SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Many-body topological invariants from randomized
measurements in synthetic quantum matter

Andreas Elbenm*, Jinlong Yu"z*, Guanyu Zhu“, Mohammad Hafezi3'4, Frank PoIImann5'6,

Peter Zoller'?, Benoit Vermersch'*7*

Many-body topological invariants, as quantized highly nonlocal correlators of the many-body wave function, are at
the heart of the theoretical description of many-body topological quantum phases, including symmetry-protected
and symmetry-enriched topological phases. Here, we propose and analyze a universal toolbox of measurement

Copyright © 2020

The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NC).

protocols to reveal many-body topological invariants of phases with global symmetries, which can be implemented
in state-of-the-art experiments with synthetic quantum systems, such as Rydberg atoms, trapped ions, and super-
conducting circuits. The protocol is based on extracting the many-body topological invariants from statistical
correlations of randomized measurements, implemented with local random unitary operations followed by site-
resolved projective measurements. We illustrate the technique and its application in the context of the complete
classification of bosonic symmetry-protected topological phases in one dimension, considering in particular the
extended Su-Schrieffer-Heeger spin model, as realized with Rydberg tweezer arrays.

INTRODUCTION

There is an increasing interest in realizing topological quantum
phases in synthetic quantum systems (1-5), including ultracold
atoms in optical lattices (2), Rydberg atoms (3), trapped ions (4),
and superconducting qubits (5). These experimental platforms
offer unique possibilities for preparing, controlling, and probing
quantum states, with prospects of studying these exotic states of
matter, e.g., the fractional Hall state (6, 7), and in light of possible
applications such as topological quantum computing (8). The char-
acterization and identification of topological phases in an experi-
mental setting represents, however, a substantial challenge: In
contrast to symmetry-breaking phases of Landau’s theory with local
order parameters (9), topological phases are characterized by global
properties, which cannot be revealed with local probes. Thus, measure-
ment protocols need to be developed to access these global properties.
For noninteracting systems, the measurement of topological invariants
(such as the Chern number) has been achieved in seminal experi-
ments in cold atom setups (10-13), microwave networks (14), and
photonic systems (15). Below, we address the generic interacting
case, and we present measurement protocols that allow us to access
many-body topological invariants (MBTIs) of interacting topological
states with global symmetries (16, 17).

MBTIs are highly nonlocal quantized correlators of the many-
body wave function that have been originally derived in the context
of the description of symmetry-protected topological (SPT) order
(18), and in particular from the classification of unidimensional
bosonic SPT phases (16, 17, 19). An MBTI identifies from a many-
body wave function the projective representation of a global sym-
metry (16, 17). For any realization of a topological state with a given
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symmetry, for instance, the spatial reflection symmetry or the
time-reversal symmetry, the corresponding MBTI takes a non-zero
quantized value. MBTIs can be considered as generalizations of
string order parameters that were introduced (20) and measured
(21, 22) to detect SPT phases protected by internal symmetries. MBTIs
can particularly identify all one-dimensional bosonic SPT phases,
even in the absence of internal symmetries, and therefore of string
order (17, 23). MBT1Is are not restricted to the description of SPT
phases: They have been now understood in the general mathematical
framework of topological quantum field theory (17, 24, 25), suggest-
ing that they can identify many types of topological phases beyond
SPT orders. In particular, recent theoretical works have shown that
MBTISs can identify fermionic SPT phases (24, 26) and topological
quantum phase transitions (27) and can also distinguish various
symmetry-enriched topological (SET) phases with intrinsic topo-
logical orders (28, 29). Whereas MBTTs have become key quantities
to characterize topology in synthetic quantum systems, the question
of their measurement has remained so far elusive.

Our approach to measure MBTTs consists in using the information
contained in statistical correlations between randomized measure-
ments. These measurements are realized by applying to a quantum
state a sequence of random unitary operations before performing
projective measurements. Recently, randomized measurement protocols
have been developed to measure entanglement (30, 31), including
an experimental demonstration in a trapped-ion quantum simulator
(32), and out-of-time order correlators (33). Here, our approach is
based on local random unitaries that can be implemented in exper-
iments with high fidelities (32), and the key idea is to use distribu-
tions of such random unitaries with different symmetries. From the
statistics of such “symmetric” randomized measurements, one can
extract the MBTT associated with a particular symmetry. Our analysis
of the protocol, including the study of statistical errors, shows that
MBTIs can be measured via our protocols with current technology
in various spin systems, such as Rydberg atoms, trapped ions, and
superconducting qubits, and can be used to experimentally classify
interacting many-body topological quantum phases.

Our article is organized as follows. Having in mind current ex-
perimental possibilities, e.g., with Rydberg atom quantum simula-
tors (22), we study a model Hamiltonian with SPT phases as ground
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states. We consider MBTTIs associated with reflection and time-
reversal symmetries to identify the trivial/nontrivial topology of the
SPT phases as well as the symmetry-broken phase, and present the
corresponding measurement protocols as experimental recipes;
the other MBTTIs and corresponding protocols are presented in the
Supplementary Materials. We then discuss the role of statistical errors
and imperfections in our scheme. We also illustrate our protocols
via two physical examples that can be realized in experiments: We
show how to monitor the dynamical building-up of topology by
these MBTIs during adiabatic state preparation, and we also discuss
how the breaking and protection mechanisms of symmetries can be
probed experimentally. Last, we discuss how our protocols can be
applied beyond the case of SPT phases.

RESULTS

Model

For concreteness, we present our approach in the context of the
extended bosonic Su-Schrieffer-Heeger (SSH) model (Fig. 1A)
(22, 34-37)
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Here, 6! (= x, y, 2) are the Pauli matrices for the spin state at site i.
Jand J' are alternating nearest-neighbor spin-exchange coefficients,
and 8 denotes the exchange anisotropy. The case of § = 1 corresponds
to the bond-alternating Heisenberg model (35, 36), whereas the case
of 8 = 0 corresponds to the bosonic version of the (non-interacting)
SSH model (34), as realized recently with Rydberg atoms (22). Note
that, expect for § = 0 and 8 = 1, the model is generally not integrable
and thus has no single-particle correspondence. The alternating spin-
exchange coefficients can be engineered, e.g., by loading bosonic
atoms into optical superlattices (37) or dimerized optical tweezer
arrays (22), or by coupling bosonic atoms to dynamical gauge fields
(38, 39). As a final remark, we emphasize that all protocols presented
below can also be generalized to other spin Hamiltonians, e.g., spin-1
Haldane chain (40), straightforwardly.

As shown below, the model Hamiltonian in Eq. 1 hosts three
different phases: a trivial phase, a topological Haldane phase (40),
and a symmetry-broken antiferromagnetic phase. The trivial and
topological phases are SPT phases protected by any one of the
following three symmetries (23, 41): reflection (inversion) symmetry
at the center bond, time-reversal symmetry, and dihedral group D,
of m-rotations of spins around the x, y, and z axes.

Partial reflection invariant

We now show how to measure MBT1Is via randomized measurements.
First, SPT phases protected by reflection symmetry can be classified
using the partial reflection MBTI Z¢ = Zr/ \/ [Tr( pi) + Tr( pi)] /2
(17), with

ZR = Tr( p[R[) (2)

Here, p; = Trs- (|w){y]) is the reduced density matrix of a many-
body quantum state |y), and the interval I = I; u I, consists of two
partitions I; and I, each with 7 sites; S denotes all the sites of the
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system. The nonlocal operator R; “spatially swaps” I; and I, with
respect to the reflection center. On every basis state |s;) = |s1,52, ...,
sony (si=1, L fori € 1), itacts as Ry|si) = |sam San—15 -+ > 51) = |Ri(s1))-
This operation is graphically shown in Fig. 1B, where the state of each
site of I, represented as a blue line, is “contracted” with the state of
the mirror symmetric site.

The MBTI Zx, probes the action of the reflection symmetry on
the many-body state |y). Using tensor-network theory, one can
show analytically that, for the ground state of a gapped many-body
Hamiltonian (e.g., Hessn), Zr approaches a quantized value in the
thermodynamic limit #, N — o (17). The typical value of n required
to achieve convergence is determined by the correlation length in
the system and is discussed in detail below. For our model Eq. 1, the
phase diagram evaluated by the MBTI Zp, calculated numerically
using the density matrix renormalization group (DMRG) method (see
Materials and Methods for details), is shown in Fig. 1C. Three phases
can be identified therein: (i) a phase with antiferromagnetic order
where reflection symmetry is spontaneously broken with Zr = 0,
(ii) the trivial SPT phase with Zx = +1, and (iii) the nontrivial SPT
phase with Zz = —1.

The MBTI Z5, which is a highly nonlocal and nonlinear functional
of the reduced density matrix pj, can be measured with randomized
measurements, with the following recipe (as illustrated in Fig. 1D):
(i) One first prepares the ground state |y) via, e.g., adiabatic state
preparation (see a later section for details). (ii.a) One applies to |y)
a unitary operation Ug, of the form U = ®f=”1 U, with U; = Uy,i_js1.
The unitaries U; (i = 1,2, ..., n) are drawn randomly from the circular
unitary ensemble (CUE) defined on the local Hilbert spaces of in-
dividual spins. This type of random unitaries with spatial reflection
symmetry (i.e., with a configuration U Us...U, | U,,...U,U, as shown
schematically in Fig. 1D) will be essential to be able to extract Zx
from randomized measurements. Each local unitary U; can be de-
composed in products of spin rotations along two axes (x,z) and can
thus be generated with high fidelity in quantum simulators with
single-site control, as also shown in recent experiments (32). Note
that the impact of potential imperfections, such as miscalibration
and decoherence, has been studied in detail in (42), showing the
robustness and the applicability of protocols relying on randomized
measurements in state-of-the-art quantum devices based on Rydberg
atoms, trapped ions, or superconducting qubits. (ii.b) One measures
the occupation probabilities Py, (s;) = (51| URpIUJHsI) of the basis
states sj, by performing projective measurements in the basis s;.
(iii) One repeats (i) to (ii) for many independently sampled random
unitaries Ug.

Given the set of outcome probabilities Py, (sp), one obtains first
Zr from

(©)

Here, - denotes the ensemble average over the random unitaries
and Dls, R(s;)] = #{i € I|s; # sau-i+1} is the Hamming distance be-
tween |s;) and |R(sy)). Equation 3 can be proven using the two-

design identities of the CUE (see Materials and Methods) and shows
that the MBTI Zx can be directly extracted from the statistics of

randomized measurements. Second, the purity Tr(pi) (and similarly

Zp= 2»«; (_2)*%1)[51;721(51)] m
1

Tr [ pi]) is estimated using the relation (31, 32)

Tr(pi)

2" ¥ (-2) Pl Py (s Pue(57,)
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Fig. 1. Measuring the MBTI Z; for the extended bosonic SSH model. (A) Schematic illustration of the model Eq. 1, where the nearest-neighbor spin-exchange coefficients
alternate between the bonds. (B) The partial reflection invariant Z% (Eq. 2) is defined as the expectation value of a partial reflection operator R, (visualized by the blue
lines) for the many-body state |y). The dashed line between the intervals /; and /, indicates the reflection center. (C) In terms of the normalized invariant Zx, the full-phase
diagram of the extended bosonic SSH model is revealed here for a system size of N =48 spins and n =6 reflected pairs of spins. We find three phases with different quantized

values of Zx. (D) Protocol to measure Zy, via statistical correlations between randomized measurements, implemented with local random unitaries applied symmetrically
around the central bond. (E) The results of simulated experiments allow us to identify topological phase transitions. The solid lines are results from DMRG, whereas the
dots with error bars represent estimations from simulated randomized measurements with Ny =512 unitaries and Ny = 256 measurements per unitary.

with the reduced probabilities Py, (s;) = Tr(|sg, X(s5,| Ur p1 U;z) . Thus,
we obtain the normalized MBTI from the second-order correlations
of randomized measurements, implemented with local random
operations with a distribution that is tailored to identify a certain
symmetry (here, the reflection symmetry) of the many-body quantum
state. This is the key idea in our approach, and we show below how
to apply it to measure any MBTTI. For illustration, we show in Fig. 1E
the value of Z (i) calculated from the DMRG method (line) and
(ii) estimated from simulated randomized measurements (dots). They
coincide with each other within the statistical errors that originate
from the finite number of unitaries Ny and the finite number of
projective measurements per unitary Ny. A detailed discussion
about the statistical errors and imperfections for the MBTIs (Zr
here and Z7below) estimated from randomized measurements can
be found in a later section and the Supplementary Materials.

Elben et al., Sci. Adv. 2020; 6 : eaaz3666 10 April 2020

Partial time-reversal invariant

We now present the protocol to measure the MBTT associated with

the time-reversal symmetry Z7= ZT/([Tr(plzl)+Tr(p,22)]/2)3/2

(17, 25), with

Zr = Tr( prur pIT' u%) (5)

Here, T} denotes the partial transpose operation on the partition
I, and u7= []ier, o is the unitary part of the time-reversal operator.
The contraction operation resulting in Z7is illustrated graphically
in Fig. 2A.

The MBTI Z7 is a nonlinear functional of two copies of the
(partially transposed) density matrix pj, which can be measured
via the following recipe (Fig. 2B). After (i) the state preparation, we
perform two experiments: (ii.a.1) In the first experiment, we apply
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Fig. 2. Probing the MBTI Zwith randomized measurements. (A) Graphical representation of the definition of the time-reversal invariant Z(Eq. 5) involving partial
transpose (red lines) and partial swap (blue lines) operations. (B) Experimental protocol to measure Z7with two experiments, which are correlated using randomized
measurements. To account for the anti-unitarity of the time-reversal symmetry, the local random unitaries applied in /; (red) in the two experiments are complex conjugate
to each other. (C) Simulated measurements of Z7(dots with statistical error bars, with Ny =768, Nyy=512), revealing the topological phase transitions in the extended
bosonic SSH model as a function of J'=J for two values of 8. Solid lines are calculated with the DMRG method, in a system with N =48 sites, and n =6 per interval /; and /.

(D) Zrconverges as a function of the partition size n to the quantized values 1 for the case of 5= 0.25. Different colors represent different values of J'=J. Inset: The
divergence of the corresponding correlation length 2, extracted from an exponential fit on the first three values of n, can be used to detect the quantum critical point

between the topological trivial (with Z7=1) and nontrivial (with Z7= —1) phases.

U = Upur® Uy, with Uy, = ®7, Urand Uy, = ®?",,, U, each U;
being taken independently from the CUE. (ii.b.1) We measure the
probabilities Py (s) (see the left panel of Fig. 2B). (ii.a.2) In a second
experiment, we use the unitaries 72-) = U;, ® UL (ii.b.2) We mea-
sure Py@(sy) (see the right panel of Fig. 2B). (iii) We repeat the two
experiments (i and ii) with different unitaries U; and estimate

_H2n “DIsps'1l D (e Po( )
Z7=2""% (=2)77 " Pyo(sPPu@(sT)

SpS't

(6)

from cross-correlations of the two experiments. In addition, the
purity to normalize Z rto Z7is obtained from the same experimental
data using the relation Eq. 4.

Equation 6, which is also proven in Materials and Methods,
shows that the partial time-reversal MBTI can be accessed from
correlations between measurements using random unitary opera-
tions, which are complex conjugated. In Fig. 2C, we compare values
of Z7obtained with the DMRG method with the ones estimated
from finite number of randomized measurements. We see similar
behavior of Z7in Fig. 2C compared with the one of Z as in Fig. 1E
but with larger error bars and deviation. This is because of the fact
that the statistical errors scale differently as functions of Ny, Ny,
and n (see the Supplementary Materials). The deviation and error
bars can be reduced by increasing both Ny and Ny;. Moreover, the
solid lines in Figs. 1E and 2C are similar for the current case,
because both the reflection and time-reversal symmetries are present
in the Hamiltonian. The MBTTIs can behave completely different for
the case that one of the protecting symmetries is broken but the
many-body ground state is still topological (see below and the sec-
tion on ‘Probing the breaking and the protection of symmetries’).

Elben et al., Sci. Adv. 2020; 6 : eaaz3666 10 April 2020

In Fig. 2D, we also show that by extracting Z7 (or similarly, Zx,
which is not shown here for conciseness) for different n, one can
measure the correlation length A of SPT phases, i.e., the characteristic
length above which MBTTIs become quantized. In particular, one
can identify quantum critical points separating different SPT phases
from the divergence of A.

The two examples given above illustrate how to access MBTIs
from the statistics of measurements performed after correlated local
random unitary operations. In the Supplementary Materials, we
show how to access MBTIs for internal symmetries and combination
of symmetries. We also show how to identify the breaking/protection
of different symmetries in a later section. Combined together, they
provide a complete set of protocols to experimentally probe the
classification of one-dimensional bosonic SPT phases.

Statistical errors and imperfections

Having described our main results relating randomized measure-
ments to the MBTIs Zx and Z5; we now comment on various
potential sources of errors in implementing our protocol. First,
statistical errors are due to the finite number of repetitions of the
experiment used to estimate the statistical correlations between
randomized measurements. As detailed in the Supplementary
Materials, we find that the typical required number of measure-
ments to access MBTIs within a given accuracy (scaling as 2'" to
access Zr for instance) are very similar to the requirements to mea-
sure state purities (31, 32) and thus compatible with state-of-the-art
experimental platforms of Rydberg atoms, trapped ions, and super-
conducting qubits with high repetition rates. Randomized measure-
ments also feature a natural robustness with respect to decoherence,
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readout errors, and errors in the implementations of random
unitaries (33, 42), because they are based on extracting relevant
quantities from ensemble averages (and not from individual mea-
surements). We thus expect our protocols to allow faithful measure-
ments of MBTTIs in various experimental platforms. In the following,
we illustrate our protocols by means of two important applications:
the dynamical building-up of nontrivial topology during the adiabatic
preparation of an SPT phase and the identification of the protecting
symmetry group.

Monitoring the dynamical building-up of topology

The MBTIs Z% and Z7can be defined for an arbitrary many-body
quantum state |y) besides the ground state as described above. Thus,
we can also use the presented measurement protocols to monitor
the preparation of an SPT state |y(t)) as a function of time, which
facilitates the visualization of the dynamical building-up of topology
experimentally. For concreteness, we consider the adiabatic state
preparation with a time-dependent Hamiltonian

H(t)= Hessu + f (t)Hneel (7)

where Hygl = Azi(—l)icf is a staggered magnetic field term with
a strength A > J', ]. We always set the function f(¢) to satisfy f(t = 0) =
1 and f(t = tp) = 0. At time ¢ = 0, the system is initialized in the Néel
state |y(t = 0)) = [{1] ...). As an example, we adopt the function
f(1) = (t/tp — 1)* to adiabatically drive the system to the ground state
of Hessy at the final time t = tz. Our protocols give access to the
time-dependent values of MBTI Z1(t), Zr(t), obtained using the
experimental recipe described above with random unitaries applied
on the time-dependent many-body quantum state [y(t)). We illustrate
the emergence of quantized values of the MBTI Zr(t) [the results
for Z7(¢) are similar and are not shown for conciseness], associated
with the preparation of the SPT phases, in Fig. 3A. Note that the
preparation time Jtr = 20 is compatible with the coherence time
achieved in the Rydberg experiment realizing the Haldane phase of the
bosonic SSH model (22). As shown in Fig. 3B, the values of Z(tr)
at the end of the preparation ¢ = ¢z can be used to detect the quality
of the preparation of an SPT phase: For Jtp > 1, the preparation is
perfectly adiabatic, and the values of the MBTT correspond to the
ones of the ground state wave function (as presented in Figs. 1 and 2).

A
J'/J=0.25
. 2; n 1
= 0
AN
n T
J'/J =20
1 /
10 15 20

Jt

For Jtr ~ 1, the correlations in the wave function do not extend over
the full system, as in the true SPT ground state, but only extend to
certain characteristic length scale n.. Consequently, for n > n,, the
many-body invariant tends to zero. We expect a similar behavior for
a scenario where |y(t = tg)) is replaced by a thermal state, and n. by
a “thermal length” describing the range of correlations. Our protocols
can also be used to probe topology in non-equilibrium systems (43).

Probing the breaking and the protection of symmetries

The MBTIs Z% and Z7behave similarly (cf. Figs. 1E and 2C) for the
model Hamiltonian Hessyy in Eq. 1, because both reflection and
time-reversal symmetries are respected. In addition to identifying
the topology, measuring MBTTs also provides us with the ability to
experimentally study the protection mechanism of SPT phases. In
particular, SPT order can still exist in the absence of certain internal
symmetries (thus, string order being absent), provided at least one
protecting symmetry is present (41). To illustrate this effect with MBTISs,
we add here the term

N-1
Hp=BY, <chjz+1 _G;G}C+l> (8)

j=1

to the original Hamiltonian Hesgy. In the Hamiltonian H = Hegsy +
Hp, the reflection and D, symmetries are explicitly broken, but the
time-reversal symmetry is respected (43). Thus, the ground state of
H = Hessh + Hp can still exhibit nontrivial SPT order, protected solely
by the time-reversal symmetry. This is encoded in the values of the
MBTTIs and can thus be revealed experimentally via our protocols.
As shown in Fig. 4, the partial time-reversal MBTI Z7converges to
+1 for n — oo, whereas the partial reflection MBTI Z approaches 0
asn — oo,

DISCUSSION

To conclude, the use of randomized measurements to probe topo-
logical properties of the wave function is a new paradigm that
enables the experimental classification of many-body topological
quantum phases. While we have focused our study on unidimensional
SPT phases, our protocols also open the possibilities for probing
two-dimensional SPT phases (44), as well as identifying different

B
= // nt  —0254 20,4
% 0 — 0258 — 20,8
R\ —0.25,12 — 2.0,12
ntT — 0.25,16 — 2.0,16

-1

10 20
Jtp

Fig. 3. Monitoring the adiabatic preparation of an SPT state. (A) Starting from a trivial Néel state without reflection symmetry Zx(t), the ground state of Hess is
adiabatically prepared. This is monitored by the evolution of Z(t), which evolves to quantized values +1 at late times. The dynamical buildup of long-range SPT order—
for intermediate times up to a certain length scale—is indicated at intermediate times by the increasing magnitude of Zx(t) for decreasing number n of reflected pairs of
spins. Here, we set Jtr = 20. (B) The convergence of Zx(tf) to £1 as a function of the total preparation time tr indicates that, for sufficiently long preparation times, the
ground states in trivial and topological states are prepared with high fidelity. For the simulations, we use the time-evolving block decimation (TEBD) algorithm (as detailed
in Materials and Methods) and set the parameters as & = 0.25, A = 40J, and N = 48.
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Fig. 4. Detecting the protecting symmetries for the SPT states. In the presence of the symmetry-breaking perturbation Hg (Eq. 8), the topological phase in the modified

Hamiltonian H = Hessy + Hg is (only) protected by the time-reversal symmetry. (A) This is detected by the partial time-reversal MBTI Z;—converging to the quantized
values £1 for increasing n—which still identifies the topological phase transition. (B) On the contrary, the partial reflection MBTI Zr—approaching 0 with increasing
n—shows that the reflection symmetry is explicitly broken for a nonzero B in Eq. 8. We choose B=10.1J,5 =0.3,and N =48.

SET phases (28, 29, 45, 46). The accompanied symmetries, e.g.,
reflection and time-reversal symmetries, for SET phases (29) can be
distinguished via the same MBTIs as for SPT phases (defined in
compactified one-dimensional geometries) and thus can also be probed
via randomized measurements. We also note that our protocol—
presented in this work for spin systems—can also be realized in fer-
mionic systems (24) via global random unitaries implemented for
example with random quenches in Hubbard systems (31).

As a future direction, our work also suggests that anyonic statistics
describing the essence of topologically ordered states can be accessed
via randomized measurements, extending, in particular, approaches
based on impurities (47) or linear response (48) to measure the many-
body Chern number of fractional quantum Hall states. Moreover,
modular matrices revealing anyonic statistics (49) can be expressed as
spatial reflection operators in a form analog to Z on torus geometries
(50) and could thus be measured via randomized measurements.

MATERIALS AND METHODS

In this part, we present the proofs of Egs. 3 to 6, relating MBTIs to
statistical correlations of randomized measurements, together with
the details on our DMRG and TEBD (time-evolving block decimation)
simulations. Here, we also focus on the case of spin-1/2 systems. Our
formulas can, however, be extended straightforwardly to the cases
with higher internal dimensions (spins 1, 3/2, etc.).

Random unitary calculus

We begin by summarizing elementary properties of random unitaries
from the CUE. We discuss the minimal case of two spins, each with
Hilbert space H. These can be either (i) two spins located at different
lattice sites in a single many-body system (partial inversion invariant)
or (ii) two spins located at the same site but realized in two different,
sequentially performed, experiments (time-reversal invariant). Given
a two-spin operator O acting on both spins with total Hilbert space
H®?, we define the unitary twirling channel

d0)=U'@UOU® U (9)

where = denotes the average over random unitaries U taken from
the CUE (i.e., the average with respect to the Haar measure on the
group of unitary matrices on ). Using the two-design identities of
the CUE, we find (51).
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®(0) = %(Tr[O]—%Tr[SO])]lz +%(Tr[§0]—%Tr[O])S

where S = Y ¢ |s,s')s’,s| denotes the swap operator. We also define
the closely related isotropic twirling channel (52)

* * T,
¥(0)= U'®(U")'oUuU" = [@(0™)) (10)

Here, (- )™ denotes the partial transpose with respect to the second
spin. For the following proofs, we will use an operator O =2 Y ¢
(-2) P15 §Y(s, 5’|, which is diagonal in the computational basis,
and fullfills (51)

o(0)=S, (11)

PO)=S" = Ys,s)s,s|= T

5,8
In the following, we show how to use the identities (Eqs. 11 and 12)
to prove Egs. 3 to 6 relating randomized measurements and MBTIs.

(12)

Partial reflection invariant from randomized measurements
The MBTI Zy, is inferred from statistical correlations of randomized
measurements, performed on a quantum state p;, which are im-
plemented by applying spatially correlated local random unitaries
of the form Uy = ®f=”1 U;, with U; = Uyp_iy; fori =1, ..., n. To prove
Eq. 3, we first note that its right-hand side can be rewritten as an
expectation value of an operator Og

Er=2" ; (_2)*%D[SI,R1(SI)]W
1

=Tr | Uk Or Urp]

:Tr[

(UT®U) Ori(Ui® Ui)PI]

i=1

with O = ®}, Og,;» which is a tensor product of operators

O, = 2% (=2) PR y sy |

S1(i)

(13)

acting on pairs of spins I[i] = (i, 2n — i + 1). We also used the inde-
pendence of the unitaries U; and Uy (for i # i’ with i, i’ =1, ..., n)
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applied to different pairs of spins I[i] and I[i'], respectively. Using
Eq. 11 with the identification Ry — S, and Og,; — O, we find

(U ® U})Or,i(Ui ® Ui) =R
and therefore obtain
n
873 = Tr[ 98@17?,[[,'] p[] = ZR
e

Partial time-reversal invariant from randomized
measurements

The MBTI Z7 is inferred from the statistical correlations of correlated
randomized measurements on two (sequential) experiments, both
preparing a quantum state p;. These are implemented by applying
to the sites in an interval I = I; U I, local random unitaries Uf([l) =U,
ur® Uy, (experiment 1) and Ugg) = U; ® Uy, (experiment 2)
with Uy, = ®jer,, U; and ur= Qjer, 6, respectively. To prove Eq. 6,
we rewrite its right-hand side as

7= 2% (-2 " Bl Pl
ST

= Trl( UQ;)T ® (U(ZT)>TOTU(71'> ®UT(p1® pz)]

o T *
- Tr[ig%U;‘ ® (U;) 0n:U; ®U;,

T T TT. (=
QUI® U0 Ui® Ui(Pr ® pf)] (14)

Here, we have defined p; = ( ur® 112) pI ( uTT® 112) and used the
(spatial) tensor product structure of the operator Or= ®; ¢ ;07 ; with

Og; = 23 (=27 P5;)(si|® [sf Xsi] (15)

SiSi

Using Egs. 11 and 12 with the identification S; - S, T; — T, and
Or; — O, we thus directly obtain

Er= Tr[ QT ® §i<51® PI)]
i€l, i€l

=Te[ (7)) "ol = 27

(16)

Details on the DMRG and TEBD simulations

DMRG and TEBD simulations for the ground states and time-
dependent states, respectively, were realized using the ITensor
Library (http://itensor.org) in the framework of matrix product
states. To get a ground state, the model was numerically solved with
open-boundary conditions, with an additional small pinning field
acting on the first site 8,67, with 3, = 0.05], to select one of the two
degenerate ground states present in the topological phase for open
boundary conditions (53). Note that in experiment with large system
size N, the system would always choose one of the degenerate ground
states because a cat state (i.e., the superposition of the two degenerate
ground states) is always fragile to perturbations (as simulated by the
small pinning field). We used a maximum bond dimension of D = 512.
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The quasi-exact MBTIs were extracted from direct contractions of
the matrix product states representing the ground states (as shown
by the solid lines in Figs. 1, 2, and 4). The estimations for randomized
measurements were obtained using a sampling algorithm of the
occupation probabilities Py(s) for matrix product states (54).

The simulations for the time-dependent state for the adiabatic state
preparation (as in Fig. 3) were realized via the TEBD algorithm with
a time step Jdt = 0.001 and a maximum bond dimension D = 512.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/15/eaaz3666/DC1
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