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Physics‑constrained machine 
learning for electrodynamics 
without gauge ambiguity based 
on Fourier transformed Maxwell’s 
equations
Christopher Leon * & Alexander Scheinker 

We utilize a Fourier transformation-based representation of Maxwell’s equations to develop physics-
constrained neural networks for electrodynamics without gauge ambiguity, which we label the 
Fourier–Helmholtz–Maxwell neural operator method. In this approach, both of Gauss’s laws and 
Faraday’s law are built in as hard constraints, as well as the longitudinal component of Ampère–
Maxwell in Fourier space, assuming the continuity equation. An encoder–decoder network acts as a 
solution operator for the transverse components of the Fourier transformed vector potential, Â⊥(k, t) , 
whose two degrees of freedom are used to predict the electromagnetic fields. This method was 
tested on two electron beam simulations. Among the models investigated, it was found that a U-Net 
architecture exhibited the best performance as it trained quicker, was more accurate and generalized 
better than the other architectures examined. We demonstrate that our approach is useful for solving 
Maxwell’s equations for the electromagnetic fields generated by intense relativistic charged particle 
beams and that it generalizes well to unseen test data, while being orders of magnitude quicker 
than conventional simulations. We show that the model can be re-trained to make highly accurate 
predictions in as few as 20 epochs on a previously unseen data set.

Electrodynamics govern a wide range of physical processes involving charged particle dynamics including 
universe expansion models, galactic disk formation, accelerator-based high energy X-ray light sources, 
achromatic metasurfaces, metasurfaces for dynamic holography, on-chip diffractive neural networks, and 
radiative damping of individual accelerated electrons1–21.

Despite widely available high performance computing, numerically calculating relativistic charged particle 
dynamics is still a challenge and an open area of research for large collections of particles undergoing collective 
effects in dynamics involving plasma turbulence22, space charge (SC) forces23,24, and coherent synchrotron 
radiation (CSR)25,26. For example, the photo-injectors of modern X-ray free electron lasers such as the LCLS, 
SwissFEL, and EuXFEL and plasma wakefield accelerators such as FACET-II can produce high quality intense 
bunches with few picosecond rms lengths of up to 2 nC charge per bunch that are accelerated and squeezed down 
to lengths of tens to hundreds of femtoseconds27–32. At low energy ( ∼ 5 MeV) the 6D phase space (x, y, z, px , py , pz) 
dynamics of such bunches are strongly coupled through collective SC forces. At high energy, when particle 
trajectories are curved through magnetic chicanes the dynamics are coupled by CSR.

For example, a 2 nC bunch contains N ≈ 1.25× 1010 electrons, for which calculating individual particle 
to particle SC or CSR interactions is a computationally expensive O (N2) process. Conventional approaches 
can reduce the number of SC calculations by utilizing particle-in-cell methods, but state-of-the-art 3D CSR 
calculations still rely on point-to-point calculations33. Machine learning (ML) methods have demonstrated to 
be useful in non-invasive measurements and diagnostics of charged beams34 and in the simulations of magnetic 
fields through physics-informed neural networks35. They have also been found to speed up lattice quantum Monte 
Carlo simulations36, the design and simulation of fin field‑effect transistors37, the simulation of spin dynamical 
systems38 and finding the optimal ramp up for the production of Bose–Einstein condensates39.

Recently a new method was developed for enforcing hard physics constraints in ML, respecting physics and 
improving generalization40. In that work, 3D convolutional neural operators were used to generate the vector and 

OPEN

Los Alamos National Laboratory, Los Alamos, NM 87545, USA. *email: cleon@lanl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-65650-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14809  | https://doi.org/10.1038/s41598-024-65650-9

www.nature.com/scientificreports/

scalar potential fields A(r, t) and ϕ(r, t) , respectively, from which the electromagnetic fields were generated as 
B(r, t) = ∇ × A(r, t) , E(r, t) = −∇ϕ(r, t)− ∂A(r, t)/∂t . Generating fields based on potentials as in40 enforces 
hard physics constraints, such as ∇ · B(r, t) = 0 and ∇ × E + ∂B/∂t = 0 , but it also adds gauge ambiguity. 
Building on this previous work, in this work we present a novel method for predicting electromagnetic fields, 
which utilizes a Fourier transformation-based representation of Maxwell’s equations and physics-constrained 
neural networks (PCNN) for electrodynamics without gauge ambiguity. In this approach, many of Maxwell’s 
equations are hard constraints: Gauss’s law for the electric and magnetic field, Faraday’s law and the longitudinal 
component (in Fourier space) of the Ampère–Maxwell’s law. We demonstrate this method for calculating the 
electromagnetic fields of intense relativistic charged particle beams.

Note: a hard constraint is one that is automatically satisfied. For example, using potentials, the condition 
∇ · B(r, t) = 0 automatically follows (up to numerical errors). This contrasts with a soft constraint, where one tries 
to guide the network to satisfy a condition by having a term in the loss function, such as L∇ =

∑

i,j |∇ · B(ri , tj)|
2

.This term encourages the network to decrease the divergence at the specified locations and times during training 
but offers no guarantee the network’s output will be divergenceless.

Formalism
Maxwell’s equations in Fourier space
The formalism that will be employed here is also used in the canonical quantization of the electromagnetic 
field41, where distinguishing between the physical degrees of freedom and the gauge redundancies is important. 
In the context of our study, we use it to minimize the number of fields needed to be modeled, while also ensuring 
that a substantial number of Maxwell’s equations are automatically satisfied as hard constraints. We start with 
Maxwell’s equations in position space:

where E(r, t) , B(r, t) , J(r, t) , and ρ(r, t) are the time-varying electric field, magnetic field, current density, and 
charge density, respectively42. We perform a 3D spatial Fourier transform on Maxwell’s equations, which is 
defined for a vector field F(r, t) as

and rewrite Eq. (1) (assuming k  = 0 ; see “Appendix A” for a discussion of the zero case):

For each wave vector k , a generic vector can be separated into components longitudinal and transverse to k:

An inverse Fourier transformation of Eq. (4) will lead to a Helmholtz decomposition of F(r, t) . Gauss’s law for 
the electric and magnetic fields (Eq. (3)) can then be expressed as:

In Fourier space, the electric and magnetic fields’ dependence on the Fourier transformed scalar and vector 
potential, φ̂(k, t) and Â(k, t) , is given by Ê(k, t) = −ikφ̂(k, t)− ∂Â(k,t)

∂t , B̂(k, t) = ik × Â(k, t) . The transverse 
field components are:

Using Eq. (3), Faraday’s law trivially follows:

The transverse components of the Ampère–Maxwell equation become:

while using Eq. (5) it can be shown that the longitudinal components of the Ampère–Maxwell equation is 
equivalent to the continuity equation. The continuity equation also relates Ĵ� to ρ̂ , thus only ρ̂ and Ĵ⊥ need be used.

From Eqs. (5) and (6), the EM fields can then be determined by:

(1)∇ · E =
ρ

ε0
, ∇ · B = 0, ∇ × E = −

∂B

∂t
, ∇ × B = µ0

(

J+ ε0
∂E

∂t

)

,

(2)F̂(k, t) =
1

(2π)3/2

∫∫∫

F(r, t)e−ir·kd3r,

(3)ik · Ê =
ρ̂

ε0
, ik · B̂ = 0, ik × Ê = −

∂B̂

∂t
, ik × B̂ = µ0

(

Ĵ+ ε0
∂Ê

∂t

)

.

(4)F̂(k, t) = F̂�(k, t)+ F̂⊥(k, t), such that k · F̂⊥(k, t) = 0, k × F̂�(k, t) = 0.

(5)Ê�(k, t) = −ik
ρ̂(k, t)

ε0|k|2
, B̂�(k, t) = 0.

(6)Ê⊥(k, t) = −
∂Â⊥(k, t)

∂t
, B̂⊥(k, t) = ik × Â⊥(k, t).

(7)−ik ×
∂Â⊥(k, t)

∂t
= −

∂

∂t
ik × Â⊥(k, t).

(8)1

c2
∂2Â⊥(k, t)

∂t2
+ |k|2Â⊥(k, t) = µ0 Ĵ⊥(k, t),
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followed by inverse Fourier transforms.

Fourier–Helmholtz–Maxwell neural operator
Given the charge and current density distributions, the EM Fields can be by determined by Â⊥(k, t) , as per 
Eq. (9), and ρ̂(k, t) . Â⊥(k, t) can be found from Ĵ⊥(k, t) via Eq. (8). From this, we propose finding the generated 
EM fields using the approach depicted in the diagram of Fig. 1, where the hard constraints (ones automatically 
obeyed) are listed. Since this approach incorporates Fourier transformations, Helmholtz decompositions, and 
Maxwell’s equations within a neural operator framework, we refer to it as the Fourier–Helmholtz–Maxwell neural 
operator (FoHM-NO) method.

In this work, we attempt to estimate the EM fields from ρ and J using the FoHM-NO method, specifically with 
convolutional neural networks. When applying neural networks to physics problems, prior theoretical knowledge 
can be leveraged to model useful quantities already identified by physicists (i.e., Â⊥(k, t) ), rather than the direct 
observables (i.e., E(r, t) and B(r, t) ). This has been demonstrated previously through the use of neural networks 
to model the Hamiltonian of classical systems43, the scalar and vector potentials to estimate EM fields40 and the 
stream function of an incompressible fluid’s velocity flow field44.

Ultimately, the FoHM-NO method exploits that the EM fields have only 2 independent degrees of freedom, as 
can be seen from Eq. (9) in the source-less case. On a fundamental level though, this stems from the photon being 
a spin-1 massless particle. One benefit of the method is that it require fewer fields than the 6 that would be needed 
for directly estimating both the electric and magnetic field, or the 4 necessary by using the scalar potential and 
the entire vector potential. With more fields to fit, there comes increasing tension between fitting the data while 
also satisfying physical conditions. In contrast, with this procedure by construction three of the four Maxwell’s 
equations (Eqs. (5) and (7)) are built-in as hard constraints. This is also the case for the longitudinal component 
of Ampère–Maxwell’s Law, which follows from the continuity equation and Gauss’s law for the electric field (see 
“Appendix B”). Working in Fourier space, meanwhile, has the advantage that spatial derivatives are traded for 
multiplication by wave vectors. Thus, constraints like Eq. (4) can be easier to satisfy than their spatial derivative 
counterparts. For a fast Fourier transform (FFT), if N is the total number of spatial data points, then the FFT 
has a time complexity of O

(

N logN
)

 . This, along with modern GPU computing, means that moving to and fro 
from Fourier space can be done extremely quickly, even for very large data sets. We did not perform a temporal 
Fourier transform as the time length of the simulations varied. This variation would pose challenges to the net-
works to learn in the frequency domain. Additionally, the adoption of a 4D CNN would present computational 
challenges and significantly increases the number of parameters in models.

Computational EM methods done in configuration space have a notable advantage: an easy, straight-forward 
incorporation of spatial boundary conditions, which can be useful in solving many real-world EM problems. 
Here, we don’t consider any special spatial boundary conditions. For one, the simulation was just started with the 
initial conditions of the particles. Secondly, neural networks have been found to be useful in solving inverse PDE 
problems, where the problem may be ill-posed. For example, insufficient boundary conditions, a case where clas-
sical methods struggle or cannot be used45–47. We wish to apply our approach to inverse problems in future works.

An additional benefit of FoHM-NO is that by focusing on just Â⊥(k, t) rather than all the potential fields, the 
issue of gauge redundancy is bypassed. To see this, note that under a gauge transformation,

for some scalar function f̂ (k, t) . Since the vector potential change occurs in the k direction then,

(9)Ê(k, t) = −ik
ρ̂(k, t)

ε0|k|2
−

∂Â⊥(k, t)

∂t
, B̂(k, t) = ik × Â⊥(k, t),

(10)φ̂(k, t) → φ̂(k, t)−
∂ f̂ (k, t)

∂t
, Â(k, t) → Â(k, t)+ ik f̂ (k, t),

(11)Â�(k, t) → Â�(k, t)+ ik f̂ (k, t), Â⊥(k, t) → Â⊥(k, t).

• Gauss’s Law for E
• Faraday’s Law

• Gauss’s Law for B
• Longitudinal Ampere-Maxwell’s LawBuilt in hard physics constraints:

Figure 1.   The FoHM-NO method and its built-in hard physics constraints. F denotes Fourier transformation, 
P⊥ is the projection of the vector field to components transverse to k , NN a neural network, and F−1 is inverse 
Fourier transformation.
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Hence, by using just Â⊥(k, t) there is no need to choose a particular gauge. The gauge invariance of Â⊥(k, t) 
is well known in works involving the quantization of the EM field41,48,49 and the spin-orbit decomposition of 
gauge fields50.

Care must be taken, though, if one were to change inertial reference frames as Â⊥(k, t) , unlike the gauge-
dependent Aµ = (φ/c,A) , is not a Lorentz 4-vector. For our purposes, which is finding efficient and accurate 
computational methods for accelerator physics, this is not a serious issue.

The rest of this article is a proof-of-concept application of FoHM-NO for predicting the EM fields generated 
by relativistically charged particle beams. However, it is applicable to any EM setting where ρ and J are given, 
although it can also be extended to include the matter density fields in the predictions if the equations of state 
are used. While FoHM-NO may generally not perform as accurately as mature, state-of-the-art EM codes, the 
use of neural networks here gives it the advantage of having a very fast runtime. This can be useful in cases where 
speed is essential, such as accelerator control and diagnostics settings, where beam time can be quite limited. 
Alternatively, it can be used for exploratory analyses to find approximate solutions before bringing in more 
accurate, but slower, methods for refinement.

Data
Two simulations of electrons beams entering a solenoid magnetic fields were generated (see Fig. 2) to develop the 
FoHM-NO method. The first, the complex beam, was generated to train the neural networks. This complex beam 
was initially composed of several Gaussian bunches with spreads differing both between bunches and along the 
x, y, and z axes (see Fig. 3). The second, the Gaussian Beam, was generated to test the networks on a completely 
new unseen distribution which was not used for model training (see Fig. 4). This test beam starts as a Gaussian 
bunch before entering the magnetic field. This enabled us to test the method under very different scenarios, 

Figure 2.   The (x, y) trajectories of 1000 random electrons within the beam are shown along with the 
z-component of the 0.5 Tesla magnetic field of the solenoid which over-compresses the beam.

Figure 3.   Cross-sections showing the spatial distribution of Jz for the complex beam. The top row of plots 
shows x–y slices at z = 0 mm for different time steps. The bottom row shows x–z slices at y = 0 at the same time 
steps.
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with the more intricate complex beam having multiple length scales in order to train the networks over a wider 
range of inputs. The Gaussian beam, which is much more simple, was used as a test as it more closely resembles 
physical beams in accelerators. All the data was generated using general particle tracer (GPT)51,52.

Considering the energy scales involved, GPT simulations only considered the space charge forces. For compu-
tational efficiency, GPT only registers EM fields where particles are present, creating artifacts where the EM field 
suddenly drop to 0 where particles are absent. To address this issue, a large neutral group of particles co-moving 
with the beam was added to enable the registration of EM fields on the whole domain of interest without altering 
the motion of the electrons. Although the simulation took place on a 128× 128× 128 spatial lattice, there were 
artifacts where the EM fields abruptly dropped to zero on the edges (not the matter fields, however). Therefore, 
the EM fields were cropped to 126× 126× 126 for both beams.

Each simulations ran a 2 nC bunch of electrons with average energy 5.6 MeV moving through a 0.5 T solenoid 
magnetic field, first being compressed and then expanding (see Fig. 3). The space is a 128× 128× 128 spatial 
grid. There were 201 time steps for the complex beam and 171 for the simple beam. The beam’s dynamics were 
simulated over a total time of 1.2 ns during which it traveled over a 0.35 m distance. The beam’s charge density 
ρ(r, t) and current density J(r, t) were binned as 3D histograms over cubes with 1.3 mm side lengths, as shown 
in Figs. 3 and 4. The physical spacing of grid were:

To improve convergence, we first scaled the data according to standard deviation. The data had a heavy tail, so 
in addition a log-like transform was performed �(x) = sgn(x) ln (1+ |x|) , which has the property that larger 
values get greatly reduced, but smaller values stay about the same since �(x) ≈ x for |x| ≪ 1.

In this work, there were no special boundary condition considerations, an external magnetic field as gener-
ated by a cylindrically symmetric solenoid was provided as input. As charged particles moved through this field 
their dynamics were affected by the external solenoid field and by their own self-generated electric and magnetic 
fields which were calculated according to Maxwell’s equations based on the charge density and current density of 
the charged particle beam. In this setup the accelerator beam-pipe was assumed to be of large enough radius so 
that image charges and currents induced in the accelerator walls did not need to be considered. In future work, 
boundary conditions including image charges and Maxwell’s equations on the surfaces of conductors will be 
incorporated into the ML model as additional hard physics constraints.

Physics‑constrained neural networks
Neural networks (NN’s) are powerful machine learning tools that, by the universal approximation theorem, 
can be used to approximate a function to arbitrary precision53,54. NN’s ability to approximate go even further 
by being universal approximators for operators55. This has been harnessed to produce approximate solutions to 
partial differential equations56,57, 3D electrodynamics40, and also two spatial dimensional magnetohydrodynam-
ics simulations58,59.

The inclusion of physics information, constraints, or symmetries into NN be used to help guide training60. 
In some cases, these physics-incorporated NN’s can produce accurate predictions that are less computationally 

(12)�x = �y = �z = 10.2µm, �t = 6 ps.

Figure 4.   Cross-sections showing the spatial distribution of Jz for the Gaussian beam. The top row of plots 
shows x–y slices at z = 0 mm for different time steps. The bottom row shows x–z slices at y = 0 at the same time 
steps.
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demanding than numerical simulations, while also being easier to develop and implement61. Here, we make use 
of a convolutional encoder–decoder architectures to make an NN that has Ĵ⊥ as input and Â⊥ as output.

Models and fit
For a relativistic beam propagating along the z direction, we generally have |Jz | ≫ |Jx |, |Jy| and consequentially it 
is expected that the magnetic field is predominately in the x and y direction: |Bx|, |By| ≫ |Bz | . It was verified that 
this was indeed the case for both beam simulations used here. In fact, Bz was both small and noisy, likely heavily 
corrupted by numerical errors. Thus, to make things more computationally efficient and increase training speed, 
the model was trained only using the z component of Ĵ⊥ to predict the z component of Â⊥:

From this the transverse components of the magnetic field, B̂x and B̂y , are obtained via B̂ = ik × (Â⊥,z ẑ) . The 
models were trained on the first 85% of the complex beam run, which is the training set. The remainder, valida-
tion set, was used for hyperparameter tuning. The entire Gaussian Beam data was used as test data.

Architectures
Different architectures for the neural network were explored to optimize performance. The first models trained 
had a CNN encoder–decoder architecture design, which is depicted in Fig. 5 (once the skip connections are 
removed). This was chosen as the reduction and reconstruction from the small latent space acts as an effective 
regularizer. In addition, it was successful in a previous beam simulation task40. The encoder compresses the 
input Ĵ⊥,z to the latent space via various functional compositions, represented as layers. From there, two decoder 
arms are applied to the latent space, one producing ℜ(Â⊥,z) and the other ℑ(Â⊥,z) . Empirically, this bifurcated 
structure produced better results than having a single decoder that gave the both real and imaginary components 
of Â⊥,z as output.

We made two models following Fig. 5 differing by the number of filters in the latent space, 4 and 6 filters, 
which we label CNN-small-4 and CNN-small-6, respectively. Also, we used an architecture similar to CNN-
small-4, but with more filters in the hidden layers and thus more parameters, dubbed here CNN-large. We also 
investigated the adaption of an U-Net encoder–decoder architecture62, visually depicted in Fig. 5, which we call 
U-Net. U-Nets have found applications in scientific computation63,64 and computer vision. One limitation of the 
CNN encoder–decoder architecture in Fig. 5 is that information of the input gets ‘forgotten’ as it’s compressed 
to the latent space. The U-Net addresses this by adding ‘skipped connections’ between hidden layers of the 
encoder and decode that share the same dimensions. These connections concatenate the feature maps, allowing 
the decoder to pull information from the encoder and generally reproduce finer details more accurately than 
CNN architectures without skipped connections. The skipped connections are also useful during the training 
process by allowing for more gradient flow, thus can act as an effective tool against vanishing gradients and can 
speed up training.

(13)ℜ(Ĵ⊥,z),ℑ(Ĵ⊥,z) → NN → ℜ(Â⊥,z),ℑ(Â⊥,z).

Figure 5.   The adapted U-Net architecture is shown. For the number of starting filters we took F = 16 . The skip 
connection concatenates two feature maps of the same dimensions. The CNN architectures were very similar, 
with the skip connections removed and the number of filters in each layer changed with CNN-small-4 having 
filter numbers 16, 32, 64, 128, 64, 4, 64, 64, 32, 16 between the inputs and outputs. Having a double convolution 
layer before the in the input and output improved results. The output here is also cropped to 126× 126× 126 
(see text).
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Fits
An L2 penalty for the weights and dropout with p = 0.05 were used for regularization. All the NN’s were cre-
ated, trained and tested using Tensorflow65, with training being done using the Adam optimizer66 with early 
stopping based on validation loss. All the machine learning training was done on a Dell Precision 7920 with 
two Nvidia RTX A6000 GPU’s with 48 GB VRAM each. A summary of the four architectures with a description 
can be found in Table 1.

Cost function and metric
NNs were trained to minimize mean squared error (MSE) in Fourier space summed over each time step in the 
training data:

where B̂NN is the NN prediction for the Fourier transformed magnetic field. By the Plancherel theorem, this 
quantity is equivalent to the MSE in position space over the training data:

To evaluate the model performance at time step t we used the relative error of the magnetic field in position space:

Here, �·� denotes a spatial integral over the domain. The time averaged ε(t) was used to evaluate a model over a 
data set.

Results
The U-Net performed best across all data sets—the training, validation and test data (see Table 2). In addition, as 
seen in Fig. 6, at each time step for each data set it either had the lowest error or was virtually tied. Remarkably, 
the U-Net was able to accomplish this with approximately half the training epochs of the smaller CNN’s and a 
quarter that of CNN-large. Figure 7 shows predictions for Bx at z = 0 for the two models which performed best on 
the test data sets and how they compare to the true values. The results for By were similar, and thus aren’t shown.

The small CNN networks struggled to capture the complexity of the training data. As seen in Fig. 7, while 
they had a qualitatively correct picture, they struggled on getting many of the finer details correct. The large 
CNN model was able to capture the training data better, but its predictions quickly deteriorated on the validation 
set as it got further away from the training data, eventually surpassing the error of CNN-small-4, likely due to 
overfitting of the larger network. The U-Net captured the training data well and although its error also increases 
on the validation set, as seen in Fig. 6, it does so at a much smaller rate than any of the CNN models, indicating 
it learned to generalize better.

All the models struggled the most at the beginning of the Gaussian Beam, where the initial beam was most 
different from what they were trained on. Of the CNN models, CNN-small-4 did the best job generalizing, 
though it still lagged behind the U-Net. These results reinforce that the U-Net is doing the best at generalizing.

(14)C =
∑

i

∫

d3k
∣

∣

∣
B̂(k, ti)− B̂NN (k, ti)

∣

∣

∣

2
,

(15)C =
∑

i

∫

d3r|B(r, ti)− BNN (r, ti)|
2.

(16)ε(t) =

∫

d3r|B(r, t)− BNN (r, t)|
∫

d3r|B(r, t)|
=

�|B− BNN |�

�|B|�
.

Table 1.   Investigated architectures are arranged in descending order based on total number of parameters.

Model Description

CNN-small-4 CNN encoder–decoder, with 4 filters in the 8× 8× 8 latent space

CNN-small-6 CNN encoder–decoder, with 6 filters in the 8× 8× 8 latent space

U-Net Encoder–decoder with skipped connection, with F = 16

CNN-large The architecture is similar to CNN-small-4, but with more filters in the hidden layers

Table 2.   Summary of results. Error over a data set is ε(t) , defined by Eq. (16), averaged over time. Bold 
indicates best performing model according to column metric.

Model Training error (%) Validation error (%) Test error (%)

CNN-small-4 8.2 13.3 12.6

CNN-small-6 7.9 13.5 17.0

U-Net 4.5 6.7 8.6

CNN-large 5.0 12.4 15.9
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Transfer learning
Transfer learning is the process where a model trained on one set of data is retrained on another set. Since 
much of what was learned earlier can be helpful for the new data set, this cuts down on the training time and 
is quicker than if one started from scratch. It has been used in cases like Physics-Informed Neural Networks to 
learn beyond a single instance of a PDE67.

The U-Net model took 380 training epochs. We took that trained model and retrained it on the first 85% of 
Gaussian Beam. In only 20 epochs, the model’s relative error on the Gaussian beam dropped dramatically, and 
its performance was comparable to what it was on the complex beam (see Fig. 8). This demonstrates that our 
general approach can be useful for a wide range of new beam configurations which the model has not previously 
seen, so that it can be applied for the study of new different setups.

Improving generalization
To demonstrate the robustness and generalization capability of our approach when trained with more data, two 
new datasets were created, complex beam 2 and simple beam 2. Like the previous simulations, it consisted of 
an electron bunch entering a solenoid field, however now the initial distribution gradually dropped off in the z 
direction, as opposed to suddenly (see Figs. 3 and 4).

Using the pre-trained U-Net from earlier, the network was trained on both complex beam and complex beam 
2. The network was tested on both the Gaussian Beam and Gaussian Beam 2, then its performance compared 
to the network trained on just the complex beam. The results can be seen in Fig. 9. For the Gaussian Beam, the 
average relative error of the new network on the Gaussian beam was 7.3% , while the network trained exclusively 
on the complex beam was 8.6% . Thus, the new network improved on predictions for the Gaussian beam with 
the inclusion of more data in the training set. For Gaussian Beam 2, the network trained on both complex 
beams consistently performed better, with an average relative error of 9.1% compared to 24.6% . Thus, we see the 
inclusion of more data led to an improvement in the network”s ability to generalize.

Discussion
One reason for the great success of the U-Net could be simply, as mentioned, the skipped connections help with 
the optimization. Another possibility is that, given that local Jz will correlate strongly with local B , the network 
can start with a good first approximation by not altering the input that much. Indeed, one can compare, for 
example, Jz at the z = 0 mm slice for time step = 150 in the complex beam shown in Fig. 3 with the correspond-
ing magnetic field in Fig. 7. The time of inputting Ĵ⊥,z and outputting Â⊥,z for the entire test set was of the order 
of a few seconds. This is in contrast to the GPT simulation, which ran for ∼ a day. Of course, the GPT simulator 
is creating both the matter and electromagnetic fields, so this is not exactly a direct comparison. Nonetheless, it 
does illustrate some of the potential of the FoHMM-NO method to speed EM simulations greatly.

One way to improve our results would be exposing the model to many distinct simulations during the training 
phase. This would increase the duration of training, but our results in 5.2 suggests that this will make the model 
more accurate, robust and would generalize better. There are still some of Maxwell’s equations that are not built 
in as hard constraints, namely Eq. (8). One possible way to add this as an inductive bias would be to include in 
the cost function a penalty term that enforces Eq. (8), as is done with physics informed neural networks61. Such 
terms have also been used to enforce the Lorenz gauge for PCNN’s predicting electromagnetic potential fields40 
and enforcing the mangetohydrodynamics equations with physics informed neural operators58. Although this is 
not a hard constraint, during training it would guide the model to predict more physical solutions. As mentioned, 
the approach here can be expanded to include ρ and J in the predictions. Alternatively, it can be incorporated 
into a conventional simulator to speed up it up.

Figure 6.   Relative Error of the models on both the complex beam and the Gaussian beam.
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Conclusions
Using Maxwell’s equation in Fourier space and modeling EM fields via Â⊥,z , we have developed a novel approach 
to applying machine learning to EM problems. This method has the advantage of incorporating several of 

Figure 7.   The top 5 rows show model predictions and absolute errors for the complex beam and the bottom 5 
rows for the test Gaussian beam for Bx at the z = 0 mm slice at various time points. Only the 2 best performing 
models are shown. The scale of the absolute errors is zoomed in to 1/5 that of the true and model predictions.
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Maxwell’s equations as hard constraints, making the output more physically plausible. The FoHM-NO method 
can be beneficial in computational EM cases where speed is paramount. Here, we exchanged an error level of 
a few percent for a gain in speed of several orders of magnitude. We found that a U-Net architecture did best 
both at recreating the fields and generalizing beyond the training data. Given the exact and quantitative nature 
of physics constraints, domain knowledge can be incorporated into machine learning tools in unique ways. 
Integrating physics and machine learning in a synergistic way has great potential, but the approaches are still in 
their infancy. With the advent of powerful new machine learning algorithms, physicists have the opportunity to 
explore how these new tools can be used to complement or augment more traditional methods to solve previ-
ously intractable problems.

Data availibility
Datasets used and analyzed during the current study are available from the corresponding author upon reason-
able request.

Appendix A: k = 0 case
Taking the Fourier transform of Gauss’s Law for the electric field gives:

Figure 8.   The original U-Net that was trained on part of the complex beam (U-Net) and the model after 20 
training epochs on 85% of the Gaussian beam (U-Net-TL(20)).

Figure 9.   Relative Error of models on the on Gaussian beam and Gaussian beam 2.
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Integrating the left-hand side by parts:

where S2(R) means a sphere of radius R.
For k = 0 , ρ̂(0, t) = Qtot

(2π)3/2
 . The boundary term on the left-hand side of Eq. (18) is a flux, the second term 

disappears and we get the integral form of Gauss’s law for a large sphere:

For k  = 0 , the phase inside the boundary term on the left-hand side of Eq. (18) oscillates rapidly because of the 
large R. The boundary term thus disappears and we get the expected expression:

Appendix B: Longitudinal Ampère–Maxwell
The longitudinal component of Ampère–Maxwell’s equation in Fourier space follows from the continuity equa-
tion and Gauss”s law for E.

Since 
(

ik × B̂(k, t)
)

�
= 0 then:
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(20)ik · Ê(k, t) =
ρ̂(k, t)

ε0
.

(21)

0 =
∂ρ̂(k, t)

∂t
+ ik · Ĵ(k, t),
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+ µ0 Ĵ�(k, t).

https://doi.org/10.1103/PhysRevLett.121.021102
https://doi.org/10.1103/PhysRevLett.128.075101
https://doi.org/10.1103/PhysRevLett.128.025101
https://doi.org/10.1029/1998GL900246
https://doi.org/10.1029/2021GL094201
https://doi.org/10.1103/PhysRevLett.126.155001
https://doi.org/10.1103/PhysRevLett.127.074801
https://doi.org/10.1103/PhysRevLett.127.074801


12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14809  | https://doi.org/10.1038/s41598-024-65650-9

www.nature.com/scientificreports/

	17.	 Zhang, Z. & Satpathy, S. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations. 
Phys. Rev. Lett. 65, 2650. https://​doi.​org/​10.​1103/​PhysR​evLett.​65.​2650 (1990).

	18.	 Zachariasen, W. A general theory of X-ray diffraction in crystals. Acta Crystallograph. 23, 558–564. https://​doi.​org/​10.​1107/​S0365​
110X6​70032​02 (1967).

	19.	 Monico, L. et al. Probing the chemistry of CdS paints in the scream by in situ noninvasive spectroscopies and synchrotron radiation 
X-ray techniques. Sci. Adv. 6, eaay3514. https://​doi.​org/​10.​1126/​sciadv.​aay35​14 (2020).

	20.	 Mehrabi, P. et al. Serial femtosecond and serial synchrotron crystallography can yield data of equivalent quality: A systematic 
comparison. Sci. Adv. 7, eabf1380. https://​doi.​org/​10.​1126/​sciadv.​abf13​80 (2021).

	21.	 Hartemann, F. & Luhmann, N. Jr. Classical electrodynamical derivation of the radiation damping force. Phys. Rev. Lett. 74, 1107. 
https://​doi.​org/​10.​1103/​PhysR​evLett.​74.​1107 (1995).

	22.	 Grošelj, D., Mallet, A., Loureiro, N. F. & Jenko, F. Fully kinetic simulation of 3D kinetic Alfvén turbulence. Phys. Rev. Lett. 120, 
105101. https://​doi.​org/​10.​1103/​PhysR​evLett.​120.​105101 (2018).

	23.	 Franchetti, G., Hofmann, I. & Jeon, D. Anisotropic free-energy limit of halos in high-intensity accelerators. Phys. Rev. Lett. 88, 
254802. https://​doi.​org/​10.​1103/​PhysR​evLett.​88.​254802 (2002).

	24.	 Franchetti, G., Hofmann, I. & Aslaninejad, M. Collective emittance exchange with linear space charge forces and linear coupling. 
Phys. Rev. Lett. 94, 194801. https://​doi.​org/​10.​1103/​PhysR​evLett.​94.​194801 (2005).

	25.	 Cai, Y. Coherent synchrotron radiation by electrons moving on circular orbits. Phys. Rev. Accel. Beams 20, 064402. https://​doi.​org/​
10.​1103/​PhysR​evAcc​elBea​ms.​20.​064402 (2017).

	26.	 Zagorodnov, I., Tomin, S., Chen, Y. & Brinker, F. Experimental validation of collective effects modeling at injector section of X-ray 
free-electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 995, 165111. https://​doi.​org/​10.​
1016/j.​nima.​2021.​165111 (2021).

	27.	 Emma, P. et al. First lasing and operation of an Rangström-wavelength free-electron laser. Nat. Photon. 4, 641 (2010).
	28.	 Milne, C. et al. Swissfel: The Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017).
	29.	 Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 

14, 391–397 (2020).
	30.	 Gessner, S. et al. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator. Nat. Commun. 7, 1–6 

(2016).
	31.	 Yakimenko, V. et al. Facet-ii facility for advanced accelerator experimental tests. Phys. Rev. Accel. Beams 22, 101301 (2019).
	32.	 Chen, Y., Zagorodnov, I. & Dohlus, M. Beam dynamics of realistic bunches at the injector section of the European X-ray free-

electron laser. Phys. Rev. Accel. Beams 23, 044201. https://​doi.​org/​10.​1103/​PhysR​evAcc​elBea​ms.​23.​044201 (2020).
	33.	 Dohlus, M., Limberg, T. et al. Csrtrack: Faster calculation of 3D CSR effects. In Proceedings of the 2004 FEL Conference, 18–21 

(2004).
	34.	 Scheinker, A., Cropp, F., Paiagua, S. & Filippetto, D. An adaptive approach to machine learning for compact particle accelerators. 

Sci. Rep. 11, 1–11 (2021).
	35.	 Coskun, U. H., Sel, B. & Plaster, B. Magnetic field mapping of inaccessible regions using physics-informed neural networks. Sci. 

Rep. 12, 12858 (2022).
	36.	 Li, S., Dee, P. M., Khatami, E. & Johnston, S. Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: 

Application to the Holstein model. Phys. Rev. B 100, 020302 (2019).
	37.	 Kim, I. et al. Simulator acceleration and inverse design of fin field-effect transistors using machine learning. Sci. Rep. 12, 1140 

(2022).
	38.	 Park, S., Kwak, W. & Lee, H. K. Accelerated spin dynamics using deep learning corrections. Sci. Rep. 10, 13772 (2020).
	39.	 Wigley, P. B. et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016).
	40.	 Scheinker, A. & Pokharel, R. Physics-constrained 3D convolutional neural networks for electrodynamics. APL Mach. Learn. 1, 

026109 (2023).
	41.	 Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1998).
	42.	 Jackson, J. D. Classical Electrodynamics (Wiley, 1999).
	43.	 Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. In Advances in Neural Information Processing Systems, 

vol. 32 (2019).
	44.	 Mohan, A. T., Lubbers, N., Chertkov, M. & Livescu, D. Embedding hard physical constraints in neural network coarse-graining 

of three-dimensional turbulence. Phys. Rev. Fluids 8, 014604 (2023).
	45.	 Lin, B., Mao, Z., Wang, Z. & Karniadakis, G. E. Operator learning enhanced physics-informed neural networks for solving partial 

differential equations characterized by sharp solutions. arXiv preprint arXiv:​2310.​19590 (2023).
	46.	 Adler, J. & Öktem, O. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33, 124007 (2017).
	47.	 Zhao, Q., Lindell, D. B. & Wetzstein, G. Learning to solve PDE-constrained inverse problems with graph networks (2022).
	48.	 Vukics, A., Kónya, G. & Domokos, P. The gauge-invariant Lagrangian, the Power–Zienau–Woolley picture, and the choices of field 

momenta in nonrelativistic quantum electrodynamics. Sci. Rep. 11, 16337 (2021).
	49.	 Gustin, C., Franke, S. & Hughes, S. Gauge-invariant theory of truncated quantum light-matter interactions in arbitrary media. 

Phys. Rev. A 107, 013722 (2023).
	50.	 Chen, X.-S., Lü, X.-F., Sun, W.-M., Wang, F. & Goldman, T. Spin and orbital angular momentum in gauge theories: Nucleon spin 

structure and multipole radiation revisited. Phys. Rev. Lett. 100, 232002 (2008).
	51.	 Van Der Geer, S., Luiten, O., De Loos, M., Pöplau, G. & Van Rienen, U. 3D space-charge model for GPT simulations of high 

brightness electron bunches. Inst. Phys. Conf. Ser. 175, 101 (2005).
	52.	 Brynes, A. et al. Beyond the limits of 1D coherent synchrotron radiation. New J. Phys. 20, 073035. https://​doi.​org/​10.​1088/​1367-​

2630/​aad21d (2018).
	53.	 Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 

(1989).
	54.	 Park, S., Yun, C., Lee, J. & Shin, J. Minimum width for universal approximation. arXiv preprint arXiv:​2006.​08859 (2020).
	55.	 Chen, T. & Chen, H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and 

its application to dynamical systems. IEEE Trans. Neural Netw. 6, 911–917 (1995).
	56.	 Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via deeponet based on the universal 

approximation theorem of operators. Nat. Mach. Intell. 3, 218–229. https://​doi.​org/​10.​1038/​s42256-​021-​00302-5 (2021).
	57.	 Li, Z. et al. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:​2010.​08895 (2020).
	58.	 Rosofsky, S. G. & Huerta, E. Magnetohydrodynamics with physics informed neural operators. arXiv preprint arXiv:​2302.​08332​

(2023).
	59.	 Bormanis, A., Leon, C. A. & Scheinker, A. Solving the Orszag–Tang vortex magnetohydrodynamics problem with physics-

constrained convolutional neural networks. Phys. Plasmas 31, 012101 (2024).
	60.	 Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440. https://​doi.​org/​10.​1038/​s42254-​021-​

00314-5 (2021).
	61.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward 

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

https://doi.org/10.1103/PhysRevLett.65.2650
https://doi.org/10.1107/S0365110X67003202
https://doi.org/10.1107/S0365110X67003202
https://doi.org/10.1126/sciadv.aay3514
https://doi.org/10.1126/sciadv.abf1380
https://doi.org/10.1103/PhysRevLett.74.1107
https://doi.org/10.1103/PhysRevLett.120.105101
https://doi.org/10.1103/PhysRevLett.88.254802
https://doi.org/10.1103/PhysRevLett.94.194801
https://doi.org/10.1103/PhysRevAccelBeams.20.064402
https://doi.org/10.1103/PhysRevAccelBeams.20.064402
https://doi.org/10.1016/j.nima.2021.165111
https://doi.org/10.1016/j.nima.2021.165111
https://doi.org/10.1103/PhysRevAccelBeams.23.044201
http://arxiv.org/abs/2310.19590
https://doi.org/10.1088/1367-2630/aad21d
https://doi.org/10.1088/1367-2630/aad21d
http://arxiv.org/abs/2006.08859
https://doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2302.08332(2023
http://arxiv.org/abs/2302.08332(2023
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5


13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14809  | https://doi.org/10.1038/s41598-024-65650-9

www.nature.com/scientificreports/

	62.	 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image 
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 
2015, Proceedings, Part III 18, 234–241 (Springer, 2015).

	63.	 Rahman, M. A., Ross, Z. E. & Azizzadenesheli, K. U-shaped neural operators (U-NO). Trans. Mach. Learn. Res. 2023, 1–17 (2023).
	64.	 Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A. & Benson, S. M. U-FNO–An enhanced Fourier neural operator-based deep-

learning model for multiphase flow. Adv. Water Resour. 163, 104180 (2022).
	65.	 Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org 

(2015).
	66.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:​1412.​6980 (2014).
	67.	 Desai, S., Mattheakis, M., Joy, H., Protopapas, P. & Roberts, S. One-shot transfer learning of physics-informed neural networks. 

arXiv preprint arXiv:​2110.​11286 (2021).

Acknowledgements
This work was supported by the U.S. Department of Energy (DOE), Office of Science High Energy Physics 
contract number 89233218CNA000001 and the Los Alamos National Laboratory LDRD Program Directed 
Research (DR) project 20220074DR.

Author contributions
C.L.: Conceptualization (equal); data curation (equal); formal analysis (equal); investigation (equal); writing—
original draft (equal); writing—review and editing (equal). A.S.: Conceptualization (equal); data curation (equal); 
formal analysis (equal); funding acquisition (lead); investigation (equal); methodology (lead); supervision 
(equal); writing—original draft (supporting); writing—review and editing (equal)

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2110.11286
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Physics-constrained machine learning for electrodynamics without gauge ambiguity based on Fourier transformed Maxwell’s equations
	Formalism
	Maxwell’s equations in Fourier space
	Fourier–Helmholtz–Maxwell neural operator

	Data
	Physics-constrained neural networks
	Models and fit
	Architectures
	Fits
	Cost function and metric


	Results
	Transfer learning
	Improving generalization

	Discussion
	Conclusions
	Appendix A: k = 0 case
	Appendix B: Longitudinal Ampère–Maxwell
	References
	Acknowledgements


