 to nonlinear Klein—-Gordon
and nonlinear Schrodinger systems of equations (FJ(O) = F'j(O) = 0)

(g + m?)wj = FJ(¢,V¢,V2¢), m2j >0

(3 % iA)wj = Fj(w,Vw)
In particular, a quadratic nonlinearity is permitted here. For the
case of the classical Maxwell-Dirac equationsl6

DAy =¥vp¥ , 3, AN =0

(i yH dy + My = Ay yYHy , m>0
a variation of this method had to be used. The essential difference
with the case of the nonlinear "massive' Klein—Gordon equations is due
to the presence of the long-range electromagnetic interaction in the
Maxwell-Dirac equations, which causes the non-existence of the usual
wave operator. However the solution of the Hamilton-Jacobi equation
for a classical electron in an exterior potential Ap permits to
construct an approximate solution to these equations, absorbing the most
slowly decaying (in space-time) parts of A‘J and ¥. The remaining part of
the solution is then easy to handle and the global existence (for t 3} 0)
of solutions can be proved. The modified wave operator so constructed
intertwines the nonlinear and the linear evolutions. Here Ay € C®( R®)
and ¥ belongs to a Sobolev space W°’2(ZR3,¢4) of functions which are
square-integrable together with any (finite) number of their derivatives i
the final states are small enough in spaces of entire analytic functions
of exponential type. It is the first time that such a result, of great

physical importance, could be obtained.
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