Nonsense, Conspiracy, and Possible Singular Residues
in Regge Pole Theory

The history of what has come to be called Regge pole theory has been
a living testimonial against the often quoted maxim that spin is an unessen-
tial complication in collision theory. In fact a number of the most interesting
aspects of Regge theory arise when one is dealing with particles with spin.

The important concept of “‘nonsense’” points! on Regge trajectories is
a good example. A nonsense value of the angular momentum, J, can be
defined as one of the integer values of J (or J — 3 if one is dealing with
a trajectory with baryon number =4-1) which is smaller than the difference
of the helicities of two particles coupled to the trajectory. For two spin-
zero particles, J = —1 is a nonsense point; for two spin-one particles
with helicities +1 and —1, J = 1 is a nonsense point; for a spin-one
particle with helicity —1 and a spin-one half-particle with helicity +3%,
J = % is nonsense. In the process 7= + p — #° 4+ n the differential cross
section shows a pronounced dip at ¢ = (momentum transfer)? = —0.6
(BeV/c)2. This is neatly explained by the fact that the p trajectory, which
is the most important one, passes through zero at this value of ¢. It is a
feature of the theory that when the trajectory passes through zero (a non-
sense point for this process) and, as in this case, the corresponding value
of the angular momentum does not correspond to a particle (for the p
trajectory, J = 1, 3, 5, . . . are particles) the Regge amplitude vanishes.
There are several examples of this general principle?; whenever a trajec-
tory passes through a nonsense point of the wrong signature one expects
a dip in the differential cross section.

Another striking example of the role of spin in scattering theory and in
Regge analysis is the following. Consider a general process a + b —c¢ + d
which we refer to as the s channel. The crossed, or t-channel reaction
is taken to be D + b —c¢ + A where A (D) is the antiparticle of a (d);
it is the Regge poles in the ¢ channel which dictate the large s behavior.
Let us restrict attention to processes in which m, = m. and m, = m, so
that ¢ = 0 corresponds to scattering through zero degrees in the s channel
(8,, the angle between a and ¢, is zero). Then if we use the letters a b ¢ d
to denote helicities, only the helicity amplitudes feq..o for which A = a — b
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is equal to 4 = ¢ — d are different from zero. This is because at 6, = 0,
M and p are initial and final angular momenta along the direction of motion
and must therefore be conserved. The theory even predicts the minimum
power of ¢ with which the vanishing amplitudes must go to zero as ¢t — 0.
Now since the s-channel helicity amplitudes are related by analytic
continuation to the t-channel ones, and their numbers are the same, if
certain s-channel amplitudes vanish at ¢{ = 0, there must be an appropriate
set, of linear relations among the {~channel amplitudes to make the numbers
balance.

The first time such conditions were noted was in connection with nucleon-
nucleon scattering in pre-Regge days.? The relevance to Regge theory was
pointed out by Volkov and Gribov* in a widely ignored paper. Here one
notes that the five usual independent helicity amplitudes degenerate to
three at ¢ = 0. There must be then two relations among the ¢-channel
amplitudes. It turns out that one of these is trivial, saying only that a
certain partial wave f-channel amplitude f/(f) must vanish near { = 0
like /% for all J. The second condition is much more involved and when
translated into Regge theory states that there must be a distinet relation
between Regge trajectories (and residues) with quite distinct quantum
numbers at { = 0, i.e., a conspiracy among trajectories. If the trajectories
are classified according to the nucleon-antinucleon states which are allowed
for physical J, one finds that

al'Jy,t =0l =a*(/ + Dy, t =0l = a[*Js, t = 0] £ 1

and a relation among residues. The only way to avoid the conspiracy is
to have the pole residues vanish like ¢ near ¢ = 0. This cowardly way
out has profound effects on the spin dependence of the differential cross
section near ¢ = 0.

Another interesting example® which also has relevance for the last
question we shall discuss is the case of the scattering of massive spin-one
particles by spin-zero particles (p—m scattering). Suppressing the spin-
zero particle helicity labels, we have in general four s-channel amplitudes
ml1,1, mo,o, ml,u, and Eml,_l. At f= 0, the last two vanish (ml,oNt”z,
My, ~ ¢t near { = 0). Designating the t-channel amplitudes by M1, Mo,
My, and M,_,, the condition 9M;,_; ~ ¢ becomes, using the crossing rela-
tions of Trueman and Wick,® My — Mo + M1 ~t, which we call the
conspiracy condition. Since the p mesons (neutral in our example) are
identical, we are concerned only with one type of Regge trajectory, namely
those with C = +1, even signature. It turns out that to satisfy the con-
spiracy condition, if there is a Regge trajectory which passes through some
value Jp near { = 0, there must be a consort which passes through J, — 2.
Furthermore if the residue at either of these poles for My — My is called
a and that of M, ; called b, we must have a(t) — Jo())[Jo(t) — 1]6(¢) ~ ¢
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near { = 0. Now suppose Jo(t) = 1 + &'(0)t -+ . . . ; ¢f b(t) is singular
near { = 0, ie. b(t) ~ 1/t, a(0) # 0. This possibility has the following
interesting consequence: The s-channel amplitudes are, at ¢t = 0, N, =
My + My, Moo = My — M,_;. The Regge-pole contribution to M,_; is
proportional to bJo(Jy — 1); if b is singular near ¢{ = 0 when J,—1,
which is, of course, what the Pomeranchuk trajectory is supposed to do,
then as shown above, it will give a nonzero contribution to 91;,; and 91 ,.
Thus, contrary to what is often said, the Pomeranchuk trajectory would
lead to spin dependence at high energies, 9,1 # My,. Whether Nature
chooses this option remains to be seen.

The question of singular residues is very important for processes involv-
mg real photons. Consider as an example Compton scattering on pions.
Assume that the Pomeranchuk trajectory couples to the two photons; the
s-channel amplitude 9, is related to the {~channel amplitude M, ;, for
all ¢, by 91 = M,;. A Regge pole with trajectory «(¢) contributes some-
thing of the form

_BOa®)[e(t) — 11 + emimad]s=®

i sin ra(t)

If at) = 1 + o/'(0)tneart = 0, unless B(t) ~ 1/1, this Pomeranchuk trajec-
tory will not contribute to 9;, at t = 0 and thus the Compton cross
section would not approach a constant at high energy.” This seems very
strange since one expects in this “classical”’ electromagnetic problem that
the characteristic diffraction behavior should obtain. We have been able
to show? that singular residues (which in this problem at least may also be
viewed in a certain way as indicating a fixed singularity at J = 1 as well as
a true Pomeranchuk trajectory) are not in conflict with the factorization
constraints on Regge residues in the processes v+ v—v + v and
T+ 7m— 7+ 7. Very similar conditions and results hold for Compton
scattering on spin-3 particles.

It should be clear, hopefully, that if spin is not essential, it is surely

very interesting!
MarvIN GOLDBERGER
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