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Abstract: We give a survey of results relating to the topics mentioned in the title. 

We are particularly interested in the relationship between the analyticity proper- 

ties of the free energy as a function of the thermodynamic parameters of the system 

and the clustering and uniqueness properties of the corresponding equilibrium states 

i.e. correlation functions. We concentrate on Ising spin systems with ferromagnetic 

pair interactions. 

I. Introduction and Formulation 

In order to keep the presentation simple I shall restrict myself, for most of 

this lecture, to the simplest non-trivial many-body system known to man; the Isin$ 

spin system with finite range f erromaEnetic pair interactions on a ~-dimensional 

cubical lattice (IFFI)~, ~ = I, 2, 3,... (Interactions which fall off exponentially 

behave, as far as the problems discussed here are concerned, just like finite range 

interactions.) The Hamiltonian of this system in a finite domain A c ~ with 'bound- 

ary conditions' corresponding to specifying the values of the spin variables outside 

A has the form [1,2], 

where o. = + I, J(x~ > 0, J(x_) = 0 for ILl > R, ILl is the length of the lattice vec- 
I -- m 

tor ~, h is the external magnetic field and ~.~ is a specified set of values of o 
l i 

for i ~ A, which constitute the set of boundary conditions {hAl = b. (More generally 

only the 'distribution' of the ~. for i ~ A need be specified; we can also take into 
I 

account 'free' boundary conditions by setting ~i = 0, and'periodic' boundary condi- 

tions by modifying the definition of the J(x~.) 

The partition function, free energy density and correlation functions of this 

system at temperature T = 6 "1 are given by 

Z(~,h'; A,bA) = ~o~=+II exp [-8 H(~; A, bA)] , iEA 

~(~,h'; A, BA) = ~n Z(~,h'; A,bA) I/IA I 

(1.2) 

(1.~) 
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<cA> (~,h'; A,bA) = ~o~=+iI t% exp [-~ H(~;A,bA)]I/Z(8,h';A,bA) , (1.4) 
i - -  

where l~l equals the number of sites in A, h' = ~h, and % = i~ Oi' A = A. (We 

have absorbed a factor -~ in the free energy and shall drop the prime on h from now 

on.) 

We are interested in the behavior of ~ and <%> in the thermodynamic limit, 

A -- ~. The limit is taken in such a way that each site i eventually is (and remains) 

inside A. Let me present some questions of interest: 

i. Does the limit A - = of Y(8,h; A,b A) exist and is the resulting function in- 

dependent of the boundary conditions b and of the way in which A ~ =, i.e. of {hAl? 

The answer to this question for IFFI systems is an unqualified yes; all ways of 

going to the thermodynamic limit lead to the same ~(~,h) for all real h and 8 ~ 0. 

(This is true generally for systems which are charge neutral [3,43. The inter- 

esting exceptions are systems with net charge [4] and systems with dipolar inter- 

actions in an external field [4,5,6] where the thermodynamic free energy density is 

expected on the basis of simple magneto (electro) -static arguments, and known ex- 

perimentally, to be shape dependent. The establishment of this shape dependence for 

dipolar systems on a rigorous mathematical basis is (to my knowledge) the last re- 

maining interesting physical problem in "proving the existence of the thermodynamic 

limit of the free energy", a task begun over twenty years ago by van Hove, c.f. 

[1,33 .) 
2. Having now a unique thermodynamic free energy ~(~,h) the next question is: 

what are its analyticity (real) properties? Non-analyticites in ~,h are connected 

with phase transitions and are~ from both a physical and mathematical point of view, 

the 'interesting' features of ~ for real macroscopic systems. True singularities 

clearly occur only in the thermodynamic limit A ~ ~, their 'precursors' however are 

indistinguishable from them quantitatively for macroscopic systems studied experi- 

mentally, IA~ ~ 1023 . The 'finite size' corrections, (surface effects) are an in- 

teresting problem in themselves which needs much further investigation, c.f. [73. 
They will not be discussed here. 

3. IS the thermodynamic limit of <%> (~,h; A,bA) unique? Since I(%>I ~ ! we 

can always find subsequenees b A on which the limit exists for all finite sets. We 

denote these by <OA>(~,h;b). The measure 'corresponding' to any such set of correla- 

tions defines an 'equilibrium state' which satisfies the DLR (Dobrushin-Lanford- 

Ruelle) eqs. and vice versa, e.f. [8,9]. If the limit is not unique then there are 

the further questions: i) Are all the limit functions translation invariant? i.e., 

does <%+x>(~,h;b) = <%>(~,h;b)? ii) ~ow many 'extremal' translational invariant 

equilibrium states are there for each ~h, and a given interaction? Translation in- 

variant equilibrium states can always be decomposed uniquely into extremal states 

[1,8], e.g. if there were only two such extremal states, designated by subscripts I 

and 2, then each set of translation invariant correlation functions would have the 
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form <aA> (~,h;b) = ~b<~A>l (~,h) + (1-~b) <aA>2(~,h ) where 0 ~ ~b ~ i is i n d e p e n d -  

e n t  of A. ('Similar' statements hold for non translation invariant equilibrium 

states .) 

4. What are the analyticity properties of the, possible boundary dependent, 

(aA> (~,h;b)? Like the free energy the finite volume correlation functions are 

clearly real analytic in ~ and h. 

5. What are the cluste~ properties of the infinite volume correlation function, 

eg does [<% <%> 0 as if yes does it do so exponen 

tially fast, etc.? This question is connected to the questions about analyticity 

[10,n]. 

2. Survey of Selected Results 

We would of course like to be able to answer the above questions for any particu- 

lar interaction. Even more important we want to understand, in as much generality 

as possible, the connection between the properties of the free energy density which 

is a macroscopic thermodynamic quantity, and the correlation functions which describe 

the microscopic structure of the system. Thus we would like to know the general 

class of systems for which the analyticity of Y(~,h) in some region of the R~ - R~h 

plane implies unique equilibrium states with strong cluster properties and vice versa. 

While little is known about the answer to this question in general quite a lot is 

known for IFFI systems (there is still quite a lot unknown too). It will generally 

be clear which results are specific to these systems and which have analogies for 

other systems. (If ~ is required to be analytic in 'all interactions' then the 

above question can be answered fairly generally, c.f. Ruelle [12], but our point of 

view here is to think of the interactions as given while ~,h are 'externally con- 

trolled' variables. Finding the set of relevant variables is of course a basic part 

of the problem.) 

Let me begin then with a theorem which relates derivatives of ~ to spatial 'aver- 

ages' of some correlation functions. 

Theorem i: If ~(~,h) is differentiable in h at some value of ~ and h then the 

thermodynamic limit of the magnetization is equal to the derivative of ~, 

m(~,h;b) m lJm IAI "I ~ (=.> (~,h; A,bA) = 5Y(~,h)/bh (2.1) 
A ~ i~A l 

independent of b, c.f. [1,2]. 

Proof: ~(~,h; A~bA) is a convex function of h hence so is ~(~,h) and the limit 

of its derivative 

m(~,h; A,bA) m h~--~(~,h; A,bA) (2.2) 

equals the derivative of its limit whenever the latter exists. 

Since the limit function ~(~,h) is independent of {hAl and because of convexity, 

exists for almost all h we also have 
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Corollary 2. If m(~,h;5) depends on ~bAl then the right and left derivatives 

of ~(~,h) are unequal, ~ >  _ , and there exist sequences ~h. ll decreas- 

ing (increasing) to h such that 

lim ~ lh = h = 8~(~,h)/Sh(+) 
i ~ l - 

Clearly similar results hold for differentiation with respect to 8 (or other 

parameters in the }{amiltonian) and also for general systems, c.f. [133. Tile next 

theorem, however~ which is a very strong 'converse' of Theorem I is (at the present 

time) essentially restricted to !FFI 'type' of systems and I don't see anyway of 

extending it to general systems. (Indeed there are some counter examples for anti- 

ferromagnetic systems [14] unless h in Theorem 3 is replaced by the 'staggered' 

field). 

Theorem 3. If 5~(8,h)/bh exists (i.e. is continuous) then all the correlation 

functions are independent of boundary conditions [153, i.e. 

<aA> (~,h;b)= <=A > (~,h). 

Theorem 3 may be usefully combined with the following results about IFFI sys~ 

terns. 

Theorem 4. a) ~(~,h) is jointly analytic in h and (real) ~ for h # O, ~ ~ 0, 

[16]. b)~ a ~a > 0 such that for ~ _ < ~a (high temperature region) ~(~,h) is real 

analytic in 8 and h [17]. 

Thus for h # 0 or ~ ~ ~a there is only one equilibrium state. This state being 

unique is translation invariant. It is furthermore true that the correlations in 

this state have all the desired properties: 

Theorem 5. For h # 0 or ~ ~ ~a the <%> (~,h) are (real) analytic in ~ and h 

and have exponential clustering properties [16,17,18]. (For even stronger cluster 

properties see [ii]). 

We thus see that for our systems everything is fine (and thus uninteresting) 

for h # 0 or ~ < ~ . We must therefore, look at h = 0 and low temperatures to have 
a 

a chance of finding something interesting. Now it can be shown, [13, that in one 
dimension, (IFFI)I , Y(~,h) is (real) analytic for all ~ and h. We must therefore 

look to higher dimensional system, which is what Peierls did and found that there 

was indeed something interesting happening for v ~ 2 [1,2]. (Peierls' method of 

proof has been extremely fruitful for our understanding of phase transitions. It 

was invented one evening after an unnamed mathematician gave, in a lecture~ an 

elaborate proof of the nonexistence of a phase transition in one dimension and con- 

cluded by saying that 'clearly the same is true in higher dimensions', [193). 

Theo;em 6. If v ~ 2 and the nearest neighbor interactions do not vanish then 

there exists a ~p < ~ such that 

m(~,O; A,b+) ~ -m(8,0; A,b_) Z ~ > 0, for ~ Z 8P, (2.3) 
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independent of A, where b+(b ) corresponds to all spins outside A being set equal to 

l ( -1 ) .  
The exact value of ~ is not too important here. It is generally a poor lower 

P 
bound on the values of ~ for which the inequality m(~,O; A,b+) > 0 holds. Eqlat is 

= 6 -1 important is that for ~ >_ 2 we have at sufficiently low temperatures, T < Tp P , 

that m(~,0;b+) # m(~,O;b_), i.e. m(~,0;b) depends on the boundary conditions. Thus 

according to Corollary 2, 8~(~,h)/Sh will be discontinuous at h = 0 for ~ > ~ . We 
-- p 

can actually say more. 

Theorem 7. a) (CA> (~,h;A,bA) is monotone nondecreasing in B and h whenever the 

b A are such that all the external fields appearing in the Hamiltonian (i.I) are non- 

negative, i.e. h i - h + j~A J(i-j) oj > 0. b) For h > 0 the correlation functions 

(~A > (~,h;A,b+) are monotone nonlncreasing in A and their limits, <%> (~,h;b+) are 

translation invariant eve~ when there is more than one equilibrium state, i.e. at 

h = 0 and low temperatures. Furthermore 

lim <%) (~,h) = (%> (~,0;b+) (2.4) 
hi 0 

c) m(~,0;b+) = (Gi > (~,0;b+) = lim 8~ ~ = d h  m*(~) (2.5) 
h~0 

and m*(~), the 'spontaneous magnetization', is monotone nondecreasing in ~. 

Part a) of the theorem is a special case of the basic Griffiths inequalities 

[1,2]. b) and c) follow from a) and some other arguments, c.f. [15]. (Clearly 

(~A > (~,N;A,B+) = (-I) IAI <~A > (~,-h;A,b_) and ~(~,h) = ~(~,-h) so similar results 

hold for negative fields.) It follows directly from c) that we can define a unique 

critical temperature T = ~-i for spontaneous magnetization by the relation m*(~) = 0 
c c 

for ~ < ~c' m*(~) > 0 for ~ > ~c" 

To sununarize then: for IFFI systems we already know, i) For h # 0 or T > T we 
c 

have unique states. For h # 0 or T > T a we have in addition analytieity and expon- 

ential clustering, ii) For h = 0 and T < T c we have nonunique states, discontinuity 

of 8V/SN and of <o )i (~,h) (and all (CA> for IAI odd). 

A question which naturally arises now is what happens to analyticity and cluster 

< T < Ta, e.g. is there a temperature Tb, T e < T b < T a properties at h = 0 and T c -- 

where ~ and/or the <~A > stop being analytic in h and or ~. (The nature of the singu- 

larities oceuring at T will not be discussed here). This is a most interesting 
c 

question and the only additional information known to me about ~eneral IFFI systems 

is given in the following theorem. 

Theorem 8. ~(fl,h) and (%> (~,h) are infinitely differentiable in ~ and h for 

< flF where ~i = TF is (essentially) the 'mean field' critical temperature, de- 

fined by the relation ~ tanh ~F J(x~ = I. 

Proof: The proof of Theorem 8 is based on the following result, [i0]: 
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Theorem 9. If the pair correlation <oiOi+x> __ (8,0) (independent of b for ~ < Be) 

has a bound of the form 

0 ~ (oi~i.~x> (~,0) ~ K I~l -(k~qd), K < ~, • > 0, k 6 ~+ (2.6) 

then ~(8,h) 6 C k+l and (o A) (~,h) 6 C k in both variables. (The inequality on the 

left of (2.6) is part of Griffiths first inequality). 

The existence of an exponential bound (corresponding to k = ~ in (2.5)) follows 

from Griffiths third inequality [20] 

<U.o ) (8,0) < k~i <°jak> tanh [SJ(j-k)], for j # i (2.7) 
i 3 

and can be improved slightly using generalizations of this inequality c.f. [213. An 

alternative method which bounds the pair correlation function using self-avoiding 

walks is due to Fisher [22]. It can sometimes yield an exponential bound for temp- 

eratures considerably lower than the mean field critical temperature. It is not 

known however at the present whether even exponential decay and thus/or C = persist 

for all (IFFI)~ systems down to T . 
C 

(To obtain an explicit bound from (2.7) we note that if (2.7) is solved as an 

equality then, for 8 < 8 F, the solution is an upper bound to <o.o.>, c.f. [21]. 
i 3 

This yields, (for simplicity use periodic boundary conditions), 

(U.=.> (8,0) < <yiYj)g(t)/<Y~)g(t), for ~ < ~F (2.8) 
i j 

where <yiyj>g(t) are the correlations in a "Gaussian" model [233 with the interactions 

8J(i-j) replaced by tanh [~J(i-j)], 

<yiYj> -I =(e )ij ' i,j~ 

where ~ is the matrix with elements 

(2.9) 

(t)ii = I, (t_Jij = tanh ~J(i-j), i # J. 

(2.9) can be readily shown to decay exponentially (use Fourier transforms). 

When (2.8) is combined with Newman's inequalities [24] 

(2.10) 

<=l...~n>(8,0) < ~ <= o >...<a ~ > (2.n) 
-- pairings il Jl in Jn 

we obtain 

(°A)(8,0) ~ <YA>E(t)/[<Y~>g (t~)]½1Al ' ~ < ~F (2.12) 

'Similar' inequalities hold for h # 0.) 

It should be noted here that while it is very natural to conjecture that analy- 

ticity persists for (IFFI)~ systems up to T = T c any proof of it will require making 
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some use of the lattice structure since the statement is not true for the Bethe 

lattice [25] and for random spin systems [26]. 

Let me come now to a discussion of what additional information is known for 

h = 0 and T < T . I am of course considering the case where T > 0, for v = I we 
c c 

have T = T = O. 
c a 

Theorem I0. ~ a temperature Te, 0 < Te < T c (T e ~ Tp) such that for h = O, 

0 < T < -- T e the following statements are true: 

a) There are only two extremal translation invariant states and these are ob- 

tained from b+ and b_ boundary conditions. 

b) The correlations in the extremal states decay exponentially. 

c) ~(~,h) and <oA> (~,h) are infinitely differentiable in ~ and h as h ~ 0 

from either side and so are ~(~,0) and <OA> (~,0;b+). 

The proof of part a) can be obtained in different ways, [27,28] and the same is 

true of b), [28,29]. It follows from a) and b) that every set of translation invari- 

= T "l, be written as a linear combination ant correlation functions can, for ~ ~ 8e e 

of correlation functions which have very strong cluster properties, 

(~,0);b) =ff (oA> (~,0;b+)+ (i-~)(OA> (~,0;b_), 0 <u < i (2.13) 

where the bar indicates translational averaging (if necessary). 

Theorem 10c) follows from b) and a variation of Theorem 9 which applies for 

h ~ 0 when (2.61 is replaced by the condition, c.f. [30], 

0 ~ (OiOi+x_> (O,0;b+) - [m*(~)] 2 ~ K I~I -(k~4) (2.14) 

where, by (2.5), m*(8) = <o.> (~,0;b+) for all j. 
2 

(A very interesting question, related to the problems we are discussing is 

whether Y(~,h) and the <OA> (~,h) can be analytically continued (below Tc) across 

the line h = O. If such an analytic continuation were to exist one would be tempted 

to identify the ~ and (¢~A> so obtained with metastable states as may be done for 

systems with 'very long range' potentials [31]. For this reason this question has 

generated more interest in the general statistical mechanics eon~munity than most of 

the other questions I have raised. The situation at present is unclear (even for- 

getting about proofs). There appear to be some strong arguments for expecting an 

essential singularity in ~ and ~OA> at h = 0, [32]. Very recently however these 

arguments have been questioned [33]. What we know rigorously [8bJ is that for sys- 

tems like IFFI the 'equilibrium state' cannot be continued analytically across h = 0 

for T < T c. This however does not rule out at all the possibility that Y and some 

{OA) , say for all IA 1 ~ 137, nay be continued analytically or even that ~ and all 

<% > can be continued analytically but that some ~%> will fail to satisfy some 

positivity conditions. In summary then the question is wide open.) 

Again it is not known for general (IFFI)~ systems whether Theorem i0 remains 
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valid for all T < T c or does there exist some Td, T e ~ T d < Tc, where matters change. 

More information is known about a special class of (IFFi)~ systems, those with near- 

est neighbor interactions only; J(x~ = 0 for I~I > i, J(~) = J independent of direc- 

tions. (This is actually more restrictive than necessary but we want to keep matters 

simple). We shall denote these systems by I v and their critical temperatures by 

Tc, ~. As is well known 12 was solved by Onsager [34] for h = 0 (the first non-trivlal 

many body problem ever solved). Onsager obtained ~(~,0) for 12 and found that it was 

singular (second derivative diverges logarithmically) at 8 ° given by [sinh 2~oJ] = i. 

Onsager and Kaufman [34] also showed that the pair correlation (for 'periodic bound- 

ary conditions') decays exponentially above T o and approaches (also exponentially) 

m~(~) below To with mo(8) the Onsager-Yang magnetization mo(~ ) = [l-sinh'4(2~j)] I/8 

for ~ > ~ • 
-- o 

It follows from these (and other) facts that T O coincides with the critical 

temperature for spontaneous magnetization To, 2, [i0] that mo(~ ) = m*(~), [35], and 

C ~ that Y and <~A ) are C in ~ and h for 8 < 8c and are in ~ and infinitely differ- 

entiable in h as h " O! for 8 > ~C [10,30]. It is also known [36] that 12 has P~!Y 

translation invariant states for T - < T' where T' N .7Tc" Furthermore it has been 

shown recently [37] that 12 has exactly two extremal states (+, - boundaries) for all 

T<T. 
e 
Thus of the questions raised in the beginning of my talk the only ones left un- 

answered for 12 are a) whether analytlcity holds for all T > T c and b) whether the 

nonexistence of non-translation invariant states is true for all T (The question is 

really just for T I < T < To). It would be most surprising indeed if the answer to 

both questions were not yes, [36]. (I make no conjecture about analytic continua- 

tion below Tc). 

This brings me to a most interesting point; the property of 12 of having only 

translation invariant states (at least at low temperatures) definitely does not hold 

for ~ > 2. This was first shown by Dobrushin [38]. The result has been improved 

and the proof greatly simplified by van Beijeren [393, who proved: 

Theorem Ii. For h = 0 and T < To,v_ I, I v has non translational invariant states. 

Since Tc, I = 0 this is consistent with the results for 12 . Indeed the differ- 

ence between v > 2 and v = 2 with regard to the existence of non translation invari- 

ant states is very similar to the difference between ~ > I and ~ = i with regard to 

the existence of a T > 0. This becomes clearer when we consider the nature of 

the Dobrushin and van Beijeren proofs. They consider a sequence of V-dimensional 

cubes AN,V ~ 2 with 2N horizontal layers labeled by k = -N, -N+I,...,N, and boundary 

conditions b N corresponding to + spins, @i = i, on the 'top half' N layers and -spins, 

°i = -i, on the bottom half layers; ~bNl = b ~. 

If we let o designate the spin variable at site ~ in the kth layer then by 
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<~k~> = I for k > 0 and all N. The question now is whether as N ~ =, and the bound- 

aries recede, does (a > for k > 0 remain positive for some temperature T # 0 and 

thus <=i>(~0;b ~) would not be translation invariant. We already know that for 

T > Tc, <=i>(~,0;b) = 0 for all boundary conditions. For 12 we also know that for 

0 < T _ < T' all states are translation invariant, and thus <=k~>(~,0;b~)__ = <~_k,~> 

(~,0;b ~) = 0 by s)n~netry. For ~ ~ 3 however it is shown by van Beijeren that 

<~l,e>(B,0;bi) ~ m~_l(B ) > 0 for T < Te,~. I (2.15) 

(van Beijeren also shows that, as expected, <=k,~)(~,0;b~) is monotone non-decreas- 

ing in k.) 

Physically (2.15) means that the v-i dimensional surface which separates up 

spins from down spins and intersects the boundary of A N between the k = 1 and k = -i 

level (this is a connected piece of the union of 'faces' separating cells with ~.=I 
l 

from cells with ~. = -I) does not fluctuate too widely as N ~ ~ when 9-i > 2 and 
l 

T < T (for ~ - 1 ~ 1 it does so fluctuate) 
c~-i 
The interesting question for ~, 9 ~ 3~ is now whether these non-translation 

invariant states persist up to Tc~ or is there a 'roughening temperature' Tr, <Tc, ~ 

where the dividing surface roughens and disappears~ as in 12. There appears to be 

some evideLme~ [40] based on extrapolations from low temperature expansions and 

numerical computations, that Tr, 3 .57Tc,3 ~ I.I Te,2, i.e. quite close to van 

Beijeren's lower bound. Again however definite results are sorely lacking. 

3. CQnc!udin~ Remarks 

We have seen that while much remains to be done all the information available 

for IFFI systems are consistent with our hopes for simplicity. In lattice gas langu- 

age there is a line in the chemical potential ~-temperature T plane along which two 

phases, liquid and gas, coexist ending in a critical point. For values of ~ - T not 

on this line we have unique equilibrium states with (very likely) exponential decay 

of correlations and analyticity in ~ and T. On the line itself we have (very likely) 

only two translation invariant states. The question now is how much of this simpli- 

city remains for even simple continuum systems, e.g. for atoms interacting with 

Lenard-Jones type potentials. Since the interaction potential is now long range, 

falling off as r -n, we cannot expect and do not get exponential decay of correla- 

tions [11,18]. On the other hand we expect to have also a solid-fluid transition 

and a triple point. Taking these into account however does the rest of the picture 

remain simple or are there real surprises~ e.g. two dimensional regions of the ~-T 

plane where the equilibrium state is not unique and/or the free energy not analytic. 

We don't seem to be anywhere near getting an answer to these questions. All we do 

know is that if we permit a large amount of arbitrariness in the potentials then we 

can get very strange things indeed [41], e.g. one dimensional Heisenberg spin sys- 

tems with spontaneous magnetization. 
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