
! i’ i ,j ,’ >,

SLAC-PUB-664
September 1969
ww

ON THE INTERACTIVE GENERATION AND INTERPRETATION

OF ARTIFICIAL PICTURES*

Alan C. Shaw
Cornell University**

Ithaca, New York 14850

(For Presentation at the 1969 ACM/SIAM/IEEE Conference
on Mathematical and Computer Aids to Design, Anaheim,
California, October 26-30, 1969.)

*This work was supported, in part, by the U.S. Atomic Energy Commission while
the author was employed at the Stanford Linear Accelerator Center, Stanford
University, Stanford, California during the summer of 1969.

**
Department of Computer Science.

‘AEISTRACT

This paper presents the design of a general set of user facilities for the on-

line generation and interpretation of pictures. We are concerned with the inter-

active graphics language, the command and control language, as opposed to the

language used to implement it. The intent is to provide a superior alternative to

the present mode of operation which usually involves the definition of a new com-

mand and control language and associated translator for each new application

(and machine) .

Pictures are not drawn in the conventional manner using a light pen or stylus

and tablet. Instead, they are generated by executing or evaluating an algebraic-

like string description in a picture description language. Graphics entities are

described in the space that is most natural to the user - a virtual picture space -

and then mapped into the real picture space of the display device. Attributes

may be specified and assigned to picture parts in an arbitrary manner. Pictures

are interpreted by parsing them according to given grammars and by performing

computations with pictures as arguments. An on-line computational facility is

also used for computing complex attributes and constraints. The system is

illustrated by examples in the drawing and execution of flow charts, and the
,

generation and analysis of series/psrallel resistance networks.

TABLE OF CONTENTS

I. Introduction

II. Picture Processing Facilities for Interactive Design

III. Techniques of User Interaction and Applications Implementation

IV. A New Approach

v. Picture Generation

A. Picture Primitives

B. Picture Description and Evaluation

C e Complex Primitives

D . Attribute Assignment and -Display

E. Interactive Drawing

F. The Definition and Satisfaction of Constraints

G. Flow Chart and Electric Circuit Generation

VI. Picture Interpretation

A. Picture Grammars and Syntax Analysis

B. Flow Chart and Electric Circuit Grammars

C . Semantic Interpretation

VII. Concluding Remarks

Acknowledgements .:

References

Figures

I. INTRODUCTION

The potential benefits of interactive graphical communication between humans

and computers were first dramatically brought to the attention of the general

technical community in the Sketchpad system of I. Sutherland (1963). In a typical

design situation, a user sits in front of a console equipped with both graphical

and textual input/output devices as well as a variety of buttons and switches. A

model of the entity being designed is incrementally specified and communicated

to the machine through the input devices; the computer, in turn, is programmed

to interpret the user input by analyzing his specifications and displaying some

abstraction of the design. This is a feedback process with-the user continually

modifying his design until the results are satisfactory. For our purposes, the

key feature of this type of interaction is the use of pictures as the basic medium

of communication. We call these artificial pictures since they do not appear in

nature but are constructed by men and machines. Simply stated, our goal is to

develop more convenient ways to specify and interpret artificial pictures in the

above type of environment. This paper is intended as a contribution towards that

goal.

It has been argued by us and others that most graphics applications involve

both picture generation and. analysis (or interpretation) - what is generated must

be analyzed and vice versa (Miller and Shaw, 196813; Kulsrud, 1968). Cur approach

is to use a common picture description scheme for both. The purpose of picture

analysis is then to derive a description while in picture generation, descriptions

are executed. This idea forms the basis for our thoughts on an interactive

graphics system and will be further developed.

In the next section, we discuss a number of desirable user facilities for in-

teractive picture generation and interpretation. Present graphics systems are

-l-

then briefly and critically examined. A new and somewhat novel graphics system

design is presented in the remainder of the paper. Drawing is accomplished, not

by moving a lightpen or stylus, but by expressing in an algebraic-like manner a

precise description of the picture. The object is to provide a drawing language

which is unambiguous, device independent, and avoids the awkwardness of a

multitude of switches and buttons. Pictures are tested for well-formedness and

syntactically interpreted by parsing them according to given picture grammars.

Computations over pictures may be interactively specified and performed during

drawing and analysis. We illustrate the system by examples in flow chart design

and execution, and simple electric circuit design. While the system has

been implemented, the feasibility of its major components has been confirmed

by several related research efforts over the last few years undertaken by

W. F. Miller, J. E. George, and the author (Miller and Shaw, 1968a; Shaw,

1968, 1969a, b; George and Miller, 1968; George, 1968).

II. PICTURE PROCESSING FACILITIES FOR INTERACTIVE DESIGN

We take the point of view of a user and briefly discuss some of the drawing

and interpretation facilities that an interactive computer system should provide.

A great deal of the following also applies to a non-interactive situation.

What is required in order to usefully generate pictures? First, and most

obvious, the picture.must be described to a computer,. Generally, a picture can

be defined as a set of primitive components and the relations that they satisfy.

If the primitives are completely defined geometrically then these relations are

implicit; conversely, describing the relationships among the primitives serves

to more completely define each individual primitive. Both methods of definition

are useful. Given a set of basic primitives, such as points and curve sewems,

-2-

more complex entities should be definable in terms of these. One wishes to

identify higher level structures by assigning names to them. (The distinction

between primitives and higher level structures is that the user is interested in

manipulating and analyzing the components of the latter but not the former.)

Assigning arbitrary names to pictures should also be part of a general attribute

assignment facility; for example, the attributes of a resistor might include its

resistance, tolerance, and manufacturer. The above facilities suffice for

statically describing a drawing. In an interactive mode, we also need to dynami-

cally modify pictures. Thus, we include a capability for deletion, insertion, and

merging, as well as for common mathematical transformations of translation,

rotation, and scale change. A user finds it most convenient to define and manipu-

late pictures in terms of operations in a virtual picture space - the space that is

most natural for the problem. Display of a picture then requires a mapping of

the virtual space to the space of the display device. The ability to dynami-

cally specify this mapping is useful for ‘zooming1 and moving through large

pictures. Finally, unless the system is to be a toy, commands for picture

storage and retrieval must be available.

We distinguishbetweentwo types of picture interpretation. The first can be viewed

as classification anddescription. In any particular wplication, there is a set (possibly

infinite) of ‘rwell-formed” pictures to which the generated pictures are restricted, At

the most basic level, anypicture specified by auser should be analyzed to determine

whether that picture is a member of the set; if not, presumably the user has made an error.

Additionally, it is often desirable to classify the picture and describe it in terms,

other than the description given by the user when generating it. For example,

in an electric circuit design application, it might be stipulated that all well-

formed circuits contain certain components, such as a frground’t or a “voltage

-3-

source. ” The designer might describe a circuit in terms of its components and

connections but would want the system to impose a structure on it and produce a

description of the form “This is a circuit of type X0 composed of subcirouits of

types X1, X2, . . . which in turn consist. of . . . ” This kind of picture interpre-

tation is really the results of a syntactic analysis.

The second type of interpretation is a more conventional one and implies a

facility to perform arbitrary computations over pictures and their attributes.

We do not design something just to look at a picture of it but want to meet a given

set of specifications in some optimal manner. We will call this semantic analysis.

We might compute and display, for example, the response of an electrical network

or the results of executing a flow chart. In addition, it is useful to have an on-line

computational ability while generating pictures in order to determine complex

drawing attributes and constraints.

III. TECHNIQUES OF USER INTERACTION AND APPLICATIONS IMPLEMENTATION

The most common hardware interface consists of a cathode-ray tube (CRT)

display for graphics output and a lightpen, alphanumeric keyboard, and function

keyboard for input (e.g., Ap&l et al., 1968). User communication with the

computer occurs through interrupts generated by the input devices; these are .’

interrogated by systems programs which, in turn, usually invoke applications

programs. The latter are primarily translators for the user input language -

commonly called a command and control language. “Sentences” or programs in

this language are not strings over alphanumeric characters but are comprised of

sequences of lightpen “points, ” keys on the function keyboard, and textual infor-

mation.

-4-

We illustrate a graphics part of a typical command and control language by

a simple example for drawing line segments on a CRT using a lightpen and one

button on a function keyboard:

“1. press button to start pen tracking;

2. track pen to starting point of line;

3. press button to fix starting point;

4. track pen to end point;

5. press button to fix end point and stop tracking.”

(Newman, 1968, p. 47)

A “rubber band” series of line segments is displayed as the user

draws during step 4; at step 5, the rubber band is eliminated and

a straight line segment is displayed between the starting and end

points.

In general, picture descriptions for generation are specified to the computer using

all the input devices in various combinations. This same mechanism is used for

picture interpretation; the input device interrupts lead to applications programs

which perform the desired analysis. Each application usually involves the defini-

tion of a new command and control language and associated translator.

The lightpen is currently being replaced in many installations by a tablet .’
and stylus to allow a more natural way of drawing; in these systems, it is con-

venient to permit direct hand-drawn input since pattern recognition results may

immediately be displayed on the CRT for possible correction (e, g. , Sutherland

and Forgie, 1969) e Various other input devices, such as toggle switches and

shaft encoders, have also been employed in addition to the above.

Since the philosophy has been that each application requires its own language,

much effort has been devoted to the design of general purpose data structures

-5-

and programming systems within which command and control languages may be

defined and implemented. The simplest approach has been to add graphics

subroutines to some general purpose language, for example FORTRAN (Rully,

1968). For more sophisticated applications, many data structure oriented

languages have been developed; these range from linked-list macro languages

such as CORAL (Roberts, 1964) to associative extensions .of higher level languages,

such as LEAP (Feldman and Rovner, 1969). More recently, translator writing

systems for graphics languages have been devised (George, 1969; Kulsrud, 1968;

Pankhurst, 1968).

We are critical of several aspects of the present mode of operation. Consider

the manner in which pictures are interactively specified for generation. The

drawing language is defined anew for each application in some ad hoc manner --

and, with exceptions, involves the awkward use of au often bewildering array of

input devices. General purpose programming languages are used to define

computations interactively; it seems that general purpose picture languages that

allow the interactive drawing of pictures should similarly be available. A similar

argument follows for picture interpretation. We need general purpose on-line

languages for describing well-formedness of pictures and computations over

pictures. The remainder of. this paper offers a proposal in this direction. .’

IV. A NEW APPROACH

Our approach to interactive graphical communication is based on the use of

a formal picture description scheme. A user describes drawings and their

intended interpretation in terms of a general picture description language,

picture grammars, and functions with descriptions as arguments; the computer

displays graphical entities by executing their descriptions, and interprets them

by both parsing pictures according to given grammars to yield a description and

-6-

performing computations over them. Our picture description scheme is a string

language and, thus, we do not see any need for a variety of input devices; either

an alphanumeric keyboard or a tablet and stylus is the only input device required.

While we are dubious about the practical value of on-line flow charting sys-

tems, the subject matter is ,familiar to a large’group and thus serves as a good

example for expository purposes. Flow charts of the type illustrated in Fig. 1

will be used as one example in the following sections; we will describe how they

might be drawn and executed. The second example will be the design of simple

series/parallel resistance networks, using a schematic representation as in

Fig. 2. These networks will be interpreted by computing their equivalent resis-

tance.

V. PICTURE GENERATION

A picture will be defined as a real valued function f@ of two real variables,

x= @& (Rosenfeld, 1969); 5 is interpreted as a point in a two-dimensional

Euclidean space. We will consider only pictures in the plane but most of the

scheme carries over directly into higher dimensions. The description language

presented below is a variation and extension of the “PDL” notation given in

Shaw (1968, 1969a) and Miller and Shaw (1968a).

A. Picture Primitives

Basic primitives are divided into disjoint sets of patterns; each set will be

represented by a quadruple:

<n, f($, b h> ,

where n is a name given to the set, the picture f(xJ is a distinguished primitive

in the set called its normal form, andt and & are two distinguished points in

f(xJ, called the g and head respectively. We alternately denote the set of,

-7-

pictures in the primitive class named n as S(n). 91(n) is defined as all translations

overtheplaneoff(xJ;i.e.,SJ(n)= if&-cJIc-inR’t. Risthesetofrealnumbers.

f(x-cJhastailatt+candheadat&+c.

Examples

The value of f(xJ at each 5 (the “grey level”) will be restricted to the set 10, 11

but could easily have other values.

l.(a) The primitive class “horizontal line segments of unit length”

can be defined as:

<I, f(g), (O,O)s (LO)> 3

where f(xJ =
t

1 for 0 I xl I 1, x2 = 0

0 elsewhere .

(b) !‘Blank” line segments can similarly be defined:

<b, f&j, (ho), tl,W s

where f(xJ = 0 everywhere.

2.(a) The set of all “points” in the plane is defined:

<PI f(& (OSO), (090)’ *

where f(xJ =
0 elsewhere .

(b) Blank points are described:

3.

< A, f(& (O,O), w-p 9

where f(xJ = 0 everywhere.

A circle primitive may be given as:

cc, f(& (0,-l), (09 w s

where f(xJ =
1 when xi + xi = 1

0 elsewhere e

-8-

Concatenations of primitive elements can o& occur at their tail and head

points, It is convenient to represent a primitive by an edge of a directed graph,

labelled by its class name and “pointing’* from its tail to head “node.” We expand

this definition of primitives in section V. C to handle an arbitrary number of con-

catenation or attachment points and parameters.

Scale changes are described by a’magnification operator M[s], s a real

number. For the -primitive set n,

@(M[s]n) = { f($ (5 - cJ)I 2 E .

Rotations are handled in a similar manner by the operator R [6] 9 9 a real number:

9(R [O] n) = (f(& - cJ A(O) 12 E R’),

where A(0) =

The tail and head of f(i (rr - CJ A(6)) are at s E + CJ x and s (lo + cJ ?i respectively,

where x(6) = A(4) . M and R operating on the line segment primitive I change

its length and orientation respectively. M[s] applied to the circle c results in a

change of radius to s while R [e) has the sole effect of rotating c’s tail and head

through an angle 8.

To display anything, the computer must first be given a mapping function

from the virtual space of the.user’s pictures to the real space of the display

device. We will assume that both spaces are bounded by rectangles and specify

the mapping by the command:

Virtualspace (L+, g2) #

where ~1 is the lower left corner coordinates of a bounding rectangle in virtual

space and :2 is the upper right corner coordinates. *

*
At this point, we are not concerned with the form of the command and control
language; more convenient abbreviations will undoubtedly be used.

-9-

Pictures are generated by the computer execution of the command:

Evaluate (S)#

where S is a picture description. * Assume a clear display.

If n is the name of a primitive class, Evaluate (n)# will first cause the normal

form of n to be translated so that its tail is at the origin of virtual picture space;

this picture is then, mapped according to the most recently called Virtualspace

function and the result displayed. Similarly, Evaluate (S) # where S = M[s]n or

S = R[O]n or S = M[s]R[O]n will cause the appropriately transformed and mapped

primitive to be displayed. Note that the parts of a picture not contained within

the virtual space rectangle will not be displayed. A picture described by S is

no longer displayed when the computer executes the input command:

Delete (S) #

A generation function will be associated with each display device and primi-

tive class. The function corresponding to a primitive class named n and a display

device d will produce the display file commands for generating any member of

WM[-] R[@j n), f or arbitrary s and 0, on device d.

B. Picture Description and Evaluation

A picture will consist of. a connected set of primitives and can be represented

as a connected graph with labelled edges, where each edge denotes a primitive

and the graph connectivity is defined by the tail/head connectivity of the primi-

tives. A picture will be described relative to the origin of the picture coordinate

system; we assume that the tail or head of at least one of its primitives is iden-

tical with the origin.

The connectivity and mathematical transformation of pictures is specified

by a string in the PDL picture description language, Any “sentence” S in PDL

*
-Use of the term “evaluate” in the context of evaluating a picture description
is due to J. E . George.

- 10 -

can be generated by the following syntax:

S-EIE Q’b Sj ou SITS@

og--~lolsl@

Q?--I /

E - N 1 N(ARG) 1 (S)

N- { name of a primitive , subprimitive, or higher level structure)

ARG- V-i V, ARG

V- (variable name) 1 (constant)

T-M[V]IR[V]

L- { label identifier) 1 {label identifier) -L

Example

An arbitrary rectangle may be described by the following PDL expression:

(M [vsideJ R [O .5] P CB M [hside] a) 0 (M [hside] P @ M [vside] R [O. 51 1)

where P. is the line segment primitive defined earlier.

Let 9(S) be the set of all pictures described by the PDL expression S; all

members of 9(S) have the same primitive set, the same connectivity, and have

a tail and head defined by S. The operators generated by tib are binary con-

catenation operators. If S is of the form Sl 0 S2 or (S1 ($ S2), then each picture .’

f E 9(S) consists of two subpictures fle @(Si) and f2e 9(S2) and has the properties:

1. tail (f) = tail (f,>, head (f) = head (f2).

Z.(a)If @ = @ then head (fl) &tail (f2), where &means “is concatenated

onto”; this may be represented by the graph

where t and h are the tail and head nodes.

- 11 -

(b) If @ = o then head (fI) @ head (f2):

t-h
(c) If ($ = @ then tail (fl) &tail (f2): ,

te
‘2 h

(d) If @ = @ then both tail (fI) @tail (f& and head (fI) &head (f2):

The meaning of these operators may be alternately given by defining P(S); for

example :

p(sl @ sz, = (f(x - CJ I c e R2, f(xJ = f# U f2(&

fl E *(Sl), f2 E 9(S2), head (fl) *tail (f2))

In the absence of parentheses, association of expressions is from left to right.

The rectangle in the first example has the connectivity:

M[hside] P

M [vside] R [O. 53 B

1

M [vside] R [O. 51 I

M[hside] P

We will use the notation tail (S) and head (S) to denote both the tail and head of any

picture described by S, and the tail and head nodes of the connectivity graph.

The unary operator - is a tail/head reverser such that tail (S) = head (- S)

and head (S) = tail (- S) . Label identifiers associated with any expression allow

- 12 -

the unique identification of the elements of the expression; in conjunction with

the superposition operator /, arbitrary paths through the picture or graph may

be retraced. For example we. describe a rectangle with interior diagonals as

follows:

(M[vside] R [O. 53 Q-1 @ M[hside] Q) 0 (M [hside] Q @ M [vside] R [O* 51 Q-2) @

M[SJRC 11 6 I 0 (/Q-l @ M[s2]R [(9,]Q @ h-2)

Assuming that vside and hside are constants, sl, 81, s2, and e2 will be computed

by the system to satisfy the constraints implied by the concatenation operators

(Constraint satisfaction will be examined in more detail in section V. F) /Q-l and

/Q-2 indicate a retracing over the primitives M [v&de] R[O. 53 P-1 and

M [vside] R [O. 53 P-2; note that the labels uniquely identify the two primitives SO

that M and R need not appear in the retracing description.

For / to make any sense as a superposition or retracing operator in a PDL

expression, it is necessary.that its primitive operands also appear once and only

once outside the scope of /. All expressions using / that satisfy this condition

are referred to as valid PDL expressions. Labels are not mandatory for re-

tracing purposes if the primitives are already uniquely identified by name or

transformation; in the above example, if the appropriate M and R transformations

were repeated in the retracing operations, the labels would not be required.

However, labels are useful in other contexts as discussed in following sections.

- 13 -

Associating a label with an expression is equivalent to labeling each primitive

within the expression; e.g., (a-i 0 b)-j has the same interpretation as

(a-i-j Q b-j).

Any connected set of primitives may be described in the PDL notation; more

abstractly, any connected graph with labelled edges can be described. The tail

and head may be moved anywhere in the picture or graph for attaching new

structures by suitable “path” retracing.

The scale change and rotation operators M and R are linear

with respect to PDL expressions, e.g., WM[s] (Sl Q S2)) =y(M[s] S1 Q M [s] S2b

Thus, transforming an entire expression is equivalent to applying the same trans-

formation to each of its primitives.

Sets of pictures satisfying the same PDL expression may be named with an

assignment operator “:=” D

Examples

1. v := R[O.5] B #

Unit square := (1 Q v) 0 (v 0 1) #

I cl
V Unitsquare

2. dl :=R[.33]P# ; p

dp := Mc2-j dl# 7

dm := R c-O.671 dp# \

Res := (dl 0 dm 0 dp 0 dm 0 dp 0 dm $ dl) #

Res will denote a resistor in our network example.

- 14 -

3. A function box for our flow chart example can be described:

func := M [2-j ((Q @ NV CB -Q) CB (-Q Q NV CB Q))#

I
Note the locations of the tail and head which permit a natural

attachment of entering and exiting line segments.

4. The basic flow chart arrow is:

ar := Q Q (R[0.83] Q @ R [-0.831 Q @ a)#

t 3 h

Name assignment with parameters is handled in a similar manner. The

class of all rectangles may be described incrementally:

V(vside) := M[vside] R [O. 53 Q #

H(hside) := M[hside] Q #

Rectangle (vside, hside) := (V (vside) @ H (h&de)) Q (H (hside) G3 V (vside))#

The command Evaluata (S) # , where S is a PDL expression, will result in

(a) the formation in virtual picture space of one member f of 9(S) such that:

(i) the normal forms of all primitives in S (possibly transformed by

M and R if so desdribed) with tail at tail (S) appear with tail at the

picture origin, and

(ii) the normal forms of the remaining primitives in S are translated

(and possibly transformed by M and R)’ to satisfy the tail/head

constraints given by the concatenations described in S. (More

general constraints are treated in section V. F.)

(b) f is then mapped to real picture space using the most recently invoked

Virtualspace function, and displayed. ((a)(i) assumes a clear display initially.)

- 15 -

The command is invalid if more than one picture or no picture can be formed in

(a). This is possible if S is not a valid PDL expression or if the constraints

implied by the 0 operator cannot be satisfied uniquely.

C . Complex Primitives

We generalize the definition of primitives to include complex primitives with

an arbitrary number of attachment points and parameters. A complex primitive

dass is represented by a 5-tuple:

<n(aJ, f(saJ, JaJ, &aJ, subprimitives > ,

where n is the name of the set, 2 is a parameter list (al;a2, . . . , ah) (possibly

empty) with each ai restricted to a given set of admissible values Ti 2 R, f(2;a.J

specifies a set of normal form pictures (f(x;aJ 1 a E TIX T2X . . . X Tk) , L(aJ and

&(aJ are the tail and head coordinates of f(x;aJ, and subprimitives is a list of

subprimitives of n.

Subprimitives = ((n l<i9y hlW9 (n2,L2(% k2Ws . . -) tnm91m(9, km(~)) 9

where ni is the name of the ith subprimitive andLi(aJ, ki(aJ are the tail and head

coordinates of ni.

n and each ni is represented by a labelled directed edge of a graph; with no loss

of generality, we require that this graph be connected. t,& and allLi,hi are

permissible concatenation points. It is then possible to describe the primitive

substructure as a PDL expression and thus “reach into” any attachment point of

the primitive . In a manner analogous to that for basic primitives, ,Y(n(aJ) denotes

all translations over the plane of elements of f@;aJ; i.e.,

9(n(aJ) = { f(z-g;aJ 12 E R2, a E TIX T2X . . . XTk 1 . .~(M[s] n(aJ) and

9 (R [o] n(g) are similarly defined.

- 16 -

Examples

1. The primitive &SS “arc tt subtending an angle of 0% radians can be

defined:

<=c (e), f(@), (-sin$ O), (sh$ 0)’ ((center, (-sins, 2 0)’ (0’ -cos~w 9

1 if xt + (x2 + coS 2) ~2=landx210
where f&o) =

0 elsewhere

0 5 8 2 2 is the region Tl, and $ = &r l

x2
m
I
I

h

graph

M [s] arc (0) has the effect of changing the radius from 1 to s but

keeping 8 constant.. To concatenate the picture described by S1

onto the head of z and the picture described by S2 onto the head

of center, the PDL expression (arc @ Sl) @ (/center @ S2) is

sufficient.

ElX 51
center

-Tz s2

-17-

Use of arc automatically makes the substructure available.

Evaluate (arc (0.25)) # would cause the display of an arc sub-

tending an angle of n/4 radians.

2.(a) A point at relative location (u,v) can be described in terms of

the primitive set:

<Q(usv)s f(~;(usv))s tW9, (~9s A>

where f(z;(u,v)) =
,I

1 if Xl =uandx2=v

0 elsewhere

and A denotes that the field is empty.

ARernately, we could use a PDL expression to define Q(u,v) as

follows :

Q(u,v) = (M[u] b 69 M[v] R[O.5] b 69 p) .

Similarly, we define a blank point o!(u,v) at relative location

(U’V).

(b) A line segment with one endpoint (the head) at relative location

(u, v) to the other (the tail) is a member of the set:

<JJ(~‘v)’ f(~;(w))s (0’0)’ (U’V)’ A> ’

1 if vxl - ux2 = 0

where f(x;(u,v)) =

t

and x1 E [Oyu] .

andx2c [O,v]

3. A PNP transistor symbol is described as a complex primitive

set (see Fig. 2):

<Trans, f(xJ, (6,0), (O,O), ((Base, (O,O), (-6,0)), (Collector, (O,O)S

(1’6))’ (Emitter, (O,O), (1~6)))> .

- 18 -

It is most convenient to describe Trans (and thus, implicitly

f(xJ) by a PDL expression:

Trans := (a(~,-4) @ M[4] C) 0

@ (~0’3) e (V(3) 63 ~(-3, -2))) I(1,3)

@ (a(l;-3)\$ (-V(3) ‘8 Ar(-3’2))) 1(1,-3)

69 (~(-2~0) 0 (L(4,o) 63 v(2j 43 -v(2)&4 f-2,0)

The picture elements used in the Trans description have been

defined in previous pages with the exception of Ar(x, y).

Ar(x, y) := R[el (Mb] Q Q W @ Q(x,Y)#

The following PDL expression describes the attachment of S1

to the collector, S2 to the emitter, and S3 to the base of the

transistor:

Trans $ (/Collector GF3 S1) @ ‘(/Emitter CB S2) 8 (/Base $ S3)

4. We will specify the predicate box of our flow chart as a complex

primitive :

<wed, f(Lf), (0,2), (0, Oh tW% (%O), (-3’ WY (right, tOsO)s (3, WI> ,

where f(xJ is implicitly described by the PDL expression:

NO’2) Q ((Lk3’ -2) 0 L(3’ -2)) 8 (L(3, -2) 0 L(-3, -2)))

5. A conventional alphabet of letters and special characters can be

considered a complex primitive set:

<Char(i), f&i), (V), (tl(i)sO)s~>s

where i is restricted to the positive integers.

The alphabet is mapped into the positive integers and f@,i) is the

normal form pattern for the ith character; for example f@;5)

- 19 -

might be an upper case **Et*. The details of each character

need not be specified here, For our purposes, it will be

assumed that a rectangle bounds each character, and that the

tail and head of a character are defined by the endpoints of

the base line of the’ bounding rectangle. Furthermore, the

base line is such that a string designating a word may be

described as C!har(il) 63 Char(i2) @ . . . $ Char(iQ .

tl(i) = 1 for most i. Finally, we abbreviate the above by

enclosing strings with quotation marks so that, for example,

the expression ‘*Tl3EI” is equivalent to Char(iT) @ Char(iH) $ Chsr(iE),

where Char(iT) designates a “T,” etc. More complicated defi-

nitions permitting the simple description of superscripts and

subscripts could bs given by specifying multiple attachment

points.

The **No” and “Yes” extensions used in conjunction with a

predicate box of a flow chart csn now be described:

bv := M [O. l] R [O. 53 b #

No := Q Q ((bv 63 “N” 03 - bv) gr, 1) @ I#

, Yes := Q Q ((bv 63 “Y” @ - bv) 63 I) @ I #

t
N

h
Y

t h

D. Attribute Assignment and Display

Following Feldman and Rovner (1969)’ we specify attributes with associative

triples of the form: **attribute of object is value** using the notation: A.0 s V,

where A denotes the attribute, 0 the object, and V the value.

- 20 -

. .

Examples

1. The resistor (Res) could be given the attributes of resistance value

and tolerance. The statements;

Rl := Res#

Ohms. Rl = 15000 #

Tol. Rl = 10 #

would describe a resistor Rl with resistance 15OOOQand tolerance

10 percent.

2. In the flow chart system, we might either ‘draw” the text inside

each box or associate the text as an attribute of that box. The

contents of the initialization box of Fig. 1 could be described:

Initial := func #

Text. Initial z “SUM := 0” #

There are at least two areas of the display where it would be useful to show

attributes - one is in the vicinity of the picture object with which the attribute is

associated; the other is in a ‘*working** area of the display where user commands

and responses are continuously shown. The following command will be used to

display a value V corresponding to an attribute/object pair:

Shijwattr (A.0, what, where) # ,

where A. 0 is the attribute/object pair, what is used to indicate whether A or 0

is also to be shown, and where specifies the location of the first character to be

displayed. If = A, then the attribute name ‘is displayed; if what = 0, then

the object name is also displayed. A, 0, and V are considered as horizontal

text for display purposes. where = W indicates that the information should

appear in the working area of the display; where = (r(X,Y) specifies that the

display start at the virtual picture space coordinates (X,Y) relative to the tail of

the object 0 which is already displayed.

- 21 -

Examples

1. Showattr (Ohms. Rl, A,cY(0’2)) # will change the display

to
ohms=150~o (provided Rl has been “evalua~d”

previously).
i

2. Showattr (TexLInitial, N,cu(-1.5, -1.5))# will change the ’

display

3. Showattr (Tol. Rl, 0,W) # results in the appearance in display

working area of: Tol.Rl E 10 .

The argument .a11 could be used in place of A or 0 to cause the display of a -

large number of values. For example, Ohms. all as the A. 0 pair in a Showattr -

call causes the display of values of all objects with the attribute Ohms; a&R1 -

results in the display of all attributes of Rl. Similarly, if there is more than

one use of Rl in a picture, Ohms. Rl will refer to all of these.

There are a number of implicit attributes that are automatically available

from the system through the Showattr command. These include (a) the attributes

Tail and Head which refer to the virtual space tail and head coordinates of the

object, and (b) the attribute’ Label which denotes a unique label generated by the

system for each primitive and higher level structure. used. .’
The command Clearattr (A.0, where)# is employed to clear the

display of the specified attribute.

E. Interactive Drawing

In this section, we outline the mechanics of incrementally generating and

modifying pictures. It is, assumed that a text-editing system which permits a

user to conveniently edit input descriptions and commands is available.

The description of the current picture which has been “evaluated” and dis-

played is assigned the name c. The current picture can be translated, magnified,

or rotated by evaluating the expressions (&(x, y) @ 0) , M [~]a, and R [0] c

respectively. When the display has been cleared, (T describes an empty picture

with tail and head at the origin. A subsequent hall Evaluate (S1)# is equivalent

to Evaluate (cr CB S1) # . This first results in the evaluation of the PDL expres-

sion S1 into a virtual space picture fl with tail at the origin (which is the head of

the current cr); fI is then mapped according to a Virtualspace function into a real

space picture fl which is displayed. To concatenate a picture described by S2

onto a tail or head of fly either Evaluate (cr cd S2)# or Evaluate (91 S2)#, where

@ E { $, @ , 0 , 8) , may be employed. The current picture can be assigned

a name n by the command:

n:=cr#

Example

Evaluate (1 $ Res G9 f)# displays:

(a) --‘Wb--h

Following this by:

Evaluate, (QD R [O. 5-J r) +

causes the display to change to:

08

h

L/v+

The head position h is normally- always indicated on the ‘display by “h. ”

--23 -

The head position *h” can be moved to any node in the picture in two ways.

The superposition operator / can be explicitly used in an Evaluate command or

the commands Movehdf, Movehdb, and Stopmove may be employed. Execution

of Movehdf and Movehdb will cause the head to systematically trace “forward”

or ‘*backward** through the nodes of the picture in real time until the command

Stopmove is issued. For example, the head in (b) above can be moved to the

same node as (a) by

(1) Evaluate (/(-RCO.5) r Q r))# or

(2) by issuing Movehdb, waiting until the head appears in the desired location,

and then issuing a Stopmove.

Elements of a picture may be erased by the command Delete (S)# . All

parts of the current picture which locally can be described by the PDL expres-

sion are deleted.

Examples

1. Delete (M [s] R [O. 251 a)# would remove all 45’ lines from the

current picture.

2. Erasure of one particular pattern when many of the same class

appear in the picture requires the use of label designators. In-

sertion of a fun&i& box in the rightmost vertical line of Fig. 1

to change
I to+

involves the following command sequence:

(a) Showattr (Label.V(s), A,c~(l,l)#

(b) Delete (V-i) #

(c) Movehdb #

(d) Stopmove #

(e) Evaluate (Q (V(4) $ R [O. 53 ar Q m func Q V(S,) Q /M [s2] R [l]n>)#

- 24 -

Command (a) will display labels of all vertical lines V(8). We

assume that **it’ is the label for the vertical line of interest.

V-i is deleted in (b). (c) and (d) move the head to the former

tail position of V-i and (e) makes the desired insertion.
8.

3. Delete (r) # clears the display. r then describes an empty

picture.

Deletions and complex insertions can also be accpmplished by using the text-

editing system to modify the PDL expression describing the current picture.

Real-time transformations of the visual display may be performed by de-

fining the appropriate functions over pictures using a general on-line compu-

tational facility. We may zoom in on picture parts and roll the picture horizontally

or vertically across the display by specifying appropriate real-time changes in

the Virtualspace function.

Examples

1. To move the current picture vertically through the display, we

might use the following Algol-like procedure: ’

procedure Rollup;

for i := 1 step 1 until n & Virtualspace (vsl-c, vs2-cJ# ---

Here 2 = (0, k), where k is a real constant, and vsl, vs2 are the

values of the current Virtualspace fun&i& parameters (assumed

available to the system).

The commands :

Virtualspace (us 9 #

Evaluate (S) #

Rollup #

- 25 -

causes the display of that part of the picture described by S that

is bounded by (us vJ and then rolls the displayed part up by

changing the rectangle to (u - gi, I- ci), i = 1, . . . , n.

2. A picture may be magnified or *‘zoomed** about its head by means

of the following procedure :

procedure zoom;

begin

E := head (u);

for i := n * -1 u* 1 &J Virtualspace (5 -l$, x+&i)

end zoom#

& = (k, k), k a constant.

It might be necessary to include a function Delay (t) in the loop

in both ~ollup and zoom; Delay (t) effectively puts the process in

a wait state for t ms.

F. The Definition and Satisfaction of Constraints

By picture constraints, we mean a set of relations over picture parts.

Examples of some useful constraints are:

1. one line segment is to be parallel, perpendicular, or, in general,

make any given angle with another;

2. the area of one closed figure is to be x times that of another;

3. two figures’are to be connected together at a given set of attach-

ment points.

It is often most natural to specify a picture in terms of the constraints the parts

must satisfy; the exact geometry of the picture should then be automatically

computed by the system. Constraints will be classified as either topological

or computational depending on whether they can be defined using PDL expressions

or whether they require a more general computation.

- 26 -

The PDL notation expresses the relation of picture concatenation. ThiS

constraint is satisfied in general by translation, rotation, and scale change.

We use the arguments of the M and R transformatidns as free variables selected

to satisfy the concatenations involving the 8 operator.

Examples

1. Let sly els s2, and e2 be constants and s, 9 be variables. Than,

evaluation of the expression: (R [el] M [sl] I Q R [B2] M [s2]m> 0

R [e] M [s] P would include the assignment of values to s and 8 to

satisfy: tail (R[@] M[s] 1) = tail (R [el] M [s,] a) =t and

head (R [(I] M[S] n) = head (R [e,] M [s2] m) = &.

We directly use the definitions of the primitives to solve for 6

and s:

$ = s((O,O) -I- CJ A

& = ~((1’0) + cJ A

cos en sin en
where A =

-sin en cos 1 en

yielding the solution s = I& - 31 and 8n = tan -’ (hl-tl, h2-t2).

Using the primitive L(x, y) instead of R [6J] M [s] I leads to a

simpler set of equations and immediate solution:

t = (0’0) + 2

g= (0’0) + (X’Y) + 2

2. Blank primitives are useful for describing relations. Two

line segments separated by a distance s may be constantly

maintained in parallel by the description:

R[~](M[s#. @ M[s]R[O.5] b 0 M[s2]f)

- 27 -

3. The arrow Ar(x, y) was described in section V.C as

Ar(x, y) := Rce) tM[slQ Q W @ Q&Y)#

The equations relating the free variables 8 and s to the known

tailt and head h when Ar(x, y) is evaluated for a given x and y

are:

t = s(jO,O) + cl) A

3 = s(tlsO) + clM

&=%

& = ((0s 0) + g21 A

&=ttW) +g2b4 s

whr+re A is the same rotation matrix as in 1. The solution is

s=lh-tl- 1= x +y -land &r=tan-l(x,y). P--- --

More complicated expressions are also allowed. Cur intent is that the sys-

tem automatically derive the equations relating the known and unknown tails and

heads, and analytically solve for the unknown variables; expressions where zero

or greater than one solution exist are assumed to be in error. Similarly, when

0 appears in an expression containing no free variables, the system will verify

that the appropriate points coincide.

The on-line computational facility handles non-topological constraints.

Examples

1. Suppose we wish to draw a line segment concatenated onto the head

of a segment I i and at an angle of f3n radians to it; assume that the

head is correctly located at head (1-i). The following sequence will

will perform the required generation:

Showattr (Angle a 1-i’ N, IV) #

A:=p+e#

- 28 -

Evaluate (CB R [a] m) #

where p is the displayed angle of L-i.

2. Let S1 and S2 each describe polygonal figures fI and f2 respectively.

Suppose we wish to magnify f2 so that the area enclosed by f2 is

u times that enclosed by fI. The following procedure will compute

the area of such a closed figure:

real procedure Area (4_);

begin

start :=t;

&:=Q; A:=O;

while h # start do -- --

begin

J-J@ (R[e] M[c;JQ, 3;

A := A + hlt2 - tlh2;

t :=lJ

end

Area := abs(A)/B

end Area#

where Lfp (a, b_, c) is a primitive recognition driver that searches

the picture (actually, some internal description of the picture) for

a member of the primitive set P(a) with tail at]2 and, if successful,

returns the coordinates of the head of the primitive in c. 52 denotes

undefined.

The sequence :

s := sqrt (u 60 Area&)/Area t&H #

n :=M[s]S2#

- 29 -

will then assign to the name n a description of the magnified

figure whose area is u times that of SI; tl and L2 are the tails

of s1 and S2.

We expect a library of routines such as Area to be available to a user so that

the procedures for the most common computational constraints need not be

defined at every use.

G. Flow Chart and Electric Circuit Generation

The primitives and structures presented in earlier pages are employed to

generate the flow chart of Fig. 1:
. S := R[l]c @ Ar(O,-3) @ func @ L(Oj-3) @ ((R[-0.51 ar @ func Q

Ar(0, -3) g3 pred) 0 (-(/right @ No @ Ar(0, -3) CD func $

L(O,-2) 8 L(5,O) CD L(O,y) 6D Ar(x,y)))) @ /left $ -Yes @

Ar(O,-3) ‘Z.3 fun; @ Ar(O,-3) @ R[l] c #

Delete (cr) #

Virtualspace ((-20, -5O), (20,lO)) #

Evaluate (S) #

Text. pred = “X=EOF” #

Showattr (LabeLfunc, 0, W).#

TexLfunc-1 z “SUM :=O” #

Texkfunc-2 s “READ X” #

Text. func-3 s “SUM := SUM + X” #

Texkfunc-4 = “WRITE X” #

Showattr (Lab&c, 0, W) #

Text. c-1 E “START” #

Text. c-2 G “HALT” #

Showattr (Text.alJ N, ~~(-1.5, -1.5)) #

Clearattr (LabeLa&, a(x,y))#

- 30 -

The sequence above assumes that the first Showattr indicates labels of 1,2,3,

and 4 for the four “func’% and labels of 1 and 2 for the two “c” ‘8.

If the flow charts were being designed interactively, the entire expression S

would be normally created and evaluated incrementally with appropriate deletions,

additions, and commands to move the head forward and backward. The textual

contents of each box could be given as part of the flow chart PDL expression

rather than as attributes. The above flow chart construction method should be

compared with the on-line flow chart language FPL/I of Richardson (1968) which

uses a lightpen and symbol lightbuttons for drawing.

The series/parallel resistance network of Fig. 2 csn be generated in a

similar manner. We will describe the picture part enclosed by the dotted lines:

Rh(s1, s2) := M[sl]a 63 Res 8 M[s2]1#

s := H(2) @ ((((V(3) Q Rh(l, 0-i) Q Rh(l,l) $ -V(Q)) @ Rh(3, s)) Q-V(~))

8 (-V(3) 8 ((Rh(U Q-V(l)) 8 (-V(3) @ Rh(l,2) @ v(2)))

Q Rh(l, 1) Q V(3))) Q H(3)#

The resistance values may be assigned and displayed for each resistor as

described earlier. Again, because of the complexity of the entire description

S, it would be normal to incrementally produce and display S.

VI. PICTURE IN’I’ERPRETATION

A. Picture Grammars and Syntax Analysis

The set of well-formed pictures for a given application is specified by a

context-free grammar G generating a language L(G) C PDL. G describes the

pictures :

PG= u P(S) *
SE L(G)

- 31 -

G also serves the function of imposing a higher level structure or hierarchic

description H on any picture f in PG. This structure is determined by the

derivation of the description S of f according to G (ignoring questions of ambiguity)

and is conveniently represented as a tree: G will consist of a 4-tuple:

G = (v,, vT, P, D), where VN is a set of non-terminal or intermediate symbols;

VT is the set of terminal symbols of the PDL syntax; P is a set of rules of the

form: A- pdll 1 pd12 I--- I pdln, where A E VN, n 11, and each pdli is a PDL

expression with the addition that non-terminal symbols may appear in place of

primitive names; and D is a distinguished symbol in VN from which all sentences

of L(G) are generated.

We illustrate these ideas by the following simple example which will generate

descriptions of square wave trains of the form:

I

c

1

G = (V,, VT, P, TRAIN)

VN =, {TRAIN, SQUARES, CYCLE, TOP, BOT/

VT = (Q, %[,I, .W&-~.W,(,)t

P ={TR~~IN -SQUARES,

SQUARES-CYCLE 1 CYCLE Q SQUARES,

CYCLE -TOP @ BOT,

TOP -(R[O.5]1 @ 1 @ R[-0.5]Ij,

BOT --R [l] TOP)

- 32 -

A description of the above wave train is derived by applying rules of P starting

with TRAIN:

TRAIN- SQUARES -CYCLE @ ‘SQUARES

) CYCLE @ CYCLE @ SQUARES ,CYCLE $ CYCLE 8 CYCLE

> TOP 09 BOT @ CYCLE bB CYCLE

) (R[O.5]P 03 P $ R[-0.5]f) @ BOT @ CYCLE $ CYCLE

) (R [O. 59 @ I @ R [-0.531) @-R[l] TOP @ CYCLE $ CYCLE

--- -4(R[O.5]1 @ Q @ R[-0.514 @-R(l] (R[0.5]P @ --)

--- ce-R[l] (R [O. 53 I @ P 6’ R c-O.53 I)

This derivation gives a hierarchic structure H which may be represented by the

tree (pa&ally drawn):

TRAIN

SQUARES

CYCLE a3 SQUARES

A A
TOP $ BOT

I

. I “‘7” Q sQUAREs
I I \
I 1 CYCLE

.’
\
\

(RLO.511 $ B $ R[-0.514 \

Given a grammar G, a picture f is syntactically analyzed by parsing it

according to G to obtain its PDL description S and hierarchic description H. We

accomplish this by means of a general picture syntax analyzer which accepts a

grammar and uses the latter to drive a set of primitive recognizers around a

given picture (its internal representation). Note that the picture ‘is analyzed

- 33 -

rather than the PDL expression used to generate the picture. This is because

we expect the descriptions specified by a user when generating pictures to be

different from those desired in an analysis; in fact, we might want to analyze

the same picture according to several different grammars (corresponding to

different syntactical interpretations).

A grammar is specified to the system by the command:

Grannnar n;

P={rl, r2s ---) rJ#

where n is the name associated with the grammar and each ri is a rule. The

left part of rl is taken as the distinguished symbol. A picture is analyzed ac-

cording to a given grammar by the command:

Parse (n, S, G)#

where S is a picture description (or name assigned to a description), n is a name

assigned to the results of the parse, and G is the name of a grammar.

Parse (n, o, G)# will analyze the currently displayed picture. Parse (n, S, G) #

will first evaluate S to a picture if S # u and display the results.

As each primitive is recognized during a parse, it is eliminated from the

picture. An abstracted version of the parse as well as the location of the last

primitive found is continually displayed alternating with the residue picture (the

original minus the eliminated primitives) as described in Shaw (1968, 1969b); our

abstracted picture consists of its “graph” with tail and head of each edge geo-

metrically located at the coordinates of the primitive it describes. This is useful

for debugging grammars and for finding the points of non-well-formedness in a

picture.

A difficult but unresolved problem at this point is how to present the results

of the parse. The large tree generated by the extremely simple grammar

- 34 -

and picture above illustrates the nature of our problem. After indicating that a

picture is well-formed (a successful parse), it would be desirable to present

selected portions of the tree in pictorial form. Trees may be described in PDL

and it should be feasible to derive a general tree display program within our

system.

B. Flow Chart and Electric Circuit Grammars

Grammars are presented for conventional flow charts and for series/parallel

resistance networks. The grammar for each picture class is interesting in the

sense that any valid PDL expression generated by it will describe o&pictures

of the class (or no picture) and any picture of the class may be parsed according

to the grammar to yield a useful hierarchic description.,

For flow charts, we use the primitives a, A, c, and pred; in addition, the

structures func, ar, Yes, and No are treated as primitives. A well-formed

flow chart (Fig. 1) will have the following properties:

1. It will contain one start box and at least one finish box.

2. A “program” path exists from the start box to every other box.

3. Any number of lines may enter a function or predicate box; one

line always exits ‘from a function box and two lines from a predi-

cate box.

4. The orientation of the line segment formed by the tail and head

of every primitive will be restricted to one of the four horizontal

and vertical directions: - , - , t, 1, with the exceptions of

func which is restricted to t and 1 , and c which we maintain

as 1 .

5. Within the above restrictions, there are no limitations on the

chart connectivity; the flow chart need not form a planar graph.

- 35 -

The rules of the flow chart graxnmar are:

FC -Start 03 (S @ /(S $ Finish))

Seq $ Xfer I Xfer
:

s -

Seq -FUNC @I NarIFUNC Q Nar Q Seq

Xfer - Cond IFUNC ‘Q Gar 1 Finish

Cond - PRED $ Br 1 Cond-i

Br - ((/left Q - No Q Sl) Q9 (/right @ Yes @ Sl)) 1

((/left Q -Yes Q Sl) @ (/right Q No Q Sl))

Sl -Gar)Nar 8) S

NS.Y2 -L Q A-g Q AR1Na.r i

Gar -L (8 AR Q /A-g/Car-i

L -LHILV

LH -HlH Q VIH Q V Q LH

LV - VlV Q HIV Q H Q LV

i.3 - M[s] 11 I-H

V - M[s]R[O.5]1 I-V

AR - arlM[O.5] arl-AR

start -CQNar

Finish - C-f I Finish i

C - R [l] c

FTJNC - func I-func

PRED - wed I R [I] pred 1 R [O. 53 pred 1 R [-0.53 pred

The right parts M [s] B and M [s] R [O. 5) B designate the set of all horizontal and

vertical lines respectively.

- 36 -

The complexity of the above grma.r and extensive use of labels is due to the

generality of acceptable flow charts and the complete detail contained in generated

descriptions; any reasonable flow chart is described. The major intermediate

symbols have the meaning:

Seq : Sequential statements

Xfer : Transfer statements

NSX : Normal arrow

Gar : GoTo arrow

Cond : Conditional statement

Br : The 2 exits of a conditional statement

L : A sequence of concatenated line segments

The labels and retracing are used to ensure at least one finish box, to allow

arrows to go to any box, and to distinguish between predicate boxes.

The network grammar is considerably simpler. We will use c, I, and Res

as primitives and allow only horizontal and vertical orientations as before.

Well-formed circuits must be properly nested; e.g.,

O-CT>;* is not permitted.

The grammar rules are:

1. SPRN -Term Q CCT Q Term

2. CCTl - Basic Q L I Basic 63 CCT2

3. Basic -L Q RESIL Q Par

4. Par1 -(CCT1 0 CCT2) I (Par2 8 CCT)

5. RESl - Res I R [o. 53 Res I DRESS

- 37 -

6. L -LHILVIA

‘7. LH -HIH 68 V(H Q V Q LH

8. LV - VIV Q HIV Q H Q LV

9. Term - M[O.l] C

10. c - c IR[0.5] c 1-C

(The subscripts on some of the intermediate symbols sre referred to in the next

section and can be ignored at present.)

C . Semantic Interpretation

We now discuss how pictures may be further interpreted by employing the

results of a syntax analysis or by working with the picture directly. A particu-

larly appealing approach is to impose a set I of interpretation rules in l-l cor-

respondence with the rules of thegrammar (Anderson, 1968; Evans, 1968;

George, 1969), in a similar manner as in some programming language translator

writing systems (Feldman and Cries, 1968). Each time a reduction is made

during a parse, the corresponding interpretation rule is executed. A rule of I

may consist of any sequence of computations.

For example, an equivalent single resistor circuit can be obtained from an

arbitrary SPRN by executing the following interpretation rules during a parsee

Rule i corresponds to syntactic rule i of the granimer in the last section:

1. s:= M[O.i-j R[-0.51 c 63 Q 63 Res Q 1 Q M[O.l] R[-0.51 c;

OHMS. Res E v(CCT);

2. v(CCT1) := v(Basic); 1 v(CCT1) := v(Basic) + v(CCT2);

3. v(Basic) := v(RES); I v(Basic) := v(Pa.r);

4. vtp=l) * *= (v(CCT1) x v(CCT2))/(v(CCT1) + v(CCT2)); 1

vwq := (v(Par2) X v(CCT))/(v(Par2) -t- v(CCT));

- 38 -

i V(RES1) := OHMS. Res; 1 v(RES1) := v(RES2); 5. v(RES1) := OHMS.Res;

6. A

7. A

8. A

9. A

10. A

A denotes an empty rule. v(x) means “the value of the structure generated by

X. If The vertical bar “I” separates alternate right parts of a rule. We use

subscripts, e.g., CCT1, and CCT2, to distinguish between identically named

elements. Rules 2 and 4 contain the basic computations for equivalent resistance

in series and parallel networks respectively. Rule 1 generates a description of

the equivalent circuit and is the last rule executed during a successful parse.

The command: Parseandinterpret (S, G, I)# will parse the picture described

by S according to the grammar G, and, at the same time, will apply the rules of

I to interpret f. If S has been parsed by invoking Parse (n, S, G)#, we can

interpret the results in n according to I by using the command Interpret (n , I) #.

Several semantiq interpretations may then be made on a picture by calling

Interpret more than once..

The program represented by a drawn flow chart can be executed by working

directly with either the picture or the results of a parse. In the former case,

we employ primitive pattern recognition routines, while in the latter, we search

the hierarchic description produced by the parse. It is more convenient here to

assume prior parsing since many irrelevant pictorial details may be ignored.

Let Find (n,& m) be a Boolean routine that searches the parsing tree for a

structure named n with tail at 2 and returns a pointer to the structure in m’ if

successful; Find will return true if successful and false otherwise. The following

- 39 -

procedure ExecuteFC(t) will then execute the program represented by any well-

formed flow chart which may be drawn; the parameter t is the tail coordinates

of a flowchart box.

procedure ExecuteFC (t) ;

begin

comment Execute computations in boxes;

if Find (C , L, a) then

begin if Text. a I rrHALT1r then Return end

else

if Find (FUNC,&a) -

else

if Find (PRED,Ja) then

begin

‘,

Find (R [o] left, head(a), b);

Find (R [o] right, head(a), c);

if EX(Text. a) then

begin if Find (Yes, head(c), d) then a :=d

else Find(TYes, head(b),a)

end

else begin if Find(No, head(c),d) then a :=d

else Find(- No, head(b),a)

end

‘end

comment Trace arrow to next box and call ExecuteFC recursively;

-40 -

if Find(Nar, head(a),b)

else

ExecuteFC (head(b))

.

begin Find(Gar, hesd(a),b);

Find (AR, head(b), c);

ExecuteFC (head(~))

end

end ExecuteFC #

EX(text) is a routine that executes the program represented by the textual string

in its argument; EX will return true or false if its argument is a Boolean expres- --

sion. After drawing, displaying, and assigning the appropriate textual attributes

to a flow chart, the command

ExecuteFC((O,O))#

will cause its real-time execution.

When it is not convenient or useful to interpret pictures by computations

over its parse, the picture itself may be used in the computation as illustrated

by the Area procedure given in Section V. F.

VII. CONCLUDING REMARKS

The preceding pages have outlined a set of generation and interpretation

facilities for a proposed general purpose computer graphics system. The

usefulness, convenience and adequacy of these facilities were illustrated by

examples in flow chart generation and execution, and electric circuit design.

Earlier research work has demonstrated the feasibility of the more novel

components of the system - the picture description scheme and picture grammars

(Miller and Shaw, 1968a; Shaw, 1968, 1969a), the parsing techniques (Shaw, 1968,

1969b), and the use of string descriptions for interactive drawing (George and

Miller, 1968; George, 1968). It is evident that many details remain to be

worked out. A system of this type may be implemented conveniently using a

- 41 -

translator writing system for interactive languages (e.g., George, 1969) SO that

changes can be easily made as the details evolve.

The major features of our system which serve to distinguish it from others

are:

1. Pictures are specified in a virtual picture space by symbolic

descriptions; display generation occurs by executing these

descriptions and mapping the resulting picture into the real

space of the display device.

2. Attributes may be computed and assigned to pictures of any

complexity.

3. Picture grammars are employed to define the class of pictures

for a specific application. Syntactic description and well-

formedness are obtained by parsing pictures according to a

given grammar 0

4. Further interpretation of pictures occurs by specifying compu-

tations over the pi&me and over the hierarchic structure

obtained from a picture parse.

All of the above features will operate in an interactive mode. Such a system

should provide a simpler yet complete means for interactively generating and

interpreting artificial pictures.

ACKNOWLEDGEMENTS

The author is grateful to William F. Miller for his continued encouragement

and support of this work, and to James George and Charles Zahn for several

useful discussions related to this paper. The accurate and efficient typing of

the draft by Kathleen Maddern and Cherie Matheson is gratefully acknowledged.

- 42 -

REFERENCES

Anderson, R. H. (1968). Syntax-directed recognition of hand-printed two-

dimensional mathematics. Ph.D o Thesis, Applied Math. , Harvard

University (January).

Awl A., Dankowski, T. P, , and Dougherty, R. L. (1968). Aspects of

display technology. IBM Systems Journal ‘7, 3 and 4, 176-187.

Evans, T. G. (1968). A description-controlled pattern analyzer. Proc. of

IFIP Congress 68, Booklet H, pp. H152-H157.

Feldman, J., and Gries, D. (1968). Translator writing systems.

. Comm. ACM 11, 2 (February), pp. 77-113.

Feldman, J4 A., and Rovner, P. D. (1969). An Algol-based associative

language. Comm. ACM 12, 8 (August), 439-449.

George, J. E. (1968). CALGEN - an interactive picture calculus generation

system. Tech. Report No. CS 114, Computer Science Department, Stanford

University (December).

--- (1969). The system specification of GLAF: a linear string graphical

language facility. GSG 61, Computation Group, Stanford Linear Accelerator

Center, Stanford University (February) +

George, J. E., and Miller, W. F. (1968). String descriptions of data for

display. Report No. SLAC-PUB-383, Stanford Linear Accelerator Center,

Stanford University. Presented at 9th Annual Symposium of the Society for

Information Display.

Kulsrud, H. E. (1968), A general purpose graphic language. Comm. ACM 11,

4 (April), pp* 247-254.

Miller, W. F., and Shaw, Ai C. (1968a). A picture calculus, Proc. Conf. on

Emerging Concepts in Computer Graphics. W.A. Benjamin Press, New York.

--- (1968b) O Linguistic methods in picture processing - a survey. Proc e AFIPS

1968 Fall Joint Computer Conference, Vol. 33, Thompson, Washington, D. C.,

pp. 279-290.

-43-

Newman, W. M. (1968). A system for interactive graphical programming.

Proc. AFIPS 1968 Spring Joint Computer Conference, pp. 47-54.

Pankhurst, R. J. (1968). GULP - a compiler-compiler for verbal and graphic

languages. Proc. 1968 ACM National Conference, pp. 405-421.

Richardson, F. K. (1968). Graphical specification of computation. Report No.

257, Department of Computer Science, University of Illinois (April) (Ph.D.

thesis).

Roberts, L. G. (1964). Graphical communications and control languages.

Second Congress on the Information System Sciences, Spartan Books,

Washington, D. C., pp. 211-217.

Rosenfeld, A. (1969). Picture Processing by Computers, Academic Press9

New York.

Rully, A. D. (1968). A subroutine package for FORTRAN. IBM Systems

Journal 7, 3 and 4, pp* 248-256.

Shaw, A. C. (1968). The formal description and parsing of pictures. Ph.D.

Thesis, Computer Science Department, Stanford University (June). Available

as Report No. SLAC-84, Stanford Linear Accelerator Center, Stanford

University, Stanford, California.

--- (1969a). A formal picture description scheme as a basis for picture

processing systems. Inf. Control 14, 1 (January), pp. 9-52.

--- (1969b), Parsing of graph-representable pictures. Tech. Report No. 69-34,

Department of Computer Science, Cornell University (April).

Sutherland, I. E. (1963). Sketchpad: a man-machine graphical communications

system. Tech. Report No. 296, Lincoln Laboratory, Massachusetts Institute

of Technology (January) D

Sutherland, W. R., and Forgie, J. W. (1969). Graphics in time-sharing: a

summary of the TX-2 experience. Proc. AFIPS 1969 Spring Joint Computer

Conference, pp* 629-636,

- 44 -

LIST OF FIGURES

1. Flow chart for computing a sum.

2. Series/parallel resistance network.

3. PNP transistor and graph.

V 4
SUM: - 0

-v

.
0 HALT

l423Al

Fig. 1

/ ’ 3K 2.5K ‘\ \

/I
‘\ \

/ \
1K

:

\
\

I
\
\
\

10K

ll.lK

3K

6K f
I

I
/

/
/

/’
\ / ,

\
\

-s
0’

t2.5K

8.7K

I

0.5K

Fig. 2 1423A2

PNP TRANSISTOR

COLLECTOR

Fig. 3

GRAPH TRANS

1423A3

