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The computation of molecular excitation energies is essential for predicting photo-induced reactions of
chemical and technological interest. While the classical computing resources needed for this task scale poorly,
quantum algorithms emerge as promising alternatives. In particular, the extension of the variational quantum
eigensolver algorithm to the computation of the excitation energies is an attractive option. However, there
is currently a lack of such algorithms for correlated molecular systems that is amenable to near-term, noisy
hardware. In this work, we propose an extension of the well-established classical equation of motion approach
to a quantum algorithm for the calculation of molecular excitation energies on noisy quantum computers.
In particular, we demonstrate the efficiency of this approach in the calculation of the excitation energies of

the LiH molecule on an IBM Quantum computer.

DOLI: 10.1103/PhysRevResearch.2.043140

I. INTRODUCTION

Quantum computing is emerging as a new paradigm to
solve a wide class of problems that show unfavorable scaling
on conventional classical high-performance computers [1,2].
In particular, solving quantum chemistry and quantum physics
problems using classical algorithms is hampered by the ex-
ponential growth of the resources (classical processors and
memory) as a function of the number of degrees of freedom,
N (e.g., number of electrons or molecular basis functions),
encoded in the system Hamiltonian.

The resources needed to compute the solution of the
Schrodinger equation for molecular and solid state systems
have a factorial scaling in the full configuartion interaction
(full CI) representation of the ground-state wave function
[3]. At present, the canonical coupled cluster (CC) expansion
truncated at the second order in the electronic excitation op-
erator and including an approximated treatment of the triple
excitations [CCSD(T), S stands for single, D for double, and
(T) for noniterative triple] [4,5] with a scaling O(N7) is often
considered to be the “gold standard” for quantum chemistry
calculations. Energies computed at the canonical CCSD(T)
level of theory have an error that lies within the so-called
chemical accuracy (errors less than 1 kcal/mol = 0.043 eV)
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for many systems (i.e., when no strong static correlation or
multireference character of the ground state is present [6,7]).

Recently, the variational quantum eigensolver (VQE) algo-
rithm [8—11] was proposed for the efficient approximation of
the electronic structure in near-term quantum computers. This
algorithm is based on a parametrization of trial ground-state
wave functions. The parameters are encoded in single-qubit
and two-qubit gate angles and are optimized self-consistently,
using a classical processor, until the minimum ground-state
energy is reached. The energy corresponding to a given
set of parameters is obtained by computing the expectation
value of the system Hamiltonian and becomes therefore a
function of the gate variables. The VQE has already been
successfully applied to the simulation of the ground-state
properties of simple molecular systems on quantum hardware
[12—-14] and extended to more complex molecules in quantum
simulators [15,16].

The calculation of molecular excited-state properties con-
stitutes an additional challenge for both classical and quantum
electronic structure algorithms. In fact, in addition to cal-
culating a well-converged ground-state wave function, one
needs to devise schemes for the evaluation of the higher
energy states, which—in general—are not accessible through
the optimization of a trial state. In classical computing,
excited states are typically computed in linear response the-
ory, explicitly (LR) or implicitly (the equation of motion,
EOM) starting from a ground-state wave function optimized
at a given level of theory (e.g., CC, multiconfigurartional
self-consistent field, configuration interaction, etc. [1]). In
particular, CC theory was also extended to the calculation of
excited-state wave functions and energies using, for example,
LR [17], EOM [18], state-universal multireference [19], and
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valence-universal multireference approaches [20]. Alterna-
tively, density-functional theory (DFT) in its time-dependent
formulation (namely, time-dependent density-functional the-
ory, TDDFT) or Green’s function—based techniques (like
the Bethe-Salpeter equation, BSE) can be used to evaluate
excited-state properties in the LR regime. Since the EOM ap-
proach is based on a direct treatment of the ground-state wave
function, it is an interesting choice for the implementation of
excited-state properties within the VQE approach [21].

Other VQE-based quantum algorithms for computing elec-
tronic transition energies were recently proposed [8,22-30]. A
useful overview of these algorithms can be found in Ref. [22].
Among these algorithms the quantum subspace expansion
(QSE) [26] was employed to compute the excited states of
the H, molecule using two qubits [31]. The advantage of the
QSE algorithm compared to the more recent ones relies on the
fact that it can be implemented as a straightforward extension
of the VQE algorithm as it does not require any modification
of the quantum circuit but rather only the measurement of
additional matrix elements for the ground-state wave function.

In this work, we show how to adapt the EOM method
to a quantum algorithm to efficiently calculate molecular
excitation energies. We show how this leads to similar work-
ing equations as for QSE and we highlight the differences
between both approaches. In a second part, we discuss the
numerical simulations performed to test our algorithm on
several small molecules, namely H,, LiH, and H,O. Most
importantly, we achieve excited-state experiments for the LiH
molecule on the 20-qubit processor IBM Q Poughkeepsie. To
do so we vary the noise level in the quantum hardware and
adapt an error mitigation technique to this purpose. With this
work we demonstrate the robustness of the EOM approach in
a noisy quantum computation.

II. THEORETICAL FOUNDATION

The EOM approach, first derived by Rowe [32], was ex-
tensively reviewed [33,34] and implemented in a series of
electronic structure packages. Within this approach, excited
states |n) are generated by applying an excitation operator of
the general form 0T |n) (0] to the ground state |0) of the
system, where |n) is the shorthand notation for the nth excited
state of the electronic structure Hamiltonian. Similarly, a de-
excitation operator can be written as 0, = |0) (n].

Taking the commutator of the Hamiltonian and the excita-
tion operator leads to an expression for the excitation energies,
Ey, = E, — Ey,

[H. 0;110)

=HO! |0y — Ol H |0) = Ep,0010). (1)

Operating from the left-hand side with OAZ |0) we then obtain

_{01[0,. [H,0]1110) _ (0][O,. H, 0]110)
E(Jil - A At - A At . (2)
(01 [0n, 01110) (01 [0n, O3110)

The second equality arises because for the exact ground
state, (0] [O,, [H, O}1110) = (0| [[O,, H], O{1]0), and there-
fore we can symmetrize the numerator introducing the
double commutator [A, B, C] = I{[[A, B], C] + [A, [B, CI}
[35]. This operation has also the important effect of guar-
anteeing real-valued energy differences Ey,. In fact, while

0] [0,, 4, (A);L']] |[0) may not be Hermitian, the double

commutator of the right-hand side is Hermitian. Note that
this expression differs from the one derived for QSE [26] in
two points: (i) due to the commutator form, the operators in
the numerator and denominator are Hermitian allowing for
a systematic reduction of the number of terms to evaluate
thanks to the use of the Pauli commutation relations [36], and
(i1) the solution of the EOM equations leads directly to the
excitation energies rather than the absolute energies, making
the approach size intensive (contrary to QSE, which is not size
intensive).

The EOM approach aims at finding approximate solutions
to Eq. (2) by expressing O as a linear combination of basis
excitation operators with Varlable expansion coefficients. The
excitation energies are then obtained through the minimiza-
tion of Eq. (2) in the coefficient space. The simplest basis is
composed of the Fermionic orbital creation and annihilation
operators &' and &, where @ &; represents the excitation of a
single electron from an occupied orbital i to a virtual orbital m,
and & a’a,a; the double excitation of a pair of electrons from
the occupled orbitals i, j to the virtual orbitals m, n. Calling «
the degree of excitation, we can express OT as

ZZZ X(a)( )E(a) Y(a)( )( (a)) ], (3)
o o

where (i, is a collective index for all one-electron orbitals
involved in the excitation. This expression is general and
explicitly treats the possible deexcitation of all states involved.
This is of particular importance in the context of quantum
computing where the prepared ground state is, in general,
a many-determinant wave function. Note also that the QSE
approach introduced in Ref. [26] neglects the deexcitation
operators (as in the Tamm-Dancoff approximation [37,38]),
which limits its application to systems for which this approx-
imation is valid (e.g., far from conical intersections, see, for
instance, Ref. [39]).

In this work, we will restrict our excitation operator basis
to single (¢ = 1) and double (o = 2) excitations such that
B, =aja, B, = ajajaa,, (E)) = aja,, and &) =
aTaT&m&,, By inserting the expansion of Eq. (3) into Eq. (2)
we obtaln a parametric equation for the excitation energies.
Applying the variational principle §(Ey,) = O in the parameter
space spanned by the coefficients X{*) and Y(*) we obtain the

following secular equation:

M Q) /X, \Y W /X,
o >=Eon< ) e
Q* Mx*/\Y, -W*  —v*/\Y,

where

Myy = [( (ﬂ)]

Oy = —OI[ (B )Tﬂ( ) 10,
Vi, = OI[ () B ]10),
Wo, = —(OI[(E)", (E))'T10).

Note that the rank of all these matrices equals the num-
ber of possible single and double excitations included in
the active space that defines the operators in Eq. (3).
Due to the small rank of the matrices involved in the
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FIG. 1. (a) Graphical representation of the gEOM algorithm. [(b)-(d)] Lower panels: Dissociation profile of the H,, the LiH, and the H,O
molecules. The gray lines represent the exact eigenenergies of the Hamiltonian obtained from its diagonalizaton. The colored crosses depict the
ground state (red) and the first (green), second (blue), and third (purple) excited states obtained with the gEOM. Upper panels: Corresponding
energy errors along the dissociation profile. The gray shaded area corresponds to the energy range within chemical accuracy.

solution of EOM equations, the eigenvalues of Eq. (4) can
be evaluated classically. However, quantum advantage can be
achieved through the efficient measurement of each single
matrix element of the EOM generalized eigenvalue prob-
lem. Indeed, while classically the scaling of this operation
depends on the wave-function ansatz, the measurement of
the expectation values in a quantum computer scales with
the number of terms in the Hamiltonian as O(N*). The
steps of this quantum algorithm are the following. First, the
Jordan-Wigner transformation can be used to map the commu-
tators [(E)", ALES ) (B AL B, 1T BN,
and [(E/(Z))T, (E(v':) )1, which are originally expressed in terms
of the Fermionic creation and annihilation operators, into the
qubits space. They are then evaluated using the ground-state
wave function prepared in the quantum hardware from, e.g.,
a VQE calculation, to compute the matrix elements of M,
Q, V, and W. From these measurements the secular equation
[Eq. (4)] is constructed. Its 2n eigenvalues are then classically
solved to obtain the first n excitation (and corresponding de-
excitation) energies.

Note that the implementation of the EOM approach as a
quantum algorithm differs from its classical counterpart and
therefore we do not expect the quantum-EOM algorithm to
reproduce the same results. In fact, the way the EOM matrix
elements are evaluated, the different nature of wave-function
ansatz (i.e., CCSD vs. UCCSD) and its implementation as
a quantum circuit, as well as the noise of the quantum pro-

cessors will always introduce differences in the numerical
outcomes compared to the classical solution. For these rea-
sons, in the following we will use the acronym qEOM to
designate the quantum implementation of the EOM algorithm
(and not the formal theoretical development, which is the
same as in the classical case). A graphical representation of
the gEOM algorithm is given in Fig. 1(a). It could be further
improved by using a classical iterative diagonalization method
such as the ones employed in the efficient variants of the
classical EOM algorithms, e.g., the Stanton-Bartlett approach
[18] [with scaling O(N®)]. Also in this case, the advantage of
the gEOM algorithm resides in the efficient evaluation of the
required expectation values.

III. SIMULATIONS OF THE QEOM ALGORITHM

To validate the performance and the accuracy of the qEOM
approach, state-vector-type simulations (where the exact uni-
tary matrix representation of the circuit is applied on the
state vector, no sampling or hardware noise is included)
are performed. The algorithm is tested on three molecules,
namely H, LiH, and H,O. We prepare the Hamiltonians
by computing the one- and two-electron integrals using a
Hartree-Fock—STO-3G calculation performed on Gaussian09
[40]. To improve the efficiency of the ground-state calculation,
the resulting Hamiltonian is mapped into the particle-hole
framework [41]. In the case of LiH and H,O effective core
potentials (ECPs) [42] are used to replace ls core electrons.
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In this way, we are able to reduce the number of qubits for
LiH and H,O resulting in 4, 10, and 12 qubits for H,, LiH,
and H,O, respectively.

In Fig. 1(b) we show the dissociation profile of H,, LiH,
and H,O obtained with gEOM (colored crosses) and from
the exact diagonalization of the Hamiltonian (gray lines). The
qEOM operators are measured on a ground state obtained with
VQE. The wave function is approximated with the UCCSD
ansatz where the indices for the excitations run over all occu-
pied and all virtual Hartree-Fock orbitals for the given basis
set. The variational parameters are optimized with the L-
BFGS-B algorithm as implemented in SciPy [43]. The excited
states shown in Fig. 1 are the three lowest-lying excited states
found by solving the qEOM pseudoeigenvalue equation. In
this work, we choose to use only particle- and spin-conserving

excitation operators EEZ). For this reason, the qEOM excited
states displayed in Fig. 1 are not strictly the three lowest-lying
ones but rather the three lowest-lying within this specific
particle- and spin-number subspace. By selecting a specific
subset of the excitation operators it is therefore possible
to address specific sectors of interest of the entire Hilbert
space.

In the case of Hy and LiH the accuracy of the ground
state is excellent over the entire dissociation curve (see upper
panels in Fig. 1), allowing us to compute accurate excited-
state energies within chemical accuracy (with errors <0.015
Hartree, shaded area) for all geometries. For H,O, the VQE
results are less accurate, leading to excited states slightly
above chemical accuracy.

Assessing the error propagation from the ground-state
wave-function calculation to the excited-states energies is not
straightforward and we propose a more detailed discussion in
the Appendix. We found the error in the excitation energies
to grow more slowly than the error in the ground-state energy
when adding an increasing error to the ground-state parame-
ters. The accuracy of the excitation energy is altered because
of the propagation of errors through Eq. (4) due to the nature
of the M, V, Q, and W matrices. We expect the sampling noise
to have a stronger effect on the results in strong correlation
regimes. Moreover, the propagation of errors from the ground
state to the excitation energies was demonstrated to be weaker
with gEOM than QSE. However, when the ground and first
excited states become almost degenerate, i.e., when the lowest
energy solution of the EOM generalized eigenvalue problem,
Eq. (4), is close to zero, the conditioning of the corresponding
matrices deteriorates, affecting the quality of the resulting
excitation energies.

In preparation of computing molecular excited states on
a quantum hardware, we implement the qEOM algorithm in
the Qiskit software library [44]. This enables us to perform
realistic noisy simulations and model the performance of the
algorithm on the IBM Q Poughkeepsie device. Using Qiskit,
the molecular orbitals are computed with Hartree-Fock—STO-
3G on the PySCEF classical code [45]. In this case the core
orbitals are simply frozen (note that the absolute energies
are shifted in comparison to using ECPs). The circuit depth
is reduced as explained in the next section. We observe that
around the optimal ground-state parameter value the error
in the excitation energies is about one order of magnitude
smaller than in the ground-state energy (see the Appendix).

FIG. 2. (a) Active space and corresponding molecular orbitals
of LiH. (b) IBM Q Poughkeepsie device layout. The active or-
bitals are mapped onto the colored qubits. (c) UCC-inspired circuit
of four qubits. The sets ®; of angles are &y = {7 /2, 0.0, 0.930},
Y, ={—n/2,7,—1.207}, &, ={-n/2,—m,1.310}, and P53 =
{—m/2,0.0,1.877}.

In the next section the relative robustness of the experimen-
tally obtained excitation energies measured at varying noise
levels is studied.

IV. HARDWARE CALCULATION OF THE EXCITATION
ENERGIES OF LIH

The UCCSD circuit for the optimization of the LiH ground
state using a STO-3G basis set comprises over 12 000 CNOT
gates and 92 variational parameters. Given the limitations of
state-of-the-art quantum hardware, we reduce the active space
from 10 to 4 orbitals. The reduction of the active space in the
quantum computing framework has already been discussed
in literature [41,46]. The orbitals composing the active space
in LiH are selected according to their contribution to the CI
expansion (see the Appendix). The resulting active space is
shown in Fig. 2 along with the layout of the 20-qubit su-
perconducting processor IBM Q Poughkeepsie used for the
experiment. In the “conventional” quantum UCCSD, double
excitations are encoded using eight entangling blocks with
different fixed pre- and postrotations [41,47]. Here we replace
the eight blocks by a single one with variable pre- or postro-
tations (in U) where the angles are optimized in simulation
to best approximate the exact UCCSD results (see the Ap-
pendix). Due to this preprocessing procedure we are able to
reduce the circuit, for LiH, to six CNOTs, eight fixed single-
qubit rotations, and a single variable qubit rotation R,(6) as
shown in Fig. 2. This modified variational UCC circuit used
in the reduced active space can recover at least 56% of the
correlation energy (and up to 87%, see the details in the Ap-
pendix) over the entire dissociation range considered, which
corresponds to an energy error <7 mHa. Discrepancies are
expected to be larger for long internuclear distances (>2.5 A)
where strongly correlated effects become more important and
a larger active space is therefore required.

The experiments presented in this work used 4 super-
conducting qubits (Q0, Q1, Q2, and QS5). See Fig. 2 for the
connectivity of the 20-qubit processor IBM Q Poughkeepsie.
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TABLE I. Gate characterization. Single- and two-qubit gate fidelities for the gates employed in this work for the various stretch factors,
estimated by randomized benchmarking.

Gate c=1 c=1.25 c=1.5

Q, simultaneous 0.0016 £ 4.2 x 1073 0.0023 £ 8.3 x 107° 0.0028 £ 8.3 x 107°
Q, simultaneous 0.0007 £+ 1.7 x 107? 0.0010 £ 2.7 x 1073 0.0012 £ 3.1 x 107
Q, simultaneous 0.0011 4 2.3 x 1073 0.0013 4 2.9 x 1073 0.0018 & 4.2 x 1073
Qs simultaneous 0.0008 £ 1.7 x 107° 0.0011 £ 2.0 x 1073 0.0013 £ 2.5 x 107?
CNOT,_4 0.031 £+ 0.001 0.030 £+ 0.001 0.032 £+ 0.001
CNOT|_¢ 0.037 £ 0.001 0.038 £ 0.001 0.042 £ 0.001
CNOTy_s 0.038 £ 0.001 0.043 £ 0.002 0.048 £ 0.002
The qubit frequencies are in the range 4.8-5 GHz, with relax- circuit of interest. In this work, we employ stretch factors

ation and coherence times of 7; and 7 echo ~ 40-110 us. The of ¢ =1, 1.25, 1.5 and use linear extrapolation for obtaining
single- and two-qubit gates are implemented by all-microwave zero-noise estimates. An important consideration for noise
drives. Every trial circuit is composed of six CNOT gates, amplification by stretching the gates is the introduction of
implemented using cross-resonance pulses and single-qubit undesired coherent errors, which could result in unphysical
gates. The shortest single-qubit gates used for the experiments extrapolations. In this context, we employ a four-pulse echo
are of duration 103 ns, and the shortest gate times for  sequence for the construction of the ZXg, gate that serves as
CNOT,,, CNOT},, and CNOT), are 1278, 1210, and 1448 ns, the primitive for realizing a CNOT. Similar sequences have
respectively. To improve the quality of the computation, we in the past been employed to mitigate the effect of spectator
use the error mitigation scheme previously implemented in  interactions in parity measurements for quantum error correc-
Ref. [13]. Here expectation values of interest are remeasured tion [48]. At each stretch factor, the gates are characterized
under amplified noise strengths in order to then extrapolate to by randomized benchmarking and the obtained fiedlities are
the zero-noise limit. Under the assumption of time-invariant reported in Table I. The average readout assignment errors for
noise, this noise amplification is achieved by stretching intime  the four qubits were €, ~ 0.05. As discussed in Refs. [12,13]
the single- and two-qubit gates that constitute the quantum all measured expectation values were corrected for

(a) (c)
0.6 =
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£ fit o =125 T 10 2 ] $ ; . g
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FIG. 3. (a) Ground-state correlation energy versus the variational parameter 6 at equilibrium bond length (1.6 A). The energies computed
with state-vector-type simulations are shown together with the experimental results obtain for each of the three stretch factors and after
mitigation. The yellow dotted curve displays the fit to the mitigated values. (b) Error in the n energy gaps at equilibrium bond length (1.6 A).
The error is computed with respect to the results obtained by state-vector-type simulation of the reduced circuit. The results are shown for each
of the three stretch factors and after mitigation. The energy of the gaps grows from left to right. (c) Lower panel: Dissociation profile of the five
lowest-lying electronic transition energies of the LiH molecule. The markers show the mitigated experimental results. The dashed lines are the
qEOM results from state-vector-type simulations (using the reduced four-qubit active space). Inset: Dissociation profile of the six lowest-lying
electronic states of the LiH molecule. The qEOM transition energies are added to the ground-state energy (red). Upper panel: Corresponding
energy errors along the dissociation profile. The gray shaded area corresponds to the energy range within chemical accuracy. The error bars
are computed using 50 numerical experiments obtained by bootstrapping of the experimental data points and depict the range between the first
and third quantile.
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assignment infidelity using a readout calibration of all
the basis states.

At each internuclear distance, the circuit parameter 6 is
swept, energies are measured at three different stretch factors
(1.0, 1.25, and 1.5), and a mitigated sweep is obtain using
a linear extrapolation of these measurements. To reduce the
sensitivity to any fluctuations, the optimal 6 for the ground
state is obtained by fitting a quadratic curve to the mitigated
sweep, as shown in Fig. 3(a) at the equilibrium bond length.
The error mitigation protocol is then extended to each matrix
element of the qEOM and the resulting “mitigated” secular
equation is then solved classically, leading to the excitation
energies Ey, with n =1,...,24. The absolute errors with
respect to the state-vector-type simulations are displayed in
Fig. 3(b). Error mitigation enables a gain in precision of ap-
proximately one order of magnitude in both the ground-state
and excitation energies. More importantly, we experimentally
observe that the unmitigated results are more accurate for the
excited states than the ground state (about 1 x 10~ Ha for the
lowest energy states against an error superior to ~1 x 107!
Ha for the ground state) from the runs at different stretch or
noise amplification factors. Finally, we test our algorithm for
varying internuclear distance, discussed in Fig. 3(c) (and the
Appendix).

V. CONCLUSIONS

In this work, we introduced a quantum algorithm for the
calculation of electronic excited-state energies based on the
classical EOM approach. The method, named qEOM, inherits
the benefits of the variational approaches for ground-state
calculations as well as all merits of the EOM method, while
improving on its classical counterpart by taking advantage of
the efficient measurement of expectation values in a quantum
computer. We tested the qEOM algorithm on three small
molecules: H,, LiH, and H,O, demonstrating that simulations
can produce excitation energies within chemical accuracy (er-
rors < 1.5 mH). We studied the performance of our algorithm
and showed that it is particularly well suited for calculations
on state-of-the-art quantum device, manifesting robustness
against hardware noise. Finally, we adapted an error mitiga-
tion scheme to the gEOM approach and were able to compute
the excitation energies of LiH on the IBM Q Poughkeepsie
device. The stability of the qEOM algorithm, demonstrated
in this work, opens up new avenues in the use of quantum
computers for studying photochemical processes.
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APPENDIX A: ERROR PROPAGATION

Assessing the error propagation from the ground-state
wave-function calculation to the excited-state energies is not
straightforward. To shed light on this issue, we compute the
ground and excited states of a H, molecule. The Hamiltonian
is prepared by computing the one- and two-electron integrals
using a Hartree-Fock—STO-3G calculation performed on
Gaussian09 [40]. We compute the correlation energy by run-
ning a VQE with the UCCSD ansatz in a state-vector-type
manner (the exact unitary matrix of the circuit is applied on
the quantum-state vector). For this system, the VQE com-
prises three variational parameters. The excited-state energies,
E;, are computed by finding the excitation energies (energy
gaps) with qEOM and adding them to the ground-state en-
ergy, Ey. We add an “ad hoc” error, €, to all parameters
defining the ground-state wave function and recompute the
ground-state as well as the excited-state energies as a function
of €. The absolute value of the corresponding ground- and
excited-state energy variations |AE;(€)| = |E;(0) — E;(e)| are
reported in Figs. 4(a)-4(d) for i € {0, 1, 2, 3}. Here E, refers
to the ground-state energy and E; to the energy of state i.
For all excited-states calculations, Figs. 4(b)—4(d) also report
the ratio between the errors of the excited state i and the one
obtained for the ground state as a function of €. In all cases,
the |AE;(¢)| (withi € 0, 1, 2, 3) grow monotonically with the
increase of €. Moreover, the error slightly increases with
the stretching of the bond. Interestingly, we also observe that
the larger the value of € is, the closer the errors in ground and
excited states get (circles). This implies that the gEOM energy
gaps are less sensitive to an error in the ground state than the
ground-state energy itself which, in this case, becomes the
main source of error. As shown in Fig. 4(b) it was not possible
to obtain energies for the first excited state for € = 10! and
bond lengths larger than 1.4 A. At these bond lengths the
ground-state and the first excited-state energies become al-
most degenerate. Within these conditions, the system to solve
becomes ill conditioned, and numerical instabilities appear.
The same argument can also explain the slight deterioration of
the first excited-state energies for internuclear bond distances
larger than 1.75 A at all levels of noise. In the following
we study the robustness of gEOM to statistical errors. The
ground-state wave function of the H, molecule optimized
with a state-vector-type VQE (as explained in the previous
paragraph) is used to compute the excited-state energies with
qEOM by introducing this time a statistical error: The expec-
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FIG. 4. Error in (a) the ground state and the (b) first, (c) second, and (d) third excited-state energies when adding an error to the VQE
optimized ground-state parameters. The legend shows the value of the added error. Squares: Absolute difference between the energies computed
with and without adding an error to the parameters. Circles: Ratio between the absolute errors made on the excited state i and on the ground

state.

tation value of each matrix element, M, Lavp s Q,Mvﬁ, Vitavg and
Wi.,vs» 18 Obtained by projecting the state and averaging over a
given number of shots, NS € {8192, 4096, 2048, 1024}. For
each different choice of NS we perform 100 computations
of excited-state energies and compute the error, |AE|, with
the corresponding values obtained without statistical noise.
In Fig. 5 (top), we plot the average of this error for each
bond length for [Fig. 5(a)] the first, [Fig. 5(b)] the second,
and [Fig. 5(c)] the third excited states. In the second line of
Fig. 5, we report the error of the norm of the matrices M,
V, and Q instead. Note that for Hy, W is a null matrix. All
absolute errors reported in Fig. 5 have been averaged over
the aforementioned 100 realizations of the experiment. In
general, we observe an increase of the absolute energy error
with the statistical noise, i.e., with the decrease of NS. As
mentioned above, each element of the M, V, and Q matrices
corresponds to a weighted sum of PS. The energy presents
a large variance when the coefficients associated to the PS
are large. In the case of the Q matrix, the PS coefficients are
relatively small (<10) across the whole range of internuclear
distances. The matrix elements Q,,,, are therefore weakly
affected by the sampling error. The effects on the matrix V
are more interesting. By definition, the coefficients weighing

the PS of the V matrix elements do not depend on the bond
length (they do not depend on the Hamiltonian). The error in
the V matrix elements through the dissociation curve shows
that the required number of shots for sampling the distribution
increases with the bond length. With internuclear distance, the
correlation effects increase and the wave-function distribution
broadens, requiring more shots to be accurately described.
This is translated directly to the accuracy of the V matrix
elements. Finally, the M matrix elements are weighted by
large coefficients (~50) at short bond lengths but they de-
crease as the internuclear distance increases. In this case the
increase of the PS measurement errors and the decrease of
the variance at large bond distances cancel out leading to a
roughly constant accuracy for the matrix elements M, over
the entire dissociation range. We observe that the error in the
excited-state energies follow the error in the matrix norms
(the V matrix, in this case, which is mostly affected). We also
expect gEOM to be less accurate in strong correlation regimes
(e.g., at large bond lengths), when the correct description of
the ground state becomes difficult. In preparation of com-
puting molecular excited states on a quantum hardware, we
implement the gEOM algorithm in the Qiskit software library
[44]. This enables us to perform realistic noisy simulations
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FIG. 5. Top: Absolute error in the (a) first, (b) second, and (c) third excited-state energies due to shot noise. The error corresponds to the
difference between energies computed with and without sampling. Bottom: Absolute error in the norm of the (d) M, (e) V, and (f) Q matrices
due to finite number of shots. The error corresponds to the difference between the matrix norms computed with and without sampling.

and model the performance of the algorithm on the IBM Q
Poughkeepsie device. Using Qiskit, the molecular orbitals of
a H, and LiH molecules are computed with Hartree-Fock—
STO-3G and the PySCF classical code [45]. The core orbitals
are frozen. The circuit depth is reduced as explained in the
next section leading to circuits parametrized with a single
angle 6 for both molecules. The simulations are done using the
gasm simulator with the Poughkeepsie noise model and 100K
shots. We switch this parameter within the range [—m; ]
and compute the ground and excited states of H, and LiH
at equilibrium distance (0.75 A and 1.6 A, respectively). The
effects on the ground-state energy as well as the excitation
energies (energy gaps directly computed with qEOM) are
shown in Fig. 6. Around the best 6 value, the noise has the
effect to shift up the computed ground-state energy. On the
other hand, the gEOM is robust to the noise, leading to an
error in the excitation energies (energy gaps) of about one
order of magnitude smaller than for the ground state [see
Figs. 6(c) and 6(f)]. The 6 scans [Figs. 6(a) and 6(d)] also
help us determine a suitable region to inspect experimentally.
In this region the energy change with 6 should be higher than
the fluctuations coming from the hardware noise but close
enough to the bottom of the well such that the data can be
fitted to a harmonic curve. Applying a fit to determine the
bottom of the curve has the purpose of obtaining a value
which is not biased by the fluctuations coming from the
hardware (that are in the range of the energy change when
approaching the optimal 6 value). This region was selected to
bed € [—1;1].

APPENDIX B: COMPARISON WITH QSE

Differently from the method introduced in this work, the
QSE approach discussed in Ref. [26] neglects the deexcitation
operators (as in the Tamm-Dancoff approximation [37,38]),
which limits its application to systems for which this ap-
proximation is valid (e.g., far from conical intersections, see,
for instance, Ref. [39]). Moreover, QSE includes the identity
operator in the pool of “excitation” operators. Consequently,
QSE is not size intensive and thus not generally applicable
in the calculation of energy differences. Additionally, from
the observations of the previous section, we conclude that the
accuracy in the calculation of the ground state is crucial for
recovering excitation energies within chemical accuracy. With
the current statistical and hardware noise levels, obtaining
such precision is still very challenging and, therefore, we re-
quire robust excited-states algorithms that can cope with these
experimental conditions. We assess the performance of gEOM
and QSE by computing the excitation energy gaps (which are
in general of interest rather than absolute energies) for the H,
molecule (STO-3G basis set, four qubits). We consider the
following ground state:

W) = U(a)|Wo), B1)
where |W,) is the exact ground state obtained by diago-
nalization of the Hamiltonian and U is a random unitary
matrix characterized by a density « of off-diagonal elements.
The results are averaged over 10000 trials. The left-hand
side of Fig. 7 shows the ground-state energy. For o =0,
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FIG. 6. Left: Correlation energy of the ground state computed with (markers) and without (dashed lines) noise as a function of the
variational parameter 6 for (a) H, and (d) LiH at equilibrium distance. Middle: Corresponding excitation energies computed with gEOM
with (markers) and without (dashed lines) noise. For H, (b) the three excitation energies are shown. For LiH (e) the excitation energies
corresponding to the five lowest energy states (degeneracies are not taken into account) are displayed. Right: Absolute error in the noisy
simulations with respect to the reference for the ground-state and corresponding excitation energies with a zoom in the region 6 € [—1; 1] for

(c) H, and (f) LiH.

the energy is exact [since U(0) is the identity matrix]. For
the qEOM the ground-state energy corresponds to the ex-
pectation value of the Hamiltonian: (W |H|W). In the case
of QSE, the ground-state energy is obtained from the solu-
tion of the pseudoeigenvalue problem as for the excitation
energies. Note that in this work for both methods (QEOM
and QSE) all (spin number conserving) single- and double-
excitation operators are considered (for QSE the identity
operator is also included). In our calculations of the excita-
tion energies of H,, gEOM is more robust than QSE against

(a)

—%— qEOM
— —=— QSE
£—1.75
>
o
v-1.80
L

0.00 0.02 0.04
a

the different source of noise (e.g., gate noise or decoher-
ence effects) in the preparation of the ground-state wave
function.

APPENDIX C: MOLECULAR HAMILTONIANS
AND CIRCUITS

1. Hydrogen

The Hamiltonian for the Hydrogen molecule is given in
Table II.

®) 0.06
8 QqEOM

5 @ QSE

%SO.O4

W

|

-

EOO.OZ

0'0(9.00 0.02 0.04
a

FIG. 7. (a) Ground-state energy of H, (four qubits) at equilibrium bond length as a function of the @ parameter. In the case of gEOM the
energy is the expectation value of the Hamiltonian with |¥) = U(a)|Wy). In the other case, it is the minimum energy found after solving the
QSE equations. Each point is the average over 10 000 trials. (b) The error in excitation energies for the first (green), second (blue), and third
(purple) excitation energies of H, (four qubits) at equilibrium bond length. Each point is the average over 10 000 trials.
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TABLE II. The H, Hamiltonian at equilibrium bond length (0.75 A). Listed are all the Pauli operators with the corresponding coefficients,
not taking into account for the energy shifts due to the frozen core orbitals and the Coulomb repulsion between nuclei. Each column corresponds
to a different tensor product basis set. X, Y, Z, and I here denote the Pauli matrices o, ,, 0, and the identity operator on a single-qubit subspace,

respectively.

mz 1zz

0.169885 0.120051

z1 1271

—0.21886 0.165494 I
1Z11 Z1z XXYY YYXX XXXX 1.006421
0.169885 0.165494 0.045443 0.045443 0.045443 YYYY
Z111 Z171 0.045443
—0.21886 0.173954

1Z1Z 7711

0.168212 0.120051

2. Lithium hydride

The Hamiltonian for the lithium hydride molecule is given
in Table III. The UCCSD circuit of LiH requires over 12 000
CNOT gates and the optimization of 92 parameters. The cir-
cuit depth can, however, be reduced by following two steps.
First, the UCC ansatz is restricted to one excitation, i.e., one
variational parameter. This excitation is selected by comput-
ing the MP2 coefficients of the CI expansion,

hijki — hijix
9
eitej—er—e

M = (€
where h;ji; are the two-electron integrals and e; is the energy
of orbital i. We select the excitation with the largest MP2
coefficient. By including only the relevant orbitals, we also
reduce the 10-qubit LiH active space to a four-qubit space.
Indeed, we consider the active space to be represented by a
four-qubit quantum register while the inert space is mapped
to a six-qubit register, the active and inert registers are uncor-
related and therefore

(Uil AT Yrun) = (Vactive| Al Wactive) (Winert | T Vinert)

where A and I are operators acting on the active and inert
spaces, respectively. In the inert register, since the qubits
are all in the |0) state, (Z) = (I) =1 and (X) =(Y) =0. It
follows that only the active register has to be modeled in
quantum hardware. Let us illustrate the previous paragraph

(C2)

with a short example. In the 10-qubit LiH, the four first qubits
represent the active space while the six last ones are inert.
Let us consider IZIZIIXIII to be one of the PS composing
the Hamiltonian. In this example, IZIZ is measured on the
active register while IIXIII is evaluated on the inert register.
Since one of the qubits of the inert register is measured in the
X basis, (IIXII)ipey = 0 and therefore (IZIZIIXII),; = 0.
This PS can be set to 0. On the other hand, if we consider
1ZIZ11Z111, then (IIZIII);,ec = 1 and the value of the PS can be
set to that measured on the active register: (IZIZIIZI) ¢y =
(IZIZ) oetive- Thus, by reducing the active space we can mea-
sure the 10-qubit LiH Hamiltonian on a 4-qubit register.

The second step to reduce the circuit depth consists of
modifying the UCC circuit. In the regular UCC, the circuit
(derived by applying the Jordan-Wigner transformation on the
classical UCC ansatz) representing a single excitation is made
up of four entangling blocks, with different pre- or postro-
tations. Those four blocks are parametrized with the same
angle 6. For the double excitations, a similar construction
is used and extended to eight entangling blocks. All pre- or
postrotations are fixed and different for each entangling block.
We propose to replace the four and eight entangling blocks by
a single block in which the pre- or postrotations angles {®} are
optimized on a small system (e.g., H; is used to optimize the
pre- or postrotation angles of the double excitation blocks),
see Fig. 8. For the four-qubit LiH circuit, this allows us to
further reduce the circuit from 48 to 6 CNOTs without loss of

TABLE III. The LiH Hamiltonian at equilibrium bond length (1.6 A) after reduction of the active space. Listed are all the Pauli operators
with the corresponding coefficients, not taking into account for the energy shifts due to the frozen core orbitals and the Coulomb repulsion
between nuclei. Each column corresponds to a different tensor product basis set. X, Y, Z, and I here denote the Pauli matrices oy, oy, 0, and

the identity operator on a single-qubit subspace, respectively.

1Z11 iz
III 0.428555 0.428555 1771
Yy XXII IIXX 0.166096 1ZXX 0.166096 XXIZ Z1z
0.038896 0.038896 0.038896 XXXX 1IZYY —0.03169 YYIZ —0.03169 0.113461
YYII XXYY YYXX 0.030982 —0.03169 ZIXX —0.03169 XXZI 7171
0.038896 0.030982 0.030982 ZIYY —0.03355 zz —0.03355 0.113447
YYYY —0.03355 0.082479 1717
0.030982 7711 YYZI 0.121828

0.082479 0.03355
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FIG. 8. Reduction of the usual eight blocks of the double excita-
tion part of the UCCSD circuit to a single block.

accuracy. This circuit can recover from 57% of the correlation
energy at 1.0 A to 80% at 2.0 A (the amount of correlation
energy captured by this circuit along the dissociation curve,
is given in Table IV). We assume this approximation of the
ground state to be good enough to compute accurate excitation
energies.

Regardless of the method chosen to approximate the
ground state, we want to compute the excited states of the

©
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FIG. 9. Lower panel: Dissociation profile the LiH molecule. The
gray lines represent the exact eigenstates of the Hamiltonian ob-
tained from its diagonalizaton. The colored dashed lines show the
six lowest-lying electronic states obtained with VQE and qEOM
in state-vector simulation with the reduced circuit. Upper panel:
Corresponding energy errors along the dissociation profile. The
gray shaded area corresponds to the energy range within chemical
accuracy.

LiH molecule in the STO-3G (10-qubit) basis. The ground-
state wave function is evolved in the reduced active space,
and the previously described measurement method is applied
to compute the qEOM operators and reconstruct the full
pseudoeigenvalue problem. The expected accuracy, given the
reduced circuit, is depicted in Fig. 9 and lies between 1 and
10 mHa.

APPENDIX D: EXPERIMENTAL DETAILS

The error in the experimentally obtained ground and ex-
cited state energies are shown on Fig. 10 for different bond
lengths.

TABLE IV. Percentage of correlation energy recovered by the reduced four-qubit active space UCC-inspired circuit for LiH through the
dissociation profile. The VQE results are obtained with state-vector-type simulations, the reduced circuit, and the COBYLA optimizer. The
exact results are obtained by diagonalization of the full HF-STO-3G Hamiltonian.

Bond length E.. VQE (Ha) E . Exact (Ha) E o recovered (%)
1.0 —0.009797 —0.017098 57.3
1.1 —0.009841 —0.016794 58.6
1.2 —0.010169 —0.016815 60.5
1.3 —0.010782 —0.017186 62.7
1.4 —0.011688 —0.017915 65.2
1.5 —0.012899 —0.019005 67.9
1.6 —0.014430 —0.020460 70.5
1.7 —0.016299 —0.022289 73.1
1.8 —0.018525 —0.024505 75.6
1.9 —0.021132 —0.027129 77.9
2.0 —0.024142 —0.030182 80.0
2.2 —0.031456 —0.037689 83.4
2.5 —0.045769 —0.052850 86.6
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FIG. 10. Error in the experimentally obtained ground-state energies (n = 0) and excitation energies to n = 24 for several internuclear
distances. The error is computed with respect to the results obtained by state-vector-type simulation of the reduced circuit. The results are shown
for each of the three stretch factors and after mitigation. The energy of the gaps grows from left to right. The gray shaded area corresponds
to the energy range within chemical accuracy. The error bars are computed using 50 numerical experiments obtained by bootstrapping of the
experimental data points and depict the range between the first and third quantiles. For all the bond lengths, the excitation energies are seen to
be more robust than the ground-state energies at various noise levels (i.e., stretch factors).
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