
universe

Article

Penrose Process: Its Variants and Astrophysical Applications
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Abstract: We present a review of the Penrose process and its modifications in relation to the
Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this
process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the
electric variant related to electrically charged Schwarzschild black holes, and the radiative Penrose
process connected with charged particles radiating in the ergosphere of magnetized Kerr black holes
or naked singularities. We discuss the astrophysical implications of the variants of the Penrose
process, concentrating attention to the extreme regime of the magnetic Penrose process leading
to extremely large acceleration of charged particles up to ultra-high energy E∼1022 eV around
magnetized supermassive black holes with mass M∼1010 M� and magnetic intensity B∼104 G.
Similarly high energies can be obtained by the electric Penrose process. The extraordinary case is
represented by the radiative Penrose process that can occur only around magnetized Kerr spacetimes
but just inside their ergosphere, in contrast to the magnetic Penrose process that can occur in a more
extended effective ergosphere determined by the intensity of the electromagnetic interaction. The
explanation is simple, as the radiative Penrose process is closely related to radiated photons with
negative energy whose existence is limited just to the ergosphere.

Keywords: rotating black holes; accretion disks; magnetic fields; ultra-high energy particles

1. Introduction

The Penrose process [1] introduces the extraction of rotational (or electrostatic) energy
from rotating (charged) black holes, or their counterparts represented by naked singularities
(or superspinars), by using the decay of particles in the ergosphere, a region of extremely
strong influence of the spacetime rotation, allowing for the existence of particles with
negative energy relative to distant observers. The present article is devoted to the Penrose
process and its variants related to magnetized or electrically charged black holes.

Active galactic nuclei (quasars) radiate extremely large energy due to accretion disks
orbiting a central supermassive black hole with mass M > 106 M� and jets created near
the disk edge close to the black hole horizon [2]. It is generally assumed that creation of
the jets is related to the Blandford–Znajek process [3] that can be treated as a collective
demonstration of the magnetic Penrose process [4]. In a series of works [5,6], we have
shown that the most efficient demonstration of the magnetic Penrose process is related to
the ionized Keplerian (or toroidal) accretion disks.

The theory of accretion disks is very complex [7], being based on two approaches. The ge-
ometrically thin, Keplerian, accretion disks are basically governed by the spacetime circular
geodesics [8]. The geometrically thick, toroidal accretion disks are basically governed by the
effective potential implied by the Euler equation describing the balance of the gravitational forces,
inertial forces, and pressure gradients of orbiting perfect fluid [9]. The equilibrium tori are re-
lated to the closed equipotential surfaces of the effective potential, accretion tori are related to
the self-crossing equipotential surfaces, and jets are related to the open equipotential surfaces.
The ringed accretion disks describe complex toroidal structures [10–12]. The role of the cosmic
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repulsion on the disk structures around supermassive black holes is summarized in [13,14]; it is
strongest near the static (or turnaround) radius [15,16], giving a natural limit on gravitationally
bounded systems in the accelerated Universe [17]. In our review, we are concentrated on physical
processes in the vicinity of the black hole event horizon, namely, the ergosphere or effective
ergosphere [18]. For completeness, we also comment on the situation that occurs around the Kerr
naked singularities [19–21] or related Kerr superspinars [22–25].

All variants of the fate of ionized Keplerian disks were discussed in [14,26]. The mag-
netic Penrose process is relevant in the chaotic regime of the motion of the ionized matter
of the innermost parts of the disk [27], allowing for acceleration to ultra-high energy [4,28].
The structure of magnetic fields around black holes is still under intensive debate, but the
simple assumption of the uniform magnetic field [29] can be considered as a sufficient and
highly illustrative approximation for discussion of the magnetic Penrose process [14].

In our review, we first present the standard “electrically neutral” form of the Penrose
process and discuss its acceptability in astrophysical processes both for Kerr black holes and
naked singularities. Then, we consider magnetized Kerr black holes (or naked singularities)
and discuss the two regimes of the magnetic Penrose process and its applicability to the
creation of ultra-high energy protons observed in cosmic rays; note that in the magnetic
Penrose process the back-reaction effect due to radiation of the charge particles moving
in the external magnetic field plays an important role [30,31]. Then, we present a new
version—electric Penrose process, related to slightly charged non-rotating Schwarzschild
black holes, where only the electrostatic energy can be extracted in the effective ergosphere
of the black hole, demonstrating that even such a case could be astrophysically very effi-
cient. Finally, we introduce the notion of a radiative Penrose process as a fundamentally
new version that can be related to the radiative self-reaction that occurs solely in the ergo-
sphere; although it can be realized only around magnetized Kerr black holes, the effective
ergosphere of the radiating particle is irrelevant in this case.

Hereafter in this article, we derive the leading equations in the system of geometric units,
in which G = 1 = c, unless the constants are written explicitly or the units are specified. For estima-
tions of electric charges and magnetic fields, we use the cgs system of units, in which the electrostatic
unit of charge is measured in Franklin, so that 1 Fr≡ 1 esu = 1 cm3/2 g1/2 s−1, while the magnetic
field strength is measured in Gauss, so that 1 G = 1 cm−1/2 g1/2 s−1. Conversion to the SI system
of units can be made as follows: 1 C = 3× 109 Fr and 1 T = 104 G.

2. Kerr Black Holes and the Penrose Process

The energy of Kerr black holes (also Kerr naked singularities or Kerr superspinars [22])
has a part related to their rotation that can be extracted in realistic astrophysical pro-
cesses [32]. The simplest example of processes extracting rotational energy is the Penrose
process [1], which is discussed in the present section.

2.1. Kerr Geometry and Ergosphere

Kerr black holes and naked singularities are governed by the line element that in
the Boyer–Lindquist coordinates (t, r, θ, φ), and the geometric units (G = 1 = c), can be
expressed in the form

ds2 = gttdt2 + 2gtφdtdφ + gφφdφ2 + grrdr2 + gθθdθ2 (1)
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where

gtt = −
(

1− 2Mr
Σ

)
, (2)

gtφ = −2aMr sin2 θ

Σ
, (3)

gφφ =

(
r2 + a2 +

2a2Mr
Σ

sin2 θ

)
sin2 θ, (4)

grr =
Σ
∆

, (5)

gθθ = Σ, (6)

with
∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 θ; (7)

M is the gravitational mass of the black hole [33] giving the mass in the Newtonian
limit, a = J/M is its spin, and J is its internal angular momentum [18]. Assuming a > 0,
the Kerr black holes correspond to a < M; extreme Kerr black holes correspond to a = M;
and Kerr naked singularities correspond to a > M. The physical singularity has a ring
character, being located at r = 0, θ = π/2; the Kerr spacetimes are discussed in detail
in [34]. The Kerr metric (1) is asymptotically flat—for the generalization to the non-zero
cosmological constant, see [15,16].

The Kerr black hole energy represented by the mass parameter squared M2 can be
separated into two parts, namely, the irreducible and the rotational part, and takes the
form [35,36]

M2 = M2
ir +

J2

M2
ir

; (8)

the irreducible part of the black hole energy cannot be removed, and it is related to the black
hole event horizon surface S by the relation S = 16πM2

ir, while the second rotational part is
governed by the internal angular momentum of the black hole J = aM. The rotational part
of the energy can be extracted by astrophysical processes [1,3,32,37,38], and we shall discuss
possible variants of this extraction in the particle form. Note that there is an additional wave
form of the energy extraction called super-radiation related to the scattering of properly
tuned waves [37].

It is useful to put for simplicity M = 1 introducing thus dimensionless spin a and
dimensionless coordinates r, t. Sometimes it could also be useful to have Cartesian-like co-
ordinates that can be obtained by the transformation to the Kerr–Schild coordinate system

x =
√

r2 + a2 sin θ cos φ̃, y =
√

r2 + a2 sin θ sin φ̃, z = r cos θ, (9)

with φ̃ = φ− tan−1 (a/r).
The divergence of the metric coefficient grr determines the horizons of the Kerr black

holes located at
r± = 1± (1− a2)1/2. (10)

The outer event horizon r+ = 1 + (1− a2)1/2 represents a boundary of the black hole
with respect to distant observers. The inner horizon is a Cauchy horizon of the external
spacetime [34]. In the extreme Kerr black holes, these horizon coincide at r = 1. No event
horizon exists in the Kerr naked singularity spacetimes.

We restrict to the black hole spacetime region located above the event horizon at r+.
The static observers exist only in the regions where gtt < 0. Above the event horizon,
the static observers cannot exist in the ergosphere limited from above by the surface of
stationarity, or stationary limit radius

rstat+(θ) = 1 + (1− a2 cos2 θ)1/2. (11)
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Under the inner horizon, the ergosphere is limited by the surface

rstat−(θ) = 1− (1− a2 cos2 θ)1/2. (12)

The shape of the ergosphere is illustrated in Figure 1; notice that for black holes, the ergo-
sphere extends to the rotation (symmetry) axis, but this is not the case for naked singularities.
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Figure 1. The ergosphere extension, represented by the equatorial and the meridional sections, is
given for Kerr black holes and Kerr naked singularity.

2.2. Test Particle Motion and Locally Non-Rotating Frames

Motion of (uncharged) test particles having rest mass m is governed by the
geodesic equation

Dpµ

Dτ
= 0 (13)

complemented by the normalization condition

pµ pµ = δ (14)

where pµ is the particle four-momentum and δ = −m2 for massive particles, while δ = 0
for massless particles. Two Killing vector fields of the Kerr geometry, ∂/∂t, and ∂/∂φ,
imply the existence of conserved energy E and axial angular momentum L.

As all the particles are dragged by the rotating spacetime, it is useful to determine
limits on the angular velocity Ω = dφ/dt of the orbiting matter (fixed at a given radius
r > r+)—the limits correspond to the motion of photon in the sense of rotation and in the
opposite one. We thus find that the angular velocity of any circulating particle has to be
limited by the interval

Ω+ > Ω > Ω− (15)

where the restricting angular velocities are given by the relation

Ω± = −
gtφ

gφφ
±

√(
gtφ

gφφ

)2
− gtt

gφφ
. (16)
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Now we can directly see that we can define in the Kerr geometry the notion of the
locally non-rotating frames (LNRF), related to the zero angular momentum observers
(ZAMO) with axial angular momentum L = 0, and four-velocity

uα
LNRF = (ut

LNRF, 0, 0, uφ
LNRF), (ut

LNRF)
2 =

gφφ

g2
tφ − gttgφφ

, uφ
LNRF = ΩLNRF ut

LNRF, (17)

ΩLNRF(r, θ) = −
gtφ

gφφ
=

2ar
(r2 + a2)2 − a2∆ sin2 θ2

. (18)

The LNRFs (ZAMOs) four-velocity are well defined above the horizon (r > r+) in
the black hole case and for all radii in the naked singularity case and are corotating with
the Kerr spacetime at fixed coordinates r and θ. The ZAMOs represent a generalization
of the static observers in the Schwarzschild spacetime—this can be well demonstrated
by the fact that the particles falling from rest at infinity remain purely radially falling
relative to static observers in the Schwarzschild spacetimes and relative to LNRFs in the
Kerr spacetimes [39]; for the principal null congruence (PNC) photons, i.e., purely radially
moving photons, this property is, in Kerr spacetimes, realized in the Carter frames that
differ slightly in comparison to the LNRFs [40].

Introducing the abbreviation

A = (r2 + a2)2 − a2∆ sin2 θ (19)

the orthonormal tetrad of the LNRFs can be introduced as follows [41]

ωr =
(

0,
√

Σ/∆, 0, 0
)

, (20)

ωθ =
(

0, 0,
√

Σ, 0
)

, (21)

ωt =
(√

∆Σ/A, 0, 0, 0
)

, (22)

ωr =
(
−ΩLNRF

√
A/Σ sin θ, 0, 0,

√
A/Σ sin θ

)
. (23)

The three-velocity of a particle having four-velocity Uµ has in the LNRFs the compo-
nents vi given by the relation

vi =
U(i)

U(t)
=

ω
(i)
µ Uµ

ω
(t)
µ Uµ

(24)

where i = r, θ, φ. For the circular geodesic orbits, the only non-zero (axial) component
reads [41]

vφ =
±M1/2(r2 ± 2aM1/2r1/2 + a2)

∆1/2(r3/2 ∓ aM1/2)
; (25)

the upper sign determines the first family orbits (purely corotating in the black hole
spacetimes), while the lower sign determines always the counter-rotating orbits. Recall
that the first family stable circular orbits can become counter-rotating relative to the LNRFs
(having L > 0) around naked singularities with a < 3

√
3/4∼1.3, while the marginally

stable circular orbit and slightly higher orbits have negative energy E < 0 in the field of

naked singularities with a < 4
3

√
2
3∼1.089. For naked singularities with a→ 1, at the first

family marginally stable orbits E/m → − 1
3

√
3 and efficiency of the Keplerian accretion

reaches 1.5765, while, for extreme black holes, it is only 0.4235—for details see [20].

2.3. The Penrose Process

The extraction of rotational energy of Kerr black holes from their ergosphere due to a
very simple process of decay of an electrically neutral particle into two electrically neutral
particles was proposed by R. Penrose in [1]. Denoting the incoming particle as particle 1,
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and the two particles resulting from the decay as 2 and 3, we can write the law of the
(kinetic) four-momentum conservation in the form

pα(1) = pα(2) + pα(3). (26)

It is natural in astrophysically relevant situations to consider the incoming particle
as incoming from infinity, and the simplest possibility is a particle falling from rest with
E1 = m1; another one is related to a particle infalling from the marginally stable circular
geodesic assumed to be the inner edge of the Keplerian accretion disks. We can consider in
the following only the equatorial motion of the particles; therefore, pθ = 0 and only the
axial and radial components of the motion remain non-zero. For our purposes, the energy
conservation is crucial, namely, in the form given for the covariant energy

E1 = E2 + E3. (27)

If particle 2 has energy E2 < 0 (having necessarily also L2 < 0 [18]), then the third
escaping particle has E3 > E1 extracting rotational energy from the black hole—the mass
and angular momentum of the Kerr black hole being decreased by the capture of the
second particle.

The efficiency η of the Penrose process relates the gained energy to the incoming
energy due to the relation

η =
E3 − E1

E1
=
−E2

E1
. (28)

The efficiency is strongest for the Penrose process in the equatorial plane when it is
given for black holes by the relation

η =
1
2

(√
rs/rsp − 1

)
(29)

with rs = 2 representing the static limit radius at the equatorial plane and rsp representing
the splitting point located inside the ergosphere. In the case of the extreme Kerr black holes,
we find the limiting value of ηextr =

1
2 (
√

2− 1)∼0.207 for the splitting point approaching
the black hole horizon.

We can thus see that the pure Penrose process is not extremely efficient, as its maximal
efficiency η∼0.207 is only half of the efficiency of the Keplerian accretion around the ex-
treme Kerr black hole that reaches η∼0.427. We expect that in the case of Kerr superspinars
(naked singularities) the efficiency could be higher, being dependent on the unknown
location of the superspinar surface—see [22,24,25].

To estimate the astrophysical relevance of the Penrose process realized in the equatorial
plane, we have to calculate in the LNRF’s velocity space vr − vφ the distance of the point
corresponding to the incoming particle at the splitting point to the region of states with
negative covariant energy. We thus have to relate the motion constants of particle 1 (and
particle 2 assumed to be at any negative energy state) to the related velocities measured in
the LNRF. We thus have to use the four-momentum in the LNRF taken in the form

pα = m(γ, γvi) (30)

with the Lorentz factor
γ = [1− (vr)2 − (vφ)2]−1/2. (31)

The motion constants of the particle are related to the velocities due to the relations

E = −pt = −p(α)ω
(α)
t =

mγ

A1/2 [rA1/2 + 2avφ] (32)

and

L = pφ = p(α)ω
(α)
φ = mγ

(
A
Σ

)1/2
v(φ). (33)
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The resulting schemes are represented for both Kerr black holes and Kerr naked
singularities in Figure 2—see also [20,37]. We can see that the Penrose process is not
astrophysically plausible around Kerr black holes because of the large gap between the
velocities of the incoming particle and the particle with negative energy that is at least
∆v > 0.5 as demonstrated in [37]. On the other hand, in the case of Kerr superspinars
(naked singularities), the Penrose process can be quite realistic, as the corotating circular
geodesics directly enter the region of negative energy states, and even the marginally
bound orbit with energy E/m = 1 has the velocity gap ∆v < 0.35, if the superspinar
dimensionless spin a < 1.089 [20].
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Figure 2. Distribution of different types of the particle equatorial motion in the LNRF velocity space
v(r) − v(φ). Orbits from shaded regions have negative energy relative to infinity; the thick dashed
curves represent last = bounded orbits. The black circle is given by the velocity norming condition.
Notice the strong qualitative difference demonstrated in black-hole and naked-singularity spacetimes.
The Penrose process is astrophysically plausible for rotating naked singularity because, for near
extreme cases, the bound orbits can have negative energy relative to infinity.

3. Magnetized Kerr Black Holes and Magnetic Penrose Process

If the decay of charged particles is considered, it was shown that the magnetic Penrose
process (MPP) around magnetized rotating black holes, i.e., Kerr black holes immersed in
an external, large-scale magnetic fields, can have a much larger efficiency than the pure
Penrose process, exceeding the annihilation value of η = 1 [42,43].

3.1. The Role of Magnetic Fields in Black Hole Physics

In black hole physics, external magnetic fields play a very important role as known
for a very long time [32]. The short-scale magnetic fields in the accretion disks generate
viscosity and related transfer of matter and angular momentum in the radial direction
due to the magneto-rotational instability [7,44]. The external (large scale) magnetic fields
surrounding the rotating black holes can significantly influence ionized Keplerian disks,
leading, in dependence on intensity of the electromagnetic interaction, to possible epicyclic
oscillations of slightly charged matter that could be related to the high-frequency quasiperi-
odic oscillations (HF QPOs) observed in microquasars or active galactic nuclei [26,45,46],
or to an extraordinary manifestation of the MPP [1,42] creating ultra-high energy particles
around magnetized supermassive rotating black holes [5,6,14,27,28]. Moreoever, there
are indications that the Blandford–Znajek process [3] is a collective manifestation of the
MPP [4]. Interesting new effects were discovered in relation to the radiation 0reaction due
to synchrotron radiation of the strongly accelerated particles [30,47].
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The circular orbits of charged particles located off the equatorial plane that occur
around magnetized compact objects [48–50] indicate the existence of charged off-equatorial,
“levitating,” toroidal structures orbiting such objects. Contrary to the standard approach
based on modeling the charged fluids in the "free-field" framework using an assumption of
infinite conductivity [2,3,51] that abandons the inertia of the fluid constituents, the opposite
approximation of zero conductivity is assumed in the model of non-conducting tori that
takes into account the inertia of the charged matter and that was developed in [52–54]—for
an overview of this model, see [14]. It is interesting that the charged non-conducting
tori can exist both as equatorial and off-equatorial structures or even as clouds on the
rotational axis [53], being thus complementary to the equatorial multi-toroidal structures
(ringed accretion disks) that can mix relatively counter-rotating tori, possibly created during
evolution in active galactic nuclei [10–12,55–57]. Note that the low-density off-equatorial
tori can be treated as collision-less plasma [58].

All the magnetic fields observed around compact objects can be considered as weak
fields from the point of view of general relativity if their stress energy tensor is not strong
enough to influence the spacetime curvature. The corresponding magnetic field intensity
reads [59]

BGR = 1019
(

M�
M

)
G. (34)

In the present study giving a review of all the important variants of the Penrose
process, we thus applied the pure Kerr geometry, as both the realistic electric charges [28]
and magnetic fields (that are maximally BGR = 108G for stellar mass black holes and
BGR = 105G for supermassive black holes) have an insignificant influence on the space-
time geometry.

3.2. Asymptotically Uniform Magnetic Field as Basic Approximation

The external magnetic field in vicinity of the black hole horizon could be very com-
plex, as shown in the magnetohydrodynamical general relativistic dynamical simulations
(MHGRD) of magnetized toroidal structures [2]. However, the external magnetic field
near the rotation axis of the tori, where the jets are located, can be well represented by
a parabolic magnetic field or by the split-monopole field [3,51], and we can keep as the
starting approximation the asymptotically uniform magnetic field introduced by Wald [29]
that was applied in many astrophysical studies. To keep the symmetry of the background,
it is useful to assume that the magnetic field lines are directed along the rotation axis of the
geometry. (For the case of inclined magnetic field, see [60].)

The Wald field of intensity B, with lines oriented along the z-axis orthogonal to the
geometry equatorial plane, is determined by the electromagnetic four-vector potential Aα

with two non-zero components

At =
B
2
(gtφ + 2agtt)−

Q
2

gtt −
Q
2

, Aφ =
B
2
(gφφ + 2agtφ)−

Q
2

gtφ, (35)

with addition of the induced electric charge of the black hole Q [29]—the maximal (Wald)
value of the induced black hole charge reads QW = 2aB (or QW = 2aBM if we keep the
mass term). For the Wald charge, the electromagnetic potential reduces to

At =
B
2

gtφ −
QW

2
, Aφ =

B
2

gφφ (36)

It is very important that, even in this limiting case, the At component remains non-
zero, generating a possibly very strong acceleration mechanism in the vicinity of sufficiently
massive black holes immersed in sufficiently strong magnetic fields. In the following, we
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concentrate on the case of the Wald charge QW = 2aB representing the most plausible
astrophysical situations. In the field of Kerr black holes, we then arrive to the formulae

At = −aBM

(
r sin2 θ

Σ
+ 1

)
, (37)

Aφ =
B sin2 θ

2

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
. (38)

The components of the electric and magnetic fields projected onto the tetrad of the
LNRFs are generally given as E(i) = Eµeµ

(i) = F(i)(t) for the electric field, and B(i) = Bµeµ

(i) =

ε(i)(j)(k)F(j)(k) for the magnetic field. In the Kerr geometry and the related LNRFs, we thus
obtain the following non-zero components [61]

E(r) =
aMB

Σ2 A1/2

[
2r2Σ sin2 θ − (r2 + a2)(r2 − a2 cos2 θ)(1 + cos2 θ)

]
, (39)

E(θ) =
aMB∆1/2

Σ2 A1/2 2a2r sin θ cos θ(1 + cos2 θ), (40)

B(r) =
B cos θ

Σ2 A1/2

{
(r2 + a2)Σ− 2Mra2[2r2 cos2 θ + a2(1 + cos4 θ)]

}
, (41)

B(θ) = −B∆1/2 sin θ

Σ2 A1/2

[
Ma2(r2 − a2 cos2 θ)(1 + cos2 θ) + rΣ2

]
. (42)

The twisting of magnetic lines caused by gravitational dragging generates a quadrupole
electric field determined by the component At, and the “quadrupole” charge can be in-
terpreted as the induced charge of the black hole [4,62]. Around extreme Kerr black
holes, an analogy to the Meissner effect becomes relevant, canceling the induced charge,
because such a black hole serves as a superconductor expelling the magnetic field lines [63].

For magnetic fields with a non-zero poloidal component, any observer can detect a
non-zero electric field in the ergosphere [29,64], as the induced electric charge could not be
screened by plasma [65]. The total screening of the electric field needs the conditions

~B.~E = 0, E2 − B2 < 0 (43)

satisfied simultaneously, where E and B are vectors of the electric and magnetic field
as measured in the LNRFs [51]. However, E2 − B2 is negative outside the ergosphere,
but it is positive inside the ergosphere [51]. For this reason, the electric field generated by
the combined effect of a uniform (generally poloidal) magnetic field and the black hole
rotation is not screened inside the ergosphere where it can cause efficient acceleration of
charged particles.

For estimation of the effectiveness of the acceleration process, the relation of the
electromagnetic Lorentz force and the gravity, acting on a test particle with charge q and
mass m, influenced by a black hole with mass M, immersed in an uniform magnetic field
of the strength B, we introduced a dimensionless “magnetic parameter” B [46,66]

B =
B
2

q
m

GM
c4 . (44)

In Table 1, we present a comparison of the relevance of various magnetic fields for
various test particles including a charged dust grain (one electron lost, m = 2× 10−16 kg).
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Table 1. Intensity of the magnetic field B corresponding to the magnetic parameter B = 1 for various
types of charged particles moving in the vicinity of the black hole of mass MBH∼10 M�.

M = 10Msun/ Electron Proton Fe+ Charged Dust

B = 1 10−3 G 4 G 240 G 1011 G

There are several alternatives to the uniform magnetic field that are widely discussed
in the astrophysical context. The first one is the dipole magnetic field that can be generated
by circular current loops in the central plane of the black hole [67]. Second, in the vicinity
of the black hole horizon, such a field can be well represented by the split-monopole
approximation introduced in [3], where the approximation of the parabolic field was also
introduced. Note that the parabolic fields are usually the outcomes of the numerical
simulations of the toroidal structures treated in the framework of general relativistic
magnetohydrodynamics [2]. Of special character is the electromagnetic field related to the
Kerr–Newman black holes or their generalizations with the cosmological constant—see,
e.g., [15]. For our purposes, the uniform magnetic field approximation can be quite
sufficient [14].

3.3. Motion of Charged Test Particles

Charged test particle motion is determined by the Lorentz equation

m
Duµ

Dτ
= eFµ

ν uν (45)

where τ is the proper time of the moving particle and Fµ
ν is the Faraday tensor of the

electromagnetic field. In the Kerr–Newman black hole backgrounds, the charged particle
motion is fully regular, as the Lorentz equations can be separated and solved in terms
of first integrals [34,68]—in the magnetized Kerr black hole background, the motion is
generally chaotic.

3.3.1. Hamiltonian Formalism and Effective Potential of the Motion

The symmetries of the considered magnetized Kerr black hole backgrounds imply the
existence of two constants of the motion: energy E and axial angular momentum L, which
are determined by the conserved components of the canonical momentum

− E = πt = gtt pt + gtφ pφ + qAt, L = πφ = gφφ pφ + gφt pt + qAφ. (46)

To treat the motion, we used the Hamilton formalism. The Hamiltonian can be
given as

H =
1
2

gαβ(Pα − qAα)(Pβ − qAβ) +
1
2

m2, (47)

where the generalized (canonical) four-momentum Pµ = pµ + qAµ is related to the kine-
matic four-momentum pµ = muµ and the electromagnetic potential term qAµ. The motion
is governed by the Hamilton equations

dXµ

dζ
≡ pµ =

∂H
∂Pµ

,
dPµ

dζ
= − ∂H

∂Xµ (48)

where the affine parameter and the particle proper time are connected as ζ = τ/m.
The Hamilton equations represent, in the general case, eight first-order differential equa-
tions that can be integrated numerically.

The combined gravitational and electromagnetic background of the magnetized Kerr
black holes considered here is stationary and axially symmetric, and the related two con-
stants of motion allow a reduction in the charged test particle motion to two-dimensional
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dynamics. Introducing the specific energy E = E/m, the specific axial angular momentum
L = L/m, and the magnetic interaction parameter B = qB/2m, the Hamiltonian reads

H =
1
2

grr p2
r +

1
2

gθθ p2
θ + HP(r, θ). (49)

We can define the effective potential of the radial and latitudinal motion that deter-
mines the energetic boundary for the particle motion (HP = 0), corresponding to turning
points of the radial (pr = 0) and the latitudinal (pθ = 0) motion. The energy condition
implies for the effective potential the relation

E = Veff(r, θ) (50)

where

Veff(r, θ) =
−β +

√
β2 − 4αγ

2α
, (51)

with

β = 2[gtφ(L− q̃Aφ)− gtt q̃At],

α = −gtt, γ = −gφφ(L− q̃Aφ)
2 − gtt q̃2 A2

t + 2gtφ q̃At(L− q̃Aφ)− 1

The effective potential defined here behaves well above the outer horizon; subtleties
in the inner region of the Kerr geometry are discussed in [69]. The effective potential
determines the allowed regions in the r − θ space for charged particles with fixed axial
angular momentum—see Figure 3. It is crucial that the effective potential determines in a
natural way the region where the magnetic Penrose process can be relevant, which is called
the effective ergosphere. The boundary of the effective ergosphere is, for a charged particle
with fixed axial angular momentum, determined by the relation

E = Veff(r, θ) = 0. (52)

Figure 3. Effective potential of the charged particle motion and an example of the chaotic type of the
particle motion.

Inside the effective ergosphere, the energy states with E < 0 are possible; therefore, it
is clearly the arena of the MPP. The effective ergosphere is not identical to the ergosphere,
extension of which is independent of the details related to the particles, and it could
significantly exceed the boundary of the ergosphere; in fact, there is no general limit in the
Kerr spacetime except the event horizon.
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In the study of the MPP, a crucial role is played by the notion of ionized Keplerian
disks. The standard Keplerian disks are considered as composed from matter that behaves
as electrically neutral in external electromagnetic fields—the disk composed from a quasi-
neutral mixture of electrons, protons, and ion behaves as collectively neutral matter if its
density is sufficiently high to guarantee a sufficiently short mean free path of the particle
motion in comparison with its orbital motion. However, near the edge of the disk, the
density decreases significantly, and the particles start to feel the electromagnetic field as
their mean free path increases to become comparable with extension of the orbital motion.
(Note that an irradiation of the disk can also be caused by its ionization, as is discussed
later.) The fate of the ionized part of the Keplerian disks is discussed in detail in [14]. One
of the relevant cases, very important in the astrophysics of accretion disks, which occurs
if the electromagnetic influence is sufficiently weak, is survival of this part of the disk in
epicyclic regular motion, enabling explanation of HF QPOs observed in microquasars and
active galactic nuclei [14].

3.3.2. Chaotic Scattering

Relevant for our purposes is the case of a strong electromagnetic field leading to
destruction of the ionized part of the disk in the process of chaotic scattering [27]. To obtain
a proper intuition on this phenomenon, we have to discuss the asymptotic behavior of the
effective potential having the form [27]

Veff(x, z→ ∞) = 2aB +

√
1 +

(
L
x
−Bx

)2
. (53)

The particles thus can reach infinity in the z-direction with minimal energy

Emin = 2aB for B ≥ 0, (54)

Emin = 2aB +
√

1− 4BL for B < 0. (55)

Particles with energy E ≥ Emin can reach infinity, but their energy has to be modified
there due to the “magnetic” factor to give E∞ = E − 2aB, because, for the motion in the
homogeneous magnetic field, the effective potential at infinity in the flat spacetime is not
containing the term 2aB. In the asymptotically flat region of the magnetized Kerr black
holes, we thus arrived in the cylindrical coordinates t, ρ, θ, φ to the energy relation [27]

E2
∞ =

(
dz
dτ

)2
+

(
dρ

dτ

)2
+ gφφ

(
dφ

dτ

)2
= E2

z + E2
0 ; (56)

separation of the energy to the parts corresponding to the translational (longitudinal) motion

E2
z =

(
dz
dτ

)2
, (57)

and the transverse (perpendicular) motion mixing the orbital and oscillatory radial motion

E2
0 =

(
dρ

dτ

)2
+

(
L
ρ
−Bρ

)2
+ 1 (58)

has been done. In the field of Kerr black holes, the motion constants are only E and
E∞, but conversion of the energies Ez and E0 is possible due to chaotic character of the
motion [27].

In infinity, the particle state is characterized by the Lorentz factor

γ =
dt
dτ

= E∞ (59)
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and its part related to the longitudinal motion. The maximum value of the longitudinal
Lorentz factor depends on the magnetic parameter and related velocity of the azimuthal
motion [27]:

γz(max) = E∞, uφ = 0, for B > 0, (60)

and
γz(max) =

E∞√
1− 4BL

, uφ = 2BL, for B < 0. (61)

For B > 0, full conversion of the transverse motion to the longitudinal motion
is possible, corresponding to particles following the magnetic field lines. For B < 0,
complete conversion is impossible, and a minimal Larmor orbital motion must be added
to the translational motion—the minimum of axial angular velocity is given as uφ = 2BL.
The Lorentz factor can be of order of 10 for B∼1, [27]; around realistic magnetized black
holes, the Lorentz factor can take many orders of 10 [28].

We can conclude that fate of the ionized Keplerian disk is governed by the fight of
gravity and electromagnetic forces that is reflected by the magnetic parameter B. For B � 1,
gravity wins, and the character of the motion is close to the regular motion, while, for B
∼1, there is the strong fight of the influences implying fully chaotic motion, and, for B � 1,
the electromagnetic forces win, the chaotic period of the motion is suppressed, and the
regular motion is approached soon—see Figure 4 demonstrating the suppression of chaotic
motion with increasing magnetic parameter.
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Figure 4. Charged particle chaotic scattering under the combined influence of rotating black hole
and uniform magnetic field.

3.4. Magnetic Penrose Process and Creation of Jets

The energy balance of the MPP is determined by the local value of the electric part
of the potential. We consider the MPP including the case of decaying charged particles or
ionized Keplerian disks. For simplicity, we restricted attention to the equatorial motion,
allowing for small impulsion to the vertical direction to enable the chaotic regime of the
motion, allowing escape to infinity along the lines of the magnetic field. The energetic
balance of the decay process was calculated in the equatorial plane where the highest
efficiency of the MPP is obtained.

The effective potential of the equatorial motion around a magnetized Kerr black hole
takes the form

Veff = −qAt −
gtφ

gφφ
L +

[
−gtt +

g2
tφ

gφφ

(
L2

gφφ
+ 1
)]

; (62)
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due to the time component of the electromagnetic potential, the negative energy states are
possible outside the ergosphere—the resulting effective ergosphere allows in dependence
on L the existence of negative energy states without any limit [18,43].

We now consider that the first particle assumed to be generally positively charged
(neutrality not excluded) splits onto two charged particles, the second one having a negative
charge and the third one having a positive charge. Assuming that the second particle has
a negative canonical energy E2 < 0, the third one should have the canonical energy
E2 > E1 due to extraction of the black hole rotational energy caused by the capture of
the second particle. Two conservation laws govern the process of the splitting process.
The conservation of the electric charge

q1 = q2 + q3, (63)

and the canonical momenta conservation

Pα(1) = Pα(2) + Pα(3). (64)

The charged particle motion is characterized by its angular velocity related to the
distant static observers

Ω =
dφ

dt
=

uφ

ut , (65)

restricted by the null vector limits on the four-momentum pα, Ω±. The escaping third
particle has the canonical conserved energy [28]

E3 = χ(E1 + q1 At)− q3 At, (66)

with
χ =

Ω1 −Ω2

Ω3 −Ω2

X3

X1
, Xi = gtt + Ωigtφ (67)

where Ωi (Xi) is the angular velocity (the velocity factor) of the i-th particle. The MPP can
work if the electromagnetic term −q2 At plays a dominant role being positive—for q3 > 0
and B > 0, a > 0 the condition −q3 At < 0 is satisfied because of definition of At, and it
will be dominant for large values of the magnetic parameter B.

Under such conditions, the third particle (e.g., proton) energy E3 = pt3 + qAt is
very large, while the second particle energy E2 = pt2 − qAt is negative with a very large
magnitude (or vice-versa, due to the orientation of the magnetic field). Due to the chaotic
scattering mechanism [27], the highly energetic third particle escapes to infinity along
the magnetic field, and the second particle with large negative energy enters the black
hole—see Figure 5.

The efficiency of the MPP can be expressed in the form

ηMPP = χ− 1 +
χq1 At − q3 At

E1
, (68)

where all quantities are taken at the splitting point. As in the case of the the orbital motion
of uncharged particles, for charged particles’ motion, their angular velocity related to the
static observers at infinity is restricted to the interval

Ω− ≤ Ω ≤ Ω+; (69)

and the limiting cases determine the maximal allowed efficiency of the MPP process.
The MPP can work in two regimes having significantly different characters and

efficiencies—regimes of moderate and ultra-high efficiency. The original Penrose process
involving only electrically neutral particles represents a third, low-efficiency regime with
ηPP(max)∼0.207 that is lower than the efficiency of the Keplerian accretion process for
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near-extreme Kerr black holes (η∼0.427) [41] or the near-extreme Kerr naked singularities
(η∼1.573) [20,21].

neutral

-

+

Figure 5. Magnetic Penrose Process for ionized neutral particle. The positively charged particle
(proton) escapes into infinity, gaining positive energy from the black hole, while the negatively charge
particle (electron) is captured by the black hole, loading to it negative energy.

3.4.1. Moderately Efficient Regime of Mpp

The moderate regime of the MPP corresponds to the electrically charged incoming
particle in a situation where the electromagnetic forces are dominant, i.e., the condition
| q

m At| >> |ut| is satisfied. In the moderate regime, the efficiency reads [5,14]

ηmod
MPP ∼

q3

q1
− 1, (70)

while the condition q3 > q1 is satisfied. The efficiency of the MPP process in this regime
is thus estimated as ηmod

MPP∼1 and can reach several units, being thus significantly larger
than the efficiency of the original Penrose process related to neutral particles. In fact, it
was shown for the magnetically arrested accretion disks that the efficiency of the MPP is
η∼3 [70], which s in agreement with the moderate MPP.

In the MPP moderate regime, the electric field induced by the black hole rotation
is successively neutralized by its operation. The moderate regime of the MPP is related
to the Blandford–Znajek process [3] that is considered as a collective action of the MPP
process. Both the MPP and Blandford–Znajek processes are driven by the quadrupole
electric field generated by the magnetic field lines twisted due to the spacetime dragging [4].
The Blandford–Znajek process as a collective phenomenon is caused by the difference of
the electric field generated by the spacetime dragging of the magnetic field at the equatorial
plane, where the induced electric field is maximal, and the pole where it is minimized—the
potential difference is then feeding the related electric currents. Of course, the Blanford–
Znajek process requires a very high threshold intensity of the external magnetic field
that enables ionization of the vacuum by generation of the electron–positron pairs—the
threshold magnetic intensity is given by the relation [3,4]

Bthre ≈ 6.2× 104
(

M
a

)3/4(10M�
M

)1/2
G (71)

that is well met for both the stellar mass black holes where B∼108G and supermassive black
holes in active galactic nuclei where B∼104G. Moreover, the Blanford–Znajek process also
assumes near-extreme Kerr black holes. On the other hand, a more general MPP process
can work at a much lower intensity of the magnetic field (even B∼mG is sufficient) and is
not requiring fast-rotating black holes.
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3.4.2. Extremely Efficient Regime of Mpp

The highly efficient regime of the MPP works for the ionization of neutral matter, and
its efficiency is dominated by the electromagnetic component

ηextr
MPP ∼

q3

m1
At. (72)

In the extreme regime, the efficiency can be as large as ηextr
MPP∼ 1012 for sufficiently

large magnetic fields and sufficiently supermassive Kerr black holes.
It is very useful to demonstrate the differences in the efficiency of the moderate and

extreme MPP, making comparisons in very similar situations. For these purposes, we
considered two similar splittings near a magnetized Kerr black hole having M = 10 M�,
a = 0.8, and B = 104 G, due to an electron loss by a charged and uncharged Helium atom:

He→ α(He++) + 2e−, He+ → α(He++) + e−. (73)

The estimate on the efficiency for the extreme MPP gave

ηextr
He sin 2.4× 103, (74)

and for the moderate MPP we obtained

ηmod
He+ ∼ 1. (75)

We thus immediately see that for the split charged particle, we obtained efficiency
of the order of 1, but, for the electrically neutral particle, the efficiency reached an order
of 103. We thus naturally expect that for supermassive black holes of mass M∼1010 M�,
in the field having B∼104G, the efficiency can reach values ηextr

MPP∼1012 [28], corresponding
to protons accelerated up to the velocities with Lorentz factor γ∼1012. Of course, in the
extreme regime of the MPP, the question of the energy gap to the negative energy states,
important in the original Penrose process, is irrelevant, as the magnetic field present at the
ionization point is the agent immediately acting to put the second particle into the state
with negative energy relative to distant observers.

The crucial aspect of the MPP extreme regime is the neutrality of the first (incoming)
particle that could reach the vicinity of the horizon, unavailable to charged particles, where
the acceleration can be efficient—simultaneously, the space can be free of matter there,
enabling thus the escape of the accelerated particle to infinity. Of course, the ionized
Keplerian disks fulfill well these conditions. In the MPP related to ionized Keplerian disks,
we can write

Pα(1) = Pα(2) + Pα(3), pα(1) = pα(2) + qAα + pα(3) − qAα, (76)

m(1) ≥ m(2) + m(3), 0 = q(2) + q(3). (77)

Assuming that the mass of the second particle is much smaller than the mass of the
third particle,

m(1) ∼ m(2) � m(3), (78)

we can put the restriction
pα(1) ∼ pα(3) � pα(2). (79)

In the ionized Keplerian disks, the splitting electrically neutral particle follows (nearly)
circular geodesic orbits, so we can assume the third particle escaping with large canonical
energy E(3) = pt(3) − q(3)At, while the second particle is captured with large negative
energy E(2) = pt(2) − q(2)At = pt(2) + q(3)At.

Moreover, the chaotic scattering transmutes the original nearly circular motion of the
ionized Keplerian disks to the linear motion of scattered particles along the magnetic field
lines. The extreme MPP thus could model (in addition to the Blanford–Znajek model) the
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creation of strongly relativistic jets observed in active galactic nuclei. The external magnetic
field plays the role of a catalyst of the acceleration of the charged particles generated
by the ionization—extraction of the black hole rotational energy occurs due to captured
negative-energy-charged particles. The magnetic field lines then collimate the motion of
accelerated charged particles. Under the inner edge of the Keplerian disk, an under-dense
region is located, where the charged particles acquire the highest possible energy due to
acceleration by the strongest potential difference, and they could survive their travel to
distant observers, if kept by the magnetic field close to the black hole rotation axis where
the lowest density of the jets is expected.

In the vicinity of the horizon, the splitting process in the equatorial plane implies the
efficiency of the extreme MPP taking the form (now in the standard units)

ηextr
MPP ∼

q3GBMa
m1c4

(
1− rs

2rsp

)
, (80)

where rs = 2GM/c2 is the static limit radius (boundary of the ergosphere) at the equatorial
plane, and rsp is the splitting point radius that can be potentially outside the ergosphere.
The efficiency is governed by the electromagnetic acceleration—it exceeds the "annihilation"
value of η = 1 for electrons accelerated around a stellar mass of black holes immersed in
the field with B∼mG.

For a Keplerian disk ionized around a non-rotating black hole, the MPP generates
winds not able to escape to infinity, as they can have only energy from the rotational
energy of the orbiting matter extracted due to the chaotic scattering (similarly to the
Payne–Blandford process [71]).

3.4.3. Ultra-High Energy Cosmic Rays as Products of Mpp in the Extreme Regime

The cosmic rays are high-energy protons or ions, demonstrating an isotropic distribu-
tion that can be explained only by their extra-galactic origin. The ultra-high-energy cosmic
rays (UHECRs) are particles with energy E > 1018 eV—particles exceeding E > 1021 eV are
rarely observed and are of high interest as they overcome the GZK limit (1019 eV) caused
by interactions with the cosmic microwave background.

The energy loss determined by the GZK-cutoff puts strong limits on the distance of
sources of the cosmic rays with energy overcoming the GYK limit—the corresponding
restricting distance is estimated as l∼ 100 Mpc [72,73]. The observations give the correlation
of the ultra-high energy particles with E > 1020 eV to the active galactic nuclei at distances
lower than 100 Mpc [7].

The maximum of the energy of a charged particle generated in the extreme regime of
the MPP is given (in physical units) as

EMPP = 1.3× 1021 eV
q
e

mp

m
aB

104G
M

1010M�
. (81)

This dependence is illustrated in Figure 6. We can see that protons with energy
E > 1021 eV are generated by mildly spinning (a∼0.8) supermassive black holes with
mass M = 1010 M�, in the magnetic field with B = 104G. The maximum energy of ions
generated under the same conditions as protons is lowered by the factor corresponding to
the specific charge of the considered particles.

The galaxy center SgrA* black hole, being the closest supermassive black hole with
mass MSgrA∗∼4.14× 106 M� [74], spin aSgrA∗∼0.5 [75], and the magnetic field intensity
B∼ 10 G [76] should accelerate frequently observed particles due to its special position
and shortest distance. The predicted maximal energy of protons generated near the
horizon of SgrA* black hole Ep−SgrA∗ = 1015.6 eV is very interesting from this point of
view as it corresponds to the knee of the energy spectrum in the observed data, located
at Eknee∼1015.6 eV, where the observed particle flux is significantly suppressed, which is
in agreement with assumed existence of a strong single source at short distance. Moreover,
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the maximal proton energy EMPP∼1019 eV can be related to the M87 galaxy supermassive
black hole with M = 7× 109 M� and B = 102 .
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Figure 6. Escaping particles with increasing energy due to increasing magnetic parameter. Suppres-
sion of the periodic interval of the chaotic motion increases with increasing magnetic parameter.

If the maximal energy E∼ 1021 eV is related to protons, then in the same source
we have to expect electrons accelerated up to energy 1024 eV because of the factor of
mp/me∼1820—however, nothing like that is observed. The explanation is hidden in the
efficiency of the deceleration (energy damping) of the charged particles due to back-reaction
onto their electromagnetic (synchrotron) radiation in the magnetic field near the black
hole. To the energy E∼1021 eV, protons near the rotating magnetars are accelerated , as the
magnetar mass decrease of 10 orders to M∼1 M� is just compensated by an increase in the
magnetic strength to B∼1014 G. Again, nothing like that is observed—the reason is again
the back-reaction on the radiation. The back-reaction due to the radiation self-force is thus
extremely important in connection to the particle acceleration and their observations; so
we discuss this point carefully.

3.4.4. Synchrotron Radiation of Accelerated Charged Particles

The charged particles (protons, ions, or electrons) accelerated to ultra-high energy can
be detected by distant observers, if the role of the back-reaction force is small or negligible.
Therefore, we discuss the charged particle motion considering both the standard Lorentz
force and the radiation reaction force f µ

R . In the non-relativistic limit, the synchrotron

radiation generates the back-reaction force fR = 3q2

2m
d2uα

dτ2 orthogonal to the four-velocity,
satisfying thus the relation f µ

Ruµ = 0. Its covariant form reads [77]

f µ
R =

2q2

3m

(
d2uµ

dτ2 + uµuν
d2uν

dτ2

)
. (82)

In general, the Lorentz–Dirac equations take the form [30]

Duµ

dτ
= q̃Fµ

νuν + q̃Fµ
νuν. (83)

The first term on the right-hand side of Equation (83) is the Lorentz force that is
determined by the electromagnetic tensor Fµνof the external electromagnetic field, while
the second term is the back-reaction self-force determined by the radiative field Fµν =
Aν,µ −Aµ,ν. The vector potential of the self-electromagnetic field is governed by

�Aµ − Rµ
νAν = −4π jµ, (84)
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where � = gµνDµDν is the Laplace operator, Dµ is the covariant differentiation, and Rµ
ν is

the Ricci tensor of the spacetime. The self-field is determined by the potential given by the
retarded solution of Equation (84)

Aµ(x) = q
∫

Gµ
+λ(x, z(τ))uλdτ; (85)

Gµ
+λ is the retarded Green function. The integration in determining the self-field

potential is considered for the particle worldline z(τ), and the four-velocity uµ(τ) =
dzµ(τ)/dτ [78].

The general relativistic form of the radiating charged particle dynamics takes the
form [79,80]

Duµ

dτ
= q̃Fµ

νuν +
2q2

3m

(
D2uµ

dτ2 + uµuν
D2uν

dτ2

)
+

q2

3m

(
Rµ

λuλ + Rν
λuνuλuµ

)
+

2q2

m
f µν

tail uν; (86)

the last term of Equation (86) giving the tail integral reflecting the role of back-scattering of
the radiation, which is determined by the Green function [78,80]

f µν
tail =

∫ τ−0+

−∞
D[µGν]

+λ′
(
z(τ), z(τ′)

)
uλ′ dτ′. (87)

As the Ricci tensor vanishes in the vacuum Kerr spacetime, the related terms are
irrelevant. Similarly, it can be demonstrated that the tail integral is irrelevant in our
considerations [14,30,81,82]. Therefore, the radiation reaction force takes the form

f µ
R =

2q2

3m

(
D2uµ

dτ2 + uµuν
D2uν

dτ2

)
(88)

and the Lorentz–Dirac equation reads

Duµ

dτ
= q̃Fµ

νuν + f µ
R . (89)

The Lorentz–Dirac equation has a weak point as it gives the runaway solutions [30]—this
disease can be cured by lowering the order of the differential equations [14,30]. Reducing
the second derivative of the four-velocity, we arrive to the self-force expressed in the form

f α
R = kq̃

(
DFα

β

dxµ uβuµ + q̃
(

Fα
βFβ

µ + FµνFν
σuσuα

)
uµ

)
(90)

corresponding to the covariant form of the Landau–Lifshitz equations.
Detailed analysis of the motion of charged particles around a magnetized Schwarzschild

black hole was presented in [30]; the widening of circular orbits was discussed in [31].
Examples of the role of the self-force on the motion around a magnetized Kerr black
hole can be found in [14] on page 56. The synchrotron radiation has been studied also
in [83,84] using a covariant form of the flat space results and recently in [85]—however,
without inclusion of the radiation reaction force.

For our purposes, the calculation of the energy loss is crucial. For the equatorial
motion, the energy loss is given by the relation [30]

dE
dτ

= −2kB
[

2BE3 − E
(

2B f +
uφ

r

)]
. (91)
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For the ultra-high-energy particles (E � 1), the most significant contribution to the
energy loss is given by the first term in square brackets of (91). The energy loss is related
to the relaxation time τ required for decay of the radial oscillatory motion of a charged
particle. The rate of the energy loss is related to the relaxation time as

Ė =
E f − Ei

τ
, (92)

where Ei (E f ) denote the initial (final) energy of the particle. For ultrarelativistic particles,
the energy loss reads

dE
dτ

= −4B2kE3, (93)

giving the solution

E(τ) = Ei√
1 + 8B2kE2

i τ
, (94)

with Ei denoting the initial energy. The relaxation time τ can be expressed as [30]

τ =
1

4kB2

E2
i − E2

f

E2
i E2

f
. (95)

For large values of B, we arrive to the simple form [14]

τmax ≈
1

kB2 f (r)
, B � 1 (96)

enabling a fast estimation of the relevance of the self-force effects in connection to realistic
astrophysical scenarios. We thus have to relate the particle and background parameters to
the relaxation time.

For the characteristic values of the magnetic fields near the stellar mass (M∼10 M�,
B∼108G) and supermassive black holes (M = 109 M�, B∼104G) [86,87], we find for electrons

BBH ≈ 4.32× 1010 for M = 10M�, (97)

BSMBH ≈ 4.32× 1014 for M = 109M�. (98)

For protons, the values of B in (97) and (98) decrease by the factor mp/me ≈ 1836.
The extremely large values of B imply a strong role of magnetic fields in charged particles
dynamics in realistic astrophysical scenarios.

The influence of the radiation reaction force on the energy damping, represented by
the relaxation time τ, depends strongly on the parameter combining the particle and the
black hole characteristics—the parameter k is expressed in dimensionless form as

k =
2
3

q2

mGM
. (99)

The parameter k governs strongly the realistic astrophysical scenarios, although it is
very small, much lower than B. For example, we find for electrons orbiting stellar mass
and supermassive black holes

kBH ∼ 10−19 for M = 10M�, (100)

kSMBH ∼ 10−27 for M = 109M�. (101)

For protons orbiting the same object as electrons, k decreases by the factor mp/me ≈
1836, as for B.

The parameter k is very low in relation to the parameter B, but the particle energy
damping can be very strong, as the relaxation time depends quadratically o a B that is large
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for realistic magnetized black holes. In Table 2, the relaxation time for electrons and protons
is given for the same conditions around magnetized black holes. The relaxation times have
to be confronted with the orbital timescales τc; particles orbiting at the ISCO imply

τc ∼ 10−3s, for M = 10M�, (102)

τc ∼ 104s, for M = 109M�, (103)

For Sgr A* supermassive black holes, we find the electron decay time ∼104 s, while
the ISCO orbital time is ∼103 s, being by one order smaller that the decay time.

Table 2. Energy decay times of electrons (τe) and protons (τp) orbiting a black hole immersed in a
uniform magnetic field with values of B characteristic for various astrophysical situations.

B (Gauss) τe (s) τp (s)

1015 10−22 10−12

108 10−8 102

104 1 1010

1 108 101

10−5 1018 1028

The relaxation time due to the charged particle oscillatory motion can be estimated by
the relation [14]

τ ∼ m3

q4B2 (104)

depending cubically on the particle mass and quadratically on the magnetic field intensity.
Typical relaxation decay times of electrons and protons are given in Table 2.

Since mp/me ≈ 1836, the ratio of relaxation times of proton to electron, at fixed
conditions, is very large, τp/τe∼1010, in correspondence with the factor of (mp/me)3∼1010.
For this reason, the energy decay of electrons is relevant around magnetized black holes
with plausible magnetic fields giving ultra-high energetic particles, so that electrons are
significantly slowed and can not be observed as UHECR. The energy decay of protons
(and ions) is irrelevant around magnetized black holes accelerating ultra-high energetic
particles, and such energetic protons can also keep their energy on the distances ∼100 Mpc
comparable to the GZK limiting distance—we thus can observe them as UHECR. Simply
saying, under fixed conditions, electrons are accelerated with efficiency ∼103 larger than
protons, but efficiency of their energy decay is ∼1010 larger than for protons. On the other
hand, the energy due to acceleration by a given electromagnetic field depends linearly on
B, but energy decay caused by the radiative reaction force depends on B2; for protons, the
energy decay is relevant exclusively around magnetars.

Charged particles (e.g., protons) can be accelerated to the same energy around magne-
tized supermassive black holes with M∼1010 M�, B∼105G, and magnetars with M∼ M�,
B∼1015 G, but around magnetars, the particle energy decays with efficiency 1010 higher
than around the magnetized supermassive black hole. Therefore, there are no extremely
energetic particles coming from magnetars, but we can see protons (ions) coming from
magnetized supermassive black holes.

The play of the MPP acceleration and related energy decays at fixed conditions around
a magnetized black hole, along with the energy decay related to the intergalactic travel
of the ultra-high energy protons and ions, could help in localization of the active galatic
nuclei emitting such particles.

For example, the calculations of energy decay of particles with E > 1020 eV, traveling
across very weak magnetic field of B∼10−5 G representing the intergalactic magnetic field,
demonstrate that particles with energy E < 1021 eV can survive the distance l∼100 Mpc
comparable to the GZK limit, but particles with energy E∼1022 eV can survive at the
distance l∼10 Mpc [28].
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4. Electric Penrose Process

The charge is one of the three characteristics allowed by the no-hair theorem (along
with the mass and spin) to determine the most general black holes [18]. However, in astro-
physics, the black hole charge is often neglected because of non-plausibly large charges
necessary for the Reissner–Nordstrom spacetimes. On the other hand, we know that the
electric charge can occur at a black hole because of the induction of electric field due to the
magnetic field lines dragged by the Kerr black hole spacetime in the Wald solution [29],
or in more general situations discussed, e.g., in [3,4,14,28,38,51]. Moreover, a small hy-
pothetical electric charge could appear even in a non-rotating Schwarzschild black hole
generating a test electric field whose influence on the black hole spacetime structure can
be quite abandoned, but its role in the motion of test charged particles could be very
strong [88,89].

Because of the proton-to-electron mass ratio, the balance of the gravitational and
Coulombic forces for the particles close to the horizon is reached when the black hole
acquires a positive net electric charge Q∼3× 1011Fr per solar mass [88]. Matter around the
black hole can be also ionized by irradiating photons causing escape of electrons [90]—the
positive charge of the black hole is then Q∼1011Fr per solar mass. (In the Wald mechanism
related to the magnetic field lines dragged by the black hole rotation [14,29], both the black
hole and surrounding magnetosphere acquire opposite charges of the same magnitude
Q∼1018Fr.) The realistic value of the black hole charge may for these reasons vary in
the interval

1011 M
M�

Fr . QBH . 1018 M
M�

Fr. (105)

It is naturally interesting to know if an electric Penrose process is allowed in the
circumstances corresponding to matter ionized in the vicinity of electrically charged black
holes—it was demonstrated in [91] that relevant acceleration is really possible; we summa-
rize the results.

4.1. Charged Particles around Weakly Charged Schwarzschild Black Hole

The Schwarzschild spacetime is governed by the line element

ds2 = − f (r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2 θdφ2), (106)

where f (r) is the lapse function containing the black hole mass M

f (r) = 1− 2M
r

. (107)

The radial electric field corresponding to the small electric charge Q is represented by
the only non-zero covariant component of the electromagnetic four-potential
Aµ = (At, 0, 0, 0) having the Coulombian form

At = −
Q
r

. (108)

The electromagnetic tensor Fαβ = Aβ,α − Aα,β has the only one nonzero component

Ftr = −Frt = −
Q
r2 . (109)

Motion of a charged particle of mass m and charge q in the combined background
of gravitational and electric fields is governed by the Lorentz equation. Symmetries of
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the combined background imply two integrals of motion that correspond to temporal and
spatial components of the canonical four-momentum of the charged particle:

Pt

m
= −E ≡ − E

m
= ut −

qQ
mr

, (110)

Pφ

m
= L ≡ L

m
= uφ, (111)

where E and L denote the specific energy and the specific angular momentum of the
charged particle, respectively. The motion is concentrated in the central planes, and we can
choose for simplicity the equatorial plane (θ = π/2). The three non-vanishing components
of the equation of motion (45) take the form

dut

dτ
=

ur[Qr− 2M(er + Q)]

r(r− 2M)2 (112)

dur

dτ
=

eQ
r2 +

L2(r− 2M)

r4 −
M
[
e2 − (ur)2]

r(r− 2M)
, (113)

duφ

dτ
= −2 L ur

r3 , (114)

where e = E − qQ
mr

. (115)

The normalization condition for a massive particle uµuµ = −1 implies the existence
of the effective potential governing the radial motion of the charged particles

Veff(r) =
Q
r
+

√
f (r)

(
1 +
L2

r2

)
, (116)

whereQ = Qq/m is a parameter characterizing the electric interaction between the charges
of the particle and the black hole. Without loss of generality we set the mass of the black
hole to be M = 1, expressing thus all quantities in units of M.

The local extrema of the effective potential Veff govern the circular orbits by the
relation [91]

r2(J − 1) + L2(r− 3) = 0, (117)

where

J =
Q
r

√
(r− 2)(L2 + r2)

r
. (118)

The radial profiles of the specific angular momentum of the circular orbits are given
by relations governing two families of these orbits

L2
± =

r
(r− 3)2

[
−Q2 − 3r +

Q2r
2

+ r2 ±Q
√
Q2 − 12r + 4r2

(
1− r

2

)]
, (119)

The limits on the angular velocity of the circular orbits as measured by distant static
observers Ω = dφ/dt are again given by the angular velocities related to the photon motion
Ω±. The possible values of Ω are thus restricted by

Ω− ≤ Ω ≤ Ω+, Ω± = ±
√

f (r)
r

. (120)

The limiting values of Ω can be again applied in estimates of the efficiency of the
electric Penrose process.
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4.2. Energy of Ionized Particles

Assume the decay of particle 1 into two fragments 2 and 3 close to the event horizon
of a weakly charged Schwarzschild black hole. We can give the following conservation
laws for situations before and after decay—assuming motion in the equatorial plane, they
take the form

E1 = E2 + E3, L1 = L2 + L3, q1 = q2 + q3, (121)

m1ṙ1 = m2ṙ2 + m3ṙ3, m1 > m2 + m3, (122)

where a dot indicates derivatives with respect to the particle proper time τ. The above-
presented conservation laws imply relation

m1uφ
1 = m2uφ

2 + m3uφ
3 . (123)

Using relations uφ = Ωut = Ωe/ f (r), where ei = (Ei + qi At)/mi, with i = 1, 2, 3
indicating the particle number, the equation (123) can be modified to the form

Ω1m1e1 = Ω2m2e2 + Ω3m3e3 (124)

enabling to express the third particle energy E3 in the form

E3 =
Ω1 −Ω2

Ω3 −Ω2
(E1 + q1 At)− q3 At, (125)

where Ωi = dφi/dt is an angular velocity of ith particle.
To maximize the third, particle energy we chose again an electrically neutral first

particle, q1 = 0. We also chose E1 = m1 or E = 1. In this case, the angular velocity for the
first particle 1 has the following simple form

Ω1 =
1
r2

√
2(r− 2). (126)

The energy of the ionized third particle is maximal, if (Ω1 −Ω2)/(Ω3 −Ω2) is maxi-
mized. This can be done when the angular momentum of the fragments takes their limiting
values, implying the relation

Ω1 −Ω2

Ω3 −Ω2

∣∣∣
max

=
1√

2 rion
+

1
2

, (127)

with rion being the ionization radius. The ratio (127) decreases with increasing rion being
maximal while rion is approaching the event horizon. Thus, at rion = 2, the ratio (127) is
equal to unity, and the expression for the energy of the ionized third particle takes the
form [91]

E3 =

(
1√

2 rion
+

1
2

)
E1 +

q3Q
rion

. (128)

The charged particle is accelerated by the Coulombic repulsive force acting between
the black hole and particle, while q3 and Q have the same sign. We defined the ratio
between the energies of ionized and neutral particles representing the efficiency of the
acceleration process. Using the standard units in expressing the black hole mass and
characterizing the third particle by q3 = Ze and the first particle by m1 ≈ A mn, where Z
and A are the atomic and mass numbers, e is the elementary (proton) charge and mn is the
nucleon mass, the efficiency of the electric Penrose process can be given as [91]

ηEPP =
E3

E1
=

1
2
+

√
GM

2 c2 rion
+

Z e Q
A mn c2 rion

. (129)
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For the ionization point approaching the event horizon, rion ≈ 2GM/c2, the condition
E3 > E1 is satisfied for arbitrary positive values of the black hole charge, Q > 0. For the
ionization (splitting) point approaching the ISCO radius, i.e., rion = 6GM/c2, the condition
E3 > E1 is satisfied for the black hole charge satisfying the relation

Q & 5.8× 1011 A
Z

M
M�

Fr , (130)

slightly greater than the lower limit of the estimated realistic limits of the black hole charge
given by (105).

The maximal energy of ionized particle accelerated by the non-rotating weakly charged
black holes can be determined from (129)—by using the uppermost realistic limit of the
charge (105) we arrive to

Emax
ion ≈ 1.01× 106 Z

Q
1018 Fr

M�
M

GeV, (131)

or, equivalently, ≈ 1620 erg. The ratio of energies of ionized and neutral particles is then
equal to Emax

ion /En ≈ 106. In sharp contrast to the magnetic Penrose process [14,28], where
the energy of ionized particle increases with increasing black hole mass, for non-rotating
weakly charged black holes, the energy of a charged particle is inversely proportional to
the black hole mass. The maximal energy is determined by the limiting value of the black
hole charge-to-mass ratio Q/M (see the limits (105) and the charge of the ionized particle
Ze. Therefore, the maximal energy of ionized particle accelerated by the weakly charged
non-rotating black hole is similar for both stellar mass and supermassive black holes in
clear contrast to the MPP.

It follows from the presented results that even the electric Penrose process can lead
to acceleration of protons to the ultra-high energies and could be an explanation of the
UHECRs—increasing the black hole charge for a given black hole mass, one can reach the
UHECR orders of energies. A central charge of the black hole, in this case, is still smaller
than the maximal theoretical charge limit by many orders of magnitude.

The constraint on mass and charge of the black hole in Sgr A* allow the black hole
to act as a PeVatron of charged particles, with energy of the accelerated protons being of
the order of 1015 eV, similarly to the case of the MPP. The electric Penrose process could be
thus considered as an alternative explanation of the cosmic ray knee when applied to the
Galactic supermassive centre black hole Sgr A* [91].

5. Radiative Penrose Process

Finally, we discuss the newly discovered variant of the Penrose process that is related
to the radiative self-force connected with the synchrotron radiation of charged particles
moving in the ergosphere of a magnetized Kerr black hole. Here, we present a wide range
of possible variants of the particle motion undergoing the radiative Penrose process (RPP),
representing a gain of rotational energy of the black hole by a single radiating particle, and
a comparison of the properties of the motion around the Kerr black holes and Kerr naked
singularities. The origin of the Penrose process is in the RPP case connected with the special
class of radiated photons that have negative energy relative to distant observers [47,92].

5.1. Landau–Lifshitz Equations of Motion under Radiative Force

Charged particle motion in curved spacetimes under influence of the external elec-
tromagnetic force combined with the radiation reaction self-force is determined by the
DeWitt–Brehme equation [78]. However, the DeWitt–Brehme equation contains the third-
order time derivative of coordinates giving pre-accelerating solutions when no external
forces exist. Fortunately, the equations of motion can be modified by using derivatives of
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the external forces instead of the third-order term in the Landau–Lifshitz method in its
covariant form [77], leading to the equations

Duµ

dτ
=

q
m

Fµ
νuν +

2q2

3m

[
Fα

β;µuβuµ +
q
m

(
Fα

βFβ
µ + FµνFν

σuσuα
)

uµ
]
, (132)

with the covariant coordinate derivative denoted by semicolon. The Landau–Lifshitz
equations given by the relations (90) are second-order differential equations fulfilling the
principle of inertia so that the runaway solutions are not allowed [77]. In the background
of the magnetized Kerr black holes, Equation (90) is very complicated and long even for
the equatorial motion—for this reason we dis not present here its explicit form.

During the study of the consequences of the calculations of the particle motion de-
termined by the Landau–Lifshitz equations, when usually the radiative forces imply
decreasing of the particle energy, an unexpected effect of energy gain of the radiating
particle has been demonstrated for the motion inside the ergosphere of magnetized Kerr
black holes. This RPP was observed solely in the ergosphere of the Kerr black hole; the
effective ergosphere related to the moving charged particles plays absolutely no role in
this phenomenon.

We present first a standard situation of energy damping due to the radiative force,
acting outside the ergosphere, in Figure 7, comparing motion under similar conditions in
the field of Kerr black holes and Kerr naked singularities, demonstrating only quantitative
differences for these different kinds of the Kerr spacetime.

5.2. Negative Energy Photons inside the Ergosphere and Energy Gain by Radiating Particle

In the ergosphere, any particle (charged or uncharged) has to be co-rotating with
the black hole rotation—distant static observers measure uφ > 0. On the other hand,
the energy of a particle as related to the distant observers can be negative, but the locally
measured energy is always positive; the most convenient basic local observers are the
ZAMO. A local observer sees the particle in counter-rotating motion, if its φ component
of covariant four-velocity is negative uφ < 0. In the ergosphere, radiated photons are
attaining negative energies and negative angular momenta (Eph < 0, Lph < 0) related to
distant observers, if the radiating particle satisfies the following conditions

ut > 0, uφ < 0. (133)

The photons emitted by the relativistic charged particles attain negative energy only if
emitted (locally) backwards with respect to the BH rotation and radiating particle must be
locally counter-rotating with uφ < 0.

Photons with negative energy can exist only inside the ergosphere and have to be
captured by the black hole finally [92]. Being emitted by a radiating charged particle with
properly chosen energy and angular momentum, they cause the spin down of the black
hole due to the extraction of its rotation energy—such photons are at the superradiance
modes of the electromagnetic wave equations.

The negative energy emission has to be enforced by the relativistic beaming effect.
We can demonstrate the basic character of the RPP demonstrating the role of the beaming
looking at the situation from the point of view of LNRF—see Figure 8. We assumed a
source radiating isotropically in the LNRF; then, the part of the radiated photons with
negative energy, directed with counter-rotating orientation related to distant observers, is
smaller than those of the positive energy (corotating). However, if the source is moving
relatively to LNRF, the relativistic beaming causes amplification of the radiation (energy) in
direction of the motion, so for a source counter-rotating relative to the LNRF, the negative
energy photons are amplified and the total radiated energy can be negative.
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Figure 7. Charged particle radiation outside black hole ergosphere. Radiating charged particle
trajectories demonstrate the role of the self-reaction force for two different kinds of orbits, comparing
them for the black hole and naked singularity spacetimes. We show projections of particle trajectory
into xy, xz planes, particle specific energy E , radial coordinate r, and covariant component ut, uφ,
as functions of proper time τ. Change in the colors denotes the evolution with the proper time, gray
disk denotes BH interior, and dotted curve shows the boundaries of the egrosphere.
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Figure 8. Distribution of the photons with negative and positive energy in the LNRF located in the
ergosphere of a Kerr black hole, and the effect of beaming due to the motion in the sense of the black
hole rotation (right) and in opposite direction (left), giving an illustrative explanation of the RPP.

Now we concentrate on the dynamics of charged particles moving under the influence
of the radiation reaction self-force by emitting synchrotron photons in the ergosphere,
gaining in this way the rotational energy of the black hole, if the negative-energy photons
prevail in the radiation.

We demonstrate the energy gain effect of the RPP integrating the Landau–Lifshitz
Equation (90) inside the ergosphere of a magnetized Kerr metric immersed in the uniform
(Wald) magnetic field. We introduce the following independent parameters

E =
E
m

, L =
L
m

, B =
qBM
2m

, k =
2
3

q2

mM
; (134)

the magnetic parameter B gives the ratio of the Lorentz force to the gravitational force, E
and L are the specific energy and specific axial angular momentum of the charged particle,
respectively, and k is the radiation parameter reflecting the energy evolution. Results of
the numerical integration of Equation (90) are demonstrated in Figs with initial conditions
shown inside the plots.

We demonstrate the basic three situations related to the RPP in Figure 9. Namely,
we demonstrate orbit with increasing energy in the ergosphere, and particle escaping to
infinity loosing energy outside the ergosphere; the “floating orbit” crossing repeatedly the
ergosphere while gaining energy inside and loosing energy outside the ergosphere; and
the orbits with increasing energy but finishing in the black hole.

We demonstrate a comparison of the escaping orbits gaining energy in the ergosphere
of a Kerr black hole and naked singularity in Figure 10. The energy gain at the edge of the
ergosphere can represent typically one order, being nearly the same in both black holes
and naked singularities.

In Figure 11, we compare the orbits of radiating particles in the Kerr black hole
background for the cases with the Wald charge and with vanishing of the Wald charge,
demonstrating higher efficiency for escaping of the particle in the background with the
Wald charge.
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Figure 9. The energy gain in the RPP due to radiating force in the ergosphere. Three basic types of
the orbits are presented: the collapsing orbit gaining the energy while being finished in the black hole,
the floating orbit where the radiating particle successively gains energy during the motion inside the
ergosphere and looses the energy during the motion outside the ergosphere, and the escaping orbit
where the particle is gaining energy in the ergosphere and loosing the energy outside.

The magnitude of the energy gain in obtained in the RPP depends both on the param-
eters governing the electromagnetic forces B and k and on the length and direction of the
trajectory of the charged particle inside the ergosphere. Nevertheless, we observed strongly
"chaotic" behavior of the properties of the radiative Penrose process due to the chaotic
origin of the motion—the trajectory length and gained energy can significantly differ for
trajectories with different initial conditions. Charged particles starting their motion inside
the ergosphere with a large pitch angle with respect to the equatorial plane (i.e., having a
significant θ component of the four-momentum) have a short trajectory inside the ergo-
sphere as such particles have a tendency to escape soon in the vertical direction along the
magnetic field lines. For particles with a trajectory lying in or very close to the equatorial
plane, their motion in the ergosphere is much longer, allowing significantly larger period of
energy gaining. Note that, in general, the motion of ultra-relativistic particles demonstrates
an instability inside the ergosphere, and a small change in pθ (e.g., due to influence of other
particle or photon) may cause the particle to fall into the black hole or its escape in the
vertical direction along the magnetic field lines [14,28].
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Figure 10. Charged particle escape after gaining energy due to the RPP. We compared the character
of the orbits in the black hole and naked singularity spacetimes.
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Figure 11. Comparison of the charged particle orbits in and outside ergosphere in the field of Kerr
black holes having the Wald charge and without the charge.

Outside the ergosphere, the energy of emitted photons with respect to a distant
observer is always positive (there are no photons with negative energy outside the ergo-
sphere [92]) causing a decrease in the particle energy, and the charged particle continues
its motion in the magnetic field loosing its energy in the standard manner [30]. Usually,
the charged particles loose a significant amount of their energy gained in the ergosphere just
after they leave the ergosphere—this fact implies the possibility of significant signatures in
the astrophysical phenomena connected with the innermost parts of accretion structures
observed in active galactic nuclei. Notice, however, the possibility of slow decrease of the
particle energy observed in the case of the Kerr naked singularity—a detailed undergoing
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study is necessary to clear up if it could be an effect of the spacetime origin or if it is related
only to the specific choice of the initial conditions for the motion of the radiating particles.
Generally, we can say [47] that the radiation is maximal for the direction of the motion
perpendicular to the magnetic field lines and minimal (basically zero) for the motion along
the magnetic field lines, i.e., along the axis of the black hole rotation where the ultra-high
energy particles are expected.

6. Conclusions

The combined influence of rotating black holes and external magnetic fields can be
demonstrated by important phenomena related to accretion disks or tori where extraction
of energy into the jets could be related to the MPP representing their significant role
in astrophysics, especially in the generation of UHECR [28]. It is quite interesting that
generation of the UHECR could be obtained in the recently introduced electric Penrose
process related to weakly charged non-rotating black holes [91].

The external magnetic fields have the strongest role near the black holes horizon,
namely, in the ergosphere or the effective ergosphere, due to the effect of the frame dragging
of the spacetime on the magnetic field, enabling the extraction of rotational energy of the
black hole.

Assuming the ionized Keplerian disks, and the chaotic scattering of the ionized parti-
cles, the MPP can lead to the creation of protons and ions with energy reaching E = 1021 eV,
or even E = 1022 eV, in the vicinity of the rotating black holes of mass M∼1010 M� im-
mersed in the external uniform magnetic field of strength B∼105G. For ions accelerated
in similar conditions by the same black hole, the energy is decreased by the factor given
by the ratio of the specific charge of protons and the ion. For protons and ions, the energy
loss due to the synchrotron radiation and related back-reaction on their motion can be
negligible near such supermassive black holes, but it is strongly significant for electrons,
giving a clear explanation of the fact that no highly energetic electrons are observed in
UHECR. The strong back-reaction on the moving particles is the reason why we cannot
observe so highly energetic particles (electron, proton, ions) coming from magnetars, where
the efficiency of the acceleration is comparable to those of the supermassive black holes.

The maximal proton energy that can be obtained near the SgrA* black hole, where
M∼4× 106 M� and B∼102G, takes the value E∼1016 eV corresponding to the knee of the
observational data of registered UHECRs [28].

Surprisingly, efficient acceleration of protons and ions could be relevant also for
non-rotating Schwarzschild black holes if they carry an astrophysically acceptable (small)
electric charge; the efficiency of such an electric Penrose process is inversely dependent on
the black hole mass, and can work isotropically in contract with the MPP [91].

Even more interesting is another recently discovered variant—the radiative Penrose
process that could occur due to the synchrotron radiation because of radiating negative
energy photons [92] and the related back-reaction on the radiating particle in the ergosphere
of Kerr black holes—efficient acceleration by one order of energy is possible, along with
the case of floating orbits that successively extract and radiate the rotational energy while
realizing an epicyclic motion [47]. Clearly, the radiative Penrose process can have relevant
consequences for the creation of jets, and their appearance, being thus inspiration for more
detailed magneto-hydrodynamic studies of tori and related jets.

For the motion in the strong magnetic field near the black hole, the radiation back-
reaction is negligible for protons and ions, so they are leaving the acceleration region
with the energy ratio given by the ratio of their specific charges. However, the radiation
back-reaction is important during travel from the source to the Earth in weak intergalactic
fields, where it differs for protons and ions. Therefore, the ratio of the energies of protons
and ions observed simultaneously at Earth can give significant information on the distance
of the source of the UHECRs. The models of UHECR acceleration by the magnetic Penrose
process could thus be relevant for the search for UHECR sources, giving thus a special new
application of the magnetic Penrose process, increasing its role in astrophysics.
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52. Kovář, J.; Slaný, P.; Stuchlík, Z.; Karas, V.; Cremaschini, C.; Miller, J.C. Role of electric charge in shaping equilibrium configurations

of fluid tori encircling black holes. Phys. Rev. D 2011, 84, 084002. [CrossRef]
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