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Abstract. In this manuscript we review some aspects of linearized metric solutions in ghost-
free nonlocal gravity, in which the action is made up of non-polynomial differential operators
containing covariant derivatives of infinite order. By working with the simplest model of such
a wide class of infinite derivative theories of gravity, we will first compute the spacetime metric
generated by a static point-like source and show that all curvature invariants are nonsingular
at the origin. Secondly, a similar computation is performed for an electrically charged source
and also in this case the regularizing feature of nonlocality plays a crucial role. As a third case,
we consider the spacetime metric generated by a Dirac delta distribution on a ring and show
that, at least in the linear regime, Kerr-like singularities can be avoided in ghost-free non-local
gravity.

1. Introduction
Einstein’s general relativity (GR) has been the most successful theory of gravity so far, indeed
its predictions have been tested to very high precision in the infrared (IR) regime, i.e. at
large distances and late times [1]. For instance, we can think of the recent observation of
gravitational wave emission [2], which can represents one of the greatest triumph of theoretical
physics. However, despite its great achievements, there are still unsolved problems which suggest
that Einstein’s GR can be only seen as an effective field theory of gravitational interaction, which
works very well at low energy but breaks down in the ultraviolet (UV) regime. In fact, at the
classical level the Einstein-Hilbert Lagrangian,

√
−gR, suffers from the presence of blackhole

and cosmological singularities (short-distance regime), while at the quantum level it turns out
to be non-renormalizable from a perturbative point of view (high-energy regime).

It is worthwhile emphasizing that our knowledge of the gravitational interaction at short
distances is really limited. It suffices to think that, from a pure experimental point of view,
Newton’s 1/r law has been tested only up to a distance of 5.6× 10−5 meters, which in terms of
energies means 0.01eV [3]. Therefore, there exist a very wide desert of roughly thirty orders of
magnitude, from 0.01eV to the Planck scale Mp ∼ 1019GeV 1, in which we do not know anything
about gravity. This is the place where UV extensions of GR can play a crucial role.

1 In this paper we work with Natural Units in which c = 1 = ~ and the Coulomb constant is ke = 1. Moreover,
we adopt the mostly positive convention for the metric signature, η = diag(−1,+1,+1,+1).
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One way to extend GR is to add terms quadratic in the curvatures in the gravitational
action, like for example R2 and RµνRµν . This kind of action was shown to be power
counting renormalizable in Ref. [4, 5], but still non-physical because of the presence of a
massive spin-2 ghost degree of freedom which causes Hamiltonian instabilities, classically,
and breaking of the unitarity condition of the S-matrix, quantum mechanically2. See Refs.
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19] for other relevant works on applications involving
gravitational actions quadratic in the curvature invariants.

The emergence of ghost modes is related to the presence of higher order time derivatives in the
field equations [22]. In the last four decades, it was realized that unhealthy degrees of freedom
can be still avoided in higher derivative theories if the order of the derivatives is not finite but
infinite. Indeed, by introducing certain non-polynomial differential operators in the action, like
for example e�, one can prevent the appearance of extra poles in the physical spectrum, which
was already noticed in the last century by [23, 24, 25, 26]. The presence of non-polynomial
derivatives makes the action nonlocal, and this kind of nonlocal models were already studied
in the early fifties in relation with the improved UV behavior of loop integrals, see Refs. [27].
This possibility turned out to be very promising and has motivated a deeper investigation of
this unexplored sector of nonlocal (or infinite derivative) field theories.

First relevant applications of nonlocal field theory in a gravitational context were made in
Refs. [28, 29, 30, 31] were the authors explicitly show the possibility to construct a quadratic
curvature theory of gravity which is classically stable and unitary at the quantum level. It was
also noticed that the presence of nonlocality can regularize infinities and many efforts have been
made in order to resolve blackhole [29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47] and cosmological [28, 48, 49, 50] singularities. Further applications appear in the context of
inflation [51] and thermal field theory [52, 53, 54].

This class of nonlocal field theories shows an improved UV behavior [55, 58, 57, 58] but a
rigorous proof of renormalizability is only available for some peculiar non-polynomial operators
[57]. See also Refs. [60, 61, 62, 63, 64] for recent progresses on infinite derivative field theories,
and in particular Refs. [65, 66, 67, 68] where the authors prove perturbative unitarity.

It is worthwhile emphasizing that similar infinite derivative operators also appear in string
field theory and p-adic string [69, 70, 71, 72, 73].

Our aim is to review some classical aspects of ghost-free infinite derivative gravity (IDG); in
particular, we will find linearized metric solutions for several sources and discuss the physical
implications of nonlocality. The manuscript is organized as follows. In Section 2, we introduce
the gravitational action and, we will find the propagator and the linearized field equations
around Minkowski background. In Section 3, we will find the linearized metric solution for a
static neutral point-like source. In Section 4, we will do the same for an electrically charged
point-like source. Moreover, in Section 5 we will find the spacetime metric for a Delta Dirac
distribution on a ring. Finally, in Section 6 we will draw our conclusions and discuss the outlook.

2. Nonlocal gravitational action
The class of ghost-free nonlocal gravitational actions is very wide but we will only consider
one particular model for our analysis, which will capture all the main classical features due to
nonlocality. Let us consider the following infinite derivative action [29, 30, 32]

S =
1

2κ2

ˆ
d4x
√
−g

{
R+Gµν

e−�/M
2
s − 1

�
Rµν

}
, (1)

2 See Refs. [6, 7, 8, 9] for recent interesting works, in which the authors introduce a new quantization prescription
through which the ghost is converted into a fake degree of freedom (fakeon), in such a way that the optical theorem
is still satisfied and so perturbative unitarity is maintained.
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where Gµν = Rµν − gµνR/2 is the Einstein tensor, κ2 ≡ 8πG with G = 1/M2
p being the Newton

constant, while Ms is a new fundamental energy scale at which nonlocal effects should manifest
and is mathematically needed to make the exponent of the exponential dimensionless.

Note that the non-polynomial form-factor in Eq. (1) is

F(�) ≡ e−�/M
2
s − 1

�
= −

∞∑
n=1

1

n!

(−�)n−1

M2n
s

, (2)

which is analytic and modify the short-distance (UV) behavior of Einstein’s GR as only positive
power of � appear. It is worthwhile mentioning that in the literature there are also examples
of non-analytic form-factors which are responsible for IR modifications; see for instance Refs.
[74, 75, 76, 77, 78, 79].

2.1. Graviton propagator and linearized field equations
Let us now consider linear perturbations around the Minkowski background,

gµν = ηµν + κhµν , (3)

where hµν is the graviton perturbation, so that by expanding the action up to order O(h2µν) [30]
we obtain:

S(2) =
1

4

ˆ
d4xhµν e

−�/M2
sOµνρσ hρσ, (4)

where

Oµνρσ :=
1

4
(ηµρηνσ + ηµσηνρ)�− 1

2
ηµνηρσ� +

1

2
(ηµν∂ρ∂σ + ηρσ∂µ∂ν − ηµρ∂ν∂σ − ηµσ∂ν∂ρ)

(5)
is a four-rank operator Oµνρσ which is totally symmetric in all its indices.

By inverting the kinetic operator e−�/M
2
sOµνρσ one obtains the graviton propagator around

Minkowski, and its gauge independent and saturated part is given by [23, 26, 29, 30]

Πµνρσ(k) = e−k
2/M2

s

(
P2
µνρσ

k2
−
P0
s, µνρσ

2k2

)
≡ e−k2/M2

s ΠGR,µνρσ(k), (6)

where ΠGR = P2/k2 − P0
s /2k

2 is the graviton propagator in Einstein’s GR, while P2 and P0
s

are the spin-2 and spin-0 projection operators; see Refs. [80, 81] for more details.
Very interestingly, the nonlocal modification in the propagator turns out to be a simple extra

factor e−k
2/M2

s , which does not introduce any new pole in the theory other than the standard
massless spin-2, k2 = 0.

The linearized field equations corresponding the the action in Eq. (4) are given by [30]

e−�/M
2
sO ρσ

µν hρσ = −16πGTµν , (7)

where

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
(8)

is the stress-energy tensor of the matter sector.
In the following sections we will solve the field equations in Eq. (7) for three different choices

of Tµν .
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3. Spacetime metric for a static point-like source
In this Section we wish to find a spherically symmetric static metric solution in presence of a
Delta Dirac distribution placed at r = 0. By working in the conformal Newtonian gauge, we can
write the perturbed metric in Eq. (3) in isotropic coordinates as follows:

ds2 = −(1 + 2Φ(r))dt2 + (1− 2Ψ(r))(dr2 + r2dΩ2), (9)

where r =
√
x2 + y2 + z2 is the isotropic radial coordinate, so that the field equations in Eq.

(7) become

e−∇
2/M2

s∇2Φ = 4πG(T + 2T00),

e−∇
2/M2

s∇2Ψ = 4πGT00.
(10)

where T ≡ ηµνTµν , and we have used κh00 = −2Φ, κhij = −2Ψδij , κh = 2(Φ−3Ψ) and � ' ∇2.
In the case of a neutral static point-like source, the stress energy tensor is given by

Tµν = mδ0µδ
0
νδ

(3)(~r), (11)

so that the modified Poisson equations in Eq. (10) reduce to

e−∇
2/M2

s∇2Φ = e−∇
2/M2

s∇2Ψ = 4πmδ(3)(~r), (12)

implying that the two metric potentials are equal, Φ = Ψ. Note that we have to deal with a
differential equation of infinite order due to the presence of the exponential operator e−∇

2/M2
s ;

however it can be easily solved by going to Fourier space and then anti-transforming back to
coordinate space. Indeed, by doing so we obtain the following solution:

Φ(r) = −4πGm

ˆ
d3k

e−k
2/M2

s

k2
ei
~k·~r = −2Gm

π

1

r

∞̂

0

dk
sin(kr)

k
e−k

2/M2
s = −Gm

r
Erf

(
Msr

2

)
,

(13)
where

Erf(x) :=
2√
π

xˆ

0

e−t
2
dt, (14)

is the so called error-function.
Very interestingly, note that the gravitational potential in Eq. (13) is non-singular at r = 0,

indeed it tends to the finite constant value Φ(0) = 2GmMs/
√
π; while for large distances we

recover the 1/r behavior of the Newtonian potential, as expected. Note that the linearized
regime is valid as long as the inequality 2GmMs/

√
π < 1 holds true.

From a physical point of view, nonlocality is able to regularize the singularity, indeed the
point-like source at r = 0 is smeared out on a region of size 1/Ms due to the presence of
infinite order derivative. Not only the linearized metric potentials but also all the linearized
curvature invariants turn out to be non-singular. Furthermore, at r = 0 the metric becomes
conformally-flat, since all the components of the Weyl tensor vanish at the origin [38].

4. Spacetime metric for an electrically charged point-like source
Let us now consider the case of a static electric charge as a gravitational source and find the
corresponding metric potentials for the spherically symmetric metric in Eq. (9). The stress-
energy tensor in this case is given by electro-magnetic one which reads

Tµν =
1

4π

(
ηρνFµσF

ρσ − 1

4
ηµνFρσF

ρσ

)
, (15)
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where Fµν = ∂µAν−∂νAµ is the electro-magnetic field strength defined in terms of the potential-
vector Aµ. In the simplest case of an electric charge, only the components related to the electric
field are non-vanishing:

F10 = −F01 = Er and Er =
Q

r2
, (16)

with Er being the radial component of the electric field. Given the stress-energy tensor in Eq.
(15) with the components in Eq. (16), the infinite derivative differential equations in Eq. (10)
become [41]:

e−∇
2/M2

s∇2Φ =
GQ2

r4
,

e−∇
2/M2

s∇2Ψ =
GQ2

2r4
.

(17)

Also in this case we can solve the modified Poisson equations by using the Fourier transform
method. By making the field redefinitions Φ̃ := e−∇

2/M2
s Φ, Ψ̃ := e−∇

2/M2
s Ψ, we obtain the

following two solutions from Eq. (17):

Φ̃(r) = −C1

r
+
GQ2

2r2
+ C2

Ψ̃(r) = −C1

r
+
GQ2

4r2
+ C2,

(18)

where we fix C1 = Gm by requiring that we want to recover the static neutral case in Eq. (13)
when Q = 0, and C2 = 0 since we want asymptotic flatness (for r −→∞). We can now go back
to the fields Φ and Ψ, which are given by

Φ(r) = −Gme∇2/M2
s

(
1

r

)
+
GQ2

2
e∇

2/M2
s

(
1

r2

)
,

Ψ(r) = −Gme∇2/M2
s

(
1

r

)
+
GQ2

4
e∇

2/M2
s

(
1

r2

)
.

(19)

By using the fact that 4π/k2 is the Fourier transform of 1/r, we can write

e∇
2/M2

s

(
1

r

)
=

ˆ
d3k

(2π)3
4π

k2
e−k

2/M2
s ei

~k·~r =
2

π

ˆ ∞
0

dk
sin (kr)

kr
e−k

2/M2
s =

1

r
Erf

(
Msr

2

)
, (20)

which gives the neutral part of the potentials; then, by using the Fourier transform 2π2

k sign(k)
of 1/r2, we can write

e∇
2/M2

s

(
1

r2

)
=

ˆ
d3k

(2π)3
2π2

k
sign(k)e−k

2/M2
s ei

~k·~r =

ˆ ∞
0

dk
sin (kr)

r
e−k

2/M2
s =

Ms

r
F

(
Msr

2

)
,

(21)
where

F(x) := e−x
2

xˆ

0

et
2
dt (22)

is the so called Dawson function. Therefore, the two metric potentials in Eq. (19) read [41]

Φ(r) = −Gm
r

Erf

(
Msr

2

)
+
GQ2Ms

2r
F

(
Msr

2

)
,

Ψ(r) = −Gm
r

Erf

(
Msr

2

)
+
GQ2Ms

4r
F

(
Msr

2

)
.

(23)
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As expected, for large distances Msr � 1, we recover the metric potentials of the linearized
Reissner-Nordström metric of GR [41], while in the limit r −→ 0 the two metric potentials tend
to finite values, Φ(0) = −GmMs/

√
π + GQ2M2

s /4 and Ψ(0) = −GmMs/
√
π + GQ2M2

s /8, as
can be easily checked. The same regularized behavior can be shown for all linearized curvature
invariants; in particular, the Weyl tensor vanishes implying that the metric is conformally-flat at
the origin [41], as it also happens for the case of a neutral source studied in Section 3. Therefore,
also for a point-like electric charge nonlocality is able to regularize the singularity at r = 0.

The linearized regime holds all the way from r = ∞ up to r = 0, as long as the inequalities
2|Φ(0)|, 2|Ψ(0)| < 1 are satisfied, which means mMs < M2

p and |Q|Ms < Mp, where we have
neglected constant factors of order one [41].

5. Spacetime metric for a Dirac delta distribution on a ring
In this Section, we wish to determine the spacetime metric generated by a Dirac Delta
distribution on a ring and show how nonlocality can regularize Kerr-like ring singularities. It is
well known that the Kerr metric suffers from the presence of a ring singularity which in Boyer-
Lindquist coordinates is described by the equation r2 +a2cos2ϑ = 0, or in Cartesian coordinates
by z = 0, x2 + y2 = a2, where a is the radius of the ring [82].

To mimic such a ring distribution, we consider a ring of radius a rotating with constant
angular velocity ω, described by following stress-energy tensor:

T00 = mδ(z)
δ(x2 + y2 − a2)

π
, T0i = T00vi, (24)

where vi is the tangential velocity and its magnitude is related to the angular velocity through
the relation v = ω a; moreover, by assuming that the rotation happens around the z-axis, we
can write vx = −y ω, vy = xω and vz = 0. The stress-energy tensor in Eq. (24) will source the
following linearized non-diagonal metric:

ds2 = −(1 + 2Φ)dt2 + 2~h · d~xdt+ (1− 2Ψ)d~x2, (25)

where hi ≡ h0i and the coordinate r is the isotropic radius which should not be confused with
the Boyer-Lindquist radial coordinate used above. The metric components in Eq. (25) can be
found by solving a set of decoupled infinite order differential equations [42]:

e−∇
2/M2

s∇2Φ(~r) = e−∇
2/M2

s∇2Ψ(~r) = 4Gmδ(z)δ(x2 + y2 − a2),

e−∇
2/M2

s∇2h0x(~r) = −16Gmω yδ(z)δ(x2 + y2 − a2),

e−∇
2/M2

s∇2h0y(~r) = 16Gmω xδ(z)δ(x2 + y2 − a2).

(26)

Also in this case we can solve the modified Poisson equations by using the Fourier transform
method. Note that, by going to cylindrical coordinates, we can Fourier transform the stress-
energy tensor components as follows [42]:

F [δ(z)δ(x2 + y2 − a2)] =

∞̂

−∞

dzδ(z)eikzz
∞̂

0

dρρδ(ρ2 − a2)
2πˆ

0

dϕeikxρcosϕeikyρsinϕ

= π

∞̂

0

d(ρ2)δ(ρ2 − a2)I0
(
iρ
√
k2x + k2y

)
= πI0

(
ia
√
k2x + k2y

)
,

(27)
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Figure 1: In this plot we have shown the behavior of the components −h00 and h0i ∼ H as
functions of the cylindrical radius ρ, in both cases of IDG (orange line) and IDG (blue line). For
convenience, we have set Ms = 1.5, G = 1, m = 0.5 and a = 1. It is clear that, while the metric
potentials in GR have a singularity for ρ = a, they turn out to be regular in IDG.

F [δ(z)δ(x2 + y2 − a2)] =

∞̂

−∞

dzδ(z)eikzz
∞̂

0

dρρ2δ(ρ2 − a2)
2πˆ

0

dϕeikxρcosϕeikyρsinϕcosϕ

= π
kx√
k2x + k2y

∞̂

0

d(ρ2)ρδ(ρ2 − a2)I1
(
iρ
√
k2x + k2y

)
= πa

kx√
k2x + k2y

I1

(
ia
√
k2x + k2y

)
,

(28)

and

F [yδ(z)δ(x2 + y2 − a2)] = πa
ky√
k2x + k2y

I1

(
ia
√
k2x + k2y

)
, (29)

where F [· · · ] stands for the Fourier transform operation, I0 and I1 are two Modified Bessel
functions. For simplicity, let us only consider the plane z = 0 and work with the cylindrical
radial coordinate ρ =

√
x2 + y2, as we know that in GR the ring singularity lies in the x-y plane.

Therefore, by anti-transforming to coordinate space, the metric potentials will be given by [42]

Φ(ρ) = Ψ(ρ) = −Gm
∞̂

0

dζI0 (iaζ) I0 (iζρ) Erfc

(
ζ

Ms

)
, (30)

h0x(x, y) = 4Gmω a
y

ρ
H(ρ), h0y(x, y) = −4Gmω a

x

ρ
H(ρ), (31)

with

H(ρ) :=

∞̂

0

dζI1(iaζ)I1(iζρ)Erfc

(
ζ

Ms

)
, (32)

which in the limit Ms −→∞ all reduce to GR case.
The above three integrals cannot be solved analytically but we can do it numerically as shown

in Fig. 1. We can explicitly see that in GR the metric potentials suffers from the presence of
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a ring singularity at ρ = a, while in infinite derivative gravity such a singularity is regularized.
Also in this case, one can show that all the curvature invariants are non-singular in the entire
spacetime and that the Weyl tensor vanishes at r = 0.

Note that the linearized regime holds from r = ∞ all the way to r = 0 as long as the
inequalities 2|Φ| < 1 and |h0i| < 1 are satisfied for any r, which, by neglecting constant factors
of order one, also means GmMs < 1 and GmM2

sωa
2 < 1, respectively [42].

6. Conclusions and outlook
In this manuscript, we have studied linearized metric solutions for one model of infinite derivative
theories of gravity, in which the choice of nonlocal form-factor is the one in Eq. (2). We
have considered three different configurations, neutral static point-like source, static electrically
charged point-like source and Dirac delta distribution on a ring rotating with constant angular
velocity. Our aim was to show how the presence of nonlocality through infinite order derivatives
can regularize both point-like and ring singularities, at least at the linearized level.

The next important step is to explore the non-linear regime and understand whether
singularities can be also avoided when dealing with the full set of non-linear field equations.
Some progress has been made in Ref. [40], where physical arguments have been presented in
support of singularity avoidance. However, a rigorous treatment is still lacking and no full non-
linear spherically symmetric solution is known in the literature. Such a program is challenging
but at the same time very promising, and it will subject of future works.
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