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Abstract: We give a survey of results relating to the topics mentioned in the title.
We are particularly interested in the relationship between the analyticity proper-

ties of the free energy as a function of the thermodynamic parameters of the system
and the clustering and uniqueness properties of the corresponding equilibrium states
i.e. correlation functions. We concentrate on Ising spin systems with ferromagnetic

pair interactions.

I. Introduction and Foxmulation

In order to keep the presentation simple I shall restrict myself, for most of
this lecture, to the simplest mon-trivial many-body system known to man; the Ising
spin system with finite range ferromagnetic pair interactions on a V-dimensional
cubical lattice (IFFI)v, v =1,2,3,.. . (Interactions which fall off exponentially
behave, as far as the problems discussed here are concerned, just like finite range
interactions.) The Hamiltonian of this system in a finite domain A & 2’ with 'bound-
ary conditions' corresponding to specifying the values of the spin variables outside
A has the form [1,2],

H(G; Aby) = <% Fep J(4-0,9, - B, [h+ F) 59T Jo;, 1)
where 6i =+1, J{x) 20, J(x) =0 for 1&1 >R, \51 is the length of the lattice wvec-
tor x, h is the external magnetic field and 6.1 is a specified set of wvalues of Gi
for i € A, which constitute the set of boundary conditions ibh§ = b. (More generally
only the ‘'distribution' of the Gi for & ¢ A need be specified; we can also take into
account ‘free' boundary conditions by setting 61 = 0, and'periodic' boundary condi-
tions by modifying the definition of the J(x).)

The partition function, free energy density and correlation functions of this
system at temperature T = 8 are given by

Z(B,h'; Myby) = | exp [-8 n(o; Aby)d, €A (1.2)

{o"=t1
P

¥(B,h'; Aby) = 14n 2(B,h'; A,b,)}/14] (1.3)
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(0,0 B,n'; Mby) = (Fy) lo, exp [-B n(@:0,b))]1/2(B,n"5A,b)), (1.4)

i
where ‘A‘ equals the number of sites in A, h' = Bh, and OA = igA Ui, AS A (We
have absorbed a factor -P in the free energy and shall drop the prime on h from now
on.)

We are interested in the behavior of ¥ and <UA> in the thermodynamic limit,

A - ®,  The limit is taken in such a way that each site i eventually is (and remains)
inside A, Let me present some questions of interest:

1. Does the limit A — ® of ¥(B,h; A,bA) exist and is the resulting function in-
dependent of the boundary conditions b and of the way in which A-w® i.e. of {bA}?

The answer to this question for IFFL systems is an unqualified yes; all ways of
going to the thermodynamic limit lead to the same ¥(B,h) for all real h and B > 0.

(This is true generally for systems which are charge neutral [3,4]. The inter-
esting exceptions are systems with net charge [4] ana systems with dipolar inter-
actions in an external field [4,5,6] where the thermodynamic free energy density is
expected on the basis of simple magneto (electro) -static arguments, and known ex~
perimentally, to be shape dependent. The establishment of this shape dependence for
dipolar systems on a rigorous mathematical basis 1s (to my knowledge) the last re~-
maining interesting physical problem in "proving the existence of the thermodynamic
limit of the free energy', a task begun over twenty years ago by van Hove, c.f.
{1,310

2. Having now a unique thermodynamic free energy Y(B,h) the next question is:
what are its analyticity (real) properties? Non-analyticites in B,h are connected
with phase transitions and are, from both a physical and mathematical point of view,
the 'interesting® features of Y for real macroscopic systems. True singularities
clearly occur only in the thermodynamic limit A~ %, their ‘precursors' however are
indistinguishable from them quantitatively for macroscopic systems studied experi-
mentally, |A] ~ 1023. The 'finite size' corrections, (surface effects) are an in-
teresting problem in themselves which needs much further investigation, c.f. [71.
They will not be discussed here.

3. Is the thermodynamic limit of <GA> B,h; A’bA) unique? Since %(GA)i <1 we
can always find subsequences bA on which the limit exists for all finite sets. We
denote these by (UA)(B,h;b). The measure 'corresponding' to any such set of correla-
tions defines an ‘equilibrium state' which satisfies the DLR (Dobrushin~Lanford-
Ruelle) eqs. and vice versa, c.f. [8,9]. If the limit is not unique then there are
the further questions: i) Are all the limit functions translation invariant? i.e.,
does <0‘A+x>,(ﬁ’h;b) = (GAMB,h;b)? {i) How many 'extremal' translational invariant
equilibriﬁh states are there for each B,h, and a given interaction? Translation in-
variant equilibrium states can always be decomposed uniquely into extremal states
[1,81, e.g. if there were only two such extremal states, designated by subscripts 1

and 2, then each set of translation invariant corxrelation functions would have the
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form <OA> (B,§;b) = ab<GA>l (B,h) + (ldyb) <UA>2(B’h) where 0 < @y < 1 is independ-
ent of A, ('Similar' statements hold for non translation invariant equilibrium
states.)

4. What are the analyticity properties of the, possible boundary dependent,
<UA> (B,h;b)? Like the free energy the finite volume correlation functions are
clearly real analytic in B and h.

5. What are the cluster properties of the infinite volume correlation function,
e,g. does {<GA GB+E? - <GA> (UB+§?] ~ 0 as lgl - @, if yes does it do so exponen-
tially fast, etc.? This question is connected to the questions about analyticity
{10,11].

2. Survey of Selected Results

We would of course like to be able to answer the above questions for any particu-
lar interaction, Even more important we want to understand, in as much generality
as possible, the connection between the properties of the free energy density which
is & macroscopic thermodynamic quantity, and the correlation functions which describe
the microscopic structure of the system. Thus we would like to know the general
class of systems for which the analyticity of ¥(B,h) in some region of the RB - Rh
plane implies unique equilibrium states with strong cluster properties and vice versa.
While little is known about the answer to this question in general quite a lot is
known for IFFI systems (there is still quite a lot unknown too). It will generally
be clear which results are specific to these systems and which have analogies for
other systems. (ILf Y is required to be analytic in 'all interactions' then the
above question can be answered fairly generally, c.f. Ruelle [12], but our point of
view here 1s to think of the interactions as given while B,h are 'externally con-
trolled’ variables. Finding the set of velevant variables is of course a basic part
of the problem.)

Let me begin then with a theorem which relates derivatives of ¥ to spatial ‘aver~
ages' of some correlation functions,

Theorem l: If ¥(B,h) is differentiable in h at some value of B and h then the
thermodynamic limit of the magnetization is equal to the derivative of ¥,

n(B,hsb) = Lim (AT Z (o) (B,h; Aby) = 3¥(B,h)/oh 2.1)

Amw 1 €8 ¢

independent of b, c.f. [1,2].

Proof: ¥(B,h; A,bp) is a convex function of h hence so is Y(B,h) and the limit

of its derivative
=}
m(B,h; A,by) = 5= Y(B,h; Aby) (2.2)

equals the derivative of its limit whenever the latter exists.
Since the limit function Y(B,h) is independent of {bAi and because of convexity,

exists for almost all h we also have
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Coxollary 2. If m(B,h;b) degends on ibA§ then the right and left derivatives
y S¥(B.h) - 9¥(B,h)

of Y(B,h) are unequal, ot o

ing (increasing) to h such that

. o¥@.h -
lim '3&*"1 {hi=h = BY(B,h)/ah(f) .

i-—?m

» and there exist sequences ihii decreas=-

Clearly similar results hold for differentiation with respect to B (or other
parameters in the Hamiltonian) and also for genmeral systems, c.f. [13]., The next
theorem, however, which is & very strong 'converse' of Theorem 1 is (at the present
time) essentially vestricted to IFFL 'type' of systems and I don't see any way of
extending it to general systems. (Indeed there are some counter examples for anti-
ferromagnetic systems [14) unless h in Theorem 3 is replaced by the ‘staggered’
field).

Theorem 3,
functions are independent of boundary conditions [15], i.e.

1f 3¥(B,h)/h exists (i.e. is continuous) then all the correlation

<crA) (B,h;b) = (oA> (B,h).

Theorem 3 may be usefully combined with the following results about IFFI sys~
tems.

Theorem 4. a) Y(B,h) is jointly anmalytic in h and (real) B for h # 0, B > 0,
(16]l. B)3 a Ba > 0 such that for B < Ba (high temperature region) ¥Y(B,h) is real
analytic in B and h [17].

Thus for h # 0 or 8 < Ba there is only one equilibrium state. This state being
unique is translation imvariant. It is furthermore true that the correlations in
this state have all the desired properties:

Theorem 5. For h # 0 or B < Ba the <GA> (B,h) axe (real) analytic in B and h

and have exponential clustering properties L16,17,18]. (For even stronger cluster

properties see [ll]).
We thus see that for our systems everything is fine (and thus uninteresting)

for h # 0 or B <B_. We must therefore, look at h = 0 and low temperatures to have
a chance of finding something interesting. Now it can be shown, [1], that in one
dimension, (IFFI),, ¥(B,h) is (real) analytic for all B and h. We must thersfore
look to higher dimensional system, which is what Peierls did and found that there
was indeed something interesting happening for Vv > 2 [1,2}. (Peierls' method of
proof has been extremely fruitful for our understanding of phase transitions. It
was invented one evening after an unnamed mathematician gave, in a lecture, an
elaborate proof of the nonexistence of a phase transition in one dimension and con-
cluded by saying that ‘'clearly the same is true in higher dimensions', [193).

Theorem 6, If V > 2 and the nearest neighbor interactions do not vanish then

there exists a Bp < ® such that

m(B,0; Ay = -m(B,0; A,b ) > € >0, for B 2 Bp, (2.3)
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independent of A, where b+(b_) corresponds to all spins outside A being set equal to
1(-1).

The exact value of B_ is not too important here. It is generally a poor lower
bound on the values of B for which the inequality m(B,0; A,b+) > 0 holds. What is
important is that for V 2 2 we have at sufficiently low temperatures, T = TP = 5;1,
that m{B,O;b+) # m(B,03b_), i.e. m(B,0;b) depends on the boundary conditions. Thus
according to Corollaxy 2, 9¥(B,h)/Oh will be discontinuous at h = O for B > 5P. We
can actually say more.

Thecrem 7, a) <0A) (3,h;A,bA) is monotone nondecreasing in B and h whenever the
b, are such that all the external fields appearing in the Hamiltonian (1.1} are non-
negative, i.e. h, = =h + §A J(i-3) U Z 0. b) For h 2 0 the correlation functions
(0 ? (B,h;A,b ) are monotone nonlncreaslng in A and their limits, (0 ) (B,h;b ) are
translatlon invariant gven when there is more than one equilibrium state, i.e. at

h = 0 and low temperatures. Furthermore

lim <c>(Bb)—<c>(EOb) (2.4)
hio
¢)  m(B,0b) = (oi> (B,05b) = lim Q%ff-hl = m*(B) (2.5)
hio

and m*(B), the 'spontaneous magnetization', is monotone nondecreasing in B.

Part a) of the theorem is a special case of the basic Griffiths inequalities
[1,2]. b) and ¢) follow from a) and some other arguments, c.f. L1s]. (Clearly
(UA> (B,h;A,b4) = (~1) A <GA) (B,~h;A,b ) and ¥(B,h) = ¥(B,~h) so similar results
hold for negative fields.,) It follows directly from c) that we can define a unique
critical temperature Tc = 6;1 for spontaneous magnetization by the relation m*(B) =
for B < 3c, m*(B) > 0 for B > Bc’

To summarize then: for IFFI systems we already know, i) For h # 0 or T * T, we
have unique states. For h # 0 or T > T, we have in addition amalyticity and expon-
ential clustering, ii) For h = 0 and T < 7T _ we have nonunique states, discontinuity
of 3¥/3h and of (5.} (B,h) (and all (v,) for {al oad).

A gquestion which naturally arises now is what happens to analyticity and cluster
p T ST 2T,
where Y and/or the <GA> stop being analytic in h and or B. (The nature of the singu-

properties at h = 0 and T <T< T,, e.g. is there a temperature T

larities occuring at TC will not be discussed here). This is a most interesting
question and the only additional information known to me about general IFFI systems
is given in the following theorem.

Theorem 8, Y(B h) and <0 ? (B,h) are infinitely diffeventiable in B and h for
B < B where B F is (essentlally) the 'mean field' critical temperature, de-
flned by the relatlon 2 tanh B J(x) =

Proof: The proof of Theorem 8 is based on the following result, L10]:
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Theorem 9, If the pair correlation <Giai+x> (B,0) (independent of b for B < B )
_—_——= X c

has a bound of the form

0< (oo, ) @0 Sk kT w<e e >0, ke, (2.6)

then ¥(B,h) € ¢ and (0,) (®,n) € ¢¥ in both variables. (The inequality on the
left of (2.6) is part of Griffirhs first inequality).
The existence of an exponential bound (corresponding to k = ® in (2.5)) follows

from Griffiths third inequality [20]
(cicj> ®,0) < kﬁi <ajok> tanh LBIJ(i-k)J, for j # i 2.7

and can be improved slightly using generalizations of this inequality c.f. L21]. An
alternative method which bounds the pair correlation function using self-avoiding
walks is due to Fisher [22]. 1t can sometimes yield an exponential bound for temp-
eratures considerably lower than the mean field critical temperature. It is not
known however at the present whether even exponential decay and thus/or Cm persist
for all (IFFIL), systems down to T .

(To obtain an explicit bound from (2.7) we note that if (2.7) is solved as an
equality then, for B < BF’ the solution is an upper bound to <Oi0j>’ c.f£. [21].

This yields, (for simplicity use periodic boundary conditions),
2
< <
<0i0j) B,0) < <yiyj>g(t)/<yi)g(t), for B EF (2.8)
where (yiy.> (t) are the correlations in a "Gaussian" model [23] with the interactions
BJ(i-j) replaced by tamh [BJ(i-i)J,
_ .1 ..6\)
by =y » 1162 (2.9)
where t is the matrix with elements

(£>ii =1, (E)ij = tanh BJ(i-j), i # 3. (2.10)
(2.9) can be readily shown to decay exponentially (use Fourier transforms).

When (2.8) is combined with Newman's inequalities [24]

(01...°2n>(ﬁ,0) = pair?ngs <crilo;il)“'<cina'n> (2.11)
we obtain
(0,2 (B,0) < <yA>g<t)/E<y§>g(t’)J%“"| » B <P (2.12)

'similar’ inequalities hold for h # 0.)
It should be noted here that while it is very natural to conjecture that analy-

ticity persists for (IFFI)V systems up to T = Tc any proof of it will require making
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some use of the lattice structure since the statement is not true for the Bethe
1attice [25] and for random spin systems L26].

Let me come now to a discussion of what additional information is known for
h=0and T < TC. I am of course considering the case where TC >0, forv =1 we
have 'l‘c = Ta = 0.

Theorem 10, J a temperature Te’ ¢ < T, < T, (Te ~ Tp) such that for h = 0,
0<T E_Te the following statements are true:

a) There are only two extremal translation invariant states and these are ob-
tained from b+ and b_ boundary conditions.

b) The correlations in the extremal states decay exponentially.

¢) Y(B,h) and (GA> (B,h) are infinitely differentiable in P and h as h — 0
from either side and so are ¥(8,0) and (°A> (3,0;b+).

The proof of part a) can be obtained in different ways, £27,28] and the same is
true of b), [28,29]. It follows from &) and b) that every set of translation invari=-
ant correlation functions can, for B > Be = T;l, be written as a linear combination

of correlation functions which have very strong cluster properties,
(oA> (B,0)35b) =a (o) (B,0;b) + (1) (cA> (B,03b ), 0<a <1 (2.13)

where the bar indicates translational averaging (if necessary).
Theorem 10c) follows from b) and a variation of Theorem 9 which applies for
h 2 0 when (2.6) is replaced by the condition, c.f. {36],

05 (oo, ) (.05, - [ax®)1? < x g} &) (2.14)

where, by (2.5), m*(B) = <cj> (B,05b,) for all j.

(A very interesting question, related to the problems we are discussing is
whether Y(ﬁ,h) and the <°A> (B,h) can be analytically continued (below Tc) across
the line h = 0, If such an analytic continuation were to exist one would be tempted
to identify the ¥ and <GA> so obtained with metastable states as may be done for
systems with 'very long range' potentials [31]. For this reason this question has
generated more interest in the general statistical mechanics community than most of
the other questions I have raised, The situation at present is unclear (even for-
getting about proofs). There appear to be some strong arguments for expecting an
essential singularity in ¥ and (@, at h = 0, [32]. Very recently however these
arguments have been questioned [33]. What we know rigorously [8b] is that for syg-
tems like IFFI the 'equilibrium state' cannot be continued analytically across h = 0
for T < T . This however does not rule out at all the possibility that Y and some
<GA>’ say for all 1Ai < 137, may be continued analytically or even that ¥ and all
(UA> can be continued analytically but that some (UA> will fail to satisfy some
positivity conditions, In summary then the question is wide open.)

Again it is not known for general (IFFI)v systems whether Theorem 10 remains
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valid for all T < T or does there exist some Ty Ty ST, < T, where matters change.
More information is known about a special class of (IFFI)v systems, those with near-
est neighbor interactions only; J(x) = 0 for l§| > 1, J(1) = J independent of direc-
tions. (This is actually more restrictive than nmecessary but we want to keep matters
simple). We shall denote these systems by I, and their critical temperatures by
Tc,v' As is well known 12 was solved by Onsager [34] for h = 0 (the first non-trivial
many body problem ever solved). Onsager obtained ¥(B,0) for I, and found that it was
singular (second derivative diverges logarithmically) at Bo given by [sinh ZﬁoJ] =1,
Onsager and Kaufman [34] also showed that the pair correlation (for 'periodic bound~
ary conditions') decays exponentially above T and approaches (also exponentlally)
mo(ﬁ) below TO with mo(B) the Onsager-Yang magnetizatlon mo(ﬁ) [1-sinh” (25.])]1/8
for B > Bo'

It follows from these (and other) facts that To coincides with the critical
temperature for spontaneous magnetization T EIOJ that m (B) = m*(B), [35], and
that ¥ and (U Y are ¢ in B and h for B < B and are c in B and infinitely differ=
entiable in h as b~ 0k for B > B [10,30]. It is also known [36] that I, has oniy
translation invariant states for T & T' vhere T' ~ .7Tc. Furthermore it has been
shown recently [37] that 12 has exactly two extremal states (+, - boundaries) for all
T < T.-

Thus of the questions raised in the beginning of my talk the only ones left un-

answered for I. are a) whether analyticity holds for all T = Tc and b) whether the

2
nonexistence of non-translation invariant states is true for all T (The question is
really just for T' < T <7 ). 1t would be most surprising indeed if the answer to

both questions were not yes, [361. (I make no conjecture about analytic continua-

tion below Tc).

This brings me to a most interesting point; the property of 12 of having only
translation invariant states (at least at low temperatures) definitely does not hold
for V > 2. This was first shown by Dobrushin [38]. The result has been improved
and the proof greatly simplified by van Beijeren {391, who proved:

Theotrem 1l. For h = 0 and T < Tc,v-l’ I, has non translational invariant states.

Since T = 0 this is consistent with the results for IZ' Indeed the differ-

c,1
ence between ¥ = 2 and V = 2 with rvegard to the existence of non translation invari-

ant states is very similar to the difference between V > 1 and V = 1 with regard to

the existence of a T v > (0, This becomes clearer when we consider the nature of
c

the Dobrushin and van’Beijeren proofs. They consider a sequence of V-dimensional
cuhes A ,V > 2 with 2N horizontal layers labeled by k = -N, -N+l,...,N, and boundary
condltlons b corresponding to + spins, ai = 1, on the 'top half' N layers and -spins,
ai = -1, on the bottom half layers; {b N§ b—

If we let © designate the spin variable at site @ in the kth layer then by

k& -1
symmetry (Ok’d>(5,0; AN’ bN) = —(G >(3 0; b ) At B™" =T = 0 we clearly have



378

(Uk q> =1 for k > 0 and all N. The question now is whether as N = ®, and the bound-
2>

aries recede, diés (Uk’a

thus (Ui>(B,0;b—j would not be translation invariant. We already know that for

T>T, (ci> (B,0;b) = 0 for all boundary conditions. For I, we also know that for

> for k > 0 remain positive for some temperature T # O and

0 <T <T'all states are translation invariant, and thus <6k c1,)(B,O;b-—h) = (U_k d)
3 »

(3,0;bi) = 0 by symmetry. For V 2 3 however it is shown by van Beijeren that

(Ul’a>(B,O;bi) >mg (B) >0 for T< T, (2.15)

sV-1

(van Beijeren also shows that, as expected, (Uk,a>(B,O;bi) is monotone non-decreas-
ing in k.)

Physically (2.15) means that the V-1 dimensional surface which separates up
spins from down spins and intersects the boundary of AN between the k =1 and k = -1
level (this is a connected piece of the union of 'faces' separating cells with Oi=1
from cells with 0, = ~1) does not fluctuate too widely as N = ® when V-1 2 2 and
T < Tc,v—l (for v = 1 =1 it does so fluctuate).

The interesting question for I, V > 3, is now whether these non-translation
W or is there a 'roughening temperature' Tr,v<Tc,v
where the dividing surface roughens and disappears, as in I There appears to be

invariant states persist up to Tc

9

some evideuce, [40] based on extrapolations from low temperature expansions and

numerical computations, that T ~ 57T ~1,17T , i.e. quite close to van
r,3 c,3 c,2

Beijeren's lower bound. Again however definite results are sorely lacking.

3. Concluding Remarks

We have seen that while much remains to be done all the information available
for IFFL systems are consistent with our hopes for simplicity. 1In lattice gas langu-
age there is a line in the chemical potential k-temperature T plane along which two
phases, liquid and gas, coexist ending in a critical point. For values of b - T not
on this line we have unique equilibrium states with (very likely) exponential decay
of correlations and analyticity in p and T, On the line itself we have (very likely)
only two translation invariant states. The question now is how much of this simpli~
city remains for even simple continuum systems, e.g. for atoms interacting with
Lenard-Jones type potentials. Since the interaction potential is now long range,
falling off as r—n, we cannot expect and do not get exponential decay of correla-
tions [11,18]. oOn the other hand we expect to have also a solid-fluid transition
and a triple point. Taking these into account however does the rest of the picture
remain simple or are there real surprises, e.g. two dimensional regions of the W-T
plane where the equilibrium state is not unique and/or the free energy not analytic.
We don't seem to be anywhere near getting an answer to these questions., All we do
know is that if we permit a large amount of arbitrariness in the potentials then we
can get very strange things indeed [41], e.g. one dimensional Heisenberg spin sys-

tems with spontaneous magnetization.



379

References

1. Ruelle, D. Statistical Mechanics (Benjamin, 1969).

2., Griffiths, R.B, in Phase Transitions and Critical Points I, edited by C. Domb
and M.S. Green, (Academic Press, 1972).

3. Fisher, M.E. Arch. Rat, Mech. Anal. 17, 377 (1964).

4, Lebowitz, J.L. and Lieb, E.H. Phys. Rev. Lett. 22, 631 (1969); Lieb, E,H. and
Lebowitz, J.L. Adv. in Math. 9, 316 (1972).

5. Griffiths, R,B. Phys. Rev. 176, 655 (1968): Brown, W.F. Jr. Magnetostatic Prin-
¢iples in Ferromagnetism, (North Holland, 1962).

6. Penrose, 0, and Smith, E.R. Comm. Math. Phys. 26, 53 (1972); Smith, E.R., and
Perram, J.W. Phys. Lett. 50A, 294 (1974).

7. Fisher, M.E. and Lebowitz, J.L. Comm. Math., Phys. 19, 251 (1970).

8. Dobrushin, L. Funct. Anal. Appl. 2, 291 (1968); Lanford 0.E. and Ruelle, D,
Comm. Math, Phys. 13, 194 (1969): Lanford 0.E, in Statlstical Mechanics and
Mathematical Problems (Springer~Verlag, 1973)

9. Brascamp, H. Comm. Math. Phys. 18, 82 (1970); Gruber, C, and Merlini, D. Physica
67, 308 (1973); Gruber, C. and Lebowitz, J,L. Comm. Math. Phys. (to appear).

10, Lebowitz, J.L. Comm., Math, Phys. 28, 313 (1972).

11, Duneau, M,, Iagolnitzer, D. and Souillard, B. Comm. Math. Phys. 35, 307 (1974)
and article by Souillard in this volume.

12, Ruelle, D, Aon. of Phys. 69, 364 (1972).

13, Lebowitz, J.L. and Lieb, E.H. Phys. Lett. 39A, 98 (1972).

14. Brascamp, H. and Kunz, H. Comm. Math. Phys. 32, 93 (1973).

15, Lebowitz, J.L. and Martin-L8f, A. Comm. Math., Phys. 25, 276 (1972),

16. Lebowitz, J.L. and Penrose, O. Comm. Math. Phys. 11, 99 (1968).

17. Gallavotti, G. and Miracle-Sole, S. Comm. Math. Phys. 12, 269 (1969).

18, lLebowitz, J.L. and Penrose, O, Phys. Rev. Lett, 31, 749 (1973), Penrose, 0. and
Lebowitz, J.L. Comm. Math. Phys. 39, (1974).

19, Peierls, R. private communication.

20, Griffiths, R,B., Comm. Math. Phys. 6, 121 (1967).

21. Krinsky, 8. and Emery, V.J. preprint,

22, Fisher, M.E. Phys. Rev. 162, 480 (1967).

23. Berlin, T, and Kac, M. Phys. Rev. 86, 821 (1952); c.f also Bimon,B. The P (@)
Euclidian Quantum Field Theo;y,(Prlnceton University Press, 1974), — 2

24, Newman, C.M. preprint.

25. Muller-Hartmann, E. and Zittartz, J. Phys. Rev. Lett. 33, 893 (1974} and Zittartsz,
J« in this volume.

26. Griffiths, R.B. Phys. Rev. Lett. 23, 17 (1969).

27. Gallavotti, G. and Miracle-Sole, S. Phys. Rev, 5B, 2555 (1972).

28, 8lawny, J. Comm. Math. Phys. 34, 271 (1973).

29, Martin-L8f, A. Comm. Math. Phys. 25, 87 (1972).

30. Gallavotti, G. and Lebowitz, J.L. Physica 70, 219 (1973).
31. Penrose, 0, and Lebowitz, J.L., J. Stat. Phys. 3, 211 (1971),

32. Fisher, M.E. Physics 3, 255 (1967); Langexr, J. Ann. Phys. N.Y. 41, 108 (1967).

33. Domb, C. private communication.

34, c.f. McGoy, B.M., and Wu, T.T. The Two Dimensional Ising Model (Harvard University
Press, 1973).

35. Benettin, G., Gallavotti, G., Jona-Lasinio, G. and Stella, A.L. Comm. Math. Phys.

30, 45 (1973).

c.f. Gallavotti, G. Comm. Math. Phys. 27, 103 (1972); Rivista Nuov. Cim. 2-2,

133 (1972): Abraham, D.B, and Reed, P. Phys., Rev. Lett. 33, 377 (1974).

37. Messager, A. and Miracle-Sole, $. Comm. Math. Phys. to appear.

38, Dobrushin, R.L. Theo. of Prob. and Appl. 17, 582 (1972).

39. van Beijeren, H., Comm. Math., Phys. to appear.

40. Weeks, J.D., Gilmer, G.H, and Leamy, H.J. Phys. Rev. Lett. 31, 549 (1973).

41. Israel, R. preprint,

36



