SLAC-PUB-664
September 1969
(MISC)

ON THE INTERACTIVE GENERATION AND INTERPRETATION
OF ARTIFICIAL PICTURES*

Alan C. Shaw

Cornell University**
Ithaca, New York 14850

(For Presentation at the 1969 ACM/SIAM/IEEE Conference
on Mathematical and Computer Aids to Design, Anaheim,
California, October 26-30, 1969.)

*
This work was supported, in part, by the U.S. Atomic Energy Commission while
the author was employed at the Stanford Linear Accelerator Center, Stanford
University, Stanford, California during the summer of 1969.
*k

Department of Computer Science.

"ABSTRACT

This paper presents the design of a general set of user facilities for the on-
line generation and interpretation of pictures. We are concerned with the inter-
active graphics language, the command and control language, as oppoéed to the
language used to implement it. The intent is to provide a superior alternative to
the present mode of operation which usué.lly involves the definition of a new com-
mand and control language and associated translator for each new application
(and machine).

Pictures are not drawn in the conventional manner using a light pen or stylus
and tablet. Instead, they are generated by executing or evaluating an algebraic-
like string description in épicture description language. Graphics entities are
described in the space that is most natural to the user — a virtual picture space —
and then mapped into the real picture space of the displaj device. Attributes
may be specified and assigned to picture parts in an arbitrary manner. Pictures
are interpreted by parsing them according to given grammars and by performing

.computations with pictures as arguments. AAn on-line computational facility is
also used for computing complex attributes and constraints. The system is
illustrated by examples in the drawing and execution of flow charts, and the

generation and analysis of séries/pa.rallel resistance networks.

- if ~

TABLE OF CONTENTS
I. Introduction
O. Picture Processing Facilities for Interactive Design
II. Techniques of User Intera.dtion and Applications Implementation
IV. A New Approach
V. Picture Generation

A. Picture Primitives
B. Picture Description and Evaluation
C. Complex Primitives |
D. Attribute Assignment and Display
E. Interactive Drawing
F. The Definition and Satisfaction of Constraints
G. Flow Chart and Electric Circuit Generation

VI. Picture Interpretation
A. Picture Grammars and Syntax Analysis
B. Flow Chart and Electric Circuit Grammars
C. Semantic Interpretation

VII. 'Concluding Remarks

Acknowledgements
References

Figures

- iii -

I. INTRODUC TION

The potential benefits of interactive graphical communication between humans
and computers were first dramatic ally brdﬁght to the attention of the general
technical community in the Sketchpad system of I. Sutherland (1963). In a typical
design situation, a user sits in front qf a consoie equipped with both graphical
and textual input/oﬁtput devices as well as a variety of buftons and vswitches. A
rﬁodel of the entity being designed is incrementally specified and communicated
to the machine through the input devices; the computer, in turn, is programmed
to interpret the user input by analyzing his specifications and displaying some
abstraction of the design. This is a feedback process with the user continually
modifying his design until the results are satisfactory. For our purposes, the
key feature of this type of interaction is the use of pictures as the basic medium
of communication. We call these artificial pictures since they do not appear in
nature but are constructed by men and machines. Simply stated, our goal is to
develop more convenient Wé,ys to specify and interpret artificial pictures in the
above type of environment. This paper is intended as a contribution towards that
goal. ’

It has been argued b& us and others that most graphics applications involve
both picture generation and- éi;alysis (or interpretation) — what is generated must
be analyzed and vice versa (Miller and Shaw, 1968b; Kulsrud, 1968). Our approach
is to use a common picture description scheme for both. The purpose of picture
analysis is then to gg_x'_iifg_ a description while in picture generation, descriptions
are executed. This idea forms the basis for our thoughts on an interactive
graphics system and will be further developed.

In the next section, we discuss a number of desirable user facilities for in-

teractive picture generation and interpretation. Present graphics systems are

-1-

then briefly and critically examined. A new and somewhat novel graphics system
design is }pres'ented in the remainder of the paper. Drawing is accomplished, not
by moving a lightpen or stylus, but by eXpreséing in an algebraic-like manner a
precise description of the picture. The object is to provide a drawing language
which is unambiguous, device independent, a.nd. avdids the awkwardness of a
multitude of switches and buttons. Pictures are tested for well-formedness and
syntactically interpreted by parsing them according to given picture grammars.
Computations over pictures may be interactively specified and performed during
drawing and analysis. We illustrate the sysfem by examples in flow chart design
and execution, and simple electric circuit design. While >the system has not yet
been implémented, the feasibility of its major componenfs has been confirmed

by several related research efforts over the last few years undertaken by

W. F. Miller, J. E. George, and the author (Miller and Shaw, 1968a; Shaw,

1968, 1969a, b; George and Miller, 1968; George, 1968).
II. PICTURE PROCESSING FACILITIES FOR INTERACTIVE DESIGN

We take the point of view of a user and briefly discuss some of the drawing
and interpretation facilities that an interactive computer system should provide.
A great deal of the following_ .also applies to a non-interactive situation.

What is required in order té usefully generate picturés? First, and most
obvious, the picture must be described to a compﬁtep. Generally, a picture can

be defined as a set of primitive components and the relations that they satisfy.

If the primitives are completely defined geometrically then these relations are
implicit; conversely, describing the relationships among the primitives serves
to more completely define each individual primitive. Both methods of definition

are useful. Given a set of basic primitives, such as points and curve segments,

-2 -

more cdmplek entities should be definable in terms of these. One wishes to
identify highér level structures by assigning names to them. (The distinction
between pfimitives and higher l_evel‘structures is that the user is interested in
manipulating and analyzing thg 'components of the latter but not the former.)

. Assigning arbitrary names to pictures should also be part of a general attribute
assiggment facilitj; for example, the attributes of a resistor might include ité
resistance, tolerance, and manufacturer. The above facilities suffice for
statically describing a drawing. In an inferactive mode, we also need to dynami-
cally modify pictures. Thus, we include a capability for deletion, insertion, and

merging, as well as for common mathematical transformations of translation,

rotation, and scale change. A user finds» it most convenient to define and manipuf
late pictures in terms of operations in a virtual picture space — the space that is
most natural for the problem. Display of a picture then requires a mvapping of
the virtual space to the _1_;931_ space of the display device. The ability to dynami- |
cally specify this mapping is useful for "zooming" and moving through large
pictures. Finally, unless thé system is to be a toy, commands for picture
storage and retrieval must be available.

vWe distinguish betwéen two types of picture interpretation. The flrstcan be vieWedb

as classification and description. Inanyparticular application, there is a set (possibly

infinite) of ""'well-formed" pictﬁres to which the generated pictures are re Stricted. At

the most basic level, any picture specified by a user should be analyzed to determine
whether that pictqre is amember of the set; if not, pre sumably the user has made anerror.
Additionally, it is often desirable to classify the picture and describe it in terms, -
other than the description given by the user when generating it. For example,

in an electric circuit design application, it might be stipulated that all well-

formed circuits contain certain components, such as a "ground" or a '‘voltage
s gr

-3 -

source." The designer might describe a circuit in terms of its components and
connections but would want the system to impose a structure on it and produce a

description of the form "This is a circuit of type X, composed of subcircuits of

0
types X;, X,, ... Which in turn consist.of ... " This kind of picture interpre-

tation is really the results of a syntactic anaiysis. '

The Second type of interpretation is a more conventional one and implies a
facility to perform arbitrary computations over pictures and their attributes.
We do not design something just to look at a picture of it but want to meet a given

set of specifications in some optimal manner. We will call this semantic analysis.

We might compute and display, for example, the response of an electrical network
or the results of executing a flow chart. In addition, it is useful to have an on-line
computational ability while generating pictures in order to determine complex

drawing attributes and constraints.
IIl. TECHNIQUES OF USER INTERACTION AND APPLICATIONS IMPLEMENTATION

The most common hardwére interface consists of a cathode-ray tube (CRT)
display for graphics output and a lightpen, alphanumeric keyboard, and function
keybbard for input (e.g., Appel et al., 1968). User communication with the
computer occurs through mt_errupts generated by the input dévices; these are
interrogated by systems pr;)gran;.s which, in turn, usually invoke applications
programs. The latter are primé,rily translators for the user input language —

commonly called a command and control language. ''Sentences" or programs in

this language are not strings over alphanumeric characters but are comprised of
sequences of lightpen "points," keys on the function keyboard, and textual infor-

mation.

We illustrate a graphics part of a typical command and control language by
a simple example for drawing line segments on a CRT using a lightpen and one
button on a functién keyboard:
"1. press button to start pen tracking;
2. track pen to starting point of line;
3. press button to fix starting point;
4. track pen to end point;
5. press button to fix end point and stop tracking."
(Newman, 1968, p. 47)
A "rubber band'' series of line segments is displayed as the user
draws during step 4; at step 5, the rubber band is eliminated and
a straight line segment is displayed between the starting and end
points.
In general, picture descﬁptions for generation are specified to the computer using
all the input devices in various combinations. This same mechanism is used for
picture interpretation; the inpﬁt device interrupts lead to applications programs
which perform the desired analysis. Each application usually involves the defini-
tion of a new command and control language and associated translator.
The lightpen is currently being replaced in many installations by a tablet
and stylus to allow a more ﬁafural way of drawing; in these systems, it is coh-
venient to permit direct hand-drawn input since pattern recognition results may
immediately be displayed on the CRT for possible correction (e.g., Sutherland
and Forgie, 1969). Various other input devicés, such as toggle switches and
shaft encoders, have also been employed in addition to the above.
Since the philosophy has been that each application requires its own language,

much effort has been devoted to the design of general purpose data structures

..5...

and programming systems within which'comma.ndva.nd control laﬁguages may be
defined and implemented. The simplest approach has been to add graphics
subroutines to some general purpose lang'uage, for example FORTRAN (Rully,
1968). For more sophistic_:atgd applicatioﬁs, 'many data structure oriented
languages have been developed; these range from linked-list macrollanguages

such as CORAL (Roberts, 1964) to associative ext;ansions of higher level languages,
| such as LEAP (Feldman and Rovner, 1969). More recently, translator writing
systems for graphics languages have been devised (George, 1969; Kulsrud, 1968;
Pankhurst, 1968).

We are critical of several aspects of the present mode of operation. Consider
the manner in which pictures are interactively specified for generation. The
drawing lahguage is defined anew for each application in some ad hoc manner
and, with exceptions, involves the awkward use of an often bewildering array of
input devices. General ﬁurpose programming languages are used to define

computations interactively; it seems that general purpose picture languages that
allow the interactive drawing of pictures should similarly be available. A similar
argument follows for picture interpretation. We need general purpose on-line
languages for describing well-formedness of pictures and computations oVer

pictures. The remainder of; this paper offers a proposal in this direction.
IV. A NEW APPROACH

Our approach to interactive graphical communication is based on the use of

a formal picture description scheme. A user describes drawings and their

intended interpretation in terms of a general picture description language,
picture grammars, and functions with descriptions as arguments; the computer
displays graphical entities by executing their descriptions, and interprets them

by both parsing pictures according to given grammars to yield a description and

-6 -

performing computations over them. Our picture description scheme is a string
language é.nd, fhus, we do not see any need for a variety of input devices; either
an alphanumeric keyboard or a tablet and stylus is the only input device required.
While we are dubious _abo_uf the practical value of on-line flow charting sys-
tems, the subject matter .is familiar to a large" group and thus serves as a good
example for expository purposes. Flow charts of the type illustrated in Fig. 1
will be used as one example in the following sections; we will desci'ibe how they
might be drawn and executed. The second example will be the design of simple
series/parallel resistance networks, using a schematic representation as in
Fig. 2. These networks will be interpreted by c'omputing. their equivalent resis-

tance.
V. PICTURE GENERATION

A piéture will be defined as a real valued function f(x) of two real variables,
X= (xl,xz) (Rosenfeld, 1969); x is interpreted as a point in a two-dimensional
Euclidean space. We will coﬁsider only pictures in the plane but most of the
scheme cai‘ries over directly into higher dimensions. The description language
preéented below is a variation and extension of the "PDL" notation given in

Shaw (1968, 19699) and Miller and Shaw (1968a).

A. Picture Primitives

Basic primitives are divided into disjoint sefs of patterns; each set will be
represented by a qukadruple: |
<n, f(x), t, h> ,
where n is a name given to the set, the picture f(x) is a distinguished primitive
in the set called its normal form, and t and h are two distinguished points in

f(x), called the tail and head respectively. We alterriately denote the set of ‘

-7 -

pictures in the primitive class named n as #(n). #(n) is defined as all translations
over the plane of f(x); i.e., #(n) = {f(x-¢)|c in RZ}. R is the set of real numbers.
f(x - ¢) has tail at t + ¢ and head at_l;-l;g.

Examples |
The value of f(x) at each x (the "grey Ievel") will be restricted to the set '{0, 1‘}
but could easily ha{re other values. |
1.(a) The primitive class "horizontal line ségments of unit length"
can be defined as: |

<, £x), (0,0), (1,0)> ,

- 1f0r05x15-1,x2=0
where {(x) =
0 elsewhere .
(b) '"Blank" line segments can similarly be defined:
<b, f(x), (0,0), (1,0)> ,
where f(X) = 0 everywhere.

2.(a) The set of all "points' in the plane is defined:

<p, ¥x), (0,0), (0,0)>,

1 for x = (0, 0)
where f(x) =
0 elsewhere .
(b) Blank points are deséribed:
<A, £(x), (0,0), (0,0)> ,
where £(x) = 0 everywhere. |

3. A circle primitive may be given as:

<e, f(x), (0,-1), (0,1)>,

2 2
1whenx1+x2—1

0 elsewhere .

where f(x) = {

-8 -

Concatenations of primitive elements can only occur at their tail and head
points. It is convenient to represént a primitive by an edge of a directed graph,
labelled by its class name and "pointing' from its tail to head "node." We expand
this definition of primitives in Section V.C to handle an arbitrary number of con-
catenation or attachment points and parameters.

Scale changes are described by a'magnificfation operator M[s], s a real |

number. For the primitive set n,
_ el 2
P M[s]n) = {15 (x - ¢))| ¢ € RY.
Rotations are handled in a similar manner by the operator R (6], 0 a real number:

P®R[6] n) = {£(x - o) A(6) | ¢ € R?},
cos Or -sin 911]

where A(0) =
sin 6r cos o7

The tail and head of £(: (x - ¢) A(0)) are at & (t + ¢) X and s (b + ¢) X respectively,
where K_(O) =A(-f). Mand R operating on the line segment primitive £ change
its length and orientation respectively. M[s] applied to the circle ¢ results in a
change of radius to s while R [9] has the solev effect of rotating c's tail and head
through an angle 6.

To display anything, the computer must first be given a mapping function
from the virtual space of the user's pictures to the real space of the display
device. We will assume that both spaces are bouﬁded by rectangles and specify
the mapping by the command: |

Virtualspace (u,,1,)#

where u, is the lower left corner coordinates of a bounding rectangle in virtual

space and u, is the upper right corner coordinates.*

%
At this point, we are not concerned with the form of the command and control
language; more convenient abbreviations will undoubtedly be used.

-9 -

Pictures are generated by the computer execution of the command:
| Evaluate (S)#

where S is a picture description.* Assume a clear display.
If n is the name of a primitive élass, Evaluate (n)# will first cause the normal
form of n to be translated so that its tail is at the origin of lvirtual picfure space;
this picture is then mapped according to the most recently called Virtualspace
function and the result displayed. Similarly, Evaluate (S)# where S = M[s]n or
S = R[6]n or 8 = M{s]R[6]n will cause the appropriately transformed and mapped
primitive to be displayed. Note that the parts of a pictdre not contained within
the virtual space rectangle will not be displayed. A picture described by S is
no longer displayed when the computer executes the input command:

Delete (S) #

A generation function will be associated with each display device and primi-
tive class. The function corresponding to a primitive class named n and a display
device d will produce the display file commands for generating any member of

#(M[s] R[6] n), for arbitrary s and 6, on device d.

B. Picture Description and Evaluation

A picture will consist of a connected set of primitives and can be represented
as a connected graph with 1abe11ed‘edges, where each edge denotes a primitive
and the graph connectivity is defiﬁed by the tail/head connectivity of the primi-
tives. A picture will be described relative to the ‘origin of the picture coordinate
system; we assume that the tail or head of at least one of its primitives is iden~
tical with the origin.

The connectivity and mathematical transformation of pictures is specified

by a string in the PDL picture description langu'agé. Any "sentence'" S in PDL

* B
Use of the term "evaluate' in the context of evaluating a picture description
is due to J. E. George.

-10 -

can be generated by the following syntax:

S—EIE ¢, S| ¢, SITS|S_L

¢b—>$ 1oId|®

¢~/
E — N|N(ARG) [(S)
N— { name of a primitive, subprimitive, or higher lgvel structuré}

ARG— V{V, ARG

V— {vari#ble name}|{constant}
T-MM IRV
L— { label identifier }|{label identifier} L

Example
An arbitrary rectangle may be described by the following PDL expression:

(M [vside] R [0.5] £® M[hside)) ® (M[hside] £ @ M [vside] R [0.5] 1)

where { is the line segment primitive defined earlier.

Let %(8) be the set of all pictures described by the PDL expression S; all
members of #(S) have the same primitive set, the sé.me connectivity, and have

a tail and head defined by S. The operators generated by ¢b are binary con-

catenation operators. If § is of the form 8, g 8, or (8; d 8,), then each picture

f € #(8) consists of two suiopiétures f,€ #(S,) and f e P(8y) and has the properties:
1. tail (f) = tail (f;), head (f) =head (£,). ‘

2.(2)If @ = @ then head (fl) cat tail (f2), where cat means "is concatenated
onto''; this may be represented by the graph

S
t S1 2 h

where t and h are the tail and head nodes.

-11 -

(b) Tt @=© then head (f;) cat head (£,):

8y

(c) ¥ @=® thentail (£;) cat tail (f,):

A

(d) If ¢ = @ then both tail (f,) cat tail (f,) and head (f,) cat head (f
Sy

t®h

The meaning of these operators may be alternately given by defining F(8); for

9)*

example:
P(S; ® 8y = {fx- 91 ¢ e RS 1® = U £,),
£, € P(8)), £, € P8y, head (£,) cat tail (fz)}

In the absence of parentheses, association of expressions is from left to right.

The rectangle in the first example has the connectivity:

M[hside] £

M [vside] R[0.5] ¢ | (: , M [vside] R[0.5] ¢

M [hside] £

We will use the notation tail (S) and head (S) to denote both the tail and head of any
picture described by S, and the tail and head nodes of the connectivity graph.
The unary operator ~ is a tail/head reverser such that tail (8) = head (~ S)

and head (S) = tail (~S). Label identifiers associated with any expression allow

-12 -

the unique identification of the elements of the expression; in conjunction with

the superposition operator /, arbitrary paths through the picture or graph may

be retraced. For example we describe a rectangle with interior diagonals as

follows:

g1 22

(M[vside] R[0.5]2_1 ® M[hside]) ® (M[hside] £ ® M [vside] R[0.5] £ 2) @
M[s;]R[6,]0 ® (/2.1® M[s,]R[0,]2 @ /12

Assuming that vside and hside are constants, 8y 01, Sq and 92 will be computed
by the system to satisfy the constraints implied by the concatenation ope‘rators |
(Constraint satisfaction will be examined in more detail in section V.F) /£_1 and
/1_2 indicate a retracing over the primitives M [vside] R[0.5]2_1 and

M [vside] R[0.5] £_2; note that the labels uniquely identify the two primitives so
that M and R need not appear in the retracing description.

For / to make any sénse as a superposition or retracing operator in a PDL
expression, it is necessary that its primitive operands also appear once and only
once outside the scope of /. All expressions using / that satisfy this condition
are referred to as valid PDL expressions. Labelis are not mandatory for re-
tracing purposes if the primitives are already uniquely identified by name or
transformation; in the above example, if the appropriate M and R transformations
were repeated in the retracing operations, the labels would not be required.

However, labels are useful in other contexts as discussed in following sections.

-13 -

Associating a label with an exbression is equivalent to labeling each primitive
within the expression; e.g., (a_i @ b)_j has the same interpretation as
(a_i_j ® b_j). "

Any connected set of primitives may be described in the PDL notation; more
abstractly, any connected graph with labelled edges can be described. The tail
and head may be moved anywhere in the picture or graph for attaching new
structures by suitable "path' retracing.

The scale change and rotation operators M and R are linear

* with respect to PDL expressions, e.g., #(M[s] (8; ® 8,)) =g7(M[s] S; @ M [s] 8,
Thus, transforming an entire expression is équivalent to applying the same trans- -
| formation to each of its primitives.

Sets of pictures satisfying the same PDL expression may be named with an

assignment operator ":=" .

Examples
1. v:=R[0.5]2#

Unit square ;=L ©® v) ® (v d O #

| [

v Unitsquare

2. d1 =R[33he# A
dp :=wm[2]ar¢
dm :=R[—d.67] dp # \
Res =(d1 @ dm & dp ®‘dm ® dp © dm & dl) #

V'V \

Res will denote a resistor in our network example.

3. A function box for our flow chart example can be described:

func = M[2]((0 @ ~v ©~0) ® (~1 & ~V D D)#

o

*

Note the locations of the tail and head which permit a natural

attachment of entermg and exiting- line segments.
4. The basic flow chart arrow is:

ar =1 @ (R[0.83} 1 ® R[-0.83]1 ® 2)#

t%h

Name assignment with parameters is handled in a similar manner. The
class of all rectangles may be described incrementally:
V(vside) := M[vside] R[0.5] £ #
H(hside) := M[hside] £ #
Rectangle (vside, hside) :=(V(vside) @ H(hside)) ® (H (hside) & V (vside))#
The command Evaluate (S)# , where S is a PDL expression, will result in
(2) the formation in virtual picture space of one member f of %(S) such that:
.(i) the normal forms of all primitives in S (possibly transformed by
M and R if so described) with tail at tail (S) appeax" with tail at the
picture origin, and |
(i) the normal forms of the remaining primitives in S are translated
(and possibly transformed by M and R) to satisfy the tail/head
constraints given by the concatenations described in 8. (More
general constra.mts are treated in section V. F.)
(b) £ is then mapped to real plcture space using the most recently mvoked

Virtualspace function, and displayed. ((a)(i) assumes a clear display initially.)

-15 -

The command is invalid if more than on

]

(a). This is possible if S is not a valid PDL expression or if the constraints

implied by the ® operator cannot be satisfied uniquely.

C. Complex Primitives .

We generalize the definition of primitives to include complex primitives with
an arbitrary number of attachment points and parameters. A complex primitive

class is represented by a 5-tuple:
<n(a), f(x;a), t(a), h(a), subprimitives> ,

where n is the name of the set, a is a parameter list (al,-'az, PR a.k) (possibly
empty) with each a, restricted to a given set of admissible values T; C R, f(x;a)
specifies a set of normal form pictures {f(g{_;g.)] a€E T_leZX N ka} » £(a) and
h(a) are the tail and head coordinates of f(x;a), and subprimitives is a list of

subprimitives of n.

Subprimitives = ((ny, £,(2), b,(8)), (ny, 15(2), ho(8))y +voy (n »t (2), b (D)),
 where n, is the name of the ith subprimitive and t.(a), h,(2) are the tail and head
coordinates of n..

n and each n, is represented' by a labelled directed edge of a graph; with no loss
of generality, we require that this graph be connected. t,h and all ii’—hi are
permissible concatenation points. It is then possible to describe the primitive
substructure as a PDL expression and thus "reach into'" any attachment point of
the primitive. In a manner analogous to that for basic primitives, £ (n(a)) denotes
all translations over the plane of elements of f(x;a); i.e.,

P(n(@) = {f(x-c;a)|c € R, ae€ T XTX ... ka} . #M([s]n(a)) and

#Z(R [9] n(a)) are similarly defined.

- 16 -

Examples
1. The piimitive class "arc" subtending an angle of 67 radians can be
defined:

<arc (8), £(x;0), (—sin%, 0), (sing, 0), ((center, (-sing, 0), (0, -cos)> »

. 92 _
11fx1+(x2+cosz) land x, 20

where f(x;0) = {
. 0 elsewhere

0 £ 6 < 2 is the region Ty, and ¢ = 01 ,

X 4
A >
|

center

graph

M([s] arc(f) has the effect of changing the radius from 1 to s but
keeping ¢ constanf;" To concatenate the picture described by Sl
onto the head of arc and the picture described by S, onto the head
of center, the PDL expression (arc & S,) ® (/center @ S,) is

sufficient.

center

-17 -

2.

Use of arc automatically makes the substructure available.
Evaluate (arc (0.25)) # would cause the display of an arc sub-
tending an angle of 1r/4 radians. ’

(a) A point at relative lqcé.tion (u,v) can be described in terms of

the primitive set: -

<Q(u,v), {(x;(u,v)), (0,0), (u,v), A>

{1ifx1=uandx2=v

where f(x;(u,v)) =

0 elsewhere
and A denotes tha;: the field is empty.
‘A,lternately, we could use a PDL expression to define Q(u,v) as
follows:

Qu,v) = (M[u]b ® M[v]JR[0.5]b & p) .

Similarly, we define a blank point a/(u, V) at relative location
(u, v).

(b) A line segment with one endpoint (the head) at relative location
(u, v) to the other (the ta.il)v is a member of the set:

<L(u, V), f(x;(u,v)), (0,0), (u,v), A> ,

| lifvvx1 —ux2=0
where f(x;(u,v)) = { and x, € [0,u]
and x, € [0,]
A PNP transistor symbol is described as a complex primitive

set (see Fig. 2):

<Trans, f(x), (0,0), (0,0), ((Base, (0,0), (-6,0)), (Collector, (0,0),

(1, 6)), (Emitter, (0,0), (1’_6)))> .

- 18 -

It is most convenient fo describe Trans (and thus, implicitly
f(x)) by a PDL expression: |
Trans := (2(0,~9® M[d]o)
® (L3 & (V(3) ® L-3,-2) A9
® (a(1 -3)‘@ (~V(3) ® Ar(-3,2))) \(1 -3)
® (a(-2, 0) & (L(4 0)® V(2 ® ~V(2)))#—-*(2,0)

The picture elements used in the Trans description have been

defined in previous pages with the exception of Ar(x,y).

Ar(x,y) =R[6] (M[s] £ @ ar) ® Qx,y)#
The following PDL expression describes the attéchment of S1

to the collector, S, to the emitter, and S3 to the base of the

2

transistor:

Trans @ (/Collector & 8, ® (/Emitter & 8,) ® (/Base @ Sg)

4, We will specify.the predicate box of our flow chart as a complex
primitive: |
<pred, f(x), (0,2), (0,0), ((left, (0,0), (-3,0)), (right, (0,0), (3,0)))> ,
where £(x) is implicitly described by the PDL expression:

@(0,2) ® ((L(-3,-2) ® L(3,-2) ® (L(3,-2) & L(-3,-2)))

lpred

Toft right

5. A conventional alphabet of letters and special characters can be

considered a complex primitive set:
<Char(i), f(x;i), (0,0), ’(tl(i),O),A> ,
where i is restricted to the positive integers.
The alphabet is mapped into the positive integers and f(g;i) is the

normal form pattern for the ith character; for example f(x;5)

-19 -

might be an upper case "E'". The details of each character
need ﬁot be specified here. For our purposes, it will be
assumed that a rectangle bounds each character, and that the
tail and head of a character are defined by the endpoints of
the base line of the bounding rectangle. Furthermore, the
base line is such that a string designating a word may be
described as Char(ii) ® Char(iy) ® ... ® Char(i) -
t, () = 1 for most i. Finally, we abbreviate the above by
enclosing strings with quotation marks so that, for example,
the expression "THE" is equivalent to Char(iy) ® Char(iy) ® Char(i),
where Char(iT) designates a "T," etc. More complicated defi-
nitions permitting the simple deééription of superscripts and
subscripts could be given by specifying multiple attachment
points.
The "No" and "Yes”»extensions used in conjunction with a
predicate box of a flow chart can now be described: |

bv := M[0.1] R[0.5) b#

No:={ @ ((bv ® "N" @ ~bv) @0 ® 0 #

Yes :={ @ ((bvkﬂa "Y" ©@~bv) @ D L#

N ‘ Y
{ = h { ————

D. Attribute Assignment and Display

Following Feldman and Rovner (1969), we specify attributes with associative

triples of the form: "attribute of object is value" using the notation: A.O =V,

where A denotes the attribute, O the object, and V the value.

-90 -

Examples

1. The resistor (Res) could be givén the attributes of resistance value
and tolerance. The statements:

R1 := Res #

Ohms.R1l = 15000 #
Tol.R1 = 10 #
would describe a resistor R1 with resistance 1500082 and tolerance
10 percent.

In the flow chart system, we might either "draw" the text inside

[
L]

each box or associate the text as an attribute of that box. The
contents of the initialization box of Fig. 1 could be described:
Initial := func #

Text, Initial = "SUM := 0" #

There are at least two areas of the display where it would be useful to show
attributes — one is in the vicinity of the picture object with which the attribute is
associated; the other is in a "working" area ‘of the display where user commands
and i‘eSponses are cdntinuously shown. The following command will be used to
display a value V corresponding to an attribute/object pair:

Showattr (A.O, what, where)# ,
where A.O is the attribute/object pair, what is used to indicate whether A or O
is also to be shown, and where specifies the location of the first character to be
displayed. If what = A, then the attribute name is displayed; if what = O, then
the object name is also displayed. A, O, and V are considered as horizontal
text for display purposes. where =W indicates that the information should
appear in the working area of the display; where = a(X,Y) specifies that the
display start at the ;rirtual .picture space coordinates (X,Y) relative to the tail of
the object O which is already displayed.

-21 -

xamples
1. Showattr (Ohms.R1, A,x(0,2)# will change the display

Ohms=15000

MYV

previously).

(provided R1 has been "evaluai;ed"

|

2. Showattr (Text.Initial, N,a(-1.5,-1.5))# will change the

display | | to |suMm:=0] .

3. Showattr (Tol.R1, O,W)# results in the appearance in display

working area of: Tol.R1 =10 .

The argument all could be used in place of A or O to .ca.use the display of a -
large number of values. For example, Ohms.all as the A.O pair in a Showattr
call causes the display of values of all objects with the attribute Ohms; all.R1

results in the display of all attributes of R1. Similarly, if there is more than
one use of Rl in a picturé, Ohms.R1 will refer to all of these.

There are a number of implicit attribufés that are automatically available
from the system through the Showattr command. These include (a) the attributes
Tail and Head which refer to the virtual space tail and head coordinates of the
objei_:t, and (b) the attribute Label which denotes a unique label generated by the
system for each primitive and higher level structure . used.

The command Cle&rat& (A.‘O, where)# is employed to clear the
display of the specified attribute.

E. Interactive Drawing

In this section, we outline the mechanics of incrementally generating and

mbdifying pictures. It is assumed that a text-editing system which permits a

user to conveniently edit input descriptions and commands is available.

- 9292 -

The description of the current picture which has been "evaluated" and dis-
played is assigned the name o-. The current picture can be translated, magnified,
or rotated by evaluating the eXpressiohs (@ (x, y) @ o), M[s]o, and R [6) o
respectively. When the di_splay has been cleared, o describes an empty picture
with tail and head at the origin. A subSequent éall Evaluate (Sl)# is eqﬁivalent
to Evaluate (o © 59 # . This first results in the evaluation of the PDL exprés-
sion 8, into a virtual space picture fl with tail at the origin (which is the head of
the current o); f1 is then mapped according to a Virtualspace function into a real
space picture fl which is displayed. To éoncatehate a picture described by S2
onto a tail or head of fl’ either Evaluate (o- ¢ Sz')# or Evaluate (@ Sz)#, where
(7. K3 {EB' »®, 0, @} , may be employed. The current picture can be assigned
a name n by the command:

n:=o#

Example
Evaluate (¢ & Res © {)# displays:

(a) —AAAN—h
Following this by:
ri=o#
Evaluate (® R[0.5] r)#

causes the display to change to:

h
(b)

The head position h is normally always indicated on the display by "h."

-923 -

The head position "h'" can be moved to any node in the picture in two ways.

The superposition operator / can be explicitly used in an Evaluate command or

the commands Movehdf, Movehdb, and Stogmbve may be employed. Execution

of Movehdf and Movehdb will cause the head to systematically trace "forward"

or '"backward" through the nodes of the picture in real time until the command
Stopmove is issued. For example, the head in (b) above can be moved to the

same node

o
n

(
Y

£

by
(1) Evaluate (/(~R[0.5)r ® r))# or
(2) by issuing Movehdb, waiting until the héad appears in the desired location,
and then issuing a Stopmove. |
Eleménts of a picture may be erased by the command Delete (S)# . All
parts of the current picture which lc_gg_;ag_lx can be described by the PDL expres-

sion are deleted.

Examples

1. Delete (M[s] R[0.25]))# would remove all 45° lines from the
current picture. |

2. Erasure of one particular pattern when many of the same class
appear in the picture requires the use of label designators. In-
sertion of a function box in .the rightmost vertical line of Fig. 1
to change] to %l involves the following command sequence:
(a) Showaftr (Label.V(s), A,a(1,1)#
(b) Delete (V_i)#

(c) Movehdb #

(d) Stopmove #
(e) Evaluate (& (V(4) ® R[0.5] ar & ~func @ V(s;) ® /M[s,]R[0)#

- 94 -

Command (a) will display labels of all vertical lines V(s). We
assume that "i" is the label for the vertical line of interest.
V_i is deleted in (b). (c) and (d) xﬁove the head to the former
tail position of V i auq (e) makes the >ue:sireu i
3. Delete (o) # clears the display. o then describes an empty

picture.

Deletions and complex insertions can also be accomplished by using the text-
editing system to modify the PDL expression describing the current picture.

Real-time transformations of the visual display may be performed by de-
fining the appropriate functions over pictures using a general on-line compu-
tational facility. We may zoom in on picture parts and roll the picture horizontally
or vertically across the display by specifying appropriate real-time changes in

the Virtualspace function.

Examples
1. To move the current picture vertically through the display, we

might use the following Algol-like procedure:

procedure Rollup;
for i :=1 step 1 until n do Virtualspace (vsl-c, st—g)#'

Here ¢ = (0,k), Where k is a real constant, and vsl, vs2 are the
values of the current Virtualspace function parameters (assumed
available to the system).

The commands:

Virtualspace (u,v)#
Evaluate (S)#

Rollup #

causes the display of that part of the picture described by S that
is bounded by (u, v) and then rolls the displayed part up by
changing the rectangle to (u - _c_i; v-ci),i=1, .c., N,
2. A picture may be magnified or "zoomed" about its head by means
of the following procedure:
procedure zoom;
begin
X := head (0);
for i :=n step -1 until 1 do Virtualspace (x - ki, x + ki)
end zoom# '
k = (k,k), k a constant.
It might be necessary to include a ﬁ:ﬁction Delay (t) in the loop

in both Rollup and zoom; Delay (t) effectively puts the process in

a wait state for t ms.

F. The Definition and Satisfaction of Constraints

By picture constraints, we mean a set of relations over picture parts.
Examples of some useful constraints are:
1. one line segment is to be parallel, perpendicular, or, in general,
make any given angle with another;
2.k the area of one closed figure is to be x times that of another;
3. two figures are to be connected together at a given set of attach-
ment points,
It is often most natural to specify a picture in terms of the constraints the parts . }
must satisfy; the exact geometry of the picture should then be automatically
computed by the system. Constraints will be classified as either topological

or computational depending on whether they can be defined using PDL expressions

or whether they require a more general computation.

- 26 -

The PDL notation expresses the relation of picture concatenation. This
constraint is satisfied in general by translation, rotation, and scale change.
We use the arguments of the M and R transformations as free variables selected

to satisfy the concatenations involving the ® operator.

Examples

1. Lets,, '01, S5+ and 0, be constants and s, 6 be variables. Then,
evaluation of the expression: (R [01] M [sl]z ®R [02] M[s 2]!l) ®
R[6] M[s] ¢ would include the assignment of values to s and 6 to
satisfy: tail (R[6] M[s] 9) = tail (R [1M[s,]9 =t and

head (R[6] M[s] 9 = head (R [92] M[s,]9 =h.

We directly use the définitions of the primitives to solve for ¢
and s:

t = 5((0,0) +c) A

h=s((1,0)+c) A
cos Or sin or
where A = »
T

-gin 97 cos 6

yielding the solution s = |h - t| and 67 = tan™ !

(h;t;, Byt,).
Using the primitive L(x,y) instead of R[6] M[s]t leads to a
simpler set of eqﬁatidns and imrﬁediate solution:

1=(0,0)+¢c
h=(0,0) +(x,y) + ¢

2. Blank primitives are useful for describing relations. Two
line segments separated by a distance s may be constantly

maintained in parallel by the description:

r[6] (M[s5,]¢ ® M[s]R[0.5]b @ M[s,]9)

-927 -

3. The arrow Ar(x,y) was described in section V.C as
Ar(x,y) =R[6] (M[s]L ® ar) ® Qx,y)#
The equations relating the free variables 6 and s to the known
tail t and head h When Ar(x,y) is evalﬁated for a given x and y
are: |

: =5((0,0) +¢c) A

s((1,0) + ¢;) A

b,
((0,0) +cp) A

- BB L

=((1,0) + Qz)A s

where A is the same rotation matrix as in 1. The solution is
s=|h-t]-1 =V + y2 - 1 and 6r = tan™ (X, 5).

More complicated expressions are also allowed. Our intent is that the sys-
tem automatically derive the equations i‘élating the known and unknown tails and
heads, and analytically solve for the unknown variables; expressions where zero
or greater than one solution exist are >assumed to be in error. Similarly, when
® appears in an expression containing no free variables, the system will verify
that the appropfiate points coincide.

The on-line computational facility handles non~topological constraints.

Examples
1. Suppose we wish to draw a line segment concatenated onto the head

of a segment £ _i and at an angle of 67 radians to it; assume that the
head is correctly located at head (¢_i). The following sequence will
will perform the required generation:

Showattr (Angle.{ i, N, W)#

A:=p+0#

- 98 -

2.

Evaluate (® R[a] 9 #
where B is the displayed 'angle of £ _i.
Let S1 and 82 each describe polygonal figures fl and f2 respectively.
Suppose we wish to mé.gnify fz so that the area enclosed by f2 is
u times that enclosed by f,. The following procedure will compute
the area of such a closed figure:

real procedure Area (t);

begin
start :={;
h=Q; A:=0

while h # start do

begin
Lip (R [6] M[s]s, £, b);
A =A+hyt, - thy
t:=h

end

Area := abs(A)/2

end Area #
where Lfp(a,b,c) 1s a primitive recognition driver that searches
the picture (actuaily, sbme internal description of the picture) for
a member of the primitive set (a) with tail at b and, if successful,
returns the coordinates of the head of the primitive in ¢. {2 denotes
undefined.
The sequence:

s = sqrt (u ® Area(t;)/Area (1)) #

n = M[s] S, #

- 29 -

will then assign to the name n a description of the magnified
figure whose area is u times that of §,; t, and t, are the tails

of S1 and Sz.

We expect a library of routines such as Area to be available to a user so that
the procedures for the most common computational constraints need not be

-defined at every use.

G. Flow Chart and Electric Circuit Generation

The primitives and structures presented in earlier pages are employed to
generate the flow chart of Fig. 1: |
S :=R[l]c ® Ar(0,-3) ® func ® L(0,-3) @ ((R [-0.5] ar ® func @
Ar(0,-3) @ pred) ® (~(/right ® No @ Ar(0,-3) ® func @
L(0,-2) ® L(5,0) ® L(0,y) ® Ar(x,Y)))) ® /left ® ~Yes &
Ar(0,-3) ® func ® Ar(0,-3) ® R[] c #
Delete (o) #
Virtualspace ((-20,-50), (20,10))#
Evaluate (S) #
Text.pred = "X=EOF" #
Showattr (Label.func, O, W)4#
Text.func_1 = "SUM :=0" #
Text.func_2 = "READ X" #
Text.func_3 = "SUM := SUM + X" #
Text.func_4 = "WRITE X" #
Showattr (Label.c, O, W) #
Text.c_1 = "START" #
Text.c_2 = "HALT" #
Showattr (Text.all, N, a(-1.5,-1.5))#

Clearattr (Label.all, a(x,y))#
- 30 -

The sequence above assumes that the first Showattr indicates labels of 1, 2,3,
and 4 for the four "func''s and labels of 1 and 2 for the two "c"'s.
If the flow charts were being designed interactively, the entire expression 8
would be normally created and evaluated incrementally with appropriate deletions,
additions, and commands to move the head forward and backward. The textual
contents of each box could be given as part of the flow chart PDL expression |
rather than as attributes. The above flow chart construction method should be
compared with the on-line flow chart language FPL/I of Richardson (1968) which
uses a lightpen and symbol lightbuttons for drawing. |

The series/parallel resistance network of Fig. 2 can be generated in a
similar manner. We will describe the picture part enclosed by the dotted lines:

Rh(sl, s2) := M[s1]2 ® Res @ M[s2]L #

S =H(2) @ (((V(3) & Rh(1,0.5) @ Rh(1,1) & ~V(3)) @ Rh(3, s)) ®~V(1))

@ (~V(3) & ((Rh(1,2) ®~V(1)) & (~V(3) & R(1,2) & V(2)))
- ® Rh(1,1) ® V(3))) ® H(3) #

The resistance values may be assigned and displayed for each resistor as
described earlier. Again, because of the complexity of the entire description

S, it would be normal to incrementally produce and display S. '

VI. PICTURE INTERPRETATION

A. Picture Grammars and Syntax Analysis
The set of well-formed pictures for a given application is specified by a

context-free grammar G generating a language 1(G) C PDL. G describes the

pictures:

Fo= U P .
Se L(G)

-31-

G also serves the function of imposing a higher level structure or hierarchic

description H on any picture f in ?G. This structure is determined by the

derivation of the description S of f according to G (ignoring questions of ambiguity)
represented as a tree. G will consist of a 4~tuple:

T N
is the set of terminal symbols of the PDL syntax; P is a set of rules of the

= (VN, V.., P, D), where V. is a set of non-terminal or intermediate symbols;

awnd ~ T 3 DN

17 - 1, mmrnh A1 o T
v iy Al eaCn pail is a rvu

N
expression with the addition that non-terminal symbols may appear in place of

v

primitive names; and D is a distinguished symbol in VN from which all sentences
of L(G) are generated.
We illustrate these ideas by the following simpie example which will generate

descriptions of square wave trains of the form:

G = (Vyp Vs P, TRAIN)
V), = { TRAIN, SQUARES, CYCLE, TOP, BOT}

VT ={® ’ R,[’] ’ £:0'53_0'5’1’(3)}

P ={TRAIN —-SQUARES,
SQUARES — CYCLE | CYCLE @ SQUARES,
CYCLE — TOP & BOT,
TOP —(R[0.5]t® 1 ® R[-0.5]),

BOT —~R[i]TOP}

- 32 -

A description of the above wave train is derived by applying rules of P starting
with TRAIN:
TRAIN—> SQUARES =>CYCLE @ SQUARES
—> CYCLE @ CYCLE ® SQUARES —>CYCLE ® CYCLE @ CYCLE
—> TOP @ BOT ® CYCLE ® CYCLE
=> (R [0.5]1 @ 2@ R[-0.5]1) ® BOT & CYCLE & CYCLE
= (R[0.5]2 ® 1 ® R[-0.5]9) &~R[1] TOP & CYCLE & CYCLE
- =>(R[0.5]2 ® ¢ ® R[-0.5]0) ®&~R[1] (R[0.5]2 & --)
——- o~R[1](R[0.5]2 ® £ & R[-0.5]1)
This derivation gives a hierarchic structure H which may be represented by the
tree (partially drawn):
TRAIN

|

SQUARES

CYCLE @ SQUARES

A K

TOP & BO‘T CY? LE @ SQUARES
\ | \
A\ | CYCLE
- \
\
®[0.5)1@ 0 R[-0.5]p ‘ \

Given a grammar G, a picture f is syntactically analyzed by parsing it
according to G to obtain its PDL description S and hierarchic description H. We
accomplish this by means of a general picture syntax analyzer which accepts a
grammar and uses the latter to drive a set of primitive recognizers around a

given picture (its internal representation). Note that the picture is analyzed

- 338 -

rather than the PDL expression used to generate the picture. This is because
we expect the descriptions specified by a user when generating pictures to be
different from those desired in an analysis; in fact, we might want to analyze
the same picture according to several different grammars (corresponding to
different syntactical interpretations).

A grammar is specified to the system by the command:

Grammar n;

P= {rl, Ty === rn}#
where n is the name associated with the grammar and each r is arule. The
left part of ry is taken as the distinguished symbol, A picture is analyzed ac-
cording to avgiven grammar by the command:

Parse (n, S, G)#
where S is a picture description (or name assigned to a description), n is a name
assigned to the results of the parse, and G is the name of a grammar,
Parse (n, o, G)# will analyze the currently displayed picture. Parse (n, S, G)#
will first evaluate S to a picture if S # o and display the results.

As each primitive is recognized during a parse, it is eliminated from the
picture. An abstracted versic;n of the parse as well as the location of the last
primitive found is continually displayed alternating with the residue picture (the
original minus the eliminated primitives) as described in Shaw (1968, 1969b); our
abstracted picture consists of its ""graph' with tail and head of each edge geo-
metrically located at the coordinates of the primitive it describes. This is useful
for debugging grammars and for finding the points of non-well-formedness in a
picture.

A difficult but unresolved problem at this point is how to present the results
of the parse. The large tree generated by the extremely simple grammar

- 34 -

and picture above illustrates the nature of our problem. After indicating that a
picture is well-formed (a successful parse), it would be desirable to present
selected portions of the tree in pictorial form. Trees may be described in PDL
and it should be feasible to derive a general tree display program within our

system.

B. Flow Chart and Electric Circuit Grammars

Grammars are presented for conventional flow charts and for series/parallel
resistance networks. The grammar for each picture class is interesting in the
sense that any valid PDL éxpre‘ssion generated by it will describe only pictures
of the class (or no picture) and any picture of the class may be parsed according
to the gfammar to yield a useful hierarchic description.

For flow charts, we use the primiil;ives 2,Asc, and pred; in addition, the
structures func, ar, Yes, and No are treated as primitives. A well-formed
flow chart (Fig. 1) will have the following properties:

1. It will contain one stait box and at least one finish box.

2. A "program" path exists from the start box to every other box.

3. Any number of lines ﬁay enter a function or predicate box; one

line always exits 4from a function box and two lines from a predi-
cate box. A
4. The orientation of the line segment formed by the tail and head
of every primitive will be restricted to ohe of the four horizontal
and vertical directions; — ,~—, f s 1 s with the exceptions of
func which is restricted to ! and } » and ¢ which we maintain
as l .

5. Within the above restrictions, there are no limitations on the

chart connectivity; the flow chart need not form a planar graph.

- 85 -~

The rules of the flow chart grammar are:
FC —Start ® (S ® /(S @ Finish))
8 — Seq @ Xfer| Xfer
Seq - FUNC © Nar|FUNC ® Nar @ Seq
Xfer — Cond |[FUNC @ Gar | Finish
Cond — PRED © Br|Cond i
Br —((/left ® ~No @ S1) ® (/right @ Yes © S1))|
((/left ® ~Yes @ S1) @ (/right @ No & 81))
S1 — Gar |Nar @ 8 |
Nar —L @& A_g © ARINar i
Gar — L @ AR ©® /2 _glGar_i
'L — LHILV
LH —HIH® VIH® V& LH
LV —VIVeHIVeHe®LV
H — M[s]tI~H
\ — M[s]r[0.5]2 I~V
AR — ar(M[0.5] ar |~AR
.Start — C @ Nar
Finish — C_f | Finish_i
C —R[1] ¢
FUNC — func |~func

PRED — pred | R[1] pred | R[0.5] pred | R [-0.5] pred

The right parts M[s]¢ and M[s] R[0.5]¢ designate the set of all horizontal and

vertical lines respectively.

- 36 -

The complexity of the above grammar and extensive use of labels is due to the

generality of acceptable flow charts and the complete detail contained in generated

descriptions; any reasonable flow chart is described. The major intermediate

symbols have the meaning:

Seq
Xfer
Nar

Gar

Cond :

- Br

L

: Sequential statements

: Transfer statements

: Normal arrow

: GoTo arrow

Conditional statement

: The 2 exits of a conditional statement

: A sequence of concatenated line segments

The labels and retré.cing are used to ensure at least one finish box, to allow

arrows to go to any box, and to distinguish between predicate boxes.

The network grammar is considerably simpler. We will use c, £, and Res

as primitives and allow only horizontal and vertical orientations as before.

Well-formed circuits must be properly nested; e.g.,

NN AN NN
-] is not permitted.

The grammar rules are:

1,

SPRN

CCT1

Basic
Par 1

RES1

—Term @ CCT & Term

— Basic ® L |Basic @ CCT,
—~L @ RESIL & Par ’
—(CCT; ® CCT,)|(Par, ® CCT)

— Res| R[0.5] Res |~RES,

- 37 -

6. L — LH|LVIA
. IH —HH®VIE®VS® LH
8. LV —VIVO® HIVOHS LV
9. Term — M[0.1]C
10. ¢ —cIR[0.5]c|~C |
(The subscripts on some of the intermediate symbols are referred to in the next

section and can be ignored at present.)

We now discuss how pictures may be further interpreted by employing thé
results of a syntax analysis or by working with the picture directly. A particu-
larly appeaii.ng approach is to imﬁose a set I of interpretation rules in 1-1 cor-
respondence with the rules of the grammar (Anderson, 1968; Evans, 1968;
George, 1969), in a similar manner as in some programming language tranélator
writing systems (Feldman and Gries, 1968). Each time a reduction is made
during a parse, the corresponding interpretation rule is executed. A rule ofI
may consist of any sequence of computations.

For example, an equivalent single resistor circuit can be obtained from an
arbitrary SPRN by executing ;nhe following interpretation rules during a parse.
Rule i corresponds to syntactic rule i of the grammer in the last section:

1. s=M[0.1] R[-0.5]c ® £ ® Res ® £ ® M[0.1] R[-0.5] c;

OHMS. Res = v(CCT); | o

2. V(CCTl) = v(Basic);IV(CCTl) = v(Basic) + V(CCTZ);

3. v(Basic) := v(RES); | v(Basic) := v(Par);

4. v(Par;) := (v(cCTl)_x V(CCT,))/(V(CCT,) + V(CCT,));|

v(Par,) :=(v(Par,) X V(CCT))/(V(Parz) + v(CCT));

- 38 -

5. V(RES) := OHMS. Res; | V(RES,) = OHMS.Res;lv(RESl) = V(RES,);

6. A
7. A
8. A
9. A
10. A

A denotes an empty rule. v(x) means "the value of the structure generated by
x.'"" The vertical bar "|" separates alternate right parts of a rule. We use
subscripts, e.g., CCTl, and CCT2, to distinguish between identically named
elements. Rules 2 and 4 contain the basic computations for equivalent resistance
in series and parallel networks respectively. Rule 1 generates a description of

the equivalent circuit and is the last rule executed during a successful parse.

The command: Parseandinterpret (S, G, I)# will parse the picture described
by S according to the grammar G, and, at the same time, will apply the rules of
I to interpret f. If S has been parsed by invoking Parse (n, S, G)#, We can
interpret the results in n according to I by using the command Interpret (n,I)#.
Several semantic interpretations may then be made on a picture by calling
Interpret more than once.-

The program represéntéd by a drawn flow chart can be executed by working
directly with either the picture or the results of a parse. In the former case,
we employ primitive pattern recognition routines, while in the latter, we search
the hierarchic description produced by the parse. It is more coﬁvenient here to
assume prior parsing since many irrelevant pictorial details may be ignored.
Let Find (n, t, m) be a Boolean routine that searches the parsing treé for a
structure named n with tail at t and returns a pointer to the structure in m'if

successful; Find will return true if successful and false otherwise. The following

-39 -

procedure ExecuteFC(t) will then execute the program represented by any well-
formed flow chart which may be drawn; the parameter t is the tail coordinates
ofv a flowchart box. |
procedure ExecuteFC(t);
begin
comment Execute computations in boxes;
if Find (C, t,) then
begin if Text.a = "HALT" then Return end
else
if Find (FUNC, t,a) then EX(Text.a)
olse
if Find (PRED, t,a) then
begin
Find (R [6] left, head(a),b);
Find (R [6] right, head(a),c);
if EX(Text.a) then
begin if Find (Yes, head(c),d) then a:=d
else Find (~Yes, head(b),a)
ond .
else begin if Find (No, head(c),d) then a:=d
else Find(~ No, head(b),a)
end
end
comment Trace arrow to next box and call ExecuteFC recursively;
if Find (Nar, head(a),b) then ExecuteFC (head(b))

else

- 40 -

a

begin Find (Gar, head(a),b);
Find (AR, head(b),c);
- ExecuteFC (héa,d(c))
ond ,
end ExecuteFC #
EX(text) is a routine that executes the program represented by the textual étfing
in its argument; EX will return true or false if its argument is a Boolean expres-
sion. After drawing, displaying,_ and assigning thé appropriate textual attributes
to a flow chart, the command | |
ExecuteFC((0, 0))#
will cause its real-time execution.
When it is not convenient or useful to interpret pictures by computations
over its parse, the picture itself may be used in the computation as illustrated

by the Area procedure given in Section V.F.

VII. CONCLUDING REMARKS

The pfeceding pages have outlined a sét of generation and interpretation
facilities for a Q‘rogosed general purpose computer graphics system. The
usefulness, convenience and adequacy of these facilities were illustrated by
examples in flow chart gene'ration and execution, and electric circuit design.
Earlier research work has demonstrated the feasibility of the more novel
components of the system — the picture description scheme and picture grammars
(Miller and Shaw, 1968a; Shaw, 1968, 1969a), the parsing techniques (Shaw, 1968,
1969b), and the use of string descriptions for interactive drawing (George and
Miller, 1968; George, 1968). It is evident that many details remain to be

worked out. A system of this type may be implemented conveniently using a

- 41 -

translator writing system for interactive languages (e.g., George, 1969) so that

changes can be easily made as the details evolve.

The major features of our system which serve to distinguish it from others

are:

1.

Pictures are specified in a virtual picture space by symbolic
descriptions; display generation occurs by executing these
descriptions and mapping the resulting picture into the real
space of the display device.

Attributes may be coinputed and assigned to pictures of any

complexity.

Picture grammars are employed to define the class of pictures »
for a specific application. Syntactic description and well-
formedness are obtained by parsing pictures according to a
given grammar.

Further interpretation of pictures occurs by specifying compu-
tations over the piétﬁre and over the hierarchic structure

obtained from a picture parse.

All of the above features will operate in an interactive mode. Such a system

should provide a simpler yet complete means for interactively generating and

interpreting artificial pictures.

ACKNOWLEDGEMENTS

The author is grateful to William F. Miller for his continued encouragement

and support of this work, and to James George and Charles Zahn for several

useful discussions related to this paper. The accurate and efficient typing of

the draft by Kathleen Maddern and Cherie Matheson is gratefully acknowledged.

- 42 -

REFERENCES
Anderson, R. H. (1968). Syntax-directed recognition of hand-printed two-
dimensional mathematics. Ph.D. Thesis, Applied Mafh. , Harvard
University (January).
Appel, A., Dankowski, T. P., and Dougherty, R. L. (1968). Aspects of

display technology. IBM Systems Journal 7, 3 and 4, 176-187.

Evans, T. G. (1968). A description-controlled pattern analyzer. Proc. of

IFIP Congress 68, Booklet H, pp. H152-H157.

Feldman, J., and Gries, D. (1968). Translator writing systems.

. Comm. ACM 11, 2 (February), pp. 77-113.

Feldman, J. A., and Rovner, P. D. (1969). An Algol-based associative

language. Comm. ACM 12, 8 (August), 439-449.

George, J. E. (1968). CALGEN - an interactive picture calculus generation
system. Tech. Report No. CS 114, Computer Science Department, Stanford
University (December).

-~- (1969). The system specification of GLAF: a linear string graphical
language facility. GSG 61, Computation Group, Stanford Linear Accelerator
Center, Stanfofd University (February).

George, J. E., and Miller, W. F. (1968). String descriptions of data for
display. Report No. SLAC-PUB-383, Stanford Linear Accelerator Center,
Stanford University. Presented at 9th Annual Symposium of the Society for
Information Display. - |

Kulsrud, H. E. (1968). A general purpose graphic language. Comm. ACM 11,

4 (April), pp. 247-254.

Miller, W. F., and Shaw, A. C. (1968a). A picture calculus. Proc. Conf. on

Emerging Concepts in Computer Graphics. W.A. Benjamin Press, New York.

~-- (1968b). Linguistic methods in picture processing - a survey. Proc. AFIPS

1968 Fall Joint Computer Conference, Vol. 33, Thompson, Washington, D_.C. s

pp. 279-290.

- 43 -

Newman, W. M. (1968). A system for interactive graphical programming.

Proc. AFIPS 1968 Spring Joint Computer Conference, pp. 47-54.

Pankhurst, R. J. (1968). GULP - a compiler-compiler for verbal and graphic

languages. Proc. 1968 ACM National Conference, pp. 405-421.

Richardson, F. K. (1968). Graphical specific"aftion of computation. Report No.
257, Department of Computer Science, Universify of Illinois (April) (Ph.D.
thesis).

Roberts, L. G. (1964). Graphical communications and control languages.

Second Congress on the Information System Sciences, Spartan Books,

Washington, D.C., pp. 211-217.

Rosenfeld, A. (1969). Picture Processing by Computers, Academic Press,

New York.

Rully, A. D. (1968). A subroutine package for FORTRAN. IBM Systems
Journal 7, 3 and 4, pp. 248-~256.

Shaw, A. C. (1968). The formal description and parsing of pictures. Ph.D.
Thesis, Computer Science Department, Stanford University (June). Available
as Report No. SLAC-84, Stanford Linear Accelerator Center, Stanford
University, Stanford, California.

--- (1969a). A formal picture description scheme as a basis for picture

processing systems. Inf. Control 14, 1 (January), pp. 9-52.

--- (1969b). Parsing of graph-reﬁresentable pictures. Tech. Report No. 69-34,
Department of Computer Science, Cornell University (April).

Sutherland, I. E. (1963). Sketchpad: a man-machine graphical communications
system. Tech. Report No. 296, Lincoln Laboratory, Massachusetts Institute
of Technology (January).

Sutherland, W. R., and Forgie, J. W. (1969). Graphics in time-sharing: a

summary of the TX~2 experience. Proc. AFIPS 1969 Spring Joint Computer

Conference, pp. 629-636.
- 44 ~

LIST OF FIGURES
1. Flow chaxt for computing a sum. .
2. Series/parallel resistance network. .

3. PNP transistor and graph.

/

SUM: =0

A

READ X

WRITE SUM

Fig. 1

SUM:=SUM+X

142341

3K

1. 3K

?

6K

8.

6K

K

0.5K

=,

Fig. 2

1423A2

TRAN

BASE

N

PNP TRANSISTOR

COLLECTOR

GRAPH OF TRANS

EMITTER

1423A3

Fig. 3

