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And all the host of the heaven shall be dissolved, and the heavens shall be
rolled together as a scroll, and all their host shall fall down like the leave falls
from the vine tree, and as a falling fig from the fig-tree.

Jesha’jahu 34:4



Abstract

In this thesis, the connection between the geometry of black holes and their
entropy will be discussed. First, some mathematical tools will be overviewed
which will be needed in this discussion. Then some elementary parts of general
relativity will be discussed. From there, we will also make the step towards more
general theories of gravitation by discussing the Lagrangian and Hamiltonian
formalism. After that, all the needed information will be gathered to discuss a
method due to Robert Wald to give an expression for the black hole entropy us-
ing the diffeomorphism invariant nature of a vast class of gravitational theories.
When this method is understood, some examples of black hole solutions will be
calculated. The so-called Gauss-Bonnet Lagrangian will give a rather surprising
thermodynamical effect. The thesis will end with a discussion of Wald’s method
and interesting questions which could continue this research.
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Notation and conventions

The following signature of the metric is used: (−,+,+,+). The components of
a general tensor X will be notated Xµ...ν

α...β . The determinant of the metric gµν is
written g, and this is also used to denote the metric tensor itself; context always
makes clear what is meant. For other determinants we use | |. For dual vectors
we will use greek letters, and for vectors we will use latin capital letters. Greek
indices indicate the coordinates on the space-time manifold and start with 0;
Latin indices will indicate hypersurfaces and start with 1. Sometimes, in argu-
ments or matrices, we will omit the index and just write x for our coordinates.
Ofcourse, throughout the thesis we will use Einstein’s summation convention:

Xµωµ ≡
∑
µ

Xµωµ

where µ runs over the space-time manifold. If basis vectors are written, brackets
will be placed with the indices: e(µ) and e(µ). If indices are not written, it is
clear from the context what is meant. If the coordinate basis is used, these
brackets are dropped: ∂µ and dxµ. Most of the time we will use G = c = 1, but
sometimes these constants pop up. We will assume that space-time has four
dimensions, but often the generalization is not that difficult. Equations and
results which will be important later on will be boxed:

1 6= 2

We will both use the notation XµX
µ and X2, and FµνFµν and F2. Some useful

geometric identities are listed in the appendix for reference. Forms like the
Lagrangian L and the volume form ε will be notated in a bold style, except for
zero-forms. Space-time is assumed to be equipped with a symmetric connection
contructed from the metric and the cosmological constant Λ will be put to zero.
Most of the time vector fields will be denoted by X or ξ. For fields and pull-
backs we often will use the same symbol φ, but the context will make clear what
is meant; otherwise the latter will be denoted by f .
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Chapter 1

Introduction and
motivation

The idea of an object, which has an escape velocity such that even light can’t
escape is not very new; Laplace postulated already such an object in the 18th
century. He based his idea upon Newtons theory of gravitation. When Ein-
stein found his field equations of general relativity, his freshly found theory also
included black hole solutions. A firm theoretical basis for these objects was
created in this way.

For years the idea of a black hole being some sort of one-way membrane
was generally accepted by most of the physicists. That’s not strange; classi-
cally everything that passes the Schwarzschild radius is forced to stay inside the
black hole. A curious fact which was discovered in the late sixties is that the
equations of motion of a black hole have the same form as the thermodynamic
equations. For instance, the surface of a black hole behaves as if it were an
entropy. Bekenstein postulated that this is not a coincidence; he stated that
this surface actually gives us a measure of the black hole entropy. He noted
that the second law of thermodynamics could easily be violated by throwing in
material in a black hole, if this black hole wouldn’t possess some sort of entropy.
So Bekenstein made the bold conjecture that black holes carry an intrinsic en-
tropy, given by the surface times some constant, in the framework of general
relativity. But according to thermodynamics, an entropy implies a temperature.
It came as quite a shock when Stephen Hawking found in 1974 the possibility
that black holes radiate thermally as black bodies and lose mass. This gave the
needed temperature for a black hole entropy, but it took quite some time before
the scientific community could accept such a new idea. With this a macroscopic
notion of the black hole entropy was developed.

But what about the microscopic notion? A microscopic notion of entropy
means that one should be able to count the microstates of the system. And for
that one needs a quantum mechanical description. So here quantum mechanics
and general relativity meet each-other. It is sometimes said that the black hole
will be the object of understanding of a theory of quantum gravity just like the
Hydrogen-atom gave enormous insight in the theory of quantum mechanics. So
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this gives us a very good reason of doing research on how to calculate such black
hole entropies. Here we will focus on the macroscopic formulation.

Physicists expect that a theory of quantum gravity possesses a low energy
effective action which describes the space-time for weak curvatures and long
distances. ”Weak” and ”long” are with respect to the usual Planck quantities.
This effective action should be the Hilbert action plus higher curvature terms
induced by quantum effects. Ofcourse, here one assumes that those higher cur-
vature terms are not of the same order as the quantum fluctuations themselves;
otherwise it would be quite useless to study modifications to the classical case.
In this framework black hole thermodynamics is considered here.

The author will assume from the reader some knowledge of differential ge-
ometry and general relativity, although most of the used tools will be discussed
here. The goal of this thesis was to be as complete as possible and to find a
compromise between physical relevance and mathematical rigor. Hopefully this
goal is achieved in some way.
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Chapter 2

Crucial differential
geometry

Physicists and mathematicians often differ in their explanation of what a tensor
essentially is. Here we will follow the mathematician’s point of view. In this
chapter the ideas of tensors, forms, coordinate transformations etc. will be
shortly repeated.

2.1 General tensors

Let’s assume we have a vector space V and its dual V ∗. A tensor T of type (r,s)
is defined as a multilinear mapping in the following way:

T : V ∗ × V ∗ × V ∗ . . .× V ∗︸ ︷︷ ︸
r times

×V × V . . .× V︸ ︷︷ ︸
s times

→ R (2.1)

So we have the following construction1: with a vector space one is able to
construct a dual vector space, and a general tensor then is defined via its action
on these objects. A tensor of type (0,0) is a scalar, a tensor of type (1,0) is
called a contravariant vector and a tensor of type (0,1) is called a covariant
vector, a dual vector or a 1-form. Most of the time, our tensors will live on a
4-dimensional manifold called space-time. More specifically, a vector is defined
in the tangent space TxM at a point x on the manifold M . A covector is defined
in the so-called cotangent space T ∗xM , which is the dual space of the tangent
space. According to our definition, a covector is nothing more than a linear
map, which maps vectors to the real line. So we have with a, b ∈ R

ω(aX + bY ) = aω(X) + bω(Y ) (2.2)

Physicists sometimes tend to forget that there’s also a basis in the game. We
introduce bases on the tangent space and cotangent space, and with that we
can write for ω ∈ V ∗ and X ∈ V :

ω = ωµe
(µ)

X = Xµe(µ) (2.3)
1Formally we should introduce functions on manifolds first to relate the tangent vectors of

those functions to vectors.
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Note the braces around µ in our basisvectors; it emphasizes that (µ) indicates a
whole vector, and not merely a component! It is a good thing to notice that the
vector or dual vector itself is base independent,whereas the components ofcourse
are not. This is obvious from the definition of a vector being the tangent vector
of some curve on the manifold. The whole idea of a vector space and it’s dual is
that if we act with an element from the one space on the element of the other,
we get a real number. We define this action via the basisvectors of the vector
space and it’s dual. For if we know what an action does to the (dual) basis,
we also know what an action does to the (dual) vector. We define the duality
between the two spaces as an orthonormality relation:

e(µ)(e(ν)) = δµν (2.4)

With this, we can write the action of a vector on a dual vector in the following
way:

X(ω) = Xµωνe
(ν)e(µ) = Xµωµ ∈ R (2.5)

and we see that it does not depend on the choice of basis. If we know the (dual)
vector, and we also know the basis, then we have a way to find our components.
For instance, if we have a vector X ∈ V and a basis {e(µ)} then, according to
our earlier discussion, we have

X(e(µ)) = Xνe(ν)(e(µ)) = Xµ (2.6)

The same goes for a dual vector ω.

That raises a question: what are those basis vectors for our vector space
and dual vector space? Vectors are defined in the tangent space, and it turns
out we can take the differential operators as our basis: e(µ) = ∂

∂xµ . This views
the vector as an operator, and this gives us an intrinsic notion of the idea of a
vector: it maps functions on the manifold to the real line. The set of all dif-
ferential operators is called the coordinate basis. The basis of our dual tangent
space can be taken as the set of differentials of xµ : e(µ) = dxµ.

In physics, we’re often interested in how our components change if we turn
to another observer. A point on a manifold can be described by different coor-
dinate systems, and a manifold is defined in such a way that we can jump from
one coordinate system to another via a coordinate transformation. For instance,
in special relativity we want to be able to jump back and forth between two ob-
servers in a continuous way with Lorentz transformations. We already know how
differentials and derivative operators change under a coordinate transformation
x→ x

′
(x), namely

e(
′µ) = dx

′µ =
∂x

′µ

∂xν
dxν

e(′µ) =
∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
(2.7)

We see that they transform in an opposite way. Because (dual) vectors are
independent of the coordinates by construction, we have that for a vector X

Xµe(µ) = X
′µe(′µ) = X

′µ ∂x
ν

∂xµ
e(ν) (2.8)
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This means that our component Xµ transforms via2:

X
′µ =

∂x
′µ

∂xν
Xν (2.9)

In the same way we can derive that for a dual vector ω:

ω′µ =
∂xν

∂x′µ
ων (2.10)

If we work with gravitational theories, and more specifically general relativity,
we work in a metric space. The metric is our symmetric and bilinear mapping
which enables us to define lengths, angles and makes it possible to switch be-
tween covariant components and contravariant components. First space-time
was just a topological space, but with this metric we add an additional piece
of structure to it. For two vectors X,Y ∈ V we define the metric via the inner
product. This inner product should also be base independent:

X · Y = Y ·X = g(X,Y ) = XµY νg(e(µ), e(ν)) = gµνX
µY ν (2.11)

where gµν = g(e(µ), e(ν)). So here g is not the determinant of the metric, but
the tensor acting on the vectors (X,Y ). Later on the context always will make
it clear what g means. The connection between contravariant and covariant
components becomes clear now, if we consider the foregoing discussion:

Xµ = X(e(µ)) = Xνg(e(ν), e(µ)) = Xµgµν (2.12)

So with the metric we map vectors on dual vectors, and in fact we can lower
any contravariant index on a tensor with the metric. Physically the metric is
very important, because in general relativity it replaces the scalar potential of
Newton. We raise indices via gµν .

Ofcourse, with this we are eager to find out how a general tensor can be
described by its components. For this, we have to introduce the concept of the
tensor product ⊗. Take for example two tensors T and S of type (m, 0) and
(n, 0) respectively. The tensor product of T and S, denoted T ⊗S, is defined by
its action on dual vectors:

T ⊗ S(ω(1), . . . , ω(m), θ(1), . . . θ(n)) ≡ T (ω(1), . . . , ω(m))S(θ(1), . . . θ(n)) (2.13)

In words: first act with T on the first m dual vectors, and then act with S
on the remaining n dual vectors, and then multiply the answers. This can be
generalized easily for mixed tensors of all kinds. Now we can build a basis for
arbitrary tensors with this tensor product. For instance, a tensor T of type (2,1)
can be written as

T = Tµνλe(µ) ⊗ e(ν) ⊗ e(λ) (2.14)

The behaviour of such objects under coordinate transformations is determined
by eq.(2.1) and the transformation laws for vectors and dual vectors. The com-
ponents of a mixed tensor will transform as

X
′α···′β
′µ···′ν (x

′
) =

∂x
′α

∂xλ
· · · ∂x

′β

∂xγ
∂xσ

∂x′µ
· · · ∂x

ρ

∂x′ν
Xλ···γ
σ···ρ (x) (2.15)

2We are always free to interchange the primes.
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2.2 Forms

In physics we often encounter tensors which are antisymmetric. An antisym-
metric covariant tensor T in two indices is defined via

T (· · ·X, · · ·Y, · · · ) = −T (· · ·Y, · · ·X, · · · ) (2.16)

for X,Y ∈ V . If we fill in our basis vectors for X and Y , we see that the
tensor components are antisymmetric if 2 arguments are changed. A same
definition goes for a contravariant tensor. With this we define p-forms. A p-
form is a tensor of type (0,p) which is totally antisymmetric. We need the
so-called exterior product to define this p-form. In mathematical texts people
often define the exterior product by determinants and the action of such a p-
form on vectors. We will define it via the tensor components. To describe an
antisymmetric tensor, we can antisymmetrize the basis {e(µ)}. So we define an
antisymmetric tensorproduct of p basisvectors via the tensorproduct:

e[µ1 ⊗ · · · ⊗ eµp] =
p!∑
j=1

(−1)π(j)eµ1 ⊗ · · · ⊗ eµp (2.17)

The function π(j) is 0 if the permutation of the indices is odd, and π(j) is 1 if
the permutation is even. With this we define the socalled wedge product ∧ via
the components:

e[µ1 ⊗ · · · ⊗ eµp] = eµ1 ∧ eµ2 ∧ . . . ∧ eµp (2.18)

A general p-form can now be written as

ω = ωµ1···µp
eµ1 ∧ . . . ∧ eµp (2.19)

The space of all p-forms on a manifold M will be denoted as Λp(M).We will en-
counter forms when we want, among other things, to do integration. They turn
out to be the natural objects to integrate. This will be explored in the next chap-
ter. A famous example of a 2-form is the Maxwell field tensor F = Fµνdx

µ∧dxν .

To conclude this section, we remark that for an n-dimensional manifold there
are only forms up to type (0, n). That’s most easily seen by the basis of our
forms. If it contains 2 linear dependent vectors, the antisymmetrized product
becomes 0. So in 4 dimensions there are zero,one,two,three and four-forms.
A p-form on an n-dimensional manifold has

(
n
p

)
distinct coefficients, due to

the antisymmetric property of the form. And as a result, an n-form on an n-
dimensional manifold has just one independent component, and can be written
as f(x)dxµ ∧ dxν ∧ dxρ ∧ dxσ, with f(x) a scalar function.

2.3 Symmetry and antisymmetry

A contravariant or covariant tensor always can be decomposed in an antisym-
metric part and a symmetric part. Take for instance a tensor of type (0,p). The
antisymmetric part is defined by

X[µ1···µp] ≡
1
p!

p!∑
j=1

(−1)π(j)Xperm(µj) (2.20)
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and the symmetric part is defined by

X(µ1···µp) ≡
1
p!

p!∑
j=1

Xperm(µj) (2.21)

where perm(µj) indicates the permutation of the indices. For instance, for a
tensor of type (0,2) we get

X[µν] ≡
1
2
(Xµν −Xνµ) (2.22)

and
X(µν) ≡

1
2
(Xµν +Xνµ) (2.23)

so that we have Xµν = X(µν) + X[µν]. A useful fact is that if we contract
a (anti)symmetric tensor with a general tensor, we only have to consider the
(anti)symmetric part of it. After all, the contraction between a symmetric tensor
Xµν = X(µν) and an antisymmetric tensor ωµν = ω[µν]gives us 0:

Xµνωµν =
1
2
(Xµν +Xνµ)ωµν

=
1
2
(Xµνωµν −Xµνωµν) = 0 (2.24)

It is easily proven that this is also true for the contraction between a total
antisymmetric tensor and a total symmetric tensor of arbitrary type.

2.4 Pullbacks, pushforwards and diffeomorphisms

Coordinate transformations can be looked upon in different manners. Imagine
we have an m-dimensional manifold M with coordinate functions xµ : M → Rm.
If we want to change coordinates, we can do two things. First, we could simply
pick new coordinate functions yµ : M → Rm. An example of this is to change
from Cartesian coordinates to spherical coordinates. We could also actually
move the points on the manifold and evaluate the coordinates of the new point.
This would be accomplished by a diffeomorphism3 φ : R3 → S3. This idea will
be outlined here, and in the end we will obtain a nice and more general way of
looking at coordinate transformations.

Take a look at figure (2.1). A question we can ask ourselves is: if we have a
vector X ∈ TxM or a covector ω ∈ T ∗yN , is there a natural way for these objects
to induce a vector or covector on another manifold if we have a diffeomorphism
between M and N? Consider two arbitrary manifolds M and N with coordinate
systems xµ and yα respectively. Imagine there exists a diffeomorphism φ : M →
N and a function f : N → R. We can construct a new function from M to R
by simple composition:

φ∗f = f ◦ φ = f(φ(xµ)) : M → R (2.25)
3A diffeomporhism is a smooth map with a smooth inverse, and people sometimes say

that two manifolds can be smoothly deformed into each other if there exists a diffeomorphism
between them. In this way one can construct equivalence classes of manifolds on basis of the
existence of such diffeomorphisms between them.
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Figure 2.1: The pullback

Here the pullback φ∗f of f is defined: the function f is pulled back from N
to M . This can also be done for vectors and covectors, but there are some
limitations on this. We can’t pull back vectors from N to M with φ, but we can
push them forward! Remember we can look at a vector as a derivative operator
X : F (M) → R, where F (M) denotes the space of all smooth functions on M .
So we can define the pushforward of X via its action on functions on N . If
X ∈ TxM , the pushforward vector φ∗X ∈ TyN is defined by

(φ∗X)f = X(φ∗f) (2.26)

So what does this mean? X is a vector on M which has a coordinate base
∂µ = ∂

∂xµ and thus can be expressed as Xµ∂µ. The pushforward of X is a
vector on N which has a coordinate base ∂α = ∂

∂yα and thus can be expressed
as (φ∗V )α∂α. So the relation between those components can be discovered by
looking at the action on a function:

(φ∗V )α∂αf = V µ∂µ[φ∗f ]
= V µ∂µ[f ◦ φ]
= V µ∂µ[f(yα(xµ))]

= V µ
∂yα

∂xµ
∂αf (2.27)

via the chain rule. So the pushforward operator φ∗ can be seen as a matrix:

[φ∗]αµ =
∂yα

∂xµ
(2.28)

Now the nice thing about this discussion becomes clear: we obtained again the
transformation law for vectors, only this is a generalization; M and N can be
two different manifolds with even a different dimension.

Now we pick a covector ω ∈ T ∗yN . With a diffeomorphism φ : M → N we
can’t push it forward, but we can pull it back. This is done by looking at the
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action of ω on φ∗X ∈ TyN :

(φ∗ω)X = ω(φ∗X) (2.29)

In this case the pullback operator is given by

[φ∗] αµ =
∂yα

∂xµ
(2.30)

Ofcourse we want to extend these ideas to more general tensors. That’s no
problem, since tensors are multilinear functions. A tensor of type (0, l) is a
linear map from the direct product of l vectors to R. So we define the pullback
of a tensor T = Tµ1···µl

dxµ1 ⊗ · · · ⊗ dxµl via its action on the pushed-forward
vectors X(i):

(φ∗T )(X(1), . . . , X(l)) = T (φ∗X(1), . . . , φ∗X(l)) (2.31)

with components

(φ∗T )µ1···µl
=
∂yα1

∂xµ1
· · · ∂y

αl

∂xµl
Tα1···µl

(2.32)

The same goes for a tensor of type (k, 0). In that case we have for the compo-
nents of S

(φ∗S)α1···αk =
∂yα1

∂xµ1
· · · ∂y

αk

∂xµk
Sµ1···µk (2.33)

Notice that the matrices of the two operations are the same, and that the
difference lies in the contraction. Now a little example would be nice. The
metric of the unit sphere in R3 induces a metric on S2 ⊂ R2 by its surface. So
we have the following case:

• N = R3, y ∈ N with yi = (x, y, z)

• M = S2, x ∈ S2 with xk = (θ, φ)

• φ : M → N with φ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

The metric on S2 now can be calculated by pulling the metric on R3 back to
S2. The metric on R3 is simply gij = δji , so we get for the induced metric on
S2

(φ∗g)kl =
∂yi

∂xk
∂yj

∂xl
gij

=
(

1 0
0 sin2 θ

)
(2.34)

The invertibality of the diffeomorphism φ allows us to use both φ and its inverse
φ−1 to move tensors from M to N . With this we can define the pushforward
on a tensor T of type (k, l):

(φ∗T )(ω(1), . . . , ω(k), X(1), . . . , X(l)) =
T (φ∗ω(1), . . . , φ∗ω

(k), [φ−1]∗X(1), . . . , [φ−1]∗X(l)) (2.35)

Physicists demand that any theory of gravitation is diffeomorphism invariant.
This is just another way of saying that your theory should be invariant under
coordinate transformations. If we have a metric gµν describing the geometry of
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the space-time M and a matter field ψ, then (gµν , ψ) and (φ∗gµν , φ∗ψ) describe
the same physics for any diffeomorphism φ : M →M .

But there is more; the line integral can also be properly defined with this
machinery. Take a form ω ∈ Λn(M), and a smooth curve c : [a, b] ⊂ R → M .
Then we can pull back ω from M to [a, b] ⊂ R and as a result c∗ω ∈ Λ1(R). So
we define ∫

c

ω =
∫ b

a

c∗ω (2.36)

This object is actually independent of the parametrization of c. Is this definition
sensible? Well, if we write c∗ω(t) = h(t)dt, then we have that

h(t) = h(t)dt(e1)
= (c∗ω(t))(e1)
= ω(c(t))(c∗e1)
= (ω(c(t)))ċ(t) (2.37)

and we recognize our well-know expression
∫
c
ωµdx

µ =
∫ b
a
ωµ(c(t))dx

µ

dt dt. Later
on we will encounter the same idea in looking at surface integrals.
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Chapter 3

Differentiation and
integration

In differential geometry, we can define a lot of different differential operators,
because there are quite some choices of ”taking differences of tensors” on a
manifold. We will especially take a look at Lie-derivatives, but also covariant
differentiation, exterior differentiation and functional differentiation will pass by
briefly.

3.1 Covariant differentiation

On our manifold we can define several different types of derivative operators.
The partial derivative is the most simple one, but it isn’t tensorial, and to write
down equations which are covariant we need a tensorial derivative. The one
that should be familiar is the covariant derivative. In general one constructs a
covariant derivative by the demand that the equations of motion should be in-
variant under certain symmetry transformations. In quantum electrodynamics
for instance these transformations are U(1) transformations. In general relativ-
ity and other theories of gravity, these transformations are general coordinate
transformations. Here, the covariant derivative is an operator from (k,p) to
(k,p+1) types of tensors. For this derivative one needs an extra piece of struc-
ture on the manifold, called the connection Γ. The connection tells you how to
compare basisvectors at different points on your manifold. We will only con-
sider the case in which the connection is made from the metric. The connection
coefficients are defined mathematically as the components of the directional
derivative of the basis vectors. This expresses the idea that ∇Xe(µ) should be
a linear combination of the basisvectors {e(µ)}:

∇µe(ν) = Γλνµe(λ) (3.1)

This is also denoted as ∇Xe(µ) = e(ν)ω
ν
µ(X), where ω is called the connec-

tion form. With some very basic assumptions about the connection[1][2], like
∇fXY = f∇XY and some familiar rules for differentiation about products, one
can derive the covariant derivative of an arbitrary tensor T . For instance, one
demands that for a scalar function f the covariant derivative with respect to a
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vector field X turns out to be

∇Xf = X(f) = Xµ∂µf (3.2)

The covariant derivative of a vector Y with respect to X = Xν∂ν in a coordinate
base is

∇XY = Xν(∂νY µ + Y αΓµαν)∂µ (3.3)

What a covariant derivative does to a form ω can be derived by the fact that
ω(Y ) ∈ R and the product rule. One gets

∇X [ω(Y )] = (∇Xω)Y + ω(∇XY ) (3.4)

If one fills in the basis vectors for X = Xµ∂µ and ω = ωνdx
ν and uses dxµ(eν) =

δµν the familiar result for covariant vectors is obtained:

∇Xω = Xλ(∂λων − Γµνλωµ)dx
ν (3.5)

With this the expression for the covariant derivative acting on any general tensor
can be obtained:

∇λTµ···ν··· = ∂λT
µ···
ν··· + ΓµρλT

ρ···
ν··· + · · · − ΓρνλT

µ···
ρ··· + · · · (3.6)

Most of the time we only differentiate with respect to the basis vectors e(µ) = ∂µ
instead of a general vector fieldX, and then we can forget about the components
Xµ. We shall demand that the covariant derivative of the metric is zero. So,
raising or lowering indices and taking covariant derivatives commute. With this
demand, the connection becomes

Γσµν =
1
2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (3.7)

This can also be derived by a variational argument. Throughout this thesis, we
will only work with this so called metric connection, which is symmetric in µ
and ν. This implies that in a coordinate base our space-time is torsion free.

3.2 Lie-differentiation

Now to another kind of derivative operator, called the Lie-derivative £X . This
takes (k,p) types to (k,p) types. First we will approach it via the tensor com-
ponents and after that we will show the connection with pullbacks. According
to the theory of differential equations a vector field induces a certain flow; for a
given vector field on a manifold, every vector can be viewed as the tangent vec-
tor of a curve. So, we can set up a congruence of curves with a given vectorfield
and vice versa. These curves can be used to compare tensors at different points
on the manifold. That is the essence of Lie-differentiating a general tensor T (x)
with respect to a vector field X(x): Take T (x), drag it along the curves set up
by X to a point y, and take the difference between the two tensors in the limit
x→ y. So we want to find an expression for T (x

′
)−T ′

(x
′
). What we essentially

do here is to push the tensor forward, and then pull it back to compare it with
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the tensor already there.

For an infinitesimal transformation of a coordinate xµ we can write

x
′µ = xµ +

dxµ

ds
δs

= xµ +Xµ(x)δs (3.8)

where we have defined the congruence of curves created by the vector field X.
To get an expression for T (x

′
), we use Taylor’s theorem:

T (x
′
) = T (x+Xµδs) = T (x) + δsXλ∂λT (x) + . . . (3.9)

Higher orders won’t be necessary, because we will take the limit δs → 0. Now
we want an expression for T

′
(x

′
). We will take a tensor with components Tµν ;

the idea can be easily generalized.

T
′µν(x

′
) =

∂x
′µ

∂xα
∂x

′ν

∂xβ
Tαβ(x)

= [δµα + δs ∂αX
µ][δνβ + δs ∂βX

ν ]Tµν(x)

= Tµν(x) + [∂αXµ(x)Tαν(x) + ∂βX
νTµβ(x)]δs+ . . . (3.10)

again only up to first order. If one wants to generalize the idea for covariant
tensors, the relation x

′
(x) should be inverted to x(x

′
) in order to write down

the explicit coordinate transformations. Now we can define our Lie-derivative:

£XT = lim
δs→0

T (x
′
)− T

′
(x

′
)

δs
(3.11)

In the specific case that T has components Tµν , we see that

£XT
µν = Xλ∂λT

µν − Tµλ∂λX
ν − Tλν∂λX

µ (3.12)

Note that we used an active point of view here for the coordinate transforma-
tions, something we will come back to in chapter four. Important properties
of the Lie-derivative are that it is linear and Leibniz. We will see that this
derivative becomes important when Killing vector fields and inducing coordi-
nate transformations come into play. Now one could complain about the fact
that the expression for the Lie-derivative contains partial derivatives. Fortu-
nately, we can replace all partial derivatives by covariant derivatives because of
the symmetry of the connection: Γλµν = Γλνµ!

Now all this ”comparing tensors” business should raise the desire to use the
formalism of pullbacks to define Lie-derivatives. For this we need one-parameter
groups of diffeomorphisms. Remember that a vector field X = Xµ∂µ induces a
congruence of curves. These curves will be our diffeomorphisms:

∂φ

∂t
= Xφ(P,t), φ(P, t = 0) = P (3.13)

for an arbitrary point P on our manifold. Note that we wrote the parameter
as t, and not as δs, because this is an arbitrary parameter and not just an
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infinitesimal quantity. But in the case of an infinitesimal t, the differential
equation (3.13) is again our coordinate transformation

x
′µ = (φt(x))µ = xµ + tXµ (3.14)

where xµ is a component of P and x
′µ a component of φt(P ). Now we want

to define again the Lie derivative of a covariant tensor T . What we do is to
evaluate T in a point φt(x) and pull it back with φ∗t to the original point x.
Then we can compare it with T already at x. Figure (3.1) should make this idea
clear for a vector X. Then the Lie derivative of a covariant tensor is simply

£XT = lim
t→0

φ∗tTφt(x) − Tx

t
(3.15)

where Tx simply means ”T evaluated in x.” With some calculating one can
see that the two given definitions are the same. Sometimes it is said that Lie-

Figure 3.1: The Lie-derivative

differentiation is a more primitive notion of differentiation than the covariant
one because there is no need for a connection. This is also true for exterior
differentiation.

3.3 Exterior differentiation

Last but not least we look at the so-called exterior derivative d. We are going
to make heavily use of it, so familiarity with them is important. This derivative
operator is only used for forms1, and it takes a p-form to a (p+1)-form. If we
have a p-form ω = ωµ1···µp

dxµ1 ∧ · · ·∧dxµp , we define the exterior derivative dω

1It is also used for so-called vector-valued forms, and this results in the existence of the
spin connection.
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as

dω =
1
p!
∂ωµ1···µp

∂xλ
dxλ ∧ dxµ1 ∧ . . . ∧ dxµp (3.16)

Because it is written in an antisymmetric basis with (p+1) elements, we see
indeed that this is a (p+1) form. For example, if we have a function f(x), we
have that

df(x) =
∂f

∂xµ
dxµ (3.17)

This expression should be familiar, but in this context we see that we explicitly
wrote down the gradient of f(x) in its basis {dxµ}. Because this is a 1-form, f(x)
can be seen as a 0-form. Especially in writing down Maxwell’s equations and
Stoke’s theorem this derivative is very convenient. Properties of this operator are
that it is linear, Leibniz and that d2 = 0 due to the fact that partial derivatives
commute. To see that explicitly, one can take a p-form ωρ1···ρp

dxρ1 . . . dxρp and
consider d2ω:

d2ω =
1

p!(p+ 1)!
∂2ωµνρ1···ρp

∂xµ∂xν
dxµ ∧ dxν ∧ dxρ1 ∧ . . . dxρp

= 0 (3.18)

because the first part is linear in µ and ν and the second part is antilinear in µ
and ν. Due to the antilinear character of the exterior product, all of the partial
derivatives in it’s expression can easily be replaced by covariant derivatives if
the connection is symmetric. Let’s see this explicitly. For instance, we know
that the electromagnetic field strength tensor F is a two-form. Locally, it can
be written as dA, where A = Aνdx

ν is the familiar vector potential2. This
becomes

F = dA =
∂Aν
∂xµ

dxµ ∧ dxν (3.19)

and in component form we see that

Fµν = ∂µAν − ∂νAµ

= ∇µAν −∇νAµ
F = ∇µAνdxµ ∧ dxν (3.20)

In general, the relation between ∇ and d can be stated as

dω = ∇∧ ω (3.21)

or in components (dω)µνλ··· = ∇[µωνλ··· ]. So the field tensor F is not altered
when we introduce a symmetric connection on our space-time. Gauge invariance
is expressed by the fact that A and A + df give the same F. It’s also useful to
define the concepts of a p-form ω being closed or exact:

• ω is closed if dω = 0.

• ω is exact if ω = dα for a (p-1)-form α.

2This is a consequence of Poincaré’s lemma.
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Exact forms are always closed, but closed forms are not always exact. The
exterior product also obeys a product rule; for a p-form ω and a q-form α we
have

d(ω ∧ α) = dω ∧ α+ (−1)pω ∧ dα (3.22)

To conclude this section, we note a very nice and useful relation between the
Lie-derivative and the exterior derivative if we are dealing with vectors and
forms. If we have a vector X and a p-form ω and we denote with (X · ω)
the contraction between X and the first index of ω, then the following can be
proven3:

£Xω = d(X · ω) +X · dω (3.23)

With the identity d2 = 0 it can be shown that the Lie-derivative and the exterior
derivative commute:

d(£Xω) = d(X · dω)
d(X · dω) = £Xdω −X · d2ω

= £Xdω (3.24)

A convenient application of eq.( 3.23) is for n-forms: if ω ∈ Λn(M) then £Xω =
d(X · ω).

3.4 Killing vector fields

In discussing black holes, we will encounter so called Killing vector fields. These
fields tell us something about the present symmetries. In this section we will
again work with infinitesimal vector fields. This is justified by the fact that every
transformation can be constructed from these infinitesimal transformations due
to the continuous character of them. Imagine we are changing coordinates
x → x

′
(x), and we take a look at how this affects our metric components gµν .

We call this transformation an isometry if we have

g
′

µν(x) = gµν(x) (3.25)

On the left hand side the metric is transformed, and then the argument is pulled
back to the original coordinate. We could also express this isometry as

φ∗t (gµνdx
µ ⊗ dxν) = gµνdx

µ ⊗ dxν (3.26)

If we change primes on the expression for the transformed metric, we see that
x→ x

′
(x) is an isometry if

gµν(x) =
∂x

′α

∂xµ
∂x

′β

∂xν
gαβ(x

′
) (3.27)

So if we again apply an infinitesimal coordinate transformation we have

xµ → x
′µ = xµ + δsXµ(x)

∂x
′µ

∂xα
= δµα + δs ∂αX

µ (3.28)

3In some texts the notation ιXω = ω ·X is encountered for this contraction.
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Substituting this in (3.9) and using again Taylor’s theorem up to first order, we
find that we have an isometry if the Lie-derivative of the metric vanishes:

£Xgµν = Xλ∂λgµν + gµλ∂νX
λ + gνλ∂µX

λ (3.29)

Considering the metric compatibility ∇λgµν = 0 and the fact that we can re-
place partial derivatives by covariant derivatives, we conclude that X induces
an infinitesimal symmetry if

£Xgµν = ∇νXµ +∇µXν

= 0 (3.30)

The vector field X is then called a Killing vector field: the flow of this vector
field leaves the metric invariant. A useful identity for Killing-vectors comes from
the identity

∇[µ∇ν]Xα =
1
2
RαβµνX

β (3.31)

We see that for a Killing vector X this implies that

∇µ∇νXα = RανµλX
λ (3.32)

and this enables us to rewrite higher derivatives of a Killing vector field in terms
of the Riemann-tensor.

3.4.1 An example: 3-dimensional Minkowksi space-time

Let’s calculate a little example. We take a 3-dimensional flat space-time with
coordinates xi = (t, x, y) and line-element

ds2 = −dt2 + dx2 + dy2 (3.33)

in Cartesian coordinates. We can rewrite Killing’s equations for the Killing
vector field X in a coordinate basis as

∂iXj + ∂jXi = 2XkΓkij → ∂iXj + ∂jXi = 0 (3.34)

This gives us 6 differential equations:

2∂iXi = 0, i = 1, 2, 3
∂X2

∂t
+
∂X1

∂x
= 0

∂X3

∂x
+
∂X2

∂y
= 0

∂X3

∂t
+
∂X1

∂y
= 0 (3.35)

This on it’s turn gives us six solutions:

X(1) =
∂

∂t
, X(4) = x

∂

∂y
− y

∂

∂x

X(2) =
∂

∂x
, X(5) = x

∂

∂t
− t

∂

∂x

X(3) =
∂

∂y
, X(6) = y

∂

∂t
− t

∂

∂y
(3.36)
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Note that this doesn’t explicitly depend on the metric signs; we would had
obtained a similar result if we would had taken the 3-dimensional Cartesian
space with line element ds2 = dx2+dy2+dz2. The fact that these 3-dimensional
spaces have 6 Killing vectors gives them the name ”maximally symmetric”.
One can show that an n-dimensional space can have at most n

2 (n + 1) linear
independent Killing vectors.

3.5 Tensor densities

It appears to be necessary to define something called a tensor density. It trans-
forms just like a tensor, except that there is an additional Jacobian J to some
power W involved. The W is the weight, and so we have for a tensor density
that

Z
′α···
′β··· = MW ∂x

′α

∂xµ
· · · ∂x

ν

∂x′β
Zµ···ν···

M ≡ | ∂x
∂x′

| (3.37)

From the definition it follows that the tensorproduct of 2 tensor densities of
weight V and W produces a tensor density with weight V+W. The covariant
derivative of a tensor density is defined as the following:

∇λZα···β··· = ∂λZ
α···
β··· + ΓαρλZ

ρ···
β··· + · · · − ΓρβλZ

α···
ρ··· − · · · −WΓρρλZ

α···
β··· (3.38)

This is just the ordinary transformation rule with an extra term accounting for
the Jacobian at the end. This definition is not fixed, but often chosen as to
satisfy metric compatibality which implies ∇µ

√
g = 0. What is important for

us, is the case of W = 1 and λ = α:

∇αZα = ∂αZ
α (3.39)

We see that the covariant divergence of a vector density is equal to its ordinary
divergence.

Now for two examples which will be important if we want to integrate fields
on manifolds. The first one is already familiar, namely the volume element dnx.
Under a coordinate-transformation the volume-element dnx transforms via

dnx
′

= |∂x
′

∂x
|dnx

= M−1dnx (3.40)

The volume element is a tensor density with weight W = −1. This results in
the ordinary rule for how integrals transform under a change of coordinates.
Now the second example. The metric transforms as

g
′

µν(x
′) =

∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ(x)

= Mλ
′µM

ρ
′νgλρ(x) (3.41)
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Taking determinants and square roots on both sides, we obtain√
|g′(x′)|) = M

√
|g(x)| (3.42)

which is a tensor density of W = 1. According to eq.(3.38), ∇µ
√
|g(x)| = 0

implies
∂µ
√
g − Γλλµ

√
g = 0 (3.43)

which is exactly what we want due to the identity Γλλµ = 1√
g∂µ

√
g. So we see

that the definition (3.38) makes sense. Also, the combination d4x
√
|g(x)| is a

tensor density of weight W = 0: a scalar.

3.6 Integration

Now we look at integration on manifolds. An example of such an integral is the
action, which we want to define on the space-time manifold. As said before,
forms are often encountered if you want to integrate. The nice thing about
forms is that they come pre-equipped with a notion of a measure. Let’s see
what that means. If we consider ordinary integrals, we encounter the volume
element dnx, which is something like ”an infinitesimal n-dimensional volume”.
In the language of forms however, this expression has an exact meaning. In
general, the volume V (X, . . . , Z) of a set vectors {X, . . . , Z} is given by the
determinant of the matrix constructed from these vectors4. We also know that
these operations on these vectors are oriented and multilinear. So that should
ring a bell; there is a close connection between forms, which are multilinear
and antisymmetric, and determinants! In mathematical texts, a form is often
defined via its action on vectors via the determinant and then the connection
is clear at once. Now we put this more mathematically. The determinant of an
n× n matrix A with elements Aµν is given by

|A| = εµ1···µnA
1µ1 . . . Anµn (3.44)

Here ε is the antisymmetric alternating Levi-Civita symbol. In fact this is a
tensor density with W = −1, and in Minkowski space-time it is a Lorentz
tensor. The generalization of this tensor becomes

εµναβ =
1√
|g|
εµναβ , εµναβ =

√
|g|εµναβ (3.45)

with

−εµναβ = εµναβ =


1 if µναβ is an even permutation of 0123,
−1 if µναβ is an odd permutation of 0123
0 otherwise

(3.46)

Also, the manifold should be orientable5, or else the symbol cannot be globally
defined. Being warned for this, we set up a tetrad basis of one-forms {ωµ̂}, and
define the volume form ε by

ε = ω1̂ ∧ . . . ∧ ωn̂ (3.47)
4In this matrix, the n’th row consists of the components of the n’th vector.
5The most familiar example of a non-orientable manifold is the famous Möbius strip.
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This volume form represents a volume of unity, and the accompanying metric
with components gµ̂ν̂ has determinant ĝ = ±1. Now we transform this tetrad
basis to an arbitrary basis ωµ = Mµ

µ̂ω
µ̂ and express ε in this new basis:

ε = M 1̂
µ1
. . .M n̂

µn
ωµ1 ∧ . . . ∧ ωµn

= M 1̂
µ1
. . .M n̂

µn
εµ1···µnω1 ∧ . . . ∧ ωn

= Mω1 ∧ . . . ∧ ωn (3.48)

Here M is the determinant of the matrices Mµ
µ̂ which pops up in the transfor-

mation. We see from the transformation rule for the metric that

g = M2g
′
→ g = M2ĝ = ±M2 → M =

√
|g| (3.49)

And with this we obtain an expression for the volume form in a general basis:

ε =
√
|g|ω1 ∧ . . . ∧ ωn (3.50)

Note that this is an n-form, and so every n-form on an n-dimensional manifold
will be proportional to ε. With introducing the hodge * operator for ω =
ωµ1···µp

dxµ1 ∧ . . . ∧ dxµp ∈ Λp(M) as

∗ω ≡ 1
(n− p)!

ωµ1···µpεµ1···µpµp+1···µndx
µp+1 ∧ . . . ∧ dxµn (3.51)

such that ∗ω ∈ Λn−p. We can also write

ε = ∗1 (3.52)

Now we want to give a link between dnx and n-forms. This will be made clear
by a two-dimensional example. Imagine that we want to integrate the function
F (x, y): ∫

F (x, y)dxdy (3.53)

In ordinary calculus it is learned that there really isn’t a difference between
dxdy and dydx; they represent the same area. Now pick 2 other variables, like
θ(x, y) and φ(x, y). We know that the integral transforms with a Jacobian. But
according to the calculus of one-forms we have

dx =
∂x

∂θ
dθ +

∂x

∂φ
dφ

dy =
∂y

∂θ
dθ +

∂y

∂φ
dφ (3.54)

If we plug this transformation into our integral and expect it to equal the Jaco-
bian, we see that these rules are consistent if the differentials obey antisymmetric
product rules:

dθdθ = dφdφ = 0
dθdφ = −dφdθ (3.55)
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So instead of writing dxdy we should write dx∧ dy, and the order does matter!
Explicitly we find that

dx ∧ dy = dx(θ, φ) ∧ dy(θ, φ)

=
(∂x
∂θ
dθ +

∂x

∂φ
dφ

)
∧

(∂y
∂θ
dθ +

∂y

∂φ
dφ

)
=

(∂x
∂φ

∂y

∂θ
− ∂x

∂θ

∂y

∂φ

)
dφ ∧ dθ (3.56)

That Jacobian should look familiar. We can also write that under a pullback φ
we have φ∗(dx∧dy) = Mdx∧dy, where M is the Jacobian. At first sight it can
be confusing to see a wedge product transforming like a density, but remember
that dx is the differential of a coordinatefunction, not a scalar. This can be
made clear by the identification

dx0 ∧ · · · ∧ dxn−1 =
1
n!
εµ1···µn

dxµ1 ∧ · · · ∧ dxµn (3.57)

On the right-hand side, ε is a tensor density, and the wedgeproduct is an n-
form, so the left-hand side should also be a tensor density. Now, the argument
for our identification of volume-elements with forms can easily be extended to
arbitrary dimension, and with this the connection between the volume-form and
the integration measure is clear.

Now we define the integral of an n-form ω on an n-dimensional manifold.
Such an object can always be written as ω = f(x)ε =

√
|g|fdx1 ∧ . . .∧dxn, and

we define ∫
ω =

∫
· · ·

∫
f(x)dx1 . . . dxn (3.58)

We can now make the identification

dnx→ dx1 ∧ . . . ∧ dxn (3.59)

if we choose a coordinate basis. A scalar function f(x) ∈ Λ0(M) is integrated
as ∫ √

|g|f(x)dnx =
∫
f(x)ε (3.60)

We see that this integral is a scalar quantity, and thus properly defined. From
this discussion it should be clear that we can view every integrand as an n-form.
In a strict sense, we can construct an equivalence class between tensor densities
and n-forms.

3.7 Stokes’ theorem

We are now in a position to turn to Stokes’ theorem. Imagine we have an n-
dimensional manifold M available, which has Ω as n-dimensional submanifold.
The border ∂Ω is (n-1)-dimensional and can be defined via chains. Stokes tells
us that ∫

Ω

dω =
∫
∂Ω

ω (3.61)
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where dω ∈ Λn(M) is the exterior derivative of ω ∈ Λn−1(M). Here it is under-
stood that M is orientable and more of such subtleties. With the identification
of integrands as being forms, we also see that this is true for the divergence of
vector densities. This should be familiar from basic vector analysis. In many
applications, the exact details of the boundary and the region are not needed;
one can simply see that one gets an integral over the boundary, and often the
boundary conditions let this integral vanish. The theorem then states about
vector densities ∫

Ω

√
|g|∇µXµd4x =

∫
∂Ω

√
|g|Xµd3xµ (3.62)

which actually denotes∫
Ω

∇λXλεµνρσdx
µ ∧ dxν ∧ dxρ ∧ dxσ =

∫
∂Ω

Xλελνρσdx
ν ∧ dxρ ∧ dxσ (3.63)

This makes people make the following identification, when concerning integra-
tion: ∫

∂Ω

d(X · ε) =
∫
∂Ω

∇µ(Xµε) (3.64)

If the manifold Ω itself is compact6, then ∂Ω = ∅ and as a result∫
Ω

dω =
∫
∂Ω

ω = 0 (3.65)

Maybe it is nice to say something more about integration on surfaces in the con-
text of pullbacks. We saw how the line integral could be defined with pullbacks,
and now we are going to use the pullback to define integration on surfaces. For
this we take N ⊂M being an (n-1) dimensional submanifold of M , and U being
an open (n-1) dimensional manifold. Let S : U →M be a local parametrization
of S(U) ⊂ M . If ω ∈ Λn−1(M), then S∗ω ∈ Λn−1(U) and with this we can
define the integral of ω over S(U) as∫

S(U)

ω =
∫
U

S∗ω (3.66)

Just like in the case of line integrals, this object is invariant under a change of
parametrization, as it should be.

6A compact set is closed and bounded, and a compact manifold often can be read as
”manifold without boundary”. For instance, the circle S1 is a compact one-dimensional
manifold, but the real line R is not.

25



Chapter 4

Lagrangians, symmetries
and variations

Many physical theories are derivable from the action principle, and so is the the-
ory of general relativity. In fact, the famous mathematician Hilbert obtained
the field equations via this principle before Einstein did! The symmetries which
are present also become clear from the Lagrangian of the system. Symmetries
play a prominent role in modern physics. In the standard model forces are intro-
duced by promoting global symmetries of the Lagrangian to local symmetries.
For this we need covariant derivatives, in which the correction terms are the
gauge-fields of the particular force. In the theory of general relativity we work
on space-time itself; the relevant field here is the metric. By demanding the
invariance under diffeomorphisms defined on that space-time the equations get
a tensorial character. This introduces a certain connection1 which gives rise to
the gravitational field. So it is not an exaggeration to state that symmetries
play a crucial role in modern physics. The invariance under diffeomorphisms is
also used here to define the Noether current, from which a possible candidate
for the black hole entropy is obtained. In what follows, we will review the action
principle, how to define variations, and the Noether method.

4.1 The action principle

Imagine that we have an n-dimensional manifold M and a so called target
manifold T . In our case M is the space-time manifold and T is the set of all
possible values of the fields. For example, in the case when we only have a metric
field in 4 dimensions, we can identify T with R16 and in the case of only one
real scalar field we have T = R. The configuration space of smooth functions
from M to T is denoted by Φ, so Φ : M → T . It is the space of all kinematically
allowed field configurations. The action S : Φ → R then gives us the equations
of motion when it is extremized under certain boundary conditions. The action
can be written as an integral over a space-time region of a certain function called

1The specific connection has to be obtained by specific assumptions.
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the Lagrangian L , and so the equations of motion are given by

δS[φ] = δ

∫
M

L [φ]d4x = 0 (4.1)

which ofcourse is coordinate-independent. We use squared brackets to empha-
size that L depends on the field and its derivatives, and here it is considered
as a scalar density. There are some assumptions for this method:

• The variation of the field φ ∈ Φ is zero on the boundary of our space-time
volume, δφ|δM = 0, so M is considered as being a compact region.

• L depends only on the fields and its derivatives, not on the coordinates
x.

• The functional derivative of L is evaluated as if φ and its derivatives are
independent functions.

The first condition means that the fields involved are local, so that limx→∞ φ(x) =
0. This and other properties of the fields, like smoothness and causal restric-
tions, would specify the configuration space Φ, but those considerations are not
very important to us. The boundary conditions are imposed, because the ac-
tion principle should give us a description of the evolution of the system; the
beginning and endpoint are assumed to be given, which means that the fields
are fixed there. If φ satisfies the given boundary conditions and it satisfies the
constraint δS

δφ = 0, then it is said that φ lies in the subspace of on-shell solutions.
Most of the time we will do the variations explicitly, but we can use the Euler-
Lagrange equations to exhibit symmetries of our Lagrangian density. We will
discuss the case that L [φ] = L (φ, ∂µφ) and derive how this functional deriva-
tive looks like2; the extension to higher order derivatives of φ is simply a matter
of doing more partial integrations and imposing more boundary conditions. The
variation of S can be written as

δS =
∫

(
∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ))d4x

=
∫ (

∂µ

[ ∂L

∂(∂µφ)
δφ

]
− ∂µ

[ ∂L

∂(∂µφ)

]
δφ

)
d4x (4.2)

Note that we have put δ(d4x) = 0. When we write down explicitly the Jacobian
for a coordinate transformation x→ x

′µ = xµ + δxµ, we get up to first order

J = |∂x
′

∂x
| = 1 + ∂µ(δxµ) (4.3)

so that
δ(d4x) = d4x

′
− d4x = ∂µ(δxµ)d4x (4.4)

The variation of the coordinates is zero by hypothesis, so we can only consider
the variation in L . Then we can also use that the operations of varying the
field and taking derivates of the field commute:

δ(∂µφ) = ∂µ(δφ) (4.5)
2Examples of this case are φ begin a scalar field or the metric tensor due to metric com-

patability.
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This will not be true anymore if we consider covariant derivatives ∇; this will
be shown later on. The total derivative in eq.(4.39) can be converted into a
surface integral via Stokes’ theorem, and this term becomes 0. This boundary
term will become important to us in the next chapters. We could a priori add an
extra boundary term to the action which cancels the boundary term obtained
by the partial integration, but we won’t. Alltogether we find that the integrand
vanishes for arbitrary δφ, and the equations of motion are thus given by the
celebrated Euler Lagrange equations:

δL

δφ
≡ ∂L

∂φ
− ∂µ

∂L

∂(∂µφ)
= 0 (4.6)

and this gives us the functional derivative of L . In most of the theories which
are derived according to (4.1), the Lagrangian density functional L depends
on the field and the first derivative of the field. In a theory of gravity, we take
as our fundamental field the metric gµν(x). One can show that at any point
on the manifold, the metric can be put into its canonical form and the first
derivatives can be set to 0 ( see for instance [3] or [2] ). So a proper, non-trivial
Lagrangian density should contain up to second order derivatives of the metric:
L = L (gµν , ∂λgµν , ∂λ∂ρgµν). A same derivation as above defines the functional
derivative of L with respect to the metric field gµν :

δL

δgµν
≡ ∂L

∂gµν
− ∂λ

( ∂L

∂(∂λgµν)

)
+ ∂λ∂ρ

( ∂L

∂(∂λ∂ρgµν)

)
(4.7)

This looks a little intimidating, and when you start doing calculations with it,
you will discover it often actually is. When we introduce higher order derivatives
in our Lagrangian, we have two options: we can impose boundary conditions for
those derivatives of the variations of the fields involved, but we could also add
terms to the boundary terms of the action which don’t change the equations of
motion. These terms then can help to get rid of the ∂µδφ in the total derivative.
When doing variations, if often is much easier to just do the variations explicitly
instead of using the functional derivative.

Now we have to take a closer look at derivatives of L with respect to tensor
fields. We neglected an important detail in differentiating objects with respect
to tensor fields. These tensor fields can have certain symmetries, for instance
gµν = g(µν) or Fµν = F[µν]. The components of these derivatives are not
independent anymore and we have to account for that. We impose that the
partial derivative is fixed by the variation of L via

δL =
∂L

∂Tµ···ν
δTµ···ν + . . . (4.8)

So we impose that the derivative with respect to a tensor field has the same
symmetry properties as the tensor field itself.

In this thesis L will be defined in different ways. Most of the time we will
define it without the factor

√
|g| in it, so that it is a scalar. Then the action is

written as
S =

∫ √
|g|L d4x (4.9)
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If we do include this factor, it is explicitly mentioned and then L is actually a
tensor density. Later on, we will view L as an n-form and write L for it, which
is justified by our discussion on integration. In that case, the action becomes
simply

S =
∫

L =
∫

L ε (4.10)

and L ∈ Λn(M). It turns out that in some cases this last point of view is very
convenient, but be aware of this differences.

4.2 A note on variations

Because we are dealing a lot with variations, it’s no luxury to take a good look
at them. What do we actually mean by varying a tensor field ψ with δψ? The
subtle point here is that in a relativistic field theory coordinates have no physical
meaning. First of all, we used variations in the action to derive the equations
of motion. These variations were arbitrary variations and didn’t involve varia-
tions of the coordinates; we were merely interested in what equations the field
configurations obey, and this is independent of the coordinates.

If we do involve coordinate variations in the game, we can define two kinds
of variations of the field. Recall how we pushed forward a point on our manifold
via

δxµ = x
′µ − xµ

= lim
t→0

(φt(x))µ (4.11)

which is in fact a member of the one-parameter group diffeomorphisms with
infinitesimal t.

Figure 4.1: The action of a diffeomorphism
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The first variation of the field is written as

δψ = ψ
′
(x)− ψ(x)

= lim
t→0

1
t
[φ∗tψ(φt(x))− ψ(x)] (4.12)

What we essentialy do here, is to transform the field ψ via a coordinate transfor-
mation, and after that we pull the coordinates back to compare the two fields
at one and the same point on the manifold. That’s nothing more than our
Lie-derivative, in which we used a vector flow ξ which was associated with the
diffeomorphism φ. So from now on we will denote this variation as δξ.

We could also define another kind of variation:

δ̃ψ = ψ
′
(x

′
)− ψ(x) (4.13)

Here we perform a coordinate transformation on the field, and by this the co-
ordinate transforms along with the field. It refers to the value of the field ψ
again at the same point in two different coordinate systems. Note that this

Figure 4.2: The action of a general coordinate transformation

doesn’t involve a change of the geometric point on the manifold, and as such it
doesn’t involve a diffeomorphism φ : M →M on the manifold itself. But we do
have to know how the fields transform under coordinate transformations; these
are diffeomorphisms in the coordinate space. Physically this is precisely what
a Lorentz transformation does; two observers look at the same event ( point
on the manifold ) from two different frames of reference, or coordinate systems,
but here we consider also general coordinate transformations. Now these two
variations are connected via the relation

δψ = δ̃ψ − δxµ∂µψ (4.14)

The last term is called the transport term. It accounts for the fact that in
δψ the coordinate has been pulled back after the coordinate transformation. 3

3See the appendix for a derivation of this result.
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Let’s take an example by looking at ψ as a scalar function. Then we have by
definition that

δ̃ψ = 0 → δψ = −δxµ∂µψ (4.15)

which indeed is the Lie-derivative of a scalar field. The vector δxµ is often given
an own name like ξµ. The fact that a vector field ξ induces a variation −ξµ∂µψ
in a scalar field should be familiar. As a next example, consider the metric gαβ .
Under a coordinate transformation x→ x− ξ we obtain, up to order O(∂ξ),

δ̃gαβ = gαµ∂βξ
µ + gµβ∂αξ

µ (4.16)

This implies that

δξgαβ = ξµ∂µgαβ + gαµ∂βξ
µ + gµβ∂αξ

µ (4.17)

which is what we want. To summarize all this potentially confusing material:
the combination of a push-forward and a coordinate transformation is a dif-
feomorphism φ on the manifold M which can be induced by a Lie-derivative
infinitesimally. Under φ, the transformed tensor components are evaluated at
the same numerical values of the coordinates as the original tensor compo-
nents in the original coordinates. If we define an action S we have to keep
in mind the fact that δ̃(

√
gd4x) = 0 because this is a scalar quantity, but that

£ξ(
√
gd4x) 6= 0 in general. So general coordinate transformations can be seen as

diffeomorphisms in the coordinate space (for example, Rn) which don’t change
the geometrical point, whereas push-forwards can be seen as diffeomorphisms on
the manifold M , which do change the geometrical point. If we explore further
this coordinate business, we will discover that the passive point of view and the
active point of view of coordinate transformations are interchangeble; in each
region of the manifold there is a one-to-one correspondence between a certain
coordinate transformation and an active diffeomorphism. We won’t go deeper
into this, but this discussion leads to the correspondence between diffeomor-
phism invariance and general covariance, and the so-called ”hole argument” of
general relativity which troubled Einstein for quite some time.

It should be noted that in discussing the variational principle, some authors
look at the field ψ as a one-parameter family ψ(λ;x) of field configurations on
space-time, where λ ∈ R. If the coordinate x is held fixed, c(λ) = ψ(λ;x)
describes a curve in configuration space. The variation δψ is then defined as

δψ(x) =
dψ(λ;x)
dλ

|λ=0 (4.18)

This can be considered as a tangent vector of the curve c(λ) at the point ψ(λ =
0;x) in configuration space. The variation of the Lagrangian density L is then

δL =
dL

dλ
|λ=0 (4.19)

In theories of gravity the metric field is coupled to the matter fields via covariant
derivatives and Lorentz invariance. Both fields are taken to be dynamical. Let’s
make a clear distinction between the collection of matter fields ψ and the metric
field g. The total collection of dynamical fields is called φa = (ψ, g). The
Lagrangian L is written as

L = L(ψ,∇ψ, g) (4.20)
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in which indices are surpressed, ψ is taken to be a covariant vector field for
simplicity and so ∇ψ = ∂ψ−Γψ. The generalization to higher order derivatives
and arbitrary matter fields is quite straight forward. The total variation δt
concerns the variation δm which concerns the matter fields and the variation δg
which concerns the metric and the connection. The matter field is independent
of the metric and vice versa. For instance, for the vector potential A being a
one-form we write δgA = 0 and δAg = 0. Note that this isn’t true anymore for
vectors with contravariant components as A = Aµ∂µ. The following identities
are made:

δmψ ≡ δψ

δmg = δmΓ = δmR = 0
δgg

µν ≡ δgµν

δgψ = 0
δt = δg + δm (4.21)

These on their turn give rise to the following identities:

δg∇ψ = δg(∂ψ − Γψ) = −ψδgΓ
δtψ = δψ

δtg = δg

δt∇ψ = ∇δmψ − ψδgΓ (4.22)

Our interest lies in the total variation of the Lagrangian, δtL:

δtL =
∂L
∂ψ

δtψ +
∂L
∂∇ψ

δt∇ψ +
∂L
∂gµν

δtg
µν

=
∂L
∂ψ

δmψ +
∂L
∂∇ψ

(∇δmψ − ψδgΓ) +
∂L
∂gµν

δgµν

=
[∂L
∂ψ

δmψ +
∂L
∂∇ψ

∇δmψ
]

+
[ ∂L
∂gµν

δgµν − ∂L
∂∇ψ

ψδgΓ
]

= δmL + δgL (4.23)

Here the variations can be rewritten as

δmL =
[∂L
∂ψ

−∇ ∂L
∂∇ψ

]
δψ +∇

[ ∂L
∂∇ψ

δψ
]

≡ Eψδψ +∇ ·Θ
δgL = Eµνg δgµν (4.24)

where the symplectic potential Θ and the equations of motion E(ψ) are defined.
This will be encountered again in chapter seven.

4.3 Diffeomorphism invariance

Having discussed the issue of coordinates in the beginning of this section, let
us briefly come to the notion of diffeomorphism invariance. In the theory of
special relativity, we had a set of preferred frames of reference in which the
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laws of physics were the same: inertial frames. So we had the notion of ab-
solute acceleration. In special relativity, but also in quantum field theory, the
metric is a fixed background so it makes sense to assign a physical meaning to
points on this manifold. If we use a diffeomorphism and shift all the dynami-
cal fields with respect to this fixed background metric we change the physical
situation; conventional field theories are not invariant under these transforma-
tions. However, this changes in general relativity. Here the metric is part of
those dynamical fields, and if we shift all the fields including the metric, nothing
changes; only the relative distances, measured with the space-time interval, have
physical meaning, because we shift the geometry along. Also, we can’t solve the
equations of motion for the gravitational field and the other dynamical fields
independently; these are coupled according to Einstein’s field equations and so
we have to solve those equations ’simultaneously’. So a theory of gravity, based
on the idea that the metric determines the space-time geometry, is diffeomor-
phism invariant. It’s however not a feature of the gravitational field alone, but
of every general relativistic field theory in general. This statement is expressed
as

L(f∗φ) = f∗L(φ) (4.25)

where f∗ : M → M and φ are the dynamical fields including the metric. This
means that instead of one space-time we should regard the equivalence class of
sets (M,φ), where the equivalence class is determined by (M,φ) ∼ (M,f∗φ).
This makes the space of field solutions very large. It also changes the way we
derive symmetries in field theories; with a fixed background metric we could say
that rotating or translating all dynamical fields should leave the physical sys-
tem unchanged, but that doesn’t make any sense with a dynamical background.
In general relativity we therefore use Killing vectors to derive symmetries, and
quantities like the total energy should be defined at asymptotical infinity where
the metric is assumed to be flat.

4.4 The Noether method

Here we will briefly discuss the Noether method. The symmetries which are im-
portant to us are given by the diffeomorphism invariant character of our theories
of gravity. So we consider the infinitesimal transformations of the coordinates:

δ̃xµ = x
′µ − xµ

δ̃φ = φ
′
(x

′
)− φ(x) (4.26)

Note that we wrote also a δ̃ for the coordinate transformations; it’s again the
difference between the coordinates in two different coordinate systems, but the
point is the same. Let’s obtain an expression for δ̃S:

δ̃S =
∫

[δ̃d4xL + δ̃L d4x] = 0 (4.27)
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The following identities will be useful to us:

δ̃d4x = d4x∂µδ̃x
µ

δ̃L = δL + δ̃xµ∂µL

δL =
∂L

∂φ
δφ+

∂L

∂∂µφ
δ(∂µφ) +

∂L

∂∂µ∂νφ
δ(∂µ∂νφ) + · · · (4.28)

We are at ease by putting [δ, ∂µ] = 0 because δ doesn’t involve any change of
coordinates. So the variation becomes, if we pull out the total factor d4x and
identify a total derivative:

δ̃S =
∫

[∂µ(δ̃xµL ) + δL ]d4x (4.29)

Now some integration by parts gives us the following form of δ̃S:

δ̃S =
∫

[∂µ
[
L δ̃xµ+

( ∂L

∂∂µφ
−∂ν

∂L

∂∂µ∂νφ

)
δφ+

∂L

∂∂µ∂νφ
∂ν(δφ)+· · ·

]
+
δL

δφ
δφ]d4x

(4.30)
The scalar character of S implies thus∫

[∂µjµ +
δL

δφ
δφ]d4x = 0 (4.31)

where we identified the current j

jµ = Tµν δ̃x
ν− ∂L

∂(∂µ∂νφ)
∂λφ∂ν δ̃x

ρ+
[ ∂L

∂(∂µφ)
−∂ν

( ∂L

∂(∂µ∂νφ)

)]
δ̃φ+ · · · (4.32)

Here Tµν is the canonical energy-momentum tensor, and the · · · stand for terms
wich are proportional to derivatives of δ̃φ. If φ lies in the subspace of on-shell
solutions, then we have the continuity equation

∂µj
µ = 0 (4.33)

Remember that j is a vector density, so this expression is covariant. If we have a
metric available, then the vector J =

√
|g|j can be constructed and we obtain4

∇µJµ = 0 (4.34)

There is a clever way to find the Noether current which is associated with global
symmetry transformations of δφ. We can construct a general transformation out
of the symmetry transformations. The action is invariant under a transforma-
tion £ξφ, so it should also be invariant under a transformation ε(x)£ξφ if ε(x)
is constant. The variation of the action must then have the following form:

δξS =
∫

[∂µε(x)jµ]d4x (4.35)

This function ε(x) satisfies certain boundary conditions, such that the variation
of the Lagrangian can be written as ∂µjµ modulo the equations of motion. Then

4Later we will write for the Noether current as a form J ∈ Λn−1(M).
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the variation of the action can also be written as

δξS =
∫

Ω

∂µ(ε(x)jµ)d4x−
∫

Ω

ε(x)∂µjµd4x

= −
∫

Ω

ε(x)∂µjµd4x (4.36)

because ε(x) = ∂µε(x) = 0 for x ∈ ∂Ω with Ω ⊂M .

4.5 Symmetries and Killing vectors

To conclude this chapter, we show the connection between symmetries and
Killing vectors via the action. Imagine we have the action from which the
equations of motion for time-like geodesics can be deduced:

S =
1
2

∫
dλ gµν ẋ

µẋν (4.37)

Now we perform a coordinate transformation:

xµ → xµ − αξµ, ẋµ → ẋµ − αξ̇µ (4.38)

which we consider as active. The variation of the action becomes

δS =
1
2

∫
[δgµν ẋµẋν + gµνδẋ

µẋν + gµν ẋ
µδẋν ]dλ (4.39)

The variations of gµν , xµ and ẋµ with respect to the active coordinate transfor-
mation are

δxµ = αξµ

δẋµ = αξ̇µ = α
∂ξµ

∂xρ
dxρ

dα
= α ∂ρξ

µẋρ

δgµν =
∂gµν
∂xρ

δxρ = α∂ρgµνξ
ρ (4.40)

If this is plugged in expression (4.39) and some indices are relabeled, the varia-
tion becomes

δS =
α

2

∫
dλẋµẋν [ξρ∂ρgµν + ∂µξ

ρgρν + ∂νξ
ρgρµ]

=
α

2

∫
dλẋµẋν£ξgµν (4.41)

It becomes clear that the action is invariant to first order, if the Lie-derivative
of gµν vanishes! The vector field ξ induces a conserved charge Q:

Q =
∂L

∂ẋµ
δxµ =

∂L

∂ẋµ
ξµ ≡ ξµpµ (4.42)

Here the four-momentum pµ is defined and the constant factor α is omitted
from the charge. In the case of the present action,

pµ = m
dxν

dτ
gµν (4.43)
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if the parametrization with the eigentime τ is used. In the case of black holes we
now have a useful expression for energy conservation when we know the metric
which describes the particular black hole. For static black holes, we have that
∂tgµν = 0 with t the coordinate time, and with this ∂/∂t is a Killing vector. In
that case we see that the conserved charge is

mkµ
dxν

dτ
gµν = mg00

dt

dτ
(4.44)

These symmetries can also be found without the Lagrangian. If xµ(λ) is a
geodesic curve with tangent vector Xµ = dxµ

dλ and ξ is a Killing vector, then

Xµ∇µ(ξνXν) = ξµξν∇µXν + ξµXν∇µξν

= 0 (4.45)

This is due to the Killing’s equation for ξ and the geodesic equation for X.
Be aware that the action we used here describes the evolution of a particle
on a metric background, but not the evolution of the metric itself. What we
essentially do is shifting the metric field with the Lie-derivative acting as a
diffeomorphism, while keeping the particle fixed. Or the other way around, just
what one prefers.

4.6 Aspects of general relativity

Here some aspects of the theory of general relativity are reviewed which are
relevant to us. General relativity considers space-time as a pseudo-Riemannian
manifold of which the geometry of it is determined by the distribution of energy.
Gravity then is solely induced by the metric. The scalar potential of Newton
thus is replaced by the metric tensor. Physically the equations were derived
by Einstein by the demand that the geometric tensor constructed from the
Riemann tensor has zero covariant divergence because of energy and momentum
conservation. In fact, he just looked for a tensorial form of the Poisson equation
for the gravitational field in which the matter density is replaced by the energy
momentum tensor. The field equations which describe the evolution of the
metric are in component form

Gµν ≡ Rµν −
1
2
Rgµν = 8πTµν (4.46)

So in a vacuum the Ricci tensor vanishes. This doesn’t have to mean that
the metric is flat, and this is the origin of the existence of gravitational waves.
Metric compatibility enables us to introduce a term proportional to the metric
on the left hand side called the cosmological constant. We will ignore this
constant throughout this thesis. On first sight, one would think that there are
ten independent equations, but the Bianchi identities put four constraints on
the equations, so we’re left with six equations from which the metric can be
found. This is the origin of the theory being a gauge-theory, because the four
abundant degrees of freedom correspond with our ability to choose our four
coordinates freely. We already stressed that the theory of general relativity is
more than just these field equations; the geometry of space-time is determined
by it on which all the other fields live. So the field gµν is in this sense not ”just
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another ordinary classical field”. The motion of a particle in a gravitational
field is determined by the equation

maµ = m(ẍµ + Γµρλẋ
ρẋλ)

= mẋν∇ν ẋµ

= Fµ (4.47)

where ẋµ = dxµ

dτ , and Fµ is any force5. In the absence of these forces eq.(4.47)
reduces to the geodesic equation. So a particle always travels along a geodesic
if there are no external forces.

But now we look at the theory from an action- and gauge point of view. The
vacuum field equations can be derived from the Hilbert-action,

S =
1

16π

∫ √
|g|Rd4x (4.48)

when we consider the metric as the fundamental field. When we want to couple
matter to the gravitational field we introduce an action SM which describes this
matter field. This defines the energy-momentum tensor Tµν :

Tµν = − 1√
|g|

δSM
δgµν

(4.49)

which is symmetric because gµν is. It is already said that the theory of general
relativity can be regarded as a gauge-theory, where the symmetry group is the
group of general coordinate transformations. These transformations are given
by diffeomorphisms, or to be more specific: Lie-derivatives. A general action
can be written as S[ψi, g] = SH [g] + SM [ψ, g], where SH is the Hilbert action
and SM is the matter action. A general variation of the action then reads

δS =
∫
d4x

( δS
δψi

δψi +
δS

δgµν
δgµν + ∂µB

µ[ψ, g]
)

=
∫
d4x

( δSH
δgµν

δgµν +
δSM
δgµν

δgµν +
δSM
δψi

δψi + ∂µB
µ[ψ, g]

)
(4.50)

Here Bµ[ψ, g] denotes the boundary terms of the metric and the matter fields.
Now we consider the following case: the equations of motion hold, and the
variation is generated by a vector field ξ. Being coordinate-independent, δξS =
0. The action SH doesn’t contain the matter field ψ, so the equations of motion
for the matter field imply that the third term on the right is zero. We then end
up only with the variation in the metric, and the total variation reads

δξS =
∫
d4x

δS

δgµν
∇µξν

= −
∫
d4x

√
|g|ξν∇µ

( 1√
|g|

δS

δgµν

)
= 0 (4.51)

5Note that gravity is not seen as a force anymore, because the idea of acceleration due to
a gravitational field breaks down due to the equivalence principe.
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Boundary conditions on the vector field ξ are imposed here6. The variation of
the action results in the gauge identity

∇µ
( 1
|g|

δS

δgµν

)
= 0 (4.52)

for a general covariantly defined action. So what does this give us? If we insert
the Hilbert action into this identity, we end up with the contracted Bianchi
identities ∇µGµν = 0. If, on the other hand, we insert the matter action into
it, we end up with

∇µ
( 1
|g|

δSM
δgµν

)
= ∇µTµν(ψ)

= 0 (4.53)

So diffeomorphism invariance implies that the energy momentum tensor is con-
served in a covariant way. In the next section a closer look will be given on this
sort of conservation laws. To make this identification of general relativity as a
gauge theory more clear, we also give the situation in the case of electromag-
netism with no electric sources. Here one considers the variation of the Maxwell
action

S[A] = −1
4

∫ √
|g|F2d4x (4.54)

under the gauge transformation δAµ = ∂µΛ(x). Varying the Lagrangian, we
obtain

δ(FµνFµν) = 2FµνδFµν
= 4Fµν∂µδAν (4.55)

due to the antisymmetric contraction. We already know that under the gauge
transformation δS[A] = 0, because F is. The variation of S[A] becomes

δS[A] = −
∫ (

∂µ(FµνδAν)− δAν∂µF
µν

)
d4x

= −
∫ (

∂ν(∂µFµν)Λ(x)− ∂µ(Fµν∂νΛ(x)− ∂νF
νµΛ(x))

)
d4x

= 0 (4.56)

Here we have used the equations of motion ∂µF
µν = 0. If we now also impose

boundary conditions on Λ(x) and ∂µΛ(x) we get the gauge identity

∂µ∂νF
µν = 0 (4.57)

which is, however, not very illuminating because this is trivially satisfied due to
[∂µ, ∂ν ] = 0 which we have already used.

To conclude this section, some energy conditions will be considered, because
they play an important role in the formulation of the laws of black hole mechan-
ics. It is often assumed that Tµν obeys the weak energy condition for timelike
vectors X:

TµνX
µXν ≥ 0 (4.58)

6Don’t think of this vector field as being a Killing vector field; it’s arbitrary except for the
boundary conditions.
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which is a coordinate-independent expression of the demand that for the energy
density ρ = T00 we have ρ ≥ 0. The dominant energy condition expresses
the idea that the energy-momentum flow jµ = TµνX

ν is always future-directed
along timelike vectors or null vectors and jµj

µ ≥ 0. A last energy condition,
which Hawking used to establish the second law for black hole thermodynamics
for Einstein’s field equations, is implied by these field equations and the weak
energy condition. If we take null vectors X and we contract these with the field
equations, we get

GµνX
µXν = RµνX

µXν − 1
2
RgµνX

µXν

= RµνX
µXν

= 8πTµνXµXν ≥ 0 (4.59)

So we see that for null vectors we always have

RµνX
µXν ≥ 0 (4.60)

which is the so-called null energy condition.

4.7 Conserved charges and gravity

We saw in the previous section the definition of the energy momentum tensor of
the matter field and noted that it should be conserved in a covariant way. The
whole problem in defining the total energy locally is the equivalence principle:
locally one can erase the existence of a gravitational field by transforming to
an accelerating reference frame. This is the physical consequence of the idea
that space-time can be described by a differentiable manifold; a differentiable
manifold is locally Euclidian, and at every point in space-time the tangent space
is isomorphic with Minkowski space-time. So if the local energy of a space-time
region would be calculated by integrating the energy momentum tensor, it would
depend on the coordinates. Because the equivalence principle doesn’t hold glob-
ally, the total energy of a space-time region can be defined in a consistent way.
This quantity is conserved.

The equation ∇µTµν = 0 can be seen as the covariant generalization of the
conservation equation ∂µT

µν = 0 in the case of flat space-time. The covariant
equation can be rewritten as

∂µT
µν = −

(
ΓµσµT

σν + ΓνµσT
µσ

)
(4.61)

If we would like to see if the energy is conserved in some region Ω, we have
to consider the divergence of the integral over T . With covariant derivatives,
an integrand with zero divergence equals an integral with zero divergence, but
with partial derivatives this is not true. The integral can be rewritten using the
symmetry of T :

∂µ

(∫
Ω

Tµν
√
|g|d4x

)
=

∫
Ω

(
ΓλµλT

µν − ΓµσµT
σν − ΓνµσT

µσ
)√

|g|d4x

= −
∫

Ω

ΓνµσT
µσ

√
|g|d4x (4.62)
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and this is in general non-vanishing. This shouldn’t give us trauma’s because
it is the total energy that should be conserved, and not only the energy in the
matter field. Also, the equation ∂µT

µν = 0 which we would like to be satisfied
is only a tensorial equation if Tµν would be a Lorentz tensor7. Symmetries like
conservation of angular momentum or energy are naturally defined with respect
to the vacuum. They are founded by performing a translation or rotation in
Minkowski space-time, and by looking at the consequences of the invariance of
the action under such transformations. This symmetry group is the Poincaré
group. This suggests that if we work with asymptotically flat space-times, we
should define the Hamiltonian as a boundary integral at infinity. It is ofcourse
not trivial how to define such an integral and it depends on the behaviour of
the dynamical fields at spatial infinity. It has to be understood as a limiting
process, for spatial infinity is not part of our original space-time manifold.

If we would define the total energy momentum tensor of the gravitational
field plus the matter field with the action S we would get Tµν(ψ+g) = 0 due to
the equations of motion. One possible interpretation is that ”the total energy
and momentum flux of the matter fields always cancels that of the gravitational
field”, but it’s not clear if this interpretation makes any sense. According to
some physicists, the search for a local energy is looking for the wrong thing,
but at least we now are au fait with the subtleties around this matter. In the
next chapter some variations and derivatives are calculated which are needed
for further analysis.

7A Lorentz tensor is a tensor transforming tensorially only under the group of Lorentz
transformations Λµ

ν , with Λµ
ρΛν

σηµν = ηρσ and η the Minkowski metric.
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Chapter 5

Some explicit variations
and derivatives

To avoid too much ”it’s easy to show that”-sentences some explicit variations
and derivatives will be shown here. Complicated or tedious variations can often
be derived more easily if one thinks about the form of the result and the present
symmetries first before starting a brute calculation. It can save quite some
paper too, so it’s also more environmental.

5.1 Variations concerning the metric

We will need some expression involving δgµν , δgµν , δg and δ
√
|g|. First we

notice that
gµνg

νλ = δλµ → δ(gµνgνλ) = 0 (5.1)

So, if we want to switch between δgµν and δgµν we use

δgαλ = −gαβgρλδgβρ (5.2)

Be aware of the fact that [δ, gµν ] 6= 0, so in contractions which concerns δgµν or
δgµν we are not free to raise or lower indices without introducing a minus-sign;
for example,

Xµνδgµν = −Xµνδg
µν (5.3)

If the metric is looked upon as a matrix and Gµν is the cofactor of gµν , the
inverse is defined by

gµν =
1
g
Gνµ (5.4)

where Gνµ is ofcourse the transpose of Gµν . For a fixed µ the determinant g
can be expanded along the row ν:

g =
n∑
ν=1

gµνG
µν (5.5)
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where there is no summation over the index µ. Because gµν doesn’t appear in
Gµν for a fixed µ and arbitrary ν = 1 . . . n 1, it is clear that

δg

δgµν
= Gµν = ggµν → δg = ggµνδgµν (5.6)

If we now want to vary δ
√
|g|, we get

δ
√
|g| =

δ
√
|g|

δgµν
δgµν

=
1

2
√
|g|

δg

δgµν
δgµν

=
1
2

√
|g|gµνδgµν (5.7)

5.2 Variations concerning the Riemann-tensor

We also need variations of the Riemann-tensor. It will turn out that it is not
difficult to find such an expression, but eventually we want to express it in terms
of δgµν and that will be a little harder. A nice way of deriving tensor identities
is to jump to a coordinate system in which Γµνλ $ 0, called ”Riemann normal
coordinates”. In this coordinate system we have ∇ → ∂. The Riemann-tensor
becomes in this particular point

Rαβµν $ ∂µΓαβν − ∂νΓαβµ (5.8)

Now the connection is varied. The connection itself is not a tensor, because
otherwise it couldn’t be used to define a covariant derivative in the first place.
But the variation δΓαµν is a tensor. This can be checked directly by writing
down its transformation; the inhomogenous terms in the transformation will
cancel. The variation of the connection is simply

δΓαβµ = Γ
′α
βµ − Γαβµ (5.9)

and this induces a variation in the Riemann tensor

δRαβµν $ ∇µδ(Γαβν)−∇ν(δΓαβµ) (5.10)

Because tensorial equations hold for every point, this equation holds in every
coordinate system. It is called the Palatini equation. It gives us also straight
away the variation in the Ricci tensor:

δRµν = ∇α(δΓαµν)−∇ν(δΓαµα) (5.11)

Ofcourse this expression can also be derived by a straight variation of Rµν . If we
had done this, we would need an expression for the variation of the connection.
We can guess its form by noticing that δΓαµν is a tensor and by the form of
Γαµν itself. What we also can do is to write out explicitly the variation of δΓαµν ,

1After all, that is how a cofactor is defined in the first place.
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permute some indices, use the symmetry of the connection and then subtracting
the terms. The result is just what can be expected:

δΓσµν =
1
2
gσρ(∇µδgνρ +∇νδgρµ −∇ρδgµν) (5.12)

which is a tensor, because δgµν is a tensor.

Now we will derive an expression for δRµνρσ in terms of δgαβ , which we will
do by some clever guesswork concerning the symmetries. The reason for this, is
that a direct variation is very messy and takes several wallpapers of calculations.
The variation is defined as δRµνρσ = R

′

µνρσ − Rµνρσ, so δRµνρσ has the same
symmetries as Rµνρσ. Thse symmetries for the components are:

• Rµνρσ = −Rνµρσ = −Rµνσρ

• Rµνρσ = Rρσµν

• Rµ[νρσ] = 0

• ∇[λRρσ]µν = 0

The last equation is the Bianchi identity. First we write

Rµνρσ = gσλR
λ

µνρ → δRµνρσ = R λ
µνρ δgσλ + gσλδR

λ
µνρ (5.13)

If the variation has the same symmetry-properties, we expect that δRµνρσ con-
tains a term like R λ

µν[ρ δgσ]λ and a term like gσλδR λ
µνρ , where in the last term

we have to do an antisymmetrization to conserve the antisymmetry-properties.
Looking at the Palatini-identity we want an expression for ∇(δΓ). Using metric
compatibility,

∇µδΓλνρ =
1
2
gλα[∇µ∇νδgρα +∇µ∇ρδgνα −∇µ∇αδgνρ] (5.14)

and with this the Palatini-equation becomes

δR λ
µνρ =

1
2
gλα[∇µ∇νδgρα +∇µρδgνα −∇µ∇αδgνρ]

− 1
2
gλα[∇ν∇µδgρα +∇ν∇ρδgµα −∇ν∇αδgµρ] (5.15)

Multiplying by gσλ we get rid of the metric in front of the expression. This
looks messy, but still an antisymmetrization of ρ and σ is required. If this is
worked out, we finally obtain the result

δRµνρσ = R λ
µν[ρ δgσ]λ + 2∇[µ∇[ρδgσ]ν] (5.16)

This notation can be confusing; we only antisymmetrize here the indices µ and
ν, and ρ and σ, to obtain four terms in total. The second term contains second
order derivatives of the metric, but when the action is defined, we will see that
these terms can be converted by partial integrations and Stokes’ theorem.
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5.3 An explicit Lie derivative

We will need the Lie derivative of the Riemann tensor. Here such a calculation
will be briefly explained and the generalization should be straight forward. The
only thing which is needed is the transformation law for tensors and Taylor’s
theorem. The Lie derivative of the Riemann tensor is defined as

£XRµνρσ = lim
δs→0

Rµνρσ(x
′
)−R

′

µνρσ(x
′
)

δs
≡ δXRµνρσ (5.17)

where the infinitesimal coordinate transformation

x
′
= x+ δsX (5.18)

defines the vectorfield X. Using Taylor’s theorem and the transformation law,
we can write for the variation

δXRµνρσ(x) =
∂x

′α

∂xµ
∂x

′β

∂xν
∂x

′γ

∂xρ
∂x

′ε

∂xσ
[Rαβγε(x) + δsXλ∂λRαβγε(x)]−Rµνρσ(x)

(5.19)
Now calculate all the transformations; it gives us a bunch of delta functions
and terms with δs. Keeping only first order terms it becomes clear after some
calculating that

δXRµνρσ = Rµνρε∇σXε+Rµνεσ∇ρXε+Rµερσ∇νXε+Rενρσ∇µXε+Xε∇εRµνρσ
(5.20)

Because of the symmetries mentioned earlier of the Riemann tensor, this can
be simplified to give

δXRµνρσ = Xε∇εRµνρσ + 2∇µXεRενρσ + 2∇ρXεRµνεσ (5.21)

5.4 Variations and covariant derivatives

In varying the Lagrangian, we encounter variations of the covariant derivative.
Unlike partial derivatives, covariant derivatives and variations don’t commute
due to the connection. Let’s write the covariant derivative of a general tensor
field φ in compact notation as

∇iφ = ∂iφ+
∑
[i]

Γiφ (5.22)

where we understand the contractions between the connections and the fields
and a minus sign for every covariant index. Here the [i] is not a tensorial
or summation index. It just tells us which connections, summations and par-
tial derivatives belong to which covariant derivative if we consider higher order
derivatives. If we vary this derivative, we obtain

δ(∇iφ) = ∂iδφ+
∑
[i]

Γiδφ+
∑
[i]

δΓiφ

= ∇i(δφ) +
∑
[i]

δΓiφ (5.23)
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The second line is obtained due to the linear character of the covariant derivative
and the product rule. So the commutator of δ and ∇i is

[δ,∇i]φ =
∑
[i]

δΓiφ ∼ ∇δg (5.24)

where g denotes the metric field. Note that this equation makes sense because
δΓi is a tensor. In this way variations of derivatives can be rewritten. For
example,

δ∇1∇2φ = (∇1δ +
∑
[1]

δΓ1)∇2φ

= ∇1(∇2δ +
∑
[2]

δΓ2)φ+
∑
[1]

δΓ1)∇2φ

= ∇1∇2δφ+∇1(
∑
[2]

δΓ2φ) +
∑
[1]

δΓ1)∇2φ (5.25)

In a similar manner it can be derived that

δ∇1∇2∇3φ = ∇1∇2∇3δφ+∇1∇2(
∑
[3]

δΓ3φ) +∇1∇2φ(
∑
[3]

δΓ3)

+ ∇1(∇3φ
∑
[2]

δΓ2) +∇2∇3φ
∑
[1]

δΓ1 (5.26)

Calculations as these can be useful when we want to rewrite for instance the
variation of Lagrangians.
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Chapter 6

Black hole mechanics and
-thermodynamics

To understand the equations of motion of black holes it is necessary to under-
stand some basic ideas about black holes. Those are reviewed in this chapter.
In comparing the equations of motion with the familiar thermodynamic rela-
tions the similarity between the entropy and the black hole surface area will
become clear. It will be made plausible that these aren’t just nice coincidences.
It turns out that the area can give a measure for the black hole entropy, and
this makes the prediction by Hawking that black holes quantummechanically
viewed radiate consistent. Proving the second law for this black hole entropy
for more complex Lagrangians will turn out to be not that easy.

6.1 Basis properties of black holes

Black holes are mathematically viewed certain solutions of the field equations
of Einstein which possess a horizon from where null geodesics cannot extend to
spatial infinity. There are a number of different solutions of the field equations
which give black holes, for example:

• The Schwarzschild metric, which is spherically symmetric and static

• The Kerr metric, which describes a rotating black hole

• The Reissner-Nordström metric, which describes a charged black hole

• The Kerr-Newman metric, which describes a rotating and charged black
hole

These solutions imply that a black hole can be totally described by its mass M ,
its angular momentum J , its electric charge Q and the area of the event hori-
zon A. There are some technical subtleties about how to actually define such
quantities because of the equivalence principle. But if we want to generalize
the first law, we need to pay some attention to this. The fact that no more
quantities are needed to specify a black hole is called the ”no hair” theorem. It
is quite remarkable, because the star from which the black hole is formed con-
tains much more information. We also assume that every singularity contains
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an event horizon, so that there will be no naked singularities. This is called
”cosmic censorship”.

The Kerr-Newman metric is the most general solution, and the other solu-
tions can be obtained by setting Q = 0, J = 0, or both. To see if there are
singularities involved, we need to do a maximal analytic extension. In this pro-
cess, all coordinate singularities are removed. The Schwarzschild solution for
the line element in spherical coordinates is given by

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2(dθ2 + sin2 θdφ2) (6.1)

The Schwarzschild solution contains certain symmetries; it is static1 and it
describes a spherically symmetric black hole. So we have a symmetry in the time
direction and in the φ direction. This gives us the Killing vectors kµ = (1, 0, 0, 0)
and kµ = (0, 0, 0, 1) respectively, and this gives us in turn two conserved charges:

E = m
dt

dτ
g00 = −m(1− 2M

r
)
dt

dτ

L = m
dφ

dτ
g33 = mr2

dφ

dτ
(6.2)

which have opposite signs due to the signature of the metric. This kind of
analysis can also be used for the other solutions; it is a matter of identifying the
symmetries and the resulting Killing vectors.

6.2 Coordinate choices

Physics doesn’t depend on the choice of coordinates, but a particular choice can
make life considerably more easy. Remember that the Schwarzschild solution
has a singularity at r = 2M . This makes one believe there is something very
special going on at r = 2M , but don’t be fooled: it’s just a bad choice of co-
ordinate system! It’s a matter of cleverly rewriting the metric to avoid these
singularities. To see if there are singularities involved, we need to do a maximal
analytic extension. Physical singularities can be recognized by the divergence
of scalar terms constructed out of the Riemann-tensor like RµνρσRµνρσ. For in-
stance, the Schwarzschild solution contains a coordinate singularity at r = 2M .
The maximal analytic extension of this solution is called the Kruskal exten-
sion. With these maximal analytic extensions we can describe the evolution of
geodesics all through space-time in a continuous way . . . if it weren’t for physical
singularities. Physical singularities can be recognized by the divergence of scalar
terms constructed out of the Riemann-tensor like RµνρσRµνρσ. The procedure
is found in allmost all books on general relativity, so we will be brief here, and
take the Schwarzschild solution as example. We want to investigate radial null

1A solution is called stationary if it is time-independent, and static if it is not evolutionary.
Static metrics can’t contain cross-terms due to the invariance under x0 → −x0. The subtle
difference between these two properties can be understood by an analogy: a pipe with water
flowing at a constant velocity would be the stationary case, and a pipe with no waterflow at
all would be the static case. A space-time is defined to be static if it has a timelike Killing
vector field which is hypersurface-orthogonal. A static space-time is always stationary, but
the contrary isn’t always true, as can be seen by looking at the Kerr-metric.
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geodesics2 going past the Schwarzschild radius.

The procedure is to note that with a new coordinate r∗ = r+ 2M ln | r−2M
2M |

we have that d(t± r∗) = 0 on our radial null geodesics. Ingoing coordinates are
defined by v = t+ r∗ and outgoing coordinates by u = t− r∗. Now perform the
coordinate transformation (t, r, θ, φ) → (v, r, θ, φ) and rewrite the metric. To do
this, we have to rewrite dt2:

dt = dv − dr∗

= dv −
(
1− 2M

r

)−1

dr

→ dt2 = dv2 − 2
(
1− 2M

r

)−1

drdv +
(
1− 2M

r

)−2

dr2 (6.3)

Remember that our coordinate transformations are diffeomorphisms, and that

in rewriting the line element we can use the fact that ∂x
∂y =

(
∂y
∂x

)−1

for two de-
pendent coordinates x and y. Plugging this into the Schwarzschild line element,
we get

ds2 = −
(
1− 2M

r

)
dv2 + 2drdv + r2dΩ2 (6.4)

and see that the metric is not singular anymore for r = 2M due to the cross-
term drdv. So we can analytically continuate the metric for r > 0. If we rewrite
this to drdv = . . ., it is clear that for ds2 < 0 we have drdv < 0. Because dv > 0
for future-directed worldlines, we must have dr ≤ 0. So wordlines with r < 2M
are forced to go to r = 0. The same can be done for the outgoing coordinate
u = t− r∗. The line element becomes

ds2 = −
(
1− 2M

r

)
du2 − 2drdu+ r2dΩ2 (6.5)

Here we have that drdu ≥ 0 for ds2 < 0, so dr ≥ 0 for future-directed wordlines
because du > 0. This seems quite strange; an object with a surface r < 2M
expands until r = 2M is reached. This is a white hole. Both are solutions of
Einstein’s field equations, because these equations are time-symmetric. We will
only consider black holes to be physical, but in maximal analytic extensions
these solutions will both appear.

We can also take the transformation (t, r, θ, φ) → (u, v, θ, φ) to obtain the
elegant-looking line element

ds2 = −
(
1− 2M

r

)
dudv + r2dΩ2 (6.6)

So with these coordinates we can extend a radial null geodesic from r = 2M
to r = 0. But the Schwarzschild solution is not geodesically complete; a light
ray can come from spatial infinity and terminate at r = 0 due to the physical
singularity. A solution is called maximal if, at every space-time point, one can
extend a geodesic xµ(λ) to infinite values of the affine parameter λ along both
directions, or that it terminates on a physical singularity. One example of this is
Minkowski space-time. Our rewritten Schwarzschild solution isn’t maximal. To

2So dxµ = (dt, dr, 0, 0) and ds2 = 0.
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obtain a maximal solution Kruskal used the following coordinate transformation
to rewrite eq.(6.6):

U = −e−u/4M = −e(−t+r)/4M
√
r − 2M

2M

V = ev/4M = e(t+r)/4M
√
r − 2M

2M

UV = −
(r − 2M

2M

)
er/2M

ds2 =
−32M3

r
e−r/2MdUdV + r2dΩ2 (6.7)

So we maximalized the Schwarzschild solution by the transformation (t, r, θ, φ) →
(U, V, θ, φ). In these coordinates, we can describe both black and white holes,
and we can extend every geodesic in both space-direction and time-direction,
except if we encounter the r = 0 singularity. The region r = 2M is described
by UV = 0 and the region r = 0 is described by UV = 1. A constant U
corresponds to outgoing radial null geodesics, and a constant V corresponds to
ingoing radial null geodesics, as is clear from the form of those two. We see two

Figure 6.1: Space-time diagram of the Kruskal solution

singularities in the figure: a singularity in the past, t = −∞ and a singularity
in the future, t = +∞. The regions I and II are covered by v, and describe the
black hole. The regions I and III are relevant for describing the white hole.
Region I alone corresponds to the Schwarzschild solution with r > 2M . Per-
haps the most curious region is IV ; it’s geometrically equivalent to I, and the
connecting topology between those two is the very hypothetical Einstein-Rosen
bridge. We won’t consider those here, and in the forthgoing we will only assume
the existence of black holes.

In spherical coordinates we had the isometry t → t + c with Killing vector
ξ = (∂/∂t, 0, 0, 0); this expresses the stationary character of the Schwarzschild
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solution. In Kruskal coordinates this Killing vector field becomes

ξ =
1

4M
(V

∂

∂V
− U

∂

∂U
) (6.8)

We also see that the point (U, V ) = (0, 0) is a fixed point 3 of ξ and this point
corresponds to a 2-sphere. One could think that the geodesically incomplete
character of solutions could be due to the spherically symmetric collapse, but
Hawking and Penrose showed with their singularity theorems that this incom-
pleteness is a general feature of gravitational collapse. For these singularity
theorems, one can consult [4], chapter eight.

6.3 Black hole surfaces

In the equations of motion, a couple of black hole properties are very important
for us. Those properties are the surface area and the surface gravity. A hyper-
surface can be described as the set of points {x | S(x) = 0} for S(x) : M → R,
where M is the manifold and x ∈M . The components of the vector field normal
to this hypersurface are then given by

lµ = f(x)gµν∂νS(x) (6.9)

Here f(x) : M → R is an arbitrary function. If lµlµ = 0 for a particular member
of the set, then that element is called a null-hypersurface. Take for instance the
Schwarzschild solution in spherical coordinates and a specific S. We know that
it contains a coordinate singularity, but continuity implies that we don’t have
to switch to other coordinate systems like Eddington-Finkelstein coordinates.
We choose S(r) = r − 2M , so different values of S denote different 2-spheres
with arbitrary t and r = 2M + S(r):

lµl
µ = gµν∂µS ∂νS = g11∂1S∂1S = (1− 2M

r
) (6.10)

The condition that l is null gives that the surface r = 2M is a null hypersurface:

lµl
µ = 0 → r = 2M

l = f(x)
(
1− 2M

r

) ∂

∂r
(6.11)

Now let’s take a closer look at those null hypersurfaces. The normal of this null
hypersurface Σ is l. Because lµlµ = 0, our l is also a tangent vector4 of Σ. If
xµ(λ) is a curve in Σ, we can write

lµ =
dxµ

dλ
= f(x)gµν∂νS(x) (6.12)

3For a fixed point λ of a function f(λ) the equation f(λ) = λ holds.
4Remember that due to the signature of the metric one and the same vector can both be

normal and tangent to a hypersurface.
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These curves x(λ) are actually geodesics! This can be seen by a straightforward
calculation of lσ∇σlµ:

lσ∇σlµ = (lσ∂σ ln f)lµ + fgµν lσ∇ν∂σS

=
d ln f
dλ

lµ + lσf∇µ( 1
f
lσ)

=
d ln f
dλ

lµ +
1
2
∂µ(lσlσ)− (∂µ ln f)lσlσ (6.13)

In the first line we used that our space-time is torsion free (Γλµν = Γλνµ) and
in the second line we used the fact that l is a tangent vector. Now, lσlσ is a
constant on Σ, so tµ∂µ(lσlσ) = 0 for any tangent vector t. Because l was also a
tangent vector, we see that ∂µ(lσlσ) ∝ lµ. With this we have proven that

lσ∇σlµ ∝ lµ (6.14)

and that the curve x(λ) is a geodesic with tangent vector l on Σ. Such geodesics
are called the generators of Σ. These curves are important to us, because they
can be used to describe the evolution of the hypersurfaces which they gener-
ate. Later on we will see that this evolution is described by the Raychaudhuri
equation, and with this we can prove the famous area theorem of Hawking.

6.4 Killing Horizons and the zeroth law

A null hypersurface Σ is called a Killing horizon of a Killing vector field ξ if this
Killing vector field is normal to the hypersurface. If we use the field equations
of Einstein all event horizons are Killing horizons under the assumptions that
the dominant energy condition holds and that the matter fields have a well
defined Cauchy description; we will come to that later. Now pick again the
normal vector l to Σ and choose an affine parameter. We then have lσ∇σlµ = 0.
Because the killing vector field ξ is proportional to l, we can write ξµ = h(x)lµ

for an arbitrary function h(x). If this is plugged in our geodesic equation, we
obtain

ξσ∇σξµ = (− 1
h
ξσ∂σ

1
h

)ξµ = κξµ (6.15)

where we have defined a very important quantity:

κ = ξσ∂σ(lnh) (6.16)

It is called the surface gravity of Σ. It turns out [5] that this κ is the acceleration
of a particle near Σ as measured at spatial infinity. So that explains the name,
but what are the properties of this surface gravity? From the expression it is
clear that it is a function in general. However, it can be proven that the surface
gravity is actually constant on Σ! To prove this, we use Frobenius’ theorem [6]
and eq.(6.15). Frobenius’ theorem tells us that for a normal vector ξ of Σ the
constraints are

ξ[µ∇νξρ]|Σ = 0 (6.17)
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It is emphasized here that the constraints only apply on the hypersurface Σ.
But the field ξ is a Killing vector field and has thus constraints on its own,
namely ∇µξν = ∇(µξν). Frobenius’ theorem then yields

ξ[µ∇νξρ]|Σ = 2(ξρ∇µξν + ξµ∇νξρ + ξν∇ρξµ)|Σ
= 2(ξρ∇µξν + ξµ∇νξρ − ξν∇µξρ)|Σ
= 0|Σ (6.18)

If we contract this with ∇µξν and use eq.(6.15) twice, we see that

κ2 = −1
2
∇µξν∇µξν |Σ (6.19)

Now we will prove that κ is constant on orbits of ξ. The vector field ξ is both
normal and tangent to Σ. So we have

ξρ∇ρκ2 = −ξρ∇µξν∇ρ∇µξν |Σ
= −∇µξνξρRνµρσξσ|Σ
= 0|Σ (6.20)

We used eq.(3.32) and Rνµρσ = −Rνµσρ. This proves that κ is constant on
orbits which are induced by the Killing vector ξ, and this implies that it is con-
stant on the whole hypersurface Σ. This is called the zeroth law of black hole
mechanics: for a time-independent black hole the surface gravity is a constant.
We can compare this with the zeroth law of thermodynamics: for a system in
thermal equilibrium the temperature is a constant.

But we still haven’t defined κ uniquely. From eq.(6.19) we see that a Killing
vector cξ gives us a surface gravity c2κ for c ∈ R. Because ξµξµ = 0 on Σ we im-
pose a normalization at spatial infinity. We will always deal with asymptotically
flat space-times5 so we want the normalization of our Killing vector connected
to the time symmetry to become6 1 and the normalization connected to spatial
symmetries to become +1. So

lim
r→∞

ξµξ
µ = ±1 (6.21)

The sign of κ then is fixed by the requirement that ξ is future-directed.

To conclude this section, we will calculate explicitly the surface gravity for
a Schwarzschild black hole and see that the zeroth law holds. We can write the
Killing vector normal to the horizon as

ξµ = δµ0 , ξµ = gµ0 (6.22)

The surface gravity can be calculated with different expressions, but here eq.(6.19)
is used in a coordinate base with spherical coordinates (t, r, θ, φ). It is evident
that

∇µξν = ∂µξν − Γλµνξλ = −∇νξµ (6.23)

5For our purpose it is enough to look at asymptotically flat space-times as space-times which
can’t be distinguished from Minkowski space-time at spatial infinity. If gµν = ηµν +hµν , then
limr→∞ hµν = O( 1

r
), limr→∞ ∂λhµν = O( 1

r2 ), etc.
6With our signature of the metric as (−, +, +, +).
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Looking at our Killing vector we are interested in ∇1ξ0:

∇1ξ0 = ∂1ξ0 − Γα10ξα = ∂1ξ0 − Γ0
10ξ0 (6.24)

This becomes with the metric connection,

∇1ξ0 = ∂1ξ0 −
1
2
g0ρ(∂1g0ρ + ∂0gρ1 − ∂ρg10) =

1
2
∂1g00 (6.25)

Plugging this in, we find that

κ2 = −g00g11∇0ξ1∇0ξ1

→ κ2 =
1
4
(∂1g00)2 (6.26)

At the Schwarzschild radius r = 2M this becomes

κ =
M

r2
=

1
4M

(6.27)

This is indeed the same for every angle (θ, φ). Later on we will encounter the
surface gravity for the Kerr-Newman case.

6.5 Bifurcation horizons and binormals

The concept of a bifurcation horizon will become important in our treatment
of a generalized first law. We saw earlier that in Kruskal coordinates the point
U = V = 0 was a fixed point of the Killing vector ξ. This point corresponds
to a 2-sphere which bifurcates the space-time into 4 regions. This is in fact the
bifurcation horizon of the Kruskal solution. It can be shown that in general
the Killing horizon of a black hole can contain a 2-dimensional space-like cross-
section B, on which the Killing vector field ξ vanishes: ξ|B = 0. We saw that
in the Kruskal solution the bifurcation horizon was a fixed point of the Killing
flow, and this is a general feature of a bifurcation horizon. The full Killing hori-
zon of the Kruskal solution exists of two null hypersurfaces, which correspond
to U = 0 and V = 0, and the bifurcation horizon lies at the intersection of
these two hypersurfaces. The condition for a bifurcation horizon to exist, is
that the generators of the Killing horizon are geodesically complete to the past,
and κ 6= 0.

Technically B can be regarded as follows. Take a Killing vector field ξ = ∂µ
and look at the orbits of ξ. At these orbits we can write x = x(λ) for an affine
parameter λ. The Killing vector becomes

ξ = ∂µ =
dλ

dx

d

dλ
= fl

f =
dλ

dx

l =
d

dλ
=
dxµ(λ)
dλ

∂µ (6.28)

We already know that we can express the surface gravity κ as κ = ∂µ ln f ,
and we just have seen that this κ is actually constant on orbits at the null
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hypersurface. As a result, f = f0e
κx at orbits of ξ, and λ is given by

λ = ±eκx (6.29)

We used here our freedom to shift x by a constant without altering the equa-
tions. For x ∈ (−∞,+∞) there are 2 portions of the generators of Σ covered,
namely λ > 0 and λ < 0. But the point λ = 0 is a fixed point of ξ, and so ξ
vanishes at this point. This is an (n − 2)-dimensional sphere in n dimensions,
and it’s our sought-after bifurcation horizon B. With the foregoing it can be
easily seen that κ2 is a constant on B.

Now to the concept of binormals. For this we take a space-like cross section
of some 4-dimensional world volume ∆ to obtain a 3-dimensional space-like
surface Σhor. The orthogonal complement Σ⊥hor of this space has signature
−+ and it can be spanned by two null vectors. Because Σhor ⊂ ∆, one of these
null vectors can be chosen to be the normal n of ∆, and with this it will be
proportional to the Killing vector ξ. The other null vector N can be chosen to
satisfy Nµnµ = −1. It’s a little hard to make a picture in your mind of this
situation, because we can’t associate an angle with two vectors of which one of
them is null. But with the vectors n and N we can construct an antisymmetric
two-indexed tensor ε which we call the binormal. It has the following properties:

εµν = 2N[µ ⊗ nν] = Nµnν −Nνnµ

εµνε
µν = −2

NµN
µ = nµn

µ = 0
Nµn

µ = −1
n ∝ ξ (6.30)

It’s called εµν to remind of the fact that it can be seen as the volume form of
the two-surface orthogonal to ∆. Take for example a static and spherically sym-
metric black hole solution. In spherical coordinates {t, r, φ, θ} the line element
can be put into the form

ds2 = −e2g(r)dt2 + e2f(r)(dr2 + r2dθ2 + r2 sin2 θdφ2) (6.31)

The directions of t and r are both normal to Σhor(θ, φ), and we obtain

ε01 = −ε10 = eg(r)+f(r) (6.32)

Because the Killing field is hypersurface orthogonal at the Killing horizon, the
antisymmetric tensor ∇[µξν] can be composed as

∇[µξν] = κεµν + t[µξν] (6.33)

in which t is tangential to Σ. At the bifurcation horizon we observe now that
we have the equality

∇µξν = κεµν (6.34)

Note that we would expect from from eq.(6.19) that εµνεµν = −2κ2 on the
bifurcation horizon, but we can simply rescale the Killing vector because κ is
constant on the event horizon.
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6.6 The event horizon and the first law

The first law of black hole mechanics relates the change of M , J and A. To
get this relation, we need the Kerr-Newman metric and calculate all the rele-
vant physical quantities in terms of these three parameters. The Kerr-Newman
metric is a solution of the Einstein-Maxwell equations with no electric current
j:

Rµν −
1
2
Rgµν = 2

(
FµρF

ρ
ν − 1

4
gµνF2

)
∇µFµν = 0 (6.35)

These equations can be derived from the Einstein-Maxwell action

S =
1

16πG

∫ √
|g|[R− 4πG F2]d4x (6.36)

The solution is the celebrated Kerr-Newman line element (see for example [2]):

ds2 = −∆2

ρ2
(dt− a sin2 θdφ)2 +

sin2 θ

ρ2
[(r2 + a2)dφ− adt]2 +

ρ2

∆2
dr2 + ρ2dφ2

∆2 = r2 − 2Mr + a2 +Q2

ρ2 = r2 + a2 cos2 θ

a =
J

M
(6.37)

This solution has two Killing vectors, namely ξ = ∂
∂t and ξ = ∂

∂φ . These are
connected with time translations and rotational translations, and they give the
conserved quantities p0 and p3. Since the Lie-derivative is a linear operator we
can consider the linear combination

ξ = ξµ
∂

∂xµ
=

∂

∂t
+ ΩH

∂

∂φ
(6.38)

where ΩH defines the angular velocity of the black hole.

Ofcourse, dealing with electromagnetic fields, we are curious about the vector
potential. If there are no source terms the Maxwell equations are invariant
under duality transformations7 F →∗ F. It turns out that electric and magnetic
charges q and p can be defined via

q =
1
4π

∮
∗F, p =

1
4π

∮
F (6.39)

where the integrations surface completely surrounds the sources of F. The
charge Q in the metric can then be written as

√
p2 + q2, and the solution for

the vector potential becomes

A =
(qr − ap cos θ)

ρ
dt− (aqr sin2 θ − (r2 + a2)p cos θ)

ρ
dφ (6.40)

7Here ∗Fµν = 1
2
εµνρσF ρσ .
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In our case we assume that the magnetic charge is 0, so that Q = q. To make
the calculations in this section more transparant we explicitly note the metric
components:

g00 = −∆2 − a2 sin2 θ

ρ2
, g03 = g30 = −a2 sin2 θ

r2 + a2 −∆2

ρ2

g11 =
ρ2

∆2

g22 = sin2 θ
(r2 + a2)2 −∆2a2 sin2 θ

ρ2

g33 = ρ2 (6.41)

We see from this expression that the metric contains two event horizons when
the coordinate singularity ∆ = 0 is considered, namely

r2 − 2Mr + a2 +Q2 = 0 → r± = M ±
√
M2 − a2 −Q2 (6.42)

These are the surfaces of infinite gravitational redshift. Another coordinate
singularity is given by ρ = 0, so

r2 + a2 cos2 θ = 0 → (r, θ) = (0,
π

2
) (6.43)

This gives a ring singularity, which will not be considered here. A similar
calculation as in the last section gives us again the surface gravity κ:

κ =
r+ − r−

2(r2+ + a2)
=

√
M2 −Q2 − a2

2M2 −Q2 + 2M
√
M2 −Q2 − a2

(6.44)

With some identities of the metric obtained via8 gµνg
νλ = δλµ an expression for

ΩH can be deduced:

ΩH =
dφ

dt
=
dφ/dτ

dt/dτ
=
p3

p0
=
g3νpν
g0νpν

=
−g30
g33

=
a

M2[2M2 −Q2 + 2M
√
M2 − a2 −Q2]

(6.45)

Now we’ll look at the outer horizon r+ = M +
√
M2 − a2 −Q2. To calculate

the area of the event horizon, we take dt = dr = 0 in the line element. The line
element can be written as

dl2 = gθθdθ
2 + gφφdφ

2 = hijdx
idxj (6.46)

where hij are the components of the induced metric on the surface. The area
of the event horizon with radius r+ is then

A(r) =
∫
S2

√
|h|dΣ

=
∫ 2π

0

dφ

∫ π

0

√
g22g33dθ

= 4π(r2+ + a2)

= 8π(M2 − 1
2
Q2 +M

√
M2 − a2 −Q2) (6.47)

8Be aware of the cross-terms in the metric!
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Now we change the black hole state from (M,Q, J) to (M+δM,Q+δQ, J+δJ).
This induces a change in A = A(M,J,Q):

δA =
∂A

∂M
δM +

∂A

∂Q
δQ+

∂A

∂J
δJ (6.48)

The derivatives can be calculated to give

∂A

∂M
=

8π
κ
,

∂A

∂J
=
−8πΩ
κ

,
∂A

∂Q
=
−8πΦ
κ

(6.49)

where Φ = A0 is the scalar potential of the electromagnetic field. If this is
plugged in eq.(6.48) and rewritten, it looks quite similar to the first law of
thermodynamics:

δM =
κ

8π
δA+ ΩδJ + ΦδQ ↔ δE = TδS − PδV (6.50)

Ofcourse, at first sight this could just as well be a coincidence. But in the next
three sections we will make plausible that in the theory of general relativity the
area behaves just like an entropy; the area never decreases.

6.7 Causal structure of space-time

Because every black hole entropy candidate should obey the second law of black
hole thermodynamics, we will give a sketchy derivation of this theorem in the
case of Einstein’s field equations. It’s sketchy, because we’ll need a fair amount
of mathematical machinery to make the theorem plausible. We first specify a
little more the causal structure of space-time, where we skip the details (see for
instance [2] or [4]). Space-time here is considered to be the set (M, gµν).

We already are familiar with the notion of lightcones in space-time; the
lightcone consists of the points which are causally connected with one point,
in the future and in the past. Timelike or null vectors in the upper halve of
the cone are future directed, and timelike or null vectors in the lower halve are
past directed. The causal character of curves x(λ) is specified by their tangent
vectors t. The curve is called future directed timelike (fdtc) if at every p ∈ λ,
t is future directed and timelike (t2 < 0). If, in the same case, t is timelike or
null, the curve is called future directed causal (t2 ≤ 0), abbreviated fdcc. Now
we can define what is called the chronological future I+(p) of p ∈M : it is the
set of events which can be reached by an fdtc starting from p:

I+(p) =
(
∀q ∈M | ∃ xfdtc(λ), xfdtc(0) = p, xfdtc(1) = q

)
(6.51)

For a subset Ω ⊂ M we define then naturally I+(Ω) =
⋃
p∈Ω I

+(p). A same
definition goes for the causal future J+(p) of p:

J+(p) =
(
∀q ∈M | ∃ xfdcc(λ), xfdcc(0) = p, xfdcc(1) = q

)
(6.52)

Here we also included null-like t’s. And ofcourse, J+(Ω) =
⋃
p∈Ω J

+(p). Chrono-
logical and causal pasts I− and J− are defined similarly. The boundaries of I

57



Figure 6.2: The causal structure of Minkowski space-time

and J are indicated by a dot. A picture of this is given in figure (6.2). For
Minkowski space-time these definitions are quite simple. Here, İ+ is generated
by all future directed null geodesics starting from p. But we could build quite
artificial space-times in which these statements become more complicated; for
example, one could remove a point r ∈ İ+(p) between p and q, and no causal
curve can be constructed which connect p and q ∈ İ+(p), with as result that
q /∈ J+(p).

Next, we assume that (M, gµν) is globally hyperbolic. Global hyperbolicity
is a very general assumption about a manifold with a causal structure, which
enables one to prove that İ+(Ω) has an endpoint in Ω. This implies the exis-
tence of Cauchy-hypersurfaces, which are space-like or light-like hypersurfaces
which intersect each time-like curve in a given congruence just once. In this
way the initial value problem of a theory can be well-defined: with information
from one Cauchy-hypersurface Σ1(t1) we can uniquely predict what happens at
a Cauchy Hypersurface Σ2(t2 > t1).

We also need the notion of conjugate points. Remember that a geodesic is
an extremal of the length functional l[γ] =

∫ √
±g(γ̇, γ̇)dt on a manifold M

with metric g. This can be a curve of minimal length or maximal length, which
depends on the signature. For example, we can go from the north pole to the
equator right away, but also via the south pole. Both curves are geodesics on
the 2-sphere. How can we see that the longer geodesic isn’t the shortest? The
idea is to consider such a geodesic γ going through the points p, q, and r, with
r lying between p and q. If there is another geodesic γ′ lying infinitesimal close
to γ which goes through p and r, then γ can vary to a longer geodesic. On our
2-sphere, p lies on the north pole, q on the south pole, and r on the equator. It’s
clear from the picture that the geodesic going through r is the longest geodesic
with respect to the Euclidean metric. Figure (6.3) makes this clear. All the
geodesics going from p to r have the same conjugate point q. This indicates that
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Figure 6.3: Left: the 2-sphere. Right: 2 conjugated points r of q of a geodesic
γ.

this particular geodesic doesn’t minimize the length, but maximizes it.9 One
could frown his (or her!) eyebrows by the concept of ’infinitesimal close curves’,
but this concept is really well defined by the equation of geodesic deviation. A
congruence can be parametrized by γα(λ). For each α ∈ R, γα(λ) is a geodesic
parametrized by the affine parameter λ. Coordinates on this congruence are
then xµ(α, λ), and two natural vector fields on this congruence can be defined:

tµ =
∂xµ

∂λ
sµ =

∂xµ

∂α
(6.53)

In the picture s points from γ to γ′, and t is just the flow of the geodesic curve
γ. With this a relative velocity and acceleration between the geodesics γ and
γ′ can be defined via the vector field s:

vµ = (∇ts)µ = tρ∇ρsµ aµ = (∇tv)µ = tρ∇ρvµ (6.54)

Now with some algebra an expression for a can be obtained ([3],[2]):

aµ = Rµνρσt
νtρsσ (6.55)

This gives a physical interpretation to the Riemann tensor; it tells us that the
relative acceleration between γ and γ′ depends on the curvature via the Rie-
mann tensor. Note that at p and q the vector field s disappears. It’s also called
a Jacobi field. Now we can rephrase the idea of conjugate points, also called
focal points. Two points p and r on γ are conjugate if there is a Jacobi field
sµ 6= 0 between p and r, but which vanishes at p and r themselves. So this

9Note that in a Cartesian space a geodesic minimizes the length l =
√

(δijxixj) but that
in a space-time with a Lorentzian signature a timelike geodesic maximizes the proper time τ !
This is also the origin of the twin-paradox; accelerating brings you away from a geodesic, and
therefore you experience less proper time.
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means that the congruence of which γ takes part of is converging. This con-
verging is a result of the curvature of M , or gravity.

As two last definitions before jumping to the next section we will define fu-
ture domains and achronalicity. Whereas I+(M) or J+(M) concerned events
which could be influenced by M , we now specify space-time regions which are
determined by such a set. The future domain of dependence D+(Σ) of a hyper-
surface Σ ⊂M consists of all points p which are intersected by past inextendible
causal curves γ. A definition of the past domain of dependence D− replaces

Figure 6.4: An artistic impression of D+(Σ)

causal curves by future curves. So we always have S ⊂ D+(Σ) ⊂ J+(Σ). The
idea behind these domains are that data on Σ only determines the solutions of
differential equations on D+(Σ). If not a single causal curve has an end-point
in the past, then all the solutions inside D+(Σ) are uniquely determined by Σ.
This brings us back to the notion of Cauchy hypersurfaces; they have as domain
of dependence D+(Σ) ∪D−(Σ) the manifold M , and in this case M is globally
hyperbolic.

Finally, a set S ⊂ M is called achronal if I+(S) ∩ S = ∅. This means that
there are no points (p, q) for which q ∈ I+(p); p and q can only be connected
by a null curve. So without formal proof it is clear that the sets İ± and J̇± are
achronal.

6.8 Causal structure of black holes

We already stated the idea of black holes in the beginning of this chapter,
but here we will be a little more precise. We characterize black holes by the
impossibility of null geodesics to escape to future null infinity J +. So we should
look at the causal past J−(J +). With this definition we involve infinities,
which are not part of our original space-time (M, g). But with a conformal
transformation we can add these points to form the ”unphysical space-time”
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(M̃, g̃)10, and we have to say something about the causal structure of that
artificial manifold. We assume that there is a Ñ ⊂ M̃ , such that (Ñ , g̃) is
globally hyperbolic. It must have the property that the closure of M ∩ J−(J +)
is a subset of Ñ ; M ∩ J−(J +) ⊂ Ñ . The space-time (M, g) contains a black
hole if M isn’t contained in J−(J +). The black hole region B and the event
horizon H are defined by

B = M − J−(J +)
H = J̇−(J +) ∩M (6.56)

We turn our attention to the event horizon H[4]. First of all, it is an achronal
subset of M . This means that two points on H can only be connected by a null
curve. Second, the generators of H have no future end points, so they never
leave H. This is the mathematical statement of the idea that the event horizon
consists of photons which cannot escape from the black hole, but also don’t
continuate into the singularity. But the generators may have past end points;
these photons could come from a region outside B.

6.9 The second law in general relativity

We are now ready to prove the second law for Einstein’s equations. The as-
sumptions are

• The space-time (M, g) is strongly asymptotically predictable

• For null vectors k we have the null energy condition: Tµνkµkν ≥ 0

We further introduce the following conditions and definitions:

• H is generated by null geodesic generators x(τ)

• Σ(τ) = Σ1, Σ(τ ′) = Σ2 are spacelike Cauchy surfaces with Σ1 =⊂ I+(Σ2)
for the globally hyperbolic region Ñ

• Hi = H ∩ Σi for i = 1, 2

We look at the evolution of H1 → H2. The statement of the second law is that
the area of H1 is smaller or equal to that of H2. In order to proof this we show
that the generators of H diverge everywhere, so θ ≥ 0. This is because any
(n-2)-dimensional area element A(τ) evolves via11

dA

dτ
= θA (6.57)

and the statement becomes basically that two infinitesimal neighbouring geodesics
can’t be conjugated on H.

10One can write the original metric via a conformal transformation as g̃ = Ω2(x)g, where
Ω(x) is a function, in which infinities of the original space-time now lie on finite coordinates
in the new space-time. With these kind of transformations the original causal structure of
space-time is preserved. Often one uses functions like tan−1(x) : (∞, +∞) → (−π

2
, +π

2
),

which are one-to-one.
11See the derivation of the Raychaudhuri equation in the appendix for an explanation of

this statement.
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Well, let’s assume the opposite and see what that implies: we put θ < 0 at
a point y ∈ H. According to the null energy condition and the Raychaudhuri
equation, we have that

dθ

dτ
≤ −1

2
θ2 (6.58)

So the null generators going through y reach a point at finite distance at which
θ → −∞, and beyond this point the generators will have an intersection point.
This is also called a caustic. Proposition 4.5.12 of [4] states that that if there
is a point r ∈ (p, q) conjugate to q along a curve x(τ) then we can vary x(τ)
in such a way that we obtain a timelike curve between q and p. The proof of
this statement consists of showing that there is a variation δx(τ) for which the
tangent vector is time-like everywhere in (q, p). However, due to the achronic
nature of H this is impossible, so this point p cannot exist and hence θ ≥ 0.
According to eq.(6.57) this implies that H(τ) is a non-decreasing function of τ .

So the three laws of black hole thermodynamics are given by

• 0th law: δκ = 0

• 1st law: δM = κ
8π δA+ ΦδQ+ ΩδJ

• 2nd law: δA ≥ 0

As was noted earlier, the two identifications κ ∼ T and A ∼ S can be made.
Historically, the second identification was first made by Bekenstein, and the
first identification was first proposed by Hawking, which results in the so called
Hawking effect. Hartle and Gibbson discovered the deeper reason for this con-
nection between the temperature and the surface gravity, which will be treated
in the next section. Now raises the question: how general are these laws? If the
field equations of Einstein are adopted, one can show two things [4]: First, the
event horizon is always a Killing horizon. Second, the metric of the black hole
is either static, or it is stationary, axisymmetric and g30 = g03 = 0 in spherical
coordinates. These results have to be assumed if a more general theory of grav-
itation is considered. The derivation of the Hawking effect fortunately doesn’t
depend on the exact form of the field equations.

6.10 Black hole temperature

For black hole thermodynamics we need the notion of a black hole temperature,
and Hawking found this effect back in 1974. The so-called Euclidean method
will briefly be discussed for the Schwarzschild solution, and with this the reader
hopefully has a more comfortable feeling by the notion of black hole temperature
in the forthgoing. This is by no means a rigorous justification; the full calcula-
tion (see for instance [2], chapter fourteen) contains the treatment of quantum
field theory in curved space-time. But the Euclidean method shows how this
full calculation can be explained in a different manner [7].

The method consists of an analytic continuation of the time parameter t into
the complex plane. This is a technique also used in quantum field theory called
Wick-rotation, and it ensures that the path integral will converge. The new
time parameter will be written as τ = it. The new line-element ds2E obtains
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a Euclidean signature, but ofcourse it still contains the singularity at r = 2M .
We rewrite it in a new coordinate x by the usual rewriting of differentials:

τ = it, x = 4M
(
1− 2M

r

)1/2

ds2E = x2
( dτ

4M

)2

+
( r

2M

)4

dx2 + r2dΩ2 (6.59)

The spherical coordinate singularity r = 2M corresponds now to x = 0. It
reminds us of the coordinate singularity we have in the two-dimensional plane
with polar coordinates (r, θ) which we then compare with (x, τ/4M).12 The
’natural’ thing to do is to impose a periodicity on τ/4M just as in the polar
case, and see how this turns out to be. It’s natural, because we expect the
singularity to be just a coordinate singularity. So we put

τ

4M
∈ (0, 2π] → τ ∈ (0, 8πM ] (6.60)

With this we compactified τ . The topology of this Euclidean space-time is
R2(x, τ)× S2(θ, φ). Note that for the Schwarzschild case we had κ = 1/4M , so
8πM = 2π/κ. If we now have physical fields φ(t,x) on a Schwarzschild back-
ground and we look at them in imaginary time, φ(τ,x), the fields will also have
the periodicity in τ : φ(τ,x) = φ(τ +8πM,x). At first sight this seems not very
ground-shaking, but this imaginary time periodicity actually characterizes the
thermal state of φ!

The idea is to consider the amplitude for a scalar field φ(x) and perform
t→ τ in this amplitude. Let’s take a look at the amplitude of φ(x) going from
the Cauchy-hypersurfaces Σ1(t1) to Σ2(t2). The amplitude is given by

< φ(Σ2(t2))|φ(Σ1(t1)) > = < φ(Σ2)|e−iH(t2−t1)|φ(Σ1) >

=
∫
DφeiS[φ] (6.61)

Now we do an analytic continuation, t → iτ . We put (τ2 − τ1) = 8πM such
that φ(Σ2) = φ(Σ1). The left-hand of the equation becomes then simply, with
the complete set of eigenstates {φn},

Z[φn] =
∑
n

< φn|e−H8πM |φn > (6.62)

This corresponds to the partition function of a thermal state with β = 8πM , so
T = 1/8πM , or

T =
κ

2π
(6.63)

which is indeed the imaginary time period. We see that the fields in the neigh-
bourhood of the black hole are behaving as if they are in thermal equilibrium
with temperature T , where this temperature depends on the surface gravity
of the black hole. This gives an extra reason to take the full calculation very
seriously.

12We are comparing the (r, θ)-plane with the (x, τ)-plane here.
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6.11 Intrinsic entropy of the gravitational field

Now the question which arises naturally is: Why does a gravitational field can
have an intrinsic entropy? A detailed discussion of this is out of the scope of
this thesis, but it’s important to realize what we are actually calculating. The
entropy of a system is normally associated with the number of ways we can
permute the microstates, Ω, of that system to obtain the given macrostate. We
can’t measure those microstates, but only the macrostate. The entropy is given
by

S = ln Ω (6.64)

with kB = 1. It’s an extensive state function, and allows us to make predictions
about the reversibility of thermodynamics processes. But here we associate an
entropy with the event horizon of a black hole, which is just a vacuum: Tµν = 0.
This entropy is as such associated with the metric tensor, or the gravitational
field gµν . It means that there are several configurations associated with one
and the same gravitational field. Yang-Mills fields13 don’t have this property,
so what distinguishes the gravitational field from the other force fields?

The answer is topology. It turns out that a theory of gravity is not scale
invariant, while Yang-Mills theory is. Scale invariance means basically that
the same equations of motion are implied by the extremum of the action if we
transform the metric by a constant factor Ω, gµν → Ω2gµν . If we approach
a theory of gravity by the Euclidean method, it turns out that one and the
same gravitational field allows different topologies. So here we could say that
we can’t measure the different topologies, but only the resulting gravitational
field. The difference between these topologies can be calculated, and this equals
1
2βE = 1

4A. A discussion of this approach can be seen in [9].

13See for a calculation of the Noether charge of Yang-Mills theory [8]; the situation becomes
more subtle if Chern-Simons terms are included in the Lagrangian.
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Chapter 7

Lagrangian and
Hamiltonian field theory

When people first encounter the theory of general relativity, a Lagrangian or
Hamiltonian treatment is often skipped. But to generalize the laws of black hole
thermodynamics to general theories of gravitation, this treatment is necessary.
We will see that these points of view will make the theoretical structure more
clear, but we will also encounter some subtleties. This subtleties especially arise
in the Hamiltonian treatment; in this case the separation of space-time into
time and space is necessary, whereas in the Lagrangian case we can continue
to formulate in a covariant way. Curiously enough, we won’t need the specific
form of the Hamiltonian as is given in, for example, [2]. We will give a general
formula for the Hamiltonian, in terms of symplectic currents.

7.1 Lagrangian field theory

Here we will review the most important aspects of the original treatment by
Wald and Lee, which was used to generalize the first law of black hole mechan-
ics. The review here will be quite technical, but at the end we will see some
physical examples from it which should clarify business. Details can be found
in [10] and [11]. One assumes that space-time has a topology of R×Σ, where Σ
is an orientable (n-1)-dimensional manifold which describes the spatial part of
the space-time considered. This space-time is assumed to be globally hyperbolic.

The collection of physical fields are maps φ : M →M
′
, where M

′
is finite di-

mensional. For instance, a complex scalar field φ is seen as a map φ : R×Σ → C.
These fields and their variations have compact support in M : there is a com-
pact submanifold N ⊂ M for which φ[M\N ] ⊂ ∅ and δφ[M\N ] ⊂ ∅. This
is just a nice way of saying that these fields are localized, or have boundary
conditions. In our case the collection of dynamical fields is φa = (gµν , ψ). The
derivative operator ∇ has the property that ∇ε = 0, where ε is the volume-form.

We will restrict ourselves to more specific cases. We assume that the La-
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grangian is a scalar density of the form

L [φ] = L (φa,∇µφa, . . . ,∇(µ1 · · ·∇µk)φ
a) (7.1)

There could also be nondynamical background fields in L ; an example would
be the Minkowski metric η in special relativistic field theories. Note that we use
derivatives which are totally symmetric in the indices. This is possible, since
every antisymmetric part of those derivatives can be expressed via the Riemann-
tensor[2], see eq.(3.31) for the second order case. We define the derivatives of
L as

La =
∂L

∂φa

L µ
a =

∂L

∂(∇µφa)

L µ1···µk =
∂L

∂(∇(µ1 · · ·∇µk)φa)
(7.2)

which are all symmetric in the indices. The first variation of the Lagrangian
takes the form

δL =
k∑
j=0

L µ1···µj
a δ(∇(µ1 · · ·∇µj)φ

a) (7.3)

There is no derivative acting on δφa in the j = 0 case. If we now perform this
variation, we end up with terms like δφa and higher order derivatives of them.
An important step now is to see that δL can always be rewritten as

δL = Eaδφ
a +∇ρΘρ(φ, δφ) (7.4)

We saw this earlier in chapter four, eq.(4.24), and later in this chapter we will
look at a derivation of this. The Ea are locally constructed out of the dynamical
fields φ and their derivatives, and Θ is locally constructed out of φ, δφ and their
derivatives. It’s also linear in δφ. When we perform the variation under an
integral sign, then Θ is just the expression obtained by removing derivatives
from δφ by partial integration. The term Ea sure looks like the Euler-Lagrange
equations for the dynamical field. That’s no coincidence; we stated that δφ had
compact support in M , and so has Θ. As a result, the integral over ∇µΘµ is
equal to zero and we get ∫

M

Eaδφ
a =

∫
M

δL (7.5)

We see that the equations of motion are obtained in a fancy way. So if φa lies in
the space of on-shell solutions, we impose the boundary conditions δφa|∂M = 0,
and we see that ∇ρΘρ = 0. So under the symmetrygroup of diffeomorphisms
the current Θ is conserved.

We need one more quantity, the so-called symplectic current density Ω. This
can be derived by considering two different variations of L , namely δ1 and δ2.
If we consider the second variation of L , we get

δ1δ2L = δ1Eaδ2φ
a + Eaδ1δ2φ

a +∇µδ1Θµ
2 (7.6)
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A similar expression holds for δ2δ1L , and these two second variations are iden-
tical. This defines our symplectic current density as

Ωµ(φ, δ1φ, δ2φ) = δ1Θ
µ
2 − δ2Θ

µ
1 (7.7)

and the divergence of it becomes

∇µΩµ = δ2Eaδ1φ
a − δ1Eaδ2φ

a (7.8)

Because the various variations δi commute, the symplectic current will depend
linearly on δφa and its derivatives. It is antisymmetric in the variations.

We now write all of this in terms of forms and consider L ∈ Λn(M) and
Θ ∈ Λn−1(M). In that case we state in compact notation that1

δL = Eδφ+ dΘ (7.9)

Both notations will be mixed up here; it’s straightforward to convert eq.(7.4)
into eq.(7.9). Here we leave out the explicit sum over a and in the right hand
side we understand the contraction between the first indices of the tensors in-
volved. We see that Θ is only determined up to a closed (n-2)-form Y(φ, δφ);
the substitution Θ → Θ + dY doesn’t change the equations of motion. The
symplectic current Ω becomes

Ω(φ, δ1φ, δ2φ) = δ1[Θ(φ, δ2φ)]− δ2[Θ(φ, δ1φ)] (7.10)

The ambiguity in Θ introduces the ambiguity Ω → Ω+d[δ1Y(φ, δ2φ)−δ2Y(φ, δ1φ)].
Now we consider a vector field ξ and the variation it induces. In the end we
promote it to a Killing vector field, but first we consider it as being arbitrary.
The Lie-derivative of L with respect to this vector is

£ξL = E£ξφ+ dΘ(φ,£ξφ)
= ξ · dL + d(ξ · L)
= d(ξ · L) (7.11)

because dL = 02. We can associate a Noether current J ∈ Λn−1(M) to each ξ
by

J = Θ(φ,£ξφ)− ξ · L (7.12)

This definition is chosen this way due to the properties it has if the equations
of motion are satisfied. Namely, the exterior derivative of this current is

dJ = dΘ− d(ξ · L)
= δL−Eδφ− d(ξ · L)
= −E£ξφ (7.13)

So if φ is on-shell then J is closed for all ξ. In that case there exists according
to the Poincaré theorem at least locally a Q ∈ Λn−2(M) constructed from the

1Note that from this it is immediately clear that if we define the action on a compact
manifold via field-localization, the variation of this gives the equations of motion due to∫
Ω dΘ =

∫
∂Ω Θ =

∫
∅Θ = 0.

2Diffeomorphism invariance can then be stated as δφ = £ξφ → δξL = d(ξ · L).

67



fields which appear in L and ξ, such that if we consider the on-shell solutions
we have

dJ = 0 → J = dQ (7.14)

Q is the Noether charge associated with the vector field ξ. Being an (n-2)-form,
we can integrate it over an (n-2)-dimensional surface Σ to obtain the Noether
charge of Σ, relative to ξ. But for that it has to exist globally. In [12] it is
proven that in the general case of E 6= 0 the Noether current takes the form

J [ξ] = dQ[ξ] + ξ ·C (7.15)

in which C ∈ Λn−1(M). The condition C = 0 are then the constraint equations
for the equations of motion to hold.

7.2 Three examples

Now it is time to put all of this in a familiar context. As noticed before, it is
often much easier to do the variation directly, and that’s what we are going to
do. The previous formalism will be applied in the case of scalar fields, metric
fields and electromagnetic fields. We will split up these fields and look at them
individually. Combinations of them, like the Einstein-Maxwell action, are then
easily analyzed. An explicit algorithm to calculate Q from a given J is not given
here, but can be found in [13]. In rewriting the Lagrangian in forms, we use the
following identity for two p-forms α and β with corresponding antisymmetric
p-vectors A and B:

∗α ∧ β = α ∧ ∗β

=
1
2
αµ1···µpβµ1···µpε1···ndx

1 ∧ . . . ∧ dxn

=
1
2
(A ·B)ε (7.16)

7.2.1 Scalar fields

First we look at the free massless scalar field and consider its action:

S[φ] =
1
2

∫ √
|g|gµν∇µφ∇νφ d4x (7.17)

where we will abbreviate ∇2 = gµν∇ν∇µ. If we vary with respect to the field φ
we obtain the equations of motion plus the boundary term, and if we vary with
respect to the metric we obtain the energy momentum tensor. The variation
can be written as δL = δmL + δgL with

δmL =
√
|g|

(
∇µ(δφ∇µφ)− (∇2φ)δφ

)
(7.18)

δgL =
√
|g|

(1
2
gµν∇µφ∇µφ−∇µ∇νφ

)
δgµν

So the equation of motion and the boundary term are

Eµνρσ = ∇2φεµνρσ

Θµνρ(φ, δφ) = (δφ∇σφ)εσµνρ (7.19)
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The components of the Noether current are given by

Jµνρ = Θµνρ − ξσLσµνρ

= δφ∇σφεσµνρ −∇2φξσεσµνρ

= [−ξλ∇λφ∇σφ−∇2φξσ]εσµνρ (7.20)

if we remember that δφ = −ξµ∇µφ. Imposing the equations of motion we get

Jµνρ = −
(
ξλ∇λφ∇σφ

)
εσµνρ (7.21)

Note that in looking at Θ as a vector density and using eq.(4.24), Θ would be
given by

Θµ = L µδφ

=
∂(

√
|g|L )

∂(∇µφ)
δφ

= −(∇µφ)ξν∇νφ (7.22)

How about the Noether charge? If we regard φ ∈ Λ0(M) we can write3, using
eq.(7.16),

L = dφ ∧ ∗dφ (7.23)

The variation becomes

δL = d(δφ ∧ ∗dφ) + δφ ∧ d ∗ dφ+ dφ ∧ δ ∗ dφ (7.24)

We can’t commute the ∗-operator and δ; their commutator is not zero, but

[δ, ∗] =
1
2
gαβδgαβ∗ (7.25)

which can be easily derived in components. These terms are going to give us
the terms concerning δgαβ which will result in the energy-momentum tensor for
φ. The first term in eq.(7.24) gives us Θ, and the second term gives us the
equations of motion for φ. The Noether current becomes

J = δφ ∧ ∗dφ− ξ · L
= −ξ · dφ ∧ ∗dφ− dφ ∧ ξ · ∗dφ (7.26)

if we use δξφ = −ξ ·dφ, and if we look at the exterior derivative of this we indeed
obtain

dJ = d(δξφ ∧ ∗dφ)− δξL

= −δξφ ∧ d ∗ dφ (7.27)

where d ∗ dφ = 0 are the equations of motion. However, it can be seen that this
term is not exact4 and so the Noether charge can’t be defined globally.

3For a massive scalar field we would have obtained L = dφ ∧ ∗dφ−m2φ ∧ ∗φ.
4This is by looking at the appearance of ξ in J .
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7.2.2 The Hilbert action

Second we consider the Hilbert action,

S[gµν ] =
∫ √

|g|gµνRµνd4x (7.28)

where we have put the coupling to 1 for convenience. The variation of the
Lagriangian density L becomes

δL = δ
√
|g|gµνRµν +

√
|g|δgµνRµν +

√
|g|gµνδRµν (7.29)

With eq.(5.7) and eq.(5.11) this variation becomes

δL =
√
|g|(1

2
Rgαβ −Rαβ)δgαβ +

√
|g|gµν(∇αδΓαµν −∇νδΓαµα) (7.30)

According to our formalism we also have δL = Eαβδgαβ + ∇αΘα. If we put
the metric under the covariant differentiation and some indices are relabeled,
the following can be recognized:

Eαβ =
√
|g|(1

2
Rgαβ −Rαβ) =

√
|g|Gαβ

Θα =
√
|g|(gµνδΓαµν − gµαδΓνµν) (7.31)

This Θ can be rewritten using eq.(5.12) as

Θα =
√
|g|1

2
gµνgαρ(∇µδgνρ +∇νδgρµ −∇ρδgµν)

−
√
|g|1

2
gµαgνρ(∇µδgνρ +∇νδgρµ −∇ρδgµν)

=
√
|g|gµνgαρ(∇νδgρµ −∇ρδgµν) (7.32)

If we write this symplectic potential as a form and put back the coupling 1
16π it

becomes
Θµνρ(g, δg) =

1
16π

εαµνρg
αλgσθ(∇σδgλθ −∇λδgσθ) (7.33)

If we again rewrite this quantities in forms, we can calculate the Noether current:

Jµνρ = Θµνρ − ξαLαµνρ

= [gαλgσθ(∇σδgλθ −∇λδgσθ)−Rξα]εαµνρ (7.34)

This can be written in a more elegant form. By the definition of the Einstein
tensor we are able to rewrite Rξα, namely

Gαλ = Rαλ −
1
2
Rgαλ → Rξα = 2(Rαλξ

λ −Gαλξ
λ) (7.35)

If we then also plug in the explicit variation of the metric, δgµν = 2∇(µξν), the
Noether current becomes

Jµνρ =
1
8π

(
∇λ(∇[λξα]) +Gαλξ

λ
)
εαµνρ (7.36)

The Noether charge which can be derived from this current if Gµν = 0 is

Qµν = − 1
16π

εµνρσ∇ρξσ (7.37)
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7.2.3 Electromagnetic fields

Finally, we look at the electromagnetic field. The Lagrangian L [A, g] is

L = −1
4

√
|g|FµνFµν

= −1
4

√
|g|F2 (7.38)

The metric part is going to give the electromagnetic energy-momentum tensor,
while the vector potential part is going to give us the equations of motion and
the sought-after boundary term for A. The total variation can be written as
δL = δgL + δmL , with

δgL = −1
4
√
g
(1

2
gρλF2 + F ρνF

λν + F ρ
µ F

µλ
)
δgρλ

δmL = −
√
|g|

(
∇µ(FµνδAν)−∇µFµνδAν

)
(7.39)

where partial derivatives were replaced by covariant ones. In this case we can
read of that

Θµνρ(A,δA) = −FλσδAσελµνρ (7.40)

The variation in the vector potential is rewritten as

δAσ = −£ξAσ

= −(ξα∇αAσ +Aα∇σξσ)
= −2ξν∇[νAσ] −∇σ(ξνAν) (7.41)

and with this the Noether current can be written down again:

Jµνρ =
(
Fλσ

(
ξν∇[νAσ] +∇σ(ξνAν)

)
+

1
4
ξλF2

)
ελµνρ (7.42)

Now it’s the question if there is a Noether charge corresponding to this Noether
current. To explore this question, we rewrite the calculation in forms. The
Lagrangian can be written as

L = −1
2
F ∧ ∗F (7.43)

The variation δ ∗ F is going to give us

δ ∗ F = ∗δF +
1
2
(gαβδgαβ) ∗ F (7.44)

We can forget about the metric-part of this equation because we are only inter-
ested in A. Varying eq.(7.43) gives then

δL = −1
2

(
δF ∧ ∗F + F ∧ δ ∗ F

)
= −1

2

(
d(δA ∧ ∗F) + δA ∧ d ∗ F + F ∧ δ ∗ F

)
(7.45)

and we see that Θ = − 1
2δξA ∧ ∗F. So our Noether current becomes

J = −1
2

(
δξA ∧ ∗F + ξ · (F ∧ ∗F)

)
(7.46)
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This can be rewritten with δξA = −(ξ · F + d(ξ ·A)) if we use eq.(3.23):

J = −1
2

(
−ξ · F ∧ ∗F− d(ξ ·A) ∧ ∗F + ξ · F ∧ ∗F

)
=

1
2
d(ξ ·A) ∧ ∗F

=
1
2
d(ξ ·A ∧ ∗F) (7.47)

which is justified by the equations of motion d ∗ F = 0. So the Noether charge
is given by

Q =
1
2
ξ ·A ∧ ∗F (7.48)

It’s important to realize that this Noether charge is linear in ξ, and doesn’t
contain any derivatives of ξ.

7.3 Hamiltonian systems

We saw the notions of mass, charge and angular momentum appearing in the
derivation of the first law. What we did basically was to consider the event
horizon given by the metric, induce variations, and relate these variations. The
final form of this relation looked just like the equations known from thermo-
dynamics. It was evident that the mass, charge and angular momentum from
these equations were the ones of the black hole. However, in a more general
treatment of the first law we need some more general notions of these physical
quantities. These can be defined via the Hamiltonian, if it is possible to con-
struct it. That this is not so trivial was already noted; the equivalence principle
prevents us from giving a clear local notion of the energy of a gravitational field.
So the best thing we can do is to let go of the hope to define a local expression
for the gravitational energy, and consider global regions of space-time. In this
way it is possible to define something that describes the evolution of a system
along a certain vector flow. However, it is not always clear at once that this
Hamiltonian can be coupled to a sensible notion of energy.

In classical mechanics, the Hamiltonian is obtained via the Lagrangian with
the Legendre transformation H(p, q) = pq̇ − L(q, q̇). The coordinates (t, qi) are
exchanged for (pi, qi), and this results in the well-known Poisson-brackets which
obey the Jacobi identity {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 and are anti-
symmetric. To describe this geometrically, we can use the symplectic structure
which will now be considered. First we take the simple one-dimensional case
and then we generalize it.

The divergence of a vector is formally defined in R2 in the following way.
Take an open n-dimensional manifold M ⊆ R2 with its volume form ε = dx∧dy.
For a vector field ξ ∈ TxM we have that ξ · ε ∈ Λ1(M) and so d(ξ · ε) ∈ Λ2(M).
Being a two-form, we must have that d(ξ · ε) = f ε, where f : M → R. This
function f is defined as the divergence of ξ, denoted as ∇ · ξ:

d(ξ · ε) ≡ (∇ · ξ)ε (7.49)
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This should be compared with eq.(3.64). Taking ξ = ξ1e(1) + ξ2e(2) we get the
familiar result ∇ · ξ = ∂ξ1

∂x + ∂ξ2
∂y . If now ∇ · ξ = 0, it is clear that ξ · ε is closed.

If, on top of that, it is also exact, then there is a form H(x, y) : M → R, for
which

ξ · ε = dH (7.50)

This is defined as the Hamiltonian. It folllows that

ξ · ε = −ξ2dx+ ξ1dy

=
∂H
∂x

dx+
∂H
∂y

dy →

ξ =
∂H
∂y

e(1) −
∂H
∂x

e(2) (7.51)

This is equivalent with the system of differential equations5

ẋ =
∂H

∂y

ẏ = −∂H
∂x

(7.52)

This should look familiar if (x, y) is identified with the coordinate and momen-
tum of a system. The vector field ξ is called the Hamiltonian vector field. H is
conserved along the flow of ξ:

Ḣ = ξ(H) = dH(ξ) = ξ · ε(ξ) = ε(ξ, ξ) = 0 (7.53)

We can easily extend this idea to Rn: Take R2n with coordinates (x1, . . . , xn, y1, . . . , yn)
and define ε = dxi ∧ dyi. In this case the Hamiltonian H : R2n → R and the
accompanying Hamiltonian vector field are defined via

dH = ξ · ω = ω(ξ,−) (7.54)

Again we end up with a system of differential equations

ẋi =
∂H

∂yi

ẏi = −∂H
∂xi

(7.55)

and again with an expression of energy conservation, Ḣ = 0. So we used
symplectic forms and symmetries to define the Hamiltonian. This suggests
to look for symplectic forms and the Noether potential in theories of gravity.
Also, in other theories one can construct the Hamiltonian from the Lagrangian,
so the description in the last section looks appropriate. If we associate with
the variation δ a vector field X, we saw that we can write the variation of
the Lagrangian as δXL = EδXφ + dΘ. The Noether current is defined as
J = (Θ(L,£ξφ)− ξ · L) ∈ Λn−1(M), and δJ becomes

δXJ = δXΘ(L,£ξφ)− ξ · δXL

= δXΘ(L,£ξφ)− ξ · (EδXφ)− ξ · dΘ(L, X)
= δXΘ(L,£ξφ)−£ξΘ(L, X)− ξ · (EδXφ) + d(ξ ·Θ(L, X))
= Ω(L, X,£ξφ)− ξ · (EδXφ) + d(ξ ·Θ(L, X)) (7.56)

5Remembering that a vector field ξ can be seen as a smooth map ξ : Rn → Rn with the
flow ẋ = ξ(x).
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We considered the field ξ to be a fixed background field, and so δξ = 0. The
symplectic current is defined as

Ω(L, X, Y ) = δXΘ(L, Y )− δYΘ(L, X) (7.57)

with respect to the vector fields X and Y which induce the variations. The
variation of the Noether charge is defined via

δXQΣ(L, ξ) =
∫

Σ

(δXJ (L, ξ)− d(ξ ·Θ(L, X)))

=
∫

Σ

(Ω(L, X,£ξφ)− ξ ·E(L, X)) (7.58)

Here Σ is an (n-1) dimensional hypersurface. This is the basis of the so-called
Arnowitt-Deser-Misner formalism, or ADM-formalism in short. If the vector
field ξ is transverse to Σ the variation of the Hamiltonian H(L, ξ,Σ) is defined
by

δXH(L, ξ,Σ) = δXQΣ(L, ξ) (7.59)

What we basically did here, is to split up space-time in space and time; the
Cauchy-hypersurfaces define the spatial part and the vector field ξ defines the
time direction. Now the role of the symplectic current becomes clear; as physi-
cists most of the time we are interested in the case E = 0:

δXH(L, ξ,Σ) =
∫

Σ

Ω(L, X,£ξφ) for E = 0 (7.60)

This will be a crucial identity in the next section!

7.4 The first law revisited

Having made ourselves familiar with the mechanism, we are now in a position
to rederive the first law of black hole mechanics in the case of neutral charged
black holes, and identify the black hole entropy in terms of the Lagrangian of
the theory. If we want to succeed in this, we have to find expressions for the
energy and angular momentum of the black hole, expressed via Q and Θ. It will
turn out that this is indeed possible. For our derivation we take an arbitrary
variation δφ for a φ which is on-shell. We saw that the variation δJ can be
written as ( dropping the vector associated with the variation )

δJ = δΘ(φ,£ξφ)− ξ · δL− δξ · L
= δΘ(φ,£ξφ)− ξ · (Eδφ+ dΘ)− δξ · L
= δΘ(φ,£ξφ)−£ξΘ + d(ξ ·Θ) (7.61)

Here we assumed again that δξ = 0 and we used E = 0 and ξ · dΘ = £ξΘ −
d(ξ ·Θ). Now the first two terms on the right hand side can be recognized as
the symplectic current Ω(φ, δφ,£ξφ) with one variation specified as the Lie-
derivative with respect to ξ, and the variation becomes

δJ = Ω(φ, δφ,£ξφ) + d(ξ ·Θ) (7.62)
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The crucial step now is the following: if the evolution of a system is described
by the vector ξ and we can find a Hamiltonian which describes this evolution,
then Hamilton’s equations of motion are given by

δH =
∫
C

Ω(φ, δφ,£ξφ) (7.63)

This identification should be clear from the last section. So if the dynamics are
generated by ξ and there is a Hamiltonian describing this, we obtain

δH = δ

∫
C

J −
∫
C

d(ξ ·Θ)

= δ

∫
C

J −
∫
∂C

ξ ·Θ (7.64)

Remember that φ satisfies the equations of motion, so we can write J = dQ.
If we plug this in, we observe that the Hamiltonian is a surface term if it is
rewritten by Stokes’ theorem:

δH =
∫
∂C

(δQ− ξ ·Θ) (7.65)

The variation can safely be put under the integral sign. This Hamiltonian is
going to give us the relevant physical quantities which appear in the first law. We
rename them for convenience: Ξ is the energy, and Υ is the angular momentum.
Being derived from a Hamiltonian, they are called canonical. The canonical
energy Ξ is associated with a time translation vector t and the canonical angular
momentum Υ is associated with a rotation vector ϕ. To get these quantities,
we integrate δH over a hypersurface lying at infinity, which is Cauchy and (n-
2)-dimensional. The rotation vector ϕ is tangent to this sphere, and by Stokes’
theorem the integral

∫
∞ ϕ ·Θ = 0. The variations of these canonical quantities

are then given by

δΞ =
∫
∞

(δQ(t)− t ·Θ)

δΥ = −
∫
∞

(δQ(ϕ) + ϕ ·Θ)

= −
∫
∞
δQ(ϕ) (7.66)

Notice the opposite sign convention of δΞ and δΥ; they are a consequence of
the signature of the metric, just like in eq.(6.2). It is also useful to note that we
split up δQ in a t-piece and a ϕ-piece. Since Q depends linearly on ξ and its
derivatives we can take the linear combination at+ bϕ with a, b ∈ R, and then
δQ(ξ) = aδQ(t) + bδQ(ϕ). For the charge itself we can write

Qµν = A[µξν] +B∇[µξν] (7.67)

by eliminating all higher derivatives with the Killing identity (3.32). The func-
tions Aµ and B are local functions which depend on the fields appearing in the
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Lagrangian.

Now the integration surface and ξ are going to be more specified. We are
going to apply the foregoing discussion to stationary black holes with a bifurcate
Killing horizon Σ. Specifying to four dimensions, the Killing vector field ξ can
be written as

ξµ = tµ + ΩHϕµ (7.68)

which is just eq.(6.38) slightly rewritten. Since ξ is a Killing vector field, £ξφ =
0. If δφ is also a solution for the equations of motion, we have that

δΘ(φ, δφ) = £ξΘ(φ, δφ) = 0 (7.69)

and as a result, eq.(7.61) yields

δJ = δ(dQ)
= d(δQ)
= d(ξ ·Θ) (7.70)

Note that this implies that δH = 0 if ξ is a Killing vector, just what we expect.
Ofcourse, with such an expression we are eager to integrate it. The hypersur-
face C will be chosen such that it extends from asymptotic infinity up to the
bifurcation horizon Σ of the black hole, see figure (7.1). So we obtain

Figure 7.1: The integration domain

∫
C

d(ξ ·Θ) =
∫
∂C

ξ ·Θ

=
∫
∞
ξ ·Θ−

∫
Σ

ξ ·Θ

=
∫
∞
ξ ·Θ (7.71)

Now we see something truly nice! For δQ(ξ) we can write δQ(t) + ΩHδQ(ϕ),
and finally we obtain something that looks very much like the first law of black
hole mechanics:

δ

∫
Σ

Q =
∫
∞
δQ−

∫
∞
ξ ·Θ = δΞ− ΩHδΥ (7.72)
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Note that we have connected quantities defined at asymptotic infinity with quan-
tities defined at Σ. It looks like this is a result from the bifurcation horizon,
but later we’ll see that the integral actually doesn’t depend on the horizon cross
section. Comparing this result with the first law, it is very tempting to regard
the left hand side as the entropy. This entropy should be a geometrical quantity
defined at Σ, and the potential Q describing this entropy should be invariant
under diffeomorphisms φ : Σ → Σ. We already noted that an arbitrary deriva-
tive of a Killing vector ξ can be described as a linear combination of ξ and ∇ξ
and that we can write Q = Q(ξ,∇ξ). Furthermore, on the bifurcation hori-
zon ξ = 0 and according to eq.(6.34) the derivative of ξ can also be eliminated
via ∇µξν = κεµν . So then Q only depends on the fields which appear in the
Lagrangian. In this way we can make the identification

S = 2π
∮

Σ

Q (7.73)

where we have normalized the horizon Killing field to have unit surface gravity.
This expresses the entropy of a black hole in terms of the Lagrangian of the
theory, and it should also be noted that the Euclideanization of a path integral
didn’t appear in the derivation. Now we return to our Lagrangian L which was
a function of the metric, the Riemann-tensor, a matter field and its derivative,
L (gµν , Rµνρσ, ψ,∇µψ). In that case we have Qµν = L µνρσερσ and so

S = 2π
∫

Σ

∂L

∂Rµνρσ
εµνερσ

√
|h|dΩ (7.74)

Here |h| is the determinant of the induced metric h on the (n-2) dimensional
surface over which we integrate. Now let’s check this expression in the case of
adopting Einstein’s field equations. There we have that L = 1

16πR, and from
eq.(8.37) we obtain L µνρσ = 1

32π g
µ[ρgσ]ν . We already computed the binormal

for a static black hole in spherical coordinates, and so the contraction becomes

∂L

∂Rµνρσ
εµνερσ = L 0101ε01ε01 + L 1010ε10ε10 + L 1001ε10ε01 + L 0110ε01ε10

=
1
8π

(ε01)2g00g11 (7.75)

Remembering that ε01 = ef(r)+g(r),g00 = −e−2g(r) and g11 = e−2f(r) we arrive
at

S =
2π
8π

∫
Σ

√
|h|dΩ

=
A

4
(7.76)

We see that the more general expression for the black hole entropy gives us
exactly what we want.

Maybe it’s a good idea to summarize what we did so far. We saw that in
the case of Einstein’s field equations we can perform some variations on black
hole solutions of these field equations. If we varied the area associated with the
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Schwarzschild radius, we saw some equations that remind us of the second law
of thermodynamics. In this section we explored diffeomorphism invariance of
general relativity; this invariance enabled us to rewrite δL as δL = Eδφ + dΘ
and this led to a Noether charge. We saw that with some mathematics we could
turn the variation of these charges into a form which, again, reminds us of the
second law of thermodynamics if we could only identify the symmetry charge
with the black hole entropy. And indeed, this identification is possible. All this
gives us the remarkable result that the black hole entropy has a deep connection
with the geometry of the black hole surface. It has to be emphasized that we
made heavy use of the Killing vector field ξ which describes the symmetries of
our black hole. So the entropy formula given here can only be used for stationary
black holes. These can be characterized by the fact that on the event horizon H
the expansion of the generators of H is zero: θ = 0. There have been proposals
for an extention to dynamical black holes, but those will not be considered here,
see for example [11] or [14].

7.5 Looking more closely at the entropy

First we answer the question: what if we had chosen another surface Σ′ instead
of the bifurcation surface Σ? To answer this question, we look at the difference
of the surface integrals over Σ′ and Σ of the Noether charge Q, where the two
surfaces enclose a 3-volume C, ∂C = Σ′ − Σ:∫

Σ′
Q−

∫
Σ

Q =
∫
C

dQ

=
∫
C

J

=
∫
C

(Θ(φ,£ξφ)− ξ · L)

= 0 (7.77)

We remember that ξ was chosen in such a way that it was a symmetry field for
φ and that it was tangent to the surface C. So, £ξφ = 0 and with that it’s
clear that the integral is zero. It can be concluded that the definition of the
black hole entropy in this way doesn’t depend on the particular surface chosen.
This is important for several reasons; the bifurcate horizon may not be part of
the space-time, and if we would like to extend our entropy formula to dynamic
black holes, we would like the answer to be independent of the surface used. As
a practical matter, sometimes we don’t have a coordinate system which covers
also the bifurcate horizon.

Now we will look more closely to how to obtain the entropy and make some
remarks with which we can extract more easily the relevant terms from δL which
are important to us. We saw that for E = 0 we are able to write J = dQ.
This implies that if Q contains up to order k derivatives, then J contains at
most up to order k + 1 derivatives of ξ. Also, the term in Q which contains
the order k derivatives is fixed by the term in J which contains order k + 1
derivatives. In using eq.(7.73) we don’t have to worry about the terms in Q
which are linear in ξ because ξ = 0|Σ where Σ is the bifurcation horizon. If
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we consider J we only have to consider second order derivatives of ξ. We
already saw this; in the Einstein-Hilbert case these terms arise from that part
of δL involving second order derivatives of the field variations δgµν . If L =
L(gµν , Rµνρσ, ψ,∇ψ . . .) these terms only can be given by δRµνρσ, and that was
demonstrated in eq.(7.74). To summarize this:6

Q = Q{∇ξ} → dQ = dQ{∇2ξ} →
J = J {∇2ξ} → Θ = Θ{∇2ξ} →
dΘ = dΘ{∇3ξ}, δL = δL{∇3ξ} →

δξφ = δξφ(∇ξ) → ∇2δξφ (7.78)

The term we are talking about in this particular case is 2∇[µ∇[ρδgσ]ν]. Taking
this into account, we can write

δL = 2
∂L

∂Rµνρσ
∇µ∇ρδgνσε+ . . .

= ∇µ
(
2

∂L

∂Rµνρσ
∇ρδgνσε

)
+ . . . (7.79)

where the dots are the terms which we won’t need to calculate S. This implies

Θ = 2
∂L

∂Rµνρσ
∇ρδgνσε+ . . . (7.80)

and
J = 2

∂L

∂Rµνρσ
∇ρ∇(νξσ)ε+ . . . (7.81)

This yields the result given earlier if we work out the implications of this calcu-
lation, which can be checked as a nice exercise.

7.6 Variations of the Lagrangian

Here we will take a closer look to the claim that we can always write δL =
Eδφ+ dΘ, where φ = (g, ψ). For this we write the Lagrangian L = L ε as

L = L(gµν ,∇λ1Rνρσα, . . . ,∇(λ1 · · ·∇λk)Rνρσα, ψ,∇λ1ψ, . . . ,∇(λ1 · · ·∇λl)ψ)
(7.82)

Ofcourse it can be doubted that we are always able to write the Lagrangian in
such a covariant form in the first place; this is proven in [11], and the subtle fact
that the Riemann tensor and it’s derivates cannot be chosen independently is
also noted there. We will simply assume the form given above. We stated that
Θ = Θ(φ, δφ). Let’s be more specific: the claim is that we are always able to

6Here the brackets {∇nξ} mean ”can contain derivatives up to order n”.
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write

δL = Eδφ+ dΘ

Θ = 2EνρσR ∇σδgνρ +Aµν(φ)δgµν +
k−1∑
i=0

Bi(φ)µνρσλ1···λiδ∇(λ1 · · ·∇λi)Rµνρσ

+
l−1∑
i=0

Ci(φ)λ1···λiδ∇(λ1 · · ·∇λi)ψ

(EνρσR )αβγ ≡ δL

δRµνρσ
εµαβγ (7.83)

where A,B,C are tensor fields which depend on φ. Proving this kind of identities
is often merely a matter of rewriting derivatives and ennobled accounts keeping,
so there is nothing magical going on. Our strategy is to denote the explicit form
of δL = εδL + L δε in the following compact way7,

δL =
( ∂L

∂gµν
δgµν +

∂L

∂Rµνρσ
δRµνρσ +

k∑
1

∂L

∂∇(···∇)Rµνρσ
δ∇(···∇)Rµνρσ

+
l∑
1

∂L

∂∇(···∇)ψ
δ∇(···∇)ψ

)
ε+

1
2
gµνLδgµν (7.84)

and look at a general term like

∂L

∂∇(λ1 · · ·∇λi)ψ
δ∇(λ1 · · ·∇λi)ψ (7.85)

First we treat a simple case: ψ is a scalar field and i = 2. It’s then natural to
extend the analysis to more complicated terms. The term of interest is

∂L

∂∇(µ∇ν)ψ
δ∇µ∇νψ ≡ Lµνδ∇µ∇νψ (7.86)

We rewrite this as

Lµνδ∇µ∇νψ = Lµν∇µδ∇νψ − LµνδΓλµν∇λψ

= ∇µ
(
Lµνδ∇νψ

)
− (∇µLµν)δ∇νψ − LµνδΓλµν∇λψ(7.87)

The last term can be written out as

LµνδΓλµν =
1
2
gλρLµν

(
∇µδgνρ +∇νδgρµ −∇ρδgµν

)
∇λψ (7.88)

The first term here which contains a ∇µ can be rewritten as

1
2
∇µ

(
gλρLµν∇λψδgνρ

)
− 1

2
∇µ

(
gλρLµν∇λψ

)
δgνρ (7.89)

and the same goes for the other two derivatives ∇ν and ∇ρ in eq.(7.88). So
what did all this rewriting bring us? Jumping to the form-notation, we have

Wλρσ = Lµνδ∇νψ εµλρσ

(dW )αλρσ = ∇µ
(
Lµνδ∇νψ

)
εαλρσ (7.90)

7The . . . denote the usual contractions.
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We recognize this dW term in our derivation, but it isn’t the only term we
can write exactly; the terms proportional to ∇δg can also be rewritten as exact
forms as eq.(7.88) makes clear. This total exact form is written as V:

V = W + [∼ δg]ε (7.91)

where [∼ δg] denotes terms proportional to δg. So we end up with(
Lµνδ∇µ∇νψ

)
ε = dV −

(
∇µ(Lµν) δ∇νψ

)
ε+ [∼ δg]ε (7.92)

This can be done for arbitrary fields with arbitrary order of derivatives; if this
procedure is iterated, we can rewrite every term in our variation δL. In the end
we get a term proportional to δg, the equations of motion for ψ and Rµνρσ in

the form of
(
EµνρσR δRµνρσ + Eψδψ

)
pop up and an exact form dΘ̃ appears in

our δL. Ofcourse, the Riemann tensor isn’t an independent field, and we can
use eq.(5.16) to rewrite the terms concerning this tensor and it’s derivatives in
terms proportional to δg and ∇∇δg. With two partial integrations we can write
the variation of the Lagrangian form as

δL = Eµνg δgµν + Eψδψ + dΘ

Θ = Θ̃ + 2EνρσR ∇σδgνρ − 2∇σEνρσR δgνρ (7.93)

which is exactly the form we had in mind. In the next chapter we will see some
an explicit example, and this kind of calculations will be used to derive some
identities for one explicit form of the Lagrangian.

7.7 Ambiguities in the Noether charge

There are some ambiguities in the theory which are important. First of all, we
can always shift the Lagrangian by an exact form without altering the equations
of motion;

L → L + d∆, Θ → Θ + δ∆ (7.94)

Second, we saw that we can shift Θ by an exact form without altering the
equations of motion;

Θ → Θ + dY (7.95)

This Y depends linearly on the variation of the fields, Y = Y(δξφ). So this
gives the ambiguity Θ → Θ + δ∆ + dY, and with eq.(3.23) this gives the shift

J → J + dY + d(ξ ·∆) (7.96)

which, on it’s turn, shifts the Noether charge by an amount of

Q → Q + Y + ξ ·∆ (7.97)

So, as was already noted, the Noether charge is not unique. However, the
entropy is calculated on the bifurcation horizon with the assumption that ξ is a
Killing vector field of the black hole. So our expression for S doesn’t change, as
it shouldn’t:

∫
Σ
(Y + ξ ·∆) = 0. Later on we will encounter another ambiguity

with a topological nature.
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Chapter 8

An explicit example

In this chapter we will consider a particular example, and see how an expression
for the Noether charge can be obtained. These calculations often are quite
tedious; the full calculation of the Noether current will be skipped, but this
chapter should be a good guiding line.

8.1 General covariance without matter field

The form of the Lagrangian density we will consider is the following:

L = L (gµν , Rµνρσ, ψµν ,∇λψµν) (8.1)

where ψ is some matter field with no assumed symmetries. Later we will consider
the more general case and put the formalism in a firm mathematical framework.
We see the appearance of te Riemann tensor, which we explained in the last
chapter. Now we vary the metric and the matter field. As said in section (4.4),
this variation will be written as a general coordinate transformation which is
multiplied by a test function ε(x). We induce this variation by a vectorfield
ξ(x):

δξgµν = −ε(x)£ξgµν

= −ε(x)[∇µξν(x) +∇νξµ(x)]
δξψµν = −ε(x)£ξψµν

= −ε(x)[∇µξσψσν +∇νξσψµσ + ξσ∇σψµν ] (8.2)

For constant ε these transformations can be regarded as gauge-transformations
of our gravitational theory. Next we impose boundary conditions on ε(x) and
∂µε(x) in such a way that the variation of L gives a term like ∇µJµ plus the
equations of motion. To make life more easy, we first consider a Lagrangian
which depends only on the Riemann tensor and the metric. After that we
consider the variations with a matter field added. But note that if we vary
the covariant derivative of the matter field we end up with variations in the
connection, which on their turn contain variations in the metric. Our starting
point is

L = L (gµν , Rµνρσ) (8.3)
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For a diffeomorphism δL should be zero. This variation is written as

δξL = ξσ∇σL
= L µνδgµν + L µνρσδRµνρσ

= 0 (8.4)

where we will define for convenience

L µν =
∂L

∂gµν
, L µνρσ =

∂L

∂Rµνρσ
, L ρ,µν

ψ =
∂L

∂∇ρψµν
, L µν

ψ =
∂L

∂ψµν
(8.5)

The symmetries are

L µνρσ = L [µν][ρσ], L µνρσ = L ρσµν , L µν = L νµ (8.6)

Via the chain rule we write

ξλ∇λL = ξλ[
∂L

∂gµν
∇λgµν +

∂L

∂Rµνρσ
∇λRµνρσ]

= ξλL µνρσ∇λRµνρσ (8.7)

where the variation with respect to the metric doesn’t contribute due to the
metric compatibility of our space-time. When we do contractions, we have to
take notice of the symmetries involved. Covariance thus implies

δξL = 2L µν∇µξν + L µνρσ[ξλ∇λRµνρσ +Rµνρλ∇σξλ +Rµνλσ∇ρξλ

+ Rµλρσ∇νξλ +Rλνρσ∇µξλ] = 0
= ξλL µνρσ∇λRµνρσ (8.8)

Now remember that L µνρσ has the same symmetries as Rµνρσ. For example,

L µνρσRµνρλ∇σξλ = L ρσµνRµνρλ∇σξλ =
L ρσµνRρλµν∇σξλ = L µνρσRµλρσ∇νξλ (8.9)

With this our expression becomes

2[L µν∇µξν + L µνρσRµνρλ∇σξλ + L µνρσRµνλσ∇ρξλ] = 0 (8.10)

But if we use the antisymmetric properties of the Riemann tensor twice, we
finally obtain

L µν∇µξν + 2L µνρσRµνρλ∇σξλ = 0 (8.11)

This first identity is nothing more than a statement of diffeomorphism invari-
ance.

8.2 The equations of motion without matter field

A second identity can be obtained from the action principle:

δS =
∫

Ω

[δ
√
|g|L +

√
|g|δL ]d4x

=
∫

[
1
2

√
|g|gµνδgµνL +

√
|g|δL ]d4x = 0 (8.12)
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where we won’t write every time the integration domain Ω. We know that the
action is an extremum for arbitrary δgµν so we want to pull out the term δgµν in
order to set the integrand in δS to zero. We already obtained an expression for
δRµνρσ in eq.(5.16), but this contains second order derivatives of δgµν . We can
get rid of those via partial integrations and Stokes’ theorem. If the expression
for δL is filled in, the variation of the action reads

δS =
∫ √

|g|[(1
2
gµνL + L µν)δgµν + L µνρσδRµνρσ]d4x (8.13)

The term with the variation in the Riemann tensor reads, with eq.(5.16),∫ √
|g|[L µνρσR λ

µνρ δgσλ + 2L µνρσ∇µ∇ρδgσν ]d4x (8.14)

Observe that, due to L µνρσ = L [µν][ρσ], we can forget about the antisym-
metrizing brackets in the contraction. The first term is OK, but the second
term needs some attention. We have to take a closer look at our boundary
conditions. The second part of the integral can be written as∫ √

|g|[L µνρσ∇µ∇ρδgσν ]d4x =∫ √
|g|∇µ[L µνρσ∇ρδgσν ]d4x−

∫ √
|g|∇µL µνρσ∇ρδgσνd4x (8.15)

The first term on the right can be converted into an integral over the hyper-
surface ∂Ω. We know that δgµν vanishes on δΩ, and so does the projection of
∇ρδgµν on the hypersurface. So we end up only with the second term on the
right. Doing another partial integration, we get∫ √

|g|L µνρσ∇ρδgσνd4x =∫ √
|g|∇ρ[∇µL µνρσδgσν ]d4x−

∫ √
|g|∇ρ∇µL µνρσδgσνd

4x (8.16)

The first term on the right can again be converted into a surface integral, and
the fact that δgµν vanishes on δΩ makes it zero. Putting this all together, the
requirement that δS = 0 for arbitrary δgµν gives us the equation of motion for
the metric:

1
2
gµνL + L µν + L ρσλ(µR

ν)
ρσλ − 2∇(ρ∇σ)L

ρµνσ = 0 (8.17)

So now we have these equations, we can add the matter field to obtain the
expressions for L = L (gµν , Rµνρσ, ψµν ,∇λψµν).

8.3 Adding of a matter field: equations of mo-
tion revisited

So let’s add the matter field. The equations of motion for the matter field are
well known; they follow straight from the Euler Lagrange equations:

L µν
ψ −∇λL λ,µν

ψ = 0 (8.18)
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We already have the expression for δψµν . The expression for δ(∇λψµν) is

δ(∇ρψµν) = ∇ρ(δψµν)− δΓλρµψλν − δΓλρνψµλ (8.19)

So here we see that the variation of the matter field depends on the variation
of the metric. The terms with the metric and the Riemann tensor are already
known. Now we are curious about∫ √

|g|[L µν
ψ δψµν + L ρ,µν

ψ δ(∇ρψµν)]d4x (8.20)

This is equivalent to∫ √
|g|[L µν

ψ δψµν + L ρ,µν
ψ ∇ρ(δψµν)−L ρ,µν

ψ ψλνδΓλρµ −L ρ,µν
ψ ψµλδΓλρν ]d

4x

(8.21)
If we want to obtain the equations of motion for the metric, we have to pull out
a factor δgµν again. This requires again some partial integrations and Stoke’s
theorem for each term. After all, δΓλρν contains terms like ∇ρδgµν . Let’s zoom
in at a term in the integral which contains δΓλρµ, and write it out:∫ √

|g|[L ρ,µνψλν
1
2
gλα(∇ρδgµα +∇µδgαρ −∇αδgµν)]d4x (8.22)

In eq.(7.88) we did a similar operation: focussing on one term is enough, the
rest goes the same way. We write∫ √

|g|gλαψλνL ρ,µν
ψ ∇ρ(δgµα)d4x

=
∫ √

|g|gλα(∇ρ[L ρ,µν
ψ ψλνδgµα]−∇ρ[L ρ,µν

ψ ψλν ]δgµα)d4x (8.23)

The first term on the right can be converted into a surface integral, and the
condition that δgµν = 0 at δΩ makes it vanish. The other term is just what we
wanted. Every δΓαµν-term gives us three terms of L ρ,µν

ψ ψλβ with contractions
between the indices. If we work this out, the equations of motion for the metric
become

1
2 L + L µν + L ρσλ(µR

ν)
ρσλ − 2∇(ρ∇σ)L

ρµνσ

+
1
4
∇λ

[
L λ,µρ
ψ ψνρ + L λ,ρµ

ψ ψ ν
ρ + L µ,λρ

ψ ψνρ

+ L µ,ρλ
ψ ψ ν

ρ −L µ,νρψλρ −L µ,ρν
ψ ψ λ

ρ + (µ↔ µ)
]

= 0 (8.24)

8.4 Adding of a matter field: general covariance
revisited

Now with those matter fields added, the total variation of L becomes

δL = L µνδgµν + L µνρσδRµνρσ + L µν
ψ δψµν + L ρ,µν

ψ δ(∇ρψµν) (8.25)

This is equal to ξσ∇σL , where

∇σL = L µν∇σgµν +L µνρλ∇σRµνρλ+L µν
ψ ∇σψµν +L λ,µν

ψ ∇σ∇λψµν (8.26)
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We already know how to deal with the first 2 terms on each right side, and now
we are interested in the contributions of the matter field. The term δ(∇ρψµν)
is just the Lie derivative of ∇ρψµν , and we get the equality

L µν
ψ [∇µξσψσν +∇νξσψµσ + ξσ∇σψµν ] +

L ρ,µν
ψ [∇ρψµσ∇νξσ +∇ρψσν∇µξσ +∇σψµν∇ρξσ + ξσ∇σ∇ρψµν ] =

L µν
ψ ξσ∇σψµν + L λ,µν

ψ ξσ∇σ∇λψµν (8.27)

We have four terms which cancel with each other here. If now L = L (gµν , Rµνρσ, ψµν ,∇λψµν)
is considered again, covariance leads to the identity

2 L µν∇µξν + 4L µνρσR λ
µνρ∇σξλ + L µν

ψ [∇µξρψρν +∇νξρψµρ]
+ L ρ,µν

ψ [∇ρξρ∇σψµν +∇µξσ∇ρψσν +∇νξσ∇ρψµσ] = 0 (8.28)

8.5 The current and the accompanying Noether
potential

We will not explicitly derive the form of the Noether current here, because this
simply involves a lot of partial integrations and the freedom to do this makes the
calculation quite messy. However, the general idea will be given, and the form
itself can partly be intuitively explained. First we consider L = L (gµν , Rµνρσ)
What we try to do, is to derive the current which is yielded by the variation of
the action. We saw in section 4.4 that the variation of the action can be written
as

δS =
∫ √

|g|(∂µε(x))Jµd4x (8.29)

The idea now is to plug in the explicit variations of the fields involved under
general transformations. The boundary conditions help us to rewrite the terms
which involve derivatives of ε(x) via partial integrations. The variation of the
action gives

δS =
∫ √

|g|
[
(L µν +

1
2
gµνL )δgµν + L µνρσδRµνρσ

]
d4x (8.30)

The variations are
δgµν = −ε(x)(∇µξν +∇νξµ) (8.31)

for the metric and

δRµνρσ = −1
2
ε(x)(R λ

µνρ δgσλ −R λ
µνσ δgρλ)− ε(x)(∇µ∇ρδgσν −∇ν∇ρδgσµ)

− ε(x)(∇µ∇ρδgσν −∇µ∇σδgρν) (8.32)

We see that the expression δRµνρσ contains second order derivatives of δgµν ,
and therefore up to second order derivatives of ε and third order derivatives of
the vector field ξ. If we plug everything in, then eventually we want to write
the integrand as the derivative of ε(x) times a term which is our current. It was
noted before that in this derivation the equations of motion are used. So we
expect that the terms L µν won’t appear in our current.

86



The extension with matter fields goes in a similar way, where also the equa-
tions of motion are used. If this lengthy calculation is performed, the following
Noether current arises [15]:

Jµ = ξµL − 2L µνρσ
[
Rλνρσξ

λ +∇ν∇ρξσ
]

+ 4∇ρL µνρσ∇(νξσ)

− L µ,ρσ
ψ

[
∇ρξλψλσ +∇σξλψρλ + ξλ∇λψρσ

]
+

1
2
(∇λξρ +∇ρξλ)

[
L µ,ρσ
ψ ψλσ + L µ,σρ

ψ ψ λ
σ + L ρ,µσ

ψ ψλσ

+ L ρ,σµ
ψ ψ λ

σ −L ρ,λσ
ψ ψµσ −L ρ,σλ

ψ ψ µ
σ

]
(8.33)

8.6 An explicit example: Reissner-Nördstrom

Now we have an expression for the current, let’s take a concrete example: the
Reissner-Nördstrom solution. It is derivable from the Lagrangian density

L (gµν , Rµνρσ, Fµν) = R− 1
4
FµνF

µν (8.34)

There is no factor ∇λFµν in L , so the current is in this case

Jµ = ξµL − 2L µνρσ[Rλνρσξλ +∇ν∇ρξσ] + 4∇ρL µνρσ∇(νξσ) (8.35)

It is clear that only an expression for L µνρσ is needed. Without (anti)symmetrization
we would say that L µνρσ = gµσgνρ, but accounting for this (anti)symmetries
gives

L µνρσ =
1
4

(
gµσgνρ − gνσgµρ + gµσgνρ − gµρgνσ

)
=

1
2

(
gµσgνρ − gνσgµρ

)
(8.36)

So,
∂R

∂Rµνρσ
=

1
2
gµ[ρgσ]ν (8.37)

By metric compatibility then, ∇ρL µνρσ = 0. The current becomes

Jµ = Rξµ +
1
4
ξµFαβF

αβ − [gνσgµρ − gµσgνρ][Rλνρσξλ +∇ν∇ρξσ] (8.38)

The Noether potential Qµν obtains a familiar form:

Qµν = −2L µνρσ∇ρξσ
= −[gνσgµρ − gµσgνρ]∇ρξσ
= 2∇[µξν] (8.39)

which indeed is antisymmetric. Note that this is the same Q we would obtain if
Fµν = 0. This coincides with our example (7.2.3), in which we saw that our Q
for the electromagnetic field was linear in ξ, and by integrating this term over
the bifurcation horizon it doesn’t alter the entropy. On this bifurcation horizon
we can write Qµν = L µνρσερσ.
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Chapter 9

Correction terms to the
Hilbert action

We saw a good candidate for the black hole entropy, but one question which rises
naturally is: does it obey the second law for more complicated Lagrangians? In
the original proof for Einstein’s equations, Hawking used a couple of tools. He
used the null convergence condition RµνX

µXν ≥ 0 for null vectors X, and
also the cosmic censorship. The question is if a similar increase theorem can
be formulated for higher derivative gravity. This question is not yet answered
in the affirmitive and is complicated by the fact that the explicit equations of
motion are needed. Here some examples of higher derivative Lagrangians will
be examined. The resulting action consists of the Hilbert action plus additional
correction terms. It is important to be aware of the structure of the resultant
field equations: for example, the order of derivatives of the metric, and ofcourse
the field equations must possess solutions with physical singularities.

9.1 Higher derivatives and degrees of R

In this section we first will consider so-called R2-gravity in n dimensions. The
action for R2-gravity is

SH =
1

16π

∫
dnx

√
|g|R

SR2 =
∫
dnx

√
|g|

(
aRµνρσR

µνρσ + bRµνR
µν + cR2

)
S = SH + αSR2 (9.1)

with (a, b, c, α) ∈ R and α is a coupling. It doesn’t contain any derivatives of
the Riemann-tensor. In general this will give equations of motion which are of
higher degree in derivatives of gµν than the usual degree of two of SH alone.
The particular choice (a = c = 1, b = −4) is called the Gauss-Bonnet action
and appears often in literature about brane worlds because the field equations
contain up to second order derivatives of the metric in any dimension. If these
field equations are derived and we know the form of static solutions we can use
our expression for S to calculate the entropy.
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Now derivative terms will be considered; this treatise basically continues
section (7.5). There we saw how we could abstract the right information from
the Lagrangian to do explicit calculations. In solving J = dQ for Q we pull
back the current J to the bifurcation horizon where ξ = 0, so terms linear in ξ
are not important to us. This means that we want the terms linear with second
order derivatives of ξ in J which, via J = Θ − ξ · L, are given by the part
of Θ with at least second derivatives of ξ. Now we are concerned with higher
derivative terms of the Riemann-tensor. For this we are going to make use of
the following result which we won’t prove, but is nevertheless true [11]. We can
compose the Noether charge Q in the following non-unique way:

Q = Aµξ
µ + Bµν∇[µξν] + C + dD

A = A(φ), B = B(φ), C = C(φ,£ξφ), D = D(φ, ξ) (9.2)

The form C is linear in £ξφ and the form D is linear in ξ. The important
ingredient for us is that we can always choose B,C and dD such that

(Bµν)ρ3···ρn
= − δL

δRαβµν
εαβρ3···ρn

, C = 0, dD = 0 (9.3)

Let’s make this a little plausible by looking at the Lagrangian

L = L (gµν , Rµνρσ,∇λRµνρσ) (9.4)

where we will do the same kind of calculations as we did in section (7.6). From
the discussion of section (7.5) it’s clear that we are interested in the variations
with respect to the Riemann-tensor:

δL =
∂L

∂Rµνρσ
δRµνρσ +

∂L

∂∇λRµνρσ
δ∇λRµνρσ (9.5)

The first term we already handled. To be explicit, the second term in this
variation reads

∂L

∂∇λRµνρσ

(
∇λδRµνρσ − δΓαλµRανρσ − δΓαλνRµαρσ − δΓαλρRµνασ − δΓαλσRµνρα

)
(9.6)

but those δΓ-terms aren’t going to give us terms like ∇2δξgαβ . Keeping only
the relevant terms we obtain

δL =
∂L

∂Rµνρσ
δRµνρσ +∇λ

( ∂L

∂∇λRµνρσ
δRµνρσ

)
−∇λ

( ∂L

∂∇λRµνρσ
δRµνρσ

)
+ . . .

=
( ∂L

∂Rµνρσ
−∇λ

∂L

∂∇λRµνρσ

)
δRµνρσ +∇λ

( ∂L

∂∇λRµνρσ
δRµνρσ

)
+ . . .

= ∇µ
(
2(

∂L

∂Rµνρσ
−∇λ

∂L

∂∇λRµνρσ
)∇ρδgνσ

)
+ . . . (9.7)

Iterating these steps we will see that the ’equations of motion’ for Rµνρσ pop up
in the entropy. The same goes for a Lagrangiang which, in addition, depends
on a matter field ψ and it’s first derivative ∇ψ. So we can conclude that for
L = L (ψ,∇αψ, gµν , Rµνρσ,∇αRµνρσ,∇α∇βRµνρσ, . . .) the entropy becomes

S = 2π
∮

Σ

√
|h| δL

δRµνρσ
εµνερσdΩ (9.8)

where h is the pulled-back metric on Σ.
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9.2 The Gauss-Bonnet Lagrangian

We could ask ourselves the question: what if we would add a term to the action,
which on varying it, would be a total derivative? With other words,

L → L + ∆, with δ∆ = dV (9.9)

for some V ∈ Λn−1(M). Notice that this differs from the ambiguity eq.(7.94).
This ambiguity means that ∆ wouldn’t contribute to the dynamics of the theory,
but it surely could contribute to the entropy because J is shifted by (V − ξ ·
∆). We can’t use the same reasoning from section (7.7) to make these effects
irrelevant for Q. These additions to the Lagrangian aren’t that artificial; the
Gauss-Bonnet theorem gives a way to construct such terms[16]. The theorem
states that for a compact manifold M the Gaussian curvature K and the Euler
characteristic χ(M) are linked via∫

M

√
|g|Kdnx = 2πχ(M) (9.10)

It gives a connection between local information of the manifold (K) and global
information (χ). If ∂M 6= 0 then the geodesic curvature of ∂M also contributes
to χ(M). The Euler characteristic is a topological invariant of the manifold.
The generalized Gauss-Bonnet Lagrangian density is given by [17]

LGB =
(−1)m

2m
εµ1ν1···µmνn

ερ1σ1···ρmσmRµ1ν1
ρ1σ1

· · ·Rµmνm
ρmσm

(9.11)

where the number of space-time dimensions is equal to 2m. For example, m = 1
gives LGB = −R, which yields the Hilbert action. This means that for 2 space-
time dimensions the Hilbert action doesn’t give any dynamics, but merely a
boundary term. For space-time with four dimensions the Gauss-Bonnet action
is proportional to[18]

S =
∫
d4x

√
|g|RµνρσRαβγφεµναβερσγφ (9.12)

In four dimensions this action yields the Gauss-Bonnet action. To uncover it,
we use the determinant identity which can be seen with eq.(3.44):

εµνρσε
αβγφ =

∣∣∣∣∣∣∣∣
δαµ δβµ δγµ δφµ
δαν δβν δγν δφν
δαρ δβρ δγρ δφρ
δασ δβσ δγσ δφσ

∣∣∣∣∣∣∣∣
Rewriting RµνρσRαβγφε

µναβερσγφ = RµνρσR
αβ
γφεµναβε

ρσγφ, plugging in the
determinant and writing out all the terms gives us

RµνρσRαβγφε
µναβερσγφ = 4(RµναβRµναβ − 4RµνRµν +R2) (9.13)

which is four times our wanted Gauss-Bonnet term. This form can be investi-
gated more easily. In the variation we use εµναβ = εαβµν , and we obtain

δ(LGB

√
|g|) =

√
|g|

(
LGBg

µνδgµν + 2RαβγφεµναβερσγφδRµνρσ

+ 2RµνρσRαβγφεµναβδερσγφ
)

(9.14)
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The variation in the Riemann-tensor reads δRµνρσ = gµξ(∇ρδΓξνσ − ∇σδΓξνρ),
and in the contraction these two ∇δΓ-terms are minus each-other, so this be-
comes

2δRµνρσRαβγφεµναβερσγφ = 4gµξ∇ρδΓξνσεµναβερσγφ (9.15)

The variation of the generalized Levi-Civita symbol is δεαβµν = − 1
2g
λθδgλθε

αβµν .
Plugging this in and rearranging, the variation becomes finally

δ(
√
|g|LGB) = ∇φ

(
4
√
|g|gλµδΓλνγRρσαβεµναβερσγφ

)
(9.16)

Plugging in the explicit variation δgµν = 2∇(µξν) we can identify our vector
density Θφ belonging to the Gauss-Bonnet part of the action as

Θφ = α
√
|g|gλµgλρ

(
∇ν∇(γξρ) +∇γ∇(ρξν) −∇ρ∇(νξγ)

)
Rρσαβε

µναβερσγφ

(9.17)
The corresponding Noether charge is [11],[19]:

Qα1···αn−2 = −εµνα1···αn−2

( 1
16π

∇µξν+2αR∇µξν+8α∇[ρξν]Rµρ+2αRµνρσ∇ρξσ
)

(9.18)
To calculate the associated entropy with the added term we could use this result,
but instead we will look again at spherically symmetric solutions of the vacuum
equations described by eq.(6.31). According to Birkhoff’s theorem[2],[6] this
solutions are stationary and asymptotically flat if we deal with Einstein’s field
equations. The derivatives involved are

∂[R2]
∂Rαβγδ

= Rgα[γgδ]β

∂[RµνRµν ]
∂Rαβγδ

= 2gα[γRδ]β

∂[RµνρσRµνρσ]
∂Rαβγδ

= 2Rαβγδ (9.19)

The second identity comes from RµνRµν = gµφgνξgλτgκϕRλµτνRκφϕξ. With
this the derivative L αβγδ

GB becomes

L αβγδ
GB =

(
Rgα[γgδ]β − 8gα[γRδ]β + 2Rαβγδ

)
(9.20)

Another calculation gives1

L αβγδεαβεγδ = 4L 0101(ε01)2

L 0101 =
(
Rg0[0g1]1 − 8g0[0R1]1 + 2R0101

)
→ L αβγδεαβεγδ =

(
2Rg00g11 − 16g00R11 + 8R0101

)
(ε01)2 (9.21)

With the Hilbert action we had that the different factors in L αβγδ and ερλ can-
celled each-other which resulted in an integrand which was simply a numerical

1Note that for spherically symmetric solutions we can put g00g11 = 1 with an appropriate
choice of coordinates.
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4, but here we have to do some more calculations. In calculating the connection
symbols, Riemann-tensor and Ricci-tensor we only have to keep track of the
(∂1 = ∂r) - terms for the index-values 0 and 1. The only non-zero connection
symbols are

Γ0
01 =

1
2
g00∂rg00, Γ1

00 = −1
2
g11∂rg00 (9.22)

With these connections the relevant terms are

R11 = Rαβg
1αg1β = R11g

11g11 = g11g11
(
R0

101 +R1
111

)
R0101 = g1νg0ρg1σR0

νρσ = g11g00g11R0
101

R = gαβRαβ = g00R0
000 + g00R1

010 + g11R0
101 + g11R1

111 (9.23)

Finally, the components of the Riemann-tensor are

R0
000 = R1

111 = 0
R0

101 = −∂rΓ0
10 − Γ0

01Γ
0
01

= −1
2
[∂rg00∂rg00 + g00∂2

rg00]−
1
4
[g00∂rg00]2

R1
010 = ∂rΓ1

00 − Γ1
00Γ

0
10

= −1
2
∂r[g11∂rg00] +

1
4
g00g11[∂rg00]2 (9.24)

With these results we can explicitly calculate S if we plug in g00 = −e2g(r) and
g11 = +e2f(r) for a given f(r) and g(r). Let’s see what this implies for the
Schwarzschild solution in the case of Einstein’s field equations with this extra
topological term. Being a vacuum solution, it implies that Gµν = 0. Taking
the trace of this equation implies that R = 0, and this in turn implies Rµν = 0,
which simplifies our entropy quite a bit. First of all, we have for Schwarzschild
solutions that

L αβγδεαβεγδ = 8R0101(ε01)2 (9.25)

Plugging in all the explicit terms, performing the derivatives and rearranging
gives the following rather elegant result:

L αβγδεαβεγδ = 8
(M2 + 2M

r3

)
(9.26)

So the extra entropy term SGB , again evaluated at the event horizon r = 2M ,
is simply

SGB = 2π
(M + 2)
M2

A (9.27)

where A is the surface of the event horizon, A =
∫
Σ

√
|h| dΩ, which is not altered

because the field equations are not changed by adding the Gauss-Bonnet term.
We see that the term becomes less significant if the mass M of the black hole
becomes larger. Due to the Hawking-effect we have eventually that M → 0, but
also that A → 0. If A goes to zero fast enough SGB remains finite, but to say
more about that we have to know how A and M change in time.

So how should we interpret this remarkable result? Apparantly, the de-
mand that the entropy remains unchanged if the equations of motion remain
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unchanged is a subtle demand if we look at topological terms. Perhaps we
should take a closer look at the boundary conditions we impose on the metric
which give the equations of motion, but this is a guess; we won’t go into further
detail here. Nevertheless it should be clear that according to the calculation
above a Gauss-Bonnet term proportional to eq.(9.13) can have a physical effect
in four space-time dimensions.
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Chapter 10

Conclusions and overview

It’s time to look back at what is done so far. In this thesis, the physical back-
ground and mathematics needed for the method of Wald were investigated, to
calculate the black hole entropy S for stationary black holes with nonvanishing
surface gravity, κ 6= 0. In this formalism, S is the Noether charge with respect
to the horizon Killing field ξ. The assumption was that the event horizon of
this black hole is a Killing horizon. We saw a close connection between the
diffeomorphism invariance of gravitational theories which describe gravity with
a dynamical background, and the intrinsic entropy of a gravitational field. Also
some black hole thermodynamics was reviewed to put all this in the right con-
text. With this method some examples were calculated. We saw that higher
derivative terms in the action add corrections to the classical calculation that
for Einstein’s field equations yield S = A/4. We further noted the difficulty
in extending the formalism to dynamical black holes because we have to let go
of the symmetries which were used to derive the entropy formula. In the last
chapter we investigated the addition of a topological invariant to the action,
which changed the entropy non-trivially in four dimensions.

To end, we note some interesting open questions in this field of research:

• Are the equations of motion for black hole thermodynamic merely nice
analogs, or are the entropy and temperature real thermodynamic proper-
ties of the black hole?

• How can be proven that a general expression for the entropy obeys the
area theorem of Hawking?

• What is the exact connection between the macroscopic notion of entropy
discussed here, and the microscopic notion?

• How can the method of Wald be extended to dynamical black holes?

• What is the interpretation of the Gauss-Bonnet term which alters the
entropy, but not the field equations?

It can be concluded that Wald’s formalism gives a remarkable connection
between the geometry of the black hole and it’s thermodynamic aspects us-
ing diffeomorphism invariance which in it’s application region coincides with
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other formalisms developed. Hopefully this thesis could help by answering the
questions above, and other open questions.
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Appendix A

The transport term

In chapter five we saw two different kinds of variations which will be repeated
here for convenience:

δψ = ψ
′
(x)− ψ(x)

= lim
t→0

1
t
[φ∗tψ(φt(x))− ψ(x)] (A.1)

and

δ̃ψ = ψ
′
(x

′
)− ψ(x)

= lim
t→0

1
t
[φ∗tψ(x)− ψ(x)] (A.2)

together with δxµ = x
′µ−xµ. It is clear that [δ, ∂µ] = 0 because the coordinates

are not changed with δ. However, for δ̃ this is not true. In deriving the transport
term we work up to first order and use Taylor’s theorem. First we note that

δ(∂µψ) =
∂ψ

′
(x)

∂xµ
− ∂ψ(x)

∂xµ

= ∂µ(δψ)

δ̃(∂µψ) =
∂ψ

′
(x

′
)

∂x′µ
− ∂ψ(x)

∂xµ
(A.3)

Now consider

ψ
′
(x

′
) = ψ

′
(x+ δx)

≈ ψ
′
(x) + δxµ∂µψ

′
(x) (A.4)

Combining this with

∂µψ
′
(x) = ∂µψ(x) + ∂µδψ

≈ ∂µψ(x) (A.5)

where ∂µδψ ≈ 0 is used, gives

ψ
′
(x

′
) ≈ ψ

′
(x) + δxµ∂µψ(x) (A.6)
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This in turn can be written as

ψ
′
(x

′
) = δψ + ψ(x) + δxµ∂µψ(x) (A.7)

and so
δ̃ψ = δψ + δxµ∂µψ(x) (A.8)

where δxµ∂µψ(x) is the transport term. The variation δ̃ψ is separated into a
part which accounts for the change in the field and a part which accounts for the
change in the coordinates. Notice that a change in coordinates means actually
that the physical point is not moved while in keeping the coordinates fixed the
physical point is moved. If the derivative ∂

′

µ is rewritten in terms of ∂µ up to
first order, an explicit expression for the commutator [δ̃, ∂µ] can be found[20]:

[δ̃, ∂µ]ψ(x) = −∂µ(δxν)∂νψ(x) (A.9)

So as long as the variation δxν is constant along the space-time region of interest,
one is allowed to commute these two operators.
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Appendix B

The Raychaudhuri equation

The Raychaudhuri equation is a very important equation for proving the sin-
gularity theorems and the area theorem, and a derivation is given below. It
describes the behaviour of congruences in Ω ⊂ M with tangent vector t and
connecting vector s. So with this, the space-time curvature is investigated via
a congruence of geodesics constructed on it. The equation can be derived for
timelike (t2 = −1) and null-geodesics (t2 = 0); we will consider only the latter
here because we want to apply them to the null generators of hypersurfaces.
The relevant situation is sketched in figure (B.9): The vectors ∂/∂α and ∂/∂λ

Figure B.1: Two neighbouring geodesics

commute, so [t, s] = £ts = 0. If we remember that we can replace partial deriva-
tives by covariant ones in Lie-derivatives, this results in [tµ∇µsν −sµ∇µtν ] = 0.
If we define Bµν = ∇µtν , we obtain

Bµν ≡ ∇µtν → tν∇νsµ = Bµνs
ν (B.1)

So this gives us a nice interpretation of Bµν ; if Bµν = 0 we see that s is
parallel-transported along γα(λ), and otherwise it isn’t. Second we note that
the connecting s vector is not uniquely defined; we see that the vector at + s
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with a ∈ R also points from γα(λ) to γα+δ(λ). If γα would be timelike, we could
impose the condition tµs

µ = 0 and consider the 3-dimensional space spanned
by all the vectors orthogonal to t. However, tangent vectors of a null geodesic
obey t2 = 0 and so t is also included in this orthogonal space. To fix the choice
of vectors, we introduce a vector n for which

n2 = 0, nµt
µ = −1 ∀λ (B.2)

This is merely one convenient choice. All the displacement vectors in the congru-
ence have a component in the n-direction which is not orthogonal to t. Because
these conditions are imposed everywhere, we have ∇µ(n2) = ∇µ(nρtρ) = 0.

Now the vectors η which are both orthogonal to n and t span a two-dimensional
spacelike subspace Σ⊥ with positive definit metric hµν . If the geodesics are the
generator of the null-surface Σ, then Σ⊥ ⊂ Σ. Now the metric gµν can be
written as1

gµν = hµν − 2t(µnν) (B.3)

The ’metric’ hµν has to satisfy hµν = h(µν) and hµνt
µ = hµνn

µ = 0. That’s
why the parentheses are used; the tensor is degenerate in Σ⊥, a property which
an honest metric shouldn’t have. The relevance of this ’metric’ is that we can
define a projection operator with it which projects vectors unto Σ⊥:

Pµν ≡ gµρhρν = δµν + nµtν + tµnν (B.4)

Ofcourse this operator should obey Pµνη
ν = ηµ. With some algebra it can be

shown that if η ∈ Σ⊥ for some λ, it stays there: {η ∈ Σ⊥ ∀λ}.

Having defined all this, we project Bµν unto Σ⊥, and indicate this projection
with a hat:

B̂ρσ ≡ PµρP
ν
σBµν (B.5)

We can decompose it in a trace, an antisymmetric part and a symmetric part,
remembering that 4⊗ 4 = 1⊕ 6⊕ 9 for the tangent space of four dimensional
second rank tensors:

θ ≡ B̂µµ, (the expansion)

σ̂µν ≡ B̂(µν) −
1
2
θhµν , (the shear)

ω̂µν ≡ B̂[µν], (the twist) (B.6)

With this we decompose B̂µν as

B̂µν =
1
2
θhµν + σ̂µν + ω̂µν (B.7)

By using Frobenius’ theorem we see that the tangent vectors t are only hyper-
surface orthogonal iff ω̂µν = 0. The tensors σ̂µν and ω̂µν are both orthogonal
to t and are thus purely spatial. We gave these irreducible components names;
θ is a measure for the expansion of the surrounding geodesics, ω̂µν measures

1It’s written such that gµνην = hµνην and gµνtν = nµ + hµνtν .
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the rotation of these geodesics2 and σ̂µν measures how geometric forms are de-
formed being Lie-transported along t. That last one is a little harder to imagine.

By now we are close to actually deriving Raychaudhuri’s equation. For that
we look at how the expansion changes with λ: we are interested in calculating
dθ
dλ = tρ∇ρθ. For that we calculate tρ∇ρBµν :

tρ∇ρBµν = tρ∇ν∇ρtµ +R σ
µνρ t

ρtσ

= ∇ν(tρ∇ρtµ)− (∇νtρ)(∇ρtµ) +R σ
µνρ t

ρtσ

= −BρνBµρ +R σ
µνρ t

ρtσ (B.8)

If this equation is projected on Σ⊥, the trace of the last equation with the
decomposition (B.7) gives us finally

dθ

dλ
= −1

2
θ2 − σ̂µν σ̂

µν + ω̂µν ω̂
µν −Rµνt

µtν (B.9)

If this term is negative, then the geodesics converge and vice versa. The last
term Rµνt

µtν gives us directly the effect of gravity on our geodesics. Now take
a look at eq.(4.59). The Einstein equations tell us that the last term in the
Raychaudhuri equation is always negative; gravity attracts!

A justification for θ being some sort of expansion can be given by the fol-
lowing argument. Assume that along the curve γ with tangent vector t we drag
a basis X(µ). This implies that £tX = 0 for each basis vector X. This re-
sults in Ẋµ = (∇νXµ)tν = (∇νtµ)Xµ. So if we regard [X] = [X0X1X2X3]
as a matrix with each column given by a vector X, we can write down the
equation [Ẋ] = B[X], where Bµν = ∇µtν . Now consider the trace of B,
trace(B) = trace([Ẋ][X]−1) = 1

|X| |Ẋ|. This gives an indication how the ba-
sis volume changes along the geodesic, and thus a notion of the convergence
and divergence of the geodesics.

To conclude, we look at the consequences of eq.(B.9) for hypersurface or-
thogonal null geodesics. In this case we already argued that ω̂µν = 0. The term
σ̂µν σ̂

µν is positive, and so we can write down the following inequality:

dθ

dλ
+

1
2
θ2 ≤ 0, so

d

dλ

[1
θ

]
≥ 1

2

→ θ−1(λ) ≥ 1
θ0

+
1
2
λ (B.10)

Here θ0 denotes the initial value of the expansion: θ0 = θ(λi) if λ ∈ [λi, λf ].
The interesting implication of this inequality is the case for a congruence which
converges initially, θ0 ≤ 0. The expansion θ will then take the value −∞ within
proper time λ ≤ 2/|θ0|. This implies the existence of a conjugate point before
this proper time is reached.

2We saw earlier that Bµν gives an indication of the failure of s being parallelly transported
along geodesics.
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Appendix C

Useful geometric identities

Here some useful geometric identities concerning curvature and variations are
listed:

Γσµν =
1
2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµλρΓ
λ
νσ − ΓµλσΓ

λ
ρν

Rµν ≡ Rλµλν

∇µXµ =
1√
|g|
∂µ(

√
|g|Xµ)

£ξX
µ···
ν··· = ξλ∇λXµ···

ν··· −Xλ···
ν···∇λξµ − · · ·+Xµ···

λ···∇νξ
λ + · · ·

δRµν = ∇αδΓαµν −∇νδΓαµα

δRµνρσ = R λ
µν[ρ δgσ]λ + 2∇[µ∇[ρδgσ]ν] = ∇ρδΓµνσ −∇σδΓµνρ

δΓσµν =
1
2
gσρ(∇µδgνρ +∇νδgρµ −∇ρδgµν)

δR = gµν
(
∇αδΓαµν −∇νδΓαµα

)
−Rµνδgµν

gµνδRµν = ∇α
(
gµνδΓαµν − gµαδΓλµλ

)
RµνδRµν = gαβRαµβν

(
∇λδΓλµν −∇νδΓλµλ

)
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Universidade Estadual Paulista (1997).

[21] T. Ortin, Gravity and Strings. Cambridge University Press(2004).

[22] H. Broer, Meetkunde en fysica. Epsilon uitgaven, Utrecht (1999).

[23] S. Hawking and R. Penrose, De aard van ruimte en tijd. Ooievaar,
Amsterdam (1999).

[24] R. M. Wald, Black hole entropy is Noether charge, arXiv:gr-qc/9307038
v1 (1993).

[25] T. Jacobson and G. Kang, Black hole entropy in higher curvature gravity,
arXiv:gr-qc/9502009 (1995).

[26] R. M. Wald and A. Zoupas, General definition of conserved quantities in
general relativity and other theories of gravity, Phys.Rev. D61, vol.61,
084027 (1999).

[27] P. Townsend, Black holes, arXiv:gr-qc/9707012 v1 (1997).
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